WO2018020919A1 - Transmission line and electronic device - Google Patents

Transmission line and electronic device Download PDF

Info

Publication number
WO2018020919A1
WO2018020919A1 PCT/JP2017/023070 JP2017023070W WO2018020919A1 WO 2018020919 A1 WO2018020919 A1 WO 2018020919A1 JP 2017023070 W JP2017023070 W JP 2017023070W WO 2018020919 A1 WO2018020919 A1 WO 2018020919A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
insulator layer
ground
transmission line
ground conductor
Prior art date
Application number
PCT/JP2017/023070
Other languages
French (fr)
Japanese (ja)
Inventor
邦明 用水
勝己 谷口
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201790000857.0U priority Critical patent/CN209104338U/en
Publication of WO2018020919A1 publication Critical patent/WO2018020919A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines

Definitions

  • the present invention relates to a triplate stripline type transmission line sandwiched between a signal conductor, a first ground conductor, and a second ground conductor, and an electronic device including the transmission line.
  • Patent Document 1 describes a triplate stripline type signal line.
  • the signal line described in Patent Document 1 includes a laminate in which a plurality of insulator layers are laminated.
  • the signal line includes a signal conductor, a first ground conductor, and a second ground conductor, and these conductors are arranged via an insulator layer in the stacking direction.
  • the signal conductor is disposed between the first ground conductor and the second ground conductor in the stacking direction.
  • the signal conductor, the first ground conductor, and the second ground conductor have a shape extending in a predetermined direction orthogonal to the stacking direction.
  • the first ground conductor and the second ground conductor are connected by a plurality of interlayer connection conductors formed in the multilayer body.
  • the plurality of interlayer connection conductors are arranged at intervals along a predetermined direction of the multilayer body (direction in which each conductor extends).
  • the plurality of interlayer connection conductors are disposed on both sides of the signal conductor in the stacking direction of the stack and the width direction of the stack orthogonal to the predetermined direction (the direction in which each conductor extends).
  • an object of the present invention is to provide a transmission line that suppresses unnecessary radiation and has excellent transmission characteristics.
  • the transmission line includes a signal conductor, a first ground conductor, a second ground conductor, and a laminate.
  • the laminate includes a first insulator layer in which a first ground conductor is formed, a second insulator layer in which a signal conductor is formed, and a third insulator layer in which a second ground conductor is formed, The second insulator layer is sandwiched between the first insulator layer and the third insulator layer.
  • the laminate includes a portion that does not have the second insulator layer at a position different from the signal conductor.
  • the connection portion between the first ground conductor and the second ground conductor is disposed in a portion of the multilayer body that does not have the second insulator layer.
  • the first ground conductor, the second ground conductor, or both the first ground conductor and the second ground conductor are curved in the stacking direction.
  • the first ground conductor and the second ground conductor are arranged close to or in contact with each other and at least partially cover the end face or side face (the face perpendicular to the width direction) of the multilayer body. Thereby, the unnecessary radiation to the exterior from the end surface or side surface of a laminated body is suppressed.
  • the interlayer connection conductor connecting them can be shortened, and when the first ground conductor and the second ground conductor are in contact, the interlayer connection conductor Do not need. Therefore, the connection reliability between the first ground conductor and the second ground conductor is improved.
  • the transmission line of the present invention can have the following configuration.
  • the first ground conductor is formed on the side of the first insulator layer opposite to the third insulator layer side.
  • the second ground conductor is formed on the first insulator layer side of the third insulator layer, and is in contact with the first insulator layer in the portion of the stacked body that does not have the second insulator layer.
  • the second ground conductor and the first ground conductor are connected by an interlayer connection conductor formed in the first insulator layer.
  • the first ground conductor overlaps the signal conductor when the multilayer body is viewed from the side. Further, the interlayer connection conductor that connects the first ground conductor and the second ground conductor is formed only in the first insulator layer (single layer) and is shortened. Thereby, suppression of unnecessary radiation and connection reliability between the first ground conductor and the second ground conductor are enhanced.
  • the portion not having the second insulator layer continues over the entire length in the extending direction.
  • a short interlayer connection conductor can be formed over the entire length in the extending direction. Moreover, it is easy to suppress unnecessary radiation over the entire length in the extending direction.
  • the portions not having the second insulator layer are on both sides of the signal conductor in the width direction of the multilayer body.
  • the second ground conductor further includes a second ground auxiliary conductor protruding in the width direction, and the second ground auxiliary conductor is bent toward the first ground conductor in the stacking direction. Also good.
  • the second ground auxiliary conductor is used for interlayer connection between the second ground conductor and the first ground conductor. This makes it easier to improve the connection reliability between the first ground conductor and the second ground conductor than using the interlayer connection conductor.
  • the transmission line of the present invention may have the following configuration.
  • the width of the portion of the third insulator layer where the second ground auxiliary conductor is formed is wider than the width of the portion where the second ground auxiliary conductor is not formed.
  • the width of the portion where the second ground auxiliary conductor is not formed is substantially the same as that of the second insulator layer.
  • the transmission line of the present invention may have the following configuration.
  • the first ground conductor further includes a first ground auxiliary conductor protruding in the width direction.
  • the second ground auxiliary conductor is connected to the first ground auxiliary conductor.
  • At least one of the second ground auxiliary conductor and the first ground auxiliary conductor is used for interlayer connection between the second ground conductor and the first ground conductor. This makes it easier to improve the connection reliability between the first ground conductor and the second ground conductor than using the interlayer connection conductor.
  • the transmission line of the present invention may have the following configuration.
  • the width of the portion of the first insulator layer where the first ground auxiliary conductor is formed is wider than the width of the portion where the first ground auxiliary conductor is not formed.
  • the width of the portion where the first ground auxiliary conductor is not formed is substantially the same as that of the second insulator layer.
  • the portion of the multilayer body where the first ground auxiliary conductor and the second ground auxiliary conductor are not formed is easily bent.
  • the transmission line of the present invention may have the following configuration. Both ends in the direction in which the second insulator layer extends do not overlap the first insulator layer and the third insulator layer. Both ends in the extending direction of the second insulator layer are bent toward the first insulator layer in the stacking direction.
  • both ends of the signal conductor in the extending direction can be connected to an external circuit board without using the interlayer connection conductor formed in the multilayer body. Further, since the signal conductor approaches the conductor pattern of the external circuit board, it is easy to connect the signal conductor and the conductor pattern of the external circuit with a bonding material, and the connection reliability is improved.
  • the electronic device of the present invention includes a transmission line and a circuit board on which a ground land conductor is formed.
  • the ground land conductor is bonded to the first ground conductor and the second ground conductor by a bonding material in a portion of the multilayer body that does not have the second insulator layer.
  • the first ground conductor and the second ground conductor of the transmission line are easily connected to the ground land conductor of the external circuit board using a bonding material.
  • the electronic device of the present invention includes a transmission line, a ground land conductor, and a circuit board on which a signal transmission land conductor is formed.
  • the ground land conductor is joined to the first ground conductor and the second ground conductor by the first joining material at a portion of the multilayer body that does not have the second insulator layer.
  • the signal conductor is joined to the signal transmission land conductor by the second joining material at the bent portion of the second insulator layer.
  • the first ground conductor and the second ground conductor of the transmission line are easily connected to the ground land conductor of the external circuit board using the first bonding material, and the signal conductor uses the second bonding material. Thus, it is easily connected to the signal transmission land conductor on the external circuit board.
  • 1 is an exploded perspective view of a transmission line according to a first embodiment of the present invention.
  • 1 is an external perspective view of a transmission line according to a first embodiment of the present invention. It is sectional drawing of the transmission line which concerns on the 1st Embodiment of this invention.
  • (A), (B) is sectional drawing which shows the state of the manufacturing process of the transmission line which concerns on the 1st Embodiment of this invention. It is a disassembled perspective view for demonstrating the aspect which forms the transmission line which concerns on the 1st Embodiment of this invention in a multi-state.
  • A) is an exploded perspective view of the transmission line using the connector concerning this embodiment
  • (B) is an appearance perspective view.
  • (A) is a side view which shows the shaping
  • (B) is a side view which shows schematic structure of the electronic device using the transmission line which concerns on embodiment of this invention. It is. It is a disassembled perspective view of the transmission line which concerns on the 2nd Embodiment of this invention. It is an external appearance perspective view of the transmission line which concerns on the 2nd Embodiment of this invention.
  • (A)-(F) is sectional drawing which shows the state of the manufacturing process of the transmission line which concerns on this embodiment. It is an external appearance perspective view of the transmission line which concerns on the 3rd Embodiment of this invention. It is a disassembled perspective view of the transmission line which concerns on the 4th Embodiment of this invention.
  • (A), (B) is sectional drawing of the electronic device containing the transmission line which concerns on embodiment of this invention. It is a disassembled perspective view of the transmission line which concerns on the 5th Embodiment of this invention. It is an external appearance perspective view of the transmission line which concerns on the 5th Embodiment of this invention.
  • FIG. 1 is an exploded perspective view of a transmission line according to the first embodiment of the present invention.
  • FIG. 2 is an external perspective view of the transmission line according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the transmission line according to the first embodiment of the present invention. 3 is a cross-sectional view taken along line AA shown in FIG.
  • the transmission line 10 includes a multilayer body 21, a signal conductor 22, a first ground conductor 23, a second ground conductor 24, external terminal conductors 251 and 252, interlayer connection conductors 271 and 272, and a plurality of An interlayer connection conductor 280 is provided.
  • the laminate 21 is formed by laminating a plurality of insulator layers 211, 212, and 213.
  • the plurality of insulator layers 211, 212, and 213 each have flexibility.
  • the plurality of insulator layers 211, 212, and 213 are mainly composed of a liquid crystal polymer, for example.
  • the insulator layer 211 corresponds to the “first insulator layer” of the present invention
  • the insulator layer 212 corresponds to the “second insulator layer” of the present invention
  • the insulator layer 213 corresponds to the “first insulator layer” of the present invention. This corresponds to the “third insulator layer”.
  • the lengths of the insulating layers 211, 212, and 213 in the extending direction (X direction in each figure) are substantially the same, and the respective end faces (the first end face ED1 and the second end face ED2 in FIGS. 1 and 2) are Match.
  • the lengths of the insulator layer 211 and the insulator layer 213 in the width direction are substantially the same.
  • the length of the insulator layer 212 in the Y direction is shorter than the length of the insulator layers 211 and 213 in the Y direction.
  • the insulator layer 212 is sandwiched between the insulator layer 211 and the insulator layer 213 in the stacking direction (Z direction in each drawing).
  • the insulator layer 212 is disposed at a substantially central position of the insulator layer 211 and the insulator layer 213 in the Y direction.
  • the insulator layer 213 is bent toward the insulator layer 211 in accordance with the shape of the insulator layer 212 at both ends of the insulator layer 212 in the Y direction.
  • portions of the insulating layer 213 having a predetermined length at both ends in the Y direction are in contact with the insulating layer 211. More precisely, the insulator layer 213 is in contact with the insulator layer 211 and the insulator layer 212 via a second ground conductor 24 described later.
  • the stacked body 21 has the central portion ReC having the insulator layers 211, 212, and 213, the insulator layer 211, and the insulator layer 213 stacked in the Y direction, and does not have the insulator layer 212. It has a first side part ReE1 and a second side part ReE2. Therefore, the dimension in the Z direction of the first side part ReE1 and the second side part ReE2 is smaller than the dimension in the Z direction of the central part ReC by the dimension in the Z direction of the insulator layer 212.
  • the dimensional relationship in the Z direction is substantially constant over the entire length of the stacked body 21 in the X direction.
  • the signal conductor 22, the first ground conductor 23, the second ground conductor 24, and the external terminal conductors 251 and 252 are made of a material such as metal having high conductivity such as copper and excellent workability.
  • the signal conductor 22 is formed on the back surface of the insulator layer 212 (the surface in contact with the insulator layer 211).
  • the signal conductor 22 has a shape extending over substantially the entire length of the insulator layer 212 in the X direction.
  • the dimension of the signal conductor 22 in the Y direction is smaller than the dimension of the insulator layer 212 in the Y direction.
  • the signal conductor 22 is formed at the approximate center in the Y direction of the insulator layer 212. That is, the signal conductor 22 is formed in the central portion ReC in the multilayer body 21.
  • the first ground conductor 23 is formed on the back surface of the insulator layer 211 (the surface of the insulator layer 211 opposite to the surface in contact with the insulator layers 212 and 213). .
  • the first ground conductor 23 is formed on substantially the entire back surface of the insulator layer 211.
  • the external terminal conductors 251 and 252 are formed on the back surface of the insulator layer 211.
  • the external terminal conductor 251 is formed near the first end surface ED1 side in the insulator layer 211, and the external terminal conductor 252 is formed near the second end surface ED2 side in the insulator layer 211.
  • the external terminal conductor 251 is separated from the first ground conductor 23 by the conductor non-forming portion 261.
  • the external terminal conductor 252 is separated from the first ground conductor 23 by the conductor non-forming portion 262.
  • the external terminal conductors 251 and 252 overlap the signal conductor 22 when the multilayer body 21 is viewed in plan (viewed in a plane orthogonal to the Z direction).
  • the external terminal conductor 251 is connected to the vicinity of the end of the signal conductor 22 on the first end surface ED1 side by an interlayer connection conductor 271 formed in the insulator layer 211.
  • the external terminal conductor 252 is connected to the vicinity of the end of the signal conductor 22 on the second end face ED2 side by an interlayer connection conductor 272 formed in the insulator layer 211.
  • the second ground conductor 24 is formed on the back surface of the insulator layer 213 (the surface of the insulator layer 213 that is in contact with the insulator layers 211 and 212).
  • the second ground conductor 24 is formed on substantially the entire back surface of the insulator layer 213.
  • the second ground conductor 24 is also bent at both end positions of the insulating layer 212 in the Y direction. .
  • the portions of the second ground conductor 24 that correspond to the first side portion ReE1 and the second side portion ReE2 are in contact with the surface of the insulator layer 211.
  • the second ground conductor 24 is connected to the insulator layer 212 at each of the boundary surface between the central portion ReC and the first side portion ReE1 of the second ground conductor 24 and the boundary surface between the central portion ReC and the second side portion ReE2. It is in contact with the side surface.
  • the plurality of interlayer connection conductors 280 are formed on the first side portion ReE1 and the second side portion ReE2 in the insulator layer 211.
  • the plurality of interlayer connection conductors 280 connect the first ground conductor 23 and the second ground conductor 24.
  • the plurality of interlayer connection conductors 280 are formed by, for example, solidifying conductive paste filled in the through holes of the insulator layer 211.
  • the plurality of interlayer connection conductors 280 are formed at predetermined intervals along the X direction of the multilayer body 21.
  • the plurality of interlayer connection conductors 280 are arrayed over substantially the entire length of the multilayer body 21 in the X direction.
  • the second ground conductor 24 overlaps the signal conductor 22 when the multilayer body 21 is viewed from the side (viewed perpendicularly to the Y direction). Further, the second ground conductor 24 covers both the side surfaces of the signal conductor 22 and the surface side of the multilayer body 21. Further, a plurality of interlayer connection conductors 280 are formed on both side surfaces of the signal conductor 22 and on the back surface side of the multilayer body 21, and the plurality of interlayer connection conductors 280 are connected to the first ground conductor 23 and the second conductors 280. Two ground conductors 24 are connected. This portion corresponds to the “connection portion between the first ground conductor and the second ground conductor” of the present invention.
  • the plurality of interlayer connection conductors 280 are formed only on the insulator layer 211 in the multilayer body 21. Therefore, the length of the plurality of interlayer connection conductors 280 may be as short as the dimension of the insulator layer 211 in the Z direction.
  • the interlayer connection conductors are formed on the plurality of insulator layers. The connection reliability between the first ground conductor 23 and the second ground conductor 24 is improved as compared with the configuration in which the first ground conductor 23 and the second ground conductor 24 are connected.
  • the transmission line 10 of this embodiment can suppress the unnecessary radiation to the outside, can improve the connection reliability between the first ground conductor 23 and the second ground conductor 24, and can realize excellent transmission characteristics. .
  • the transmission line 10 has the first side part ReE1 and the second side part ReE2 whose dimensions in the Z direction, that is, the thickness are small, over the entire length in the X direction, that is, in the direction in which the multilayer body 21 and the signal conductor 22 extend. Flexibility can be increased and it is easy to bend.
  • the transmission line 10 has the first side part ReE1 and the second side part ReE2 having a small dimension in the Z direction, that is, a small thickness, so that a space is provided outside by the difference in the dimension in the Z direction from the central part ReC. Can do. Thereby, other parts can be arranged in this space.
  • FIG. 4 is a cross-sectional view showing the state of the manufacturing process of the transmission line according to the first embodiment of the present invention.
  • FIG. 4A shows the state before lamination
  • FIG. 4B shows the state of the hot press.
  • the insulator layer 211 on which the first ground conductor 23 is formed, the insulator layer 212 on which the signal conductor 22 is formed, and the insulator layer on which the second ground conductor 24 is formed. 213 is prepared and arranged in the stacking direction.
  • the insulator layer 211 is formed with a through-hole filled with a conductive paste, which is a source of the interlayer connection conductor 280.
  • the formation of the signal conductor 22 is realized, for example, by performing a patterning process on the insulator layer bonded with copper on one side.
  • the mold 91 is disposed on the insulator layer 213 side of the stacked insulator layers 211, 212, and 213, and the mold 92 is disposed on the insulator layer 211 side.
  • the mold 91 has a groove 910.
  • the mold 91 is disposed with the side having the groove 910 as the insulator layer 213 side.
  • the mold 92 is a flat plate.
  • an isostatic heating press is performed.
  • the insulator layer 213 is deformed according to the shape of the insulator layer 212, and is insulated at the center portion ReC in the Y direction and at the interface between the center portion ReC and the first side portion ReE1 and the second side portion ReE2.
  • the first side portion ReE1 and the second side portion ReE2 that are in contact with the body layer 212 and that are both ends in the Y direction are in contact with the insulator layer 211.
  • the interlayer connection conductor 280 is solidified and joined to the first ground conductor 23 and the second ground conductor 24.
  • the transmission line 10 has a shape in which the dimension (thickness) in the Z direction of the first side part ReE1 and the second side part ReE2 is smaller than the dimension (thickness) in the Z direction of the central part ReC in the Y direction. . And this shape can be easily manufactured by using this manufacturing method.
  • the transmission line 10 is formed as a single unit, but a plurality of transmission lines 10 may be formed in a multi-state.
  • FIG. 5 is an exploded perspective view for explaining a mode in which the transmission line according to the first embodiment of the present invention is formed in a multi-state. Note that, in FIG. 5, only representative symbols for the interlayer connection conductors 271, 272, and 280 are given, and reference numerals for the other interlayer connection conductors 271, 272, and 280 are omitted.
  • the insulator sheets M211, M212, and M213 have an area where a plurality of transmission lines 10 can be formed simultaneously in the X direction and the Y direction.
  • a first ground conductor 23 is formed on substantially the entire back surface of the insulator sheet M211.
  • external terminal conductors 251 and 252 for each transmission line 10 are formed on the back surface of the insulating sheet M211 in the X direction and the Y direction.
  • the external terminal conductors 251 and 252 are separated from the first ground conductor 23 by the conductor non-forming portions 261 and 262 for each transmission line 10.
  • interlayer connection conductors 271, 272, and 280 for each transmission line 10 are formed in the X direction and the Y direction.
  • the signal conductors 22 for each transmission line 10 are arranged in the X direction and the Y direction.
  • a plurality of grooves H212 are arranged in the X direction and the Y direction.
  • the plurality of grooves H212 are shaped to penetrate the insulator sheet M212 from the front surface to the back surface.
  • the plurality of grooves H212 are formed between the plurality of signal conductors 22 arranged in the Y direction.
  • the dimension of the groove H212 in the X direction is larger than the dimension of the signal conductor 22 in the X direction.
  • a second ground conductor 24 is formed on substantially the entire back surface of the insulator sheet M213.
  • a plurality of transmission lines 10 are formed at the same time by laminating the insulator sheets M211, M212, and M213 having such a configuration and performing heat pressing using a mold.
  • the mold on the insulator sheet M211 side is a flat plate like the mold 92 in FIG. 4B, and the mold of the insulator sheet M213 has the shape of the mold 91 in FIG. 4B. They are arranged in an X direction and a Y direction and integrated.
  • a portion of the insulator sheet M213 that overlaps the groove H212 is pushed into each groove H212, and the central portion ReC, the first side portion ReE1, and the second side portion ReE2 of each transmission line 10 are pushed. And are formed.
  • each groove H212 in the Y direction and the center of the signal conductor 22 adjacent in the X direction the grooves H212 are separated into a plurality of transmission lines 10.
  • FIG. 6A is an exploded perspective view of a transmission line using the connector according to this embodiment
  • FIG. 6B is an external perspective view.
  • FIG. 6A is a diagram viewed from an oblique direction on the back surface of the transmission line.
  • the transmission line 10A includes the configuration of the transmission line 10 shown in FIG. 1, the resist film 30, and a plurality of connectors 41 and.
  • the resist film 30 is disposed on the back surface of the multilayer body 21 so as to cover substantially the entire surface of the first ground conductor 23.
  • a plurality of openings 310 and openings 311 and 312 are formed in the resist film 30.
  • the opening 311 overlaps the external terminal conductor 251, and the opening 312 overlaps the external terminal conductor 252.
  • the plurality of openings 310 are formed around the opening 311 and the opening 312, and partially open the first ground conductor 23.
  • the connector 41 is connected to the external terminal conductor 251 through the opening 311 and is connected to the first ground conductor 23 through a plurality of openings 310 around the opening 311.
  • the connector 42 is connected to the external terminal conductor 252 through the opening 312 and is connected to the first ground conductor 23 through a plurality of openings 310 around the opening 312.
  • the transmission line 10A having such a configuration can be formed into a curved shape by the manufacturing method shown in FIG. 7A and is used in a shape as shown in FIG.
  • FIG. 7A is a side view showing a method for forming a transmission line according to the embodiment of the present invention
  • FIG. 7B is a schematic configuration of an electronic device using the transmission line according to the embodiment of the present invention.
  • the transmission line 10A is sandwiched between molds 93 and 94 and molded by heating.
  • the surfaces of the mold 93 and the mold 94 that are in contact with the transmission line 10A are curved as viewed from the side. Accordingly, the transmission line 10A includes a curved portion CV that curves in the Z direction in the middle of the X direction.
  • the electronic device 1 includes a transmission line 10A and an external circuit board 80.
  • the external circuit board 80 has a plurality of mounting surfaces having steps and different positions in the Z direction.
  • a connector 810 is mounted on the first mounting surface, and a connector 820 is mounted on the second mounting surface.
  • the connector 810 is connected to the connector 41 of the transmission line 10A, and the connector 820 is connected to the connector 42 of the transmission line 10A.
