WO2018019307A1 - 一种通信端口稳定性控制方法及装置 - Google Patents

一种通信端口稳定性控制方法及装置 Download PDF

Info

Publication number
WO2018019307A1
WO2018019307A1 PCT/CN2017/097217 CN2017097217W WO2018019307A1 WO 2018019307 A1 WO2018019307 A1 WO 2018019307A1 CN 2017097217 W CN2017097217 W CN 2017097217W WO 2018019307 A1 WO2018019307 A1 WO 2018019307A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
target
communication port
rate
line
Prior art date
Application number
PCT/CN2017/097217
Other languages
English (en)
French (fr)
Inventor
陈璇
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018019307A1 publication Critical patent/WO2018019307A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/30Reducing interference caused by unbalanced currents in a normally balanced line

Definitions

  • the present invention relates to the field of network technology communication, and in particular, to a communication port stability control method and apparatus.
  • VDSL Very High Speed Digital Subscriber Line
  • ADSL Asymmetric Digital Subscriber Line
  • Vectoring technology can no longer satisfy users.
  • This setup not only retains the original copper access, but does not require additional fiber deployment in the user's home. , in turn, can increase the bandwidth to 1Gbps. Since the G.FAST line is increased from 30 MHz of VDSL to 106 MHz/212 MHz, the G.FAST line and the VDSL line overlap in the frequency band below 30 MHz, and the G.FAST line and the FM line overlap in the frequency band above 87.5 MHz. Since the interference in the overlapping frequency band is very strong, the stability of the line is poor, which reduces the satisfaction of the user.
  • the method and device for controlling the stability of the communication port provided by the embodiment of the present invention mainly solve the technical problem that the interference frequency band overlapping with other lines exists on the G.FAST line under the existing communication port, resulting in poor port stability and users. Use low satisfaction questions.
  • an embodiment of the present invention provides a communication port stability control method, including:
  • At least one target frequency band in other frequency bands on the road is carried.
  • the embodiment of the invention further provides a communication port stability control device, comprising:
  • the interference band acquisition module is configured to acquire the interfered frequency band to be adjusted on the target line under the communication port;
  • a control module configured to allocate at least part of data currently carried on the interfered frequency band to be carried by at least one target frequency band of other frequency bands on the target line.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the foregoing communication port stability control method.
  • At least part of data currently carried on the interfered frequency band is allocated to be on the target line by acquiring the interfered frequency band to be adjusted on the target line. Carrying at least one target frequency band in other frequency bands, so that the data carried on the interference frequency band is as small as possible or even zero, thereby reducing the influence of interference on the interference frequency band on the line, thereby improving the stability of the communication port and the satisfaction of the user experience. .
  • the data carried by the part of the interference band can be properly allocated by the solution provided by the present invention to improve the stability of the communication port.
  • FIG. 1 is a schematic flowchart of a method for controlling stability of a communication port according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic flowchart of obtaining an interfered frequency band to be adjusted under a communication port according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic flowchart of allocating at least part of data carried on an interfered frequency band to be carried by at least one target frequency band in other frequency bands on a target line according to Embodiment 1 of the present invention
  • FIG. 4 is a diagram showing stability of a G.FAST line of a target line under a communication port according to Embodiment 2 of the present invention; Schematic diagram of the process of sexual control methods;
  • FIG. 5 is a schematic structural diagram 1 of a communication port stability control apparatus according to Embodiment 3 of the present invention.
  • FIG. 6 is a second schematic structural diagram of a communication port stability control apparatus according to Embodiment 3 of the present invention.
  • FIG. 7 is a schematic structural diagram 3 of a communication port stability control apparatus according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic structural diagram 4 of a communication port stability control apparatus according to Embodiment 3 of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the embodiment provides a communication port stability control method, such as As shown in Figure 1, it includes:
  • S101 Acquire an interfered frequency band to be adjusted on a target line under the communication port.
  • the communication port in this embodiment S101 may be any one of all communication ports. It can also be a port with poor stability among all communication ports. For a communication port with poor stability, these communication ports may be directly fed back by the user, or the system may automatically monitor and judge each communication port. For example, the system can monitor the number of times a chain is broken or broken in a predetermined period of time, and when the number is greater than the preset number of times, the communication port is determined to be unstable. It should be understood that the foregoing judgment example of the stability is only an exemplary description in the embodiment, and any other manner of implementing the communication port stability determination may be employed.
  • the target line in this embodiment can select any line under the communication port. Lines that have at least partial overlap with other lines under the communication port can be selected. For example, suppose the communication port has a G.FAST line, a VDSL line, and an FM line. The overlap of the above three lines is as follows: 2.2 MHz to 30 MHz is the overlapping frequency band of the G.FAST line and the VDSL line, and 87.5 MHz to 106 MHz is G. The overlapping frequency band between the FAST line and the FM line, the frequency band of the line can be flexibly changed according to different application scenarios, for example, FM line, its frequency band in China It is 87.5MHz to 108MHz, and its frequency band is 76MHz to 90MHz in Japan.
  • the target line in this embodiment may be any one of the three lines of the above examples.
  • it may be a G.FAST line.
  • the frequency band overlapping the line includes frequency bands ranging from 2.2 MHz to 30 MHz and 87.5 MHz to 106 MHz, and these bands are the key interfered bands.
  • the target line is an FM line.
  • the overlapping frequency band is 87.5 MHz to 106 MHz.
  • the target line is a VDSL line.
  • the overlapping frequency band is 2.2MHz to 30MHz.
  • S102 Deploy at least part of data currently carried on the interfered frequency band to be carried by at least one target frequency band of other frequency bands on the target line.
  • the data may be partially adjusted or all adjusted, and may be flexibly selected according to an actual application scenario; the number of target frequency bands may be one or multiple. Specifically, it can be flexibly selected according to the actual application scenario and the specific data volume that needs to be called out by the interference frequency band.
  • the data carried on the interference band can be as small as possible or even zero, thereby reducing the influence of interference on the interference band on the line, thereby improving the stability of the communication port and the satisfaction of the user experience.
  • the interfered frequency band to be adjusted on the target line is obtained, which may be determined by the interference situation on each frequency band.
  • the interference situation in this embodiment can be determined by comparing the background noise on the line with a preset background noise threshold.
  • the background noise of the full frequency band on the target line can be directly obtained.
  • the area having the overlapping portion of the frequency band may be directly obtained, which is referred to as an overlapping frequency band in this embodiment.
  • the overlapping frequency band can be preset. For example, if there is a G.FAST line, a VDSL line, an FM line under the above communication port, and the target line is an FM line, the overlapping frequency band is 87.5. MHz ⁇ 106MHz.
  • Figure 2 The process of setting the frequency bands to be filtered and screening the interference bands in these bands is shown in Figure 2, including:
  • S201 Acquire line background noise of a full frequency band or a preset overlapping frequency band on the target line.
  • the background noise of the line is the background noise when the target line is in a silent state or an activated state. sound.
  • the silent state means that the line is in an idle state and is not in use
  • the active state means that the line is in the use state of the bearer data.
  • the background noise when the line is in the silent state may be obtained.
  • the background noise when the line is in the active state may be acquired. .
  • the preset background noise threshold in this step is a preset silent line background noise threshold or a preset active line background noise threshold.
  • the two thresholds may be different or the same.
  • the obtained silent line background noise is compared with the preset silent line background noise
  • the acquired active line background noise is compared with the preset active line background noise.
  • the preset background noise threshold is usually an empirical value and is flexible.
  • the experience value is -120DBM/Hz to -140DBM/Hz. Generally, the experience value is related to the carrier line environment, for example, it can be -130DBM/Hz or -135DBM/Hz.
  • S301 Select a target frequency band in the other frequency bands on the target line for the interference frequency band.
  • the target frequency band in this embodiment may be an interference frequency band or a non-interference frequency band in other frequency bands of the target line, or according to the data amount currently carried by the interference frequency band (ie, the amount of transmitted bits), from other frequency bands on the target line.
  • Data carrying capacity is sufficient.
  • the signal attenuation value indicates the degree of signal attenuation.
  • the signal attenuation value can be characterized by a channel transfer function, that is, by the parameter mean of the transfer function, or can be obtained by other means.
  • the power spectrum density of the interfered frequency band can be set to be less than or equal to the no-load power spectral density threshold, so that all data currently carried on the interfered frequency band is allocated to be carried by the target frequency band selected in S301.
  • the no-load power spectral density in this embodiment is a power spectral density threshold value when the frequency band cannot carry data, and is mainly set to be less than or equal to the power spectral density threshold value, and the judgment cannot carry any data, that is, is in an idle state.
  • the method further includes determining whether the communication port currently meets the deployment condition, including but not limited to the following example:
  • Manner 1 Determine whether the current link establishment rate of the communication port is greater than or equal to a preset first rate limit rate threshold. If yes, determine that the deployment condition is met;
  • Manner 2 determining that the current link establishment rate of the communication port is greater than or equal to the preset first rate limit rate threshold, and satisfying the deployment condition when at least one of the following conditions is met:
  • the current rate of the communication port is greater than or equal to the second rate limit threshold, and the second rate limit is greater than the first rate limit threshold;
  • the current signal attenuation value of the interference band is greater than or equal to the signal attenuation value of other frequency bands on the target line;
  • the amount of data currently carried by the interference band is less than the sum of the data currently carried by other bands on the target line.
  • the link rate is the rate of the TPS-TC layer.
  • the first rate limit is the maximum rate limit.
  • the current maximum reachable speed of the communication port refers to the maximum transmission rate theoretically reachable by the communication port based on the physical configuration of the current port.
  • the second rate limit threshold is greater than the first rate limit
  • the rate threshold is large, for example, it can be set to (1+k) times the maximum line transmission rate, k can be greater than or equal to 0.01, and less than or equal to 0.1. It should be understood that the value of k can be flexibly adjusted according to specific needs.
  • the monitoring may be further correctly and reasonably performed, such as If the subsequent judgment is correct and reasonable, the adjusted configuration is saved; otherwise, the adjustment made above needs to be restored, and other processing methods for improving stability may be considered.
  • the current port construction rate can be monitored and analyzed to determine whether the deployment is reasonable.
  • the specific can be as follows:
  • the adjusted configuration is saved.
  • the link-building rate is lower than the first rate limit threshold, the power spectrum density of the target band is raised and monitoring continues;
  • the data allocated on the interference frequency band is adjusted back to the interference frequency band, and the power spectral density of the target frequency band is restored; otherwise, the adjustment is saved. After the configuration.
  • the power spectral density of the target frequency band can be raised by pre-setting a maximum power spectral density for each target frequency band, and directly increasing the power spectral density on the current target frequency band to the maximum or The current power spectral density is gradually increased without exceeding the maximum power spectral density; the maximum power spectral density may be the power spectral density at which the data that can be carried in the frequency band reaches a maximum.
  • the power spectral density on the interfered frequency band may be specifically restored to implement callback adjustment of the data deployed on the interfered frequency band to the callback mode on the original interfered frequency band, that is, on the interfered frequency band.
  • the power spectral density is set to the value of the power spectral density before S302.
  • the stability of the communication port can be further monitored before the above adjusted configuration is saved, so as to further ensure the effect of the above adjustment.
  • the monitoring process is as follows:
  • monitoring and judging whether the communication port is in a stable state may be performed by: presetting a time range of T according to the requirements of the operation line environment, and repeating the chain breaking time in the time T as the value X, If the time range of the communication port is less than or equal to T, the communication port is in an unstable state when the number of times of establishing or disconnecting is greater than or equal to X; otherwise, the communication port is in a stable state.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a G.FAST line coexist in a communication environment
  • a G.FAST line is a target line and an overlapping frequency band.
  • S401 Perform monitoring and determination on each communication port according to user feedback or the system to find a port with poor stability.
  • S402 Collect line data information of the unstable port in real time or timing, and acquire silent line noise of the overlapping frequency band.
  • S403 Comparing the obtained silent line noise of the obtained overlapping frequency band with an empirical value, and the empirical value is usually -120DBM/Hz to -140DBM/Hz. If the silent line noise is significantly higher than the empirical value, the frequency band is determined to be interfered with to be adjusted. Frequency band.
  • S404 Select at least one suitable target frequency band among other frequency bands under the communication port on the target line for the interfered frequency band.
  • the target frequency band is a non-interference frequency band and the power spectral density of the target frequency band is greater than the pre- The power spectral density threshold is set, and the signal attenuation value is less than the preset signal attenuation threshold.
  • S405 Determine whether the rate of the port has a margin, and whether there is room for adjustment; if the current link rate is greater than or equal to the configured rate limit, the port has room for adjustment, and the following steps are continued; if the current link rate is established If the rate limit is less than the configured rate, there is no room for adjustment. You do not need to perform the following steps.
  • S406 The power spectral density of the frequency band is reduced by modifying the limit power spectral density mask of the interfered frequency band, so that the frequency band does not carry data at all.
  • S407 Compare the current link-building rate of the communication port with the configured rate-limiting rate. If the current link-building rate is lower than the configured rate limit, perform S408. If the current link-building rate is greater than or equal to the configured rate limit, Go to S409.
  • S408 After the power spectral density of the target frequency band selected in S404 is raised to a maximum, the monitoring is continued.
  • the maximum power spectral density is preset: if the monitored networking rate is less than the configured rate limiting rate, S410 is performed; If the rate of establishment of the link is greater than or equal to the rate limit configured, then S409 is performed.
  • S409 Monitor the current stability of the communication port. If the communication port is unstable, perform S410. If the communication port is stable, perform S411.
  • S410 Restore the power spectral density on the interfered frequency band and the target frequency band.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the embodiment provides a communication port stability control apparatus based on the first embodiment and the second embodiment. As shown in FIG. 5, the method includes:
  • the interference band acquisition module 51 is configured to acquire the interfered frequency band to be adjusted on the target line under the communication port.
  • the communication port in this embodiment may be any one of all communication ports, or may be A port with poor stability among all communication ports.
  • the device can directly collect unstable ports through user feedback, or can automatically monitor and determine each communication port through the stability monitoring module 53 as shown in FIG. 6.
  • the stability monitoring module 53 monitors whether the port is stable or not by determining the number of times that a communication port monitors its chain-building or chain-breaking within a preset period of time, and is stable when the number of times is greater than a preset number of times.
  • the sex detection module 53 determines that the port is unstable. It should be understood that the example in which the stability monitoring module determines whether the port is stable is only an example in the embodiment, and the stability monitoring module 53 can also determine the communication port by any other way of implementing the stability determination of the communication port. Is it stable?
  • the device may select any line under the communication port as the target line through the target line selection module 54 to adjust, or select a line that at least partially overlaps with other lines under the communication port for adjustment.
  • the specific structure of the device is shown in FIG. 6. Shown. For example, assuming that the communication port has a G.FAST line, a VDSL line, and an FM line, the target line selection module 54 can select any one of the above three lines. For example, the target line selection module 54 selects the G.FAST line as the target line.
  • the frequency bands overlapping with the line include frequency bands with a frequency range of 2.2 MHz to 30 MHz and 87.5 MHz to 106 MHz.
  • the FM line has a frequency band of 87.5 MHz to 108 MHz in China and 76 MHz to 90 MHz in Japan.
  • the control module 52 is configured to allocate at least part of the data currently carried on the interfered band to be carried by at least one of the other frequency bands on the target line.
  • control module 52 is configured to allocate some or all of the data currently carried in the interfered frequency band to another one of the target lines or multiple frequency bands, and may be flexibly selected according to the actual application scenario, and the target frequency band is selected.
  • the number of the data may be one or multiple, and may be flexibly selected according to the actual application scenario and the specific data volume that needs to be called out by the interference frequency band. .
  • the stability of the communication port is controlled, and the interference frequency can be made.
  • the data carried on the segment is as small as possible or even zero, thereby reducing the influence of interference on the interference band on the line, thereby improving the stability of the communication port and the satisfaction of the user experience.
  • the interference band acquisition module 51 is configured to acquire the interfered frequency band to be adjusted on the target line, which may be determined by the interference situation on each frequency band.
  • the interference situation in this embodiment may be obtained by acquiring the background noise on the line according to the noise acquiring unit 511, and then determining, by the determining unit, the background noise acquired by 512 to be compared with the preset background noise threshold.
  • the noise acquiring unit 511 can directly obtain the background noise of the full frequency band on the target line selected by the target line selection module 54 or directly obtain the background noise of the overlapping frequency band.
  • the overlapping frequency band can be preset.
  • the communication port has a G.FAST line, a VDSL line, an FM line, and the target line is an FM line
  • the overlap is performed.
  • the frequency band is 87.5MHz to 106MHz, and the frequency band to be filtered is set in advance.
  • the noise acquisition unit 511 is configured to acquire line background noise of the full frequency band or the preset overlapping frequency band on the target line.
  • the background noise of the line is the background noise when the target line is in the silent state or the activated state.
  • the noise acquiring unit 511 is configured to obtain the background noise when the line is in the silent state. If the current device supports measurement of active line background noise, the noise acquisition unit 511 can acquire background noise when the line is in an active state.
  • the determining unit 512 is configured to compare the background noise acquired by the noise acquiring unit 511 with a preset background noise threshold, and determine a frequency band whose channel background noise is greater than or equal to a preset background noise threshold as the interfered frequency band, and the preset background noise threshold is a preset value.
  • Set the background noise threshold of the silent line or the background noise threshold of the preset active line, and the two thresholds may be different or the same.
  • the preset background noise threshold is usually an empirical value and is flexible.
  • the experience value is -120DBM/Hz ⁇ -140DBM. /Hz, in general, the experience value is related to the carrier line environment, for example, it can be -130DBM/Hz or -135DBM/Hz.
  • control module 52 for allocating at least part of the data currently carried on the interfered band to be carried by at least one of the other frequency bands on the target line. Description. See Figure 8 at this point, including:
  • the selecting unit 521 is configured to select the target frequency band among the other frequency bands on the target line for the interference frequency band.
  • the selected target frequency band may be an interference frequency band and a non-interference frequency band, or according to the data amount currently carried by the interference frequency band (ie, the amount of transmitted bits), selecting N power spectral densities from other frequency bands on the target line is greater than a preset power spectral density.
  • the threshold, and the signal attenuation value is smaller than the preset signal attenuation threshold as the target frequency band; N is greater than or equal to 1, the preset power spectral density setting is only required to ensure that the frequency band has good data carrying capacity, and the signal attenuation value indicates signal attenuation.
  • the degree, the signal attenuation value can be represented by the channel transfer function, that is, by the parameter mean of the transfer function, or can be obtained by other means. .
  • the matching unit 522 is configured to allocate all data currently carried on the interfered frequency band to be carried by the target frequency band.
  • the configuration unit 522 can set the power spectral density of the interfered frequency band to be less than or equal to the no-load power spectral density threshold, so that all data currently carried on the interfered frequency band is allocated to be carried by the target frequency band, and the no-load power spectral density is the frequency band.
  • the power spectral density threshold at which data cannot be carried.
  • the selection unit 521 should determine whether the communication port currently meets the deployment condition before selecting the target frequency band in the other frequency bands on the target line for the interference frequency band.
  • the foregoing process can be implemented by the condition determination module 55. As shown in FIG. 8, the condition determination module determines whether the deployment condition is satisfied, and includes the following methods:
  • Manner 1 Determine whether the current link establishment rate of the communication port is greater than or equal to a preset first rate limit rate threshold. If yes, determine that the deployment condition is met;
  • Manner 2 determining that the current link establishment rate of the communication port is greater than or equal to the preset first rate limit rate threshold, and satisfying the deployment condition when at least one of the following conditions is met:
  • the current rate of the communication port is greater than or equal to the second rate limit threshold, and the second rate limit is greater than the first rate limit threshold;
  • the current signal attenuation value of the interference band is greater than or equal to the signal attenuation value of other frequency bands on the target line;
  • the amount of data currently carried in the interference band is less than the current number of other bands on the target line. According to the sum.
  • the above-mentioned link-building rate refers to the transmission rate of the TPS-TC layer.
  • the first rate-limiting rate threshold refers to the configured maximum rate-limiting rate, or may be set to a rate value slightly smaller than the maximum rate-limiting transmission rate according to the specific application environment.
  • the current maximum reachable speed of the communication port refers to the maximum transmission rate theoretically reachable by the communication port based on the physical configuration of the current port.
  • the second rate limiting rate threshold is greater than the first rate limiting rate threshold. For example, it may be set to (1+k) times the maximum line transmission rate, k may be greater than or equal to 0.01, less than or equal to 0.1, etc., it should be understood that k Values can be flexibly adjusted according to specific needs.
  • the rate monitoring module 56 monitors and analyzes the current port construction rate to determine whether the deployment is performed. Reasonable, as follows:
  • the rate monitoring module 56 detects that the link establishment rate is greater than or equal to the first rate limit rate threshold, the adjusted configuration is saved.
  • the deployment unit 522 increases the power spectral density of the target frequency band and continues to monitor;
  • the configuration unit 522 After the power spectral density of the target frequency band is raised and the link establishment rate is still less than the first rate limit rate threshold, the configuration unit 522 adjusts the data allocated on the interference frequency band to the interference frequency band, and restores the power spectral density of the target frequency band. Otherwise, Save the adjusted configuration.
  • the power spectral density of the target frequency band can be raised by pre-setting a maximum power spectral density for each target frequency band, and directly increasing the power spectral density on the current target frequency band to the maximum or The current power spectral density is gradually increased without exceeding the maximum power spectral density;
  • the maximum power spectral density refers to the power spectral density at which the data that can be carried in the frequency band reaches a maximum.
  • the stability monitoring module 53 may also pass the stability monitoring module 53 to the port. Stability is further monitored to further ensure adjustment.
  • the monitoring process of the stability monitoring module 53 is as follows:
  • Monitor whether the port is in a stable state, and if so, save the modified configuration of all the above processes. If it is in an unstable state, the data allocated on the interfered frequency band is adjusted back to the original interfered frequency band by the deployment unit 522, and the power spectral density of the target frequency band is restored.
  • the stability monitoring module 53 monitors whether the communication port is in a stable state by performing a method of pre-setting a time range of T according to the requirements of the operating line environment and repeatedly establishing a chain break in the time T. The number of times is the value X. If the time range of the communication port is less than or equal to T, the communication port is in an unstable state when the number of times of chain-building or chain-breaking is greater than or equal to X; otherwise, the communication port is in a stable state.
  • the communication port stability control apparatus provided by the embodiment of the present invention allocates at least part of data currently carried on the interfered frequency band to at least one target in other frequency bands on the target line by acquiring the interfered frequency band to be adjusted on the target line.
  • Band bearer improves port stability and user experience satisfaction.
  • modules or steps of the above embodiments of the present invention can be implemented by a general computing device, which can be concentrated on a single computing device or distributed among multiple computing devices.
  • they may be implemented by program code executable by the computing device, such that they may be stored in a computer storage medium (ROM/RAM, disk, optical disk) by a computing device, and at some
  • the steps shown or described may be performed in an order different than that herein, or they may be separately fabricated into individual integrated circuit modules, or a plurality of modules or steps may be fabricated into a single integrated circuit module. . Therefore, the invention is not limited to any particular combination of hardware and software.
  • the foregoing embodiments of the present invention provide a communication port stability control method and apparatus, and a computer storage medium, which are to be interfered with by acquiring an interfered frequency band to be adjusted on a target line. At least part of the data currently carried on the current bearer is allocated by at least one of the other frequency bands on the target line, so that the data carried on the interference frequency band is as small as possible or even zero, thereby reducing interference on the interference frequency band to the line. Impact, which in turn improves the stability of the communication port and user experience satisfaction.
  • the data carried by the part of the interference band can be properly allocated by the solution provided by the present invention to improve the stability of the communication port.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种通信端口稳定性的控制方法及装置,通过获取通信端口下目标线路上待调整的被干扰频段,将被干扰频段上当前承载的至少部分数据调配为由所述目标线路上其他频段中的至少一个目标频段承载,以解决现有通信中由于G.FAST线路上存在与其他线路重叠的干扰频段导致通信端口稳定性差、用户使用满意度低的问题,此方法提升了通信端口的稳定性及用户体验满意度。

Description

一种通信端口稳定性控制方法及装置 技术领域
本发明涉及网络技术通信领域,尤其涉及一种通信端口稳定性控制方法及装置。
背景技术
科技快速发展,数据业务使用量日益增长,传统的VDSL(Very High Speed Digital Subscriber Line,超高速数字用户线路)、ADSL(Asymmetric Digital Subscriber Line,非对称数字用户线路)以及Vectoring技术,已经不能满足用户对带宽的需求,所以G.FSAT应运而生,现有通信端口兼容G.FAST线路、VDSL线路以及FM线路,这种设置方式既保留了原先铜线接入,不需要在用户家中另外部署光纤,又可将带宽增加到1Gbps。由于G.FAST线路通过将使用频带从VDSL的30MHz提升到106MHz/212MHz,因此G.FAST线路与VDSL线路在30MHz以下频段有重叠,G.FAST线路与FM线路在87.5MHz以上频段也存在重叠,由于重叠频段存在的干扰是非常强的,所以线路的稳定性较差,降低了用户使用的满意度。
发明内容
本发明实施例提供的一种通信端口稳定性控制方法和装置,主要解决的技术问题是:现有通信端口下的G.FAST线路上存在与其他线路重叠的干扰频段,导致端口稳定性差、用户使用满意度低的问题。
为解决上述技术问题,本发明实施例提供一种通信端口稳定性控制方法,包括:
获取通信端口下目标线路上待调整的被干扰频段;
将所述被干扰频段上当前承载的至少部分数据调配为由所述目标线 路上其他频段中的至少一个目标频段承载。
本发明实施例还提供一种通信端口稳定性控制装置,包括:
干扰频段获取模块,设置为获取通信端口下目标线路上待调整的被干扰频段;
控制模块,设置为将所述被干扰频段上当前承载的至少部分数据调配为由所述目标线路上其他频段中的至少一个目标频段进行承载。
本发明实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行前述的通信端口稳定性控制方法。
本发明实施例的有益效果是:
根据本发明实施例提供的通信端口稳定性控制方法、装置以及计算机存储介质,通过获取目标线路上待调整的被干扰频段,将被干扰频段上当前承载的至少部分数据调配为由该目标线路上其他频段中的至少一个目标频段承载,这样可以使得干扰频段上承载的数据尽可能少甚至为零,从而减少干扰频段上的干扰对线路的影响,进而提升通信端口的稳定性以及用户体验满意度。尤其对于现有通信端口下G.FAST线路上存在与其他线路重叠的干扰频段,可以通过本发明提供的方案将这部分干扰频段上承载的数据合理的调配出去,提升通信端口稳定性。
附图说明
图1为本发明实施例一中通信端口稳定性控制方法流程示意图;
图2为本发明实施例一中获取通信端口下待调整的被干扰频段流程示意图;
图3为本发明实施例一中将被干扰频段上承载的至少部分数据调配为由目标线路上其他频段中的至少一个目标频段承载的流程示意图;
图4为本发明实施例二中通信端口下目标线路为G.FAST线路的稳定 性控制方法流程示意图;
图5为本发明实施例三中通信端口稳定性控制装置结构示意图一;
图6为本发明实施例三中通信端口稳定性控制装置结构示意图二;
图7为本发明实施例三中通信端口稳定性控制装置结构示意图三;
图8为本发明实施例三中通信端口稳定性控制装置结构示意图四。
具体实施方式
下面通过具体实施方式结合附图对本发明实施例作进一步详细说明。
实施例一:
为了减少通信端口下各类型线路上的各种干扰,包括但不限于各线路之间的重叠频段的互相干扰,提高用户使用满意度,本实施例提供了一种通信端口稳定性控制方法,如图1所示,包括:
S101:获取通信端口下的目标线路上待调整的被干扰频段。
本实施例S101中的通信端口可以是所有通信端口中的任意一个。也可以是所有通信端口中稳定性较差的端口。为稳定性较差的通信端口时,这些通信端口可以是由用户直接反馈,也可以是由***自动对各通信端口进行监测判定。例如,***可以对某一通信端口在预设的一个时间段内监测其建链、断链的次数,当该次数大于预设次数时则判定该通信端口不稳定。应当理解的得是,上述稳定性的判断示例仅仅是本实施例中一种示例说明,还可以采用其他任意实现通信端口稳定性判定的方式。
本实施例中的目标线路可以选择通信端口下的任意线。可以选择通信端口下与其他线路有至少部分重叠的线路。例如,假设通信端口下具有G.FAST线路、VDSL线路、FM线路,上述三种线路的重叠情况如下:2.2MHz~30MHz为G.FAST线路与VDSL线路的重叠频段,87.5MHz~106MHz为G.FAST线路与FM线路的重叠频段,所述线路的频段根据不同的应用场景是可以灵活变化的,例如FM线路,在中国其频段 为87.5MHz~108MHz,在日本其频段为76MHz~90MHz。
本实施例中的目标线路可以是上述示例的三种线路中的任意一种。例如,其可以是G.FAST线路,当应用场景在中国时,与该线路重叠的频段包括频率范围为2.2MHz~30MHz与87.5MHz~106MHz的频段,这些频段是重点被干扰频段。目标线路为FM线路,应用场景在中国时,重叠频段为87.5MHz~106MHz。目标线路为VDSL线路,应用场景在中国时,重叠频段为2.2MHz~30MHz。
S102:将上述被干扰频段上当前承载的至少部分数据调配为由目标线路上其他频段中的至少一个目标频段承载。
本实施例中,数据可以是部分调整,也可以是全部调整,具体可以根据实际应用场景灵活选择;目标频段选择的个数可以是一个,也可以是多个。具体可以根据实际应用场景和干扰频段需要调出的具体数据量灵活选择。
通过图1所示的控制方法,可以使得干扰频段上承载的数据尽可能少甚至为零,从而减少干扰频段上的干扰对线路的影响,进而提升通信端口的稳定性以及用户体验满意度。
S101中,获取目标线路上待调整的被干扰频段,具体可以通过各频段上的干扰情况来确定。本实施例中的干扰情况可以根据线路上的背景噪声与预设背景噪声阈值进行比较来确定。且本实施例中,可以直接获取目标线路上全频段的背景噪声。或者也可以直接获取具有频段重叠部分的区域,本实施例中称之为重叠频段。当端口下的线路类型确定,目标线路选定后,重叠频段可以预先设置,例如上述通信端口下有G.FAST线路、VDSL线路、FM线路,且目标线路为FM线路时,则重叠频段为87.5MHz~106MHz。设置好要筛选的频段,筛选这些频段中的干扰频段的过程参见图2所示,包括:
S201:获取目标线路上全频段或预设重叠频段的线路背景噪声。
线路背景噪声为所述目标线路处于静默状态或激活状态时的背景噪 声。静默状态指线路处于空载、未使用的状态,激活状态指线路处于承载数据的使用状态。具体的,如果设备当前不支持测量激活线路背景噪声参数,则可以获取该线路处于静默状态时的背景噪声,如果设备当前支持测量激活线路背景噪声,则可以获取该线路处于激活状态时的背景噪声。
S202:将线路背景噪声大于等于预设背景噪声阈值的频段作为被干扰频段。对应的,当获取的线路背景噪声为目标线路处于静默状态或激活状态时的背景噪声时,本步骤中的预设背景噪声阈值为预设静默线路背景噪声阈值或预设激活线路背景噪声阈值,且该两种阈值可不同也可相同。具体的,将获取的静默线路背景噪声与预设静默线路背景噪声比较,将获取的激活线路背景噪声与预设激活线路背景噪声比较。所述预设背景噪声阈值通常为经验值且设置灵活,该经验值为-120DBM/Hz~-140DBM/Hz,一般来说经验值与运营商线路环境有关,例如可以为-130DBM/Hz或者为-135DBM/Hz。
为了更好的理解本发明,下面对将上述被干扰频段上当前承载的至少部分数据调配为由目标线路上其他频段中的至少一个目标频段承载作进一步示例说明。此时参见图3所示,包括:
S301:为所述干扰频段在所述目标线路上的其他频段中选择目标频段。
本实施例中的目标频段可以为目标线路其他频段中的干扰频段或非干扰频段,或者根据所述干扰频段当前承载的数据量(即传输的比特量),从所述目标线路上的其他频段中选择N个功率谱密度大于预设功率谱密度阈值,且信号衰减值小于预设信号衰减阈值的频段作为目标频段;N大于等于1,预设功率谱密度的设置只要保证该频段具备较好数据承载能力即可。信号衰减值表示信号衰减的程度,该信号衰减值可以通过信道传递函数来表征,即通过传递函数的参数均值来表示,也可以通过其他方式获取。
S302:将所述被干扰频段上当前承载的全部数据调配为由选择的目标频段进行承载。
可以通过将被干扰频段的功率谱密度设置为小于等于空载功率谱密度阈值,从而使被干扰频段上当前承载的全部数据调配为由S301中选择的目标频段进行承载。本实施例中的空载功率谱密度为频段不能承载数据时的功率谱密度界限值,主要设置为小于等于该功率谱密度界限值,该判断就不能承载任何数据,也即处于空载状态。
应当理解的是,本实施例中,在选择出干扰频段后,在为干扰频段选择分担承载数据的目标频段之前,还可以先判断该通信端口当前是否满足调配条件,如满足才进行后续的目标频段选择及数据调配过程。否则,不进行后续过程。增加该判断过程可以避免通信端口当前不满足调配条件时而进行后续的无效操作,可以提升资源利用效率以及控制的合理性。因此,本实施例中,在为干扰频段在所述目标线路上的其他频段中选择目标频段之前,还可包括判断通信端口当前是否满足调配条件,包括但不限于以下示例的判断方式:
方式一:判断通信端口当前的建链速率是否大于等于预设的第一限速速率阈值,如是,判定满足调配条件;
方式二:判断通信端口当前的建链速率大于等于预设的第一限速速率阈值,且满足以下条件中的至少一个时,判定满足调配条件:
通信端口当前可达最大速率大于等于第二限速速率阈值,第二限速速率阈值大于第一限速速率阈值;
干扰频段当前的信号衰减值大于等于目标线路上其他频段的信号衰减值;
干扰频段当前承载的数据量小于目标线路上其他频段当前承载的数据量总和。
上述建链速率指TPS-TC层传输速率,第一限速速率阈值指配置的最大限速传输速率,或者可根据具体应用环境设定为比最大限速传输速率略小的一个速率值。通信端口当前可达最大速率是指基于当前端口的物理配置,该通信端口理论可达的最大传输速率。第二限速速率阈值比第一限速 速率阈值大,例如其可以设置为最大线路传输速率的(1+k)倍,k可取大于等于0.01,小于等于0.1,应当理解的是,k的取值可以根据具体需求灵活调整。
本实施例中,将被干扰频段上当前承载的至少部分数据调配为由目标线路上其他频段中的至少一个目标频段进行承载后,还可以对该调整是否正确合理做进一步的监测判断,如经后续判断为正确合理,则保存上述调整后的配置;否则,需要对上述作出的调整进行还原,且可考虑其他提升稳定性的处理方式。
本实施例中,将被干扰频段上当前承载的至少部分数据调配为由目标线路上其他频段中的至少一个目标频段进行承载后,可监测分析当前端口建链速率以判断上述调配是否合理。具体的可以如下:
当监测到调整后的通信端口建链速率大于等于第一限速速率阈值时,则保存上述调整后的配置。当建链速率小于第一限速速率阈值时,提升目标频段的功率谱密度后继续监测;
提升目标频段的功率谱密度后监测到建链速率仍小于第一限速速率阈值时,将干扰频段上调配出去的数据回调至干扰频段,并将目标频段的功率谱密度还原;否则,保存调整后的配置。
应当理解的是,提升目标频段的功率谱密度可以通过下述方式进行:为每个目标频段预先设置一个最大的功率谱密度,再直接将当前目标频段上的功率谱密度直接调升至最大或在不超过最大功率谱密度的前提下将当前功率谱密度逐步提升;最大功率谱密度可以为该频段所能承载的数据达到最大时的功率谱密度。
应当理解的是,本实施例中具体可以将被干扰频段上的功率谱密度还原,以实现将被干扰频段上调配出去的数据回调至原被干扰频段上的回调方式,也即将被干扰频段上的功率谱密度设置为S302之前时的功率谱密度数值。
本实施例中,当监测到调整后的通信端口建链速率大于等于第一限速 速率阈值后,保存上述调整后的配置之前,还可对通信端口的稳定性做进一步的监测,以进一步保证上述调整的效果。该监测过程如下:
监测该通信端口是否处于稳定状态,如是,则保存上述所有过程的修改配置,即保存S302中修改配置的被干扰频段的功率谱密度以及上述速率监测过程中修改配置的目标频段的功率谱密度;若处于不稳定状态,则将被干扰频段上调配出去的数据回调至原被干扰频段上,并将目标频段的功率谱密度还原。
应当理解的是,监测判断该通信端口是否处于稳定状态可以通过下述方式进行:根据运营线路环境要求预先设定一个时间范围为T、在时间T内反复建链断链的次数为数值X,若监测到该通信端口时间范围小于等于T时,建链、断链的次数大于等于X则该通信端口处于不稳定状态;否则,该通信端口处于稳定状态。
实施例二:
为了更好的理解本发明,下面将结合一个具体的目标线路给予说明,本实施例以G.FAST线路、VDSL线路、以及FM线路共存的通信环境,G.FAST线路为目标线路,重叠的频段为2.2MHz~30MHz与87.5MHz~106MHz进行示例说明,参见图4所示,包括:
S401:根据用户反馈或者***自动对各通信端口进行监测判定,找出稳定性较差的端口。
S402:实时或定时收集不稳定端口的线路数据信息,获取重叠频段的静默线路噪声。
S403:将获取的重叠频段的静默线路噪声与经验值进行比较,经验值通常为-120DBM/Hz~-140DBM/Hz,若静默线路噪声显著高于经验值,则该频段确定为待调整被干扰频段。
S404:为被干扰频段在目标线路上通信端口下的其他频段中选择至少一个合适的目标频段。
本实施例中目标频段为非干扰频段且目标频段的功率谱密度大于预 设功率谱密度阈值,且信号衰减值小于预设信号衰减阈值。
S405:判断端口的速率是否有裕量,是否存在调整的空间;若当前建链速率大于等于配置的限速速率,则该端口存在调整的空间,继续执行下述步骤;若当前的建链速率小于配置的限速速率则不存在调整的空间,不必再执行下述步骤。
S406:通过修改被干扰频段的极限功率谱密度掩模以该频段的功率谱密度降低,使该频段上完全不承载数据。
S407:比较通信端口当前的建链速率与配置的限速速率大小,若当前的建链速率小于配置的限速速率,则执行S408;若当前的建链速率大于等于配置的限速速率,则执行S409。
S408:提升S404中选择的目标频段的功率谱密度至最大后继续监测,这个最大的功率谱密度是预先设置的:若此时监测到的建链速率小于配置的限速速率则执行S410;若此时监测到的建链速率大于等于配置的限速速率,则执行S409。
S409:对通信端口当前的稳定性进行监测,若监测到通信端口不稳定,则执行S410,若监测到通信端口稳定,则执行S411。
S410:将被干扰频段与目标频段上的功率谱密度还原.
S411:保存修改配置的功率谱密度。
如果待调整的被干扰频段有多个,则对剩下的所有被干扰频段执行上述操作。
实施例三:
本实施例基于实施例一和实施例二提供一种通信端口稳定性控制装置,如图5所示,包括:
干扰频段获取模块51,用于获取通信端口下目标线路上待调整的被干扰频段。
本实施例中的通信端口可以是所有通信端口中的任意一个,也可以是 所有通信端口中稳定性较差的端口。为稳定性较差的通信端口时,该装置可以通过用户反馈直接收集不稳定端口,也可以通过稳定性监测模块53由***自动对各通信端口进行监测判定如图6所示。例如,稳定性监测模块53监测判定该端口是否稳定可以通过对某一通信端口在预设的一个时间段内监测其建链、断链的次数来判定,当该次数大于预设次数时则稳定性检测模块53判定该端口不稳定。应当理解的是,上述稳定性监测模块判断端口是否稳定的示例仅仅是本实施例中一种示例说明,稳定性监测模块53还可以通过其他任意实现通信端口稳定性判定的方式来判定该通信端口是否稳定。
本实施例中该装置可以通过目标线路选择模块54选择通信端口下的任意线路作为目标线路进行调整,或者选择通信端口下与其他线路有至少部分重叠的线路来进行调整,装置具体结构如图6所示。例如,假设通信端口下具有G.FAST线路、VDSL线路、FM线路,目标线路选择模块54可以选择上述三种线路的任意一种,例如,目标线路选择模块54选择G.FAST线路作为目标线路,与该线路重叠的频段包括频率范围为2.2MHz~30MHz与87.5MHz~106MHz的频段,这些频段是重点被干扰频段;应当理解的是线路根据应用场景的不同其频率范围也不同,具体情况具体分析,例如FM线路,在中国其频段为87.5MHz~108MHz,在日本其频段为76MHz~90MHz。
控制模块52,设置为将被干扰频段上当前承载的至少部分数据调配为由目标线路上其他频段中的至少一个目标频段进行承载。
本实施例中,控制模块52设置为将被干扰频段上当前承载的部分或全部数据调配到目标线路上的其他一个或者是多个频段进行承载,具体可以根据实际应用场景灵活选择,目标频段选择的个数可以是一个,也可以是多个,具体可以根据实际应用场景和干扰频段需要调出的具体数据量灵活选择。。
通过图5所示的装置,对通信端口稳定性进行控制,可以使得干扰频 段上承载的数据尽可能少甚至为零,从而减少干扰频段上的干扰对线路的影响,进而提升通信端口的稳定性以及用户体验满意度。
干扰频段获取模块51设置为获取目标线路上待调整的被干扰频段,具体可以通过各频段上的干扰情况来确定。本实施例中的干扰情况可以根据噪声获取单元511获取线路上的背景噪声,再通过判断单元使512获取的背景噪声与预设背景噪声阈值进行比较来确定,具体参见图7所示。且本实施例中,噪声获取单元511可以直接获取目标线路选择模块54选择的目标线路上全频段的背景噪声,或者也可以直接获取重叠频段的背景噪声。当端口下的线路类型确定,目标线路选择模块54选定目标线路后,重叠频段可以预先设置,例如通信端口下有G.FAST线路、VDSL线路、FM线路,且目标线路为FM线路,则重叠频段为87.5MHz~106MHz,预先设置好要筛选的频段。
此时,噪声获取单元511设置为可以获取目标线路上全频段或预设重叠频段的线路背景噪声。线路背景噪声为目标线路处于静默状态或激活状态时的背景噪声,具体的,如果当前设备不支持测量激活线路背景噪声参数,则噪声获取单元511设置为获取该线路处于静默状态时的背景噪声,如果当前设备支持测量激活线路背景噪声,则噪声获取单元511可以获取该线路处于激活状态时的背景噪声。
判断单元512设置为将噪声获取单元511获取的背景噪声与预设背景噪声阈值进行比较,并将线路背景噪声大于等于预设背景噪声阈值的频段判断为被干扰频段,预设背景噪声阈值为预设静默线路背景噪声阈值或预设激活线路背景噪声阈值,且该两种阈值可不同也可相同,预设背景噪声阈值通常为经验值且设置灵活,该经验值为-120DBM/Hz~-140DBM/Hz,一般来说经验值与运营商线路环境有关,例如可以为-130DBM/Hz或者-135DBM/Hz。
下面对用于将被干扰频段上当前承载的至少部分数据调配为由目标线路上其他频段中的至少一个目标频段进行承载的控制模块52作进一步 说明。此时参见图8,包括:
选择单元521:设置为为干扰频段在目标线路上的其他频段中选择目标频段。选择的目标频段可以是干扰频段与非干扰频段,或者根据干扰频段当前承载的数据量(即传输的比特量),从目标线路上的其他频段中选择N个功率谱密度大于预设功率谱密度阈值,且信号衰减值小于预设信号衰减阈值的频段作为目标频段;N大于等于1,预设功率谱密度的设置只要保证该频段具备较好数据承载能力即可,信号衰减值表示信号衰减的程度,该信号衰减值可以通过信道传递函数来表征即通过传递函数的参数均值来表示,也可以通过其他方式获取。。
调配单元522:设置为将被干扰频段上当前承载的全部数据调配为由目标频段进行承载。调配单元522可以通过将被干扰频段的功率谱密度设置为小于等于空载功率谱密度阈值,从而使被干扰频段上当前承载的全部数据调配为由目标频段进行承载,空载功率谱密度为频段不能承载数据时的功率谱密度界限值。
应当理解的是选择单元521在为干扰频段在目标线路上的其他频段中选择目标频段之前,还应当判断通信端口当前是否满足调配条件,上述过程可以通过条件判断模块55实现,该装置结构示意图参见图8所示,条件判断模块判断是否满足调配条件包括以下方式:
方式一:判断通信端口当前的建链速率是否大于等于预设的第一限速速率阈值,如是,判定满足调配条件;
方式二:判断通信端口当前的建链速率大于等于预设的第一限速速率阈值,且满足以下条件中的至少一个时,判定满足调配条件:
通信端口当前可达最大速率大于等于第二限速速率阈值,第二限速速率阈值大于第一限速速率阈值;
干扰频段当前的信号衰减值大于等于目标线路上其他频段的信号衰减值;
干扰频段当前承载的数据量小于目标线路上其他频段当前承载的数 据量总和。
上述建链速率指TPS-TC层传输速率,第一限速速率阈值指在配置的最大限速传输速率,或者可根据具体应用环境设定为比最大限速传输速率略小的一个速率值。通信端口当前可达最大速率是指基于当前端口的物理配置,该通信端口理论可达的最大传输速率。第二限速速率阈值比第一限速速率阈值大,例如其可以设置为最大线路传输速率的(1+k)倍,k可取大于等于0.01,小于等于0.1等,应当理解的是,k的取值可以根据具体需求灵活调整。
调配单元522将被干扰频段上当前承载的至少部分数据调配为由目标线路上其他频段中的至少一个目标频段进行承载后,速率监测模块56会监测分析当前端口建链速率,以判断上述调配是否合理,具体如下:
当速率监测模块56监测到建链速率大于等于第一限速速率阈值时,则保存上述调整后的配置。当速率监测模块56监测到建链速率小于第一限速速率阈值时,则调配单元522提升目标频段的功率谱密度后继续监测;
提升目标频段的功率谱密度后监测到建链速率仍然小于第一限速速率阈值时,调配单元522将干扰频段上调配出去的数据回调至干扰频段,并将目标频段的功率谱密度还原,否则保存调整后的配置。
应当理解的是,提升目标频段的功率谱密度可以通过下述方式进行:为每个目标频段预先设置一个最大的功率谱密度,再直接将当前目标频段上的功率谱密度直接调升至最大或在不超过最大功率谱密度的前提下将当前功率谱密度逐步提升;最大功率谱密度指该频段所能承载的数据达到最大时的功率谱密度。
在本实施例中,当速率监测模块56监测到调整后的通信端口建链速率大于等于第一限速速率阈值后,保存上述调整的配置之前,还可以通过稳定性监测模块53对该端口的稳定性作进一步监测,以进一步保证调整效果。稳定性监测模块53的监测过程如下:
监测该端口是否处于稳定状态,如是,保存上述所有过程的修改配置, 如处于不稳定状态,则通过调配单元522将被干扰频段上调配出去的数据回调至原被干扰频段上,并将目标频段的功率谱密度还原。
应当理解的是,稳定性监测模块53监测判断该通信端口是否处于稳定状态可以通过下述方式进行:根据运营线路环境要求预先设定一个时间范围为T、在时间T内反复建链断链的次数为数值X,若监测到该通信端口时间范围小于等于T时,建链、断链的次数大于等于X则该通信端口处于不稳定状态;否则,该通信端口处于稳定状态。
本发明实施例提供了的通信端口稳定性控制装置通过获取目标线路上待调整的被干扰频段,将被干扰频段上当前承载的至少部分数据调配为由该目标线路上其他频段中的至少一个目标频段承载;提高了端口的稳定性以及用户体验满意度。
显然,本领域的技术人员应该明白,上述本发明实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在计算机存储介质(ROM/RAM、磁碟、光盘)中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。所以,本发明不限制于任何特定的硬件和软件结合。
以上内容是结合具体的实施方式对本发明实施例所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
工业实用性
本发明上述实施例提供了一种通信端口稳定性控制方法、装置以及计算机存储介质,通过获取目标线路上待调整的被干扰频段,将被干扰频段 上当前承载的至少部分数据调配为由该目标线路上其他频段中的至少一个目标频段承载,这样可以使得干扰频段上承载的数据尽可能少甚至为零,从而减少干扰频段上的干扰对线路的影响,进而提升通信端口的稳定性以及用户体验满意度。尤其对于现有通信端口下G.FAST线路上存在与其他线路重叠的干扰频段,可以通过本发明提供的方案将这部分干扰频段上承载的数据合理的调配出去,提升通信端口稳定性。

Claims (12)

  1. 一种通信端口稳定性控制方法,包括:
    获取通信端口下目标线路上待调整的被干扰频段;
    将所述被干扰频段上当前承载的至少部分数据调配为由所述目标线路上其他频段中的至少一个目标频段承载。
  2. 如权利要求1所述的通信端口稳定性控制方法,其中,获取所述目标线路上待调整的被干扰频段包括。
    获取所述目标线路上全频段或预设重叠频段的线路背景噪声;
    将线路背景噪声大于等于预设背景噪声阈值的频段作为被干扰频段。
  3. 如权利要求2所述的通信端口稳定性控制方法,其中,所述线路背景噪声为所述目标线路处于静默状态或激活状态时的背景噪声。
  4. 如权利要求1-3任一项所述的通信端口稳定性控制方法,其中,将所述被干扰频段上当前承载的至少部分数据调配为由所述目标线路上其他频段中的至少一个目标频段进行承载包括:
    为所述干扰频段在所述目标线路上的其他频段中选择目标频段;
    将所述被干扰频段上当前承载的全部数据调配为由所述目标频段进行承载。
  5. 如权利要求4所述的通信端口稳定性控制方法,其中,将所述被干扰频段上当前承载的全部数据调配为由所述目标频段进行承载包括:
    将所述被干扰频段的功率谱密度设置为小于等于空载功率谱密度阈值。
  6. 如权利要求4所述的通信端口稳定性控制方法,其中,为所述干扰频段在所述目标线路上的其他频段中选择目标频段包括:
    根据所述干扰频段当前承载的数据量,从所述目标线路上的其他频段中选择N个功率谱密度大于预设功率谱密度阈值,且信号衰减值小于预设 信号衰减阈值的频段作为目标频段;所述N大于等于1。
  7. 如权利要求4所述的通信端口稳定性控制方法,其中,为所述干扰频段在所述目标线路上的其他频段中选择目标频段之前,还包括判断所述通信端口当前是否满足调配条件,包括:
    判断所述通信端口当前的建链速率是否大于等于预设的第一限速速率阈值,如是,判定满足调配条件;
    或,
    判断所述通信端口当前的建链速率大于等于预设的第一限速速率阈值,且满足以下条件中的至少一个时,判定满足调配条件:
    所述通信端口当前可达最大速率大于等于第二限速速率阈值,所述第二限速速率阈值大于所述第一限速速率阈值;
    所述干扰频段当前的信号衰减值大于等于所述目标线路上其他频段的信号衰减值;
    所述干扰频段当前承载的数据量小于所述目标线路上其他频段当前承载的数据量总和。
  8. 如权利要求1-3任一项所述的通信端口稳定性控制方法,其中,将所述被干扰频段上当前承载的至少部分数据调配为由所述目标线路上其他频段中的至少一个目标频段进行承载后,还包括:
    对所述通信端口当前的建链速率进行监测,当监测到所述建链速率小于所述第一限速速率阈值时,提升所述目标频段的功率谱密度后继续监测;
    提升所述目标频段的功率谱密度后监测到所述建链速率小于所述第一限速速率阈值时,将所述干扰频段上调配出去的数据回调至所述干扰频段,并将所述目标频段的功率谱密度还原。
  9. 如权利要求8所述的通信端口稳定性控制方法,其中,当监测到所述建链速率大于等于所述第一限速速率阈值时,还包括:
    对所述通信端口当前的稳定性进行监测,监测到所述通信端口当前不稳定时,将所述干扰频段上调配出去的数据回调至所述干扰频段,并将所述目标频段的功率谱密度还原。
  10. 一种通信端口稳定性控制装置,包括:
    干扰频段获取模块,设置为获取通信端口下目标线路上待调整的被干扰频段;
    控制模块,设置为将所述被干扰频段上当前承载的至少部分数据调配为由所述目标线路上其他频段中的至少一个目标频段进行承载。
  11. 如权利要求10所述的通信端口稳定性控制装置,其中,所述控制模块包括:
    选择单元,设置为为所述干扰频段在所述目标线路上的其他频段中选择目标频段;
    调配单元,设置为将所述被干扰频段上当前承载的全部数据调配为由所述目标频段进行承载。
  12. 如权利要求10或11所述的通信端口稳定性控制装置,其中,还包括速率监测模块,设置为在所述控制模块将所述被干扰频段上当前承载的至少部分数据调配为由所述目标线路上其他频段中的至少一个目标频段进行承载后,对所述通信端口当前的建链速率进行监测,当监测到所述建链速率小于所述第一限速速率阈值时,提升所述目标频段的功率谱密度后继续监测,提升所述目标频段的功率谱密度后监测到所述建链速率小于所述第一限速速率阈值时,将所述干扰频段上调配出去的数据回调至所述干扰频段,并将所述目标频段的功率谱密度还原。
PCT/CN2017/097217 2016-07-25 2017-08-11 一种通信端口稳定性控制方法及装置 WO2018019307A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610592400.5A CN107659335A (zh) 2016-07-25 2016-07-25 一种通信端口稳定性控制方法及装置
CN201610592400.5 2016-07-25

Publications (1)

Publication Number Publication Date
WO2018019307A1 true WO2018019307A1 (zh) 2018-02-01

Family

ID=61015613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097217 WO2018019307A1 (zh) 2016-07-25 2017-08-11 一种通信端口稳定性控制方法及装置

Country Status (2)

Country Link
CN (1) CN107659335A (zh)
WO (1) WO2018019307A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112332895A (zh) * 2020-11-26 2021-02-05 广东星舆科技有限公司 一种接收机双通路通信方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109981139B (zh) * 2019-03-29 2021-11-19 湖北师范大学 一种降低g.fast端口串扰的方法、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080212768A1 (en) * 2005-09-21 2008-09-04 Huawei Technologies Co., Ltd. METHOD AND APPARATUS FOR ADAPTIVE POWER ADJUSTMENT BASED ON REDUCTION OF CROSS-TALK BETWEEN DSLs
CN101867390A (zh) * 2010-05-04 2010-10-20 中兴通讯股份有限公司 一种移动通讯终端抗干扰的方法及***
CN102480774A (zh) * 2010-11-29 2012-05-30 华为技术有限公司 一种消除***干扰的方法、装置及终端
CN104104453A (zh) * 2013-04-02 2014-10-15 国基电子(上海)有限公司 可降低射频干扰的***及其降低射频干扰的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080212768A1 (en) * 2005-09-21 2008-09-04 Huawei Technologies Co., Ltd. METHOD AND APPARATUS FOR ADAPTIVE POWER ADJUSTMENT BASED ON REDUCTION OF CROSS-TALK BETWEEN DSLs
CN101867390A (zh) * 2010-05-04 2010-10-20 中兴通讯股份有限公司 一种移动通讯终端抗干扰的方法及***
CN102480774A (zh) * 2010-11-29 2012-05-30 华为技术有限公司 一种消除***干扰的方法、装置及终端
CN104104453A (zh) * 2013-04-02 2014-10-15 国基电子(上海)有限公司 可降低射频干扰的***及其降低射频干扰的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112332895A (zh) * 2020-11-26 2021-02-05 广东星舆科技有限公司 一种接收机双通路通信方法及装置
CN112332895B (zh) * 2020-11-26 2024-03-05 广东星舆科技有限公司 一种接收机双通路通信方法及装置

Also Published As

Publication number Publication date
CN107659335A (zh) 2018-02-02

Similar Documents

Publication Publication Date Title
US11071168B2 (en) Multi-station access method, apparatus, and system
CN110100400B (zh) 信道检测机制的确定方法、装置、设备及存储介质
EP3138206B1 (en) Low power mode with legacy compatibility
JP2017536013A (ja) 併置された無線機のための送信調整
WO2016066121A1 (zh) 一种实现基站和终端间灵活harq定时的方法及装置
WO2012097738A1 (zh) 一种调整频域资源分布位置的方法及装置
US20180042006A1 (en) Method for resource allocation and base station
CN104184682B (zh) 带宽的调整方法以及带宽调整控制器
WO2018019307A1 (zh) 一种通信端口稳定性控制方法及装置
RU2650189C1 (ru) Способ передачи данных и устройство связи
CN110446252B (zh) 用于定向lbt的能量阈值确定方法、定向lbt方法及装置、存储介质、终端、基站
WO2019034001A1 (zh) 一种功耗控制方法及装置
WO2016050137A1 (zh) 一种基于tm9的载波聚合方法和设备
EP3082357B1 (en) Methods and devices for performing downlink transmission
JP7460848B2 (ja) 電力取得方法、装置及びノード機器
US20240090005A1 (en) METHOD AND SYSTEM FOR TRAFFIC SHAPING AT THE DU/CU TO ARTIFICIALLY REDUCE THE TOTAL TRAFFIC LOAD ON THE RADIO RECEIVER SO THAT NOT ALL THE TTLs ARE CARRYING DATA
JP4664261B2 (ja) 動的なサブチャネル割り当てのための方法、送信機、受信機およびシステム
CN113163491B (zh) 频域资源处理方法、频域资源配置方法及相关设备
JPH1169426A (ja) 対干渉時再接続チャネル切り替え方法
WO2020164145A1 (zh) 多带宽传输时的功率配置方法、装置、设备及***
CN103856945B (zh) LTE‑Advanced中继***的上行干扰协调方法
US20120300703A1 (en) Method and system for obtaining actual power headroom of carrier of UE
WO2016149916A1 (zh) 一种数据传输的方法及装置
CN115087078A (zh) 子集带宽bwp的配置方法、装置、电子设备及存储介质
WO2016091007A1 (zh) Drx参数处理方法、装置、基站和rrc

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833610

Country of ref document: EP

Kind code of ref document: A1