WO2018020672A1 - Method and device for controlling plurality of apparatuses having mutual interference area - Google Patents

Method and device for controlling plurality of apparatuses having mutual interference area Download PDF

Info

Publication number
WO2018020672A1
WO2018020672A1 PCT/JP2016/072388 JP2016072388W WO2018020672A1 WO 2018020672 A1 WO2018020672 A1 WO 2018020672A1 JP 2016072388 W JP2016072388 W JP 2016072388W WO 2018020672 A1 WO2018020672 A1 WO 2018020672A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
communication
control
status signal
robot
Prior art date
Application number
PCT/JP2016/072388
Other languages
French (fr)
Japanese (ja)
Inventor
浩一郎 藤分
英康 上川
武 山元
貞雄 西田
二郎 上浦
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to PCT/JP2016/072388 priority Critical patent/WO2018020672A1/en
Publication of WO2018020672A1 publication Critical patent/WO2018020672A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/06Safety devices

Definitions

  • the present invention relates to a control method and a control apparatus that control operations of a plurality of devices that perform work independently and have interference areas with each other.
  • the robot control device disclosed in Patent Document 1 pre-reads each robot's teaching program, and obtains a planned stop position for each robot when a stop command is issued after n interpolation cycles from the current interpolation cycle. . Then, the robot control device checks whether interference occurs at the planned stop position of each robot, and if it determines that interference occurs, it outputs a stop command from the current interpolation cycle. Thus, the occurrence of interference can be prevented by outputting a stop command before n interpolation cycles when interference occurs.
  • the interference check control device disclosed in Patent Document 2 calculates the time required from the start of braking to the stop of the robot based on the speed / position data, and calculates the latest time between each component from the start of braking to the completion of braking.
  • the history of contact distance is estimated based on the speed of each approaching component.
  • the history of the closest distance between the components and the threshold value of the interference determination area are compared to determine the presence or absence of interference during the braking period, and a movement command value for each robot is generated according to the interference determination result.
  • the presence or absence of interference between the components of the robot during the braking operation can be determined with high accuracy.
  • the control method of the control device is a control method for controlling the operations of a plurality of control devices that work independently and have interference areas.
  • the control method includes a step of transmitting a status signal indicating an operation state of one control device from one control device among the plurality of control devices to the control device via communication conforming to at least one communication protocol; When the status signal indicating the stop of the operation of the one control device is received from the one control device via the communication conforming to at least one communication protocol, the control device is delayed from the timing of receiving the status signal. Allowing the operation of another control device that may interfere with one control device at a timing.
  • the control device is a control device that performs operations independently and controls operations of a plurality of control devices having interference areas with each other.
  • the control device includes each control device, a communication unit that performs communication in accordance with at least one communication protocol, and a control unit that controls the operation of each control device.
  • the communication unit receives a status signal indicating an operation state of each control device from each control device via communication using the at least one communication protocol.
  • the control unit receives a status signal indicating the stop of the operation of the one control device from the one control device via communication based on at least one communication protocol, at a timing delayed from the timing at which the status signal is received, Permit operation of other control devices that may interfere with one control device.
  • the risk of interference between the certain device and another device can be reduced.
  • the figure explaining an example of the robot system to which the control method of the present invention is applied 1 is a block diagram showing a configuration of a robot system in Embodiment 1 of the present invention.
  • the figure explaining transmission of the status signal via communication by two communication protocols between the robot and PLC in Embodiment 1 The flowchart which shows the process regarding the interference check by PLC in Embodiment 1.
  • the figure explaining transmission of the status signal between the robot and PLC in Embodiment 2 The flowchart which shows the process regarding the interference check by PLC in Embodiment 2.
  • FIG. 1 is a diagram for explaining an example of a robot system that performs a control method according to the present invention.
  • the robot system shown in FIG. 1 is a system used in a secondary battery laminating apparatus.
  • the work 80 that has been transported is placed on a laminating jig 83, and the laminating jig 83 on which the work 80 is placed. Is stored in the stacking jig rack 89.
  • the robot system includes a robot 100 that performs a predetermined operation, a workpiece transfer stage 200 that transfers a workpiece 80, and a workpiece transfer handler 400 that places the transferred workpiece 80 on a stacking jig 83 on the workpiece mounting stage 300. And comprising.
  • the workpiece conveyance stage 200 is a means for conveying the workpiece 80, and conveys the workpiece 80 from the left direction in FIG.
  • the robot 100 discards the inappropriate work 80b into the NG work disposal box 87, takes out the lamination jig 83 from the lamination jig rack 89, and the lamination jig rack 89 of the lamination jig 83 on which the workpiece 80 is mounted. It is an articulated robot that performs multiple operations such as storage.
  • the robot 100 includes a robot hand 112 that sucks or grips a work object (work 80 or a stacking jig 83), an arm 114 that supports the robot hand 112 at the tip, and a base portion 116 that rotatably supports the arm 114. including.
  • the robot hand 112 includes a suction part 112 a that sucks and holds the workpiece 80 and a gripping part 112 b that grips the stacking jig 83.
  • the arm 114 has a plurality of joints driven by a motor, and can take various postures.
  • the base part 116 is rotatable, and the direction of the arm 114 can be changed.
  • the workpiece transfer handler 400 places the workpiece 80 transferred to the predetermined position A by the workpiece transfer stage 200 on the stacking jig 89 on the workpiece mounting stage 300.
  • the workpiece transfer handler 400 includes a holding unit 412 that sucks and holds the workpiece 80, an arm unit 414 that includes a holding unit 412 at the tip, and a base unit 416 that rotates and moves the arm unit 414.
  • the holding unit 412 can lift or drop the workpiece 80 by suction.
  • the base portion 416 is rotatable, whereby the arm portion 414 rotates and can move the workpiece 80 from the workpiece transfer stage 200 to the workpiece mounting stage 300.
  • the workpiece transfer handler 400 includes a motor and an actuator for performing the above-described operation.
  • the robot 100 uses the suction unit 112a of the robot hand 112 to remove the workpiece 80 from the workpiece conveyance stage 300 when the workpiece 80 conveyed to the predetermined position A by the workpiece conveyance stage 200 is defective or is not a work target workpiece. It is adsorbed and lifted and discarded in the NG work disposal box 87.
  • the robot 100 takes out the stacking jig 83 on which the work 80 is not placed from the shelf of the stacking jig rack 89 by the gripping part 112b of the robot hand 112, and places (supply) it on the work mounting stage 300.
  • the workpiece conveyance handler 400 places the workpiece 80 on the workpiece conveyance stage 200 on the stacking jig 83 on the workpiece mounting stage 300.
  • the robot 100 lifts the stacking jig 83 on which the workpiece 80 is placed by the grip portion 112 b of the robot hand 112 and stores it in the shelf of the stacking jig rack 89.
  • the robot 100 and the workpiece transfer stage 200 have an interference area. Therefore, when one is working in the interference area, it is necessary to control each operation so that the other does not work in the interference area.
  • the robot 100 and the work transfer handler 400 also have an interference area, and one of them is working in the interference area, the other needs to be controlled so that the other does not work in the interference area.
  • the workpiece transfer stage 200 and the workpiece transfer handler 400 also have an interference area. Thus, it is necessary to control each operation of the robot 100, the workpiece transfer stage 200, and the workpiece transfer handler 400 so as not to interfere with each other. For this reason, this robot system performs an interference check described later for control devices that may interfere with each other.
  • FIG. 2 is a block diagram showing an internal configuration of the robot system according to the first embodiment.
  • the robot system includes a robot 100, a workpiece transfer stage 200, a workpiece transfer handler 400, and a robot controller 110 that controls the robot 100.
  • the robot system includes a PLC (programmable logic controller) 500 as a control device that controls operations of the robot 100, the workpiece transfer stage 200, and the workpiece transfer handler 400.
  • PLC programmable logic controller
  • control device the robot 100 (including the robot controller 110), the workpiece transfer stage 200, and the workpiece transfer handler 400 are collectively referred to as “control device”.
  • Each control device 100 (including the robot controller 110), 200, and 400 is an example of the “control device” in the present invention.
  • the PLC 500 is an example of the “control device” in the present invention.
  • the communication unit 55 is an example of the “communication unit” in the present invention.
  • the control unit 51 is an example of the “control unit” in the present invention.
  • the PLC 500 transmits an operation request to the robot controller 110 in order to control the robot 100. Further, the PLC 500 transmits an operation request to each of the workpiece transfer stage 200 and the workpiece transfer handler 400 in order to control the workpiece transfer stage 200 and the workpiece transfer handler 400. For this reason, the PLC 500 is connected to the robot controller 110 via the network 600. The PLC 500 is connected to the workpiece transfer stage 200 via the network 700. Furthermore, the PLC 500 is connected to the work transfer handler 400 via the network 800.
  • the network 600 performs communication based on two communication protocols having different communication cycles. Specifically, the network 600 performs communication conforming to the Ethernet standard whose communication cycle is indefinite, and communication conforming to the Ethernet IP standard whose communication cycle is a constant cycle.
  • the PLC 500 includes a control unit 51 that controls the operation of the PLC 500, a storage unit 52, and a communication unit 55.
  • the control unit 51 includes a CPU and realizes a predetermined function by executing a predetermined program.
  • the storage unit 52 is a recording medium composed of a semiconductor memory element, a hard disk, and the like, and stores programs and data executed by the control unit 51.
  • the communication unit 55 includes an interface circuit for performing communication via the network 600.
  • the communication unit 55 performs communication conforming to two communication protocols (Ethernet, Ethernet IP).
  • the robot 100 is a device that performs predetermined operations such as discarding the workpiece 80 and storing the stacking jig.
  • the robot 100 includes a communication unit 17 for communicating with the robot controller 110 and a drive unit 19 including a motor, an actuator, and the like for driving the arm 114.
  • the communication unit 17 includes a circuit for performing communication via the network 600.
  • the robot controller 110 controls the operation of the robot 100 according to instructions from the PLC 500.
  • the robot controller 110 includes a control unit 11 that controls the operation of the robot 100, a storage unit 12, and a communication unit 15.
  • the control unit 11 includes a CPU and realizes a predetermined function by executing a predetermined program.
  • the storage unit 12 is a recording medium composed of a semiconductor memory element, a hard disk, and the like, and stores programs and data executed by the control unit 11.
  • the communication unit 15 includes a circuit for performing communication via the network 600.
  • the communication unit 15 performs communication conforming to two communication protocols (Ethernet, Ethernet IP).
  • the workpiece transfer stage 200 is a device that transfers the workpiece 80 in accordance with instructions from the PLC 500.
  • the workpiece transfer stage 200 includes a communication unit 25 and a drive unit 22 including a motor, an actuator, and the like that move the stage on which the workpiece is mounted.
  • the communication unit 25 includes a circuit for performing communication via the network 700.
  • the communication unit 25 performs MetroLink communication specialized for the servo driver.
  • the workpiece transfer handler 400 is a device that moves the workpiece 80 from the workpiece transfer stage 200 to the workpiece mounting stage 300 in accordance with an instruction from the PLC 500.
  • the work transfer handler 400 includes a communication unit 45 and a drive unit 42 including a motor, an actuator, and the like that rotate and move the arm 414.
  • the communication unit 45 includes a circuit for performing communication via the network 800.
  • the communication unit 45 performs MetroLink communication specialized for the servo driver.
  • the PLC 500 stores data for specifying a work procedure for each of the control devices 100, 200, and 400 in the storage unit 52.
  • the PLC 500 sequentially reads out this data and executes processing corresponding to the data.
  • 200 and 400 are caused to execute a predetermined operation (work). Further, the PLC 500 grasps each control device 100, 200, 400 with other control devices that may interfere with each other and operations that may interfere with each other.
  • the PLC 500 clears the interference check and executes the operation for each control device 100, 200, 400 when a predetermined operation condition is satisfied for each operation of each control device 100, 200, 400.
  • Request The PLC 500 transmits an operation request signal for instructing the operation to the robot controller 110 and the control devices 200 and 400 via the network 600.
  • the robot controller 110 and the control devices 200 and 400 that have received the operation request signal transmit an ACK indicating that the operation request signal has been normally received to the PLC 500 through communication based on the two communication protocols via the network 600.
  • Send a signal When the PLC 500 does not receive the ACK signal for the operation request signal, the PLC 500 may retransmit the operation request signal. Alternatively, when the ACK signal is not received, it is considered that an unexpected situation such as a communication abnormality has occurred, so the PLC 500 may control the operation of each control device to stop.
  • the robot controller 110 and the control devices 200 and 400 transmit a status signal indicating the state (moving / stopped) of each control device to the PLC 500 at a predetermined timing.
  • the status signal includes information indicating the positions of the control devices 100, 200, and 400 and information indicating whether the control devices 100, 200, and 400 are moving.
  • the status signal of the control device 100 is transmitted to the PLC 500 via the network 600 by communication conforming to two communication protocols.
  • the status signal of the control device 200 is transmitted to the PLC 500 through MetroLink communication via the network 700.
  • the status signal of the control device 400 is transmitted to the PLC 500 via MetroLink communication via the network 800.
  • the PLC 500 performs an operation X of the control device A after the operation of the other device stops in order to prevent interference. To start. Therefore, the PLC 500 receives the status signal of each control device 100, 200, 400, determines whether the control device is moving or stopped based on the status signal, and performs an interference check.
  • FIG. 3 is a diagram illustrating transmission of a status signal from the robot 100, that is, the robot controller 110 to the PLC 500.
  • the PLC 500 determines that the robot 100 is moving based on the status signal received from the robot 100 in advance, and waits for another control device that may interfere with the robot 100. .
  • the robot controller 110 transmits a status signal indicating that the robot 100 has stopped (that is, a signal indicating permission to drive other control devices) to the PLC 500 via the network 600. To do. At this time, the status signal is transmitted at time t2 after one cycle of time t1.
  • a status signal by communication conforming to the Ethernet standard is recognized at time t3 and transmitted to the PLC 500 at time t4 after one cycle (see FIG. 3B). Therefore, the PLC 500 grasps the content of the status signal at time t7 according to the communication conforming to the Ethernet standard (see the broken line arrow in FIG. 3). In other words, the PLC 500 recognizes that the state of the robot 100 has been switched from being moved to being stopped at the time t7 through communication conforming to the Ethernet standard.
  • the status signal is recognized at time t5 and transmitted to the PLC 500 at time t6 of the next cycle (see FIG. 3C). Then, PLC 500 grasps the contents of the status signal at time t8 (see the solid arrow in FIG. 3). That is, the PLC 500 recognizes that the state of the robot 100 has changed from moving to stopping at the timing of time t8.