  • the transmission line 10A has the curved portion CV that is curved in the Z direction as described above, the external circuit board 80 has a step, and the positions of the first mounting surface and the second mounting surface in the Z direction are different.
  • the transmission line 10 can be mounted on the external circuit board 80 with an optimum shape corresponding to the step.
  • FIG. 8 is an exploded perspective view of a transmission line according to the second embodiment of the present invention.
  • FIG. 9 is an external perspective view of a transmission line according to the second embodiment of the present invention.
  • the transmission line 10B is different from the transmission line 10 according to the first embodiment in that the Y-direction dimensions of the plurality of insulator layers 211B, 212B, and 213B that form the multilayer body 21B are different. The same. Further, the transmission line 10 ⁇ / b> B does not include a plurality of interlayer connection conductors 280 that connect the first ground conductor 23 and the second ground conductor 24.
  • the transmission line 10B includes a laminated body 21B, a signal conductor 22, a first ground conductor 23, a second ground conductor 24B, and external terminal conductors 251 and 252.
  • the laminate 21B is formed by laminating a plurality of insulator layers 211B, 212B, and 213B.
  • the plurality of insulator layers 211B, 212B, and 213B are flexible.
  • the plurality of insulator layers 211B, 212B, and 213B are mainly composed of a liquid crystal polymer, for example.
  • the insulator layer 211B corresponds to the “first insulator layer” of the present invention
  • the insulator layer 212B corresponds to the “second insulator layer” of the present invention
  • the insulator layer 213B corresponds to the “first insulator layer” of the present invention. This corresponds to the “third insulator layer”.
  • the dimensions of the insulating layers 211B, 212B, and 213B in the extending direction are substantially the same, and the X direction of each end face (the first end face ED1 and the second end face ED2 in FIGS. 1 and 2). The positions of are consistent.
  • the dimensions in the width direction (Y direction in each figure) of the insulator layers 211B, 212B, and 213B are substantially the same, and the positions of the side surfaces in the Y direction are the same.
  • the signal conductor 22 is formed on the surface of the insulator layer 212B (the surface in contact with the insulator layer 213B).
  • the signal conductor 22 has a shape extending over substantially the entire length in the X direction in the insulator layer 212B.
  • the dimension of the signal conductor 22 in the Y direction is smaller than the dimension of the insulating layer 212B in the Y direction.
  • the signal conductor 22 is formed at the approximate center in the Y direction of the insulator layer 212B.
  • the first ground conductor 23 is formed on the back surface of the insulator layer 211B (the surface opposite to the surface in contact with the insulator layer 212B in the insulator layer 211B).
  • the first ground conductor 23 is formed on substantially the entire back surface of the insulator layer 211B.
  • the external terminal conductors 251 and 252 are formed on the back surface of the insulator layer 211B.
  • the external terminal conductor 251 is formed near the first end surface ED1 side in the insulator layer 211B, and the external terminal conductor 252 is formed near the second end surface ED2 side in the insulator layer 211B.
  • the external terminal conductor 251 is separated from the first ground conductor 23 by the conductor non-forming portion 261.
  • the external terminal conductor 252 is separated from the first ground conductor 23 by the conductor non-forming portion 262.
  • the external terminal conductors 251 and 252 overlap the signal conductor 22 when the multilayer body 21 is viewed in plan (viewed in a plane orthogonal to the Z direction).
  • the external terminal conductor 251 is connected to the vicinity of the end of the signal conductor 22 on the first end face ED1 side by an interlayer connection conductor 271 formed in the insulator layer 211B.
  • the external terminal conductor 252 is connected to the vicinity of the end of the signal conductor 22 on the second end face ED2 side by an interlayer connection conductor 272 formed in the insulator layer 211B.
  • the second ground conductor 24B is formed on the surface of the insulator layer 213B (the surface of the insulator layer 213B opposite to the side in contact with the insulator layer 212B).
  • the second ground conductor 24B is formed on substantially the entire surface except for regions of a predetermined length at both ends in the Y direction on the surface of the insulator layer 213B.
  • the second ground conductor 24B overlaps the signal conductor 22 when viewed in the Z direction.
  • a plurality of second ground auxiliary conductors 241 and 242 are further formed on the surface of the insulator layer 213B.
  • the second ground auxiliary conductors 241 and 242 are arranged on the surface of the insulator layer 213B in a state where they are not laminated and heated and pressed.
  • the plurality of second ground auxiliary conductors 241 are formed on one end side in the Y direction with respect to the second ground conductor 24B.
  • the plurality of second ground auxiliary conductors 241 are formed at intervals in the X direction.
  • the plurality of second ground auxiliary conductors 242 are formed on the other end side in the Y direction with respect to the second ground conductor B2 in the Y direction. That is, the second ground auxiliary conductor 242 is formed on the opposite side of the second ground auxiliary conductor 241 with respect to the second ground conductor 24B in the Y direction.
  • a plurality of through holes 291 and a plurality of through holes 292 are formed in regions of the insulator layer 213B that overlap the plurality of second ground auxiliary conductors 241 and the plurality of second ground auxiliary conductors 242, respectively.
  • the plurality of through holes 291 and the plurality of through holes 292 are holes that penetrate the insulator layer 213B from the front surface to the back surface.
  • a plurality of through holes 291 and a plurality of through holes 292 are formed as in the case of the insulator layer 213B.
  • the plurality of through holes 291 formed in the insulator layers 211B and 212B are disposed at positions that communicate with the plurality of through holes 291 formed in the insulator layer 213B, respectively.
  • the plurality of through holes 292 formed in the insulator layers 211B and 212B are disposed at positions that respectively communicate with the plurality of through holes 292 formed in the insulator layer 213B.
  • the portions of the plurality of through holes 291 and 292 correspond to the “portion having no second insulator layer” in the present invention.
  • the plurality of second ground auxiliary conductors 241 are curved along the wall surfaces of the plurality of through holes 291, respectively, and are close to or in contact with the first ground conductor 23 in the plurality of through holes 291. As will be described later, the second ground auxiliary conductor 241 and the first ground conductor 23 are joined by a joining material (see 2411 in FIG. 10D and 2412 in FIG. 10F). This portion corresponds to the “connection portion between the first ground conductor and the second ground conductor” of the present invention.
  • the plurality of second ground auxiliary conductors 242 are respectively curved along the wall surfaces of the plurality of through holes 292, and are close to or in contact with the first ground conductor 23 in the plurality of through holes 292. As will be described later, the second ground auxiliary conductor 242 and the first ground conductor 23 are joined by a joining material (see 2421 in FIG. 10D and 2422 in FIG. 10F).
  • the second ground conductor 24B and the first ground conductor 23 can be reliably connected without using an interlayer connection conductor formed by filling the through hole with a conductive paste and solidifying the conductive paste.
  • the second ground auxiliary conductors 241 and 242 can easily have a larger dimension in the X direction than the interlayer connection conductor. Thereby, unnecessary radiation in the side surface direction can be suppressed with a smaller number than the number of the interlayer connection conductors arranged in the X direction.
  • FIG. 10 is a cross-sectional view showing the state of the manufacturing process of the transmission line according to this embodiment.
  • FIG. 10 shows a BB cross section shown in FIG.
  • FIG. 10 (A) shows the hot press process
  • FIG. 10 (B) shows the state after the hot press
  • FIG. 10 (C) shows the first singulation process
  • FIG. 10D shows the first bonding step
  • FIG. 10E shows a second singulation process
  • FIG. 10F shows a second joining process.
  • the insulator layers 211B, 212B, and 213B are laminated in this order, and the laminated body is subjected to isotropic pressure heating press. During this hot pressing, a flat metal mold 92 is disposed on the insulator layer 211B side, and nothing is disposed on the insulator layer 213B side.
  • the inside of the plurality of through holes 291 is cut by the blade DB along the plurality of through holes 291.
  • the inside of the plurality of through holes 292 is cut by the blade along the plurality of through holes 292.
  • first ground conductor 23 and the side end of the second ground auxiliary conductor 241 are joined together by a joining material 2411, and the first ground conductor 23
  • the other side end and the side end of the second ground auxiliary conductor 242 are joined together by a joining material 2421.
  • the first ground conductor 23 and the second ground conductor 24B are connected via the plurality of second ground auxiliary conductors 241 and 242, respectively.
  • process from separation to joining may be performed as follows.
  • the insulator remaining at the end on the first ground conductor 23 side in the plurality of through holes 291 and 292 is removed by a laser or the like.
  • This insulator appears when the insulating layers 211B, 212B, and 213B are deformed and flow to the first ground conductor 23 side of the through holes 291 and 292 at the time of hot pressing. Thereafter, the first ground conductor 23 is cut into pieces.
  • first ground conductor 23 and the side end of the second ground auxiliary conductor 241 are joined together by a joining material 2412, and the first ground conductor 23
  • the other side end and the side end of the second ground auxiliary conductor 242 are joined together by a joining material 2422.
  • the first ground conductor 23 and the second ground conductor 24B are connected via the plurality of second ground auxiliary conductors 241 and 242, respectively.
  • FIG. 11 is an external perspective view of a transmission line according to the third embodiment of the present invention.
  • the transmission line 10 ⁇ / b> C according to this embodiment is different from the transmission line 10 ⁇ / b> B according to the second embodiment in that a bent portion 100 ⁇ / b> C is provided in the middle.
  • the basic configuration of the transmission line 10 ⁇ / b> C is the same as that of the transmission line 10 ⁇ / b> B, and description of similar parts is omitted.
  • the transmission line 10C includes a laminate 21C and a signal conductor 22C.
  • the transmission line 10C has a bent portion 100C in the middle of the direction in which the multilayer body 21C and the signal conductor 22C extend.
  • the extending direction of the multilayer body 21C and the signal conductor 22C is the Y direction
  • the extending direction on the first end face ED1 side and the second end face ED2 side of the transmission line 10C from the bent part 100C is the X direction.
  • the second ground auxiliary conductors 241 and 242 and the through holes 291 and 292 are not provided in the bent portion 100C, but the second ground auxiliary conductors 241 and 242 and the through holes 291 and 292 are provided in the bent portion 100C. May be provided.
  • FIG. 12 is an exploded perspective view of a transmission line according to the fourth embodiment of the present invention.
  • FIG. 13 is an external perspective view of a transmission line according to the fourth embodiment of the present invention.
  • the difference is that the dimension in the Y direction of the insulator layer on which the first ground conductor and the second ground conductor are formed is not constant.
  • the layer configuration and the like of the transmission line 10D are the same as those of the transmission line 10.
  • the transmission line 10 ⁇ / b> D is different from the transmission line 10 according to the first embodiment, and the dimensions in the Y direction of the insulator layers 211 ⁇ / b> D and 213 ⁇ / b> D forming the stacked body 21 ⁇ / b> D are It is not constant. Further, the transmission line 10D does not include a plurality of interlayer connection conductors 280 that connect the first ground conductor 23D and the second ground conductor 24D.
  • the transmission line 10D includes a laminate 21D, a signal conductor 22, a first ground conductor 23D, and a second ground conductor 24D.
  • the stacked body 21D is formed by stacking a plurality of insulator layers 211D, 212D, and 213D.
  • the plurality of insulator layers 211D, 212D, and 213d are flexible.
  • the plurality of insulator layers 211D, 212D, and 213D are mainly composed of a liquid crystal polymer, for example.
  • the insulator layer 211D corresponds to the “first insulator layer” of the present invention
  • the insulator layer 212D corresponds to the “second insulator layer” of the present invention
  • the insulator layer 213D corresponds to the “first insulator layer” of the present invention. This corresponds to the “third insulator layer”.
  • the dimensions in the extending direction (X direction) of the insulator layers 211D and 213D are substantially the same, and the positions of the end faces in the X direction are the same.
  • the dimension in the extending direction (X direction) of the insulator layer 212D is larger than the dimension in the X direction of the insulator layers 211D and 213D.
  • Both ends in the X direction of the insulator layer 212D protrude from the end faces of the insulator layers 211D and 213D. Therefore, both ends of the insulator layer 212D in the X direction are bent along the end surface of the insulator layer 213D, and are disposed at the same position as the insulator layer 213D in the Z direction. Thereby, the signal conductor 22 is exposed and arranged at the height of one insulator layer on both ends in the X direction of the multilayer body 21D.
  • the dimension in the width direction (Y direction) of the insulator layer 212D is the same at any position in the X direction. That is, the dimension in the width direction of the insulator layer 212D is constant.
  • the dimension in the width direction (Y direction) of the insulator layer 211D has a large portion and a small portion along the X direction.
  • the dimension of the portion with a small width in the insulator layer 211D is substantially the same as the dimension in the width direction of the insulator layer 212D.
  • a plurality of protrusions 2111D and a plurality of protrusions 2112D are provided along the X direction on the side surface (surface orthogonal to the Y direction) of the insulator layer 211D.
  • the plurality of protrusions 2111D are on one side of the insulator layer 211D in the Y direction, and the dimensions of the plurality of protrusions 2111D in the Y direction are the same.
  • the plurality of protrusions 2112D are on the other side of the insulator layer 211D in the Y direction, and the dimensions of the plurality of protrusions 2112D in the Y direction are the same.
  • the dimension in the width direction (Y direction) of the insulator layer 213D has a large portion and a small portion along the X direction.
  • the dimension of the small width portion of the insulator layer 213D is substantially the same as the dimension in the width direction of the insulator layer 212D.
  • a plurality of protrusions 2131D and a plurality of protrusions 2132D are provided along the X direction on the side surface (surface orthogonal to the Y direction) of the insulator layer 213D.
  • the plurality of protrusions 2131D are on one side of the insulator layer 213D in the Y direction, and the dimensions of the plurality of protrusions 2131D in the Y direction are the same.
  • the plurality of protrusions 2132D are on the other side of the insulator layer 213D in the Y direction, and the dimensions of the plurality of protrusions 2132D in the Y direction are the same.
  • the signal conductor 22 is formed on the surface of the insulator layer 212D (the surface in contact with the insulator layer 213D).
  • the signal conductor 22 has a shape extending over the entire length in the X direction in the insulator layer 212D. That is, the signal conductor 22 has a shape that connects from the first end surface ED1 to the second end surface ED2 of the multilayer body 21D.
  • the dimension of the signal conductor 22 in the Y direction is smaller than the dimension of the insulating layer 212D in the Y direction.
  • the signal conductor 22 is formed at the approximate center in the Y direction of the insulator layer 212D.
  • the first ground conductor 23D is formed on the surface of the insulator layer 211D (the surface of the insulator layer 211D on the insulator layer 212D side).
  • the first ground conductor 23D is formed on substantially the entire surface of the insulator layer 211D.
  • the plurality of first ground auxiliary conductors 231D are respectively formed on the surfaces of the plurality of protruding portions 2111D.
  • the plurality of first ground auxiliary conductors 232D are respectively formed on the surfaces of the plurality of projecting portions 2112D.
  • the plurality of first ground auxiliary conductors 231D and 232D are connected to the first ground conductor 23D.
  • the second ground conductor 24D is formed on the surface of the insulator layer 213D (the surface on the side opposite to the surface on the insulator layer 212D side of the insulator layer 213D).
  • the second ground conductor 24D is formed on substantially the entire surface of the insulator layer 213D.
  • the plurality of second ground auxiliary conductors 241D are respectively formed on the surfaces of the plurality of protrusions 2131D.
  • the plurality of second ground auxiliary conductors 242D are respectively formed on the surfaces of the plurality of protrusions 2132D.
  • the plurality of second ground auxiliary conductors 241D and 242D are connected to the second ground conductor 24D.
  • the plurality of protrusions 2111D and 2112D of the insulator layer 211D do not overlap with the insulator layer 212D.
  • the plurality of protrusions 2131D and 2132D of the insulator layer 213D do not overlap with the insulator layer 212D.
  • the plurality of protrusions 2131D of the insulator layer 213D are bent along the side surface of the insulator layer 212D from the interface of the region where the insulator layer 213D overlaps the insulator layer 212D.
  • the plurality of protrusions 2113D of the insulator layer 213D overlap each of the plurality of protrusions 2111D of the insulator layer 211D through this bending. For this reason, the tip of the protrusion 2131D is positioned closer to the insulator layer 212D than the tip of the protrusion 2111D by the amount of bending.
  • first ground auxiliary conductor 231D and the second ground auxiliary conductor 241D are exposed in a stepped manner on the side surface of the multilayer body 21D.
  • the first ground auxiliary conductor 231D and the second ground auxiliary conductor 241D are connected to each other by forming a bonding material, which will be described later, on the stepped portion.
  • the plurality of protrusions 2131D of the insulator layer 213D are bent along the side surface of the insulator layer 212D from the interface of the region where the insulator layer 213D overlaps the insulator layer 212D.
  • the plurality of protrusions 2113D of the insulator layer 213D overlap each of the plurality of protrusions 2111D of the insulator layer 211D through this bending. For this reason, the tip of the protrusion 2131D is positioned closer to the insulator layer 212D than the tip of the protrusion 2111D by the amount of bending.
  • first ground auxiliary conductor 232D and the second ground auxiliary conductor 242D are exposed in a stepped manner on the side surface of the multilayer body 21D.
  • the first ground auxiliary conductor 232D and the second ground auxiliary conductor 242D are connected to each other by forming a bonding material, which will be described later, on the stepped portion.
  • FIG. 14A and 14B are cross-sectional views of an electronic device including a transmission line according to an embodiment of the present invention.
  • 14A is a cross-sectional view of a portion corresponding to the CC cross section shown in FIG. 13
  • FIG. 14B is a cross-sectional view of a portion corresponding to the DD cross section shown in FIG.
  • the electronic device 1D includes a transmission line 10D and an external circuit board 80.
  • signal transmission land conductors 81 and 82 and a plurality of ground land conductors 83 and 84 are formed.
  • the transmission line 10 ⁇ / b> D is disposed on the surface of the external circuit board 80.
  • the end portion of the signal conductor 22 on the first end face ED1 side is connected to the signal transmission land conductor 81 by a bonding material 801.
  • the end of the signal conductor 22 on the second end face ED2 side is connected to the signal transmission land conductor 82 by a bonding material 801.
  • both ends of the signal conductor 22 are exposed to the surface side with a predetermined length, if the bonding material 801 is formed so as to cover the exposed portion of the signal conductor 22 and the signal transmission land conductor 81.
  • the signal conductor 22 and the signal transmission land conductor 81 can be joined.
  • the bonding material 802 is formed so as to cover the exposed portion of the signal conductor 22 and the signal transmission land conductor 82, the signal conductor 22 and the signal transmission land conductor 82 can be bonded.
  • the bonding materials 801 and 802 correspond to the “second bonding material” of the present invention.
  • these joints can be easily realized and can be joined in a predetermined area, so that the reliability of the joint is improved. Further, in this structure, since the portions covered with the bonding materials 801 and 802 are stepped, the fillets of the bonding materials 801 and 802 can be easily formed, and the reliability of bonding is further improved.
  • the first ground auxiliary conductor 231D and the second ground auxiliary conductor 241D are connected to the ground land conductor 83 by a bonding material 803.
  • This portion corresponds to the “connection portion between the first ground conductor and the second ground conductor” of the present invention.
  • the bonding material 803 corresponds to the “first bonding material” of the present invention.
  • the first ground auxiliary conductor 231D and the second ground auxiliary conductor 241D are exposed on the surface side with a predetermined length, the first ground auxiliary conductor 231D and the second ground auxiliary conductor 241D are exposed.
  • the bonding material 803 is formed so as to cover the exposed portion of the ground and the ground land conductor 83, the first ground auxiliary conductor 231D, the second ground auxiliary conductor 241D, and the ground land conductor 83 can be bonded.
  • the joining portion can be easily realized and can be joined with a predetermined area, so that the joining reliability is improved.
  • the portion covered with the bonding material 803 is stepped, the fillet of the bonding material 803 can be easily formed, and the bonding reliability is further improved.
  • the first ground auxiliary conductor 232D and the second ground auxiliary conductor 242D are connected to the ground land conductor 84 by a bonding material 804.
  • the bonding material 804 corresponds to the “first bonding material” of the present invention.
  • the first ground auxiliary conductor 232D and the second ground auxiliary conductor 242D are exposed on the surface side with a predetermined length, the first ground auxiliary conductor 232D and the second ground auxiliary conductor 242D are exposed. If the bonding material 804 is formed so as to cover the exposed portion of the ground and the ground land conductor 84, the first ground auxiliary conductor 232D, the second ground auxiliary conductor 242D, and the ground land conductor 84 can be joined.
  • the joining portion can be easily realized and can be joined with a predetermined area, so that the joining reliability is improved. Moreover, in this structure, since the part covered with the joining material 804 is stepped, the fillet of the joining material 804 can be easily formed, and the reliability of joining is further improved.
  • FIG. 15 is an exploded perspective view of a transmission line according to the fifth embodiment of the present invention.
  • FIG. 16 is an external perspective view of a transmission line according to the fifth embodiment of the present invention.
  • the transmission line 10E according to this embodiment is different from the transmission line 10D according to the fourth embodiment in that the positional relationship between each insulator layer and the conductor is reversed, the first ground conductor 23E and the second ground conductor. 24E is connected by an interlayer connection conductor 280, and is provided with external terminal conductors 251 and 252 and interlayer connection conductors 271 and 272.
  • the shape of each insulator layer 211E, 212E, 213E of the transmission line 10E is the same as that of each insulator layer 211D, 212D, 213D of the transmission line 10D. Below, only the location different from the transmission line 10D is demonstrated about the transmission line 10E.
  • the insulator layer 211E includes a plurality of protrusions 2111E and 2112E.
  • the insulator layer 213E includes a plurality of protrusions 2131E and 2132E.
  • the signal conductor 22 is formed on the back surface of the insulator layer 212E.
  • the first ground conductor 23E and the external terminal conductors 251 and 252 are formed on the back surface of the insulator layer 211E.
  • the first ground auxiliary conductors 231E and 232E are formed on the back surfaces of the protruding portions 2111E and 2112E, respectively.
  • the second ground auxiliary conductors 241E and 242E are formed on the back surfaces of the protrusions 2131E and 2132E, respectively.
  • the plurality of interlayer connection conductors 280 are formed in the vicinity of the first end surface ED1 and the second end surface ED2 in the insulator layer 211E, and in each of the plurality of protruding portions 2111E and 2112E.
  • the protrusion 2131E of the insulator layer 213E bends along the side surface of the insulator layer 212E and is disposed on the surface of the protrusion 2111E of the insulator layer 211E. Accordingly, as shown in FIG. 15, the second ground auxiliary conductor 241E abuts on the surface of the protruding portion 2111E and faces the first ground auxiliary conductor 231E only through the protruding portion 2111E.
  • the second ground auxiliary conductor 241E is connected to the first ground auxiliary conductor 231E via the interlayer connection conductor 280.
  • the protrusion 2132E of the insulator layer 213E bends along the side surface of the insulator layer 212E and is disposed on the surface of the protrusion 2112E of the insulator layer 211E. Therefore, as shown in FIG. 15, the second ground auxiliary conductor 242E abuts on the surface of the protruding portion 2112E, and faces the first ground auxiliary conductor 232E only through the protruding portion 2112E.
  • the end portion on the first end face ED1 side and the end portion on the second end face ED2 side in the insulator layer 213E are bent toward the insulator layer 211E side along the end face of the insulator layer 212E, and the surface of the insulator layer 211E Is arranged.
  • the first ground conductor 23E and the second ground conductor 24E are connected by a bonding material that covers these exposed surfaces.
  • the second ground auxiliary conductor 242E is connected to the first ground auxiliary conductor 232E via the interlayer connection conductor 280.
  • the first end surface ED1 side and the second end surface ED2 side of the insulator layer 213E are bent so that the signal conductor 22 has the first end surface ED1 side.
  • the second end face ED2 side is covered with the second ground conductor 24E. Therefore, unnecessary radiation from the signal conductor 22 to the outside on the first end face ED1 side and the outside on the second end face ED2 side is suppressed.
  • the mode of the single-core transmission line is shown, but the above-described configuration can be applied even to a multi-core transmission line in which a plurality of signal conductors are arranged in the width direction of the multilayer body. . In this case, what is necessary is just to arrange
  • the third insulator layer is bent.
  • the first insulator layer and the third insulator layer are separated from each other in the Z direction. It may be bent toward the body layer side. Further, only the first insulator layer may be bent toward the second insulator layer side.

