WO2018024025A1 - 通信网供电控制方法及装置 - Google Patents

通信网供电控制方法及装置 Download PDF

Info

Publication number
WO2018024025A1
WO2018024025A1 PCT/CN2017/087012 CN2017087012W WO2018024025A1 WO 2018024025 A1 WO2018024025 A1 WO 2018024025A1 CN 2017087012 W CN2017087012 W CN 2017087012W WO 2018024025 A1 WO2018024025 A1 WO 2018024025A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
module
supply module
reverse
local
Prior art date
Application number
PCT/CN2017/087012
Other languages
English (en)
French (fr)
Inventor
郭强
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP17836208.3A priority Critical patent/EP3495913B1/en
Publication of WO2018024025A1 publication Critical patent/WO2018024025A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements

Definitions

  • the present application relates to, but is not limited to, the field of communication and power supply, and more particularly to a communication network power supply control method and apparatus.
  • the communication network can also be used to propagate current to power the electrical equipment in the network. For example, using Ethernet to power electronic devices such as network phones, wireless access points, surveillance cameras, and terminal switching devices in the network; for example, using telephone networks to connect telephones, long-lights, and environmental monitoring devices in the telephone network.
  • the device is powered.
  • the communication network is used to supply power to the device, which solves the problem of difficulty in taking power, improves the flexibility of use of the device, reduces the installation complexity and the use cost of the device itself, and can remotely control the power supply or power-off of the device by using the communication network.
  • VDSL2 second-generation VDSL, second-generation asymmetric digital subscriber line
  • G.fast by extending the spectrum, can provide uplink and downlink net rates of up to 500 Mbps and 1 Gbps on copper twisted pairs.
  • Asymmetric transmission due to the use of existing copper resources, avoids the risk of transformation and high cost, can be quickly introduced, greatly reducing the access cost and improving the access capability of the bandwidth.
  • Copper wire access can not only complement the Fiber To The Home (FTTH) deployment environment, but also become a widely deployed independent network with broad application prospects.
  • FTTH Fiber To The Home
  • VDSL Asymmetric Digital Subscriber Line
  • VDSL2 Asymmetric Digital Subscriber Line
  • RPF Reverse Power Feed
  • hybrid power supply such as AC, photovoltaic cell, lithium battery, lead-acid battery, etc.
  • reverse power supply usually, it is only for multi-channel reverse power supply for current sharing or proportional control, or AC power supply output.
  • Flow and load sharing When the old and new services cross, merge, and mix networking, the power supply can only be independently and exclusively powered by a certain mode, such as AC or reverse power supply. It is not possible to supply different power supplies according to a certain ratio.
  • the embodiment of the invention provides a communication network power supply control method and device, which realizes hybrid power supply and integrated power supply when a service crossover, convergence, and hybrid networking occurs.
  • a communication network power supply control apparatus comprising: a reverse power supply module configured to detect a power supply state of a reverse power supply terminal, and transmit the reverse power supply state information to the power supply control module a local power supply module configured to detect a power supply state of the local power supply terminal and transmit the local power supply state information to the power supply control module; the power supply control module is configured to output a corresponding control signal to the reverse according to the reverse power supply state and the local power supply state information The power supply module and the local power supply module adjust the ratio and size of the power supply output of the reverse power supply module and the local power supply module.
  • the apparatus further includes: a busbar control module, connected to the power supply output end of the reverse power supply module and the local power supply module, configured to detect power supply output information of the reverse power supply module and the local power supply module, and output power supply information It is transmitted to the power supply control module, and the output of the reverse power supply module and the local power supply module is integrated to form a power supply bus, and power is supplied to the lower-level power load.
  • a busbar control module connected to the power supply output end of the reverse power supply module and the local power supply module, configured to detect power supply output information of the reverse power supply module and the local power supply module, and output power supply information It is transmitted to the power supply control module, and the output of the reverse power supply module and the local power supply module is integrated to form a power supply bus, and power is supplied to the lower-level power load.
  • the reverse power supply module includes: a reverse power supply detecting unit, configured to check Measuring the circuit data of the power supply state of the reverse power supply end, and transmitting the circuit data to the power supply control module; the reverse power supply conversion unit is configured to convert the voltage of the reverse power supply terminal, provide the required DC voltage, and receive the power supply control module The control signal adjusts the proportional and size of the reverse power supply and supplies power to the bus control module.
  • the local power supply module includes: a local power supply detecting unit configured to detect circuit data of a power supply state of the local power supply terminal, and transmit the circuit data to the power supply control module; the local power supply conversion unit is set to a voltage of the local power supply terminal The conversion is performed to provide the required DC voltage, and the control signal of the power supply control module is received, the proportion and size of the local power supply output are adjusted, and the bus control module is powered.
  • the local power supply module includes one or any combination of the following power supply modules: an AC power supply module, a photovoltaic power supply module, a battery power supply module, and a high voltage DC power supply module.
  • the power supply control module is further configured to receive the system control signal, and output a corresponding control signal to the reverse power supply module and the local power supply module to complete the control of the power supply output ratio and size set by the system, or to enable or Turn off at least one of the reverse power supply module and the local power supply module.
  • the reverse power supply status information includes at least one of the following: the number of reverse power supply paths, voltage, and current.
  • a communication network power supply control method comprising: respectively detecting circuit data of a reverse power supply module, a local power supply module, and a bus control module; and the reverse power supply module and the local power supply
  • the circuit data of the module is compared with the circuit data of the bus control module.
  • the output circuit data of the reverse power supply module and the local power supply module are calculated.
  • the output voltage of the reverse power supply module and the local power supply module is adjusted according to the output circuit data that the reverse power supply module and the local power supply module should have.
  • the method further includes: collecting the outputs of the reverse power supply module and the local power supply module to form a power supply bus, and supplying power to the lower-level electrical load.
  • the local power supply module includes one or any of the following power supply modules. Combined: AC power supply module, photovoltaic power supply module, battery power supply module, high voltage DC power supply module.
  • the method further includes: receiving a system control signal, outputting a corresponding control signal to the reverse power supply module and the local power supply module, to complete the control of the power supply output ratio and size set by the system, or to turn the reverse or the reverse At least one of a power supply module and a local power supply module.
  • the circuit data includes at least one of the following: a number of ways of supplying power, a voltage, and a current.
  • a computer readable storage medium storing computer executable instructions that, when executed by a processor, implement the communication network power control method.
  • the circuit data of each power supply module is detected, and the circuit data of each power supply module is calculated and analyzed, and the output voltage of each power supply module is adjusted according to the required power supply ratio and size, thereby intersecting and integrating in the service.
  • hybrid networking occurs, hybrid power supply and integrated power supply can be realized, thereby achieving the effect of improving the configurability, flexibility, reliability, and security of the power supply.
  • FIG. 1 is a schematic structural diagram of a power supply control device for a communication network according to an embodiment of the present invention
  • FIG. 2 is another schematic structural diagram of a power supply control device for a communication network according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a third structure of a power supply control device for a communication network according to an embodiment of the present invention.
  • FIG. 4 is a fourth structural diagram of a power supply control device for a communication network according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a fifth type of communication network power supply control apparatus according to an embodiment of the present disclosure
  • FIG. 6 is a sixth structural diagram of a power supply control device for a communication network according to an embodiment of the present invention.
  • FIG. 7 is a seventh structural diagram of a communication network power supply control apparatus according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an eighth structure of a power supply control device for a communication network according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a ninth structure of a power supply control device for a communication network according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a tenth embodiment of a power supply control device for a communication network according to an embodiment of the present disclosure
  • FIG. 11 is a schematic structural diagram of a photovoltaic power supply module in a power supply control device for a communication network according to an embodiment of the present invention
  • FIG. 12 is another schematic structural diagram of a photovoltaic power supply module in a power supply control device for a communication network according to an embodiment of the present invention
  • FIG. 13 is a schematic structural diagram of a battery power supply module in a power supply control device for a communication network according to an embodiment of the present disclosure
  • FIG. 14 is another schematic structural diagram of a battery power supply module in a power supply control device for a communication network according to an embodiment of the present invention
  • FIG. 15 is a flowchart of a method for controlling power supply of a communication network according to an embodiment of the present invention.
  • FIG. 16 is another flowchart of a method for controlling power supply of a communication network according to an embodiment of the present invention.
  • Embodiments of the present invention provide a control apparatus and method for a power supply mode of a communication network, Detecting the circuit data of each power supply module and the bus control module, and comparing the circuit data of each power supply module and the bus control module, analyzing the output circuit data of each power supply module, and then according to the output circuit data of each power supply module
  • the output voltage of each power supply module is adjusted, and the output voltage of each power supply module is collected into a power supply bus, and power is supplied to the lower-level power load.
  • it can be adjusted by each power supply module, or the power supply ratio and size of a power supply module can be adjusted according to the requirements of the system power load.
  • the power supply status of each power supply module can be controlled, and the service crosses and fuses.
  • hybrid power supply and integrated power supply can be realized, and the power supply mode can be switched and the power supply ratio between different power supply modes can be controlled and adjusted.
  • Switching the power supply mode to the normal power supply module and re-controlling and adjusting the power supply ratio can meet different requirements, improve the configurability, flexibility, reliability and security of the power supply, and adapt to a wider application scenario.
  • the power supply terminal refers to a source end that provides power
  • the power load refers to a load that ultimately needs to use power
  • the power supply module refers to a device that converts the voltage at the power supply terminal into a suitable voltage required for the electrical load.
  • the power supply module is not only the reverse power supply module, the AC power supply module, and the photovoltaic power supply module mentioned in the embodiment, but also includes other types of modules that can provide stable power supply for the device, such as a high voltage DC power supply module, except for photovoltaics. Other types of battery-powered modules outside the battery, and so on.
  • the communication network may be a power supply network that can provide a direct current such as an Ethernet or a telephone network;
  • the power supply control device of the communication network in the embodiment of the present invention may be a separate device, or may be integrated with the lower-level power load in the same device, or may be integrated with the lower-level power load in the same device by any combination of the power supply modules.
  • FIG. 1 is a schematic structural diagram of a power supply control device for a communication network according to an embodiment of the present invention. As shown in FIG. 1 , the device includes: a reverse power supply module 11 , an AC power supply module 12 , a photovoltaic power supply module 13 , a power supply control module 14 , and a bus bar . Control module 15. among them,
  • the reverse power supply module 11 includes a reverse power supply detecting unit 21 and a reverse power supply converting unit 22,
  • the reverse power supply detecting unit 21 is connected to the reverse power supply terminal, and the other side is connected to the reverse power supply conversion unit 22, and the reverse power supply detecting unit 11 is configured to determine whether to receive current from the power supply terminal, and detect reverse power supply.
  • the power supply state of the terminal transmits the reverse power supply status information, such as the number of power supply paths, voltage and current information, to the power supply control module 14;
  • the reverse power supply conversion unit 22 is configured to convert the voltage of the N reverse power supply terminal to provide The required DC voltage, at the same time receiving the control signal of the power supply control module, adjusting the output voltage according to the parameter set by itself and/or the control signal sent by the power supply control module 14 to realize the control of the ratio and size of the reverse power supply output, and
  • the bus control module supplies power;
  • the AC power supply module 12 includes an AC power detecting unit 31 and an AC-DC converting unit 32.
  • the AC power detecting unit 31 is connected to the AC power supply terminal, and the other side is connected to the AC-DC converting unit 32.
  • the AC power detecting unit 31 is connected to the AC power detecting unit 31.
  • the AC-DC conversion unit 32 is configured to convert the AC voltage of the AC power supply end to provide the required The DC voltage receives the control signal of the power supply control module 14 at the same time, and adjusts the output voltage according to the parameter set by itself and/or the control signal sent by the power supply control module, so as to realize the control of the proportion and size of the AC power supply output, and perform the bus line control module powered by.
  • the photovoltaic power supply module 13 includes a photovoltaic power supply detecting unit 41 and a photovoltaic battery power supply unit 42.
  • the photovoltaic power supply detecting unit 41 is connected to the photovoltaic battery power supply unit 42 and the other side is connected with the bus control module 15, the photovoltaic power supply detecting unit 11,
  • the method is configured to detect the power supply status of the photovoltaic cell, and transmit the photovoltaic battery power supply status information, voltage and current information to the power supply control module 14; the photovoltaic battery power supply unit 42 performs photovoltaic conversion to provide the required DC voltage, and simultaneously receives the power supply control module 14
  • the control signal adjusts the output voltage according to the parameter set by itself and/or the control signal sent by the power supply control module, so as to realize the control of the proportion and size of the photovoltaic power supply output, and supply power to the bus control module 15;
  • the power supply control module 14 is configured to receive the power supply status information of the reverse power supply module 11, the AC power supply module 12, the photovoltaic power supply module 13 and the bus control module 15, and calculate and analyze the data fed back by each power supply module and the bus control module 15 Analyze the output circuit data that each power supply module should have, and then output the control signal to each power supply module to adjust the output ratio and size of each power supply module.
  • the power supply control module 14 can also receive system control signals and analyze system control The signal is output, and the control signal is outputted to each power supply module to complete the control of the proportion and size of the power supply output set by the system;
  • the bus control module 15 is configured to detect the power supply output information of each power supply module and collect the output of each power supply, detect the power supply output information of each power supply module, and transmit the information to the power supply control module 14 to form a power supply bus, which is used for the lower level.
  • the electrical load is used to supply power.
  • the reverse power supply detecting unit 21, the AC power detecting unit 31, and the photovoltaic power detecting unit 41 are connected in series in the power supply line; the reverse power detecting unit 21, the AC power detecting unit 31, and the photovoltaic power detecting unit 41.
  • the data information is sent to the power supply control module 14.
  • the power supply control module 14 sends the control information to the reverse power supply conversion unit 22, the AC-DC conversion unit 32, and the photovoltaic battery power supply unit 42.
  • FIG. 2 is another schematic structural diagram of a power supply control device for a communication network according to an embodiment of the present invention.
  • a reverse power supply detecting unit 21 an AC power detecting unit 31, and a photovoltaic power detecting unit are provided. 41, which is connected in parallel in the power supply line, is otherwise consistent with the content described in FIG. 1, and will not be described here.
  • FIG. 3 is a schematic diagram of a third structure of a power supply control device for a communication network according to an embodiment of the present invention.
  • a combination of a power supply module includes a reverse power supply module 11 and an AC power supply module 12, and
  • the reverse power supply detecting unit 21 and the AC power supply detecting unit 31 are connected in series in the power supply line, and are identical to the embodiment described in the embodiment of FIG. 1 and will not be described again herein.
  • FIG. 4 is a fourth structural diagram of a power supply control device for a communication network according to an embodiment of the present invention.
  • a combination of a power supply module includes a reverse power supply module 11 and an AC power supply module 12, and
  • the reverse power supply detecting unit 21 and the AC power supply detecting unit 31 are connected in parallel in the power supply line, and are otherwise identical to the embodiment described in FIG. 3 and will not be described again herein.
  • FIG. 5 is a schematic diagram of a fifth structure of a power supply control device for a communication network according to an embodiment of the present invention.
  • a combination of a power supply module includes a photovoltaic power supply module 13 and an AC power supply module 12, and the photovoltaic system
  • the power supply detecting unit 41 and the AC power detecting unit 31 are connected in series in the power supply line, and are identical to the embodiment described in FIG. 1 and will not be described again herein.
  • FIG. 6 is a sixth structural diagram of a power supply control device for a communication network according to an embodiment of the present invention.
  • a combination of a power supply module includes a photovoltaic power supply module 13 and an AC power supply module 12 , and the photovoltaic power supply is provided.
  • the detection unit 41 and the AC power supply detecting unit 31 are connected in parallel in the power supply line, and are identical to the embodiment described in the embodiment of FIG. 5, and are not described herein again.
  • FIG. 7 is a seventh structural diagram of a power supply control device for a communication network according to an embodiment of the present invention.
  • a combination of a power supply module includes a photovoltaic power supply module 13 and a reverse power supply module 11, and The photovoltaic power supply detecting unit 41 and the reverse power supply detecting unit 21 are connected in series in the power supply line, and are otherwise identical to the embodiment described in FIG.
  • FIG. 8 is a schematic structural diagram of an eighth configuration of a power supply control device for a communication network according to an embodiment of the present invention.
  • a combination of a power supply module includes a photovoltaic power supply module 13 and a reverse power supply module 11 , and The photovoltaic power supply detecting unit 41 and the reverse power supply detecting unit 21 are connected in parallel in the power supply line, and are otherwise identical to the embodiment described in FIG.
  • FIG. 9 is a schematic diagram of a ninth structure of a power supply control device for a communication network according to an embodiment of the present invention. As shown in FIG. 9, the device includes: an AC power supply module 12, a power supply control module 14, and a bus control module 15, and a battery power supply module. 16; among them,
  • the battery power supply module 16 in this embodiment, refers to other types of battery power supply modules other than photovoltaic cells, including a battery power supply detecting unit 51 and a battery power supply unit 52.
  • the battery power supply detecting unit 51 is connected to the battery power supply unit 52, and the other side.
  • the busbar control module 15 is connected, the battery power supply unit 52 is connected to the battery power supply detecting unit 51, and the other side is connected to the AC-DC conversion unit.
  • the battery power supply detecting unit 51 is configured to detect the power supply state of the battery.
  • the battery power supply status information, the voltage and current information are transmitted to the power supply control module 14; the battery power supply unit 52 is configured to store part of the energy output by the AC-DC conversion unit, to provide a required DC voltage, and simultaneously receive the power supply control module 14
  • the control signal adjusts the output voltage according to the parameter set by itself and/or the control signal sent by the power supply control module, so as to realize the control of the ratio and size of the battery power supply output, and supply power to the bus control module 15.
  • the battery power supply detecting unit 51 and the alternating current power supply detecting unit 31 are connected in series in the power supply line.
  • the battery power supply detecting unit 51 and the AC power supply detecting unit 31 transmit data information to the power supply control module 14, and the power supply control module 14 supplies the battery power supply unit 22 and the AC-
  • the DC conversion unit 32 transmits control information.
  • FIG. 10 is a schematic diagram of a tenth structure of a power supply control device for a communication network according to an embodiment of the present invention.
  • the power supply module includes an AC power supply module 12 and a battery power supply module 16, and the battery power supply detection is performed.
  • the unit 51 and the AC power supply detecting unit 31 are connected in parallel in the power supply line, and are otherwise identical to the embodiment described in FIG.
  • FIG. 11 is a schematic structural diagram of a photovoltaic power supply module in a power supply control device for a communication network according to an embodiment of the present invention, where
  • the photovoltaic power supply module 13 includes a photovoltaic power supply detecting unit 41, a photovoltaic battery power supply unit 42, and a DC-DC converting unit 43.
  • the DC-DC conversion unit 43 is configured to convert the output of the photovoltaic cell power supply unit 42 to adjust the voltage and current to meet the bus voltage requirement.
  • FIG. 12 is another schematic structural diagram of a photovoltaic power supply module in a power supply control device for a communication network according to an embodiment of the present invention.
  • the photovoltaic power supply module 13 includes a photovoltaic power supply detecting unit 41, a photovoltaic battery power supply unit 42, and a DC-DC converting unit 43.
  • the photovoltaic power supply detecting unit 41 is connected in series in the power supply line, and is otherwise consistent with the embodiment described in FIG.
  • FIG. 13 is a schematic structural diagram of a battery power supply module in a power supply control device for a communication network according to an embodiment of the present invention.
  • the battery power supply module 16 includes a battery power supply detecting unit 51, a battery power supply unit 52, and a DC-DC conversion unit 43.
  • the DC-DC conversion unit 43 is configured to convert the output of the battery power supply unit 52, and can adjust the voltage and current to meet the bus voltage requirement.
  • FIG. 14 is another schematic structural diagram of a battery power supply module in a power supply control device for a communication network according to an embodiment of the present invention.
  • the battery power supply module includes a battery power supply detecting unit 51, and a battery power supply unit 52. And a DC-DC conversion unit 43.
  • the battery power detecting unit 51 is connected in series in the power supply line, and is otherwise consistent with the embodiment described in FIG.
  • the communication network power supply control device provided by the above embodiment can realize hybrid power supply and integrated power supply when the service crossover, convergence, and hybrid networking occurs, and realize the switching of the power supply mode and the power supply ratio between different power supply modes. Adjustment, like when a power supply or power supply mode When the block is powered off, the power supply mode can be switched to the normal power supply module, and the power supply ratio can be controlled and adjusted again to meet different requirements, improve the configurability, flexibility, reliability and security of the power supply, and adapt to the wider Application scenario.
  • FIG. 15 is a flowchart of a method for controlling power supply of a communication network according to an embodiment of the present invention, including the following steps:
  • Step 1501 detecting circuit data of each power supply module and the bus control module, and comparing circuit data of each power supply module and the bus control module, and analyzing output circuit data that each circuit should have;
  • Step 1502 (this step is optional), receiving circuit data of the power supply control module, and controlling opening and closing of output of each power supply module according to circuit data output by the power supply control module;
  • Step 1503 adjusting output voltage and current to the processed circuit data of each power supply module
  • step 1504 the outputs of all the power supply modules are collected to the bus control module, and the power is supplied to the lower stage.
  • the detection unit of each power supply module first detects the circuit data of each power supply module, and then transmits the output circuit data to the power supply control module respectively, and compares the detected output circuit data of each power supply module to analyze the proper The output voltage and current; after that, the power supply control module processes the circuit data of the detecting unit, and can control the opening and closing of each power supply, and each power supply module adjusts the output voltage and current of each circuit according to the output circuit data; Finally, the outputs of the various power supply modules are assembled to the bus control module and powered down to the electrical load.
  • the method further includes: calculating and processing the circuit data to determine the output of each power supply module. Voltage and current, as well as the switching function of each power supply module.
  • FIG. 16 is another flowchart of a method for controlling power supply of a communication network according to an embodiment of the present invention, including the following steps:
  • Step 1601 the power supply control module receives and parses the system control signal, and receives the bus control.
  • the circuit data of each power supply module fed back by the module analyzes the output circuit data that each power supply module should have;
  • each power supply module receives circuit data of the power supply control module, and controls opening and closing of output of each power supply module according to circuit data output by the power supply control module;
  • Step 1603 adjusting output voltage and current to the processed circuit data of each power supply module
  • step 1604 the outputs of all the power supply modules are collected to the bus control module, and the power is supplied to the lower stage.
  • the power supply control module receives and parses the system control signal, and receives the circuit data of each power supply module fed back by the bus control module, and analyzes the output circuit data that each power supply module should have according to the circuit data fed back by the bus control module;
  • the control module processes the circuit data of the detecting unit, and can control the opening and closing of each power supply.
  • each power supply module adjusts the output voltage and current of each circuit according to the output circuit data that should be present; finally, the output of each power supply module is collected. Go to the bus control module and supply power to the lower level.
  • the step 1601 may be set to a high priority, which is prior to the step 1501; the step 1501 may also be set to a high priority, in preference to the step 1601.
  • the power supply control signal is transmitted to each power supply module, and the output voltage and current of each power supply module are controlled to realize the power supply proportional and size and the opening and closing control of each power supply module, and the power supply flexibility is improved.
  • the switching of the power supply mode and the control and adjustment of the power supply ratio between different power supply modes can improve the configurability, flexibility, reliability and security of the power supply, and adapt to a wider application scenario.
  • a computer readable storage medium storing computer executable instructions that, when executed by a processor, implement the communication network power control method.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • each device/function module/functional unit in the above embodiment When each device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种通信网供电控制方法和装置,该装置包括:反向供电模块(11),设置为检测反向供电端的供电状态,并将反向供电状态信息传送至供电控制模块(14);本地供电模块,设置为检测本地供电端的供电状态,并将本地供电状态信息传送至所述供电控制模块(14);所述供电控制模块(14),设置为根据所述反向供电状态和所述本地供电状态信息输出相应的控制信号至所述反向供电模块(11)和所述本地供电模块,以调节所述反向供电模块(11)和所述本地供电模块的供电输出比例和大小。

Description

通信网供电控制方法及装置 技术领域
本申请涉及但不限于通信供电领域,尤指一种通信网供电控制方法及装置。
背景技术
随着通信网络技术的不断发展,在利用通信网络进行信息流传播的同时,还可利用通信网络传播电流,对网络中的电设备进行供电。例如:利用以太网对网络中的网络电话、无线接入点、监控摄像头、终端交换设备等电子设备进行供电;再例如:利用电话网对电话网中的电话机、长明灯、环境监控设备等电子设备进行供电。利用通信网络对设备进行供电,解决了取电困难的问题,提高了设备的使用灵活性,降低设备本身的安装复杂度和使用成本,还可利用通信网络远程控制设备的供电或断电。
如VDSL2(第二代VDSL,第二代非对称数字用户线路)和G.fast等新技术的出现,通过拓展频谱,能在铜质双绞线对上提供上下行净速率达到500Mbps和1Gbps的非对称传输,由于利用已有铜线资源,回避了改造的风险和高昂的成本,可以快速引入,极大的降低了接入成本,并提高带宽的接入能力。铜线接入不仅可以作为光纤接入FTTH(Fiber To The Home,光纤到户)部署环境的补充,也将会成为一种普遍部署的独立网络,有广泛的应用前景。
由于现网业务用户,如VDSL(Asymmetric Digital Subscriber Line,非对称数字用户线路)和VDSL2用户的客观存在,新业务,如G.fast,用户逐步增加,但增加的速度并不可预知,必然存在新、老业务交叉、融合、混合组网的情况。同时,相关标准中提到新老业务的区分,但如何供电是一个不能回避的重要问题,原则上VDSL和VDSL2并不具备RPF(Reverse Power Feed,反向供电)的条件,必须要
全部依靠本地AC(Alternating Current,交流电)供电或其他方式,如 光伏电池、锂电池、铅酸电池等供电方式,而新业务G.fast原则上全部依靠RPF反向供电。新老业务交叉、融合、混合组网的情况必然会出现,而单一的供电方式很难满足实际应用场景和客户需求,混合供电的存在有一定的必然性。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
目前没有类似交流、光伏电池、锂电池、铅酸电池等供电方式和反向供电进行混合供电的技术方案,通常只是针对多路反向供电进行均流或比例控制,或交流供电的输出进行均流和负载分担,当新老业务交叉、融合、混合组网的情况出现时,供电只能独立的、排他的进行某一种方式的供电,例如交流或反向供电,不能同时进行多种供电,更不能将不同的供电,按照一定比例进行供电。
本发明实施例提供了一种通信网供电控制方法及装置,以在业务交叉、融合、混合组网的情况出现时,实现混合供电和一体化供电。
根据本发明实施例的一个方面,提供了一种通信网供电控制装置,该装置包括:反向供电模块,设置为检测反向供电端的供电状态,并将反向供电状态信息传送至供电控制模块;本地供电模块,设置为检测本地供电端的供电状态,并将本地供电状态信息传送至供电控制模块;供电控制模块,设置为根据反向供电状态和本地供电状态信息输出相应的控制信号至反向供电模块和本地供电模块,以调节反向供电模块和本地供电模块的供电输出比例和大小。
在一实施方式中,该装置还包括,母线控制模块,与反向供电模块和本地供电模块的供电输出端相连,设置为检测反向供电模块和本地供电模块的供电输出信息,将供电输出信息传送至供电控制模块,并汇集反向供电模块和本地供电模块的输出形成供电母线,为下级用电负载进行供电。
在一实施方式中,反向供电模块包括:反向供电检测单元,设置为检 测反向供电端的供电状态的电路数据,并将电路数据传送至供电控制模块;反向供电转换单元,设置为对反向供电端的电压进行转换,提供所需的直流电压,并接收供电控制模块的控制信号,调节反向供电输出比例和大小,并对母线控制模块进行供电。
在一实施方式中,本地供电模块包括:本地供电检测单元,设置为检测本地供电端的供电状态的电路数据,并将电路数据传送至供电控制模块;本地供电转换单元,设置为对本地供电端的电压进行转换,提供所需的直流电压,并接收供电控制模块的控制信号,调节本地供电输出比例和大小,并对母线控制模块进行供电。
在一实施方式中,本地供电模块包括以下供电模块中的一种或任意组合:交流供电模块、光伏供电模块、电池供电模块、高压直流供电模块。
在一实施方式中,供电控制模块,还设置为接收***控制信号,输出相应的控制信号至反向供电模块和本地供电模块,以完成***设定的供电输出比例和大小的控制,或开启或关闭反向供电模块和本地供电模块中的至少之一。
在一实施方式中,连接至反向供电模块的反向供电端为多个。
在一实施方式中,反向供电状态信息包括以下至少之一:反向供电的路数,电压、电流。
根据本发明实施例的另一方面,提供了一种通信网供电控制方法,该方法包括:分别检测反向供电模块、本地供电模块和母线控制模块的电路数据;将反向供电模块和本地供电模块的电路数据与母线控制模块的电路数据进行比较,根据设定的反向供电模块和本地供电模块的供电输出比例和大小,计算得出反向供电模块和本地供电模块应有的输出电路数据;根据反向供电模块和本地供电模块应有的输出电路数据调节反向供电模块和本地供电模块的输出电压。
在一实施方式中,该方法还包括:汇集反向供电模块和本地供电模块的输出以形成供电母线,为下级用电负载进行供电。
在一实施方式中,本地供电模块包括以下供电模块中的一种或任意组 合:交流供电模块、光伏供电模块、电池供电模块、高压直流供电模块。
在一实施方式中,该方法还包括:接收***控制信号,输出相应的控制信号至反向供电模块和本地供电模块,以完成***设定的供电输出比例和大小的控制,或开启或关闭反向供电模块和本地供电模块中的至少之一。
在一实施方式中,电路数据包括以下至少之一:供电的路数,电压、电流。
根据本发明实施例的另一方面,提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述通信网供电控制方法。
在本发明实施例中,通过检测各个供电模块电路数据,并对各个供电模块的电路数据进行计算和分析,按照所要求的供电比例和大小调节各个供电模块的输出电压,从而在业务交叉、融合、混合组网的情况出现时,可以实现混合供电和一体化供电,进而达到了提升供电的可配置性、灵活性、可靠性和安全性的效果。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例提供的通信网供电控制装置的一种结构示意图;
图2为本发明实施例提供的通信网供电控制装置的另一种结构示意图;
图3为本发明实施例提供的通信网供电控制装置的第三种结构示意图;
图4为本发明实施例提供的通信网供电控制装置的第四种结构示意图;
图5为本发明实施例提供的通信网供电控制装置的第五种结构示意图;
图6为本发明实施例提供的通信网供电控制装置的第六种结构示意 图;
图7为本发明实施例提供的通信网供电控制装置的第七种结构示意图;
图8为本发明实施例提供的通信网供电控制装置的第八种结构示意图;
图9为本发明实施例提供的通信网供电控制装置的第九种结构示意图;
图10为本发明实施例提供的通信网供电控制装置的第十种结构示意图;
图11为本发明实施例提供的通信网供电控制装置中光伏供电模块的一种结构示意图;
图12为本发明实施例提供的通信网供电控制装置中光伏供电模块的另一种结构示意图;
图13为本发明实施例提供的通信网供电控制装置中电池供电模块的一种结构示意图;
图14为本发明实施例提供的通信网供电控制装置中电池供电模块的另一种结构示意图;
图15为本发明实施例提供的通信网供电控制方法的流程图;
图16为本发明实施例提供的通信网供电控制方法的另一流程图。
详述
下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本发明的实施例提供了一种通信网供电方式的控制装置和方法,通过 检测各个供电模块和母线控制模块的电路数据,并对各个供电模块和母线控制模块的电路数据进行比较,分析出各个供电模块应有的输出电路数据,再根据各个供电模块应有的输出电路数据调节各个供电模块的输出电压,各个供电模块的输出电压汇集成供电母线,为下级用电负载进行供电。同时,可以由各个供电模块自行调节,也可以根据***用电负载的要求,完成某个供电模块的供电比例和大小的调节,如此,可以实现控制各个供电模块的供电状态,在业务交叉、融合、混合组网的情况出现时,可以实现混合供电和一体化供电,实现供电方式的切换和不同供电方式间的供电比例的控制和调节,有如当某一供电端或供电模块发生掉电,可以切换供电方式至正常的供电模块,并重新进行供电比例的控制和调节,可以满足不同需求,提升供电的可配置性、灵活性、可靠性和安全性,适应更广的应用场景。下文中将结合附图对本发明实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本发明的实施例中,供电端是指提供电能的源端,用电负载是指最终需要使用电能的负载。供电模块是指对供电端电压的转换,转换为用电负载需要的合适电压的装置。所述的供电模块,不仅仅是实施例提及的反向供电模块、交流供电模块、光伏供电模块,亦包括其他类型的,可以为设备提供稳定供电的模块,如高压直流供电模块,除光伏电池外的其他类型的电池供电模块等等。通信网可以是以太网、电话网等可提供直流电流的供电网;
本发明实施例中的通信网的供电控制装置可以是单独的设备,也可以与下级用电负载集成于同一设备,还可以以供电模块任意组合的方式,与下级用电负载集成于同一设备。
下面结合附图,对本发明的实施例进行一一说明。
图1为本发明实施例提供的通信网供电控制装置的结构示意图,如图1所示,该装置包括:反向供电模块11、交流供电模块12、光伏供电模块13、供电控制模块14和母线控制模块15。其中,
反向供电模块11,包括反向供电检测单元21和反向供电转换单元22, 反向供电检测单元21连接反向供电端,另一侧连接有所述反向供电转换单元22,所述反向供电检测单元11设置为判断是否接收来自所述供电端的电流,检测反向供电端的供电状态,将反向供电状态信息,如供电的路数,电压、电流信息,传送至供电控制模块14;反向供电转换单22,设置为对N路反向供电端的电压进行转换,提供所需的直流电压,同时接收供电控制模块的控制信号,按照自身设定的参数和/或供电控制模块14发出的控制信号调节输出电压,以实现反向供电输出比例和大小的控制,并对母线控制模块进行供电;
交流供电模块12,包括交流供电检测单元31和交流-直流转换单元32,交流供电检测单元31连接交流供电端,另一侧连接有所述交流-直流转换单元32,所述交流供电检测单元31,设置为检测交流供电端的供电状态,将交流供电状态信息,电压、电流信息,传送至供电控制模块14;交流-直流转换单元32,设置为对交流供电端的交流电压进行转换,提供所需的直流电压,同时接收供电控制模块14的控制信号,按照自身设定的参数和/或供电控制模块发出的控制信号调节输出电压,以实现交流供电输出比例和大小的控制,并对母线控制模块进行供电。
光伏供电模块13,包括光伏供电检测单元41和光伏电池供电单元42,光伏供电检测单元41连接光伏电池供电单元42,另一侧连接有所述母线控制模块15,所述光伏供电检测单元11,设置为检测光伏电池的供电状态,将光伏电池供电状态信息,电压、电流信息,传送至供电控制模块14;光伏电池供电单元42进行光伏转换,提供所需的直流电压,同时接收供电控制模块14的控制信号,按照自身设定的参数和/或供电控制模块发出的控制信号调节输出电压,以实现光伏供电输出比例和大小的控制,并对母线控制模块15进行供电;
供电控制模块14设置为接收反向供电模块11,交流供电模块12,光伏供电模块13和母线控制模块15的供电状态信息,对各个供电模块数据和母线控制模块15反馈的数据进行计算和分析,分析出各个供电模块应有的输出电路数据,再输出控制信号至各个供电模块,调节各个供电模块供电的输出比例和大小。供电控制模块14也可以接收***控制信号,解析***控 制信号,输出控制信号至各个供电模块,完成***设定的供电输出比例和大小的控制;
母线控制模块15,设置为检测各个供电模块的供电输出信息和并将各路供电的输出汇集,检测各个供电模块的供电输出信息,将信息传送至供电控制模块14,形成供电母线,为下级用电负载进行供电。
在上述实施例中,反向供电检测单元21,交流供电检测单元31,光伏供电检测单元41,是串联在供电线路中的;反向供电检测单元21,交流供电检测单元31,光伏供电检测单元41,向供电控制模块14发送的是数据信息,供电控制模块14向反向供电转换单元22,交流-直流转换单元32,光伏电池供电单元42,发送的是控制信息。
图2为本发明实施例提供的通信网供电控制装置的另一种结构示意图,如图2所示,在本实施例中,反向供电检测单元21,交流供电检测单元31,光伏供电检测单元41,是并联在供电线路中的,除此之外皆与图1所述的内容一致,在此不再累述。
图3为本发明实施例提供的通信网供电控制装置的第三种结构示意图,如图3所示,在本实施例中,供电模块的组合包括反向供电模块11和交流供电模块12,并且反向供电检测单元21和交流供电检测单元31是串联在供电线路中的,除此之外,皆与图1实施例所述的实施例一致,在此不再累述。
图4为本发明实施例提供的通信网供电控制装置的第四种结构示意图,如图4所示,在本实施例中,供电模块的组合包括反向供电模块11和交流供电模块12,并且反向供电检测单元21和交流供电检测单元31是并联在供电线路中的,除此之外皆与图3所述的实施例一致,在此不再累述。
图5为本发明实施例提供的通信网供电控制装置的第五种结构示意图,如图5所示,在本实施例中,供电模块的组合包括光伏供电模块13和交流供电模块12,并且光伏供电检测单元41和交流供电检测单元31是串联在供电线路中的,除此之外,皆与图1所述的实施例一致,在此不再累述。
图6为本发明实施例提供的通信网供电控制装置的第六种结构示意图,如图6所示,在实施例中,供电模块的组合包括光伏供电模块13和交流供电模块12,并且光伏供电检测单元41和交流供电检测单元31是并联在供电线路中的,除此之外,皆与图5实施例所述的实施例一致,在此不再累述。
图7为本发明实施例提供的通信网供电控制装置的第七种结构示意图,如图7所示,在本实施例中,供电模块的组合包括光伏供电模块13和反向供电模块11,并且光伏供电检测单元41和反向供电检测单元21是串联在供电线路中的,除此之外,皆与图1所述的实施例一致。
图8为本发明实施例提供的通信网供电控制装置的第八种结构示意图,如图8所示,在本实施例中,供电模块的组合包括光伏供电模块13和反向供电模块11,并且光伏供电检测单元41和反向供电检测单元21是并联在供电线路中的,除此之外,皆与图7所述的实施例一致。
图9为本发明实施例提供的通信网供电控制装置的第九种结构示意图,如图9所示,该装置包括:交流供电模块12,供电控制模块14、和母线控制模块15,电池供电模块16;其中,
电池供电模块16,在本实施中是指除光伏电池外的其他类型的电池供电模块,其包括电池供电检测单元51和电池供电单元52,电池供电检测单元51连接电池供电单元52,另一侧连接有所述母线控制模块15,电池供电单元52一侧与电池供电检测单元51连接,另一侧与交流-直流转换单元连接;所述电池供电检测单元51,设置为检测电池的供电状态,将电池供电状态信息,电压、电流信息,传送至供电控制模块14;所述电池供电单元52设置为存储交流-直流转换单元输出的部分能量,提供所需的直流电压,同时接收供电控制模块14的控制信号,按照自身设定的参数和/或供电控制模块发出的控制信号调节输出电压,以实现电池供电输出比例和大小的控制,并对母线控制模块15进行供电。
在实施例九中,电池供电检测单元51和交流供电检测单元31是串联在供电线路中的。电池供电检测单元51和交流供电检测单元31向供电控制模块14发送的是数据信息,而供电控制模块14向电池供电单元22和交流- 直流转换单元32发送的是控制信息。
图10为本发明实施例提供的通信网供电控制装置的第十种结构示意图,如图10所示,在本实施例中,供电模块包括交流供电模块12和电池供电模块16,并且电池供电检测单元51和交流供电检测单元31是并联在供电线路中的,除此之外,皆与图9所述的实施例一致。
图11为本发明实施例提供的通信网供电控制装置中光伏供电模块的结构示意图,如图所示,其中,
光伏供电模块13包括:光伏供电检测单元41、光伏电池供电单元42和直流-直流转换单元43。其中,直流-直流转换单元43,设置为对光伏电池供电单元42的输出进行转换,可以进行电压和电流的调节,以满足母线电压的需求。
图12为本发明实施例提供的通信网供电控制装置中光伏供电模块的另一结构示意图。如图12所示,在本实施例中,光伏供电模块13包括:光伏供电检测单元41、光伏电池供电单元42和直流-直流转换单元43。其中,光伏供电检测单元41是串联在供电线路中的,除此之外,皆与图11所述的实施例一致。
图13为本发明实施例提供的通信网供电控制装置中电池供电模块的结构示意图。如图13所示,电池供电模块16包括:电池供电检测单元51、电池供电单元52和直流-直流转换单元43。其中,直流-直流转换单元43,设置为对电池供电单元52的输出进行转换,可以进行电压和电流的调节,以满足母线电压的需求。
图14为本发明实施例提供的通信网供电控制装置中电池供电模块的另一结构示意图;如图14所示,在本实施例中,电池供电模块包括电池供电检测单元51,电池供电单元52和直流-直流转换单元43。电池供电检测单元51是串联在供电线路中的,除此之外皆与图13所述的实施例一致。
以上实施例提供的通信网供电控制装置,在业务交叉、融合、混合组网的情况出现时,可以实现混合供电和一体化供电,实现供电方式的切换和不同供电方式间的供电比例的控制和调节,有如当某一供电端或供电模 块发生掉电,可以实现供电方式切换至正常的供电模块,并重新进行供电比例的控制和调节,可以满足不同需求,提升供电的可配置性、灵活性、可靠性和安全性,适应更广的应用场景。
图15是本发明实施例提供的通信网供电控制方法的流程图,包括以下步骤:
步骤1501,检测各个供电模块和母线控制模块的电路数据,并对各个供电模块和母线控制模块的电路数据进行比较,分析出各电路应有的输出电路数据;
步骤1502(该步骤为可选),接收供电控制模块的电路数据,根据供电控制模块输出的电路数据,控制各个供电模块输出的开启和关闭;
步骤1503,对各个供电模块所述处理后的电路数据调节输出电压和电流;
步骤1504,将所有供电模块的输出汇集至母线控制模块,并向下级用电负载供电。
其中,先由各个供电模块的检测单元对各个供电模块的电路数据进行检测,再将输出电路数据分别传输至供电控制模块,并对检测到的各个供电模块输出电路数据进行比较,分析出应有的输出电压和电流;之后,供电控制模块处理检测单元的电路数据,可以控制每路供电的开启和关闭,同时各个供电模块根据应有的输出电路数据,调节每路电路的输出电压和电流;最后,将各个供电模块的输出汇集至母线控制模块,并向下级用电负载供电。
在一实施方式中,对各个供电模块所述电路数据进行比较,分析出各个供电模块应有的输出电路数据后,所述方法还包括:对电路数据进行运算和处理,确定各个供电模块的输出电压和电流,以及各个供电模块转换功能的开启和关闭。
图16是本发明实施例提供的通信网供电控制方法的另一流程图,包括以下步骤:
步骤1601,供电控制模块接收和解析***控制信号,并接收母线控制 模块反馈的各个供电模块的电路数据,分析出各个供电模块应有的输出电路数据;
步骤1602(该步骤为可选),各个供电模块接收供电控制模块的电路数据,根据供电控制模块输出的电路数据,控制各个供电模块输出的开启和关闭;
步骤1603,对各个供电模块所述处理后的电路数据调节输出电压和电流;
步骤1604,将所有供电模块的输出汇集至母线控制模块,并向下级用电负载供电。
其中,供电控制模块接收和解析***控制信号,并接收母线控制模块反馈的各个供电模块的电路数据,根据母线控制模块反馈的电路数据,分析出各个供电模块应有的输出电路数据;之后,供电控制模块处理检测单元的电路数据,可以控制每路供电的开启和关闭,同时各个供电模块根据应有的输出电路数据,调节每路电路的输出电压和电流;最后,将各个供电模块的输出汇集至母线控制模块,并向下级用电负载供电。
其中,步骤1501和步骤1601同时存在时,步骤1601,可以设置为高优先级,优先于步骤1501;步骤1501,也可以设置为高优先级,优先于步骤1601。
根据供电控制模块输出的电路数据,传输供电控制信号至各个供电模块,控制各个供电模块的输出电压和电流,以实现各个供电模块供电比例和大小及开启和关闭的控制,供电的灵活性得到提升;实现供电方式的切换和不同供电方式间的供电比例的控制和调节,可提升供电的可配置性、灵活性、可靠性和安全性,适应更广的应用场景。
根据本发明实施例的另一方面,提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述通信网供电控制方法。
通过以上的实施方式的描述,本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可 以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如***、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明实施例不限制于任何特定的硬件和软件结合。
上述实施例中的各装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的各装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
在本发明实施例中,通过检测每个供电模块电路数据,并对每个供电模块的电路数据进行计算和分析,按照所要求的供电比例和大小调节每个供电模块的输出电压,从而在业务交叉、融合、混合组网的情况出现时,可以实现混合供电和一体化供电,进而达到了提升供电的可配置性、灵活性、可靠性和安全性的效果。

Claims (12)

  1. 一种通信网供电控制装置,包括:
    反向供电模块,设置为检测反向供电端的供电状态,并将反向供电状态信息传送至供电控制模块;
    本地供电模块,设置为检测本地供电端的供电状态,并将本地供电状态信息传送至所述供电控制模块;
    所述供电控制模块,设置为根据所述反向供电状态和所述本地供电状态信息输出相应的控制信号至所述反向供电模块和所述本地供电模块,以调节所述反向供电模块和所述本地供电模块的供电输出比例和大小。
  2. 根据权利要求1所述的装置,还包括,
    母线控制模块,与所述反向供电模块和所述本地供电模块的供电输出端相连,设置为检测所述反向供电模块和所述本地供电模块的供电输出信息,将所述供电输出信息传送至所述供电控制模块,并汇集所述反向供电模块和所述本地供电模块的输出形成供电母线,为下级用电负载进行供电。
  3. 根据权利要求2所述的装置,其中,所述反向供电模块包括:
    反向供电检测单元,设置为检测所述反向供电端的供电状态的电路数据,并将所述电路数据传送至所述供电控制模块;
    反向供电转换单元,设置为对反向供电端的电压进行转换,提供所需的直流电压,并接收所述供电控制模块的控制信号,调节反向供电输出比例和大小,并对所述母线控制模块进行供电。
  4. 根据权利要求2所述的装置,其中,所述本地供电模块包括:
    本地供电检测单元,设置为检测所述本地供电端的供电状态的电路数据,并将所述电路数据传送至所述供电控制模块;
    本地供电转换单元,设置为对本地供电端的电压进行转换,提供所需的直流电压,并接收所述供电控制模块的控制信号,调节本地供电输出比例和大小,并对所述母线控制模块进行供电。
  5. 根据权利要求4所述的装置,其中,所述本地供电模块包括以下供电 模块中的一种或任意组合:交流供电模块、光伏供电模块、电池供电模块、高压直流供电模块。
  6. 根据权利要求1至5任一项所述的装置,其中,所述供电控制模块,还设置为接收***控制信号,输出相应的控制信号至所述反向供电模块和所述本地供电模块,以完成***设定的供电输出比例和大小的控制,或开启/关闭所述反向供电模块和所述本地供电模块中的至少之一。
  7. 一种通信网供电控制方法,包括:
    分别检测反向供电模块、本地供电模块和母线控制模块的电路数据;
    将反向供电模块和本地供电模块的电路数据与所述母线控制模块的电路数据进行比较,根据设定的所述反向供电模块和所述本地供电模块的供电输出比例和大小,计算得出所述反向供电模块和所述本地供电模块应有的输出电路数据;
    根据所述反向供电模块和所述本地供电模块应有的输出电路数据调节所述反向供电模块和所述本地供电模块的输出电压。
  8. 根据权利要求7所述的方法,还包括:汇集所述反向供电模块和所述本地供电模块的输出以形成供电母线,为下级用电负载进行供电。
  9. 根据权利要求8所述的方法,其中,所述本地供电模块包括以下供电模块中的一种或任意组合:交流供电模块、光伏供电模块、电池供电模块、高压直流供电模块。
  10. 根据权利要求9所述的方法,还包括:接收***控制信号,输出相应的控制信号至所述反向供电模块和所述本地供电模块,以完成***设定的供电输出比例和大小的控制,或开启/关闭所述反向供电模块和所述本地供电模块中的至少之一。
  11. 根据权利要求7至10任一项所述的方法,其中,所述电路数据包括以下至少之一:供电的路数,电压、电流。
  12. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求7-11任一项的通信网供电控制方法。
PCT/CN2017/087012 2016-08-03 2017-06-02 通信网供电控制方法及装置 WO2018024025A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17836208.3A EP3495913B1 (en) 2016-08-03 2017-06-02 Power supply control for a communication network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610626791.8 2016-08-03
CN201610626791.8A CN107688363B (zh) 2016-08-03 2016-08-03 通信网供电控制方法及装置

Publications (1)

Publication Number Publication Date
WO2018024025A1 true WO2018024025A1 (zh) 2018-02-08

Family

ID=61073424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087012 WO2018024025A1 (zh) 2016-08-03 2017-06-02 通信网供电控制方法及装置

Country Status (3)

Country Link
EP (1) EP3495913B1 (zh)
CN (1) CN107688363B (zh)
WO (1) WO2018024025A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111327430B (zh) * 2018-12-17 2022-09-23 中兴通讯股份有限公司 一种反向供电方法、装置、设备及存储介质
CN114253191B (zh) * 2021-12-17 2024-03-19 深圳市莫尼迪科技有限责任公司 一种hdmi接口反向供电电路及供电方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102983982A (zh) * 2011-09-05 2013-03-20 中国电信股份有限公司 电压平均分配方法、***及多端口受电设备
US8818192B1 (en) * 2011-06-20 2014-08-26 Adtran, Inc. Optical network unit with redundant reverse powering from customer premises equipment with alarm fault discrimination indicative for power fault condition
CN204498138U (zh) * 2015-01-22 2015-07-22 东莞市永权东信息技术有限公司 一种自动调节供电功率的反向供电PoE交换机
CN105227212A (zh) * 2014-06-10 2016-01-06 中兴通讯股份有限公司 反向供电管理方法、装置及***
CN105763337A (zh) * 2016-03-29 2016-07-13 杭州华三通信技术有限公司 一种供电方法及供电设备
CN105786070A (zh) * 2014-12-23 2016-07-20 中兴通讯股份有限公司 通信网供电的控制装置和方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077570A1 (en) * 2005-01-18 2006-07-27 Powerdsine, Ltd. Rack level power management for power over ethernet
CN101436786B (zh) * 2007-11-14 2011-02-09 环旭电子股份有限公司 电源切换装置及网络设备
CN102655559A (zh) * 2011-03-02 2012-09-05 中国电信股份有限公司 Modem、dslam、adsl设备及其通信方法
CN102571502B (zh) * 2012-02-23 2018-05-18 中兴通讯股份有限公司 终端接入设备和反向以太网工供电状态的检测方法
CN103546300B (zh) * 2012-07-16 2018-08-03 南京中兴新软件有限责任公司 一种以太网供电方法和装置
CN103002042B (zh) * 2012-12-14 2016-06-01 广州杰赛科技股份有限公司 具有多种供电模式的云终端及云计算***
EP2830302A1 (en) * 2013-07-23 2015-01-28 British Telecommunications public limited company Reverse powering system for telecommunications node
US9897981B2 (en) * 2013-10-01 2018-02-20 Linear Technology Corporation Detection and classification scheme for power over ethernet system
CN105306223A (zh) * 2014-06-30 2016-02-03 中兴通讯股份有限公司 供电方法、装置及***
US9992353B2 (en) * 2014-08-20 2018-06-05 British Telecommunications Public Limited Company Reverse power feed system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8818192B1 (en) * 2011-06-20 2014-08-26 Adtran, Inc. Optical network unit with redundant reverse powering from customer premises equipment with alarm fault discrimination indicative for power fault condition
CN102983982A (zh) * 2011-09-05 2013-03-20 中国电信股份有限公司 电压平均分配方法、***及多端口受电设备
CN105227212A (zh) * 2014-06-10 2016-01-06 中兴通讯股份有限公司 反向供电管理方法、装置及***
CN105786070A (zh) * 2014-12-23 2016-07-20 中兴通讯股份有限公司 通信网供电的控制装置和方法
CN204498138U (zh) * 2015-01-22 2015-07-22 东莞市永权东信息技术有限公司 一种自动调节供电功率的反向供电PoE交换机
CN105763337A (zh) * 2016-03-29 2016-07-13 杭州华三通信技术有限公司 一种供电方法及供电设备

Also Published As

Publication number Publication date
CN107688363A (zh) 2018-02-13
CN107688363B (zh) 2020-09-29
EP3495913B1 (en) 2021-07-21
EP3495913A4 (en) 2020-04-15
EP3495913A1 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
US7294940B2 (en) Power over ethernet battery backup
CN101124772B (zh) 具有用于确定通信电缆电阻的机构的通过通信电缆供电的***
CN102761422B (zh) 一种级联的以太网电源供电***及其以太网供电方法
CN103944739B (zh) 智能poe电源供电***及其高效poe电源管理方法
JP2008529459A (ja) 通信リンクを通じて電力を与えるためのシステムにおける電源装置の出力電圧に基づく電流制限しきい値の調整
US20140129853A1 (en) Advertising power over ethernet (POE) capabilities among nodes in a POE system using type-length-value (TLV) structures
EP3507940B1 (en) A system for providing dc power using a communication network
CN102801535B (zh) 以太网供电传输***
CN102983982A (zh) 电压平均分配方法、***及多端口受电设备
CN109597453A (zh) 供电节能方法,供电设备和受电设备
EP2773063B1 (en) Power supply method, current sharing module and power supply system
CN103384199A (zh) 一种供电方法、转换器及以太网供电***
CN102170358A (zh) 一种反向馈电设备及其供电控制方法
JP2016039723A (ja) 電力供給装置、電力供給方法及び電力供給システム
WO2018024025A1 (zh) 通信网供电控制方法及装置
CN101753319B (zh) 网络设备
CN104426677B (zh) 反向以太网供电***和方法以及负荷均分装置和受电设备
EP3240228B1 (en) Control device and method for supplying power in a communications network
CN107360005A (zh) 一种受电端设备及受电方法
CN103067183A (zh) 一种以太网供电装置及其方法
TWI587123B (zh) 網路攝影機系統及其網路攝影機
CN203014835U (zh) 一种以太网供电装置
US9351187B2 (en) Reverse power metering
CN213693733U (zh) Pd设备、poe供电***
CN203278994U (zh) 一种网络摄像机及其供电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017836208

Country of ref document: EP

Effective date: 20190304