  • the timing (time t7, t8) at which the status signal transmitted from the robot 100 arrives at the PLC 500 is shifted by the communication protocol.
  • the PLC 500 performs an interference check based on the status signals received from both of the communications using the two communication protocols. That is, the PLC 500 determines that the robot 100 has stopped when receiving a status signal indicating that the robot 100 has stopped from both of the communications using the two communication protocols, and instructs the other control devices to operate. It is configured.
  • the PLC 500 does not determine that the robot 100 has stopped even if the status signal is received in only one of the communications using the two communication protocols.
  • the PLC 500 permits the operation of other control devices.
  • the PLC 500 transmits an operation request to the other control device.
  • the interference check based on the status signals received from both of the communications based on the two communication protocols, it is determined that the robot 100 is stopped, as compared with the case where the judgment is based only on the status signal based on the one communication Is delayed by ⁇ T. For this reason, the time during which the robot 100 and other control devices that may interfere with the robot 100 are stopped becomes longer (longer by ⁇ T), and the possibility of interference between the control devices can be further reduced. .
  • FIG. 4 is a flowchart showing the interference prevention process executed in the PLC 500 described above.
  • This flow shows the control of the PLC 500 when the robot 100 is initially moving and then stops. That is, it is assumed that the PLC 500 has received a status signal indicating “moving” from the robot controller 110 at the start of this process because the robot 100 is moving. For this reason, the PLC 500 initially disables the operations of the other control devices 200 and 400 that may interfere with the robot 100 and waits (stops the operation) for the other control devices (S11).
  • the robot controller 110 transmits a status signal indicating that the robot 100 is “stopped” to the PLC 500 via the network 600.
  • the PLC 500 receives a status signal indicating “stopped” from both of the communication using the two communication protocols from the robot controller 110 (YES in S12)
  • the PLC 500 permits the operation of another control device that interferes with the robot 100. (S13).
  • the PLC 500 transmits an operation request (operation instruction) to the other control device (S14).
  • the operation of the PLC 500 based on the status signal received from the robot 100 has been described.
  • the operation of the PLC 500 is similarly applied to the control devices 200 and 400 other than the robot 100.
  • the PLC 500 receives the status signal from the control devices 200 and 400, and determines the stop state of the control devices 200 and 400 based on the status signal, so that the PLC 500 may interfere with the control devices 200 and 400. Controls the operation of control equipment.
  • the PLC 500 receives a status signal from one control device via communication using communication protocols having different communication cycles. Then, the PLC 500 permits driving of other control devices that may interfere with one control device when both of the status signals received through communication using the respective communication protocols are “stopped”. In this way, when the status signal indicating “stopped” is received from both of the two communication protocols having different communication cycles, the driving of the other control device is permitted, thereby allowing the other control device to The timing of driving can be delayed further. That is, since the period during which the robot 100 and other control devices are stopped can be extended, the risk of interference between the robot 100 and other control devices can be reduced.
  • FIGS. 1 and 2 Another embodiment of the robot system according to the present invention will be described.
  • the configuration of the robot system in the present embodiment is the same as that in the first embodiment.
  • communication is performed between the PLC 500 and the control device 100 via two communication protocols, that is, the Ethernet standard and the Ethernet IP standard.
  • the Ethernet standard In contrast, in the present embodiment, only one communication protocol (in this example, Ethernet IP standard) is used.
  • An operation request signal and a status signal are transmitted and received between the PLC 500 and the control devices 100 (110), 200, and 400 via the networks 600, 700, and 800, respectively.
  • the PLC 500 receives a status signal indicating that one control device 100, 200, 400 is stopped in the interference check between devices, the PLC 500 performs a certain time ( ⁇ T1) from the received timing.
  • the operation is instructed to another control device that may interfere with the one control device. For example, when a status signal indicating that the robot 100 is stopped is received from the robot controller 110, another control that may interfere with the robot 100 after a certain time ( ⁇ T1) has elapsed from the received timing. An operation is instructed to the devices 200 and 400.
  • FIG. 5 is a diagram illustrating transmission of status signals between the robot 100 and the PLC 500.
  • the example shown in FIG. 5 assumes a case where the robot 100 is moving before the time t1 and the robot 100 stops at the time t1.
  • the PLC 500 determines that the robot 100 is moving based on the status signal received from the robot 100 in advance, and waits for another control device that may interfere with the robot 100. .
  • the robot controller 110 for the robot 100 sends a status signal indicating that the robot 100 has stopped (that is, a signal indicating permission to drive other control devices) to the network 600 (Ethernet IP). To the PLC 500 via the standard) (see FIG. 5A). At this time, the status signal is transmitted at time t2 after one cycle of time t1.
  • the status signal is recognized at time t5 in the network 600 and transmitted to the PLC 500 at time t5 after one cycle (see FIGS. 5B and 5C). Therefore, the PLC 500 grasps the change of the status signal at time t8 (see the solid arrow in FIG. 6). That is, the PLC 500 recognizes that the state of the robot 100 has changed from moving to stopping at the timing of time t8.
  • the PLC 500 permits the operation to other control devices at a timing (t10) delayed by a predetermined delay time ⁇ T1 from the timing (t8) at which the status signal indicating that the robot 100 is stopped from the network 600.
  • the PLC 500 instructs the other control device to operate.
  • the operation for other control devices is permitted at a timing delayed by a predetermined time from the timing at which the status signal indicating the stop of the control device is received.
  • the time during which the robot 100 and other control devices that may possibly interfere with the robot 100 are stopped can be lengthened (longer by ⁇ T1), and the possibility of interference between the control devices can be further reduced.
  • the predetermined delay time ⁇ T1 may be set to an integral multiple (for example, 4 to 5 times) of the communication period of EthernetEIP.
  • FIG. 6 is a flowchart showing the interference prevention process executed in the PLC 500 described above.
  • This flow shows the control of the PLC 500 when the robot 100 is initially moving and then stops.
  • the PLC 500 has received a status signal indicating “moving” from the robot controller 110 at the start of this processing because the robot 100 is moving.
  • the PLC 500 initially disables the operation of other control devices that interfere with the robot 100 (S21).
  • other control devices are put on standby (stopping operation).
  • the robot controller 110 transmits a status signal indicating that the robot 100 is “stopped” to the PLC 500 via the network 600.
  • the PLC 500 may interfere with the robot 100 when a predetermined time ( ⁇ T1) has elapsed since the reception of the status signal (S23).
  • the operation of another control device having a characteristic is permitted (S24).
  • the PLC 500 transmits an operation request (operation instruction) to another control device that satisfies the predetermined operation condition at this time (S25).
  • the operation of the PLC 500 based on the status signal received from the robot 100 has been described.
  • the operation of the PLC 500 is similarly applied to the control devices 200 and 400 other than the robot 100.
  • the example in which the data communication between the PLC 500 and the control device 100 is performed based on the Ethernet IP standard has been described.
  • the data communication may be performed based on the Ethernet standard.
  • PLC 500 when receiving a status signal from one moving control device, PLC 500 permits driving of another control device after a predetermined time ( ⁇ T1) has elapsed from the received timing. As a result, the period during which the robot 100 and other control devices are stopped can be lengthened, so that interference between the robot 100 and other control devices can be prevented.
  • the robot 100 performed operations such as supplying the stacking jig 83 and discarding the inappropriate work 80b.
  • the operations performed by the robot are not limited to these, and other types of operations are performed. Work may be performed.
  • the robot system in the secondary battery stacking apparatus has been described.
  • the idea related to the interference check disclosed in the above embodiment can also be applied to the robot system for other apparatuses. .
  • the timing after the timing at which the status signal indicating “stopped” is received may be obtained by other means. Also by this means, the operation start timing of other control devices can be delayed, the period during which a plurality of control devices that can interfere with each other is stopped can be lengthened, and the possibility of interference between control devices can be reduced.
  • the interference check is performed based on the condition that the control device is stopped.
  • the interference check may be performed including other conditions.
  • the condition of the interference check may include a positional relationship between the position of one control device and another control device that may interfere with the control device.
  • FIG. 7 is a diagram illustrating a communication protocol used for the FA network.
  • any one of the communication protocols shown in the figure for example, CC-Link, MechatroLink
  • any two standards having different communication cycles can be selected and used from the plurality of standards shown in FIG.
  • control units 51, 11,... Of the PLC and each control device are realized by cooperation of hardware and software, but are designed exclusively to realize a predetermined function. It may be realized only by the hardware circuit that is provided. That is, the control units 51, 11,... Can be configured not only by the CPU but also by various devices such as an MPU, DSP, FPGA, ASIC, and the like.
  • a control method in which operations are performed independently and operations of a plurality of control devices (100, 200, 400) having interference areas are controlled.
  • the control method is Transmitting a status signal indicating an operation state of one control device from one control device (100 (110)) of the plurality of control devices to the control device (500) via at least one communication protocol; ,
  • the control device (500) receives a status signal indicating the stop of the operation of the one control device from the one control device (100) via communication conforming to at least one communication protocol, the status signal Permitting the operation of another control device that may interfere with the one control device at a timing delayed from the timing at which the signal is received.
  • the operation start timing of another control device is delayed, and there is a period in which one control device and another control device that may interfere with the one control device are both stopped. Since it becomes longer, the possibility of interference between control devices can be reduced.
  • the status signal indicating the operation state of the one control device is compliant with each of two communication protocols having different communication cycles. You may transmit to a control apparatus (500) via the communicated.
  • the control device (500) permits the operation of the other control device when receiving the status signal indicating the stop of the operation of the one control device from both of the communications compliant with the two communication protocols. Also good. In this way, by waiting to receive status signals from both of two different networks, the operation start timing of other control devices can be delayed, and one control device and the other control device both stop. Therefore, the possibility of interference between the control devices can be reduced.
  • one of the two communication protocols may be a communication protocol having a constant communication cycle
  • the other of the two communication protocols may be a communication protocol having an indefinite communication cycle.
  • one communication protocol may be Ethernet IP
  • the other communication protocol may be Ethernet. Specifically, by setting in this way, it is possible to shift the status signal reception timing according to one communication protocol and the status signal reception timing according to the other communication protocol, whichever is later.
  • the control device (500) receives a status signal indicating the stop of the operation of one control device from one control device via at least one communication protocol for a predetermined time.
  • the operation of another control device may be permitted at a timing delayed by ( ⁇ T1). This also delays the operation start timing of another control device, and the period during which one control device and another control device that may interfere with the control device are stopped is longer. Therefore, the possibility of interference between control devices can be reduced.
  • the control device (500) may transmit an operation request signal to each control device when instructing the operation of each control device.
  • Each control device may return an ACK signal indicating that the operation request signal is normally received to the control device when the operation request signal is normally received.
  • each control device can be stopped when an unexpected situation such as a communication abnormality occurs.
  • a control device (500) that operates independently and controls the operations of a plurality of control devices (100) having interference areas with each other is disclosed.
  • the control device (500) includes a communication unit (55) that communicates with each control device in accordance with at least one communication protocol, and a control unit (51) that controls the operation of each control device.
  • the communication unit (55) receives a status signal indicating the operation state of each device from each control device via communication using at least one communication protocol.
  • the control unit (51) receives a status signal indicating the stop of the operation of the one control device from the one control device via communication using at least one communication protocol, the control unit (51) is delayed from the timing at which the status signal is received.
  • the operation of another control device that may interfere with the one control device is instructed.
  • the operation start timing of the other control device is delayed, and the period during which both the one control device and the control device that may interfere with the control device are stopped becomes longer. The possibility of interference between control devices can be reduced.
  • the communication unit (55) may receive a status signal from one control device via communication conforming to each of two communication protocols having different communication cycles.
  • the control unit (51) may permit the operation of the other control device when receiving a status signal indicating the stop of the operation of the one control device from both of the communications compliant with the two communication protocols. .
  • the operation start timing of the other control device can be delayed, and one control device, Since the period during which both other control devices that may possibly interfere with each other are stopped becomes longer, the possibility of interference between the control devices can be reduced.
  • the control unit (51) starts from the timing at which the status signal indicating the stop of the operation of the one control device is received from the one control device via communication using at least one communication protocol.
  • the operation of another control device may be instructed at a timing delayed by a predetermined time ( ⁇ T1). Even with this configuration, the operation start timing of other control devices can be delayed, and the period during which one control device and other control devices that may interfere with it are both longer, The possibility of interference between control devices can be reduced.
  • the present invention is not limited to the above-described embodiments.
  • the present invention can also be applied to embodiments in which the contents disclosed in the above embodiments are appropriately changed, replaced, added, omitted or the like. Moreover, it is also possible to combine each component demonstrated in the said embodiment suitably.
  • Robot Controller Control Unit 12 Robot Controller Storage Unit 15 Robot Controller Communication Unit 17 Robot Communication Unit 19 Robot Drive Unit 22 Work Transfer Stage Drive Unit 25 Work Transfer Stage Communication Unit 42 Work Transfer Handler Drive Unit 45 Work conveying handler communication unit 51 PLC control unit 52 PLC storage unit 55 PLC communication unit 80, 80b Work 83 Lamination jig 87 NG work disposal box 89 Lamination jig rack 100 Robot 110 Robot controller 200 Work conveyance stage 400 Work piece Transport handler 500 PLC (Programmable Logic Controller) 600, 700, 800 networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