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

The present invention suppresses unwanted radiation and achieves a transmission line having superior transmission performance. A transmission line (10) is provided with: a laminated body (21); a signal conductor (22); a first ground conductor (23); and a second ground conductor (24). The laminated body (21) has: a first insulator layer (211) in which the first ground conductor (23) is formed; a second insulator layer (212) in which the signal conductor (22) is formed; and a third insulator layer (213) in which the second ground conductor (24) is formed. In the width direction, the laminated body (21) is provided with a portion that does not have the second insulator layer (212) at a position different from the signal conductor (22). The first ground conductor (23) and the second ground conductor (24) are connected at the portion that does not have the second insulator layer (212) in the laminated body (21).

Description

伝送線路および電子機器Transmission lines and electronic equipment
 本発明は、信号導体と第1のグランド導体と第2のグランド導体によって挟みこんだトリプレートストリップライン型の伝送線路、および、当該伝送線路を備える電子機器に関する。 The present invention relates to a triplate stripline type transmission line sandwiched between a signal conductor, a first ground conductor, and a second ground conductor, and an electronic device including the transmission line.
 特許文献1には、トリプレートストリップライン型の信号線路が記載されている。特許文献1に記載の信号線路は、複数の絶縁体層を積層した積層体を備える。信号線路は、信号導体、第1のグランド導体、および、第2のグランド導体を備え、これらの導体は、積層方向に絶縁体層を介して配置されている。信号導体は、積層方向において、第1のグランド導体と第2のグランド導体との間に配置されている。 Patent Document 1 describes a triplate stripline type signal line. The signal line described in Patent Document 1 includes a laminate in which a plurality of insulator layers are laminated. The signal line includes a signal conductor, a first ground conductor, and a second ground conductor, and these conductors are arranged via an insulator layer in the stacking direction. The signal conductor is disposed between the first ground conductor and the second ground conductor in the stacking direction.
 信号導体、第1のグランド導体、および、第2のグランド導体は、積層方向に直交する所定方向に延びる形状である。第1のグランド導体と第2のグランド導体とは、積層体内に形成された複数の層間接続導体によって接続されている。複数の層間接続導体は、積層体の所定方向(各導体の延びる方向)に沿って間隔を空けて配置されている。また、複数の層間接続導体は、積層体の積層方向および所定方向(各導体の延びる方向)に直交する積層体の幅方向において、信号導体の両側に配置されている。 The signal conductor, the first ground conductor, and the second ground conductor have a shape extending in a predetermined direction orthogonal to the stacking direction. The first ground conductor and the second ground conductor are connected by a plurality of interlayer connection conductors formed in the multilayer body. The plurality of interlayer connection conductors are arranged at intervals along a predetermined direction of the multilayer body (direction in which each conductor extends). The plurality of interlayer connection conductors are disposed on both sides of the signal conductor in the stacking direction of the stack and the width direction of the stack orthogonal to the predetermined direction (the direction in which each conductor extends).
特許第4962660号明細書Japanese Patent No. 496660
 しかしながら、特許文献1に記載の構成では、層間接続導体の個数が少ないと、信号導体から積層体の側面(積層体の幅方向に直交する面)に不要輻射が生じて、外部に不要波が漏洩してしまう。 However, in the configuration described in Patent Document 1, if the number of interlayer connection conductors is small, unnecessary radiation is generated from the signal conductor to the side surface of the multilayer body (surface orthogonal to the width direction of the multilayer body), and unnecessary waves are generated outside. It will leak.
 層間接続導体の個数を多くすることで、この不要輻射は抑制される。しかしながら、特許文献1に記載の構成では、複数の絶縁体層を貫く層間接続導体を必要とする。このため、通常、各絶縁体層に層間接続導体(より具体的には、貫通孔に充填した導電ペースト等)を形成し、複数の絶縁体層を積層する際に各層の層間接続導体を接続する製造方法を用いる。このような構成および方法では、層間接続導体の個数が多くなるほど、接続不良が生じ易くなる。層間接続導体の接続不良が生じると、第1のグランド導体と第2のグランド導体とに電位差が生じる等の伝送線路の伝送特性に対する悪影響が生じてしまう。 ¡By increasing the number of interlayer connection conductors, this unwanted radiation is suppressed. However, the configuration described in Patent Document 1 requires an interlayer connection conductor that penetrates a plurality of insulator layers. For this reason, usually, an interlayer connection conductor (more specifically, a conductive paste filled in a through hole) is formed on each insulator layer, and the interlayer connection conductors of each layer are connected when a plurality of insulator layers are laminated. The manufacturing method to be used is used. In such a configuration and method, connection failure tends to occur as the number of interlayer connection conductors increases. When the connection failure of the interlayer connection conductor occurs, there is an adverse effect on the transmission characteristics of the transmission line such as a potential difference between the first ground conductor and the second ground conductor.
 したがって、本発明の目的は、不要輻射を抑制し、伝送特性に優れた伝送線路を提供することにある。 Therefore, an object of the present invention is to provide a transmission line that suppresses unnecessary radiation and has excellent transmission characteristics.
 この発明は、トリプレートストリップライン型の伝送線路に関するものであり、次の特徴を有する。伝送線路は、信号導体、第1グランド導体、第2グランド導体、および、積層体を備える。積層体は、第1グランド導体が形成された第1絶縁体層と、信号導体が形成された第2絶縁体層と、第2グランド導体が形成された第3絶縁体層と、を含み、第1絶縁体層と第3絶縁体層とによって第2絶縁体層が挟まれた構造を有する。積層体は、信号導体と異なる位置に、第2絶縁体層を有さない部分を備える。第1グランド導体と第2グランド導体との接続部は、積層体における第2絶縁体層を有さない部分に配置されている。 This invention relates to a triplate stripline type transmission line and has the following characteristics. The transmission line includes a signal conductor, a first ground conductor, a second ground conductor, and a laminate. The laminate includes a first insulator layer in which a first ground conductor is formed, a second insulator layer in which a signal conductor is formed, and a third insulator layer in which a second ground conductor is formed, The second insulator layer is sandwiched between the first insulator layer and the third insulator layer. The laminate includes a portion that does not have the second insulator layer at a position different from the signal conductor. The connection portion between the first ground conductor and the second ground conductor is disposed in a portion of the multilayer body that does not have the second insulator layer.
 この構成では、第1グランド導体、または、第2グランド導体、もしくは、第1グランド導体と第2グランド導体の両方が積層方向に湾曲する。これにより、第1グランド導体と第2グランド導体とは、近接または接触し、積層体の端面または側面(幅方向の直交する面)を、少なくとも部分的に覆うように配置される。これにより、積層体の端面または側面から外部への不要輻射は抑制される。 In this configuration, the first ground conductor, the second ground conductor, or both the first ground conductor and the second ground conductor are curved in the stacking direction. As a result, the first ground conductor and the second ground conductor are arranged close to or in contact with each other and at least partially cover the end face or side face (the face perpendicular to the width direction) of the multilayer body. Thereby, the unnecessary radiation to the exterior from the end surface or side surface of a laminated body is suppressed.
 また、第1グランド導体と第2グランド導体とが近接する場合には、これらを接続する層間接続導体を短くでき、第1グランド導体と第2グランド導体とが接触する場合には、層間接続導体を必要としない。したがって、第1グランド導体と第2グランド導体との接続信頼性は、向上する。 Further, when the first ground conductor and the second ground conductor are close to each other, the interlayer connection conductor connecting them can be shortened, and when the first ground conductor and the second ground conductor are in contact, the interlayer connection conductor Do not need. Therefore, the connection reliability between the first ground conductor and the second ground conductor is improved.
 また、本発明の伝送線路では、次の構成とすることができる。第1グランド導体は、第1絶縁体層における第3絶縁体層側と反対側に形成されている。第2グランド導体は、第3絶縁体層における第1絶縁体層側に形成され、積層体における第2絶縁体層を有さない部分において、第1絶縁体層に当接している。第2グランド導体と第1グランド導体とは、第1絶縁体層に形成された層間接続導体によって接続されている。 Also, the transmission line of the present invention can have the following configuration. The first ground conductor is formed on the side of the first insulator layer opposite to the third insulator layer side. The second ground conductor is formed on the first insulator layer side of the third insulator layer, and is in contact with the first insulator layer in the portion of the stacked body that does not have the second insulator layer. The second ground conductor and the first ground conductor are connected by an interlayer connection conductor formed in the first insulator layer.
 この構成では、積層体を側面視して、第1グランド導体は、信号導体に重なっている。また、第1グランド導体と第2グランド導体を接続する層間接続導体は、第1絶縁体層(単層)のみに形成され、短くなる。これにより、不要輻射の抑制と、第1グランド導体と第2グランド導体との接続信頼性が高くなる。 In this configuration, the first ground conductor overlaps the signal conductor when the multilayer body is viewed from the side. Further, the interlayer connection conductor that connects the first ground conductor and the second ground conductor is formed only in the first insulator layer (single layer) and is shortened. Thereby, suppression of unnecessary radiation and connection reliability between the first ground conductor and the second ground conductor are enhanced.
 また、この発明の伝送線路では、第2絶縁体層を有さない部分は、延びる方向の全長に亘って続いていることが好ましい。 Further, in the transmission line of the present invention, it is preferable that the portion not having the second insulator layer continues over the entire length in the extending direction.
 この構成では、短い層間接続導体を、延びる方向の全長に亘って形成できる。また、延びる方向の全長に亘って、不要輻射を抑制し易い。 In this configuration, a short interlayer connection conductor can be formed over the entire length in the extending direction. Moreover, it is easy to suppress unnecessary radiation over the entire length in the extending direction.
 また、この発明の伝送線路では、第2絶縁体層を有さない部分は、積層体の幅方向において、信号導体の両側にある。 Further, in the transmission line of the present invention, the portions not having the second insulator layer are on both sides of the signal conductor in the width direction of the multilayer body.
 この構成では、積層体の両側面への不要輻射が抑制され、信号導体の両側の第1グランド導体と第2グランド導体との接続信頼性が高くなる。 In this configuration, unnecessary radiation to both side surfaces of the multilayer body is suppressed, and the connection reliability between the first ground conductor and the second ground conductor on both sides of the signal conductor is increased.
 また、この発明の伝送線路では、第2グランド導体は、幅方向に突出する第2グランド用補助導体をさらに備え、第2グランド用補助導体は、積層方向において第1グランド導体側に曲がっていてもよい。 In the transmission line of the present invention, the second ground conductor further includes a second ground auxiliary conductor protruding in the width direction, and the second ground auxiliary conductor is bent toward the first ground conductor in the stacking direction. Also good.
 この構成では、第2グランド用補助導体が、第2グランド導体と第1グランド導体との層間接続に利用される。これにより、層間接続導体を用いるよりも、第1グランド導体と第2グランド導体との接続信頼性を向上し易い。 In this configuration, the second ground auxiliary conductor is used for interlayer connection between the second ground conductor and the first ground conductor. This makes it easier to improve the connection reliability between the first ground conductor and the second ground conductor than using the interlayer connection conductor.
 また、この発明の伝送線路では、次の構成であってもよい。第3絶縁体層の第2グランド用補助導体の形成される部分の幅は、第2グランド用補助導体の形成されていない部分の幅よりも広い。第2グランド用補助導体が形成されていない部分の幅は、第2絶縁体層と略同じである。 Further, the transmission line of the present invention may have the following configuration. The width of the portion of the third insulator layer where the second ground auxiliary conductor is formed is wider than the width of the portion where the second ground auxiliary conductor is not formed. The width of the portion where the second ground auxiliary conductor is not formed is substantially the same as that of the second insulator layer.
 この構成では、積層体における第2グランド用補助導体が形成されていない部分が曲げ易くなる。 In this configuration, the portion of the multilayer body where the second ground auxiliary conductor is not formed is easily bent.
 また、この発明の伝送線路では、次の構成であってもよい。第1グランド導体は、幅方向に突出する第1グランド用補助導体をさらに備える。第2グランド用補助導体は、第1グランド用補助導体に接続されている。 Further, the transmission line of the present invention may have the following configuration. The first ground conductor further includes a first ground auxiliary conductor protruding in the width direction. The second ground auxiliary conductor is connected to the first ground auxiliary conductor.
 この構成では、第2グランド用補助導体と第1グランド用補助導体の少なくとも一方が、第2グランド導体と第1グランド導体との層間接続に利用される。これにより、層間接続導体を用いるよりも、第1グランド導体と第2グランド導体との接続信頼性を向上し易い。 In this configuration, at least one of the second ground auxiliary conductor and the first ground auxiliary conductor is used for interlayer connection between the second ground conductor and the first ground conductor. This makes it easier to improve the connection reliability between the first ground conductor and the second ground conductor than using the interlayer connection conductor.
 また、この発明の伝送線路では、次の構成であってもよい。第1絶縁体層の第1グランド用補助導体の形成される部分の幅は、第1グランド用補助導体の形成されていない部分の幅よりも広い。第1グランド用補助導体が形成されていない部分の幅は、第2絶縁体層と略同じである。 Further, the transmission line of the present invention may have the following configuration. The width of the portion of the first insulator layer where the first ground auxiliary conductor is formed is wider than the width of the portion where the first ground auxiliary conductor is not formed. The width of the portion where the first ground auxiliary conductor is not formed is substantially the same as that of the second insulator layer.
 この構成では、積層体における第1グランド用補助導体および第2グランド用補助導体が形成されていない部分が曲げ易くなる。 In this configuration, the portion of the multilayer body where the first ground auxiliary conductor and the second ground auxiliary conductor are not formed is easily bent.
 また、この発明の伝送線路では、次の構成であってもよい。第2絶縁体層の延びる方向の両端は、第1絶縁体層および第3絶縁体層に重なっていない。第2絶縁体層の延びる方向の両端は、積層方向において第1絶縁体層側に曲がっている。 Further, the transmission line of the present invention may have the following configuration. Both ends in the direction in which the second insulator layer extends do not overlap the first insulator layer and the third insulator layer. Both ends in the extending direction of the second insulator layer are bent toward the first insulator layer in the stacking direction.
 この構成では、信号導体の延びる方向の両端を、積層体に形成する層間接続導体を用いることなく、外部の回路基板に接続できる。また、信号導体が外部の回路基板の導体パターンに近づくので、信号導体と外部回路の導体パターンを接合材で接続し易く、接続信頼性は向上する。 In this configuration, both ends of the signal conductor in the extending direction can be connected to an external circuit board without using the interlayer connection conductor formed in the multilayer body. Further, since the signal conductor approaches the conductor pattern of the external circuit board, it is easy to connect the signal conductor and the conductor pattern of the external circuit with a bonding material, and the connection reliability is improved.
 また、この発明の電子機器は、伝送線路と、グランド用ランド導体が形成された回路基板と、を備える。グランド用ランド導体は、積層体における第2絶縁体層を有さない部分において、第1グランド導体および第2グランド導体に、接合材で接合されている。 Further, the electronic device of the present invention includes a transmission line and a circuit board on which a ground land conductor is formed. The ground land conductor is bonded to the first ground conductor and the second ground conductor by a bonding material in a portion of the multilayer body that does not have the second insulator layer.
 この構成では、伝送線路の第1グランド導体および第2グランド導体は、接合材を用いて、外部の回路基板のグランドランド導体に容易に接続される。 In this configuration, the first ground conductor and the second ground conductor of the transmission line are easily connected to the ground land conductor of the external circuit board using a bonding material.
 また、この発明の電子機器は、伝送線路と、グランド用ランド導体、および信号伝送用ランド導体が形成された回路基板と、を備える。グランド用ランド導体は、積層体における第2絶縁体層を有さない部分において、第1グランド導体および第2グランド導体に、第1接合材で接合されている。信号導体は、第2絶縁体層の曲がっている部分において、信号伝送用ランド導体に、第2接合材で接合されている。 The electronic device of the present invention includes a transmission line, a ground land conductor, and a circuit board on which a signal transmission land conductor is formed. The ground land conductor is joined to the first ground conductor and the second ground conductor by the first joining material at a portion of the multilayer body that does not have the second insulator layer. The signal conductor is joined to the signal transmission land conductor by the second joining material at the bent portion of the second insulator layer.
 この構成では、伝送線路の第1グランド導体および第2グランド導体は、第1接合材を用いて、外部の回路基板のグランドランド導体に容易に接続され、信号導体は、第2接合材を用いて、外部の回路基板の信号伝送用ランド導体に容易に接続される。 In this configuration, the first ground conductor and the second ground conductor of the transmission line are easily connected to the ground land conductor of the external circuit board using the first bonding material, and the signal conductor uses the second bonding material. Thus, it is easily connected to the signal transmission land conductor on the external circuit board.
 この発明によれば、不要輻射を抑制し、優れた伝送特性を実現できる。 According to this invention, it is possible to suppress unnecessary radiation and realize excellent transmission characteristics.
本発明の第1の実施形態に係る伝送線路の分解斜視図である。1 is an exploded perspective view of a transmission line according to a first embodiment of the present invention. 本発明の第1の実施形態に係る伝送線路の外観斜視図である。1 is an external perspective view of a transmission line according to a first embodiment of the present invention. 本発明の第1の実施形態に係る伝送線路の断面図である。It is sectional drawing of the transmission line which concerns on the 1st Embodiment of this invention. (A)、(B)は、本発明の第1の実施形態に係る伝送線路の製造過程の状態を示す断面図である。(A), (B) is sectional drawing which shows the state of the manufacturing process of the transmission line which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る伝送線路をマルチ状態で形成する態様を説明するための分解斜視図である。It is a disassembled perspective view for demonstrating the aspect which forms the transmission line which concerns on the 1st Embodiment of this invention in a multi-state. (A)は、本実施形態に係るコネクタを用いた伝送線路の分解斜視図であり、(B)は外観斜視図である。(A) is an exploded perspective view of the transmission line using the connector concerning this embodiment, and (B) is an appearance perspective view. (A)は、本発明の実施形態に係る伝送線路の成形方法を示す側面図であり、(B)は、本発明の実施形態に係る伝送線路を用いた電子機器の概略構成を示す側面図である。(A) is a side view which shows the shaping | molding method of the transmission line which concerns on embodiment of this invention, (B) is a side view which shows schematic structure of the electronic device using the transmission line which concerns on embodiment of this invention. It is. 本発明の第2の実施形態に係る伝送線路の分解斜視図である。It is a disassembled perspective view of the transmission line which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る伝送線路の外観斜視図である。It is an external appearance perspective view of the transmission line which concerns on the 2nd Embodiment of this invention. (A)-(F)は、本実施形態に係る伝送線路の製造過程の状態を示す断面図である。(A)-(F) is sectional drawing which shows the state of the manufacturing process of the transmission line which concerns on this embodiment. 本発明の第3の実施形態に係る伝送線路の外観斜視図である。It is an external appearance perspective view of the transmission line which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る伝送線路の分解斜視図である。It is a disassembled perspective view of the transmission line which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る伝送線路の外観斜視図である。It is an external appearance perspective view of the transmission line which concerns on the 4th Embodiment of this invention. (A)、(B)は、本発明の実施形態に係る伝送線路を含む電子機器の断面図である。(A), (B) is sectional drawing of the electronic device containing the transmission line which concerns on embodiment of this invention. 本発明の第5の実施形態に係る伝送線路の分解斜視図である。It is a disassembled perspective view of the transmission line which concerns on the 5th Embodiment of this invention. 本発明の第5の実施形態に係る伝送線路の外観斜視図である。It is an external appearance perspective view of the transmission line which concerns on the 5th Embodiment of this invention.
 本発明の第1の実施形態に係る伝送線路について、図を参照して説明する。図1は、本発明の第1の実施形態に係る伝送線路の分解斜視図である。図2は、本発明の第1の実施形態に係る伝送線路の外観斜視図である。図3は、本発明の第1の実施形態に係る伝送線路の断面図である。図3は、図2に示すA-A断面図である。 The transmission line according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an exploded perspective view of a transmission line according to the first embodiment of the present invention. FIG. 2 is an external perspective view of the transmission line according to the first embodiment of the present invention. FIG. 3 is a cross-sectional view of the transmission line according to the first embodiment of the present invention. 3 is a cross-sectional view taken along line AA shown in FIG.
 図2に示すように、伝送線路10は、積層体21、信号導体22、第1グランド導体23、第2グランド導体24、外部端子導体251、252、層間接続導体271、272、および、複数の層間接続導体280を備える。 As shown in FIG. 2, the transmission line 10 includes a multilayer body 21, a signal conductor 22, a first ground conductor 23, a second ground conductor 24, external terminal conductors 251 and 252, interlayer connection conductors 271 and 272, and a plurality of An interlayer connection conductor 280 is provided.
 図1、図3に示すように、積層体21は、複数の絶縁体層211、212、213を積層してなる。複数の絶縁体層211、212、213は、それぞれ可撓性を有する。複数の絶縁体層211、212、213は、例えば、液晶ポリマを主成分としてなる。絶縁体層211は、本発明の「第1絶縁体層」に対応し、絶縁体層212は、本発明の「第2絶縁体層」に対応し、絶縁体層213は、本発明の「第3絶縁体層」に対応する。 As shown in FIGS. 1 and 3, the laminate 21 is formed by laminating a plurality of insulator layers 211, 212, and 213. The plurality of insulator layers 211, 212, and 213 each have flexibility. The plurality of insulator layers 211, 212, and 213 are mainly composed of a liquid crystal polymer, for example. The insulator layer 211 corresponds to the “first insulator layer” of the present invention, the insulator layer 212 corresponds to the “second insulator layer” of the present invention, and the insulator layer 213 corresponds to the “first insulator layer” of the present invention. This corresponds to the “third insulator layer”.
 絶縁体層211、212、213の延びる方向(各図のX方向)の長さは、略同じであり、それぞれの端面(図1、図2の第1端面ED1および第2端面ED2)は、一致している。 The lengths of the insulating layers 211, 212, and 213 in the extending direction (X direction in each figure) are substantially the same, and the respective end faces (the first end face ED1 and the second end face ED2 in FIGS. 1 and 2) are Match.
 絶縁体層211と絶縁体層213との幅方向(各図のY方向)の長さは、略同じである。絶縁体層212のY方向の長さは、絶縁体層211、213のY方向の長さよりも短い。絶縁体層212は、積層方向(各図のZ方向)において、絶縁体層211と絶縁体層213との間に挟まれている。絶縁体層212は、Y方向において、絶縁体層211および絶縁体層213の略中央位置に配置されている。 The lengths of the insulator layer 211 and the insulator layer 213 in the width direction (Y direction in each figure) are substantially the same. The length of the insulator layer 212 in the Y direction is shorter than the length of the insulator layers 211 and 213 in the Y direction. The insulator layer 212 is sandwiched between the insulator layer 211 and the insulator layer 213 in the stacking direction (Z direction in each drawing). The insulator layer 212 is disposed at a substantially central position of the insulator layer 211 and the insulator layer 213 in the Y direction.
 このため、図1、図3に示すように、絶縁体層213は、Y方向における絶縁体層212の両端位置で、絶縁体層212の形状に合わせて、絶縁体層211側に屈曲しており、絶縁体層213のY方向の両端の所定長さの部分は、絶縁体層211に当接している。なお、より正確には、絶縁体層213は、後述の第2グランド導体24を介して絶縁体層211および絶縁体層212に当接している。 Therefore, as shown in FIGS. 1 and 3, the insulator layer 213 is bent toward the insulator layer 211 in accordance with the shape of the insulator layer 212 at both ends of the insulator layer 212 in the Y direction. In addition, portions of the insulating layer 213 having a predetermined length at both ends in the Y direction are in contact with the insulating layer 211. More precisely, the insulator layer 213 is in contact with the insulator layer 211 and the insulator layer 212 via a second ground conductor 24 described later.
 この構成によって、積層体21は、Y方向において、絶縁体層211、212、213を有する中央部ReCと、絶縁体層211と絶縁体層213とが積層され、絶縁体層212を有さない第1側部ReE1および第2側部ReE2を有する。したがって、第1側部ReE1および第2側部ReE2のZ方向の寸法は、絶縁体層212のZ方向の寸法分、中央部ReCのZ方向の寸法よりも小さい。このZ方向の寸法の関係は、積層体21のX方向の全長に亘って略一定である。 With this configuration, the stacked body 21 has the central portion ReC having the insulator layers 211, 212, and 213, the insulator layer 211, and the insulator layer 213 stacked in the Y direction, and does not have the insulator layer 212. It has a first side part ReE1 and a second side part ReE2. Therefore, the dimension in the Z direction of the first side part ReE1 and the second side part ReE2 is smaller than the dimension in the Z direction of the central part ReC by the dimension in the Z direction of the insulator layer 212. The dimensional relationship in the Z direction is substantially constant over the entire length of the stacked body 21 in the X direction.
 信号導体22、第1グランド導体23、第2グランド導体24、外部端子導体251、252は、銅等の導電性が高く、加工性に優れる金属等の材料からなる。 The signal conductor 22, the first ground conductor 23, the second ground conductor 24, and the external terminal conductors 251 and 252 are made of a material such as metal having high conductivity such as copper and excellent workability.
 図1、図3に示すように、信号導体22は、絶縁体層212の裏面(絶縁体層211に当接する面)に形成されている。信号導体22は、絶縁体層212におけるX方向の略全長に亘って延びる形状である。信号導体22のY方向の寸法は、絶縁体層212のY方向の寸法よりも小さい。信号導体22は、絶縁体層212のY方向の略中央に形成されている。すなわち、信号導体22は、積層体21における中央部ReCに形成されている。 As shown in FIGS. 1 and 3, the signal conductor 22 is formed on the back surface of the insulator layer 212 (the surface in contact with the insulator layer 211). The signal conductor 22 has a shape extending over substantially the entire length of the insulator layer 212 in the X direction. The dimension of the signal conductor 22 in the Y direction is smaller than the dimension of the insulator layer 212 in the Y direction. The signal conductor 22 is formed at the approximate center in the Y direction of the insulator layer 212. That is, the signal conductor 22 is formed in the central portion ReC in the multilayer body 21.
 図1、図3に示すように、第1グランド導体23は、絶縁体層211の裏面(絶縁体層211における絶縁体層212、213に当接する面と反対側の面)に形成されている。第1グランド導体23は、絶縁体層211の裏面の略全面に形成されている。外部端子導体251、252は、絶縁体層211の裏面に形成されている。外部端子導体251は、絶縁体層211における第1端面ED1側付近に形成されており、外部端子導体252は、絶縁体層211における第2端面ED2側付近に形成されている。外部端子導体251は、導体非形成部261によって、第1グランド導体23から離間されている。外部端子導体252は、導体非形成部262によって、第1グランド導体23から離間されている。外部端子導体251、252は、積層体21を平面視して(Z方向に直交する面に視て)、信号導体22と重なっている。外部端子導体251は、絶縁体層211に形成された層間接続導体271によって、信号導体22における第1端面ED1側の端部付近に接続されている。外部端子導体252は、絶縁体層211に形成された層間接続導体272によって、信号導体22における第2端面ED2側の端部付近に接続されている。 As shown in FIGS. 1 and 3, the first ground conductor 23 is formed on the back surface of the insulator layer 211 (the surface of the insulator layer 211 opposite to the surface in contact with the insulator layers 212 and 213). . The first ground conductor 23 is formed on substantially the entire back surface of the insulator layer 211. The external terminal conductors 251 and 252 are formed on the back surface of the insulator layer 211. The external terminal conductor 251 is formed near the first end surface ED1 side in the insulator layer 211, and the external terminal conductor 252 is formed near the second end surface ED2 side in the insulator layer 211. The external terminal conductor 251 is separated from the first ground conductor 23 by the conductor non-forming portion 261. The external terminal conductor 252 is separated from the first ground conductor 23 by the conductor non-forming portion 262. The external terminal conductors 251 and 252 overlap the signal conductor 22 when the multilayer body 21 is viewed in plan (viewed in a plane orthogonal to the Z direction). The external terminal conductor 251 is connected to the vicinity of the end of the signal conductor 22 on the first end surface ED1 side by an interlayer connection conductor 271 formed in the insulator layer 211. The external terminal conductor 252 is connected to the vicinity of the end of the signal conductor 22 on the second end face ED2 side by an interlayer connection conductor 272 formed in the insulator layer 211.
 図1、図3に示すように、第2グランド導体24は、絶縁体層213の裏面(絶縁体層213における絶縁体層211,212に当接する側の面)に形成されている。第2グランド導体24は、絶縁体層213の裏面の略全面に形成されている。 As shown in FIGS. 1 and 3, the second ground conductor 24 is formed on the back surface of the insulator layer 213 (the surface of the insulator layer 213 that is in contact with the insulator layers 211 and 212). The second ground conductor 24 is formed on substantially the entire back surface of the insulator layer 213.
 上述のように、絶縁体層213がY方向における絶縁体層212の両端位置で屈曲していることによって、第2グランド導体24も、Y方向における絶縁体層212の両端位置で屈曲している。そして、第2グランド導体24の第1側部ReE1および第2側部ReE2に当たる部分は、絶縁体層211の表面に当接している。また、第2グランド導体24の中央部ReCと第1側部ReE1との境界面および中央部ReCと第2側部ReE2との境界面のそれぞれでは、第2グランド導体24は、絶縁体層212の側面に当接している。 As described above, since the insulating layer 213 is bent at both end positions of the insulating layer 212 in the Y direction, the second ground conductor 24 is also bent at both end positions of the insulating layer 212 in the Y direction. . The portions of the second ground conductor 24 that correspond to the first side portion ReE1 and the second side portion ReE2 are in contact with the surface of the insulator layer 211. In addition, the second ground conductor 24 is connected to the insulator layer 212 at each of the boundary surface between the central portion ReC and the first side portion ReE1 of the second ground conductor 24 and the boundary surface between the central portion ReC and the second side portion ReE2. It is in contact with the side surface.
 複数の層間接続導体280は、絶縁体層211における第1側部ReE1および第2側部ReE2に形成されている。複数の層間接続導体280は、第1グランド導体23と第2グランド導体24とを接続している。複数の層間接続導体280は、例えば、絶縁体層211の貫通孔に充填した導電ペーストを固化してなる。複数の層間接続導体280は、積層体21のX方向に沿って、所定の間隔をおいて形成されている。複数の層間接続導体280は、積層体21のX方向の略全長に亘って、配列形成されている。 The plurality of interlayer connection conductors 280 are formed on the first side portion ReE1 and the second side portion ReE2 in the insulator layer 211. The plurality of interlayer connection conductors 280 connect the first ground conductor 23 and the second ground conductor 24. The plurality of interlayer connection conductors 280 are formed by, for example, solidifying conductive paste filled in the through holes of the insulator layer 211. The plurality of interlayer connection conductors 280 are formed at predetermined intervals along the X direction of the multilayer body 21. The plurality of interlayer connection conductors 280 are arrayed over substantially the entire length of the multilayer body 21 in the X direction.
 このような構成によって、信号導体22が第1グランド導体23と第2グランド導体24とに挟まれた構成が実現され、トリプレートストリップライン型の伝送線路10が実現される。 With such a configuration, a configuration in which the signal conductor 22 is sandwiched between the first ground conductor 23 and the second ground conductor 24 is realized, and the triplate stripline type transmission line 10 is realized.
 また、第2グランド導体24は、積層体21を側面視して(Y方向に直交する面に視て)、信号導体22と重なっている。さらに、信号導体22の両側面側であって、積層体21の表面側も、第2グランド導体24が覆っている。さらに、信号導体22の両側面側であって、積層体21の裏面側には、複数の層間接続導体280が形成されており、これら複数の層間接続導体280は、第1グランド導体23と第2グランド導体24とを接続されている。この部分が本発明の「第1グランド導体と第2グランド導体との接続部」に対応する。 Further, the second ground conductor 24 overlaps the signal conductor 22 when the multilayer body 21 is viewed from the side (viewed perpendicularly to the Y direction). Further, the second ground conductor 24 covers both the side surfaces of the signal conductor 22 and the surface side of the multilayer body 21. Further, a plurality of interlayer connection conductors 280 are formed on both side surfaces of the signal conductor 22 and on the back surface side of the multilayer body 21, and the plurality of interlayer connection conductors 280 are connected to the first ground conductor 23 and the second conductors 280. Two ground conductors 24 are connected. This portion corresponds to the “connection portion between the first ground conductor and the second ground conductor” of the present invention.
 したがって、信号導体22からの不要輻射が積層体21の側面から外部へ漏洩することを抑制できる。 Therefore, it is possible to suppress unnecessary radiation from the signal conductor 22 from leaking from the side surface of the multilayer body 21 to the outside.
 また、複数の層間接続導体280は、積層体21における絶縁体層211のみに形成されている。したがって、複数の層間接続導体280の長さは、絶縁体層211のZ方向の寸法程度の短いものでよい。また、複数の層間接続導体280を複数の絶縁体層に形成して、各絶縁体層の層間接続導体を接続する構成を備えないので、複数の絶縁体層に層間接続導体を形成して第1グランド導体23と第2グランド導体24とを接続する構成よりも、第1グランド導体23と第2グランド導体24との接続信頼性は向上する。 Further, the plurality of interlayer connection conductors 280 are formed only on the insulator layer 211 in the multilayer body 21. Therefore, the length of the plurality of interlayer connection conductors 280 may be as short as the dimension of the insulator layer 211 in the Z direction. In addition, since the plurality of interlayer connection conductors 280 are not formed on the plurality of insulator layers and the interlayer connection conductors of the respective insulator layers are connected, the interlayer connection conductors are formed on the plurality of insulator layers. The connection reliability between the first ground conductor 23 and the second ground conductor 24 is improved as compared with the configuration in which the first ground conductor 23 and the second ground conductor 24 are connected.
 このように、本実施形態の伝送線路10は、外部への不要輻射を抑制して、第1グランド導体23と第2グランド導体24との接続信頼性を高くでき、優れた伝送特性を実現できる。 Thus, the transmission line 10 of this embodiment can suppress the unnecessary radiation to the outside, can improve the connection reliability between the first ground conductor 23 and the second ground conductor 24, and can realize excellent transmission characteristics. .
 また、伝送線路10は、X方向すなわち積層体21および信号導体22の延びる方向の全長に亘って、Z方向の寸法すなわち厚みが小さい第1側部ReE1および第2側部ReE2を有するので、可撓性を高くでき、曲げ易い。 Further, the transmission line 10 has the first side part ReE1 and the second side part ReE2 whose dimensions in the Z direction, that is, the thickness are small, over the entire length in the X direction, that is, in the direction in which the multilayer body 21 and the signal conductor 22 extend. Flexibility can be increased and it is easy to bend.
 また、伝送線路10は、Z方向の寸法すなわち厚みが小さい第1側部ReE1および第2側部ReE2を有することで、中央部ReCとのZ方向の寸法の差分だけ、外部にスペースを設けることができる。これにより、このスペースに他の部品を配置できる。 Further, the transmission line 10 has the first side part ReE1 and the second side part ReE2 having a small dimension in the Z direction, that is, a small thickness, so that a space is provided outside by the difference in the dimension in the Z direction from the central part ReC. Can do. Thereby, other parts can be arranged in this space.
 このような形状の伝送線路10は、次に示す製造方法で製造可能である。図4は、本発明の第1の実施形態に係る伝送線路の製造過程の状態を示す断面図である。図4(A)は積層前の状態を示し、図4(B)は、加熱プレスの状態を示す。 The transmission line 10 having such a shape can be manufactured by the following manufacturing method. FIG. 4 is a cross-sectional view showing the state of the manufacturing process of the transmission line according to the first embodiment of the present invention. FIG. 4A shows the state before lamination, and FIG. 4B shows the state of the hot press.
 図4(A)に示すように、第1グランド導体23が形成された絶縁体層211、信号導体22が形成された絶縁体層212、および、第2グランド導体24が形成された絶縁体層213を用意し、積層方向に並べる。この際、絶縁体層211には、層間接続導体280の元となる、導電ペーストが充填された貫通孔が形成されている。信号導体22の形成は、例えば、片面銅貼りされた絶縁体層に対してパターニング処理を行うことによって実現される。 As shown in FIG. 4A, the insulator layer 211 on which the first ground conductor 23 is formed, the insulator layer 212 on which the signal conductor 22 is formed, and the insulator layer on which the second ground conductor 24 is formed. 213 is prepared and arranged in the stacking direction. At this time, the insulator layer 211 is formed with a through-hole filled with a conductive paste, which is a source of the interlayer connection conductor 280. The formation of the signal conductor 22 is realized, for example, by performing a patterning process on the insulator layer bonded with copper on one side.
 次に、図4(B)に示すように、積層された絶縁体層211、212、213における絶縁体層213側に金型91を配置し、絶縁体層211側に金型92を配置する。金型91は、溝910を有する。金型91は、溝910を有する側を絶縁体層213側として、配置される。金型92は、平板である。 Next, as shown in FIG. 4B, the mold 91 is disposed on the insulator layer 213 side of the stacked insulator layers 211, 212, and 213, and the mold 92 is disposed on the insulator layer 211 side. . The mold 91 has a groove 910. The mold 91 is disposed with the side having the groove 910 as the insulator layer 213 side. The mold 92 is a flat plate.
 この状態において、等方圧の加熱プレスを行う。これにより、絶縁体層213は、絶縁体層212の形状に応じて変形し、Y方向の中央部ReCと、中央部ReCと第1側部ReE1および第2側部ReE2との界面では、絶縁体層212に当接して、Y方向の両端である第1側部ReE1および第2側部ReE2では、絶縁体層211に当接する。この際、層間接続導体280は、固化して、第1グランド導体23と第2グランド導体24とに接合する。これにより、伝送線路10は、Y方向の中央部ReCのZ方向の寸法(厚み)に対して、第1側部ReE1および第2側部ReE2のZ方向の寸法(厚み)が小さい形状となる。そして、この製造方法を用いることによって、この形状を容易に製造できる。 In this state, an isostatic heating press is performed. Thereby, the insulator layer 213 is deformed according to the shape of the insulator layer 212, and is insulated at the center portion ReC in the Y direction and at the interface between the center portion ReC and the first side portion ReE1 and the second side portion ReE2. The first side portion ReE1 and the second side portion ReE2 that are in contact with the body layer 212 and that are both ends in the Y direction are in contact with the insulator layer 211. At this time, the interlayer connection conductor 280 is solidified and joined to the first ground conductor 23 and the second ground conductor 24. Accordingly, the transmission line 10 has a shape in which the dimension (thickness) in the Z direction of the first side part ReE1 and the second side part ReE2 is smaller than the dimension (thickness) in the Z direction of the central part ReC in the Y direction. . And this shape can be easily manufactured by using this manufacturing method.
 なお、上述の説明では、伝送線路10を単体で形成する態様を示したが、複数の伝送線路10をマルチ状態で形成することもできる。図5は、本発明の第1の実施形態に係る伝送線路をマルチ状態で形成する態様を説明するための分解斜視図である。なお、図5では、層間接続導体271、272、280に対する符号を代表するものだけに付し、他の層間接続導体271、272、280に対する符号は、省略している。 In the above description, the transmission line 10 is formed as a single unit, but a plurality of transmission lines 10 may be formed in a multi-state. FIG. 5 is an exploded perspective view for explaining a mode in which the transmission line according to the first embodiment of the present invention is formed in a multi-state. Note that, in FIG. 5, only representative symbols for the interlayer connection conductors 271, 272, and 280 are given, and reference numerals for the other interlayer connection conductors 271, 272, and 280 are omitted.
 絶縁体シートM211、M212、M213は、複数の伝送線路10を、X方向とY方向とに配列して同時に形成できる面積を有する。 The insulator sheets M211, M212, and M213 have an area where a plurality of transmission lines 10 can be formed simultaneously in the X direction and the Y direction.
 絶縁体シートM211の裏面の略全面には、第1グランド導体23が形成されている。また、絶縁体シートM211の裏面には、伝送線路10毎の外部端子導体251、252がX方向とY方向とに配列して形成されている。伝送線路10毎に外部端子導体251、252は、それぞれに導体非形成部261、262によって第1グランド導体23から離間されている。 A first ground conductor 23 is formed on substantially the entire back surface of the insulator sheet M211. In addition, external terminal conductors 251 and 252 for each transmission line 10 are formed on the back surface of the insulating sheet M211 in the X direction and the Y direction. The external terminal conductors 251 and 252 are separated from the first ground conductor 23 by the conductor non-forming portions 261 and 262 for each transmission line 10.
 絶縁体シートM211には、伝送線路10毎の層間接続導体271、272、280が、X方向とY方向とに配列して形成されている。 In the insulator sheet M211, interlayer connection conductors 271, 272, and 280 for each transmission line 10 are formed in the X direction and the Y direction.
 絶縁体シートM212の裏面には、伝送線路10毎の信号導体22がX方向とY方向とに配列して形成されている。 On the back surface of the insulator sheet M212, the signal conductors 22 for each transmission line 10 are arranged in the X direction and the Y direction.
 絶縁体シートM212には、複数の溝H212がX方向とY方向とに配列して形成されている。複数の溝H212は、絶縁体シートM212を表面から裏面へ貫通する形状である。複数の溝H212は、Y方向に並ぶ複数の信号導体22の間に形成されている。溝H212のX方向の寸法は、信号導体22のX方向の寸法より大きい。 In the insulator sheet M212, a plurality of grooves H212 are arranged in the X direction and the Y direction. The plurality of grooves H212 are shaped to penetrate the insulator sheet M212 from the front surface to the back surface. The plurality of grooves H212 are formed between the plurality of signal conductors 22 arranged in the Y direction. The dimension of the groove H212 in the X direction is larger than the dimension of the signal conductor 22 in the X direction.
 絶縁体シートM213の裏面の略全面には、第2グランド導体24が形成されている。 A second ground conductor 24 is formed on substantially the entire back surface of the insulator sheet M213.
 このような構成の絶縁体シートM211、M212、M213を積層し、金型を用いて加熱プレスすることによって、複数の伝送線路10が同時に形成される。この際、絶縁体シートM211側の金型は、図4(B)の金型92と同様に平板であり、絶縁体シートM213の金型は、図4(B)の金型91の形状がX方向とY方向とに配列され、一体化されたものである。このような金型を用いることによって、各溝H212に、絶縁体シートM213における当該溝H212に重なる部分が押し込まれ、各伝送線路10の中央部ReCと第1側部ReE1および第2側部ReE2とが形成される。 A plurality of transmission lines 10 are formed at the same time by laminating the insulator sheets M211, M212, and M213 having such a configuration and performing heat pressing using a mold. At this time, the mold on the insulator sheet M211 side is a flat plate like the mold 92 in FIG. 4B, and the mold of the insulator sheet M213 has the shape of the mold 91 in FIG. 4B. They are arranged in an X direction and a Y direction and integrated. By using such a mold, a portion of the insulator sheet M213 that overlaps the groove H212 is pushed into each groove H212, and the central portion ReC, the first side portion ReE1, and the second side portion ReE2 of each transmission line 10 are pushed. And are formed.
 そして、各溝H212のY方向の中心位置、および、X方向に隣り合う信号導体22の中心を切断することによって、複数の伝送線路10に個片化される。 Then, by cutting the center position of each groove H212 in the Y direction and the center of the signal conductor 22 adjacent in the X direction, the grooves H212 are separated into a plurality of transmission lines 10.
 なお、上述の伝送線路10は、外部端子導体251、252を、はんだ等の接合材で、外部回路基板に接合する態様であるが、コネクタを用いる態様であってもよい。図6(A)は、本実施形態に係るコネクタを用いた伝送線路の分解斜視図であり、図6(B)は外観斜視図である。図6(A)は、伝送線路の裏面斜め方向から観た図である。 In addition, although the above-mentioned transmission line 10 is the aspect which joins the external terminal conductors 251 and 252 to an external circuit board with joining materials, such as solder, the aspect using a connector may be sufficient. FIG. 6A is an exploded perspective view of a transmission line using the connector according to this embodiment, and FIG. 6B is an external perspective view. FIG. 6A is a diagram viewed from an oblique direction on the back surface of the transmission line.
 図6(A)、図6(B)に示すように、伝送線路10Aは、図1に示す伝送線路10の構成と、レジスト膜30と、複数のコネクタ41、42を備える。レジスト膜30は、積層体21の裏面に、第1グランド導体23の略全面を覆うように配置されている。レジスト膜30には、複数の開口310、開口311、312が形成されている。開口311は、外部端子導体251に重なっており、開口312は、外部端子導体252に重なっている。複数の開口310は、開口311の周囲、および、開口312の周囲に形成されており、第1グランド導体23を部分的に開口している。 As shown in FIGS. 6A and 6B, the transmission line 10A includes the configuration of the transmission line 10 shown in FIG. 1, the resist film 30, and a plurality of connectors 41 and. The resist film 30 is disposed on the back surface of the multilayer body 21 so as to cover substantially the entire surface of the first ground conductor 23. A plurality of openings 310 and openings 311 and 312 are formed in the resist film 30. The opening 311 overlaps the external terminal conductor 251, and the opening 312 overlaps the external terminal conductor 252. The plurality of openings 310 are formed around the opening 311 and the opening 312, and partially open the first ground conductor 23.
 コネクタ41は、開口311を介して外部端子導体251に接続されるとともに、開口311の周囲の複数の開口310を介して第1グランド導体23に接続されている。コネクタ42は、開口312を介して外部端子導体252に接続されるとともに、開口312の周囲の複数の開口310を介して第1グランド導体23に接続されている。 The connector 41 is connected to the external terminal conductor 251 through the opening 311 and is connected to the first ground conductor 23 through a plurality of openings 310 around the opening 311. The connector 42 is connected to the external terminal conductor 252 through the opening 312 and is connected to the first ground conductor 23 through a plurality of openings 310 around the opening 312.
 このような構成の伝送線路10Aは、図7(A)に示す製造方法によって湾曲した形状に成形でき、図7(B)に示すような形状で利用される。図7(A)は、本発明の実施形態に係る伝送線路の成形方法を示す側面図であり、図7(B)は、本発明の実施形態に係る伝送線路を用いた電子機器の概略構成を示す側面図である。 The transmission line 10A having such a configuration can be formed into a curved shape by the manufacturing method shown in FIG. 7A and is used in a shape as shown in FIG. FIG. 7A is a side view showing a method for forming a transmission line according to the embodiment of the present invention, and FIG. 7B is a schematic configuration of an electronic device using the transmission line according to the embodiment of the present invention. FIG.
 図7(A)に示すように、伝送線路10Aは、金型93、94によって挟みこまれ、加熱されることによって成形される。金型93および金型94における伝送線路10Aに接触する側の面は、側面視して湾曲している。これにより、伝送線路10Aは、X方向の途中に、Z方向に湾曲する湾曲部CVを備える。 As shown in FIG. 7A, the transmission line 10A is sandwiched between molds 93 and 94 and molded by heating. The surfaces of the mold 93 and the mold 94 that are in contact with the transmission line 10A are curved as viewed from the side. Accordingly, the transmission line 10A includes a curved portion CV that curves in the Z direction in the middle of the X direction.
 図7(B)に示すように、電子機器1は、伝送線路10A、外部回路基板80を備える。外部回路基板80は段差を有し、Z方向の位置が異なる複数の実装面を有する。第1の実装面には、コネクタ810が実装されており、第2の実装面には、コネクタ820が実装されている。コネクタ810は、伝送線路10Aのコネクタ41に接続されており、コネクタ820は、伝送線路10Aのコネクタ42に接続されている。 7B, the electronic device 1 includes a transmission line 10A and an external circuit board 80. The external circuit board 80 has a plurality of mounting surfaces having steps and different positions in the Z direction. A connector 810 is mounted on the first mounting surface, and a connector 820 is mounted on the second mounting surface. The connector 810 is connected to the connector 41 of the transmission line 10A, and the connector 820 is connected to the connector 42 of the transmission line 10A.
 伝送線路10Aは、上述のようにZ方向に湾曲する湾曲部CVを有するので、外部回路基板80に段差があり、第1の実装面と第2の実装面のZ方向の位置が異なっていても、この段差に応じた最適な形状で伝送線路10を外部回路基板80に実装できる。 Since the transmission line 10A has the curved portion CV that is curved in the Z direction as described above, the external circuit board 80 has a step, and the positions of the first mounting surface and the second mounting surface in the Z direction are different. However, the transmission line 10 can be mounted on the external circuit board 80 with an optimum shape corresponding to the step.
 次に、本発明の第2の実施形態に係る伝送線路について、図を参照して説明する。図8は、本発明の第2の実施形態に係る伝送線路の分解斜視図である。図9は、本発明の第2の実施形態に係る伝送線路の外観斜視図である。 Next, a transmission line according to the second embodiment of the present invention will be described with reference to the drawings. FIG. 8 is an exploded perspective view of a transmission line according to the second embodiment of the present invention. FIG. 9 is an external perspective view of a transmission line according to the second embodiment of the present invention.
 図8、図9に示すように、伝送線路10Bは、第1の実施形態に係る伝送線路10と異なり、積層体21Bを形成する複数の絶縁体層211B、212B、213BのY方向の寸法が同じである。また、伝送線路10Bは、第1グランド導体23と第2グランド導体24とを接続する複数の層間接続導体280を備えていない。 As shown in FIGS. 8 and 9, the transmission line 10B is different from the transmission line 10 according to the first embodiment in that the Y-direction dimensions of the plurality of insulator layers 211B, 212B, and 213B that form the multilayer body 21B are different. The same. Further, the transmission line 10 </ b> B does not include a plurality of interlayer connection conductors 280 that connect the first ground conductor 23 and the second ground conductor 24.
 図9に示すように、伝送線路10Bは、積層体21B、信号導体22、第1グランド導体23、第2グランド導体24B、および、外部端子導体251、252を備える。 As shown in FIG. 9, the transmission line 10B includes a laminated body 21B, a signal conductor 22, a first ground conductor 23, a second ground conductor 24B, and external terminal conductors 251 and 252.
 図8に示すように、積層体21Bは、複数の絶縁体層211B、212B、213Bを積層してなる。複数の絶縁体層211B、212B、213Bは、それぞれ可撓性をする。複数の絶縁体層211B、212B、213Bは、例えば、液晶ポリマを主成分としてなる。絶縁体層211Bは、本発明の「第1絶縁体層」に対応し、絶縁体層212Bは、本発明の「第2絶縁体層」に対応し、絶縁体層213Bは、本発明の「第3絶縁体層」に対応する。 As shown in FIG. 8, the laminate 21B is formed by laminating a plurality of insulator layers 211B, 212B, and 213B. The plurality of insulator layers 211B, 212B, and 213B are flexible. The plurality of insulator layers 211B, 212B, and 213B are mainly composed of a liquid crystal polymer, for example. The insulator layer 211B corresponds to the “first insulator layer” of the present invention, the insulator layer 212B corresponds to the “second insulator layer” of the present invention, and the insulator layer 213B corresponds to the “first insulator layer” of the present invention. This corresponds to the “third insulator layer”.
 絶縁体層211B、212B、213Bの延びる方向(各図のX方向)の寸法は、略同じであり、それぞれの端面(図1、図2の第1端面ED1および第2端面ED2)のX方向の位置は、一致している。 The dimensions of the insulating layers 211B, 212B, and 213B in the extending direction (X direction in each figure) are substantially the same, and the X direction of each end face (the first end face ED1 and the second end face ED2 in FIGS. 1 and 2). The positions of are consistent.
 絶縁体層211B、212B、213Bの幅方向(各図のY方向)の寸法は、略同じであり、それぞれの側面のY方向の位置は一致している。 The dimensions in the width direction (Y direction in each figure) of the insulator layers 211B, 212B, and 213B are substantially the same, and the positions of the side surfaces in the Y direction are the same.
 図8、図9に示すように、信号導体22は、絶縁体層212Bの表面(絶縁体層213Bに当接する面)に形成されている。信号導体22は、絶縁体層212BにおけるX方向の略全長に亘って延びる形状である。信号導体22のY方向の寸法は、絶縁体層212BのY方向の寸法よりも小さい。信号導体22は、絶縁体層212BのY方向の略中央に形成されている。 As shown in FIGS. 8 and 9, the signal conductor 22 is formed on the surface of the insulator layer 212B (the surface in contact with the insulator layer 213B). The signal conductor 22 has a shape extending over substantially the entire length in the X direction in the insulator layer 212B. The dimension of the signal conductor 22 in the Y direction is smaller than the dimension of the insulating layer 212B in the Y direction. The signal conductor 22 is formed at the approximate center in the Y direction of the insulator layer 212B.
 図8、図9に示すように、第1グランド導体23は、絶縁体層211Bの裏面(絶縁体層211Bにおける絶縁体層212Bに当接する面と反対側の面)に形成されている。第1グランド導体23は、絶縁体層211Bの裏面の略全面に形成されている。外部端子導体251、252は、絶縁体層211Bの裏面に形成されている。外部端子導体251は、絶縁体層211Bにおける第1端面ED1側付近に形成されており、外部端子導体252は、絶縁体層211Bにおける第2端面ED2側付近に形成されている。外部端子導体251は、導体非形成部261によって、第1グランド導体23から離間されている。外部端子導体252は、導体非形成部262によって、第1グランド導体23から離間されている。外部端子導体251、252は、積層体21を平面視して(Z方向に直交する面に視て)、信号導体22と重なっている。外部端子導体251は、絶縁体層211Bに形成された層間接続導体271によって、信号導体22における第1端面ED1側の端部付近に接続されている。外部端子導体252は、絶縁体層211Bに形成された層間接続導体272によって、信号導体22における第2端面ED2側の端部付近に接続されている。 As shown in FIGS. 8 and 9, the first ground conductor 23 is formed on the back surface of the insulator layer 211B (the surface opposite to the surface in contact with the insulator layer 212B in the insulator layer 211B). The first ground conductor 23 is formed on substantially the entire back surface of the insulator layer 211B. The external terminal conductors 251 and 252 are formed on the back surface of the insulator layer 211B. The external terminal conductor 251 is formed near the first end surface ED1 side in the insulator layer 211B, and the external terminal conductor 252 is formed near the second end surface ED2 side in the insulator layer 211B. The external terminal conductor 251 is separated from the first ground conductor 23 by the conductor non-forming portion 261. The external terminal conductor 252 is separated from the first ground conductor 23 by the conductor non-forming portion 262. The external terminal conductors 251 and 252 overlap the signal conductor 22 when the multilayer body 21 is viewed in plan (viewed in a plane orthogonal to the Z direction). The external terminal conductor 251 is connected to the vicinity of the end of the signal conductor 22 on the first end face ED1 side by an interlayer connection conductor 271 formed in the insulator layer 211B. The external terminal conductor 252 is connected to the vicinity of the end of the signal conductor 22 on the second end face ED2 side by an interlayer connection conductor 272 formed in the insulator layer 211B.
 図8、図9に示すように、第2グランド導体24Bは、絶縁体層213Bの表面(絶縁体層213Bにおける絶縁体層212Bに当接する側と反対側の面)に形成されている。第2グランド導体24Bは、絶縁体層213Bの表面のY方向の両端の所定長さの領域を除いて、略全面に形成されている。第2グランド導体24Bは、Z方向に視て、信号導体22に重なっている。 As shown in FIGS. 8 and 9, the second ground conductor 24B is formed on the surface of the insulator layer 213B (the surface of the insulator layer 213B opposite to the side in contact with the insulator layer 212B). The second ground conductor 24B is formed on substantially the entire surface except for regions of a predetermined length at both ends in the Y direction on the surface of the insulator layer 213B. The second ground conductor 24B overlaps the signal conductor 22 when viewed in the Z direction.
 絶縁体層213Bの表面には、さらに、第2グランド用補助導体241、242がそれぞれ複数形成されている。第2グランド用補助導体241、242は、積層、加熱プレスされていない状態において、絶縁体層213Bの表面に配置されている。複数の第2グランド用補助導体241は、第2グランド導体24Bに対してY方向の一方端側に形成されている。複数の第2グランド用補助導体241は、X方向に間隔を空けて形成されている。複数の第2グランド用補助導体242は、Y方向において、第2グランド導体B2に対してY方向の他方端側に形成されている。すなわち、第2グランド用補助導体242は、Y方向において、第2グランド導体24Bを基準にして、第2グランド用補助導体241と反対側に形成されている。 A plurality of second ground auxiliary conductors 241 and 242 are further formed on the surface of the insulator layer 213B. The second ground auxiliary conductors 241 and 242 are arranged on the surface of the insulator layer 213B in a state where they are not laminated and heated and pressed. The plurality of second ground auxiliary conductors 241 are formed on one end side in the Y direction with respect to the second ground conductor 24B. The plurality of second ground auxiliary conductors 241 are formed at intervals in the X direction. The plurality of second ground auxiliary conductors 242 are formed on the other end side in the Y direction with respect to the second ground conductor B2 in the Y direction. That is, the second ground auxiliary conductor 242 is formed on the opposite side of the second ground auxiliary conductor 241 with respect to the second ground conductor 24B in the Y direction.
 絶縁体層213Bにおける複数の第2グランド用補助導体241および複数の第2グランド用補助導体242に重なる領域には、それぞれ複数の貫通孔291および複数の貫通孔292が形成されている。複数の貫通孔291および複数の貫通孔292は、絶縁体層213Bを表面から裏面に貫く孔である。 A plurality of through holes 291 and a plurality of through holes 292 are formed in regions of the insulator layer 213B that overlap the plurality of second ground auxiliary conductors 241 and the plurality of second ground auxiliary conductors 242, respectively. The plurality of through holes 291 and the plurality of through holes 292 are holes that penetrate the insulator layer 213B from the front surface to the back surface.
 絶縁体層211Bおよび絶縁体層212Bにも、絶縁体層213Bと同様に、複数の貫通孔291および複数の貫通孔292が形成されている。絶縁体層211B、212Bに形成された複数の貫通孔291は、絶縁体層213Bに形成された複数の貫通孔291にそれぞれ連通する位置に配置されている。絶縁体層211B、212Bに形成された複数の貫通孔292は、絶縁体層213Bに形成された複数の貫通孔292にそれぞれ連通する位置に配置されている。この複数の貫通孔291、292の部分が、本発明の「第2絶縁体層を有さない部分」に対応する。 In the insulator layer 211B and the insulator layer 212B, a plurality of through holes 291 and a plurality of through holes 292 are formed as in the case of the insulator layer 213B. The plurality of through holes 291 formed in the insulator layers 211B and 212B are disposed at positions that communicate with the plurality of through holes 291 formed in the insulator layer 213B, respectively. The plurality of through holes 292 formed in the insulator layers 211B and 212B are disposed at positions that respectively communicate with the plurality of through holes 292 formed in the insulator layer 213B. The portions of the plurality of through holes 291 and 292 correspond to the “portion having no second insulator layer” in the present invention.
 複数の第2グランド用補助導体241は、それぞれ複数の貫通孔291の壁面に沿って湾曲しており、複数の貫通孔291内において第1グランド導体23に近接または接している。第2グランド用補助導体241と第1グランド導体23は、後述するように、接合材(図10(D)の2411、図10(F)の2412参照)によって接合されている。この部分が本発明の「第1グランド導体と第2グランド導体との接続部」に対応する。 The plurality of second ground auxiliary conductors 241 are curved along the wall surfaces of the plurality of through holes 291, respectively, and are close to or in contact with the first ground conductor 23 in the plurality of through holes 291. As will be described later, the second ground auxiliary conductor 241 and the first ground conductor 23 are joined by a joining material (see 2411 in FIG. 10D and 2412 in FIG. 10F). This portion corresponds to the “connection portion between the first ground conductor and the second ground conductor” of the present invention.
 複数の第2グランド用補助導体242は、それぞれ複数の貫通孔292の壁面に沿って湾曲しており、複数の貫通孔292内において第1グランド導体23に近接または接している。第2グランド用補助導体242と第1グランド導体23は、後述するように、接合材(図10(D)の2421、図10(F)の2422参照)によって接合されている。 The plurality of second ground auxiliary conductors 242 are respectively curved along the wall surfaces of the plurality of through holes 292, and are close to or in contact with the first ground conductor 23 in the plurality of through holes 292. As will be described later, the second ground auxiliary conductor 242 and the first ground conductor 23 are joined by a joining material (see 2421 in FIG. 10D and 2422 in FIG. 10F).
 このような構成では、貫通孔に導電ペーストを充填し、当該導電ペーストを固化してなる層間接続導体を用いずに、第2グランド導体24Bと第1グランド導体23とを確実に接続できる。また、第2グランド用補助導体241、242は、層間接続導体と比較して、X方向の寸法を容易に大きくできる。これにより、層間接続導体のX方向への配列個数よりも少ない個数で、側面方向への不要輻射を抑制できる。 In such a configuration, the second ground conductor 24B and the first ground conductor 23 can be reliably connected without using an interlayer connection conductor formed by filling the through hole with a conductive paste and solidifying the conductive paste. Further, the second ground auxiliary conductors 241 and 242 can easily have a larger dimension in the X direction than the interlayer connection conductor. Thereby, unnecessary radiation in the side surface direction can be suppressed with a smaller number than the number of the interlayer connection conductors arranged in the X direction.
 このような構成の伝送線路10Bは、次に示す製造方法で製造できる。図10は、本実施形態に係る伝送線路の製造過程の状態を示す断面図である。図10は、図9に示すB-B断面を示している。図10(A)は、加熱プレス工程を示しており、図10(B)は加熱プレス後の状態を示しており、図10(C)は、第1の個片化工程を示しており、図10(D)は、第1の接合工程を示している。図10(E)は、第2の個片化工程を示しており、図10(F)は、第2の接合工程を示している。 The transmission line 10B having such a configuration can be manufactured by the following manufacturing method. FIG. 10 is a cross-sectional view showing the state of the manufacturing process of the transmission line according to this embodiment. FIG. 10 shows a BB cross section shown in FIG. FIG. 10 (A) shows the hot press process, FIG. 10 (B) shows the state after the hot press, FIG. 10 (C) shows the first singulation process, FIG. 10D shows the first bonding step. FIG. 10E shows a second singulation process, and FIG. 10F shows a second joining process.
 図10(A)に示すように、絶縁体層211B、212B、213Bは、この順で積層され、積層体には等方圧の加熱プレスが行われる。この加熱プレスの際、絶縁体層211B側には平板の金型92が配置され、絶縁体層213B側にはなにも配置されない。 As shown in FIG. 10A, the insulator layers 211B, 212B, and 213B are laminated in this order, and the laminated body is subjected to isotropic pressure heating press. During this hot pressing, a flat metal mold 92 is disposed on the insulator layer 211B side, and nothing is disposed on the insulator layer 213B side.
 この状態で等方圧の加熱プレスを行うと、図10(B)に示すように、第2グランド用補助導体241および第2グランド用補助導体242は、貫通孔291および貫通孔292内に押し込まれ、貫通孔291および貫通孔292の壁面に沿って湾曲する。 When isotropic pressure heating press is performed in this state, the second ground auxiliary conductor 241 and the second ground auxiliary conductor 242 are pushed into the through hole 291 and the through hole 292 as shown in FIG. And bends along the wall surfaces of the through hole 291 and the through hole 292.
 次に、図10(C)に示すように、複数の貫通孔291に沿って、複数の貫通孔291内をブレードDBによって切断する。同様に、複数の貫通孔292に沿って、複数の貫通孔292内をブレードによって切断する。これにより、第1グランド導体23と第2グランド用補助導体241、242との側端が露出する。 Next, as shown in FIG. 10C, the inside of the plurality of through holes 291 is cut by the blade DB along the plurality of through holes 291. Similarly, the inside of the plurality of through holes 292 is cut by the blade along the plurality of through holes 292. Thereby, the side ends of the first ground conductor 23 and the second ground auxiliary conductors 241 and 242 are exposed.
 次に、図10(D)に示すように、第1グランド導体23の一方の側端と第2グランド用補助導体241の側端とを、接合材2411によって接合し、第1グランド導体23の他方の側端と第2グランド用補助導体242の側端とを、接合材2421によって接合する。これにより、第1グランド導体23と第2グランド導体24Bとは、それぞれ複数の第2グランド用補助導体241、242を介して接続される。 Next, as shown in FIG. 10D, one side end of the first ground conductor 23 and the side end of the second ground auxiliary conductor 241 are joined together by a joining material 2411, and the first ground conductor 23 The other side end and the side end of the second ground auxiliary conductor 242 are joined together by a joining material 2421. Thus, the first ground conductor 23 and the second ground conductor 24B are connected via the plurality of second ground auxiliary conductors 241 and 242, respectively.
 なお、個片化から接合の工程は、次のようにしてもよい。 In addition, the process from separation to joining may be performed as follows.
 図10(E)に示すように、複数の貫通孔291、292における第1グランド導体23側の端部に残った絶縁体を、レーザ等によって除去する。この絶縁体は、加熱プレス時に、絶縁体層211B、212B、213Bが変形して貫通孔291、292の第1グランド導体23側に流れることによって現れる。この後、第1グランド導体23を切断して、個片化する。 As shown in FIG. 10E, the insulator remaining at the end on the first ground conductor 23 side in the plurality of through holes 291 and 292 is removed by a laser or the like. This insulator appears when the insulating layers 211B, 212B, and 213B are deformed and flow to the first ground conductor 23 side of the through holes 291 and 292 at the time of hot pressing. Thereafter, the first ground conductor 23 is cut into pieces.
 次に、図10(F)に示すように、第1グランド導体23の一方の側端と第2グランド用補助導体241の側端とを、接合材2412によって接合し、第1グランド導体23の他方の側端と第2グランド用補助導体242の側端とを、接合材2422によって接合する。これにより、第1グランド導体23と第2グランド導体24Bとは、それぞれ複数の第2グランド用補助導体241、242を介して接続される。 Next, as shown in FIG. 10 (F), one side end of the first ground conductor 23 and the side end of the second ground auxiliary conductor 241 are joined together by a joining material 2412, and the first ground conductor 23 The other side end and the side end of the second ground auxiliary conductor 242 are joined together by a joining material 2422. Thus, the first ground conductor 23 and the second ground conductor 24B are connected via the plurality of second ground auxiliary conductors 241 and 242, respectively.
 次に、本発明の第3の実施形態に係る伝送線路10Cについて、図を参照して説明する。図11は、本発明の第3の実施形態に係る伝送線路の外観斜視図である。 Next, a transmission line 10C according to a third embodiment of the present invention will be described with reference to the drawings. FIG. 11 is an external perspective view of a transmission line according to the third embodiment of the present invention.
 図11に示すように、本実施形態に係る伝送線路10Cは、第2の実施形態に係る伝送線路10Bに対して、途中で屈曲部100Cを有する点で異なる。伝送線路10Cの基本構成は、伝送線路10Bと同様であり、同様の箇所の説明は省略する。 As shown in FIG. 11, the transmission line 10 </ b> C according to this embodiment is different from the transmission line 10 </ b> B according to the second embodiment in that a bent portion 100 </ b> C is provided in the middle. The basic configuration of the transmission line 10 </ b> C is the same as that of the transmission line 10 </ b> B, and description of similar parts is omitted.
 伝送線路10Cは、積層体21C、信号導体22Cを備える。伝送線路10Cは、積層体21Cおよび信号導体22Cの延びる方向の途中に屈曲部100Cを有する。屈曲部100Cでは、積層体21Cおよび信号導体22Cの延びる方向はY方向であり、伝送線路10Cにおける屈曲部100Cよりも第1端面ED1側および第2端面ED2側の延びる方向は、X方向である。 The transmission line 10C includes a laminate 21C and a signal conductor 22C. The transmission line 10C has a bent portion 100C in the middle of the direction in which the multilayer body 21C and the signal conductor 22C extend. In the bent part 100C, the extending direction of the multilayer body 21C and the signal conductor 22C is the Y direction, and the extending direction on the first end face ED1 side and the second end face ED2 side of the transmission line 10C from the bent part 100C is the X direction. .
 このような構成であっても、上述の第2の実施形態に係る伝送線路10Bと同様の作用効果を奏することができる。なお、図11では、屈曲部100Cに第2グランド用補助導体241、242、貫通孔291、292を備えていないが、屈曲部100Cに第2グランド用補助導体241、242、貫通孔291、292を備えていてもよい。 Even with such a configuration, the same operational effects as those of the transmission line 10B according to the second embodiment described above can be obtained. In FIG. 11, the second ground auxiliary conductors 241 and 242 and the through holes 291 and 292 are not provided in the bent portion 100C, but the second ground auxiliary conductors 241 and 242 and the through holes 291 and 292 are provided in the bent portion 100C. May be provided.
 次に、本発明の第4の実施形態に係る伝送線路について、図を参照して説明する。図12は、本発明の第4の実施形態に係る伝送線路の分解斜視図である。図13は、本発明の第4の実施形態に係る伝送線路の外観斜視図である。 Next, a transmission line according to the fourth embodiment of the present invention will be described with reference to the drawings. FIG. 12 is an exploded perspective view of a transmission line according to the fourth embodiment of the present invention. FIG. 13 is an external perspective view of a transmission line according to the fourth embodiment of the present invention.
 第1グランド導体および第2グランド導体が形成される絶縁体層のY方向の寸法が一定でない点で異なる。伝送線路10Dの層構成等については、伝送線路10と同様である。 The difference is that the dimension in the Y direction of the insulator layer on which the first ground conductor and the second ground conductor are formed is not constant. The layer configuration and the like of the transmission line 10D are the same as those of the transmission line 10.
 図12、図13に示すように、伝送線路10Dは、第1の実施形態に係る伝送線路10と異なり、積層体21Dを形成する絶縁体層211D、213DのY方向の寸法は、X方向において一定ではない。また、伝送線路10Dは、第1グランド導体23Dと第2グランド導体24Dとを接続する複数の層間接続導体280を備えていない。 As shown in FIGS. 12 and 13, the transmission line 10 </ b> D is different from the transmission line 10 according to the first embodiment, and the dimensions in the Y direction of the insulator layers 211 </ b> D and 213 </ b> D forming the stacked body 21 </ b> D are It is not constant. Further, the transmission line 10D does not include a plurality of interlayer connection conductors 280 that connect the first ground conductor 23D and the second ground conductor 24D.
 図13に示すように、伝送線路10Dは、積層体21D、信号導体22、第1グランド導体23D、第2グランド導体24Dを備える。 As shown in FIG. 13, the transmission line 10D includes a laminate 21D, a signal conductor 22, a first ground conductor 23D, and a second ground conductor 24D.
 図12に示すように、積層体21Dは、複数の絶縁体層211D、212D、213Dを積層してなる。複数の絶縁体層211D、212D、213dは、それぞれ可撓性をする。複数の絶縁体層211D、212D、213Dは、例えば、液晶ポリマを主成分としてなる。絶縁体層211Dは、本発明の「第1絶縁体層」に対応し、絶縁体層212Dは、本発明の「第2絶縁体層」に対応し、絶縁体層213Dは、本発明の「第3絶縁体層」に対応する。 As shown in FIG. 12, the stacked body 21D is formed by stacking a plurality of insulator layers 211D, 212D, and 213D. The plurality of insulator layers 211D, 212D, and 213d are flexible. The plurality of insulator layers 211D, 212D, and 213D are mainly composed of a liquid crystal polymer, for example. The insulator layer 211D corresponds to the “first insulator layer” of the present invention, the insulator layer 212D corresponds to the “second insulator layer” of the present invention, and the insulator layer 213D corresponds to the “first insulator layer” of the present invention. This corresponds to the “third insulator layer”.
 絶縁体層211D、213Dの延びる方向(X方向)の寸法は、略同じであり、それぞれの端面のX方向における位置は一致している。絶縁体層212Dの延びる方向(X方向)の寸法は、絶縁体層211D、213DのX方向の寸法よりも大きい。絶縁体層212DのX方向の両端は、絶縁体層211D、213Dの端面から突出している。このため、絶縁体層212DのX方向の両端は、絶縁体層213Dの端面に沿って屈曲し、Z方向において絶縁体層213Dと同じ位置に配置される。これにより、積層体21DのX方向の両端に、絶縁体層1枚分の高さの位置に信号導体22が露出して配置される。 The dimensions in the extending direction (X direction) of the insulator layers 211D and 213D are substantially the same, and the positions of the end faces in the X direction are the same. The dimension in the extending direction (X direction) of the insulator layer 212D is larger than the dimension in the X direction of the insulator layers 211D and 213D. Both ends in the X direction of the insulator layer 212D protrude from the end faces of the insulator layers 211D and 213D. Therefore, both ends of the insulator layer 212D in the X direction are bent along the end surface of the insulator layer 213D, and are disposed at the same position as the insulator layer 213D in the Z direction. Thereby, the signal conductor 22 is exposed and arranged at the height of one insulator layer on both ends in the X direction of the multilayer body 21D.
 絶縁体層212Dの幅方向(Y方向)の寸法は、X方向のどの位置でも同じである。すなわち、絶縁体層212Dの幅方向の寸法は、一定である。 The dimension in the width direction (Y direction) of the insulator layer 212D is the same at any position in the X direction. That is, the dimension in the width direction of the insulator layer 212D is constant.
 絶縁体層211Dの幅方向(Y方向)の寸法は、X方向に沿って大きい部分と小さい部分とを有する。絶縁体層211Dにおける幅の小さい部分の寸法は、絶縁体層212Dの幅方向の寸法と略同じである。具体的には、絶縁体層211Dの側面(Y方向に直交する面)には、X方向に沿って、複数の突出部2111Dおよび複数の突出部2112Dが備えられている。 The dimension in the width direction (Y direction) of the insulator layer 211D has a large portion and a small portion along the X direction. The dimension of the portion with a small width in the insulator layer 211D is substantially the same as the dimension in the width direction of the insulator layer 212D. Specifically, a plurality of protrusions 2111D and a plurality of protrusions 2112D are provided along the X direction on the side surface (surface orthogonal to the Y direction) of the insulator layer 211D.
