WO2018018966A1 - 天线辐射单元及多频宽带基站天线 - Google Patents

天线辐射单元及多频宽带基站天线 Download PDF

Info

Publication number
WO2018018966A1
WO2018018966A1 PCT/CN2017/081980 CN2017081980W WO2018018966A1 WO 2018018966 A1 WO2018018966 A1 WO 2018018966A1 CN 2017081980 W CN2017081980 W CN 2017081980W WO 2018018966 A1 WO2018018966 A1 WO 2018018966A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiating
antenna
dipoles
horizontal
radiation
Prior art date
Application number
PCT/CN2017/081980
Other languages
English (en)
French (fr)
Inventor
王强
陈汝承
姚化山
Original Assignee
京信通信技术(广州)有限公司
京信通信***(中国)有限公司
天津京信通信***有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信技术(广州)有限公司, 京信通信***(中国)有限公司, 天津京信通信***有限公司 filed Critical 京信通信技术(广州)有限公司
Priority to BR112019001715-1A priority Critical patent/BR112019001715A2/pt
Publication of WO2018018966A1 publication Critical patent/WO2018018966A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations

Definitions

  • the present invention relates to the field of mobile communication antenna technologies, and in particular, to an antenna radiation unit and a multi-frequency broadband base station antenna using the antenna radiation unit.
  • a primary object of the present invention is to provide an antenna radiating unit which is characterized by miniaturization, low profile and wide frequency band.
  • Another object of the present invention is to provide a base station antenna to which the above-described antenna radiating unit is applied.
  • the present invention provides the following technical solutions:
  • the invention provides an antenna radiating unit, comprising: a base, four pairs of feeding baluns extending radially from the edge of the base, and four pairs of four pairs disposed on the four pairs of feeding baluns a pole, each of said dipoles comprising a pair of radiating arms, each radiating arm comprising a connection to a feed balun a first end and a second end remote from the feed balun, and further comprising a horizontal loader coupled to the second end of the two radiating arms adjacent to the two adjacent dipoles of the plurality of dipoles, and At least one pair of vertical loading members coupled to the second end opposite the at least two of the remaining radiating arms.
  • the radiating arm has a horizontal radiating surface and a lateral radiating surface connected to the horizontal radiating surface.
  • the horizontal loading member is fixed to the radiation arm by a first dielectric insulating sheet, and the horizontal loading member is fixed above or below the horizontal radiation surface.
  • an angle between the horizontal radiating surface and the lateral radiating surface is a right angle or an obtuse angle.
  • the horizontal loading member is bent downward along the outside of the radiation arm, and the bending angle is greater than 60° and less than 150°.
  • the first end of the radiating arm extends outward along the horizontal radiation surface and is bent downward, and the bending angle is greater than 60° and less than 150°.
  • each pair of the vertical loading members are respectively connected to the second ends of the radiating arms of the two dipoles through a pair of second dielectric insulating sheets, and each pair of vertical loading members are symmetrically disposed.
  • the structure of the four pairs of dipoles is annular or square.
  • the two feed baluns of each pair of feed baluns are arranged in parallel and symmetrically, and the two baluns are each connected to one of the radiation arms of one dipole.
  • the present invention provides a multi-band wideband base station antenna comprising at least one low frequency radiating element and a plurality of high frequency radiating elements, wherein the low frequency radiating element is the antenna radiating element of any of the above.
  • the at least one low frequency radiation unit is coaxially arrayed with the plurality of high frequency radiation units, and the high frequency radiation unit is nested in the low frequency radiation unit.
  • the plurality of high frequency radiating elements are arrayed in at least three columns, and the high frequency radiating elements of each column are coaxially arranged; the low frequency radiating unit is set in such a manner that a high frequency radiating unit is nested therein The high frequency radiating elements form an intermediate column of the array.
  • adjacent two columns of high frequency radiation units are arranged in a misaligned manner.
  • the present invention has the following advantages:
  • the antenna radiating element of the present invention connects the second ends of adjacent two dipole adjacent radiating arms by providing a horizontal loading member and a vertical loading member on the dipole radiating arm, thereby increasing the radiation arm.
  • Resonant length which in turn shortens the length of the radiating arm, reduces the size of the radiating element, and also The bandwidth of the antenna element is effectively increased.
  • the radiating elements Due to the use of horizontal loading members and vertical loading members, the radiating elements have asymmetry, which can effectively reduce the mutual coupling between the polarizations of the radiating elements.
  • the antenna radiating element of the present invention effectively widens the resonant current path on the dipole by providing a horizontal radiating surface and a lateral radiating surface on the radiating arm, reduces the diameter of the radiating element, and reduces the height of the radiating element, further reducing The size of the antenna radiating element.
  • the antenna radiation unit of the invention realizes the low profile, wide frequency band and miniaturization design of the antenna radiation unit through novel design, thereby realizing the miniaturization design of the ultra-wideband multi-system shared base station antenna.
  • Figure 1 is a perspective view of a first embodiment of an antenna radiating unit of the present invention
  • FIG. 2 is a partial perspective view of the antenna radiating unit of Figure 1, showing the main structure of the radiating element;
  • Figure 3 is a perspective view of a horizontal loading member of the first embodiment of the antenna radiating unit of the present invention.
  • Figure 4 is a perspective view of one of the vertical loading members of the first embodiment of the antenna radiating unit of the present invention.
  • Figure 5 is a perspective view of one of the vertical loading members of the first embodiment of the antenna radiating unit of the present invention.
  • Figure 6 is a perspective view of a first dielectric insulating sheet of the first embodiment of the antenna radiating unit of the present invention.
  • Figure 7 is a perspective view of a second dielectric insulating sheet of the first embodiment of the antenna radiating unit of the present invention.
  • Figure 8 is a perspective view of a second embodiment of the antenna radiating unit of the present invention.
  • Figure 9 is a partial perspective view of the antenna radiating unit of Figure 8, showing the main structure of the radiating element;
  • Figure 10 is a perspective view of a horizontal loading member of Embodiment 2 of the antenna radiating unit of the present invention.
  • Figure 11 is a perspective view of one of the vertical loading members of the second embodiment of the antenna radiating unit of the present invention.
  • Figure 12 is a perspective view of one of the vertical loading members of the second embodiment of the antenna radiating unit of the present invention.
  • Figure 13 is a perspective view of the second dielectric insulating sheet of the second embodiment of the antenna radiating unit of the present invention.
  • Figure 14 is a perspective view of the second dielectric insulating sheet of the second embodiment of the antenna radiating unit of the present invention.
  • FIG. 15 is a perspective view of a multi-frequency ultra-wideband base station antenna composed of an antenna radiating element of the present invention; schematic diagram.
  • the bandwidth of the antenna is related to the impedance, in order to achieve sufficient bandwidth, the imaginary part of the impedance, that is, the reactance is required to be as small as possible. Ideally, when the reactance is zero, the antenna radiating elements can be better realized. match.
  • the antenna radiating element of the present invention extends the radiating arm of the dipole in a disguised design by a subtle design, so that the actual length of the radiating arm can be shortened to some extent, thereby reducing the volume of the entire radiating element; meanwhile, the radiating element can also be made
  • the change in the imaginary part of the impedance slows as the frequency increases, thereby ensuring that the antenna has a wider bandwidth.
  • FIG. 1 to 7 collectively illustrate an antenna radiating element 100 of the present invention, comprising: a base 20, four pairs of feed baluns 30, four dipoles 40, three horizontal loading members 50, and a pair of vertical loading members 70. 80, three first dielectric insulating sheets 60 and a pair of second dielectric insulating sheets 90.
  • the base 20 is annular, and the four pairs of feed baluns 30 extend radially outward from the edge of the base 20, and the four dipoles 40 (including the dipoles 401 to 404) are enclosed. Disposed on the four pairs of feed baluns 30, and one dipole 40 is connected to each pair of the feed baluns 30.
  • Each of the dipoles 40 includes a pair of spaced apart radiating arms, and each of the radiating arms includes a first end coupled to the feed balun and a second end remote from the feed balun.
  • the dipole 401 includes radiating arms 401a, 401b, and correspondingly, a first end 401a1, a second end 401a2, and a first end 401b1, a second end 401b2, respectively.
  • each of the horizontal loading members 50 is connected to the second ends of two adjacent radiating arms of two adjacent dipoles by means of one of the first dielectric insulating sheets 60; the pair of vertical loading members 70 And a pair of second dielectric insulating sheets 90 are respectively connected to the second ends of the remaining two radiating arms to realize a coupling connection of each two adjacent radiating arms.
  • the resonant length of the radiating arm is increased in phase by connecting the adjacent radiating arms of the adjacent two dipoles by coupling (e.g., by loading the horizontal loading member 50 or the vertical loading members 70, 80 on the radiating arm). That is equivalent to extending the length of the radiation arm.
  • the actual length of the radiating arm connected to the loading member can be shortened to some extent, thereby reducing The volume of the entire radiating element 100.
  • the symmetry of the radiating elements can be broken, and the mutual coupling between the polarizations of the radiating elements can be effectively reduced.
  • the horizontal loading member may be provided with only one, and the vertical loading member is provided with three pairs, which can also reduce the size of the radiating unit, ensure the antenna has a wide bandwidth and reduce the polarization of the radiating element. Mutual coupling between.
  • two horizontal loading members may be provided, and two pairs of vertical loading members are provided, and the volume of the radiation unit can be reduced to achieve the object of the present invention.
  • the adjacent radiating arms of two adjacent dipoles are connected by a horizontal loading member, and the other two adjacent radiations are connected by a vertical loading member, which can also reduce the size of the radiating unit of the antenna, ensure the bandwidth and reduce the radiation.
  • each of the radiating arms includes a horizontal radiating surface and a lateral radiating surface which are connected to each other.
  • the radiating arm 401a has a horizontal radiating surface 401a3 and a lateral radiating surface 401a4.
  • the path of the resonant current on the dipole 40 is effectively widened by the horizontal radiating surface and the lateral radiating surface provided on the radiating arm, thereby reducing the diameter of the radiating element, reducing the height of the radiating element, and further reducing the volume of the radiating element 100.
  • the angle between the horizontal radiating surface 401a3 and the lateral radiating surface 401a4 is a right angle or an obtuse angle.
  • the four dipoles 40 are sequentially disposed on the base 20 by the feeding balun 30, and are surrounded by a funnel-shaped closed structure.
  • the four dipoles 40 surround the same geometric center (ie, the base 20 with a pair of radiations called a construction condition).
  • the center is arranged such that a radiating surface of each dipole presents a surrounding radiating surface.
  • the radiating arms are all arcuate arms.
  • the horizontal loading member 50 and the dielectric insulating sheets 60, 90 are all arcuate to form a ring structure together with all the radiating arms.
  • the horizontal loading member 50 may be fixed above or below the horizontal radiating surface.
  • the pair of vertical loading members 70, 80 are symmetrically disposed and the wider end faces are oppositely disposed.
  • the first end of the radiating arm extends outward along the horizontal radiation surface and is bent downward to adjust the impedance characteristics and the cross polarization level of the dipole.
  • the bending angle is between 60° and 150°, preferably 90°.
  • the horizontal loading member is bent out to the outside of the radiation arm, and the bending angle is greater than 60° and less than 150°.
  • each feed balun 30 is parallel to each other, one end of each feed balun 30 is connected to the radiation arm, and the other end of the feed balun 30 is connected to the base 20
  • this structure not only effectively carries the dipole's radiating arm, but also avoids mutual interference between the dipoles.
  • FIG. 8 through 14 collectively illustrate another implementation of the antenna radiating element 100 of the present invention.
  • the antenna radiating unit 100 is similar to that of the first embodiment, except that the radiating arm of the dipole 40 is a straight arm, and correspondingly, the horizontal loading member 50 and the first medium are respectively
  • the outer shape of the insulating sheet 60 and the second dielectric insulating sheet 90 is rectangular or approximately rectangular, so that the projection of the structure in which the four dipoles are enclosed in the vertical direction is square.
  • a multi-frequency broadband base station antenna using the antenna radiating unit is provided, and at least one of the antenna radiating units is configured as a low-frequency radiating unit and is combined with a plurality of high-frequency radiating units.
  • the low-frequency radiating elements A1, A2 and the high-frequency radiating elements B1, B2, B3, B4 are in a coaxial array, and the high-frequency radiating units B2 and B4 Nested in the antenna radiating elements A1 and A2, and B1 and B3 are staggered on the axis where A1 and A2 are located.
  • the high-frequency radiation units C1, C2, C3, C4 and D1, D2, D3, and D4 are respectively disposed on both sides of the nested array composed of A1, A2, and B1, B2, B3, and B4, forming a side by side array.
  • the antenna radiating unit of the present invention adopts an asymmetric arrangement of a horizontal radiating surface, a lateral radiating surface, and a horizontal coupling and a vertical coupling, the aperture of the antenna radiating unit can be reduced while reducing the frequency thereof.
  • the influence of the radiating element, thus multi-frequency days by using the antenna radiating element of the present invention When the line is designed, the independence of the electrical performance of each frequency band can be guaranteed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

本发明提供一种天线辐射单元,包括底座、从所述底座边缘呈辐射状向外延伸设置的四对馈电巴伦、以及围合设置在所述四对馈电巴伦上的四个偶极子,每个所述偶极子包括一对辐射臂,每个辐射臂包括与馈电巴伦连接的第一端和远离馈电巴伦的第二端,以及与多个偶极子中相邻两个偶极子相邻的两个辐射臂的第二端连接的水平加载件,以及与其余辐射臂中至少两个相对的第二端耦合连接的至少一对垂向加载件。通过上述设计,可实现有效增加辐射臂的谐振长度,从而达到缩短辐射臂的长度尺寸,进而缩小辐射单元尺寸的目的。此外,本发明还提供一种多频宽带基站天线,采用上述的天线辐射单元进行多频天线设计,减小频段间的相互影响,保证各频段电性能的独立性。

Description

天线辐射单元及多频宽带基站天线 技术领域
本发明涉及移动通信天线技术领域,尤其涉及一种天线辐射单元及应用该天线辐射单元的多频宽带基站天线。
背景技术
随着移动通信网络制式的增多,已经形成了多种通信制式并存的局面。为例优化资源配置,节省站址和天馈资源,同时减小物业协调难度,降低投资成本,共站共址的***共体天线逐渐成为运营商建网的首选。
随着***移动通信网络建设的逐步加速,各运营商开始寻找既能向下兼容GSM800、GSM900、DCS1800、PCS、CDMA2000等2G及3G制式,又能向上兼容LTE700、LTE2600等4G制式的超宽带天线。同时随着建站空间的限制,小型化需求成为天线的发展趋势,然而,随着频带的拓宽,天线的尺寸也相应地增大,造成了安装的不便。
由于人们对基站天线的小型化、多***、宽频化需求日益加深,因此,有必要设计一种体积小且结构紧凑,同时还具有较宽频带的天线辐射单元及应用该天线辐射单元的基站天线。
发明内容
本发明的首要目的旨在提供一种天线辐射单元,其具有小型化、低剖面和宽频带的特点。
本发明的另一目的旨在提供一种应用上述的天线辐射单元的基站天线。
为实现上述目的,本发明提供如下技术方案:
本发明提供的一种天线辐射单元,包括底座、从所述底座边缘上呈辐射状延伸设置的四对馈电巴伦、以及围合设置在所述四对馈电巴伦上的四个偶极子,每个所述偶极子包括一对辐射臂,每个辐射臂包括与馈电巴伦连接的 第一端和远离馈电巴伦的第二端,此外,还包括与多个偶极子中相邻两个偶极子相邻的两个辐射臂的第二端连接的水平加载件,以及与其余辐射臂中至少两个相对的第二端耦合连接的至少一对垂向加载件。
具体地,所述辐射臂具有水平辐射面及与水平辐射面相连的侧向辐射面。
进一步,所述水平加载件通过第一介质绝缘片固定于所述辐射臂上,并且所述水平加载件固定于所述水平辐射面上方或下方。
可选地,所述水平辐射面与所述侧向辐射面之间的夹角为直角或钝角。
具体地,所述水平加载件沿辐射臂外侧向下折弯,并且折弯角度大于60°且小于150°。
具体地,所述辐射臂的第一端沿水平辐射面向外延伸并向下折弯,折弯角度大于60°且小于150°。
具体地,每对所述垂向加载件通过一对第二介质绝缘片分别与两个偶极子的辐射臂第二端连接,且所述每对垂向加载件对称设置。
可选地,所述四对偶极子组成的结构呈圆环状或方形。
具体地,每对馈电巴伦的两个馈电巴伦平行且对称设置,并且两个巴伦各与一个偶极子的一个辐射臂连接。
本发明提供的一种多频宽带基站天线,包括至少一个低频辐射单元和多个高频辐射单元,所述低频辐射单元为上述任意一项所述的天线辐射单元。
优选地,所述至少一个低频辐射单元与所述多个高频辐射单元共轴组阵,并且所述低频辐射单元中嵌套有所述高频辐射单元。
优选地,所述多个高频辐射单元以至少三列的方式组阵,并且每列的高频辐射单元共轴设置;所述低频辐射单元以其内嵌套有高频辐射单元的方式设在高频辐射单元组成阵列的中间列上。
进一步地,相邻两列高频辐射单元错位排布。
与现有技术相比,本发明具有如下优点:
1.本发明的天线辐射单元通过在偶极子辐射臂上设置水平加载件和垂向加载件将相邻两个偶极子相邻辐射臂的第二端连接起来,从而可以增加辐射臂的谐振长度,进而缩短辐射臂的长度尺寸、缩小辐射单元的尺寸,同时也 有效地提升了天线振子的带宽。
2.由于采用水平加载件与垂向加载件,使得辐射单元具有不对称性,可有效减小辐射单元极化间的互耦。
3.本发明的天线辐射单元通过在辐射臂上设置水平辐射面和侧向辐射面,有效拓宽了偶极子上谐振电流路径,减小了辐射单元口径,且降低了辐射单元高度,进一步缩小了天线辐射单元的尺寸。
本发明的天线辐射单元,通过新颖的设计,实现了天线辐射单元低剖面、宽频带、小型化的设计,从而实现超宽带多***共用基站天线的小型化设计。
附图说明
本发明上述的和/或附加的方面和优点将从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明的天线辐射单元的实施例一的立体图;
图2是图1所示天线辐射单元的局部立体图,示出辐射单元的主体结构;
图3是本发明的天线辐射单元的实施例一的水平加载件的立体图;
图4是本发明的天线辐射单元的实施例一的垂向加载件之一的立体图;
图5是本发明的天线辐射单元的实施例一的垂向加载件之一的立体图;
图6是本发明的天线辐射单元的实施例一的第一介质绝缘片的立体图;
图7是本发明的天线辐射单元的实施例一的第二介质绝缘片的立体图;
图8是本发明的天线辐射单元的实施例二的立体图;
图9是图8所示天线辐射单元的局部立体图,示出辐射单元的主体结构;
图10是本发明的天线辐射单元的实施例二的水平加载件的立体图;
图11是本发明的天线辐射单元的实施例二的垂向加载件之一的立体图;
图12是本发明的天线辐射单元的实施例二的垂向加载件之一的立体图;
图13是本发明的天线辐射单元的实施例二的与第一介质绝缘片的立体图;
图14是本发明的天线辐射单元的实施例二的与第二介质绝缘片的立体图;
图15是本发明的天线辐射单元组成的多频超宽带基站天线的立体结构 示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同的或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。若已知现有技术的详细描述对于示出本发明的特征是不必要的,则将其简要概述或省略。
众所周知,由于天线的带宽与阻抗有关,为了达到足够的带宽,要求阻抗的虚部即电抗越小越好,理想情况下,当电抗为零时,所述天线辐射单元之间可以实现较好的匹配。
为此,本发明的天线辐射单元通过巧妙的设计变相地延长偶极子的辐射臂,使得辐射臂的实际长度可以一定程度上缩短,从而缩小整个辐射单元的体积;同时,也可以使辐射单元阻抗的虚部的变化随频率的增长而变慢,从而保证所述天线具有较宽的带宽。
实施例一
图1至图7共同示出本发明的天线辐射单元100,包括:底座20、四对馈电巴伦30、四个偶极子40、三个水平加载件50、一对垂向加载件70、80、三个第一介质绝缘片60和一对第二介质绝缘片90。
所述底座20呈环状,所述四对馈电巴伦30从所述底座20边缘呈辐射状向外延伸设置,所述四个偶极子40(包括偶极子401~404)围合设置在所述四对馈电巴伦30上,并且每对所述馈电巴伦30上连接有一个偶极子40。每个所述偶极子40包括一对相互分离的辐射臂,并且每个所述辐射臂包括与所述馈电巴伦连接的第一端和远离馈电巴伦的第二端。以偶极子401为例,其包括辐射臂401a、401b,相应地,分别具有第一端401a1、第二端401a2和第一端401b1、第二端401b2。
其中,每个所述水平加载件50借助一个所述第一介质绝缘片60与相邻两个偶极子相邻的两个辐射臂的第二端连接;所述一对垂向加载件70、80借助所述一对第二介质绝缘片90分别与剩下的两个辐射臂的第二端连接,以实现每两个相邻辐射臂的耦合连接。
通过采用耦合方式(例如通过在辐射臂上加载水平加载件50或垂向加载件70、80)将相邻两个偶极子的相邻辐射臂连接,变相地增加了辐射臂的谐振长度,也即相当于延长了辐射臂的长度。换句话说,在原本需要相同长度的辐射臂来进行信号辐射时,由于采用了加载件对两个辐射臂进行耦合连接,与加载件连接的辐射臂的实际长度可以一定程度上缩短,从而缩小了整个辐射单元100的体积。同时因其中两个辐射臂与另外六个辐射臂加载方式的不同,可打破辐射单元的对称性,有效减小辐射单元极化间的互耦。
在另一个实施方式中,所述水平加载件可以只设有一个,而所述垂向加载件设有三对,也可以缩小辐射单元体积、保证天线具有较宽的带宽并减小辐射单元极化间的互耦。
在另一个实施方式中,水平加载件可设有两个,垂向加载件设有两对,也能实现缩小辐射单元的体积,实现本发明的目的。
此外,其中两个相邻偶极子的相邻辐射臂通过一个水平加载件连接,另外两个相邻辐射通过垂向加载件连接,也能达到缩小天线辐射单元体积、保证带宽及减小辐射单元极化间互耦的目的。
进一步地,每个所述辐射臂包括相互连接的水平辐射面和侧向辐射面,以辐射臂401a为例,所述辐射臂401a具有水平辐射面401a3、侧向辐射面401a4。通过在辐射臂上设置的水平辐射面和侧向辐射面,有效拓宽偶极子40上谐振电流的路径,从而实现减小辐射单元口径、降低辐射单元高度,进一步缩小辐射单元100的体积。
优选地,所述水平辐射面401a3与侧向辐射面401a4的夹角为直角或钝角。
四个所述偶极子40通过馈电巴伦30在底座20上依次设置,围合成漏斗形闭合结构,四个偶极子40以辐射对称为构造条件而围绕同一几何中心(即底座20的中心)设置,从而借助各偶极子的辐射臂呈现一包围状的辐射面。
优选地,所述辐射臂皆为弧形臂,相应地,所述水平加载件50、介质绝缘片60、90均设成弧形,以与所有辐射臂共同围合成一圆环结构。
在本实施方式中,所述水平加载件50可固定于所述水平辐射面的上方或下方。所述一对垂直加载件70、80对称且较宽端面相对设置。
进一步地,所述辐射臂第一端沿水平辐射面向外延伸并向下折弯,用以调节偶极子的阻抗特性及交叉极化电平。其中,折弯角度在60°至150°之间,优选为90°。
优选地,所述水平加载件向辐射臂外侧折弯伸出,折弯角度大于60°小于150°。
优选地,每对馈电巴伦30中的两个馈电巴伦相互平行,每个馈电巴伦30的一端和辐射臂相接,所述馈电巴伦30的另一端则与底座20相接,这一结构不仅有效承载了偶极子的辐射臂,也避免了偶极子之间的相互干扰。
实施例二
参见图8~图14,图8~图14共同示出本发明的天线辐射单元100的另一种实现方式。在本实施方式中,所述天线辐射单元100与实施方式一的类似,不同之处在于,所述偶极子40的辐射臂为直臂,相应地,所述水平加载件50、第一介质绝缘片60、第二介质绝缘片90的外形为矩形或近似矩形,以使四个偶极子共同围合的结构在垂直方向的投影为方形。
需要指出的是,在本发明中,所述水平加载件50和垂直加载件70、80的外形的改变及其在振子臂上位置的改变都不影响其产生的实际效果,因此皆视为未脱离本发明的实质精神。
实施例三
在本实施例中,提供了一种应用上述天线辐射单元的多频宽带基站天线,至少一个上述天线辐射单元作为低频辐射单元,同多个高频辐射单元共同组阵。
如图15所示,所述多频带基站天线200中,所述低频辐射单元A1、A2与高频辐射单元B1、B2、B3、B4呈共轴组阵,所述高频辐射单元B2与B4嵌套于所述天线辐射单元A1及A2中,而B1与B3则错落设置在A1与A2所在的轴线上。高频辐射单元C1、C2、C3、C4以及D1、D2、D3、D4分别设置在由A1、A2和B1、B2、B3、B4所组成的嵌套阵列的两侧,形成并肩组阵。
由于本发明的天线辐射单元采用了水平辐射面、侧向辐射面及水平耦合、垂向耦合的非对称设置,在减小所述天线辐射单元的口径的同时,也能减小其对高频辐射单元的影响,因此通过采用本发明的天线辐射单元进行多频天 线设计时,可以保证各频段电性能的独立性。
以上仅是本发明的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明的原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应当作为本发明的保护范围。

Claims (13)

  1. 一种天线辐射单元,包括底座、从所述底座边缘呈辐射状向外延伸的四对馈电巴伦、以及围合设置在所述四对馈电巴伦上的四个偶极子,每个所述偶极子包括一对辐射臂,每个辐射臂包括与馈电巴伦连接的第一端和远离馈电巴伦的第二端,其特征在于,还包括与多个偶极子中相邻两个偶极子相邻的两个辐射臂的第二端连接的水平加载件,以及与其余辐射臂中至少两个相对的第二端耦合连接的至少一对垂向加载件。
  2. 根据权利要求1所述的天线辐射单元,其特征在于,所述辐射臂具有水平辐射面及与水平辐射面相连的侧向辐射面。
  3. 根据权利要求2所述的天线辐射单元,其特征在于,所述水平加载件通过第一介质绝缘片固定于所述辐射臂上,并且所述水平加载件固定于所述水平辐射面上方或下方。
  4. 根据权利要求2所述的天线辐射单元,其特征在于,所述水平辐射面与所述侧向辐射面之间的夹角为直角或钝角。
  5. 根据权利要求1所述的天线辐射单元,其特征在于,所述水平加载件沿辐射臂外侧向下折弯,并且折弯角度大于60°且小于150°。
  6. 根据权利要求1所述的天线辐射单元,其特征在于,所述辐射臂的第一端沿水平辐射面向外延伸并向下折弯,折弯角度大于60°且小于150°。
  7. 根据权利要求1所述的天线辐射单元,其特征在于,每对所述垂向加载件通过一对第二介质绝缘片分别与两个偶极子辐射臂的第二端连接,且所述每对垂向加载件对称设置。
  8. 根据权利要求1所述的天线辐射单元,其特征在于,所述四对偶极子组成的结构呈圆环状或方形。
  9. 根据权利要求1所述的天线辐射单元,其特征在于,每对馈电巴伦的两个馈电巴伦平行且对称设置,并且两个馈电巴伦分别与同一个偶极子的不同辐射臂对应连接。
  10. 一种多频宽带基站天线,包括至少一个低频辐射单元和多个高频辐射单元,其特征在于,所述低频辐射单元为权利要求1至9中任意一项所述的 天线辐射单元。
  11. 根据权利要求10所述的多频宽带基站天线,其特征在于,所述至少一个低频辐射单元与所述多个高频辐射单元共轴组阵,并且所述低频辐射单元中嵌套有所述高频辐射单元。
  12. 根据权利要求10所述的多频宽带基站天线,其特征在于,所述多个高频辐射单元以至少三列的方式组阵,并且每列的高频辐射单元共轴设置;所述低频辐射单元以其内嵌套有高频辐射单元的方式设在高频辐射单元组成阵列的中间列上。
  13. 根据权利要求12所述的多频宽带基站天线,其特征在于,相邻两列高频辐射单元错位排布。
PCT/CN2017/081980 2016-07-27 2017-04-26 天线辐射单元及多频宽带基站天线 WO2018018966A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR112019001715-1A BR112019001715A2 (pt) 2016-07-27 2017-04-26 unidade irradiadora de antena e antena de estação base de bandas múltiplas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610600789.3A CN106129596A (zh) 2016-07-27 2016-07-27 天线辐射单元及多频宽带基站天线
CN201610600789.3 2016-07-27

Publications (1)

Publication Number Publication Date
WO2018018966A1 true WO2018018966A1 (zh) 2018-02-01

Family

ID=57290390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081980 WO2018018966A1 (zh) 2016-07-27 2017-04-26 天线辐射单元及多频宽带基站天线

Country Status (3)

Country Link
CN (1) CN106129596A (zh)
BR (1) BR112019001715A2 (zh)
WO (1) WO2018018966A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108666745A (zh) * 2018-04-26 2018-10-16 国动科技南京有限公司 一种基站天线单元及基站天线
CN111129762A (zh) * 2020-02-20 2020-05-08 常州仁千电气科技股份有限公司 一种平面结构的圆极化天线
CN111180870A (zh) * 2020-01-06 2020-05-19 武汉虹信通信技术有限责任公司 天线辐射单元、基站天线及天线指标调节方法
CN113241522A (zh) * 2021-03-22 2021-08-10 广东通宇通讯股份有限公司 一种天线阵列的馈电***
CN113571880A (zh) * 2020-04-28 2021-10-29 江苏嘉华通讯科技有限公司 一种用于cpe的nr天线
CN113675621A (zh) * 2021-08-19 2021-11-19 西北核技术研究所 加载电流环的紧耦合阵列天线及天线单元
CN113690592A (zh) * 2021-08-27 2021-11-23 罗森伯格技术有限公司 一种辐射元件以及天线
CN114465023A (zh) * 2022-02-14 2022-05-10 江苏亨鑫科技有限公司 一种融合布局基站天线消除巴伦影响的方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129596A (zh) * 2016-07-27 2016-11-16 京信通信技术(广州)有限公司 天线辐射单元及多频宽带基站天线
CN109149131B (zh) * 2017-06-15 2021-12-24 康普技术有限责任公司 偶极天线和相关的多频带天线
CN108172978A (zh) * 2017-12-06 2018-06-15 京信通信***(中国)有限公司 双极化辐射单元及天线装置
CN108336486B (zh) * 2017-12-29 2019-09-20 京信通信***(中国)有限公司 可调试辐射单元及天线
CN108110409A (zh) * 2018-01-30 2018-06-01 京信通信***(中国)有限公司 宽频双极化天线及其辐射装置
CN108461904A (zh) * 2018-03-13 2018-08-28 江苏捷士通射频***有限公司 应用于低频段天线的超宽带辐射单元
CN110416704B (zh) * 2018-04-26 2023-07-25 普罗斯通信技术(苏州)有限公司 一种天线辐射单元及宽频天线
CN108987927B (zh) * 2018-08-16 2023-08-15 昆山恩电开通信设备有限公司 一种具有空间透波特性的碗状天线辐射单元
CN109546312B (zh) * 2018-12-29 2023-12-22 京信通信技术(广州)有限公司 基站天线及其低频辐射单元
CN109638460B (zh) * 2018-12-29 2021-05-07 京信通信技术(广州)有限公司 多频天线及抑制共模谐振的低频辐射单元
CN112582774B (zh) * 2019-09-30 2022-05-24 京信通信技术(广州)有限公司 天线及其辐射单元、辐射单元巴伦结构和制造方法
CN110957569B (zh) * 2019-12-30 2022-11-04 京信通信技术(广州)有限公司 一种宽频辐射单元及天线
CN111934087A (zh) * 2020-08-03 2020-11-13 深圳市普方众智精工科技有限公司 宽带双极化菱形振子单元及线性阵列天线
CN113629396A (zh) * 2021-08-10 2021-11-09 苏州纬度天线有限公司 一种可提高增益及前后比的低剖面辐射单元

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070229385A1 (en) * 2006-03-30 2007-10-04 Gang Yi Deng Broadband dual polarized base station antenna
CN101425626A (zh) * 2007-10-30 2009-05-06 京信通信***(中国)有限公司 宽频带环状双极化辐射单元及线阵天线
CN102723577A (zh) * 2012-05-18 2012-10-10 京信通信***(中国)有限公司 宽频带环状双极化辐射单元及阵列天线
CN103155278A (zh) * 2010-09-25 2013-06-12 广东通宇通讯股份有限公司 宽带双极化辐射单元及宽带天线
CN103682594A (zh) * 2013-11-14 2014-03-26 广东通宇通讯股份有限公司 低频辐射单元以及双频天线
CN105552519A (zh) * 2015-12-04 2016-05-04 京信通信***(广州)有限公司 一种宽频双极化辐射单元及基站天线
CN106129596A (zh) * 2016-07-27 2016-11-16 京信通信技术(广州)有限公司 天线辐射单元及多频宽带基站天线
CN205846220U (zh) * 2016-07-27 2016-12-28 京信通信技术(广州)有限公司 天线辐射单元及多频宽带基站天线

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070229385A1 (en) * 2006-03-30 2007-10-04 Gang Yi Deng Broadband dual polarized base station antenna
CN101425626A (zh) * 2007-10-30 2009-05-06 京信通信***(中国)有限公司 宽频带环状双极化辐射单元及线阵天线
CN103155278A (zh) * 2010-09-25 2013-06-12 广东通宇通讯股份有限公司 宽带双极化辐射单元及宽带天线
CN102723577A (zh) * 2012-05-18 2012-10-10 京信通信***(中国)有限公司 宽频带环状双极化辐射单元及阵列天线
CN103682594A (zh) * 2013-11-14 2014-03-26 广东通宇通讯股份有限公司 低频辐射单元以及双频天线
CN105552519A (zh) * 2015-12-04 2016-05-04 京信通信***(广州)有限公司 一种宽频双极化辐射单元及基站天线
CN106129596A (zh) * 2016-07-27 2016-11-16 京信通信技术(广州)有限公司 天线辐射单元及多频宽带基站天线
CN205846220U (zh) * 2016-07-27 2016-12-28 京信通信技术(广州)有限公司 天线辐射单元及多频宽带基站天线

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108666745A (zh) * 2018-04-26 2018-10-16 国动科技南京有限公司 一种基站天线单元及基站天线
CN108666745B (zh) * 2018-04-26 2023-08-25 国动科技有限公司 一种基站天线单元及基站天线
CN111180870A (zh) * 2020-01-06 2020-05-19 武汉虹信通信技术有限责任公司 天线辐射单元、基站天线及天线指标调节方法
CN111129762B (zh) * 2020-02-20 2022-12-27 常州仁千电气科技股份有限公司 一种平面结构的圆极化天线
CN111129762A (zh) * 2020-02-20 2020-05-08 常州仁千电气科技股份有限公司 一种平面结构的圆极化天线
CN113571880A (zh) * 2020-04-28 2021-10-29 江苏嘉华通讯科技有限公司 一种用于cpe的nr天线
CN113571880B (zh) * 2020-04-28 2023-10-20 江苏嘉华通讯科技有限公司 一种用于cpe的nr天线
CN113241522A (zh) * 2021-03-22 2021-08-10 广东通宇通讯股份有限公司 一种天线阵列的馈电***
CN113241522B (zh) * 2021-03-22 2023-10-13 广东通宇通讯股份有限公司 一种天线阵列的馈电***
CN113675621A (zh) * 2021-08-19 2021-11-19 西北核技术研究所 加载电流环的紧耦合阵列天线及天线单元
CN113675621B (zh) * 2021-08-19 2024-03-12 西北核技术研究所 加载电流环的紧耦合阵列天线及天线单元
CN113690592A (zh) * 2021-08-27 2021-11-23 罗森伯格技术有限公司 一种辐射元件以及天线
CN114465023A (zh) * 2022-02-14 2022-05-10 江苏亨鑫科技有限公司 一种融合布局基站天线消除巴伦影响的方法

Also Published As

Publication number Publication date
BR112019001715A2 (pt) 2019-05-07
CN106129596A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
WO2018018966A1 (zh) 天线辐射单元及多频宽带基站天线
US10680323B2 (en) Broadband dual-band base station antenna array with high out-of-band isolation
US20210305722A1 (en) Broadband Dual-Polarization Filtering Base Station Antenna Unit, Base Station Antenna Array and Communication Device
CN107275808B (zh) 超宽频带辐射器和相关的天线阵列
WO2017114063A1 (zh) 天线和通信设备
WO2021135567A1 (zh) 一种紧凑型高隔离双频双极化滤波天线
WO2017114030A1 (zh) 一种天线单元及mimo天线和终端
CN103094668B (zh) 宽频双极化辐射单元及天线
WO2009056001A1 (en) Broadband annular dual-polarization radiation element and line shape antenna array
US9490538B2 (en) Planar dual polarization antenna and complex antenna
JP2020506631A (ja) 新型のスペクトル拡散広帯域基地局アンテナ
CN103618135B (zh) 宽频带小型化辐射单元及其基站天线
US20230318188A1 (en) Aperture-shared dual-wideband antenna and its design method
KR20130103559A (ko) 이중 편파 방사 다이폴 안테나
CN102983416B (zh) 室内双极化全向吸顶天线
CN205846220U (zh) 天线辐射单元及多频宽带基站天线
CN105552519A (zh) 一种宽频双极化辐射单元及基站天线
CN105609921A (zh) 小型高低频共轴双极化基站天线单元
WO2015168845A1 (zh) 超宽带双极化辐射单元和基站天线
CN103560335B (zh) 多频段阵列天线
WO2023123739A1 (zh) 一种多枝节超宽频辐射单元及天线
TWI707500B (zh) 雙頻天線結構
CN105977652B (zh) 双频阵列天线
CN103337712B (zh) 一种天线辐射单元及其馈电方法
CN105206924A (zh) 一种超宽频双极化天线单元及其多频阵列天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019001715

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112019001715

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190128

122 Ep: pct application non-entry in european phase

Ref document number: 17833272

Country of ref document: EP

Kind code of ref document: A1