Provided is a control method for controlling the operation of a plurality of control apparatuses which operate independently but have a mutual interference area. The control method includes: a step for transmitting, from one of the plurality of control apparatuses to a control device via communications compliant with at least one communication protocol, a status signal indicating the operation state of the one control apparatus; and a step for, when a status signal indicating that the one control apparatus has stopped operating is received by the control device from the one control apparatus via communications compliant with at least one communication protocol, permitting operation of another control apparatus that might interfere with the one control apparatus, at a timing (t8) delayed from the timing (t7) at which the status signal was received.

Description

互いに干渉領域を有する複数の機器の制御方法及び制御装置Method and apparatus for controlling a plurality of devices having interference areas with each other
 本発明は、独立に作業を行い互いに干渉領域を有する複数の機器の動作を制御する制御方法及び制御装置に関する。 The present invention relates to a control method and a control apparatus that control operations of a plurality of devices that perform work independently and have interference areas with each other.
 近年、生産性の向上、品質の向上等を目的として、工場の生産ラインの自動化が進められている。自動化された生産ラインでは人に代わりロボットが作業を行う。特に、複数のロボットが同時に作業を行う場合、ロボット間で動作領域の一部が干渉する場合がある。このような場合、干渉の発生を防止するように各ロボットの動作を制御する必要がある。 In recent years, factory production lines have been automated for the purpose of improving productivity and quality. Robots work on behalf of people in automated production lines. In particular, when a plurality of robots perform work simultaneously, a part of the operation area may interfere between the robots. In such a case, it is necessary to control the operation of each robot so as to prevent the occurrence of interference.
 例えば、特許文献1に開示されたロボット制御装置は、各ロボットの教示プログラムをそれぞれ先読みし、現在の補間周期よりn補間周期後において、停止指令を出したときの停止予定位置をロボット毎に求める。そして、ロボット制御装置は、各ロボットの停止予定位置において干渉が生じるかチェックし、干渉すると判断すると、現補間周期から停止指令を出力する。これによって、干渉が発生するn補間周期前で停止指令が出力されることにより、干渉発生を防止できる。 For example, the robot control device disclosed in Patent Document 1 pre-reads each robot's teaching program, and obtains a planned stop position for each robot when a stop command is issued after n interpolation cycles from the current interpolation cycle. . Then, the robot control device checks whether interference occurs at the planned stop position of each robot, and if it determines that interference occurs, it outputs a stop command from the current interpolation cycle. Thus, the occurrence of interference can be prevented by outputting a stop command before n interpolation cycles when interference occurs.
 また、特許文献2に開示された干渉チェック制御装置は、速度・位置データに基づいてロボットの制動開始から停止までに必要な時間を計算し、制動開始から制動完了までの各構成部分間の最近接距離の履歴を、接近する各構成部分の速度に基づいて推定する。そして、各構成部分間の最近接距離の履歴と干渉判定領域の閾値とを比較し、制動期間中の干渉の有無を判定し、干渉判定結果に応じて各ロボットに対する移動指令値を作り出す。これにより、制動動作中におけるロボットの構成部分同士の干渉の有無を高精度に判定することができる In addition, the interference check control device disclosed in Patent Document 2 calculates the time required from the start of braking to the stop of the robot based on the speed / position data, and calculates the latest time between each component from the start of braking to the completion of braking. The history of contact distance is estimated based on the speed of each approaching component. Then, the history of the closest distance between the components and the threshold value of the interference determination area are compared to determine the presence or absence of interference during the braking period, and a movement command value for each robot is generated according to the interference determination result. Thereby, the presence or absence of interference between the components of the robot during the braking operation can be determined with high accuracy.
特開2006-68857号公報JP 2006-68857 A 特開2010-52116号公報JP 2010-52116 A
 以上のように、複数のロボット(制御機器)を同時に動作させ、ロボット間で動作領域の一部が干渉する可能性がある場合、干渉の発生を防止することが必要である。 As described above, when a plurality of robots (control devices) are operated simultaneously and there is a possibility that a part of the operation area interferes between the robots, it is necessary to prevent the occurrence of the interference.
 本発明は、互いに干渉領域を有する制御機器の制御において干渉の危険性を低減できる制御方法及び制御装置を提供することを目的とする。 It is an object of the present invention to provide a control method and a control apparatus that can reduce the risk of interference in the control of control devices having interference areas.
 本発明に係る制御機器の制御方法は、独立に作業を行い互いに干渉領域を有する複数の制御機器の動作を制御する制御方法である。その制御方法は、複数の制御機器の中の一の制御機器から、一の制御機器の動作状態を示すステータス信号を、少なくとも1つの通信プロトコルに準拠した通信を介して制御装置に送信するステップと、制御装置によって、少なくとも1つの通信プロトコルに準拠した通信を介して一の制御機器から一の制御機器の動作の停止を示すステータス信号を受信したときに、当該ステータス信号を受信したタイミングから遅延したタイミングにおいて、一の制御機器と干渉する可能性のある他の制御機器の動作を許可するステップと、を含む。 The control method of the control device according to the present invention is a control method for controlling the operations of a plurality of control devices that work independently and have interference areas. The control method includes a step of transmitting a status signal indicating an operation state of one control device from one control device among the plurality of control devices to the control device via communication conforming to at least one communication protocol; When the status signal indicating the stop of the operation of the one control device is received from the one control device via the communication conforming to at least one communication protocol, the control device is delayed from the timing of receiving the status signal. Allowing the operation of another control device that may interfere with one control device at a timing.
 本発明に係る制御装置は、独立に作業を行い互いに干渉領域を有する複数の制御機器の動作を制御する制御装置である。制御装置は、各制御機器と、少なくとも1つの通信プロトコルに準拠して通信を行う通信部と、各制御機器の動作を制御する制御部と、を備える。通信部は、各制御機器から、各制御機器の動作状態を示すステータス信号を前記少なくとも1つの通信プロトコルによる通信を介して受信する。制御部は、少なくとも1つの通信プロトコルによる通信を介して一の制御機器から一の制御機器の動作の停止を示すステータス信号を受信したときに、当該ステータス信号を受信したタイミングから遅延したタイミングにおいて、一の制御機器と干渉する可能性のある他の制御機器の動作を許可する。 The control device according to the present invention is a control device that performs operations independently and controls operations of a plurality of control devices having interference areas with each other. The control device includes each control device, a communication unit that performs communication in accordance with at least one communication protocol, and a control unit that controls the operation of each control device. The communication unit receives a status signal indicating an operation state of each control device from each control device via communication using the at least one communication protocol. When the control unit receives a status signal indicating the stop of the operation of the one control device from the one control device via communication based on at least one communication protocol, at a timing delayed from the timing at which the status signal is received, Permit operation of other control devices that may interfere with one control device.
 本発明によれば、ある機器と他の機器を停止しておく期間をより長くすることができることから、ある機器と他の機器との干渉の危険性を低減することができる。 According to the present invention, since a period during which a certain device and another device are stopped can be extended, the risk of interference between the certain device and another device can be reduced.
本発明の制御方法を適用したロボットシステムの一例を説明した図The figure explaining an example of the robot system to which the control method of the present invention is applied 本発明の実施の形態1におけるロボットシステムの構成を示すブロック図1 is a block diagram showing a configuration of a robot system in Embodiment 1 of the present invention. 実施の形態1におけるロボットとPLC間の、2つの通信プロトコルによる通信を介したステータス信号の伝達を説明した図The figure explaining transmission of the status signal via communication by two communication protocols between the robot and PLC in Embodiment 1 実施の形態1におけるPLCによる干渉チェックに関する処理を示すフローチャートThe flowchart which shows the process regarding the interference check by PLC in Embodiment 1. 実施の形態2におけるロボットとPLC間のステータス信号の伝達を説明した図The figure explaining transmission of the status signal between the robot and PLC in Embodiment 2 実施の形態2におけるPLCによる干渉チェックに関する処理を示すフローチャートThe flowchart which shows the process regarding the interference check by PLC in Embodiment 2. FAネットワークに使用され得る通信プロトコルを例示した図A diagram illustrating a communication protocol that can be used in an FA network
 以下、添付の図面を参照して本発明にかかる機器の制御方法及び制御装置の実施の形態を説明する。 Embodiments of a device control method and a control device according to the present invention will be described below with reference to the accompanying drawings.
(実施の形態1)
1.概要
 図1は、本発明に係る制御方法を実施するロボットシステムの一例を説明するための図である。図1に示すロボットシステムは、二次電池の積層装置に使用されるシステムであり、搬送されてきたワーク80を積層治具83上に載置し、ワーク80が載置された積層治具83を積層治具ラック89に収納する作業を行う。
(Embodiment 1)
1. Overview FIG. 1 is a diagram for explaining an example of a robot system that performs a control method according to the present invention. The robot system shown in FIG. 1 is a system used in a secondary battery laminating apparatus. The work 80 that has been transported is placed on a laminating jig 83, and the laminating jig 83 on which the work 80 is placed. Is stored in the stacking jig rack 89.
 ロボットシステムは、所定の作業を行うロボット100と、ワーク80を搬送するワーク搬送ステージ200と、搬送されてきたワーク80をワーク搭載ステージ300上の積層治具83上に載置するワーク搬送ハンドラ400と、を備える。 The robot system includes a robot 100 that performs a predetermined operation, a workpiece transfer stage 200 that transfers a workpiece 80, and a workpiece transfer handler 400 that places the transferred workpiece 80 on a stacking jig 83 on the workpiece mounting stage 300. And comprising.
 ワーク搬送ステージ200はワーク80を搬送する手段であり、図1の左方向から所定位置Aまでワーク80を搬送する。 The workpiece conveyance stage 200 is a means for conveying the workpiece 80, and conveys the workpiece 80 from the left direction in FIG.
 ロボット100は、不適切なワーク80bのNGワーク廃棄箱87への廃棄、積層治具83の積層治具ラック89からの取り出し、及びワーク80が搭載された積層治具83の積層治具ラック89への収納などの複数の作業を行う多関節ロボットである。ロボット100は、作業対象物(ワーク80または積層治具83)を吸着または把持するロボットハンド112と、先端にロボットハンド112を支持するアーム114と、アーム114を回転可能に支持するベース部116とを含む。ロボットハンド112は、ワーク80を吸着して保持する吸着部112aと、積層治具83を把持する把持部112bとを有する。アーム114はモータで駆動される複数の関節を有し、種々の姿勢を取り得ることができる。ベース部116は回転可能であり、アーム114の向きを変更することができる。 The robot 100 discards the inappropriate work 80b into the NG work disposal box 87, takes out the lamination jig 83 from the lamination jig rack 89, and the lamination jig rack 89 of the lamination jig 83 on which the workpiece 80 is mounted. It is an articulated robot that performs multiple operations such as storage. The robot 100 includes a robot hand 112 that sucks or grips a work object (work 80 or a stacking jig 83), an arm 114 that supports the robot hand 112 at the tip, and a base portion 116 that rotatably supports the arm 114. including. The robot hand 112 includes a suction part 112 a that sucks and holds the workpiece 80 and a gripping part 112 b that grips the stacking jig 83. The arm 114 has a plurality of joints driven by a motor, and can take various postures. The base part 116 is rotatable, and the direction of the arm 114 can be changed.
 ワーク搬送ハンドラ400は、ワーク搬送ステージ200によって所定位置Aに搬送されたワーク80をワーク搭載ステージ300上の積層治具89上に載置する。ワーク搬送ハンドラ400は、ワーク80を吸着して保持する保持部412と、先端に保持部412を備えたアーム部414と、アーム部414を回転移動させるベース部416とを備える。保持部412は吸着によりワーク80を持ち上げたり、落下させたりすることができる。ベース部416は回転可能であり、これによりアーム部414が回転移動し、ワーク80をワーク搬送ステージ200からワーク搭載ステージ300へ移動させることができる。ワーク搬送ハンドラ400は上記の動作を行うためにモータやアクチュエータを備えている。 The workpiece transfer handler 400 places the workpiece 80 transferred to the predetermined position A by the workpiece transfer stage 200 on the stacking jig 89 on the workpiece mounting stage 300. The workpiece transfer handler 400 includes a holding unit 412 that sucks and holds the workpiece 80, an arm unit 414 that includes a holding unit 412 at the tip, and a base unit 416 that rotates and moves the arm unit 414. The holding unit 412 can lift or drop the workpiece 80 by suction. The base portion 416 is rotatable, whereby the arm portion 414 rotates and can move the workpiece 80 from the workpiece transfer stage 200 to the workpiece mounting stage 300. The workpiece transfer handler 400 includes a motor and an actuator for performing the above-described operation.
 ロボット100は、ワーク搬送ステージ200によって所定位置Aに搬送されたワーク80が不良である場合または作業対象のワークでない場合に、ロボットハンド112の吸着部112aを用いてワーク80をワーク搬送ステージ300から吸着して持ち上げ、NGワーク廃棄箱87内に廃棄する。 The robot 100 uses the suction unit 112a of the robot hand 112 to remove the workpiece 80 from the workpiece conveyance stage 300 when the workpiece 80 conveyed to the predetermined position A by the workpiece conveyance stage 200 is defective or is not a work target workpiece. It is adsorbed and lifted and discarded in the NG work disposal box 87.
 また、ロボット100は、ロボットハンド112の把持部112bにより積層治具ラック89の棚から、ワーク80が載置されていない積層治具83を取り出してワーク搭載ステージ300上に配置(供給)する。 Further, the robot 100 takes out the stacking jig 83 on which the work 80 is not placed from the shelf of the stacking jig rack 89 by the gripping part 112b of the robot hand 112, and places (supply) it on the work mounting stage 300.
 ワーク搬送ステージ200上のワーク80に問題がない場合、ワーク搬送ハンドラ400は、ワーク搬送ステージ200上のワーク80を、ワーク搭載ステージ300上の積層治具83上に載置する。 When there is no problem with the workpiece 80 on the workpiece conveyance stage 200, the workpiece conveyance handler 400 places the workpiece 80 on the workpiece conveyance stage 200 on the stacking jig 83 on the workpiece mounting stage 300.
 ロボット100は、ワーク80が載置された積層治具83をロボットハンド112の把持部112bにより持ち上げ、積層治具ラック89の棚に収納する。 The robot 100 lifts the stacking jig 83 on which the workpiece 80 is placed by the grip portion 112 b of the robot hand 112 and stores it in the shelf of the stacking jig rack 89.
 以上のようなロボットシステムにおいて、例えば、ロボット100と、ワーク搬送ステージ200とは干渉領域を有している。よって、一方がその干渉領域で作業をしている場合、他方はその干渉領域で作業を行わないよう、それぞれの動作を制御する必要がある。また、ロボット100とワーク搬送ハンドラ400も干渉領域を有し、一方がその干渉領域で作業をしている場合、他方はその干渉領域で作業を行わないよう、それぞれの動作を制御する必要がある。また、ワーク搬送ステージ200とワーク搬送ハンドラ400も干渉領域を有している。このように、ロボット100と、ワーク搬送ステージ200と、ワーク搬送ハンドラ400とは互いに干渉しないようにそれぞれの動作を制御する必要がある。このため、本ロボットシステムでは、互いに干渉する可能性のある制御機器に対しては後述する干渉チェックを行う。 In the robot system as described above, for example, the robot 100 and the workpiece transfer stage 200 have an interference area. Therefore, when one is working in the interference area, it is necessary to control each operation so that the other does not work in the interference area. In addition, when the robot 100 and the work transfer handler 400 also have an interference area, and one of them is working in the interference area, the other needs to be controlled so that the other does not work in the interference area. . The workpiece transfer stage 200 and the workpiece transfer handler 400 also have an interference area. Thus, it is necessary to control each operation of the robot 100, the workpiece transfer stage 200, and the workpiece transfer handler 400 so as not to interfere with each other. For this reason, this robot system performs an interference check described later for control devices that may interfere with each other.
2.構成
 図2は、実施の形態1におけるロボットシステムの内部構成を示すブロック図である。同図に示すように、ロボットシステムは、ロボット100と、ワーク搬送ステージ200と、ワーク搬送ハンドラ400と、ロボット100を制御するロボットコントローラ110とを備える。さらにロボットシステムは、ロボット100と、ワーク搬送ステージ200と、ワーク搬送ハンドラ400の動作を制御する制御装置としてPLC(programmable logic controller)500を備える。
2. Configuration FIG. 2 is a block diagram showing an internal configuration of the robot system according to the first embodiment. As shown in the figure, the robot system includes a robot 100, a workpiece transfer stage 200, a workpiece transfer handler 400, and a robot controller 110 that controls the robot 100. Further, the robot system includes a PLC (programmable logic controller) 500 as a control device that controls operations of the robot 100, the workpiece transfer stage 200, and the workpiece transfer handler 400.
 なお、以下では、ロボット100(ロボットコントローラ110も含めて)と、ワーク搬送ステージ200と、ワーク搬送ハンドラ400とを総称して「制御機器」という。各制御機器100(ロボットコントローラ110も含めて)、200、400は本発明の「制御機器」の一例である。また、PLC500は本発明の「制御装置」の一例である。通信部55は本発明の「通信部」の一例である。制御部51は本発明の「制御部」の一例である。 In the following, the robot 100 (including the robot controller 110), the workpiece transfer stage 200, and the workpiece transfer handler 400 are collectively referred to as “control device”. Each control device 100 (including the robot controller 110), 200, and 400 is an example of the “control device” in the present invention. The PLC 500 is an example of the “control device” in the present invention. The communication unit 55 is an example of the “communication unit” in the present invention. The control unit 51 is an example of the “control unit” in the present invention.
 PLC500は、ロボット100を制御するためにロボットコントローラ110に対して動作要求を送信する。また、PLC500は、ワーク搬送ステージ200及びワーク搬送ハンドラ400を制御するために、ワーク搬送ステージ200及びワーク搬送ハンドラ400それぞれに対して動作要求を送信する。このため、PLC500は、ロボットコントローラ110と、ネットワーク600を介して接続される。また、PLC500は、ワーク搬送ステージ200と、ネットワーク700を介して接続される。さらに、PLC500は、ワーク搬送ハンドラ400と、ネットワーク800を介して接続される。 The PLC 500 transmits an operation request to the robot controller 110 in order to control the robot 100. Further, the PLC 500 transmits an operation request to each of the workpiece transfer stage 200 and the workpiece transfer handler 400 in order to control the workpiece transfer stage 200 and the workpiece transfer handler 400. For this reason, the PLC 500 is connected to the robot controller 110 via the network 600. The PLC 500 is connected to the workpiece transfer stage 200 via the network 700. Furthermore, the PLC 500 is connected to the work transfer handler 400 via the network 800.
 特に、本実施形態のネットワーク600は、互いに通信周期が異なる2つの通信プロトコルに準拠した通信を行う。具体的には、ネットワーク600は、通信周期が不定周期であるEthernet規格に準拠した通信と、通信周期が一定周期であるEthernet IP規格に準拠した通信を行う。 In particular, the network 600 according to the present embodiment performs communication based on two communication protocols having different communication cycles. Specifically, the network 600 performs communication conforming to the Ethernet standard whose communication cycle is indefinite, and communication conforming to the Ethernet IP standard whose communication cycle is a constant cycle.
 PLC500は、PLC500の動作を制御する制御部51と、記憶部52と、通信部55とを含む。制御部51はCPUを含み、所定のプログラムを実行することで所定の機能を実現する。記憶部52は、半導体メモリ素子やハードディスク等で構成される記録媒体であり、制御部51で実行するプログラムやデータを格納している。通信部55は、ネットワーク600を介して通信を行うためのインタフェース回路を含む。通信部55は2つの通信プロトコル(Ethernet、Ethernet IP)に準拠した通信を行う。 The PLC 500 includes a control unit 51 that controls the operation of the PLC 500, a storage unit 52, and a communication unit 55. The control unit 51 includes a CPU and realizes a predetermined function by executing a predetermined program. The storage unit 52 is a recording medium composed of a semiconductor memory element, a hard disk, and the like, and stores programs and data executed by the control unit 51. The communication unit 55 includes an interface circuit for performing communication via the network 600. The communication unit 55 performs communication conforming to two communication protocols (Ethernet, Ethernet IP).
 ロボット100はワーク80の廃棄や積層治具の収納等所定の作業を行う装置である。ロボット100は、ロボットコントローラ110と通信を行うための通信部17と、アーム114を駆動するためのモータやアクチュエータ等を含む駆動部19とを含む。通信部17は、ネットワーク600を介して通信を行うための回路を含む。 The robot 100 is a device that performs predetermined operations such as discarding the workpiece 80 and storing the stacking jig. The robot 100 includes a communication unit 17 for communicating with the robot controller 110 and a drive unit 19 including a motor, an actuator, and the like for driving the arm 114. The communication unit 17 includes a circuit for performing communication via the network 600.
 ロボットコントローラ110は、PLC500の指示にしたがいロボット100の動作を制御する。ロボットコントローラ110は、ロボット100の動作を制御する制御部11と、記憶部12と、通信部15とを含む。制御部11はCPUを含み、所定のプログラムを実行することで所定の機能を実現する。記憶部12は半導体メモリ素子やハードディスク等で構成される記録媒体であり、制御部11で実行するプログラムやデータを格納している。通信部15は、ネットワーク600を介して通信を行うための回路を含む。通信部15は2つの通信プロトコル(Ethernet、Ethernet IP)に準拠した通信を行う。 The robot controller 110 controls the operation of the robot 100 according to instructions from the PLC 500. The robot controller 110 includes a control unit 11 that controls the operation of the robot 100, a storage unit 12, and a communication unit 15. The control unit 11 includes a CPU and realizes a predetermined function by executing a predetermined program. The storage unit 12 is a recording medium composed of a semiconductor memory element, a hard disk, and the like, and stores programs and data executed by the control unit 11. The communication unit 15 includes a circuit for performing communication via the network 600. The communication unit 15 performs communication conforming to two communication protocols (Ethernet, Ethernet IP).
 ワーク搬送ステージ200は、PLC500の指示にしたがい、ワーク80を搬送する装置である。ワーク搬送ステージ200は、通信部25と、ワークを搭載したステージを移動させるモータやアクチュエータ等を含む駆動部22とを含む。通信部25は、ネットワーク700を介して通信を行うための回路を含む。通信部25は、サーボドライバに特化したMechatroLink通信を行う。 The workpiece transfer stage 200 is a device that transfers the workpiece 80 in accordance with instructions from the PLC 500. The workpiece transfer stage 200 includes a communication unit 25 and a drive unit 22 including a motor, an actuator, and the like that move the stage on which the workpiece is mounted. The communication unit 25 includes a circuit for performing communication via the network 700. The communication unit 25 performs MetroLink communication specialized for the servo driver.
 ワーク搬送ハンドラ400は、PLC500の指示にしたがい、ワーク80をワーク搬送ステージ200からワーク搭載ステージ300へ移動させる装置である。ワーク搬送ハンドラ400は、通信部45と、アーム414を回転移動させるモータやアクチュエータ等を含む駆動部42とを含む。通信部45は、ネットワーク800を介して通信を行うための回路を含む。通信部45は、サーボドライバに特化したMechatroLink通信を行う。 The workpiece transfer handler 400 is a device that moves the workpiece 80 from the workpiece transfer stage 200 to the workpiece mounting stage 300 in accordance with an instruction from the PLC 500. The work transfer handler 400 includes a communication unit 45 and a drive unit 42 including a motor, an actuator, and the like that rotate and move the arm 414. The communication unit 45 includes a circuit for performing communication via the network 800. The communication unit 45 performs MetroLink communication specialized for the servo driver.
3.動作
 以上のように構成されるロボットシステムにおける動作を説明する。
3. Operation The operation of the robot system configured as described above will be described.
 PLC500は、制御機器100、200、400毎に作業手順を指定するデータを記憶部52に格納しており、このデータを順次読み出し、そのデータに対応する処理を実行することにより各制御機器100、200、400に所定の動作(作業)を実行させる。また、PLC500は、各制御機器100、200、400について、干渉する可能性がある他の制御機器及び干渉する可能性がある動作を把握している。 The PLC 500 stores data for specifying a work procedure for each of the control devices 100, 200, and 400 in the storage unit 52. The PLC 500 sequentially reads out this data and executes processing corresponding to the data. 200 and 400 are caused to execute a predetermined operation (work). Further, the PLC 500 grasps each control device 100, 200, 400 with other control devices that may interfere with each other and operations that may interfere with each other.
 PLC500は、干渉チェックをクリアし、且つ、各制御機器100、200、400の各動作について所定の動作条件が満たされたときに、各制御機器100、200、400に対してその動作の実行を要求する。PLC500は、ネットワーク600を介して、ロボットコントローラ110及び制御機器200、400に対して、動作を指示するための動作要求信号を送信する。動作要求信号を受信したロボットコントローラ110及び制御機器200、400は、ネットワーク600を介して、2つの通信プロトコルに準拠した通信で、PLC500に対して、動作要求信号を正常に受信した旨を示すACK信号を送信する。PLC500は、動作要求信号に対するACK信号を受信しなかった場合、動作要求信号を再送してもよい。または、ACK信号を受信しなかった場合、通信異常等の不測の事態が発生したと考えられるので、PLC500は各制御機器の動作を停止するように制御してもよい。 The PLC 500 clears the interference check and executes the operation for each control device 100, 200, 400 when a predetermined operation condition is satisfied for each operation of each control device 100, 200, 400. Request. The PLC 500 transmits an operation request signal for instructing the operation to the robot controller 110 and the control devices 200 and 400 via the network 600. The robot controller 110 and the control devices 200 and 400 that have received the operation request signal transmit an ACK indicating that the operation request signal has been normally received to the PLC 500 through communication based on the two communication protocols via the network 600. Send a signal. When the PLC 500 does not receive the ACK signal for the operation request signal, the PLC 500 may retransmit the operation request signal. Alternatively, when the ACK signal is not received, it is considered that an unexpected situation such as a communication abnormality has occurred, so the PLC 500 may control the operation of each control device to stop.
 ロボットコントローラ110及び制御機器200、400は所定のタイミングで、各制御機器の状態(移動中/停止中)を示すステータス信号をPLC500に送信する。ステータス信号は、制御機器100、200、400の位置を示す情報や、制御機器100、200、400が移動中か否かを示す情報を含む。制御機器100のステータス信号は、ネットワーク600を介して2つの通信プロトコルに準拠した通信によりPLC500に送信される。制御機器200のステータス信号は、ネットワーク700を介してMechatroLink通信によりPLC500に送信される。制御機器400のステータス信号は、ネットワーク800を介してMechatroLink通信によりPLC500に送信される。 The robot controller 110 and the control devices 200 and 400 transmit a status signal indicating the state (moving / stopped) of each control device to the PLC 500 at a predetermined timing. The status signal includes information indicating the positions of the control devices 100, 200, and 400 and information indicating whether the control devices 100, 200, and 400 are moving. The status signal of the control device 100 is transmitted to the PLC 500 via the network 600 by communication conforming to two communication protocols. The status signal of the control device 200 is transmitted to the PLC 500 through MetroLink communication via the network 700. The status signal of the control device 400 is transmitted to the PLC 500 via MetroLink communication via the network 800.
 ここで、ある制御機器Aに関して他の制御機器と干渉する可能性がある動作Xについては、干渉を防止するため、PLC500は、他の機器の動作が停止した後に、その制御機器Aの動作Xを開始する。このため、PLC500は、各制御機器100、200、400のステータス信号を受信し、ステータス信号に基づき制御機器が移動中であるか停止中であるかを判断し、干渉チェックを行う。 Here, with respect to an operation X that may interfere with another control device with respect to a certain control device A, the PLC 500 performs an operation X of the control device A after the operation of the other device stops in order to prevent interference. To start. Therefore, the PLC 500 receives the status signal of each control device 100, 200, 400, determines whether the control device is moving or stopped based on the status signal, and performs an interference check.
 以下、図3を用いて、ロボットシステムにおける制御機器間の干渉防止に関する動作を説明する。図3は、ロボット100すなわちロボットコントローラ110からPLC500へのステータス信号の伝達を説明した図である。 Hereinafter, the operation related to prevention of interference between control devices in the robot system will be described with reference to FIG. FIG. 3 is a diagram illustrating transmission of a status signal from the robot 100, that is, the robot controller 110 to the PLC 500.
 図3の例では、時刻t1より前ではロボット100が移動中であり、時刻t1にてロボット100が停止した場合を想定している。この場合、時刻t1において、PLC500は、事前にロボット100から受信したステータス信号に基づきロボット100が移動中であると判断し、ロボット100と干渉する可能性のある他の制御機器を待機させている。 In the example of FIG. 3, it is assumed that the robot 100 is moving before the time t1, and the robot 100 stops at the time t1. In this case, at time t1, the PLC 500 determines that the robot 100 is moving based on the status signal received from the robot 100 in advance, and waits for another control device that may interfere with the robot 100. .
 時刻t1でロボット100の移動が停止すると、ロボットコントローラ110は、ロボット100が停止したことを示すステータス信号(すなわち、他の制御機器の駆動の許可を示す信号)をネットワーク600を介してPLC500に送信する。このとき、ステータス信号は時刻t1の一周期後の時刻t2にて送信される。 When the movement of the robot 100 stops at time t1, the robot controller 110 transmits a status signal indicating that the robot 100 has stopped (that is, a signal indicating permission to drive other control devices) to the PLC 500 via the network 600. To do. At this time, the status signal is transmitted at time t2 after one cycle of time t1.
 ネットワーク600上において、Ethernet規格に準拠した通信によるステータス信号は、時刻t3に認識され、一周期後の時刻t4にPLC500に送信される(図3(B)参照)。そのため、PLC500は、Ethernet規格に準拠した通信によれば、時刻t7でステータス信号の内容を把握する(図3における破線の矢印参照)。すなわち、PLC500は、Ethernet規格に準拠した通信により、時刻t7のタイミングで、ロボット100の状態が移動中から停止に切り替わったことを認識する。 On the network 600, a status signal by communication conforming to the Ethernet standard is recognized at time t3 and transmitted to the PLC 500 at time t4 after one cycle (see FIG. 3B). Therefore, the PLC 500 grasps the content of the status signal at time t7 according to the communication conforming to the Ethernet standard (see the broken line arrow in FIG. 3). In other words, the PLC 500 recognizes that the state of the robot 100 has been switched from being moved to being stopped at the time t7 through communication conforming to the Ethernet standard.
 一方、Ethernet IP規格に準拠した通信においては、そのステータス信号は時刻t5に認識され、次の周期の時刻t6にPLC500に送信される(図3(C)参照)。そして、PLC500は時刻t8でそのステータス信号の内容を把握する(図3における実線の矢印参照)。すなわち、PLC500は、時刻t8のタイミングで、ロボット100の状態が移動中から停止に切り替わったことを認識する。 On the other hand, in communication conforming to the Ethernet IP standard, the status signal is recognized at time t5 and transmitted to the PLC 500 at time t6 of the next cycle (see FIG. 3C). Then, PLC 500 grasps the contents of the status signal at time t8 (see the solid arrow in FIG. 3). That is, the PLC 500 recognizes that the state of the robot 100 has changed from moving to stopping at the timing of time t8.
 このように、2つの通信プロトコルの通信周期が異なるため、ロボット100から送信されたステータス信号は通信プロトコルによりPLC500へ到着するタイミング(時刻t7、t8)がずれている。 As described above, since the communication cycles of the two communication protocols are different, the timing (time t7, t8) at which the status signal transmitted from the robot 100 arrives at the PLC 500 is shifted by the communication protocol.
 本実施の形態のPLC500は、2つの通信プロトコルによる通信の双方から受信したステータス信号に基づき干渉チェックを行う。すなわち、PLC500は、2つの通信プロトコルによる通信の双方からロボット100が停止した旨を示すステータス信号を受信したときに、ロボット100が停止したと判断し、他の制御機器に対する動作を指示するように構成されている。 The PLC 500 according to the present embodiment performs an interference check based on the status signals received from both of the communications using the two communication protocols. That is, the PLC 500 determines that the robot 100 has stopped when receiving a status signal indicating that the robot 100 has stopped from both of the communications using the two communication protocols, and instructs the other control devices to operate. It is configured.