 複数の突出部2111Dは、Y方向において絶縁体層211Dの一方側にあり、複数の突出部2111DのY方向の寸法は同じである。複数の突出部2112Dは、Y方向において絶縁体層211Dの他方側にあり、複数の突出部2112DのY方向の寸法は同じである。 The plurality of protrusions 2111D are on one side of the insulator layer 211D in the Y direction, and the dimensions of the plurality of protrusions 2111D in the Y direction are the same. The plurality of protrusions 2112D are on the other side of the insulator layer 211D in the Y direction, and the dimensions of the plurality of protrusions 2112D in the Y direction are the same.
 絶縁体層213Dの幅方向(Y方向)の寸法は、X方向に沿って大きい部分と小さい部分とを有する。絶縁体層213Dにおける幅の小さい部分の寸法は、絶縁体層212Dの幅方向の寸法と略同じである。具体的には、絶縁体層213Dの側面(Y方向に直交する面)には、X方向に沿って、複数の突出部2131Dおよび複数の突出部2132Dが備えられている。 The dimension in the width direction (Y direction) of the insulator layer 213D has a large portion and a small portion along the X direction. The dimension of the small width portion of the insulator layer 213D is substantially the same as the dimension in the width direction of the insulator layer 212D. Specifically, a plurality of protrusions 2131D and a plurality of protrusions 2132D are provided along the X direction on the side surface (surface orthogonal to the Y direction) of the insulator layer 213D.
 複数の突出部2131Dは、Y方向において絶縁体層213Dの一方側にあり、複数の突出部2131DのY方向の寸法は同じである。複数の突出部2132Dは、Y方向において絶縁体層213Dの他方側にあり、複数の突出部2132DのY方向の寸法は同じである。 The plurality of protrusions 2131D are on one side of the insulator layer 213D in the Y direction, and the dimensions of the plurality of protrusions 2131D in the Y direction are the same. The plurality of protrusions 2132D are on the other side of the insulator layer 213D in the Y direction, and the dimensions of the plurality of protrusions 2132D in the Y direction are the same.
 図12、図13に示すように、信号導体22は、絶縁体層212Dの表面(絶縁体層213Dに当接する面)に形成されている。信号導体22は、絶縁体層212DにおけるX方向の全長に亘って延びる形状である。すなわち、信号導体22は、積層体21Dの第1端面ED1から第2端面ED2まで繋がる形状である。信号導体22のY方向の寸法は、絶縁体層212DのY方向の寸法よりも小さい。信号導体22は、絶縁体層212DのY方向の略中央に形成されている。 As shown in FIG. 12 and FIG. 13, the signal conductor 22 is formed on the surface of the insulator layer 212D (the surface in contact with the insulator layer 213D). The signal conductor 22 has a shape extending over the entire length in the X direction in the insulator layer 212D. That is, the signal conductor 22 has a shape that connects from the first end surface ED1 to the second end surface ED2 of the multilayer body 21D. The dimension of the signal conductor 22 in the Y direction is smaller than the dimension of the insulating layer 212D in the Y direction. The signal conductor 22 is formed at the approximate center in the Y direction of the insulator layer 212D.
 図12、図13に示すように、第1グランド導体23Dは、絶縁体層211Dの表面(絶縁体層211Dにおける絶縁体層212D側の面)に形成されている。第1グランド導体23Dは、絶縁体層211Dの表面の略全面に形成されている。複数の第1グランド用補助導体231Dは、複数の突出部2111Dの表面にそれぞれ形成されている。複数の第1グランド用補助導体232Dは、複数の突出部2112Dの表面にそれぞれ形成されている。複数の第1グランド用補助導体231D、232Dは、第1グランド導体23Dに接続されている。 As shown in FIGS. 12 and 13, the first ground conductor 23D is formed on the surface of the insulator layer 211D (the surface of the insulator layer 211D on the insulator layer 212D side). The first ground conductor 23D is formed on substantially the entire surface of the insulator layer 211D. The plurality of first ground auxiliary conductors 231D are respectively formed on the surfaces of the plurality of protruding portions 2111D. The plurality of first ground auxiliary conductors 232D are respectively formed on the surfaces of the plurality of projecting portions 2112D. The plurality of first ground auxiliary conductors 231D and 232D are connected to the first ground conductor 23D.
 図12、図13に示すように、第2グランド導体24Dは、絶縁体層213Dの表面(絶縁体層213Dにおける絶縁体層212D側の面と反対側の面)に形成されている。第2グランド導体24Dは、絶縁体層213Dの表面の略全面に形成されている。複数の第2グランド用補助導体241Dは、複数の突出部2131Dの表面にそれぞれ形成されている。複数の第2グランド用補助導体242Dは、複数の突出部2132Dの表面にそれぞれ形成されている。複数の第2グランド用補助導体241D、242Dは、第2グランド導体24Dに接続されている。 As shown in FIGS. 12 and 13, the second ground conductor 24D is formed on the surface of the insulator layer 213D (the surface on the side opposite to the surface on the insulator layer 212D side of the insulator layer 213D). The second ground conductor 24D is formed on substantially the entire surface of the insulator layer 213D. The plurality of second ground auxiliary conductors 241D are respectively formed on the surfaces of the plurality of protrusions 2131D. The plurality of second ground auxiliary conductors 242D are respectively formed on the surfaces of the plurality of protrusions 2132D. The plurality of second ground auxiliary conductors 241D and 242D are connected to the second ground conductor 24D.
 絶縁体層211Dの複数の突出部2111D、2112Dは、絶縁体層212Dと重ならない。絶縁体層213Dの複数の突出部2131D、2132Dは、絶縁体層212Dと重ならない。 The plurality of protrusions 2111D and 2112D of the insulator layer 211D do not overlap with the insulator layer 212D. The plurality of protrusions 2131D and 2132D of the insulator layer 213D do not overlap with the insulator layer 212D.
 図13に示すように、絶縁体層213Dの複数の突出部2131Dは、絶縁体層213Dが絶縁体層212Dと重なる領域の界面から、絶縁体層212Dの側面に沿って屈曲している。絶縁体層213Dの複数の突出部2113Dは、この屈曲を経て、絶縁体層211Dの複数の突出部2111Dとそれぞれに重なっている。このため、屈曲の分、突出部2131Dの先端は、突出部2111Dの先端よりも、絶縁体層212D側に位置する。これにより、積層体21Dの側面に、第1グランド用補助導体231Dと、第2グランド用補助導体241Dとが階段状に露出する。この階段状の部分に、後述する接合材を形成することによって、第1グランド用補助導体231Dと第2グランド用補助導体241Dとが接続される。 As shown in FIG. 13, the plurality of protrusions 2131D of the insulator layer 213D are bent along the side surface of the insulator layer 212D from the interface of the region where the insulator layer 213D overlaps the insulator layer 212D. The plurality of protrusions 2113D of the insulator layer 213D overlap each of the plurality of protrusions 2111D of the insulator layer 211D through this bending. For this reason, the tip of the protrusion 2131D is positioned closer to the insulator layer 212D than the tip of the protrusion 2111D by the amount of bending. As a result, the first ground auxiliary conductor 231D and the second ground auxiliary conductor 241D are exposed in a stepped manner on the side surface of the multilayer body 21D. The first ground auxiliary conductor 231D and the second ground auxiliary conductor 241D are connected to each other by forming a bonding material, which will be described later, on the stepped portion.
 図13に示すように、絶縁体層213Dの複数の突出部2131Dは、絶縁体層213Dが絶縁体層212Dと重なる領域の界面から、絶縁体層212Dの側面に沿って屈曲している。絶縁体層213Dの複数の突出部2113Dは、この屈曲を経て、絶縁体層211Dの複数の突出部2111Dとそれぞれに重なっている。このため、屈曲の分、突出部2131Dの先端は、突出部2111Dの先端よりも、絶縁体層212D側に位置する。これにより、積層体21Dの側面に、第1グランド用補助導体232Dと、第2グランド用補助導体242Dとが階段状に露出する。この階段状の部分に、後述する接合材を形成することによって、第1グランド用補助導体232Dと第2グランド用補助導体242Dとが接続される。 As shown in FIG. 13, the plurality of protrusions 2131D of the insulator layer 213D are bent along the side surface of the insulator layer 212D from the interface of the region where the insulator layer 213D overlaps the insulator layer 212D. The plurality of protrusions 2113D of the insulator layer 213D overlap each of the plurality of protrusions 2111D of the insulator layer 211D through this bending. For this reason, the tip of the protrusion 2131D is positioned closer to the insulator layer 212D than the tip of the protrusion 2111D by the amount of bending. As a result, the first ground auxiliary conductor 232D and the second ground auxiliary conductor 242D are exposed in a stepped manner on the side surface of the multilayer body 21D. The first ground auxiliary conductor 232D and the second ground auxiliary conductor 242D are connected to each other by forming a bonding material, which will be described later, on the stepped portion.
 このような構成の伝送線路10Dは、図14に示すように外部回路基板80に実装される。図14(A)、図14(B)は、本発明の実施形態に係る伝送線路を含む電子機器の断面図である。図14(A)は、図13に示すC-C断面に対応する部分の断面図であり、図14(B)は、図13に示すD-D断面に対応する部分の断面図である。 The transmission line 10D having such a configuration is mounted on an external circuit board 80 as shown in FIG. 14A and 14B are cross-sectional views of an electronic device including a transmission line according to an embodiment of the present invention. 14A is a cross-sectional view of a portion corresponding to the CC cross section shown in FIG. 13, and FIG. 14B is a cross-sectional view of a portion corresponding to the DD cross section shown in FIG.
 図14(A)、図14(B)に示すように、電子機器1Dは、伝送線路10D、外部回路基板80を備える。外部回路基板80の表面には、信号伝送用ランド導体81、82、複数のグランド用ランド導体83、84が形成されている。 As shown in FIGS. 14A and 14B, the electronic device 1D includes a transmission line 10D and an external circuit board 80. On the surface of the external circuit board 80, signal transmission land conductors 81 and 82 and a plurality of ground land conductors 83 and 84 are formed.
 伝送線路10Dは、外部回路基板80の表面に配置されている。 The transmission line 10 </ b> D is disposed on the surface of the external circuit board 80.
 図14(A)に示すように、信号導体22の第1端面ED1側の端部は、接合材801によって、信号伝送用ランド導体81に接続されている。信号導体22の第2端面ED2側の端部は、接合材801によって、信号伝送用ランド導体82に接続されている。ここで、信号導体22の両端部が表面側に所定の長さで露出しているので、信号導体22の露出部分と、信号伝送用ランド導体81を覆うように、接合材801を形成すれば、信号導体22と信号伝送用ランド導体81とを接合できる。同様に、信号導体22の露出部分と、信号伝送用ランド導体82を覆うように、接合材802を形成すれば、信号導体22と信号伝送用ランド導体82とを接合できる。接合材801、802が本発明の「第2接合材」に対応する。 As shown in FIG. 14A, the end portion of the signal conductor 22 on the first end face ED1 side is connected to the signal transmission land conductor 81 by a bonding material 801. The end of the signal conductor 22 on the second end face ED2 side is connected to the signal transmission land conductor 82 by a bonding material 801. Here, since both ends of the signal conductor 22 are exposed to the surface side with a predetermined length, if the bonding material 801 is formed so as to cover the exposed portion of the signal conductor 22 and the signal transmission land conductor 81. The signal conductor 22 and the signal transmission land conductor 81 can be joined. Similarly, if the bonding material 802 is formed so as to cover the exposed portion of the signal conductor 22 and the signal transmission land conductor 82, the signal conductor 22 and the signal transmission land conductor 82 can be bonded. The bonding materials 801 and 802 correspond to the “second bonding material” of the present invention.
 そして、この構造によって、これらの接合部を容易に実現でき、所定の面積で接合できるので、接合の信頼性は向上する。また、この構造では、接合材801、802に覆われる部分が階段状であるので、接合材801、802のフィレットを容易に形成でき、接合の信頼性は、さらに向上する。 And with this structure, these joints can be easily realized and can be joined in a predetermined area, so that the reliability of the joint is improved. Further, in this structure, since the portions covered with the bonding materials 801 and 802 are stepped, the fillets of the bonding materials 801 and 802 can be easily formed, and the reliability of bonding is further improved.
 図14(B)に示すように、第1グランド用補助導体231Dと第2グランド用補助導体241Dとは、接合材803によって、グランド用ランド導体83に接続されている。この部分が本発明の「第1グランド導体と第2グランド導体との接続部」に対応する。接合材803が本発明の「第1接合材」に対応する。ここで、第1グランド用補助導体231Dと第2グランド用補助導体241Dとは、表面側に所定の長さで露出しているので、第1グランド用補助導体231Dと第2グランド用補助導体241Dの露出部分と、グランド用ランド導体83を覆うように、接合材803を形成すれば、第1グランド用補助導体231D、第2グランド用補助導体241D、および、グランド用ランド導体83を接合できる。そして、この構造によって、この接合部を容易に実現でき、所定の面積で接合できるので、接合の信頼性は向上する。また、この構造では、接合材803に覆われる部分が階段状であるので、接合材803のフィレットを容易に形成でき、接合の信頼性は、さらに向上する。 As shown in FIG. 14B, the first ground auxiliary conductor 231D and the second ground auxiliary conductor 241D are connected to the ground land conductor 83 by a bonding material 803. This portion corresponds to the “connection portion between the first ground conductor and the second ground conductor” of the present invention. The bonding material 803 corresponds to the “first bonding material” of the present invention. Here, since the first ground auxiliary conductor 231D and the second ground auxiliary conductor 241D are exposed on the surface side with a predetermined length, the first ground auxiliary conductor 231D and the second ground auxiliary conductor 241D are exposed. If the bonding material 803 is formed so as to cover the exposed portion of the ground and the ground land conductor 83, the first ground auxiliary conductor 231D, the second ground auxiliary conductor 241D, and the ground land conductor 83 can be bonded. With this structure, the joining portion can be easily realized and can be joined with a predetermined area, so that the joining reliability is improved. Further, in this structure, since the portion covered with the bonding material 803 is stepped, the fillet of the bonding material 803 can be easily formed, and the bonding reliability is further improved.
 図14(B)に示すように、第1グランド用補助導体232Dと第2グランド用補助導体242Dとは、接合材804によって、グランド用ランド導体84に接続されている。接合材804が本発明の「第1接合材」に対応する。ここで、第1グランド用補助導体232Dと第2グランド用補助導体242Dとは、表面側に所定の長さで露出しているので、第1グランド用補助導体232Dと第2グランド用補助導体242Dの露出部分と、グランド用ランド導体84を覆うように、接合材804を形成すれば、第1グランド用補助導体232D、第2グランド用補助導体242D、および、グランド用ランド導体84を接合できる。そして、この構造によって、この接合部を容易に実現でき、所定の面積で接合できるので、接合の信頼性は向上する。また、この構造では、接合材804に覆われる部分が階段状であるので、接合材804のフィレットを容易に形成でき、接合の信頼性は、さらに向上する。 As shown in FIG. 14 (B), the first ground auxiliary conductor 232D and the second ground auxiliary conductor 242D are connected to the ground land conductor 84 by a bonding material 804. The bonding material 804 corresponds to the “first bonding material” of the present invention. Here, since the first ground auxiliary conductor 232D and the second ground auxiliary conductor 242D are exposed on the surface side with a predetermined length, the first ground auxiliary conductor 232D and the second ground auxiliary conductor 242D are exposed. If the bonding material 804 is formed so as to cover the exposed portion of the ground and the ground land conductor 84, the first ground auxiliary conductor 232D, the second ground auxiliary conductor 242D, and the ground land conductor 84 can be joined. With this structure, the joining portion can be easily realized and can be joined with a predetermined area, so that the joining reliability is improved. Moreover, in this structure, since the part covered with the joining material 804 is stepped, the fillet of the joining material 804 can be easily formed, and the reliability of joining is further improved.
 次に、本発明の第5の実施形態に係る伝送線路について、図を参照して説明する。図15は、本発明の第5の実施形態に係る伝送線路の分解斜視図である。図16は、本発明の第5の実施形態に係る伝送線路の外観斜視図である。 Next, a transmission line according to a fifth embodiment of the invention will be described with reference to the drawings. FIG. 15 is an exploded perspective view of a transmission line according to the fifth embodiment of the present invention. FIG. 16 is an external perspective view of a transmission line according to the fifth embodiment of the present invention.
 本実施形態に係る伝送線路10Eは、第4の実施形態に係る伝送線路10Dに対して、各絶縁体層と導体との位置関係が逆になる点、第1グランド導体23Eと第2グランド導体24Eとが層間接続導体280で接続される点、外部端子導体251、252、層間接続導体271、272を備える点、において異なる。伝送線路10Eの各絶縁体層211E、212E、213Eの形状は、それぞれ伝送線路10Dの各絶縁体層211D、212D、213Dと同様である。以下では、伝送線路10Eについて、伝送線路10Dと異なる箇所のみを説明する。 The transmission line 10E according to this embodiment is different from the transmission line 10D according to the fourth embodiment in that the positional relationship between each insulator layer and the conductor is reversed, the first ground conductor 23E and the second ground conductor. 24E is connected by an interlayer connection conductor 280, and is provided with external terminal conductors 251 and 252 and interlayer connection conductors 271 and 272. The shape of each insulator layer 211E, 212E, 213E of the transmission line 10E is the same as that of each insulator layer 211D, 212D, 213D of the transmission line 10D. Below, only the location different from the transmission line 10D is demonstrated about the transmission line 10E.
 絶縁体層211Eは、複数の突出部2111E、2112Eを備える。絶縁体層213Eは、複数の突出部2131E、2132Eを備える。 The insulator layer 211E includes a plurality of protrusions 2111E and 2112E. The insulator layer 213E includes a plurality of protrusions 2131E and 2132E.
 信号導体22は、絶縁体層212Eの裏面に形成されている。第1グランド導体23Eおよび外部端子導体251、252は、絶縁体層211Eの裏面に形成されている。第1グランド用補助導体231E、232Eは、それぞれ突出部2111E、2112Eの裏面に形成されている。第2グランド用補助導体241E、242Eは、それぞれ突出部2131E、2132Eの裏面に形成されている。 The signal conductor 22 is formed on the back surface of the insulator layer 212E. The first ground conductor 23E and the external terminal conductors 251 and 252 are formed on the back surface of the insulator layer 211E. The first ground auxiliary conductors 231E and 232E are formed on the back surfaces of the protruding portions 2111E and 2112E, respectively. The second ground auxiliary conductors 241E and 242E are formed on the back surfaces of the protrusions 2131E and 2132E, respectively.
 複数の層間接続導体280は、絶縁体層211Eにおける第1端面ED1付近および第2端面ED2付近と、複数の突出部2111E、2112Eのそれぞれに形成されている。 The plurality of interlayer connection conductors 280 are formed in the vicinity of the first end surface ED1 and the second end surface ED2 in the insulator layer 211E, and in each of the plurality of protruding portions 2111E and 2112E.
 絶縁体層213Eの突出部2131Eは、絶縁体層212Eの側面に沿って屈曲し、絶縁体層211Eの突出部2111Eの表面に配置される。したがって、図15に示すように、第2グランド用補助導体241Eは、突出部2111Eの表面に当接し、突出部2111Eのみを介して、第1グランド用補助導体231Eに対向している。 The protrusion 2131E of the insulator layer 213E bends along the side surface of the insulator layer 212E and is disposed on the surface of the protrusion 2111E of the insulator layer 211E. Accordingly, as shown in FIG. 15, the second ground auxiliary conductor 241E abuts on the surface of the protruding portion 2111E and faces the first ground auxiliary conductor 231E only through the protruding portion 2111E.
 第2グランド用補助導体241Eは、層間接続導体280を介して、第1グランド用補助導体231Eに接続されている。 The second ground auxiliary conductor 241E is connected to the first ground auxiliary conductor 231E via the interlayer connection conductor 280.
 絶縁体層213Eの突出部2132Eは、絶縁体層212Eの側面に沿って屈曲し、絶縁体層211Eの突出部2112Eの表面に配置される。したがって、図15に示すように、第2グランド用補助導体242Eは、突出部2112Eの表面に当接し、突出部2112Eのみを介して、第1グランド用補助導体232Eに対向している。 The protrusion 2132E of the insulator layer 213E bends along the side surface of the insulator layer 212E and is disposed on the surface of the protrusion 2112E of the insulator layer 211E. Therefore, as shown in FIG. 15, the second ground auxiliary conductor 242E abuts on the surface of the protruding portion 2112E, and faces the first ground auxiliary conductor 232E only through the protruding portion 2112E.
 また、絶縁体層213Eにおける第1端面ED1側の端部と第2端面ED2側の端部は、絶縁体層212Eの端面に沿って絶縁体層211E側に屈曲し、絶縁体層211Eの表面に配置されている。この部分において、上述の第4の実施形態と同様に、第1グランド導体23Eと第2グランド導体24Eとは、これらの露出面を覆う接合材によって接続される。 Further, the end portion on the first end face ED1 side and the end portion on the second end face ED2 side in the insulator layer 213E are bent toward the insulator layer 211E side along the end face of the insulator layer 212E, and the surface of the insulator layer 211E Is arranged. In this portion, as in the fourth embodiment described above, the first ground conductor 23E and the second ground conductor 24E are connected by a bonding material that covers these exposed surfaces.
 第2グランド用補助導体242Eは、層間接続導体280を介して、第1グランド用補助導体232Eに接続されている。 The second ground auxiliary conductor 242E is connected to the first ground auxiliary conductor 232E via the interlayer connection conductor 280.
 このような構成であっても、上述の各実施形態に係る伝送線路と同様に、側面方向への不要輻射を抑制し、第1グランド導体と第2グランド導体との接続信頼性を高くでき、優れた伝送特性を実現できる。また、幅の狭い部分において所望とする可撓性を実現できる。 Even in such a configuration, similarly to the transmission line according to each of the above-described embodiments, it is possible to suppress unnecessary radiation in the side surface direction and to improve the connection reliability between the first ground conductor and the second ground conductor, Excellent transmission characteristics can be realized. In addition, desired flexibility can be realized in a narrow portion.
 また、本実施形態の伝送線路10Eの構成では、絶縁体層213Eにおける第1端面ED1側と第2端面ED2側の端部が屈曲する形状であることによって、信号導体22の第1端面ED1側および第2端面ED2側が第2グランド導体24Eによって覆われる。したがって、信号導体22から第1端面ED1側の外部および第2端面ED2側の外部への不要輻射が抑制される。 Further, in the configuration of the transmission line 10E of the present embodiment, the first end surface ED1 side and the second end surface ED2 side of the insulator layer 213E are bent so that the signal conductor 22 has the first end surface ED1 side. The second end face ED2 side is covered with the second ground conductor 24E. Therefore, unnecessary radiation from the signal conductor 22 to the outside on the first end face ED1 side and the outside on the second end face ED2 side is suppressed.
 なお、上述の各実施形態では、単芯の伝送線路の態様を示したが、信号導体が積層体の幅方向に複数配列された多芯の伝送線路であっても、上述の構成を適用できる。この場合、隣り合う信号導体間に、第2絶縁体層を有さない部分を配置すればよい。 In each of the above-described embodiments, the mode of the single-core transmission line is shown, but the above-described configuration can be applied even to a multi-core transmission line in which a plurality of signal conductors are arranged in the width direction of the multilayer body. . In this case, what is necessary is just to arrange | position the part which does not have a 2nd insulator layer between adjacent signal conductors.
 また、上述の第1、第2、第3の実施形態では、第3絶縁体層を屈曲させる態様を示したが、第1絶縁体層と第3絶縁体層を、Z方向において第2絶縁体層側に屈曲させてもよい。また、第1絶縁体層のみを、第2絶縁体層側に屈曲させてもよい。 In the first, second, and third embodiments described above, the third insulator layer is bent. However, the first insulator layer and the third insulator layer are separated from each other in the Z direction. It may be bent toward the body layer side. Further, only the first insulator layer may be bent toward the second insulator layer side.
1、1D:電子機器
10、10A、10B、10C、10D、10E:伝送線路
21、21B、21C、21D:積層体
22、22C:信号導体
23、23D、23E:第1グランド導体
24、24B、24D、24E:第2グランド導体
30:レジスト膜
41、42:コネクタ
80:外部回路基板
81、82:信号伝送用ランド導体
83、84:グランド用ランド導体
91、92、93、94:金型
100C:屈曲部
211、211B、211D、211E:第1絶縁体層
212、212B、212D、212E:第2絶縁体層
213、213B、213D、213E:第3絶縁体層
231D、231E、232D、232E:第1グランド用補助導体
241D、241E、242D、242E:第2グランド用補助導体
251、252:外部端子導体
261、262:導体非形成部
271、272、280:層間接続導体
291、292:貫通孔
310、311、312:開口
801、802、803、804:接合材
810、820:コネクタ
910:溝
2111D、2111E、2112D、2112E、2113D、2131D、2131E、2132D、2132E:突出部
2411、2412、2421、2422:接合材
CV:湾曲部
DB:ブレード
ED1:第1端面
ED2:第2端面
H212:溝
M211、M212、M213:絶縁体シート
ReC:中央部
ReE1:第1側部
ReE2:第2側部
1, 1D: Electronic devices 10, 10A, 10B, 10C, 10D, 10E: Transmission lines 21, 21B, 21C, 21D: Laminated bodies 22, 22C: Signal conductors 23, 23D, 23E: First ground conductors 24, 24B, 24D, 24E: second ground conductor 30: resist film 41, 42: connector 80: external circuit board 81, 82: signal transmission land conductor 83, 84: ground land conductors 91, 92, 93, 94: mold 100C : Bent portions 211, 211B, 211D, 211E: first insulator layers 212, 212B, 212D, 212E: second insulator layers 213, 213B, 213D, 213E: third insulator layers 231D, 231E, 232D, 232E: First ground auxiliary conductors 241D, 241E, 242D, 242E: second ground auxiliary conductors 251, 252: Part terminal conductors 261, 262: Conductor non-forming parts 271, 272, 280: Interlayer connection conductors 291, 292: Through holes 310, 311, 312: Openings 801, 802, 803, 804: Bonding materials 810, 820: Connector 910: Grooves 2111D, 2111E, 2112D, 2112E, 2113D, 2131D, 2131E, 2132D, 2132E: protrusions 2411, 2412, 2421, 2422: bonding material CV: curved portion DB: blade ED1: first end face ED2: second end face H212: Grooves M211, M212, M213: Insulator sheet ReC: Central portion ReE1: First side portion ReE2: Second side portion

Claims (11)

  1.  信号導体と、
     第1グランド導体と、
     第2グランド導体と、
     前記第1グランド導体が形成された第1絶縁体層と、前記信号導体が形成された第2絶縁体層と、前記第2グランド導体が形成された第3絶縁体層と、を含み、前記第1絶縁体層と前記第3絶縁体層とによって前記第2絶縁体層が挟まれた積層体と、を備えた、トリプレートストリップライン型の伝送線路であって、
     前記積層体は、前記信号導体と異なる位置に、前記第2絶縁体層を有さない部分を備え、
     前記第1グランド導体と前記第2グランド導体との接続部は、前記積層体における前記第2絶縁体層を有さない部分に配置されている、
     伝送線路。
    A signal conductor;
    A first ground conductor;
    A second ground conductor;
    A first insulator layer in which the first ground conductor is formed; a second insulator layer in which the signal conductor is formed; and a third insulator layer in which the second ground conductor is formed; A triplate stripline type transmission line comprising: a laminate in which the second insulator layer is sandwiched between the first insulator layer and the third insulator layer;
    The laminate includes a portion not having the second insulator layer at a position different from the signal conductor,
    The connection portion between the first ground conductor and the second ground conductor is disposed in a portion of the multilayer body that does not have the second insulator layer.
    Transmission line.
  2.  前記第1グランド導体は、前記第1絶縁体層における前記第3絶縁体層側と反対側に形成されており、
     前記第2グランド導体は、前記第3絶縁体層における前記第1絶縁体層側に形成され、前記積層体における前記第2絶縁体層を有さない部分において、前記第1絶縁体層に当接しており、
     前記第2グランド導体と前記第1グランド導体とは、前記第1絶縁体層に形成された層間接続導体によって接続されている、
     請求項1に記載の伝送線路。
    The first ground conductor is formed on the side of the first insulator layer opposite to the third insulator layer side,
    The second ground conductor is formed on the first insulator layer side of the third insulator layer, and contacts the first insulator layer in a portion of the stacked body that does not have the second insulator layer. Touching,
    The second ground conductor and the first ground conductor are connected by an interlayer connection conductor formed in the first insulator layer.
    The transmission line according to claim 1.
  3.  前記第2絶縁体層を有さない部分は、前記延びる方向の全長に亘って続いている、
     請求項1または請求項2に記載の伝送線路。
    The portion not having the second insulator layer continues over the entire length in the extending direction.
    The transmission line according to claim 1 or 2.
  4.  前記第2絶縁体層を有さない部分は、前記積層体の幅方向において、前記信号導体の両側にある、
     請求項1乃至請求項3のいずれかに記載の伝送線路。
    The portions not having the second insulator layer are on both sides of the signal conductor in the width direction of the laminate.
    The transmission line according to any one of claims 1 to 3.
  5.  前記第2グランド導体は、前記幅方向に突出する第2グランド用補助導体をさらに備え、
     前記第2グランド用補助導体は、前記積層方向において前記第1グランド導体側に曲がっている、
     請求項1に記載の伝送線路。
    The second ground conductor further includes a second ground auxiliary conductor protruding in the width direction,
    The second ground auxiliary conductor is bent toward the first ground conductor in the stacking direction.
    The transmission line according to claim 1.
  6.  前記第3絶縁体層の前記第2グランド用補助導体の形成される部分の幅は、前記第2グランド用補助導体の形成されていない部分の幅よりも広く、
     前記第2グランド用補助導体が形成されていない部分の幅は、前記第2絶縁体層と略同じである、
     請求項5に記載の伝送線路。
    The width of the portion where the second ground auxiliary conductor is formed in the third insulator layer is wider than the width of the portion where the second ground auxiliary conductor is not formed,
    The width of the portion where the second ground auxiliary conductor is not formed is substantially the same as that of the second insulator layer.
    The transmission line according to claim 5.
  7.  前記第1グランド導体は、前記幅方向に突出する第1グランド用補助導体をさらに備え、
     前記第2グランド用補助導体は、前記第1グランド用補助導体に接続されている、
     請求項6に記載の伝送線路。
    The first ground conductor further includes a first ground auxiliary conductor protruding in the width direction,
    The second ground auxiliary conductor is connected to the first ground auxiliary conductor,
    The transmission line according to claim 6.
  8.  前記第1絶縁体層の前記第1グランド用補助導体の形成される部分の幅は、前記第1グランド用補助導体の形成されていない部分の幅よりも広く、
     前記第1グランド用補助導体が形成されていない部分の幅は、前記第2絶縁体層と略同じである、
     請求項7に記載の伝送線路。
    The width of the portion of the first insulator layer where the first ground auxiliary conductor is formed is wider than the width of the portion where the first ground auxiliary conductor is not formed.
    The width of the portion where the first ground auxiliary conductor is not formed is substantially the same as that of the second insulator layer.
    The transmission line according to claim 7.
  9.  前記第2絶縁体層の前記延びる方向の両端は、前記第1絶縁体層および前記第3絶縁体層に重なっておらず、
     前記第2絶縁体層の前記延びる方向の両端は、前記積層方向において前記第1絶縁体層側に曲がっている、
     請求項1乃至請求項8のいずれかに記載の伝送線路。
    Both ends of the second insulator layer in the extending direction do not overlap the first insulator layer and the third insulator layer,
    Both ends in the extending direction of the second insulator layer are bent toward the first insulator layer in the stacking direction.
    The transmission line according to any one of claims 1 to 8.
  10.  請求項1乃至請求項9のいずれかに記載の伝送線路と、
     グランド用ランド導体が形成された回路基板と、を備え、
     前記グランド用ランド導体は、前記積層体における前記第2絶縁体層を有さない部分において、前記第1グランド導体および前記第2グランド導体に、接合材で接合されている、
     電子機器。
    A transmission line according to any one of claims 1 to 9,
    A circuit board on which a ground conductor for ground is formed,
    The ground land conductor is bonded to the first ground conductor and the second ground conductor with a bonding material in a portion of the multilayer body that does not have the second insulator layer.
    Electronics.
  11.  請求項1乃至請求項9のいずれかに記載の伝送線路と、
     グランド用ランド導体、および信号伝送用ランド導体が形成された回路基板と、を備え、
     前記グランド用ランド導体は、前記積層体における前記第2絶縁体層を有さない部分において、前記第1グランド導体および前記第2グランド導体に、第1接合材で接合されており、
     前記信号導体は、前記第2絶縁体層の曲がっている部分において、前記信号伝送用ランド導体に、第2接合材で接合されている、
     電子機器。
    A transmission line according to any one of claims 1 to 9,
    A circuit board on which a land conductor for ground and a land conductor for signal transmission are formed,
    The ground land conductor is bonded to the first ground conductor and the second ground conductor by a first bonding material in a portion of the multilayer body that does not have the second insulator layer.
    The signal conductor is bonded to the signal transmission land conductor by a second bonding material in a bent portion of the second insulator layer.
    Electronics.
PCT/JP2017/023070 2016-07-29 2017-06-22 Transmission line and electronic device WO2018020919A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201790000857.0U CN209104338U (en) 2016-07-29 2017-06-22 Transmission line and electronic equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016149953 2016-07-29
JP2016-149953 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018020919A1 true WO2018020919A1 (en) 2018-02-01

Family

ID=61015942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023070 WO2018020919A1 (en) 2016-07-29 2017-06-22 Transmission line and electronic device

Country Status (2)

Country Link
CN (1) CN209104338U (en)
WO (1) WO2018020919A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06232217A (en) * 1993-02-04 1994-08-19 Mitsubishi Electric Corp Film carrier signal transmission line
JP2002111233A (en) * 2000-10-03 2002-04-12 Victor Co Of Japan Ltd Printed-wiring board and its manufacturing method
JP2005012811A (en) * 2003-06-19 2005-01-13 Agilent Technol Inc Method of manufacturing microwave circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06232217A (en) * 1993-02-04 1994-08-19 Mitsubishi Electric Corp Film carrier signal transmission line
JP2002111233A (en) * 2000-10-03 2002-04-12 Victor Co Of Japan Ltd Printed-wiring board and its manufacturing method
JP2005012811A (en) * 2003-06-19 2005-01-13 Agilent Technol Inc Method of manufacturing microwave circuit

Also Published As

Publication number Publication date
CN209104338U (en) 2019-07-12

Similar Documents

Publication Publication Date Title
JP6540847B2 (en) Transmission line and electronic equipment
JP5743037B2 (en) Resin multilayer substrate and electronic equipment
JP6183553B2 (en) Transmission line member
JP5867621B2 (en) High frequency signal line and manufacturing method thereof
JP2010262871A (en) Connection terminal and transmission line
JP6090480B2 (en) High frequency signal transmission line and electronic equipment
WO2014002757A1 (en) Cable connection/anchoring method
JP2016100495A (en) Transmission line cable, electronic apparatus and transmission line cable manufacturing method
JP6344476B2 (en) Multilayer circuit board
JP6418353B2 (en) Composite substrate, method for manufacturing composite substrate, and method for manufacturing flexible substrate
TW201334330A (en) Method of manufacturing a connector having a narrow-pitch contact group and connector
WO2018020919A1 (en) Transmission line and electronic device
JP2008117846A (en) Multilayer flexible printed wiring board and its manufacturing method
WO2017199824A1 (en) Multilayer substrate and electronic appliance
US20210273361A1 (en) Electronic device and flat cable
JP5472552B2 (en) High frequency signal lines and electronic equipment
JP7060171B2 (en) Transmission line and circuit board
JPH0435092A (en) Multilayer wiring board and manufacture thereof
WO2018003383A1 (en) Multilayered substrate
JP6197954B2 (en) Component built-in substrate and method for manufacturing component built-in substrate
JP7205667B2 (en) signal transmission line
JP6534911B2 (en) Waveguide to microstrip line converter
JP7207602B2 (en) Package and manufacturing method thereof
US20210274651A1 (en) Multilayer substrate
WO2022080067A1 (en) Circuit board and method for manufacturing circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP