WO2018021249A1 - 電気炉用助燃バーナー - Google Patents

電気炉用助燃バーナー Download PDF

Info

Publication number
WO2018021249A1
WO2018021249A1 PCT/JP2017/026716 JP2017026716W WO2018021249A1 WO 2018021249 A1 WO2018021249 A1 WO 2018021249A1 JP 2017026716 W JP2017026716 W JP 2017026716W WO 2018021249 A1 WO2018021249 A1 WO 2018021249A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
burner
injection pipe
solid fuel
gas
Prior art date
Application number
PCT/JP2017/026716
Other languages
English (en)
French (fr)
Inventor
純仁 小澤
堤 康一
善広 三輪
鷲見 郁宏
健一 友澤
伊藤 貴之
Original Assignee
Jfeスチール株式会社
中外炉工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社, 中外炉工業株式会社 filed Critical Jfeスチール株式会社
Priority to CN201780046453.XA priority Critical patent/CN109642724A/zh
Priority to US16/320,206 priority patent/US11041621B2/en
Priority to KR1020197004582A priority patent/KR102211258B1/ko
Priority to JP2017559626A priority patent/JP6580710B2/ja
Publication of WO2018021249A1 publication Critical patent/WO2018021249A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/005Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • F23C1/12Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air gaseous and pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • F23D14/24Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other at least one of the fluids being submitted to a swirling motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/08Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces heated electrically, with or without any other source of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/12Working chambers or casings; Supports therefor
    • F27B3/16Walls; Roofs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/02Supplying steam, vapour, gases, or liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2204/00Burners adapted for simultaneous or alternative combustion having more than one fuel supply
    • F23D2204/20Burners adapted for simultaneous or alternative combustion having more than one fuel supply gaseous and pulverulent fuel

Definitions

  • the present invention relates to an auxiliary burner attached to an electric furnace for producing molten iron by melting iron-based scrap.
  • an auxiliary burner is installed at the cold spot, and the cold spot is used with this auxiliary burner.
  • a method of preheating, cutting and melting iron-based scrap located in the area has been adopted.
  • auxiliary combustion burner for example, in Patent Document 1, oxygen gas for scattering of incombustibles and cutting of iron-based scrap is ejected from the center, and fuel is further supplied from the outer periphery of the oxygen gas.
  • a burner having a triple tube structure for injecting combustion oxygen gas from the outer peripheral portion, and in order to increase the speed of the oxygen gas ejected from the central portion, a constricted portion at the tip of the central oxygen gas ejection tube In order to impart a swirling force to the combustion oxygen gas ejected from the outermost periphery, a high-speed pure electric furnace for electric furnaces in which swirl vanes are installed in an annular space formed by a fuel ejection pipe and a combustion oxygen gas ejection pipe An oxygen-assisted burner has been proposed.
  • Patent Document 2 proposes an electric furnace burner facility that expands the directivity of the burner flame to a wide range by decentering the nozzle tip of the auxiliary burner and rotating the burner.
  • Patent Documents 1 and 2 have a problem that the target of fuel is limited to expensive gaseous fuel.
  • Inexpensive fuels include solid fuels such as coal, but solid fuels are generally more difficult to burn faster than gaseous fuels and may misfire in some conditions, and solid fuels can be used as auxiliary burners. Use was difficult.
  • this invention aims at providing the auxiliary burner for electric furnaces which can make the heating effect of iron-based scrap high and uniform by burning solid fuel with gaseous fuel appropriately and efficiently.
  • auxiliary furnace burner for electric furnaces that can use solid fuel such as coal
  • present inventors have developed a multi-tube auxiliary combustion burner that uses gaseous fuel and solid fuel as fuel, and supports combustion that is injected from the outermost periphery. By giving swirl to specific gas under specific conditions, solid fuel can be combusted together with gaseous fuel appropriately and efficiently, which improves the scrap heating effect and also makes the flame temperature of the burner uniform. I found.
  • An electric furnace auxiliary burner attached to an electric furnace for producing molten iron by melting iron-based scrap, and using gaseous fuel and solid fuel as fuel A solid fuel injection pipe that divides a first flow path through which the solid fuel passes and injects the solid fuel from a tip of the first flow path; A second flow path that is disposed around the solid fuel injection pipe and through which the gaseous fuel passes is defined between the solid fuel injection pipe and an outer wall of the solid fuel injection pipe, and the gaseous fuel is injected from a tip of the second flow path.
  • a gaseous fuel injection tube A third flow path that is disposed around the gaseous fuel injection pipe and through which the combustion-supporting gas passes is formed between the gas fuel injection pipe and an outer wall of the gaseous fuel injection pipe, and the combustion-supporting gas is provided from the tip of the third flow path.
  • Q / P is 1.0 or more and 1.2 or less, where Q is the length of each swirling blade in the circumferential direction and P is the installation interval of the plurality of swirling blades in the circumferential direction.
  • auxiliary burner of the present invention it is possible to make the heating effect of the iron-based scrap high and uniform by appropriately and efficiently burning the solid fuel together with the gaseous fuel.
  • auxiliary furnace burner 100 for an electric furnace according to an embodiment of the present invention will be described with reference to FIGS.
  • the auxiliary combustion burner 100 of this embodiment is attached to an electric furnace for producing molten iron by melting iron-based scrap, and uses gaseous fuel and solid fuel as fuel.
  • the main body part for supplying fuel and supporting gas is a triple in which the solid fuel injection pipe 1, the gaseous fuel injection pipe 2, and the combustion supporting gas injection pipe 3 are arranged coaxially in this order from the center side. It has a tube structure.
  • the solid fuel injection pipe 1 defines a solid fuel flow path 10 (first flow path) through which solid fuel passes, and the solid fuel flow path 10 has a circular solid fuel discharge port 11 at the tip thereof.
  • the gaseous fuel injection pipe 2 is arranged around the solid fuel injection pipe 1 and defines a gaseous fuel flow path 20 (second flow path) through which the gaseous fuel passes between the solid fuel injection pipe 1 and the outer wall thereof.
  • the tip of the gaseous fuel flow path 20 is a ring-shaped gaseous fuel discharge port 21 from which gaseous fuel is injected.
  • the combustion-supporting gas injection pipe 3 is disposed around the gaseous fuel injection pipe 2, and the combustion-supporting gas flow path 30 (third flow path) through which the combustion-supporting gas passes with the outer wall of the gaseous fuel injection pipe 2.
  • the tip of the combustion-supporting gas flow path 30 is a ring-shaped combustion-supporting gas discharge port 31 from which fuel-supporting fuel is injected.
  • the solid fuel injection pipe 1 and the gas fuel injection pipe 2 are both at the same position along the burner axis, and only the outermost combustion-supporting gas injection pipe 3 has a tip of 10 to It protrudes about 200mm.
  • the inner diameter of each of the injection pipes 1, 2, and 3 is not particularly limited.
  • the solid fuel injection pipe 1 has an inner diameter of about 10 to 40 mm
  • the gas fuel injection pipe 2 has an inner diameter of about 20 to 60 mm
  • a combustion-supporting gas injection pipe is about 40 to 100 mm.
  • the thickness of each spray tube is not particularly limited, but is generally about 2 to 20 mm.
  • a burner gas supply port 32 is provided on the rear end side of the burner. Is supplied.
  • a gaseous fuel supply port 22 is provided on the burner rear end side of the gaseous fuel injection pipe 2, and gaseous fuel is supplied to the gaseous fuel flow path 20 through this.
  • a solid fuel supply port 12 is provided on the burner rear end side of the solid fuel injection pipe 1, and the solid fuel is supplied to the solid fuel flow path 30 together with the carrier gas via this.
  • a combustion-supporting gas supply mechanism (not shown) is connected to the combustion-supporting gas supply port 32, and this supplies the combustion-supporting gas to the combustion-supporting gas supply port 32.
  • a gaseous fuel supply mechanism (not shown) is connected to the gaseous fuel supply port 22 and supplies gaseous fuel to the gaseous fuel supply port 22.
  • a solid fuel supply mechanism and a carrier gas supply mechanism (both not shown) are connected to the solid fuel supply port 12, and these supply the solid fuel and carrier gas to the solid fuel supply port 12.
  • an inner tube and an outer tube are further coaxially arranged outside the flame-supporting gas injection tube 3, and between the outer tube and the inner tube, and between the inner tube and the tube.
  • cooling fluid flow paths (cooling fluid forward path and return path) that are in communication with each other are formed.
  • Examples of the fuel that can be used for the auxiliary burner of the present embodiment include the following.
  • Examples of the gaseous fuel include LPG (liquefied petroleum gas), LNG (liquefied natural gas), hydrogen, ironworks by-product gas (C gas, B gas, etc.), a mixed gas of two or more of these, and the like. One or more of these can be used.
  • Examples of the solid fuel include powdered solid fuels such as coal (pulverized coal), plastics (particulate or powdery, including waste plastics), and one or more of these can be used. Coal (pulverized coal) is particularly preferred.
  • As the combustion-supporting gas pure oxygen (industrial oxygen), oxygen-enriched air, or air may be used, but pure oxygen is preferably used.
  • As the carrier gas for example, nitrogen can be used.
  • the amount of oxygen necessary for combustion is specifically calculated under the following conditions. That is, as calculation conditions, the calorific value of LNG is 9700 kcal / Nm 3, and the calorific value of pulverized coal as a solid fuel is 6250 kcal / kg. In addition, 90% of the total energy of the auxiliary burner is supplied from solid fuel and 10% from gaseous fuel. For example, when LNG is supplied at 10 Nm 3 / h, the calorific value is 97 Mcal / h. In this case, it is necessary to supply 873 Mcal / h, which is a difference from 970 Mcal / h, which is the target total calorific value of the burner, from pulverized coal, and the supply amount is about 140 kg / h.
  • the theoretical amount of oxygen is calculated from the carbon content and hydrogen content in the fuel, the theoretical oxygen content of the LNG is 2.25Nm 3 / Nm 3 nm, the theoretical oxygen amount of the pulverized coal is at 1.5 Nm 3 / kg approximately .
  • the support gas discharge port 31 has a discharge area that is 20 times or more that of the gaseous fuel discharge port 21 and the solid fuel discharge port 11. (Radial cross-sectional area) is required. For this reason, it is reasonable to arrange the combustion-supporting gas discharge ports 31 on the outermost peripheral portion of the burner in terms of the burner layout. In addition, when air is used as the combustion-supporting gas instead of pure oxygen, a flow rate five times higher is required. Also in this case, for the same reason, it is reasonable to arrange the combustion-supporting gas discharge port 31 on the outermost peripheral portion of the burner.
  • the combustion-supporting gas flow path 30 is provided with a plurality of swirling blades 4 for rotating the combustion-supporting gas at a predetermined interval in the circumferential direction (swinging in the circumferential direction of the burner; the same applies hereinafter).
  • the solid fuel can be combusted appropriately and efficiently, thereby improving the scrap heating effect and further making the flame temperature of the burner uniform.
  • the scrap in the electric furnace can be efficiently heated or melted.
  • combustible substance As the elements necessary for combustion, there are three elements: a combustible substance, oxygen, and temperature (fire source). Moreover, regarding the state of the combustible substance, the ease of combustion is the order of gas, liquid, and solid. This is because if the combustible substance is in a gaseous state, mixing of the combustible substance and oxygen is easy, and continuation of combustion (chain reaction) is performed.
  • gas fuel When gas fuel is burned as a flammable substance using an auxiliary burner, gas fuel generally burns immediately after being injected from the tip of the burner, depending on the oxygen concentration, the flow rate of the gas fuel, and the shape of the burner tip. To do.
  • a solid fuel typified by coal when used as a combustible substance, it is difficult to burn it as quickly as a gaseous fuel. This is due to the fact that the ignition temperature of coal is about 400 to 600 ° C., and that it is necessary to maintain this ignition temperature and to increase the temperature to the ignition temperature.
  • the temperature rising time until the solid fuel reaches the ignition temperature depends on the particle size (specific surface area) of the solid fuel, and if the particles are made fine, the ignition time can be shortened. This is because the combustion reaction proceeds by maintaining the ignition temperature and reacting the combustible substance with oxygen. In order to advance the combustion reaction efficiently, it is important to sequentially generate efficient heating of coal and the reaction between coal and oxygen.
  • the auxiliary burner of the present embodiment improves the efficient heating of the coal as described above and the reaction between the combustible substance and oxygen by using gas swirling.
  • LNG liquefied natural gas
  • coal pulverized coal
  • pure oxygen is used as the combustion-supporting gas.
  • the ignition temperature of the fuel is generally solid fuel> liquid fuel> gaseous fuel.
  • Carbon dioxide which is an incombustible gas
  • LNG which is fuel
  • coal with oxygen Nonflammable gas inhibits the continuation of combustion (chain reaction) and causes a decrease in combustibility.
  • coal is supplied with carrier gas, if there is much flow volume of carrier gas, since the temperature of the specific heat of carrier gas will fall, combustibility will generally improve if the solid-gas ratio is enlarged.
  • the state where the solid-gas ratio is large is a condition where coal is in a dense state, and the reaction with heat and oxygen from the outside is not easily transmitted to the central part. In order to burn coal efficiently, it is important to create conditions where heat and oxygen are sufficiently present around the coal in the coal combustion field.
  • the angle ⁇ (FIG. 3) formed with respect to the burner axis of the plurality of swirling blades 4 needs to be 5 ° or more and 45 ° or less. If the angle ⁇ of the swirl vane 4 is less than 5 °, sufficient swirl cannot be imparted to the combustion-supporting gas, and the effects of the present invention as described above cannot be sufficiently obtained. On the other hand, if the angle ⁇ of the swirl vane 4 exceeds 45 °, the combustion-supporting gas diffuses to the outside too much, and in this case, it is not possible to create a condition in which heat and oxygen are sufficiently present around the coal in the combustion field. However, the effects of the present invention as described above cannot be sufficiently obtained. From the above viewpoint, the more preferable angle ⁇ of the swirl vane 4 is 10 ° or more and 30 ° or less.
  • the number of swirling blades 4 and the thickness of the swirling blades 4 are not particularly limited. However, while sufficient swirling is imparted to the combustion-supporting gas, the flow of the combustion-supporting gas is not hindered, and the blades In order to prevent deformation, the number of swirling blades 4 is suitably 8 or more and 16 or less, and the thickness of the blades is suitably about 1 to 10 mm.
  • the installation position of the swirl vane 4 in the burner axial direction is not particularly limited as long as it is within the combustion-supporting gas flow path 30, but the tip of the combustion-supporting gas flow path 30 (fuel support gas discharge port 31) If it is too far from the target, there is a possibility that the target turning angle cannot be maintained before the combustion-supporting gas that has passed through the turning blade 4 is mixed with the gaseous fuel.
  • the distance L B in the burner axis direction between the tip of the swirl vane 4 on the side of the combustion-supporting gas discharge port 31 and the combustion-supporting gas discharge port 31 is preferably about 10 to 50 mm.
  • the length L A of the swirl vane 4 in the burner axis direction is obtained at 40mm or more. Further, the length L A, it is preferable from the viewpoint of the manufacturing cost of the blade is less than 100mm.
  • each swirl vane 4 in the circumferential direction of the combustion-supporting gas passage 30 is defined as Q
  • the interval in the circumferential direction of the plurality of swirling blades 4 in the circumferential direction of the combustion-supporting gas passage 30 is defined as Q.
  • the swirl vane 4 may be a method of incorporating itself into a pipe body (injection pipe), or may be machined so as to be integrated with the pipe body.
  • the combustion-supporting gas discharge port 31 has a discharge area (radial cut-off) at which the combustion-supporting gas discharge speed from the combustion-supporting gas discharge port at the minimum supply amount of the combustion-supporting gas is 10 m / s or more. Area).
  • the “minimum supply amount” refers to the minimum supply amount that does not cause non-uniform combustion of the solid fuel and does not clog unburned solid fuel in the flow path.
  • the scrap heating effect is improved and the flame temperature of the burner is made uniform by appropriately and efficiently burning the solid fuel together with the gaseous fuel.
  • the auxiliary combustion burner 100 of the present embodiment has the following additional effects. That is, in this embodiment, the length of the flame is changed according to the distance from the scrap to be heated or melted by changing the ratio of solid fuel to the total fuel (calorific value conversion, hereinafter simply referred to as “solid fuel ratio”). The height can be adjusted arbitrarily.
  • the auxiliary burner has a relatively low gas flow rate, the spout of molten iron or molten slag may clog the gas discharge port. Since the splash is purged, the gas discharge port is not easily clogged by the splash.
  • FIG. 4 schematically shows an example of the usage state of the auxiliary burner 100 of the present embodiment (vertical cross section in the radial direction of the electric furnace), 7 is a furnace body, 8 is an electrode, 100 is an auxiliary burner, x is scrap.
  • the auxiliary burner 100 is installed with an appropriate dip angle. In general, a plurality of auxiliary burners 100 are installed so that scrap in a so-called cold spot in an electric furnace can be heated or melted.
  • the flame length varies depending on the ignition temperature of the fuel used for the auxiliary burner. Since solid fuel and gaseous fuel have different ignition temperatures, the flame length of the auxiliary burner (that is, the flame temperature at a certain distance from the burner) can be arbitrarily adjusted by changing the solid fuel ratio. .
  • a combustion field that is equal to or higher than the ignition temperature of the solid fuel is created by the combustion of the gaseous fuel and the combustion-supporting gas, and the solid fuel is sent to the combustion field so that the solid fuel is sent.
  • the temperature of the fuel rises to the ignition temperature, and solid fuel combustion (vaporization ⁇ ignition) occurs. Since the amount of heat necessary for increasing the temperature of the solid fuel is consumed, the flame temperature decreases, but the temperature increases in the region where the solid fuel is ignited. Therefore, when the solid fuel ratio is low, the flame generated by the auxiliary combustion burner of the present embodiment has a high temperature near the tip of the burner (that is, a short flame).
  • the solid fuel ratio is increased, the endothermic heat of the solid fuel is increased. Due to subsequent heat generation, a high temperature is obtained even at a position far from the burner tip (that is, a long flame is formed). Therefore, by changing the solid fuel ratio, the flame length (that is, the flame temperature at a position away from the burner by a certain distance) can be controlled.
  • FIG. 5 schematically shows a change in flame length when the solid fuel ratio is changed in the auxiliary burner of the present embodiment.
  • the solid line is the flame temperature at a position 0.2 m away from the burner tip in the burner axis direction
  • the broken line is the flame temperature at a position 0.4 m away from the burner tip
  • the horizontal axis is the gaseous fuel. + The ratio of solid fuel in solid fuel.
  • the flame temperature at the 0.2 m position in the vicinity of the burner is high when the solid fuel ratio is low, but a rapid temperature drop occurs at the 0.4 m position. That is, the flame length is short.
  • the flame temperature at the 0.2 m position in the vicinity of the burner is lower than that in the case of 100% gas fuel, but the temperature is almost lowered even at the 0.4 m position. Absent. That is, the flame length is long. This is because the gaseous fuel is preferentially burned in the vicinity of the burner, and the solid fuel heated in the flame is burned at a position of 0.4 m to maintain the temperature.
  • the distance between the auxiliary burner and the scrap changes due to the charging, additional charging and melting of the scrap.
  • the distance between the auxiliary burner and the scrap is small at the start of operation or at the initial stage after the additional loading, and increases with the progress of melting of the scrap. This is because the distance from the undissolved scrap to the auxiliary burner increases with the progress of melting of the scrap because the scrap is first melted in order from the scrap closest to the auxiliary burner.
  • the auxiliary burner of the present embodiment adjusts (changes) the flame length by changing the solid fuel ratio according to the distance from the scrap to be heated or melted, and the flame is not affected by the distance between the scrap and the auxiliary burner. Can reach scrap.
  • the charging of scraps is performed about 2 to 3 times.
  • the operation of the electric furnace begins with the start of energization and the start of use of the auxiliary burner after the initial scrap is charged.
  • the start of operation there are cases where some of the molten iron from the previous operation remains and there is molten metal at the bottom, and there are cases where the entire molten iron from the previous operation is discharged and the furnace is empty. There is no.
  • the initial stage after charging the scrap is a situation where the bulk density is high and the entire interior of the electric furnace is filled with scrap. Therefore, the distance between the tip of the auxiliary burner and the scrap is close.
  • the distance between the tip of the auxiliary burner and the scrap in the initial stage after charging the scrap is about 0.5 m. This is because, if the distance between the tip of the auxiliary burner and the scrap is too close, the splash that is generated when the scrap melts adheres to the auxiliary burner.
  • tip part height is based also on the characteristic of a furnace, it is common that it is 1 m or more upwards from the hot-water surface height after scrap burn-off.
  • the melting proceeds from the scrap that is in contact with the molten iron, near the electrodes, and near the auxiliary burner.
  • the scrap in the vicinity of the auxiliary burner always has a distance of about 0.5m because the scrap at the top falls as it melts in the initial stage after charging the scrap, but there is always a distance of about 0.5m. . If the distance from the scrap increases, the heat of the auxiliary burner cannot be efficiently supplied to the scrap. Therefore, conventionally, an operation to stop the auxiliary burner has been performed.
  • the solid fuel ratio is lowered and the scrap is melted with a short flame, and when the melting progresses and the distance of the scrap becomes long, the solid
  • the operation time can be shortened and the power consumption can be reduced. Since the distance between the auxiliary burner and the scrap changes by inserting the scraps about 2 to 3 times, the scrap can be efficiently dissolved by appropriately changing the solid fuel ratio each time.
  • the distance between the auxiliary burner and the scrap it is necessary to know the distance between the auxiliary burner and the scrap.
  • a laser distance meter is installed in the auxiliary burner, and the distance to the scrap can be measured by this laser distance meter.
  • the situation in the furnace can be observed with a monitoring camera through a window such as a discharge port.
  • the distance to the scrap can be grasped by observation in the furnace with the monitoring camera.
  • information useful for grasping the distance may be obtained from the operation data.
  • the iron plate was heated using the auxiliary burner having the structure shown in FIGS. 1 to 3, and the temperature of the iron plate was measured.
  • the output of the burner is 590 Mcal / h.
  • LNG gaseous fuel
  • pulverized coal solid fuel
  • pure oxygen was used as the combustion-supporting gas. While pulverized coal is injected from the central solid fuel injection pipe using nitrogen as a carrier gas, LNG is injected from the outer gas fuel injection pipe, and pure oxygen is injected from the outer (outermost circumference) combustion-supporting gas injection pipe, respectively. did.
  • the specifications of pulverized coal are shown in Table 1.
  • the LNG flow rate was 6.1 Nm 3 / h
  • the pulverized coal supply rate was 85 kg / h
  • the oxygen flow rate was 155 Nm 3 / h
  • the flow rate of nitrogen for conveying the pulverized coal was 6.7 Nm 3 / h.
  • the discharge area of the combustion-supporting gas discharge port 31 is 2064 mm 2
  • the oxygen flow rate calculated from the oxygen flow rate is 21 m / s.
  • the solid fuel ratio was 90%.
  • the amount of blown oxygen was calculated by the above formula (1) with an oxygen ratio of 1.1.
  • Table 2 shows the angle ⁇ of the swirl vane provided in the flow path of the combustion-supporting gas injection pipe at each level and the value of Q / P.
  • the swirl vane having an angle of 0 ° is not intended to swirl the combustion-supporting gas, but is provided as a member that holds the gaseous fuel injection pipe 2 and the combustion-supporting gas injection pipe 3 concentrically.
  • the number of swirl vanes eight, L B is 40 mm, P was 30 mm.
  • FIG. 6 shows an outline of a combustion test using an auxiliary burner.
  • 6A shows a combustion test method
  • FIG. 6B shows a thermocouple installation position with respect to an iron plate used in the combustion test.
  • the dimensions of the iron plate used for temperature measurement were 500 mm long, 500 mm wide and 4 mm thick, and SS400 was used.
  • a K-type thermocouple is placed on the opposite side of the burner flame surface, one at the center of the plate, one at a position 100 mm left and right from the center, and one at a position 200 mm left and right from the center. A total of 5 locations were installed.
  • a heat insulating material (fireproof board) having a thickness of 25 mm was installed on the iron plate surface side where the K-type thermocouple was installed.
  • This iron plate with a heat insulating material was placed in a furnace (furnace temperature: room temperature) provided with an opening for introducing a burner flame on the front surface facing the auxiliary burner.
  • the distance from the tip of the burner to the iron plate was 1.0 m assuming an electric furnace operation.
  • the experiment was started with burner ignition, the output of the thermocouple installed on the iron plate was taken into a data logger, and the temperature of the iron plate was measured over time. In about 10 minutes after the start of the experiment, the temperature of the five thermocouples became constant. This temperature was defined as the maximum heating temperature.
  • Table 2 shows the maximum heating temperature at 5 points and the average temperature at each level. Further, as an index of temperature variation at 5 points, a value of (maximum temperature among 5 points) ⁇ average temperature and a value of average temperature ⁇ (minimum temperature among 5 points) are shown. When each value exceeded 50 degreeC, it determined with it being inferior.
  • the angle ⁇ of the swirl vane is fixed at 45 °, and the Q / P value is changed variously.
  • a Q / P of 1.0 or more and 1.2 or less was obtained. In 5, 7, and 8, it was possible to reduce the variation particularly at 5 points.
  • the burner output 590 Mcal / h in this test is a scale installed in an electric furnace of 60 t / ch, and an actual scale test was conducted. Therefore, it is clear that the same effect can be expected in an actual electric furnace.
  • auxiliary burner of the present invention it is possible to make the heating effect of the iron-based scrap high and uniform by appropriately and efficiently burning the solid fuel together with the gaseous fuel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)

Abstract

固体燃料を気体燃料とともに適切かつ効率的に燃焼させることで、鉄系スクラップの加熱効果を高くかつ均一にすることが可能な電気炉用助燃バーナーを提供する。本開示の電気炉用助燃バーナー100は、中心側から順に固体燃料噴射管1、気体燃料噴射管2、及び支燃性ガス噴射管3が同軸に配置された構造を有し、支燃性ガス噴射管3の支燃性ガス流路30には、支燃性ガスを旋回させるための複数枚の旋回羽根4が設けられ、この旋回羽根4のバーナー軸線に対してなす角度θが5°以上45°以下であることを特徴とする。

Description

電気炉用助燃バーナー
 本発明は、鉄系スクラップを溶解(melt)して溶鉄を製造する電気炉に付設される助燃バーナーに関するものである。
 電気炉を使用して鉄系スクラップを溶解する場合、電極周辺の鉄系スクラップは早く溶解するが、電極から離れた場所、すなわちコールドスポットにある鉄系スクラップは溶解が遅く、炉内の鉄系スクラップ溶解速度に不均一が生じる。このため、炉内全体の操業時間は、コールドスポットの鉄系スクラップの溶解速度に律速されていた。
 そこで、このような鉄系スクラップの溶解速度の不均一性を解消し、炉内全体の鉄系スクラップをバランス良く溶解させるべく、コールドスポットの位置に助燃バーナーを設置し、この助燃バーナーでコールドスポットに位置する鉄系スクラップの予熱、切断、溶解を行う方法が採られるようになってきた。
 このような助燃バーナーとして、例えば、特許文献1には、中心部から不燃物の飛散用及び鉄系スクラップのカッティング用酸素ガスを噴出し、この酸素ガスの外周部から燃料を、さらにこの燃料の外周部から燃焼用酸素ガスを噴出するために三重管構造としたバーナーであって、中心部から噴出する酸素ガスの速度を高速とするために、中心部の酸素ガス噴出管の先端に絞り部を設けるとともに、最外周から噴出する燃焼用酸素ガスに旋回力を付与するために、燃料噴出管と燃焼用酸素ガス噴出管とで形成される環状空間に旋回羽根を設置した電気炉用高速純酸素助燃バーナーが提案されている。
 また、特許文献2には、助燃バーナーのノズル先端を偏心させ、バーナーを回動させることでバーナー火炎の指向性を広範囲へ拡大させる電気炉用バーナー設備が提案されている。
特開平10-9524号公報 特開2003-4382号公報
 特許文献1、2に記載された技術を用いることで、助燃バーナーを用いて鉄系スクラップを効率よく予熱、溶解することができる。しかしながら、特許文献1、2では、燃料の対象が高価な気体燃料に制限されるという問題がある。安価な燃料としては、石炭などの固体燃料が挙げられるが、固体燃料は一般に、気体燃料よりも早く燃焼させることは困難であり、条件によっては失火することもあり、固体燃料の助燃バーナーへの利用は困難であった。
 そこで本発明は、固体燃料を気体燃料とともに適切かつ効率的に燃焼させることで、鉄系スクラップの加熱効果を高くかつ均一にすることが可能な電気炉用助燃バーナーを提供することを目的とする。
 本発明者らは、石炭などの固体燃料を使用できる電気炉用助燃バーナーについて検討を重ねた結果、燃料として気体燃料と固体燃料を用いる多重管構造の助燃バーナーにおいて、最外周から噴射する支燃性ガスに特定の条件で旋回を与えることにより、固体燃料を気体燃料とともに適切かつ効率的に燃焼させることができ、これによりスクラップ加熱効果が向上し、さらに、バーナーの火炎温度が均一化することを見出した。
 本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
 [1]鉄系スクラップを溶解して溶鉄を製造する電気炉に付設され、燃料として気体燃料と固体燃料を用いる電気炉用助燃バーナーであって、
 前記固体燃料が通過する第1流路を区画し、該第1流路の先端から前記固体燃料を噴射する固体燃料噴射管と、
 前記固体燃料噴射管の周囲に配置され、前記固体燃料噴射管の外壁との間で前記気体燃料が通過する第2流路を区画し、該第2流路の先端から前記気体燃料を噴射する気体燃料噴射管と、
 前記気体燃料噴射管の周囲に配置され、前記気体燃料噴射管の外壁との間で支燃性ガスが通過する第3流路を区画し、該第3流路の先端から前記支燃性ガスを噴射する支燃性ガス噴射管と、
 前記第3流路に、その周方向に所定間隔で配置された、前記支燃性ガスを旋回させるための複数枚の旋回羽根と、
を有し、前記複数枚の旋回羽根のバーナー軸線に対してなす角度θが5°以上45°以下であることを特徴とする電気炉用助燃バーナー。
 [2]前記角度θが10°以上30°以下である、上記[1]に記載の電気炉用助燃バーナー。
 [3]各々の前記旋回羽根の前記周方向における長さをQとし、前記複数枚の旋回羽根の前記周方向における設置間隔をPとしたとき、Q/Pが1.0以上1.2以下である、上記[1]又は[2]に記載の電気炉用助燃バーナー。
 [4]前記第3流路の先端が、前記支燃性ガスの最小供給量における支燃性ガス吐出速度が10m/s以上となるような吐出面積を有する、上記[1]~[3]のいずれか一項に記載の電気炉用助燃バーナー。
 本発明の助燃バーナーによれば、固体燃料を気体燃料とともに適切かつ効率的に燃焼させることで、鉄系スクラップの加熱効果を高くかつ均一にすることが可能である。
本発明の一実施形態による電気炉用助燃バーナー100のバーナー軸線に沿った断面図である。 図1のII-II線に沿う断面図である。 図1の助燃バーナー100における複数枚の旋回羽根4のうちの一部を、支燃性ガス噴射管3をその周方向に展開した状態で示す説明図である。 本発明の一実施形態による電気炉用助燃バーナー100の使用状況の一例を模式的に示す説明図である。 本発明の一実施形態による助燃バーナーについて、全燃料に占める固体燃料の比率を変えた場合の火炎長さの変化を説明するためのグラフである。 (A)は、実施例で行った助燃バーナーの燃焼試験の方法を示す説明図であり、(B)は、当該燃焼試験で用いた鉄板に対する熱電対の設置位置を示す図である。
 以下、図1~3を参照して、本発明の一実施形態による電気炉用助燃バーナー100を説明する。本実施形態の助燃バーナー100は、鉄系スクラップを溶解して溶鉄を製造する電気炉に付設されるものであって、燃料として気体燃料と固体燃料を用いる。
 助燃バーナー100において、燃料及び支燃性ガス供給用の本体部分は、中心側から順に固体燃料噴射管1、気体燃料噴射管2、及び支燃性ガス噴射管3が同軸に配置された3重管構造となっている。固体燃料噴射管1は、固体燃料が通過する固体燃料流路10(第1流路)を区画し、この固体燃料流路10の先端が円形の固体燃料吐出口11であり、ここから固体燃料を噴射する。気体燃料噴射管2は、固体燃料噴射管1の周囲に配置され、固体燃料噴射管1の外壁との間で気体燃料が通過する気体燃料流路20(第2流路)を区画し、この気体燃料流路20の先端がリング状の気体燃料吐出口21であり、ここから気体燃料を噴射する。支燃性ガス噴射管3は、気体燃料噴射管2の周囲に配置され、気体燃料噴射管2の外壁との間で支燃性ガスが通過する支燃性ガス流路30(第3流路)を区画し、この支燃性ガス流路30の先端がリング状の支燃性ガス吐出口31であり、ここから支燃性燃料を噴射する。
 助燃バーナー100の先端部では、固体燃料噴射管1と気体燃料噴射管2は、ともに先端がバーナー軸線に沿った同じ位置にあり、最外周の支燃性ガス噴射管3のみ、先端が10~200mm程度突出している。各噴射管1,2,3の内径は特に限定されないが、一般に、固体燃料噴射管1の内径は10~40mm程度、気体燃料噴射管2の内径は20~60mm程度、支燃性ガス噴射管3の内径は40~100mm程度とする。各噴射管の厚みも特に限定されないが、一般に2~20mm程度とする。
 また、バーナー後端側において、支燃性ガス噴射管3のバーナー後端側には、支燃性ガス供給口32が設けられ、これを介して支燃性ガス流路30に支燃性ガスが供給される。同じく、気体燃料噴射管2のバーナー後端側には、気体燃料供給口22が設けられ、これを介して気体燃料流路20に気体燃料が供給される。同じく、固体燃料噴射管1のバーナー後端側には、固体燃料供給口12が設けられ、これを介して固体燃料流路30に固体燃料が搬送気体とともに供給される。
 支燃性ガス供給口32には、支燃性ガス供給機構(図示せず)が接続され、これが支燃性ガスを支燃性ガス供給口32に供給する。気体燃料供給口22には、気体燃料供給機構(図示せず)が接続され、これが気体燃料を気体燃料供給口22に供給する。固体燃料供給口12には、固体燃料供給機構及び搬送気体供給機構(ともに図示せず)が接続され、これらが固体燃料及び搬送気体を固体燃料供給口12に供給する。
 また、図示しないが、支燃性ガス噴射管3の外側には、さらに内側管体と外側管体が同軸に配され、それら外側管体と内側管体との間と、内側管体と支燃性ガス噴射管3との間に、相互に連通した冷却流体用流路(冷却流体の往路及び復路)を形成している。
 本実施形態の助燃バーナーに使用できる燃料としては、以下のものが例示できる。気体燃料としては、例えば、LPG(液化石油ガス)、LNG(液化天然ガス)、水素、製鉄所副生ガス(Cガス、Bガス等)、これらの2種以上の混合ガスなどが挙げられ、これらの1種以上を用いることができる。また、固体燃料としては、粉末状固体燃料、例えば、石炭(微粉炭)、プラスチック(粒状又は粉状のもの。廃プラスチックを含む)などが挙げられ、これらの1種以上を用いることができるが、石炭(微粉炭)が特に好ましい。また、支燃性ガスとしては、純酸素(工業用酸素)、酸素富化空気、空気のいずれを用いてもよいが、純酸素を用いることが好ましい。搬送気体としては、例えば窒素を用いることができる。
 [支燃性ガス噴射管を最外周とする理由]
 支燃性ガスの流量は、供給ガス量の中で最も多いことから、他の供給ガス(気体燃料及び搬送気体)と流速を合せるためには、支燃性ガス吐出口31の吐出面積を気体燃料吐出口21や固体燃料吐出口11よりも大きくする必要がある。その観点から、支燃性ガス噴射管3は最外周とするのが最適である。以下、支燃性ガスとして酸素を、気体燃料としてLNGを、固体燃料として微粉炭をそれぞれ使用する場合を例に説明する。
 まず、燃焼に必要な酸素の量は下記(1)式により算出される。
  燃焼に必要な酸素量=酸素比(係数)×[LNG流量×LNGの理論酸素量+微粉炭供給量×微粉炭の理論酸素量]  …(1)
 燃焼に必要な酸素量について、以下の条件にて具体的に算出する。すなわち、計算条件として、LNGの発熱量を9700kcal/Nm3とし、固体燃料である微粉炭の発熱量を6250kcal/kgとする。また、助燃バーナーの総エネルギーの90%を固体燃料、10%を気体燃料から供給するものとする。例えば、LNGを10Nm3/hで供給する場合は、その発熱量は97Mcal/hとなる。この場合、バーナーの目標総発熱量である970Mcal/hとの差分である873Mcal/hを微粉炭から供給する必要があり、その供給量は約140kg/hとなる。また、理論酸素量は燃料中の炭素分や水素分などから算出され、LNGの理論酸素量は2.25Nm3/Nm3程度、微粉炭の理論酸素量は1.5Nm3/kg程度である。
 酸素比は1.0~1.1の酸素過剰条件が一般的であり、酸素比を1.05とした場合の燃焼に必要な酸素量は、上記(1)式より244Nm3/h(=1.05×[10×2.25+140×1.5])と算出される。したがって、純酸素を用いた場合では、LNG燃料の24.4倍の流量が必要である。また、微粉炭の搬送窒素と比較しても、固気比(単位時間当たりの固体の供給速度/単位時間当たりの搬送気体の供給速度)が10の場合の窒素流量は11Nm3/h程度であり、約22倍の流量が必要である。したがって、酸素の吐出速度を燃料ガスや微粉炭の吐出速度と同じにするためには、支燃性ガス吐出口31は、気体燃料吐出口21や固体燃料吐出口11の20倍以上の吐出面積(径方向断面積)が必要となる。このため、バーナーのレイアウト上、支燃性ガス吐出口31をバーナーの最外周部に配置するのが合理的である。また、支燃性ガスとして純酸素ではなく、空気を用いる場合はさらに5倍の流量が必要となる。この場合も同様の理由から、支燃性ガス吐出口31をバーナーの最外周部に配置するのが合理的である。
 [旋回羽根]
 支燃性ガス流路30には、その周方向に所定間隔で、支燃性ガスを旋回(バーナー周方向での旋回。以下同様)させるための複数枚の旋回羽根4が設けられる。支燃性ガスに旋回を付与することにより、固体燃料を適切かつ効率的に燃焼させることができ、これによりスクラップ加熱効果が向上し、さらに、バーナーの火炎温度が均一化される。その結果、電気炉内のスクラップを効率よく加熱又は溶解することができる。
 燃焼に必要な要素として、可燃性物質、酸素、温度(火源)の3要素が挙げられる。また、可燃性物質の状態に関して、燃焼の容易さは気体、液体、固体の順番である。これは、可燃性物質が気体状態であれば、可燃性物質と酸素との混合が容易であり、燃焼の継続(連鎖反応)が行われるからである。
 助燃バーナーを用いて可燃性物質として気体燃料を燃焼させた場合、酸素濃度や気体燃料の流速やバーナーチップ形状に依存するが、一般的に気体燃料はバーナー先端から噴射された直後に即座に燃焼する。これに対して、可燃性物質として石炭に代表される固体燃料を用いる場合、気体燃料のように早く燃焼させるのは困難である。これは、石炭の着火温度が400~600℃程度であり、この着火温度を維持することと、着火温度までの昇温時間が必要であることに起因する。
 固体燃料が着火温度に到達するまでの昇温時間は、固体燃料の粒径(比表面積)に依存し、粒子を細かくすれば、着火時間を短くすることはできる。これは、燃焼反応が、着火温度の維持と、可燃性物質と酸素との反応によって進行するためである。燃焼反応を効率よく進行させるためには、石炭の効率的な加熱と、石炭と酸素との反応を順次発生させることが重要である。
 本実施形態の助燃バーナーは、上記のような石炭の効率的な加熱と、可燃性物質と酸素との反応を、ガスの旋回を利用して向上させるものである。
 以下、助燃バーナーの気体燃料としてLNG(液化天然ガス)、固体燃料として石炭(微粉炭)、支燃性ガスとして純酸素を使用する場合を例として説明する。なお、燃料の着火温度は、一般的には固体燃料>液体燃料>気体燃料である。
 助燃バーナーの燃料としてLNGと石炭を用いた場合、LNGと純酸素の燃焼により石炭の着火温度以上の燃焼場が作られ、この燃焼場に石炭が送り込まれることで石炭が着火温度まで温度上昇し、石炭の燃焼(気化→着火)が起こる。石炭の温度上昇に必要な熱量が消費されるため火炎温度は低下するが、石炭の着火が起きる領域では温度が上昇する。
 燃料であるLNGや石炭と酸素の反応により、不燃性気体である二酸化炭素が発生する。不燃性気体は燃焼の継続(連鎖反応)を阻害し、燃焼性を低下させる原因となる。また、石炭は搬送気体とともに供給されるが、搬送気体の流量が多いと搬送気体の比熱分の温度低下となることから、一般的に、固気比を大きくした方が燃焼性は向上する。しかしながら、固気比が大きい状態とは、石炭が密な状態であり、外部からの熱や酸素との反応が中心部へ伝わりにくい条件である。石炭を効率よく燃焼させるためには、石炭の燃焼場において、石炭の周囲に熱や酸素が十分存在する条件を作り出すことが重要である。
 そして、本発明者らによる検討の結果、酸素に特定の条件で旋回を付与することで、燃焼場において石炭の周囲に熱や酸素が十分存在する条件を作り出すことができることが判った。この結果、石炭が効率的に加熱されるとともに、石炭(及びLNG)と酸素の反応が迅速に行われ、さらに、反応によって発生する二酸化炭素も酸素の旋回により拡散される。このため、石炭の燃焼性が向上する。
 すなわち、本実施形態では、複数枚の旋回羽根4のバーナー軸線に対してなす角度θ(図3)を5°以上45°以下とする必要がある。この旋回羽根4の角度θが5°未満では、支燃性ガスに十分な旋回を付与することができず、さきに述べたような本発明が狙いとする作用効果が十分に得られない。一方、旋回羽根4の角度θが45°を超えると、支燃性ガスが外側に拡散しすぎ、燃焼場において石炭の周囲に熱や酸素が十分存在する条件を作り出すことができないため、この場合も、さきに述べたような本発明が狙いとする作用効果が十分に得られない。以上のような観点から、より好ましい旋回羽根4の角度θは10°以上30°以下である。
 旋回羽根4の枚数や旋回羽根4の肉厚などについては、特に制限はないが、支燃性ガスに十分な旋回を付与する一方で、支燃性ガスの流れを阻害せず、かつ羽根が変形しないようにするために、旋回羽根4の枚数は8枚以上16枚以下、羽根の肉厚は1~10mm程度が適当である。
 また、バーナー軸方向での旋回羽根4の設置位置は、支燃性ガス流路30内であれば特に制限はないが、支燃性ガス流路30の先端(支燃性ガス吐出口31)から離れすぎると、旋回羽根4を通過した支燃性ガスが気体燃料と混合する前に目標とする旋回角度を維持できなくなる恐れがある。一方、旋回羽根4の設置位置が支燃性ガス流路30の先端(支燃性ガス吐出口31)に近すぎると、旋回角度を保持するための助走時間が短いため、狙い通りの旋回角度を保持した旋回流(支燃性ガス流)が生じにくくなる。このため、旋回羽根4の支燃性ガス吐出口31側の先端と、支燃性ガス吐出口31とのバーナー軸方向での距離LBは10~50mm程度とするのが好ましい。
 また、バーナー軸方向での旋回羽根4の長さLAは、安定した旋回流が得られるようにするために40mm以上であることが好ましい。また、当該長さLAは、羽根の製造コストの観点から100mm以下であることが好ましい。
 また、各々の旋回羽根4の支燃性ガス流路30の周方向における長さ(周長)をQとし、複数枚の旋回羽根4の支燃性ガス流路30の周方向での間隔をPとしたとき、Q/P(ラップ率)を1.0以上1.2以下とすることが好ましい。Q/Pが1.0未満では、ガス流れに旋回を付与しにくくなる結果、火炎温度の均一化が困難となる。一方、Q/Pが1.2を超えると、ガスが流れる際の抵抗が大きくなるため、ガスの流れに対して圧力損失が大きくなり、流れにくくなる結果、やはり火炎温度の均一化が困難となる。なお、図3に示すように、全ての旋回羽根4は、距離LB、バーナー軸方向での長さLA、及び周長Qが同一であり、間隔Pも等間隔であることが好ましい。
 旋回羽根4は、それ自体を管体(噴射管)に組み込む方式としてもよいし、管体と一体構造となるような機械加工を施したものでもよい。
 また、本発明者らの知見によると、支燃性ガス吐出口31から吐出される支燃性ガスの流速が10m/s未満になると、固体燃料の燃焼が不均一になりやすく、さらに燃え残りの固体燃料が流路の中で詰まってしまう現象が発生するおそれがある。このため、支燃性ガスの吐出流速は10m/s以上とすることが好ましい。支燃性ガスの吐出流速Sは、支燃性ガス流量Hと支燃性ガス吐出口31の吐出面積A(径方向断面積)で決まる(S=H/A)。このため、支燃性ガス吐出口31は、支燃性ガスの最小供給量における支燃性ガス吐出口からの支燃性ガス吐出速度が10m/s以上となるような吐出面積(径方向断面積)とすることが好ましい。なお、「最小供給量」とは、固体燃料の燃焼が不均一にならず、かつ、燃え残りの固体燃料が流路の中で詰まることがない最小の供給量をいう。
 以上説明した本実施形態の助燃バーナー100によれば、固体燃料を気体燃料とともに適切かつ効率的に燃焼させることにより、スクラップ加熱効果が向上し、さらに、バーナーの火炎温度が均一化する。さらに、本実施形態の助燃バーナー100では、以下の付加的な効果を奏する。すなわち、本実施形態では、全燃料に占める固体燃料の比率(発熱量換算、以下単に「固体燃料比率」という。)を変えることにより、加熱又は溶解しようとするスクラップとの距離に応じて火炎長さを任意に調整することができる。また、一般に、助燃バーナーはガス流速が比較的小さいために、飛散してくる溶鉄や溶融スラグのスプラッシュによりガス吐出口が詰まってしまうことがあるが、本実施形態では、固体燃料の搬送ガスによりスプラッシュがパージされるため、スプラッシュによるガス吐出口の詰まりが生じにくい。
 図4は、本実施形態の助燃バーナー100の使用状況の一例(電気炉の半径方向での縦断面)を模式的に示すものであり、7は炉体、8は電極、100は助燃バーナー、xはスクラップである。助燃バーナー100は、適当な伏角をもって設置される。助燃バーナー100は、電気炉内のいわゆるコールドスポットにあるスクラップを加熱又は溶解できるように、通常、複数基設置される。
 ここで、助燃バーナーに用いる燃料の着火温度によって、火炎長さに違いが生じる。固体燃料と気体燃料は着火温度が異なるので、固体燃料比率を変えることにより、助燃バーナーの火炎長さ(つまり、バーナーからある距離だけ離れた位置での火炎温度)を任意に調整することができる。
 さきに述べたように、本実施形態の助燃バーナーでは、気体燃料と支燃性ガスの燃焼により固体燃料の着火温度以上の燃焼場が作られ、この燃焼場に固体燃料が送り込まれることで固体燃料が着火温度まで温度上昇し、固体燃料の燃焼(気化→着火)が起こる。固体燃料の温度上昇に必要な熱量が消費されるため火炎温度は低下するが、固体燃料の着火が起きる領域では温度が上昇する。したがって、本実施形態の助燃バーナーで生じる火炎は、固体燃料比率が低い時はバーナー先端から近い位置が高温となる(すなわち短い火炎となる)が、固体燃料比率を高くすると、固体燃料の吸熱の後の発熱により、バーナー先端から遠い位置でも高温となる(すなわち長い火炎となる)。したがって、固体燃料比率を変えることで、火炎長さ(つまり、バーナーからある距離だけ離れた位置での火炎温度)を制御することができる。
 図5は、本実施形態の助燃バーナーについて、固体燃料比率を変えた場合の火炎長さの変化を模式的に示したものである。同図において、実線はバーナー軸方向においてバーナー先端から0.2m離れた位置での火炎温度であり、破線は同じくバーナー先端から0.4m離れた位置での火炎温度であり、横軸は気体燃料+固体燃料中での固体燃料の比率である。図5によれば、固体燃料比率が低い条件では、バーナー近傍である0.2m位置での火炎温度は高温であるが、0.4m位置では急激な温度低下が生じている。すなわち、火炎長さが短い。一方、固体燃料比率が高い条件では、バーナー近傍である0.2m位置での火炎温度は、気体燃料100%の場合と比較して低温であるが、0.4m位置でもほとんど温度低下が生じていない。すなわち、火炎長さが長い。これは、バーナー近傍では気体燃料が優先的に燃焼し、その火炎内で高温化した固体燃料が0.4m位置で燃焼され、温度が維持されるためである。
 電気炉の操業では、スクラップの装入、追装や溶解により助燃バーナーとスクラップとの距離が変化する。一般に、助燃バーナーとスクラップの距離は、操業開始時や追装後の初期段階では小さく、スクラップの溶解の進行とともに大きくなる。これは、最初に助燃バーナーに近いスクラップから順に溶解されるため、スクラップの溶解の進行とともに、未溶解のスクラップと助燃バーナーとの距離が大きくなっていくためである。本実施形態の助燃バーナーは、加熱又は溶解しようとするスクラップとの距離に応じて固体燃料比率を変えることで火炎長さを調整(変更)し、スクラップと助燃バーナーとの距離の関わりなく、火炎がスクラップに届くようにすることができる。すなわち、助燃バーナーとスクラップの距離が小さい時は、固体燃料比率を低くして火炎長さを短くし、助燃バーナーとスクラップの距離が大きい時は、固体燃料比率を高めて火炎長さを長くする。これにより、スクラップを効率よく加熱又は溶解することができる。
 具体的には、電気炉の一般的な操業(1チャージの操業)では、2~3回程度のスクラップの装入が行われる。電気炉の操業は、初回スクラップを装入した後に、通電開始や助燃バーナー使用開始により始まる。操業開始時の状態は、前操業の溶鉄を一部残留させて下部に溶湯が存在する場合と、前操業の溶鉄全量を出湯させて炉内が空の場合があるが、操業方法に大きな違いはない。スクラップ装入後の初期段階は、嵩密度が高く電気炉内の全体にスクラップが充填されている状況である。したがって、助燃バーナー先端部とスクラップの距離は近い状態にある。スクラップ装入後の初期段階における助燃バーナー先端部とスクラップの距離は大よそ0.5m程度である。これは、助燃バーナー先端部とスクラップの距離が近すぎると、スクラップが溶解した時に発生するスプラッシュが助燃バーナーに溶着してしまうためである。また、助燃バーナー先端部高さの位置は、炉の特性にもよるが、スクラップ溶け落ち後の湯面高さから1m以上上方であるのが一般的である。
 操業が進行すると、溶鉄と接している下部や、電極近傍や、助燃バーナー近傍のスクラップから溶解が進行していく。助燃バーナー近傍のスクラップは、スクラップ装入後の初期段階では溶解とともに上部にあるスクラップが落下するため、常に0.5m程度の距離があるが、上部のスクラップがなくなるとスクラップとの距離が遠くなる。スクラップとの距離が遠くなると、助燃バーナーの熱をスクラップに対して効率的に供給することができないことから、従来では、助燃バーナーを停止する操業を行うこともあった。これに対して本実施形態の助燃バーナーを用いた操業では、スクラップが近い時は固体燃料比率を低くして短い火炎でスクラップを溶解し、溶解が進行してスクラップの距離が遠くなった時に固体燃料比率を高くすることで、長い火炎でスクラップを溶解する。これによって、より多くのスクラップを効率的に溶解することができ、操業時間の短縮および電力原単位の削減を図ることができる。2~3回程度のスクラップの装入により助燃バーナーとスクラップとの距離が変化することから、固体燃料比率をその都度適正に変化させることで、スクラップを効率的に溶解させることができる。
 上記操業の場合、助燃バーナーとスクラップの距離を把握する必要があるが、例えば、助燃バーナーにレーザー距離計を設置し、このレーザー距離計によりスクラップまでの距離を測定することができる。また、排滓口などの窓を通じて炉内の状況を監視カメラで観察することができ、電気炉の構造によっては、この監視カメラによる炉内の観察によりスクラップまでの距離を把握することができる。また、操業データから距離の把握に有用な情報が得られる場合もある。
 図1~図3に示す構造の助燃バーナーを用いて鉄板を加熱し、鉄板の温度測定を行った。バーナーの出力は590Mcal/hである。
 燃料にはLNG(気体燃料)と微粉炭(固体燃料)を用い、支燃性ガスには純酸素を用いた。中心の固体燃料噴射管から窒素を搬送気体として微粉炭を噴射するとともに、その外側の気体燃料噴射管からLNGを、その外側(最外周)の支燃性ガス噴射管から純酸素を、それぞれ噴射した。
 微粉炭の仕様は、表1に示す。LNG流量は6.1Nm3/h、微粉炭供給量は85kg/h、酸素流量は155Nm3/h、微粉炭搬送用の窒素の流量は6.7Nm3/hとした。支燃性ガス吐出口31の吐出面積は2064mm2であり、酸素流量から算出した酸素の流速はいずれも21m/sである。固体燃料比率は90%とした。吹込み酸素量は、酸素比を1.1として上記(1)式により算出した。
 各水準における支燃性ガス噴射管の流路に設けた旋回羽根の角度θと、Q/Pの値を表2に示した。なお、角度0°の旋回羽根とは、支燃性ガスの旋回目的ではなく、気体燃料噴射管2と支燃性ガス噴射管3とを同芯状に保持する部材として設けられるものである。なお、全水準において、旋回羽根の枚数は8枚、LBは40mm、Pは30mmとした。
 図6に、助燃バーナーを用いた燃焼試験の概略を示す。図6(A)は燃焼試験の方法を、図6(B)は当該燃焼試験で用いた鉄板に対する熱電対の設置位置を、それぞれ示している。
 温度測定に用いた鉄板の寸法は縦500mm、横500mm、厚み4mmであり、SS400を用いた。鉄板の温度を測定するために、バーナー火炎の照射面の反対側にK型熱電対を、板中央に1カ所、中央から左右100mmの位置に各1カ所、中央から左右200mmの位置に各1カ所の計5カ所設置した。さらに、K型熱電対を設置した鉄板面側に、厚み25mmの断熱材(耐火ボード)を設置した。この断熱材付の鉄板を、助燃バーナーと対向する前面にバーナー火炎導入用の開口を設けた炉(炉内温度:室温)内に配置した。バーナー先端から鉄板までの距離は、電気炉操業を想定して1.0mとした。バーナー点火を実験開始とし、鉄板に設置した熱電対の出力をデータロガーに取り込み、鉄板温度を経時的に測定した。実験開始後10分程度で5カ所の熱電対の温度は一定となった。この温度を最高加熱温度とした。
 各水準における、5点での最高加熱温度とその平均温度を表2に示す。また、5点の温度ばらつきの指標として、(5点中の最大温度)-平均温度の値と、平均温度-(5点中の最小温度)の値を示す。各値が50℃を超えると不良であると判定した。
 表2から明らかなように、角度θが0°のNo.10では、5点の平均温度は高いものの、微粉炭の燃焼性が悪くかつ不安定であるため、5点のばらつきが非常に大きかった。このためスクラップを均一に加熱できず、スクラップの不均一溶解を生じてしまう。
 これに対して、角度θが本発明範囲であるNo.1~5では、5点の平均温度が高く、かつ、5点のばらつきが小さい。すなわち、微粉炭が適切且つ効率的に燃焼したことにより、高い燃焼性が得られていることが判る。このため、電気炉操業において炉内のスクラップを均一に加熱できる。No.1~5のなかでも、旋回羽根の角度θを10°以上30°以下としたNo.2~4では、5点の平均温度が特に高く、かつ5点のばらつきが特に小さい。すなわち、より優れた性能を有する助燃バーナーであるといえる。
 一方、旋回羽根の角度θが60°であるNo.11では、支燃性ガスが鉄板幅方向に拡散しすぎるため、5点の平均温度が低く、さらに5点のばらつきもNo.10と同様に大きかった。すなわち、助燃バーナーとしての能力は低いといえる。
 また、旋回羽根の角度θを45°で固定し、Q/Pの値を種々変更したNo.5~9を比較すると、Q/Pを1.0以上1.2以下としたNo.5,7,8において、特に5点のばらつきを小さくすることができた。
 この試験でのバーナー出力590Mcal/hは、60t/chの電気炉に設置されている規模であり、実機スケールでの試験を実施した。したがって、実機の電気炉においても同様な効果が期待できることは明らかである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明の助燃バーナーによれば、固体燃料を気体燃料とともに適切かつ効率的に燃焼させることで、鉄系スクラップの加熱効果を高くかつ均一にすることが可能である。
 100 電気炉用助燃バーナー
 1 固体燃料噴射管
 2 気体燃料噴射管
 3 支燃性ガス噴射管
 4 旋回羽根
 7 炉体
 8 電極
 x 鉄系スクラップ
 10 固体燃料流路(第1流路)
 11 固体燃料吐出口
 12 固体燃料供給口
 20 気体燃料流路(第2流路)
 21 気体燃料吐出口
 22 気体燃料供給口
 30 支燃性ガス流路(第3流路)
 31 支燃性ガス吐出口
 32 支燃性ガス供給口
 θ 旋回羽根のバーナー軸線に対してなす角
 Q 旋回羽根の第3流路周方向における長さ
 P 旋回羽根の第3流路周方向における設置間隔

Claims (4)

  1.  鉄系スクラップを溶解して溶鉄を製造する電気炉に付設され、燃料として気体燃料と固体燃料を用いる電気炉用助燃バーナーであって、
     前記固体燃料が通過する第1流路を区画し、該第1流路の先端から前記固体燃料を噴射する固体燃料噴射管と、
     前記固体燃料噴射管の周囲に配置され、前記固体燃料噴射管の外壁との間で前記気体燃料が通過する第2流路を区画し、該第2流路の先端から前記気体燃料を噴射する気体燃料噴射管と、
     前記気体燃料噴射管の周囲に配置され、前記気体燃料噴射管の外壁との間で支燃性ガスが通過する第3流路を区画し、該第3流路の先端から前記支燃性ガスを噴射する支燃性ガス噴射管と、
     前記第3流路に、その周方向に所定間隔で配置された、前記支燃性ガスを旋回させるための複数枚の旋回羽根と、
    を有し、前記複数枚の旋回羽根のバーナー軸線に対してなす角度θが5°以上45°以下であることを特徴とする電気炉用助燃バーナー。
  2.  前記角度θが10°以上30°以下である、請求項1に記載の電気炉用助燃バーナー。
  3.  各々の前記旋回羽根の前記周方向における長さをQとし、前記複数枚の旋回羽根の前記周方向における設置間隔をPとしたとき、Q/Pが1.0以上1.2以下である、請求項1又は2に記載の電気炉用助燃バーナー。
  4.  前記第3流路の先端が、前記支燃性ガスの最小供給量における支燃性ガス吐出速度が10m/s以上となるような吐出面積を有する、請求項1~3のいずれか一項に記載の電気炉用助燃バーナー。
PCT/JP2017/026716 2016-07-26 2017-07-24 電気炉用助燃バーナー WO2018021249A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780046453.XA CN109642724A (zh) 2016-07-26 2017-07-24 电炉用助燃燃烧器
US16/320,206 US11041621B2 (en) 2016-07-26 2017-07-24 Auxiliary burner for electric furnace
KR1020197004582A KR102211258B1 (ko) 2016-07-26 2017-07-24 전기로용 조연 버너
JP2017559626A JP6580710B2 (ja) 2016-07-26 2017-07-24 電気炉用助燃バーナー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-146540 2016-07-26
JP2016146540 2016-07-26

Publications (1)

Publication Number Publication Date
WO2018021249A1 true WO2018021249A1 (ja) 2018-02-01

Family

ID=61016159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026716 WO2018021249A1 (ja) 2016-07-26 2017-07-24 電気炉用助燃バーナー

Country Status (5)

Country Link
US (1) US11041621B2 (ja)
JP (1) JP6580710B2 (ja)
KR (1) KR102211258B1 (ja)
CN (1) CN109642724A (ja)
WO (1) WO2018021249A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110160050B (zh) * 2019-06-05 2020-10-30 中国矿业大学 一种生物质气化气与煤粉共燃低氮燃烧器
US20220390108A1 (en) * 2021-06-08 2022-12-08 Forney Corporation High-capacity igniter
US20240019118A1 (en) * 2022-07-12 2024-01-18 Air Products And Chemicals, Inc. Burner, System, and Method for Hydrogen-Enhanced Pulverized Coal Ignition

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719506A (en) * 1980-03-26 1982-02-01 Steag Ag Operation method of boiler combustor for powdered coal and said combustor for executing it
JPS5751204U (ja) * 1980-09-01 1982-03-24
JPS59134728U (ja) * 1983-02-28 1984-09-08 住友金属工業株式会社 バ−ナ
JPS6312923B2 (ja) * 1981-08-06 1988-03-23 Ishikawajima Harima Heavy Ind
US5203692A (en) * 1990-01-29 1993-04-20 F. L. Smidth & Co. A/S Burner for solid and liquid or gaseous fuel
JPH0712314A (ja) * 1993-06-23 1995-01-17 Nippon Sanso Kk ガスバーナー
JP2004100967A (ja) * 2002-09-04 2004-04-02 Sumitomo Metal Ind Ltd 粉体燃焼用バーナ、粉体燃焼方法および焼却炉
JP2005283029A (ja) * 2004-03-30 2005-10-13 Osaka Gas Co Ltd 輝炎バーナ
JP2009532661A (ja) * 2006-04-03 2009-09-10 プラクスエア・テクノロジー・インコーポレイテッド 酸素燃料燃焼及び空気燃料燃焼の一体化
US20120129111A1 (en) * 2010-05-21 2012-05-24 Fives North America Combustion, Inc. Premix for non-gaseous fuel delivery
JP2014185784A (ja) * 2013-03-21 2014-10-02 Taiyo Nippon Sanso Corp 燃焼バーナ、バーナ装置、及び原料粉体加熱方法
WO2015136609A1 (ja) * 2014-03-11 2015-09-17 三菱日立パワーシステムズ株式会社 ボイラ用燃焼バーナ

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3236280A (en) * 1962-01-23 1966-02-22 United States Steel Corp Method and apparatus for burning two incompatible liquid hydrocarbon fuels
JPS5841406B2 (ja) * 1976-01-26 1983-09-12 住友金属工業株式会社 窒素酸化物抑制型バ−ナ
JPS5818974B2 (ja) * 1978-03-31 1983-04-15 住友金属工業株式会社 スケルプのエツジ加熱方法
JPS597885B2 (ja) * 1978-12-15 1984-02-21 株式会社日立製作所 ガスバ−ナノズル
DE3027587A1 (de) * 1980-07-21 1982-02-25 Klöckner-Humboldt-Deutz AG, 5000 Köln Brenner fuer feste brennstoffe
US4561841A (en) * 1980-11-21 1985-12-31 Donald Korenyi Combustion apparatus
US4464108A (en) * 1980-11-21 1984-08-07 Donald Korenyi Combustion apparatus
JPS57150719A (en) * 1981-03-11 1982-09-17 Sato Kogyo Kk Combustion system of gas burner
US4523530A (en) * 1982-02-26 1985-06-18 Sumitomo Metal Industries, Ltd. Powdery coal burner
JPS60129518A (ja) * 1983-12-16 1985-07-10 Hitachi Zosen Corp 低カロリー燃料用ガスバーナ
JPH0663628B2 (ja) 1986-03-27 1994-08-22 重質油対策技術研究組合 ピツチ水スラリ−の効率的燃焼方法
US4836772A (en) * 1988-05-05 1989-06-06 The Babcock & Wilcox Company Burner for coal, oil or gas firing
US4949655A (en) * 1989-02-17 1990-08-21 Greer Fred C Process for the utilization of powdered solid waste
US5249535A (en) * 1992-03-25 1993-10-05 Landy Chung Low NOx burner
US5599375A (en) * 1994-08-29 1997-02-04 American Combustion, Inc. Method for electric steelmaking
CA2162244C (en) * 1994-11-14 1999-04-27 Hideaki Oota Pulverized coal combustion burner
JP3181222B2 (ja) 1996-06-20 2001-07-03 住友金属工業株式会社 電気炉用高速純酸素助燃バーナ
GB9708543D0 (en) * 1997-04-25 1997-06-18 Boc Group Plc Particulate injection burner
JPH1183016A (ja) * 1997-09-10 1999-03-26 Mitsubishi Heavy Ind Ltd 3次元スワーラ
JP2003004382A (ja) 2001-06-20 2003-01-08 Nikko:Kk 電気炉用付帯設備及び電気炉
EP1659339A1 (de) * 2004-11-18 2006-05-24 Siemens Aktiengesellschaft Verfahren zum Anfahren eines Brenners
FR2887597B1 (fr) * 2005-06-27 2010-04-30 Egci Pillard Conduite annulaire et bruleur comportant une telle conduite
ITMI20060155A1 (it) * 2006-01-31 2007-08-01 Techint Spa Bruciatore di volta a fiamma piatta a basse emissioni inquinanti
WO2009032793A1 (en) * 2007-09-06 2009-03-12 Coen Company, Inc. Burner pilot with virtual spinner
EP2791578A1 (en) * 2011-12-16 2014-10-22 Shell Internationale Research Maatschappij B.V. Separation device comprising a swirler
US20140157790A1 (en) * 2012-12-10 2014-06-12 Zilkha Biomass Power Llc Combustor assembly and methods of using same
US10161633B2 (en) * 2013-03-04 2018-12-25 Delavan Inc. Air swirlers
US9322559B2 (en) * 2013-04-17 2016-04-26 General Electric Company Fuel nozzle having swirler vane and fuel injection peg arrangement
EP2821699A1 (en) * 2013-07-02 2015-01-07 Haldor Topsøe A/S Mixing of recycle gas with fuel gas to a burner
KR102005545B1 (ko) * 2013-08-12 2019-07-30 한화에어로스페이스 주식회사 선회기
US20150176900A1 (en) * 2013-12-20 2015-06-25 American Air Liquide, Inc. Hybrid oxy-coal burner for eaf steelmaking
EP2966350B1 (en) * 2014-07-10 2018-06-13 Ansaldo Energia Switzerland AG Axial swirler
EP3186553A1 (en) * 2014-08-26 2017-07-05 John Zink Company, L.L.C. Swirl stabilized high capacity duct burner
CN204786421U (zh) 2015-06-26 2015-11-18 襄阳中和机电技术有限公司 多燃料回转窑燃烧器
US20180209639A1 (en) * 2017-01-20 2018-07-26 Marc Mahé Gas heater conversion system and method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719506A (en) * 1980-03-26 1982-02-01 Steag Ag Operation method of boiler combustor for powdered coal and said combustor for executing it
JPS5751204U (ja) * 1980-09-01 1982-03-24
JPS6312923B2 (ja) * 1981-08-06 1988-03-23 Ishikawajima Harima Heavy Ind
JPS59134728U (ja) * 1983-02-28 1984-09-08 住友金属工業株式会社 バ−ナ
US5203692A (en) * 1990-01-29 1993-04-20 F. L. Smidth & Co. A/S Burner for solid and liquid or gaseous fuel
JPH0712314A (ja) * 1993-06-23 1995-01-17 Nippon Sanso Kk ガスバーナー
JP2004100967A (ja) * 2002-09-04 2004-04-02 Sumitomo Metal Ind Ltd 粉体燃焼用バーナ、粉体燃焼方法および焼却炉
JP2005283029A (ja) * 2004-03-30 2005-10-13 Osaka Gas Co Ltd 輝炎バーナ
JP2009532661A (ja) * 2006-04-03 2009-09-10 プラクスエア・テクノロジー・インコーポレイテッド 酸素燃料燃焼及び空気燃料燃焼の一体化
US20120129111A1 (en) * 2010-05-21 2012-05-24 Fives North America Combustion, Inc. Premix for non-gaseous fuel delivery
JP2014185784A (ja) * 2013-03-21 2014-10-02 Taiyo Nippon Sanso Corp 燃焼バーナ、バーナ装置、及び原料粉体加熱方法
WO2015136609A1 (ja) * 2014-03-11 2015-09-17 三菱日立パワーシステムズ株式会社 ボイラ用燃焼バーナ

Also Published As

Publication number Publication date
US11041621B2 (en) 2021-06-22
JP6580710B2 (ja) 2019-09-25
CN109642724A (zh) 2019-04-16
KR102211258B1 (ko) 2021-02-02
JPWO2018021249A1 (ja) 2018-08-02
KR20190027916A (ko) 2019-03-15
US20190271465A1 (en) 2019-09-05

Similar Documents

Publication Publication Date Title
JP5988014B1 (ja) 電気炉による溶鉄の製造方法
JP6705838B2 (ja) 電気炉用助燃バーナー
JP6580710B2 (ja) 電気炉用助燃バーナー
US8454354B2 (en) Highly radiative burner and combustion process
CN103314118A (zh) 高炉操作方法
WO2018179588A1 (ja) バーナ及びバーナの運転方法、並びに冷鉄源の溶解・精錬方法
JP2013040402A (ja) 高炉操業方法
JP4992235B2 (ja) 高炉への還元材吹込み方法及び装置
JP6580709B2 (ja) 電気炉用助燃バーナー
JP6504370B2 (ja) 電気炉による溶鉄の製造方法
JP2021172860A (ja) 冷鉄源の溶解・精錬炉、及び溶解・精錬炉の操業方法
JPS62238307A (ja) 高炉への難燃性燃料の吹込方法
JP6489060B2 (ja) 高炉の操業方法
WO2021090654A1 (ja) 電気炉による溶鉄の製造方法
JPS6287709A (ja) 低カロリ−ガスを助燃燃料とする粉炭バ−ナ
JP4016909B2 (ja) 粉体燃焼装置および粉体燃焼方法
JP2011106802A (ja) 燃焼バーナによる低発熱量ガスの燃焼方法および高炉操業方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017559626

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197004582

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17834255

Country of ref document: EP

Kind code of ref document: A1