 すなわち、PLC500は、2つの通信プロトコルによる通信のうちの一方のみにおいてステータス信号を受信してもロボット100が停止したと判断しない。PLC500は、ロボット100が停止したと判断したときに、他の制御機器の動作を許可する。さらに、他の制御機器が所定の動作条件を満たしているときに、PLC500は、他の制御機器に対して動作要求を送信する。このように、2つの通信プロトコルによる通信の双方から受信したステータス信号に基づき干渉チェックを行うことで、一方の通信によるステータス信号のみに基づき判断する場合よりも、ロボット100が停止であるとの判断が確定するタイミングがΔTだけ遅延する。このため、ロボット100及びそれと干渉可能性のある他の制御機器を停止させている時間がより長くなる(ΔTだけ長くなり)、制御機器間の干渉の可能性をより低減することが可能となる。 That is, the PLC 500 does not determine that the robot 100 has stopped even if the status signal is received in only one of the communications using the two communication protocols. When it is determined that the robot 100 has stopped, the PLC 500 permits the operation of other control devices. Furthermore, when another control device satisfies a predetermined operation condition, the PLC 500 transmits an operation request to the other control device. In this way, by performing the interference check based on the status signals received from both of the communications based on the two communication protocols, it is determined that the robot 100 is stopped, as compared with the case where the judgment is based only on the status signal based on the one communication Is delayed by ΔT. For this reason, the time during which the robot 100 and other control devices that may interfere with the robot 100 are stopped becomes longer (longer by ΔT), and the possibility of interference between the control devices can be further reduced. .
 図4は、上述したPLC500において実行される干渉防止処理をフローチャートで示した図である。本フローは、当初ロボット100が移動中であり、その後停止した場合におけるPLC500の制御を示している。すなわち、本処理の開始時点において、PLC500はロボットコントローラ110から、ロボット100が移動中であるために「移動中」を示すステータス信号を受信しているとする。このため、PLC500は当初、ロボット100と干渉する可能性のある他の制御機器200、400の動作を不許可とし、他の制御機器を待機(動作を停止)させている(S11)。 FIG. 4 is a flowchart showing the interference prevention process executed in the PLC 500 described above. This flow shows the control of the PLC 500 when the robot 100 is initially moving and then stops. That is, it is assumed that the PLC 500 has received a status signal indicating “moving” from the robot controller 110 at the start of this process because the robot 100 is moving. For this reason, the PLC 500 initially disables the operations of the other control devices 200 and 400 that may interfere with the robot 100 and waits (stops the operation) for the other control devices (S11).
 その後、ロボット100が動作を停止すると、ロボットコントローラ110はネットワーク600を介して、ロボット100が「停止中」であることを示すステータス信号をPLC500に送信する。PLC500は、ロボットコントローラ110から、2つの通信プロトコルによる通信の双方を介して、「停止中」を示すステータス信号を受信すると(S12でYES)、ロボット100と干渉する他の制御機器の動作を許可する(S13)。その際、他の制御機器が所定の動作条件を満たしている場合、PLC500は他の制御機器に対して動作要求(動作指示)を送信する(S14)。 Thereafter, when the robot 100 stops operating, the robot controller 110 transmits a status signal indicating that the robot 100 is “stopped” to the PLC 500 via the network 600. When the PLC 500 receives a status signal indicating “stopped” from both of the communication using the two communication protocols from the robot controller 110 (YES in S12), the PLC 500 permits the operation of another control device that interferes with the robot 100. (S13). At this time, if the other control device satisfies the predetermined operation condition, the PLC 500 transmits an operation request (operation instruction) to the other control device (S14).
 なお、上記の例では、ロボット100から受信したステータス信号に基づくPLC500の動作について説明したが、ロボット100以外の制御機器200、400に対しても上記のPLC500の動作は同様に適用される。すなわち、PLC500は、制御機器200、400からもステータス信号を受信し、ステータス信号に基づき制御機器200、400の停止状態を判断することで、制御機器200、400と干渉する可能性のある他の制御機器の動作制御を行う。 In the above example, the operation of the PLC 500 based on the status signal received from the robot 100 has been described. However, the operation of the PLC 500 is similarly applied to the control devices 200 and 400 other than the robot 100. In other words, the PLC 500 receives the status signal from the control devices 200 and 400, and determines the stop state of the control devices 200 and 400 based on the status signal, so that the PLC 500 may interfere with the control devices 200 and 400. Controls the operation of control equipment.
 以上のように、本実施の形態では、PLC500は、通信周期の異なる通信プロトコルによる通信を介して、一の制御機器からステータス信号を受信する。そして、PLC500は、それぞれの通信プロトコルによる通信で受信したステータス信号がともに「停止中」となったときに、一の制御機器と干渉する可能性のある他の制御機器の駆動を許可する。このように異なる通信周期を持つ2つの通信プロトコルによる通信の双方から「停止中」を示すステータス信号を受けたときに、他の制御機器の駆動を許可するようにすることで、他の制御機器を駆動するタイミングをより遅らせることができる。すなわち、ロボット100及び他の制御機器を停止しておく期間をより長くすることができることから、ロボット100と他の制御機器との干渉する危険性を低減することができる。 As described above, in the present embodiment, the PLC 500 receives a status signal from one control device via communication using communication protocols having different communication cycles. Then, the PLC 500 permits driving of other control devices that may interfere with one control device when both of the status signals received through communication using the respective communication protocols are “stopped”. In this way, when the status signal indicating “stopped” is received from both of the two communication protocols having different communication cycles, the driving of the other control device is permitted, thereby allowing the other control device to The timing of driving can be delayed further. That is, since the period during which the robot 100 and other control devices are stopped can be extended, the risk of interference between the robot 100 and other control devices can be reduced.
(実施の形態2)
 本発明に係るロボットシステムの別の実施の形態を説明する。本実施の形態におけるロボットシステムの構成(図1、図2参照)は実施の形態1のものと同じである。実施の形態1では、PLC500と制御機器100の間は、2つの通信プロトコルすなわち、Ethernet規格とEthernet IP規格とを介して通信を行っていた。これに対して、本実施の形態では、1つの通信プロトコル(本例では、Ethernet IP規格)のみを用いる。
(Embodiment 2)
Another embodiment of the robot system according to the present invention will be described. The configuration of the robot system in the present embodiment (see FIGS. 1 and 2) is the same as that in the first embodiment. In the first embodiment, communication is performed between the PLC 500 and the control device 100 via two communication protocols, that is, the Ethernet standard and the Ethernet IP standard. In contrast, in the present embodiment, only one communication protocol (in this example, Ethernet IP standard) is used.
 PLC500と各制御機器100(110)、200、400の間では、それぞれネットワーク600、700、800を介して動作要求信号及びステータス信号の送受信が行われる。本実施の形態では、PLC500は、機器間の干渉チェックにおいて、一の制御機器100、200、400が停止中であることを示すステータス信号を受信したときに、その受信したタイミングから一定時間(ΔT1)経過後に、その一の制御機器と干渉する可能性のある他の制御機器に対して動作を指示する。例えば、ロボットコントローラ110から、ロボット100が停止中であることを示すステータス信号を受信した場合、その受信したタイミングから一定時間(ΔT1)経過した後に、ロボット100と干渉する可能性のある他の制御機器200、400に対して動作を指示する。 An operation request signal and a status signal are transmitted and received between the PLC 500 and the control devices 100 (110), 200, and 400 via the networks 600, 700, and 800, respectively. In the present embodiment, when the PLC 500 receives a status signal indicating that one control device 100, 200, 400 is stopped in the interference check between devices, the PLC 500 performs a certain time (ΔT1) from the received timing. ) After the operation, the operation is instructed to another control device that may interfere with the one control device. For example, when a status signal indicating that the robot 100 is stopped is received from the robot controller 110, another control that may interfere with the robot 100 after a certain time (ΔT1) has elapsed from the received timing. An operation is instructed to the devices 200 and 400.
 以下、図5を用いて、本実施の形態におけるロボットシステムにおける制御機器間の干渉チェックに関する動作を説明する。図5は、ロボット100とPLC500の間のステータス信号の伝達を説明した図である。 Hereinafter, the operation related to the interference check between the control devices in the robot system according to the present embodiment will be described with reference to FIG. FIG. 5 is a diagram illustrating transmission of status signals between the robot 100 and the PLC 500.
 図5に示す例は、時刻t1より前ではロボット100が移動中であり、時刻t1にてロボット100が停止した場合を想定している。この場合、時刻t1において、PLC500は、事前にロボット100から受信したステータス信号に基づきロボット100が移動中であると判断し、ロボット100と干渉する可能性のある他の制御機器を待機させている。 The example shown in FIG. 5 assumes a case where the robot 100 is moving before the time t1 and the robot 100 stops at the time t1. In this case, at time t1, the PLC 500 determines that the robot 100 is moving based on the status signal received from the robot 100 in advance, and waits for another control device that may interfere with the robot 100. .
 時刻t1でロボット100の移動が停止すると、ロボット100に対するロボットコントローラ110は、ロボット100が停止したことを示すステータス信号(すなわち、他の制御機器の駆動の許可を示す信号)をネットワーク600(Ethernet IP規格に準拠)を介してPLC500に送信する(図5(A)参照)。このとき、ステータス信号は時刻t1の一周期後の時刻t2にて送信される。 When the movement of the robot 100 stops at time t1, the robot controller 110 for the robot 100 sends a status signal indicating that the robot 100 has stopped (that is, a signal indicating permission to drive other control devices) to the network 600 (Ethernet IP). To the PLC 500 via the standard) (see FIG. 5A). At this time, the status signal is transmitted at time t2 after one cycle of time t1.
 このステータス信号は、ネットワーク600において時刻t5に認識され、一周期後の時刻t5にPLC500に送信される(図5(B)(C)参照)。そのため、PLC500は時刻t8でステータス信号の変化を把握する(図6における実線矢印参照)。すなわち、PLC500は、時刻t8のタイミングで、ロボット100の状態が移動中から停止に切り替わったことを認識する。 The status signal is recognized at time t5 in the network 600 and transmitted to the PLC 500 at time t5 after one cycle (see FIGS. 5B and 5C). Therefore, the PLC 500 grasps the change of the status signal at time t8 (see the solid arrow in FIG. 6). That is, the PLC 500 recognizes that the state of the robot 100 has changed from moving to stopping at the timing of time t8.
 そして、PLC500は、ネットワーク600からロボット100が停止した旨を示すステータス信号を受信したタイミング(t8)から所定遅延時間ΔT1だけ遅延したタイミング(t10)で他の制御機器に対する動作を許可する。所定遅延時間ΔT1だけ遅延したタイミング(t10)において、他の制御機器に対する所定の動作条件が満たされている場合、PLC500は他の制御機器に対して動作を指示する。 The PLC 500 permits the operation to other control devices at a timing (t10) delayed by a predetermined delay time ΔT1 from the timing (t8) at which the status signal indicating that the robot 100 is stopped from the network 600. When the predetermined operation condition for the other control device is satisfied at the timing (t10) delayed by the predetermined delay time ΔT1, the PLC 500 instructs the other control device to operate.
 このように、制御機器の停止を示すステータス信号を受信したタイミングから所定時間遅延したタイミングで他の制御機器に対する動作を許可する。これにより、ロボット100及びそれと干渉可能性のある他の制御機器を停止させている時間をより長くでき(ΔT1だけ長くなる)、制御機器間の干渉の可能性をより低減することが可能となる。所定遅延時間ΔT1は例えば、Ethernet IPの通信周期の整数倍(例えば4~5倍)に設定してもよい。 In this way, the operation for other control devices is permitted at a timing delayed by a predetermined time from the timing at which the status signal indicating the stop of the control device is received. As a result, the time during which the robot 100 and other control devices that may possibly interfere with the robot 100 are stopped can be lengthened (longer by ΔT1), and the possibility of interference between the control devices can be further reduced. . For example, the predetermined delay time ΔT1 may be set to an integral multiple (for example, 4 to 5 times) of the communication period of EthernetEIP.
 図6は、上述したPLC500において実行される干渉防止処理をフローチャートで示した図である。本フローは、当初ロボット100が移動中であり、その後停止した場合におけるPLC500の制御を示している。すなわち、本処理の開始時点において、PLC500はロボットコントローラ110から、ロボット100が移動中であるために「移動中」を示すステータス信号を受信しているとする。このため、PLC500は当初、ロボット100と干渉する他の制御機器の動作を不許可とする(S21)。これにより、他の制御機器を待機(動作を停止)させている。 FIG. 6 is a flowchart showing the interference prevention process executed in the PLC 500 described above. This flow shows the control of the PLC 500 when the robot 100 is initially moving and then stops. In other words, it is assumed that the PLC 500 has received a status signal indicating “moving” from the robot controller 110 at the start of this processing because the robot 100 is moving. For this reason, the PLC 500 initially disables the operation of other control devices that interfere with the robot 100 (S21). As a result, other control devices are put on standby (stopping operation).
 その後、ロボット100が動作を停止すると、ロボットコントローラ110は、ネットワーク600を介して、ロボット100が「停止中」であることを示すステータス信号をPLC500に対して送信する。PLC500は、ロボットコントローラ110から「停止中」を示すステータス信号を受信すると(S22でYES)、そのステータス信号の受信から所定時間(ΔT1)だけ経過したときに(S23)、ロボット100と干渉する可能性のある他の制御機器の動作を許可する(S24)。そして、PLC500は、この時点で所定の動作条件を満たしている他の制御機器に対して動作要求(動作指示)を送信する(S25)。 Thereafter, when the operation of the robot 100 stops, the robot controller 110 transmits a status signal indicating that the robot 100 is “stopped” to the PLC 500 via the network 600. When receiving a status signal indicating “stopped” from the robot controller 110 (YES in S22), the PLC 500 may interfere with the robot 100 when a predetermined time (ΔT1) has elapsed since the reception of the status signal (S23). The operation of another control device having a characteristic is permitted (S24). Then, the PLC 500 transmits an operation request (operation instruction) to another control device that satisfies the predetermined operation condition at this time (S25).
 なお、上記の例では、ロボット100から受信したステータス信号に基づくPLC500の動作について説明したが、ロボット100以外の制御機器200、400に対しても上記のPLC500の動作は同様に適用される。また、本実施の形態の上記の例では、PLC500と制御機器100の間のデータ通信をEthernet IP規格に準拠して行う例を説明したが、Ethernet規格に準拠して行っても良い。 In the above example, the operation of the PLC 500 based on the status signal received from the robot 100 has been described. However, the operation of the PLC 500 is similarly applied to the control devices 200 and 400 other than the robot 100. In the above example of the present embodiment, the example in which the data communication between the PLC 500 and the control device 100 is performed based on the Ethernet IP standard has been described. However, the data communication may be performed based on the Ethernet standard.
 以上のように、本実施の形態では、PLC500は、移動中の一の制御機器からステータス信号を受信すると、受信したタイミングから所定時間(ΔT1)経過後に他の制御機器の駆動を許可する。これにより、ロボット100及び他の制御機器を停止しておく期間をより長くすることができることから、ロボット100と他の制御機器との干渉を防止できる。 As described above, in the present embodiment, when receiving a status signal from one moving control device, PLC 500 permits driving of another control device after a predetermined time (ΔT1) has elapsed from the received timing. As a result, the period during which the robot 100 and other control devices are stopped can be lengthened, so that interference between the robot 100 and other control devices can be prevented.
(他の実施の形態)
 上記の実施の形態では、ロボット100は積層治具83の供給、不適切ワーク80bの廃棄等の作業を行ったが、ロボットが実施する作業はこれらに限定されるものではなく、他の種類の作業を行ってもよい。
(Other embodiments)
In the above embodiment, the robot 100 performed operations such as supplying the stacking jig 83 and discarding the inappropriate work 80b. However, the operations performed by the robot are not limited to these, and other types of operations are performed. Work may be performed.
 上記の実施の形態では、二次電池の積層装置におけるロボットシステムを説明したが、上記の実施の形態で開示した干渉チェックに関する思想は、他の装置に対するロボットシステムに対しても適用することができる。 In the above embodiment, the robot system in the secondary battery stacking apparatus has been described. However, the idea related to the interference check disclosed in the above embodiment can also be applied to the robot system for other apparatuses. .
 上記の実施の形態1、2では、少なくとも1つの通信プロトコルによる通信を介して「停止中」を示すステータス信号を受信したタイミングから、その受信タイミングよりも後のタイミングを得る手段の一例を示した。しかし、他の手段により、「停止中」を示すステータス信号を受信したタイミングよりも後のタイミングを得るようにしてもよい。その手段によっても、他の制御機器の動作開始タイミングを遅延でき、干渉し得る複数の制御機器をともに停止している期間をより長くでき、制御機器間で干渉する可能性を低減できる。 In the first and second embodiments described above, an example of means for obtaining a timing later than the reception timing from the timing at which the status signal indicating “stopped” is received via communication using at least one communication protocol has been described. . However, the timing after the timing at which the status signal indicating “stopped” is received may be obtained by other means. Also by this means, the operation start timing of other control devices can be delayed, the period during which a plurality of control devices that can interfere with each other is stopped can be lengthened, and the possibility of interference between control devices can be reduced.
 上記の実施の形態では、干渉チェックは、制御機器が停止中であるという条件に基づき行われたが、他の条件を含めて行ってもよい。例えば、干渉チェックの条件に、一の制御機器の位置と、それと干渉する可能性のある他の制御機器との位置関係を含めても良い。 In the above embodiment, the interference check is performed based on the condition that the control device is stopped. However, the interference check may be performed including other conditions. For example, the condition of the interference check may include a positional relationship between the position of one control device and another control device that may interfere with the control device.
 上記の実施の形態では、通信プロトコルとしてEthernet規格およびEthernet IP規格を採用したが、通信プロトコルはこれらに限定されるものではなく、他の種類の規格を採用してもよい。図7は、FAネットワークに使用される通信プロトコルを例示した図である。上記の実施の形態で示した通信プロトコルに代えて、同図に示すいずれかの通信プロトコル(例えば、CC-Link, MechatroLink)を採用してもよい。例えば、実施の形態1においては、図7に示す複数の規格の中から通信周期の異なる任意の2つの規格を選択して使用することができる。 In the above embodiment, the Ethernet standard and the Ethernet IP standard are adopted as the communication protocol, but the communication protocol is not limited to these, and other types of standards may be adopted. FIG. 7 is a diagram illustrating a communication protocol used for the FA network. Instead of the communication protocol shown in the above embodiment, any one of the communication protocols shown in the figure (for example, CC-Link, MechatroLink) may be adopted. For example, in the first embodiment, any two standards having different communication cycles can be selected and used from the plurality of standards shown in FIG.
 上記の実施の形態では、PLC及び各制御機器の制御部51、11、・・・は、ハードウェアとソフトウェアの協働により実現されるとしたが、所定の機能を実現するように専用に設計されたハードウェア回路のみで実現してもよい。すなわち、制御部51、11、・・・は、CPUのみならず、種々のデバイス、例えば、MPU、DSP、FPGA、ASIC等で構成することができる。 In the above embodiment, the control units 51, 11,... Of the PLC and each control device are realized by cooperation of hardware and software, but are designed exclusively to realize a predetermined function. It may be realized only by the hardware circuit that is provided. That is, the control units 51, 11,... Can be configured not only by the CPU but also by various devices such as an MPU, DSP, FPGA, ASIC, and the like.
(本開示)
 上記の実施の形態において、以下の制御方法及び制御装置の思想が開示されている。
(This disclosure)
In the above-described embodiment, the following control method and idea of the control device are disclosed.
 (1)上記の実施の形態において、独立に作業を行い互いに干渉領域を有する複数の制御機器(100、200、400)の動作を制御する制御方法が開示される。
 その制御方法は、
  複数の制御機器の中の一の制御機器(100(110))から、一の制御機器の動作状態を示すステータス信号を、少なくとも1つの通信プロトコルを介して制御装置(500)に送信するステップと、
  制御装置(500)によって、少なくとも1つの通信プロトコルに準拠した通信を介して一の制御機器(100)から、その一の制御機器の動作の停止を示すステータス信号を受信したときに、当該ステータス信号を受信したタイミングから遅延したタイミングにおいて、その一の制御機器と干渉する可能性のある他の制御機器の動作を許可するステップと、を含む。
(1) In the above embodiment, a control method is disclosed in which operations are performed independently and operations of a plurality of control devices (100, 200, 400) having interference areas are controlled.
The control method is
Transmitting a status signal indicating an operation state of one control device from one control device (100 (110)) of the plurality of control devices to the control device (500) via at least one communication protocol; ,
When the control device (500) receives a status signal indicating the stop of the operation of the one control device from the one control device (100) via communication conforming to at least one communication protocol, the status signal Permitting the operation of another control device that may interfere with the one control device at a timing delayed from the timing at which the signal is received.
 この制御方法によれば、他の制御機器の動作開始タイミングが遅延され、一の制御機器と、その一の制御機器と干渉する可能性のある他の制御機器とがともに停止している期間がより長くなることから、制御機器間で干渉する可能性を低減できる。 According to this control method, the operation start timing of another control device is delayed, and there is a period in which one control device and another control device that may interfere with the one control device are both stopped. Since it becomes longer, the possibility of interference between control devices can be reduced.
 (2)(1)の制御方法において、ステータス信号を送信するステップは、一の制御機器から、一の制御機器の動作状態を示すステータス信号を、通信周期の異なる2つの通信プロトコルのそれぞれに準拠した通信を介して制御装置(500)に送信してもよい。制御装置(500)は、2つの通信プロトコルのそれぞれに準拠した通信の双方から、一の制御機器の動作の停止を示すステータス信号を受信したときに他の制御機器の動作を許可するようにしてもよい。このように、2つの異なるネットワークの双方からステータス信号を受信することを待つことで、他の制御機器の動作開始タイミングを遅らせることができ、一の制御機器と他の制御機器とがともに停止している期間がより長くなるため、制御機器間で干渉する可能性を低減できる。 (2) In the control method of (1), in the step of transmitting the status signal, the status signal indicating the operation state of the one control device is compliant with each of two communication protocols having different communication cycles. You may transmit to a control apparatus (500) via the communicated. The control device (500) permits the operation of the other control device when receiving the status signal indicating the stop of the operation of the one control device from both of the communications compliant with the two communication protocols. Also good. In this way, by waiting to receive status signals from both of two different networks, the operation start timing of other control devices can be delayed, and one control device and the other control device both stop. Therefore, the possibility of interference between the control devices can be reduced.
 (3)(2)の制御方法において、2つの通信プロトコルの一方は通信周期が一定の通信プロトコルであり、2つの通信プロトコルの他方は通信周期が不定の通信プロトコルであってもよい。これにより、一方の通信プロトコルによるステータス信号の受信タイミングと、他方の通信プロトコルによるステータス信号の受信タイミングとをずらすことができる。これにより、いずれか遅い方のタイミングまで、他の制御機器の動作開始タイミングを遅らせることができ、一の制御機器と、その一の制御機器と干渉する可能性のある他の制御機器とがともに停止している期間をより長くできるため、制御機器間で干渉する可能性を低減できる。 (3) In the control method of (2), one of the two communication protocols may be a communication protocol having a constant communication cycle, and the other of the two communication protocols may be a communication protocol having an indefinite communication cycle. Thereby, the reception timing of the status signal by one communication protocol and the reception timing of the status signal by the other communication protocol can be shifted. As a result, the operation start timing of the other control device can be delayed until the later timing, and one control device and another control device that may interfere with the one control device are both Since the stop period can be made longer, the possibility of interference between control devices can be reduced.
 (4)(3)の制御方法において、一方の通信プロトコルはEthernet IPであり、他方の通信プロトコルはEthernetであってもよい。具体的にこのように設定することで、一方の通信プロトコルによるステータス信号の受信タイミングと、他方の通信プロトコルによるステータス信号の受信タイミングとのいずれか遅い方のタイミングとをずらすことができる。 (4) In the control method of (3), one communication protocol may be Ethernet IP, and the other communication protocol may be Ethernet. Specifically, by setting in this way, it is possible to shift the status signal reception timing according to one communication protocol and the status signal reception timing according to the other communication protocol, whichever is later.
 (5)(1)の制御方法において、制御装置(500)は、少なくとも1つの通信プロトコルを介して一の制御機器から一の制御機器の動作の停止を示すステータス信号を受信したタイミングから所定時間(ΔT1)だけ遅延したタイミングにおいて他の制御機器の動作を許可してもよい。これによっても、他の制御機器の動作開始タイミングを遅らせることができ、一の制御機器と、その制御機器と干渉する可能性のある他の制御機器とがともに停止している期間がより長くなるため、制御機器間で干渉する可能性を低減できる。 (5) In the control method of (1), the control device (500) receives a status signal indicating the stop of the operation of one control device from one control device via at least one communication protocol for a predetermined time. The operation of another control device may be permitted at a timing delayed by (ΔT1). This also delays the operation start timing of another control device, and the period during which one control device and another control device that may interfere with the control device are stopped is longer. Therefore, the possibility of interference between control devices can be reduced.
 (6)(1)から(5)のいずれかの制御方法において、制御装置(500)は、各制御機器の動作を指示する際に動作要求信号を各制御機器に送信してもよい。各制御機器は、動作要求信号を正常に受信したときに、動作要求信号を正常に受信したことを示すACK信号を制御装置に返信してもよい。このような方式により、通信異常等の不測の事態が発生した時に各制御機器を停止することができる。 (6) In the control method of any one of (1) to (5), the control device (500) may transmit an operation request signal to each control device when instructing the operation of each control device. Each control device may return an ACK signal indicating that the operation request signal is normally received to the control device when the operation request signal is normally received. With such a method, each control device can be stopped when an unexpected situation such as a communication abnormality occurs.
 (7)また、上記の実施の形態において、独立に作業を行い互いに干渉領域を有する複数の制御機器(100)の動作を制御する制御装置(500)が開示される。制御装置(500)は、各制御機器と、少なくとも1つの通信プロトコルに準拠して通信を行う通信部(55)と、各制御機器の動作を制御する制御部(51)と、を備える。通信部(55)は、各制御機器から、各機器の動作状態を示すステータス信号を少なくとも1つの通信プロトコルによる通信を介して受信する。制御部(51)は、少なくとも1つの通信プロトコルによる通信を介して一の制御機器から、一の制御機器の動作の停止を示すステータス信号を受信したときに、当該ステータス信号を受信したタイミングから遅延したタイミングにおいて、その一の制御機器と干渉する可能性のある他の制御機器の動作を指示する。この構成によれば、他の制御機器の動作開始タイミングが遅延され、一の制御機器と、その制御機器と干渉する可能性のある制御機器とがともに停止している期間がより長くなることから、制御機器間で干渉する可能性を低減できる。 (7) Further, in the above-described embodiment, a control device (500) that operates independently and controls the operations of a plurality of control devices (100) having interference areas with each other is disclosed. The control device (500) includes a communication unit (55) that communicates with each control device in accordance with at least one communication protocol, and a control unit (51) that controls the operation of each control device. The communication unit (55) receives a status signal indicating the operation state of each device from each control device via communication using at least one communication protocol. When the control unit (51) receives a status signal indicating the stop of the operation of the one control device from the one control device via communication using at least one communication protocol, the control unit (51) is delayed from the timing at which the status signal is received. At this timing, the operation of another control device that may interfere with the one control device is instructed. According to this configuration, the operation start timing of the other control device is delayed, and the period during which both the one control device and the control device that may interfere with the control device are stopped becomes longer. The possibility of interference between control devices can be reduced.
 (8)(7)の制御装置において、通信部(55)は、通信周期の異なる2つの通信プロトコルのそれぞれに準拠した通信を介して、一の制御機器からステータス信号を受信してもよい。制御部(51)は、2つの通信プロトコルのそれぞれに準拠した通信の双方から、一の制御機器の動作の停止を示すステータス信号を受信したときに他の制御機器の動作を許可してもよい。このように、2つの異なる通信プロトコルのそれぞれに準拠した通信の双方からステータス信号を受信することを待つことで、他の制御機器の動作開始タイミングを遅らせることができ、一の制御機器と、それと干渉する可能性のある他の制御機器とがともに停止している期間がより長くなるため、制御機器間で干渉する可能性を低減できる。 (8) In the control device of (7), the communication unit (55) may receive a status signal from one control device via communication conforming to each of two communication protocols having different communication cycles. The control unit (51) may permit the operation of the other control device when receiving a status signal indicating the stop of the operation of the one control device from both of the communications compliant with the two communication protocols. . In this way, by waiting to receive the status signal from both of the communication conforming to each of the two different communication protocols, the operation start timing of the other control device can be delayed, and one control device, Since the period during which both other control devices that may possibly interfere with each other are stopped becomes longer, the possibility of interference between the control devices can be reduced.
 (9)(7)の制御装置において、制御部(51)は、少なくとも1つの通信プロトコルによる通信を介して一の制御機器から一の制御機器の動作の停止を示すステータス信号を受信したタイミングから所定時間(ΔT1)だけ遅延したタイミングにおいて他の制御機器の動作を指示してもよい。この構成によっても、他の制御機器の動作開始タイミングを遅らせることができ、一の制御機器と、それと干渉する可能性のある他の制御機器とがともに停止している期間がより長くなるため、制御機器間で干渉する可能性を低減できる。 (9) In the control device of (7), the control unit (51) starts from the timing at which the status signal indicating the stop of the operation of the one control device is received from the one control device via communication using at least one communication protocol. The operation of another control device may be instructed at a timing delayed by a predetermined time (ΔT1). Even with this configuration, the operation start timing of other control devices can be delayed, and the period during which one control device and other control devices that may interfere with it are both longer, The possibility of interference between control devices can be reduced.
 以上、本発明の特定の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではない。本発明は、上記の実施の形態に開示した内容に対して、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、上記実施の形態で説明した各構成要素を適宜組み合わせることも可能である。 Although specific embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments. The present invention can also be applied to embodiments in which the contents disclosed in the above embodiments are appropriately changed, replaced, added, omitted or the like. Moreover, it is also possible to combine each component demonstrated in the said embodiment suitably.
 11 ロボットコントローラの制御部
 12 ロボットコントローラの記憶部
 15 ロボットコントローラの通信部
 17 ロボットの通信部
 19 ロボットの駆動部
 22 ワーク搬送ステージの駆動部
 25 ワーク搬送ステージの通信部
 42 ワーク搬送ハンドラの駆動部
 45 ワーク搬送ハンドラの通信部
 51 PLCの制御部
 52 PLCの記憶部
 55 PLCの通信部
 80、80b ワーク
 83 積層治具
 87 NGワーク廃棄箱
 89 積層治具ラック
 100 ロボット
 110 ロボットコントローラ
 200 ワーク搬送ステージ
 400 ワーク搬送ハンドラ
 500 PLC(Programmable Logic Controller)
 600、700、800 ネットワーク
11 Robot Controller Control Unit 12 Robot Controller Storage Unit 15 Robot Controller Communication Unit 17 Robot Communication Unit 19 Robot Drive Unit 22 Work Transfer Stage Drive Unit 25 Work Transfer Stage Communication Unit 42 Work Transfer Handler Drive Unit 45 Work conveying handler communication unit 51 PLC control unit 52 PLC storage unit 55 PLC communication unit 80, 80b Work 83 Lamination jig 87 NG work disposal box 89 Lamination jig rack 100 Robot 110 Robot controller 200 Work conveyance stage 400 Work piece Transport handler 500 PLC (Programmable Logic Controller)
600, 700, 800 networks

Claims (9)

  1.  独立に作業を行い互いに干渉領域を有する複数の制御機器の動作を制御する制御方法であって、
     前記複数の制御機器の中の一の制御機器から、前記一の制御機器の動作状態を示すステータス信号を、少なくとも1つの通信プロトコルに準拠した通信を介して制御装置に送信するステップと、
     前記制御装置によって、前記少なくとも1つの通信プロトコルに準拠した通信を介して前記一の制御機器から前記一の制御機器の動作の停止を示すステータス信号を受信したときに、当該ステータス信号を受信したタイミングから遅延したタイミングにおいて、前記一の制御機器と干渉する可能性のある他の制御機器の動作を許可するステップと、
    を含む制御方法。
    A control method for performing operations independently and controlling operations of a plurality of control devices having interference areas with each other,
    Transmitting a status signal indicating an operation state of the one control device from one control device among the plurality of control devices to the control device via communication conforming to at least one communication protocol;
    Timing at which the status signal is received when the control device receives a status signal indicating the stop of the operation of the one control device from the one control device via communication conforming to the at least one communication protocol. Permitting the operation of another control device that may interfere with the one control device at a timing delayed from
    Control method.
  2.  前記送信するステップは、前記一の制御機器から、前記一の制御機器の動作状態を示すステータス信号を、通信周期の異なる2つの通信プロトコルのそれぞれに準拠した通信を介して前記制御装置に送信し、
     前記制御装置は、前記2つの通信プロトコルのそれぞれに準拠した通信の双方から、前記一の制御機器の動作の停止を示すステータス信号を受信したときに前記他の制御機器の動作を許可する
    請求項1記載の制御方法。
    In the transmitting step, a status signal indicating an operation state of the one control device is transmitted from the one control device to the control device via communication complying with two communication protocols having different communication cycles. ,
    The said control apparatus permits operation | movement of said other control apparatus, when the status signal which shows the stop of operation | movement of said one control apparatus is received from both the communication based on each of said two communication protocols. The control method according to 1.
  3.  前記2つの通信プロトコルの一方は通信周期が一定の通信プロトコルであり、前記2つの通信プロトコルの他方は通信周期が不定の通信プロトコルである、請求項2記載の制御方法。 3. The control method according to claim 2, wherein one of the two communication protocols is a communication protocol having a constant communication cycle, and the other of the two communication protocols is a communication protocol having an indefinite communication cycle.
  4.  前記一方の通信プロトコルはEthernet IPであり、前記他方の通信プロトコルはEthernetである、請求項3記載の制御方法。 4. The control method according to claim 3, wherein the one communication protocol is Ethernet IP, and the other communication protocol is Ethernet.
  5.  前記制御装置は、前記少なくとも1つの通信プロトコルによる通信を介して前記一の制御機器から前記一の制御機器の動作の停止を示すステータス信号を受信したタイミングから所定時間だけ遅延したタイミングにおいて前記他の制御機器の動作を許可する
    請求項1記載の制御方法。
    The control device is configured to transmit the other control signal at a timing delayed by a predetermined time from a timing at which a status signal indicating a stop of the operation of the one control device is received from the one control device through communication using the at least one communication protocol. The control method according to claim 1, wherein the operation of the control device is permitted.
  6.  前記制御装置は、各制御機器の動作を指示する際に動作要求信号を各制御機器に送信し、
     各制御機器は、前記動作要求信号を正常に受信したときに、前記動作要求信号を正常に受信したことを示すACK信号を前記制御装置に返信する、請求項1ないし5のいずれかに記載の制御方法。
    The control device transmits an operation request signal to each control device when instructing the operation of each control device,
    6. The control device according to claim 1, wherein each control device returns an ACK signal indicating that the operation request signal is normally received to the control device when the operation request signal is normally received. Control method.
  7.  独立に作業を行い互いに干渉領域を有する複数の制御機器の動作を制御する制御装置であって、
     各制御機器と、少なくとも1つの通信プロトコルに準拠して通信を行う通信部と、
     各制御機器の動作を制御する制御部と、を備え、
     前記通信部は、各制御機器から、各制御機器の動作状態を示すステータス信号を前記少なくとも1つの通信プロトコルによる通信を介して受信し、
     前記制御部は、前記少なくとも1つの通信プロトコルによる通信を介して一の制御機器から前記一の制御機器の動作の停止を示すステータス信号を受信したときに、当該ステータス信号を受信したタイミングから遅延したタイミングにおいて、前記一の制御機器と干渉する可能性のある他の制御機器の動作を許可する、
    制御装置。
    A control device that operates independently and controls operations of a plurality of control devices having interference areas with each other,
    A communication unit that communicates with each control device in accordance with at least one communication protocol;
    A control unit for controlling the operation of each control device,
    The communication unit receives a status signal indicating an operation state of each control device from each control device via communication using the at least one communication protocol,
    When the control unit receives a status signal indicating the stop of the operation of the one control device from the one control device via communication based on the at least one communication protocol, the control unit is delayed from the timing at which the status signal is received. Permit operation of another control device that may interfere with the one control device at the timing;
    Control device.
  8.  前記通信部は、通信周期の異なる2つの通信プロトコルのそれぞれに準拠した通信を介して、前記複数の制御機器から前記ステータス信号を受信し、
     前記制御部は、前記2つの通信プロトコルのそれぞれに準拠した通信の双方から、前記一の制御機器の動作の停止を示すステータス信号を受信したときに前記他の制御機器の動作を許可する
    請求項7記載の制御装置。
    The communication unit receives the status signal from the plurality of control devices via communication complying with each of two communication protocols having different communication cycles,
    The said control part permits operation | movement of said other control apparatus, when the status signal which shows the stop of operation | movement of said one control apparatus is received from both the communication based on each of said two communication protocols. 8. The control device according to 7.
  9.  前記制御部は、前記少なくとも1つの通信プロトコルによる通信を介して前記一の制御機器から前記一の制御機器の動作の停止を示すステータス信号を受信したタイミングから所定時間だけ遅延したタイミングにおいて前記他の制御機器の動作を許可する
    請求項7記載の制御装置。
    The control unit is configured to receive the status signal indicating a stop of the operation of the one control device from the one control device through communication based on the at least one communication protocol at a timing delayed by a predetermined time. The control device according to claim 7, wherein operation of the control device is permitted.
PCT/JP2016/072388 2016-07-29 2016-07-29 Method and device for controlling plurality of apparatuses having mutual interference area WO2018020672A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/072388 WO2018020672A1 (en) 2016-07-29 2016-07-29 Method and device for controlling plurality of apparatuses having mutual interference area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/072388 WO2018020672A1 (en) 2016-07-29 2016-07-29 Method and device for controlling plurality of apparatuses having mutual interference area

Publications (1)

Publication Number Publication Date
WO2018020672A1 true WO2018020672A1 (en) 2018-02-01

Family

ID=61015965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072388 WO2018020672A1 (en) 2016-07-29 2016-07-29 Method and device for controlling plurality of apparatuses having mutual interference area

Country Status (1)

Country Link
WO (1) WO2018020672A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03256681A (en) * 1990-03-08 1991-11-15 Toshiba Corp Control method for robot
JP2004358630A (en) * 2003-06-06 2004-12-24 Honda Motor Co Ltd Method for setting teaching data of robot
JP2006346770A (en) * 2005-06-14 2006-12-28 Toyota Motor Corp Control system for robot group, and robot
JP3140561U (en) * 2004-06-24 2008-04-03 エービービー エービー Apparatus and method for controlling robot by wireless teach pendant
JP2011056607A (en) * 2009-09-08 2011-03-24 Seiko Epson Corp Interference avoiding apparatus of robot and interference avoiding program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03256681A (en) * 1990-03-08 1991-11-15 Toshiba Corp Control method for robot
JP2004358630A (en) * 2003-06-06 2004-12-24 Honda Motor Co Ltd Method for setting teaching data of robot
JP3140561U (en) * 2004-06-24 2008-04-03 エービービー エービー Apparatus and method for controlling robot by wireless teach pendant
JP2006346770A (en) * 2005-06-14 2006-12-28 Toyota Motor Corp Control system for robot group, and robot
JP2011056607A (en) * 2009-09-08 2011-03-24 Seiko Epson Corp Interference avoiding apparatus of robot and interference avoiding program

Similar Documents

Publication Publication Date Title
JP4081747B2 (en) Robot drive control method and apparatus
US9701023B2 (en) Teleoperation of machines having at least one actuated mechanism and one machine controller comprising a program code including instructions for transferring control of the machine from said controller to a remote control station
JP5497730B2 (en) Wireless communication system, wireless communication apparatus, and wireless communication method
US20070276538A1 (en) Tool for an Industrial Robot
US9254567B2 (en) System for commanding a robot
CN103009402B (en) Manipulator control device and mechanical arm system
WO2018020672A1 (en) Method and device for controlling plurality of apparatuses having mutual interference area
WO2015064000A1 (en) Communication device and communication device control method
JP5633555B2 (en) Robot system
WO2020152891A1 (en) Pallet transfer system, pallet transfer method, and pallet transfer program
JPH11284053A (en) System and method for wafer cassette carrying
WO2017051504A1 (en) Laser machining system
KR102420896B1 (en) Welding robot control system and robot recognition method thereof
JP4980292B2 (en) Numerical control system that communicates with multiple amplifiers at different communication cycles
US10712732B2 (en) Slave device, master device, and industrial network system
JP2019053439A (en) Control system, sub-controller and control method
JP6451297B2 (en) COMMUNICATION DEVICE AND COMMUNICATION DEVICE CONTROL METHOD
US7720956B2 (en) Method, system, and storage medium for providing continuous communication between process equipment and an automated material handling system
JP2007181923A (en) Robot device
JP7006910B2 (en) Robot system
JP7006902B2 (en) Robot system
CN112533737A (en) Techniques for wireless control of robotic devices
JP2013066963A (en) Robot control device, and robot system
JP7225946B2 (en) robot system, robot controller
JP7123620B2 (en) Production system, production equipment, production system control method, control program, recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16910575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP