WO2018018712A1 - 一种近钻头随钻测量*** - Google Patents

一种近钻头随钻测量*** Download PDF

Info

Publication number
WO2018018712A1
WO2018018712A1 PCT/CN2016/098445 CN2016098445W WO2018018712A1 WO 2018018712 A1 WO2018018712 A1 WO 2018018712A1 CN 2016098445 W CN2016098445 W CN 2016098445W WO 2018018712 A1 WO2018018712 A1 WO 2018018712A1
Authority
WO
WIPO (PCT)
Prior art keywords
drilling
measuring
measurement
motor
bit
Prior art date
Application number
PCT/CN2016/098445
Other languages
English (en)
French (fr)
Inventor
尹永清
石绍球
杨博生
王曦远
胡进
陆立中
屈国庆
Original Assignee
奥瑞拓能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奥瑞拓能源科技股份有限公司 filed Critical 奥瑞拓能源科技股份有限公司
Priority to US15/748,120 priority Critical patent/US10465497B2/en
Priority to RU2018116240A priority patent/RU2682400C1/ru
Publication of WO2018018712A1 publication Critical patent/WO2018018712A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/024Determining slope or direction of devices in the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/03Couplings; joints between drilling rod or pipe and drill motor or surface drive, e.g. between drilling rod and hammer
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/20Flexible or articulated drilling pipes, e.g. flexible or articulated rods, pipes or cables
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives for drilling, used in the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/068Deflecting the direction of boreholes drilled by a down-hole drilling motor

Definitions

  • the invention belongs to the field of drilling technology.
  • directional well technology is an important technology to improve oil recovery and stabilize oilfield production. Especially for complex oil and gas reservoirs, the drilling rate and well trajectory control have always been the main factors restricting the reduction of drilling and production costs. Accurate measurement of the formation information of the bit while drilling is decisive for improving the drilling rate and well trajectory control.
  • geological tracking and guiding technology has become indispensable in the development of directional wells.
  • the directional well geosteering tracking technology uses the actual geological features of the well to determine and control the well trajectory and accurately control the target level of the downhole drilling tool.
  • the directional well drills the best target horizon, that is, the effective reservoir.
  • the key technology is controlled in the well trajectory to ensure that the drill bit travels through the effective reservoir, and the interlayer is avoided as much as possible.
  • the conventional measurement while drilling measurement method is set on the upper part of the motor.
  • the measurement position is more than 10 meters away from the lower end surface of the motor system.
  • the formation data of the position of the drill bit cannot be accurately measured in real time because it is far away from the drill bit.
  • the information causes the drill bit to pass through the reservoir, especially the thin oil and gas reservoirs.
  • the use of the conventional near-drill-while-drilling measurement method can overcome the shortcomings of not being able to accurately measure the formation data information of the drill bit in real time. It is that the near-bit drill-while-drilling measurement sub-section is placed in the lower part of the motor system and directly connected to the drill bit to make the measurement position. Close to the drill bit, but because the measurement of the short section while drilling between the drill bit and the motor system lengthens the distance between the drill bit and the motor bending point, thereby reducing the controllability of the drill bit and increasing the friction of the drill at the bottom of the well. And torque and vibration when the drill bit is working.
  • the conventional near-bit drilling measurement method increases the near-bit drill while measuring the short section, the mechanical structure of the downhole drilling assembly changes, resulting in a change in the mechanical properties of the drilling tool, thereby reducing the drilling ability of the drilling tool, resulting in the drilling tool to the well trajectory
  • the control ability is insufficient, and the correction is often too long due to the hysteresis of the well trajectory control.
  • the impact of the vibration of the drill bit while working at the bottom of the well exacerbates damage to downhole tools such as drill bits.
  • the wireless transmitting signal must pass through the obstacle of the screw drilling system, the transmission distance is long, and the stability and reliability of the signal transmission are poor.
  • the object of the present invention is to provide a method for measuring the formation data near the drill bit in order to more accurately obtain the data information of the bit location layer and the well trajectory parameter in real time in real time in view of the above problems in the field of drilling.
  • Drilling measurement system to improve drill bit drilling rate and maintain high drilling tool guiding control ability, enhance wellbore trajectory controllability, increase production rate and reduce drilling cost.
  • a near bit drilling while drilling measuring system comprising a motor system, a measuring transmission system, a wireless receiving system, a non-magnetic shorting
  • the motor system is composed of an outer casing and an inner rotating part, and the non-magnetic shorting is arranged in the Above the motor system, and the non-magnetic shorting is directly connected or connected to the drilling or shorting between the motor system, the internal rotating part of the motor system is internally provided with a hole, and the measuring transmission system includes the measurement of the collecting and measuring data.
  • the launching device is disposed at an upper portion of the inner rotating portion of the motor system and extends into the non-magnetic inner cavity to measure the transmission system phase
  • the rotating part of the motor system is fixed and can rotate with the rotating part together with the outer casing of the motor system;
  • the wireless receiving device of the wireless receiving system is disposed in the non-magnetic shorting and is fixed relative to the non-magnetic short circuit, when the motor system is working, The measurement transmission system rotates relative to
  • the measuring device is disposed within a distance of 1.5 meters from the lower end surface of the motor system. As a further preferred, the measuring device is disposed within a distance of 1 meter from the lower end surface of the motor system.
  • the motor system is a screw drilling system.
  • the screw drilling system provides high torque and speed, excellent pilot drilling capability, and is an excellent motor tool for directional drilling.
  • the screw drilling tool system has a compact structure and is suitable for directional wells and slave wells. Together with the measurement while drilling system, it can accurately perform the inclination, orientation and rectification, which can improve the engineering quality and reduce the drilling cost.
  • the rotating portion of the screw drilling tool system includes at least a transmission shaft, a flexible shaft and a screw motor rotor, and the measuring device is disposed inside the transmission shaft of the screw drilling system, fixed relative to the transmission shaft, and can be coupled with the transmission shaft Turn.
  • the drive shaft of the screw drilling system is directly connected to the drill bit, and the measuring device is close to the drill bit, which can more accurately measure the data information of the ground layer where the drill bit is located in real time.
  • the measuring device is arranged inside the transmission shaft without increasing the distance between the drill bit and the bending point of the motor, thereby enhancing the guiding controllability of the drill bit and reducing the increase of the drilling tool due to the addition of short joints (tools) between the drill bit and the motor.
  • the drilling tool maintains high inclination and correction ability, ensures the quality of the well trajectory, reduces the drilling cost, increases the recovery rate, reduces the drilling pressure transmission resistance, improves the drilling efficiency, and reduces the impact force of the drill bit at the bottom of the well, thereby Reduce damage caused by vibration shocks of downhole tools such as drill bits.
  • the launching device is disposed at an upper portion of the screw motor rotor, fixed relative to the screw motor rotor, and rotatable with the screw motor rotor.
  • the transmitting device is disposed at an upper portion of the screw motor rotor to bring the transmitting device close to the receiving device of the wireless receiving system, and the signal transmission between the transmitting device and the receiving device is unobstructed, and the entire measuring transmission system can effectively protect the measurement along with the bit rotation. Transmission system.
  • the power supply device of the measurement transmission system is disposed within the bore of the inner rotating portion of the motor system and between the measuring device and the launching device, relatively closer to the launching device.
  • the power supply unit provides a reliable energy supply for the measurement transmission system and ensures continuous and stable operation of the measurement transmission system.
  • the measuring device includes an azimuth gamma sensor that acquires azimuth gamma data and a well slanting sensor that measures well deviation data.
  • the azimuth gamma data and the well deviation data of the drill bit location are the main and most important basic data in the drilling. It directly determines the quality of the wellbore trajectory and the drill bit rate, which affects the production rate and drilling cost.
  • an anti-drop assembly is disposed between the motor system and the non-magnetic shorting, the anti-drop assembly includes a short-circuit prevention and a anti-drop cap, and the anti-drop cap center has an axial through hole Provided in an upper portion of the inner rotating portion of the motor system and fixed, the transmitting device of the measuring transmission system passes through the through hole in the middle of the anti-drop cap and protrudes into the non-magnetic anti-shocking inner cavity, the anti-drop
  • the short connecting portion is connected to the outer casing of the motor system, the upper portion is connected to the non-magnetic shorting connection, and the lower end inner wall is provided with a limiting shoulder; the upper end outer wall of the anti-drop cap is provided with a flange, and the flange is provided Abutting at the limiting shoulder when the lower casing is broken.
  • the anti-drop assembly can prevent the drilling system system from falling to the bottom of the well when it is broken, thereby increasing the salvage cost, reducing the risk of drilling and improving the safety
  • the non-magnetic shorting is a non-magnetic drill collar, and when the non-magnetic shorting is directly connected to the motor system, the launching device of the measuring transmission system extends into the inner cavity of the non-magnetic drill collar.
  • the wireless transmission signal between the transmitting device and the receiving device of the patent has a magnetic short circuit that interferes with and affects the stable and reliable transmission of the wireless signal.
  • the non-magnetic drill collar can be used as a part of the drill string, which has a righting effect and does not affect the transmission of wireless signals.
  • the beneficial effects of the present invention the near-bit drill-while-drilling measurement system of the present invention, by providing a measuring device in a portion of the motor system close to the drill bit, enables the drill bit to more accurately measure the real-time data information of the formation where the drill bit is located during the drilling process and The well trajectory parameters and wirelessly transmit the measured data information to the receiving device of the wireless receiving system in a stable and reliable manner in real time.
  • the measurement while drilling system is placed inside the motor system to maintain the high skew and skew correction capability of the drill.
  • the measuring position is within 2 meters (or even shorter, within 1.5 meters and 1 meter) of the lower end surface of the motor system and is close to the drill bit, and the position of the drill bit can be accurately measured in real time during the drilling process.
  • the formation data information can effectively prevent the drill bit from penetrating the oil and gas reservoirs, especially the thin oil and gas reservoirs, greatly improving the oil layer drilling rate and describing the well trajectory without lag.
  • the measuring device is arranged between the drill bit and the oblique point, and does not affect the drilling.
  • the distance between the head and the bend (no need to add any shorts or tools between the drill bit and the motor, the distance between the drill and the motor and the bend does not increase), thus enhancing the controllability of the drill bit and reducing the drill bit and the motor
  • the addition of short joints (tools) increases the friction and torque of the drill at the bottom of the well and reduces the vibration of the drill bit during operation.
  • the drilling tool maintains high inclination and correction ability, ensures the quality of the well trajectory, reduces the drilling cost and improves the recovery rate; reduces the drilling pressure transmission resistance, improves the drilling efficiency, and reduces the vibration impact force of the drill bit at the bottom of the well, thereby Reduce damage caused by vibration shocks of downhole tools such as drill bits.
  • the wireless signal does not need to pass through the screw drilling tool system, but directly passes through the transmission device of the measuring transmission system (wired transmission)
  • the transmitting device is transmitted to the receiving device near the receiving device of the wireless receiving system, and then wirelessly transmitted to the receiving device, so that the wireless transmission distance of the data is greatly shortened and the transmission channel is unobstructed, thereby enhancing the stability and reliability of the signal transmission.
  • the near-bit drill-while-drilling measurement system of the invention has a compact structure, and the measurement transmission system is disposed inside the motor system, and the data information and the well trajectory parameters of the bit layer of the drill bit are accurately obtained in real time without changing the structure of the drill assembly.
  • the problem is to improve the drill bit drilling rate and maintain a high drill guiding control ability, enhance the controllability of the well trajectory, increase the recovery rate, and reduce the drilling cost.
  • the proximity transmission wireless communication transmission between the transmitting device of the measurement transmission system and the receiving device of the receiving system is realized, the near-measurement near-transmission of the measurement data is realized, and the stability and reliability of the data transmission are improved.
  • the measuring device of the invention is close to the drill bit, and the closer the measuring device is to the drill bit, the more accurately the drill bit can measure the real-time data information and the well trajectory parameters of the formation at the position of the drill bit during the drilling process, the drill bit drilling rate and the mining rate. The higher.
  • Embodiment 1 is a schematic structural view of Embodiment 1 of the present invention.
  • FIG. 2 is a schematic view of a transmission shaft assembly of a near-bit drilling while drilling measuring system according to Embodiment 3 of the present invention.
  • FIG 3 is a schematic view of a cardan shaft assembly of a near-bit drilling while drilling measuring system according to Embodiment 4 of the present invention.
  • FIG. 4 is a schematic view of a screw motor assembly of a near-bit drilling while drilling measuring system according to Embodiment 5 of the present invention.
  • FIG. 5 is a schematic diagram of the anti-drop assembly of the near-bit drill while drilling measurement system according to Embodiment 6 of the present invention.
  • a near bit while drilling measurement system 10 includes a motor system 20, a measurement transmission system 6, a wireless receiving system 5, and a non-magnetic shorting 7.
  • the motor system 20 is composed of an outer casing and an inner rotating portion, the non-magnetic shorting 7 is disposed above the motor system 20, and the non-magnetic shorting 7 and the motor system 20 are directly connected or connected to the drill or Shortly, the inside of the inner rotating portion of the motor system 20 is provided with a hole, and the measuring transmission system 6 includes measuring means 61 for collecting and measuring data, and transmitting the data of the measuring device 61 to the transmitting device 64 of the wireless receiving system 5.
  • the data of the measuring device 61 is transmitted to the transmitting device 62 of the transmitting device 64, and the power device 63 for supplying power to the measuring device 61 and the transmitting device 64, and the measuring device 61 and the transmitting device 62 of the measuring transmission system 6 are disposed in the motor system Within the bore of the inner rotating portion of the 20, wherein the measuring device 61 is disposed within the lower 1/3 position of the motor system 20 and within 2 meters of the lower end surface of the motor system 20; the launching device of the measurement transmission system 6 64 is disposed at an upper portion of the inner rotating portion of the motor system 20 and extends into the non-magnetic inner cavity, and the measuring transmission system 6 is fixed relative to the rotating portion of the motor system 20, and is rotatable relative to the outer casing of the motor system 20 along with the rotating portion;
  • the wireless receiving device 51 of the wireless receiving system 5 is disposed in the non-magnetic shorting 7 and fixed relative to the non-magnetic shorting 7.
  • the measuring device 61 is disposed within a distance of 1.5 meters from the lower end surface of the motor system 20. As a further preference, the measuring device 61 is disposed within a distance of 1 m from the lower end surface of the motor system 20.
  • the motor system 20 is a screw drilling system.
  • the rotating portion of the screw drilling tool system includes at least a transmission shaft 11, a cardan shaft 22 and a screw motor rotor 32.
  • the measuring device 61 is disposed inside the transmission shaft 11 of the screw drilling system, and is fixed relative to the transmission shaft 11. It can rotate with the drive shaft 11.
  • the launching device 64 is disposed at an upper portion of the screw motor rotor 32, fixed relative to the screw motor rotor 32, and rotatable with the screw motor rotor 32.
  • the power supply unit 63 of the measurement transmission system 6 is disposed in the hole of the internal rotating portion of the motor system 20 and between the measuring device 61 and the transmitting device 64, relatively closer to the transmitting device 64, and is a measuring device. 61 and transmitting device 64 provide electrical energy.
  • the measuring device 61 comprises an azimuth gamma sensor that acquires azimuth gamma data and a well slanting sensor that measures the slanting data.
  • the non-magnetic shorting 7 is a non-magnetic drill collar.
  • the transmitting device 64 of the measuring transmission system 6 projects into the inner cavity of the non-magnetic drill collar.
  • a near-bit drill-while-drilling measurement system 10 is substantially the same as Embodiment 1, except that it includes a motor system 20, a measurement transmission system 6, a wireless receiving system 5, and a non-magnetic shorting 7.
  • the non-magnetic shorting 7 is a non-magnetic drill collar
  • the motor system 20 is a screw drilling system, as shown in FIG. 1 , comprising a transmission shaft assembly 1 , a cardan shaft assembly 2 , a motor assembly 3 and Anti-drop assembly 4 composition.
  • the inner part of the inner rotating part is designed as a through hole, which not only transmits the power of breaking the rock to the bit but also It also serves as a carrier for the measurement transmission system 6.
  • the non-magnetic drill collar is threaded onto the upper end of the outer casing of the motor system 20.
  • the transmission shaft assembly 1 of the screw drilling tool system (motor system 20) in the near-bit drilling while drilling measuring system 10 includes a transmission shaft.
  • the drive shaft housing 13 is coupled to the cardan shaft housing 24 by upper end threads and is part of the outer housing of the motor system 20, the primary function of which is to transmit the weight-on-bit and protect the internal equipment.
  • the bearing set 12 is disposed between the drive shaft 11 and the drive shaft housing 13 and functions mainly to transmit radial and axial loads received by the drive shaft assembly 1 and to ensure torque transmission of the drive shaft 11.
  • the support ring 14 is disposed in the inner hole of the transmission shaft 11 near the lower end surface of the transmission shaft 11, and functions to stabilize the measuring device 61 (well inclination, azimuth gamma measurement short circuit), and prevent the measuring device 61 (well inclination, orientation gamma) The measurement is short-circuited or shaken with the drive shaft 11.
  • the universal shaft assembly 2 of the screw drilling tool system (motor system 20) in the near-bit drilling while drilling measuring system 10 includes a guide.
  • the side wall of the flow guiding joint 21 has a mud passage penetrating through the inner hole thereof for introducing the mud into the inner hole of the propeller shaft 11.
  • the upper end and the lower end of the flexible shaft 22 are respectively inserted into the lower end of the rotor joint 23 and the upper end of the flow guiding joint 21 and riveted.
  • the flow guiding joint 21, the flexible shaft 22 and the rotor joint 23 have through holes penetrating each other for use as a passage for measuring the transmission system 6.
  • the cardan shaft housing 24 is coupled to the drive shaft housing 13 via a lower end of the thread, and the upper end is threadedly coupled to the screw motor stator 31 as part of the outer housing of the motor system 20.
  • the main function of the cardan shaft assembly 2 is to convert the eccentric motion of the screw motor rotor 32 into a coaxial rotation, which transmits torque and rotational speed downward. Channels and protection are provided for the transmission device 62 of the measurement transmission system 6.
  • the motor assembly 3 of the screw drilling tool system (motor system 20) in the near-bit drilling while drilling measuring system 10 includes a screw motor stator. 31 and a screw motor rotor 32, the lower end of the screw motor stator 31 is screwed to the upper end of the cardan shaft housing 24, and the upper end is threadedly connected to the anti-drop joint 41 of the anti-drop assembly 4, so that the screw motor stator 31 becomes a motor.
  • the inner wall of the stator 31 is a rubber bushing having a spatial geometrical parameter such that the screw motor stator 31 and the screw motor rotor 32 located therein constitute the motor assembly 3.
  • the screw motor rotor 32 has a spiral curved surface with a certain spatial geometric parameter, and forms a conjugate pair with the rubber bushing of the inner wall of the screw motor stator 31. Under the driving of the drilling fluid, the screw motor rotor 32 performs planetary motion in the screw motor stator 31 to Output speed and torque.
  • the screw motor rotor 32 is coupled to the rotor joint 23 of the cardan shaft assembly 2 via the lower end of the thread so that the screw motor rotor 32 can transmit the output speed and torque to the flex shaft 22 via the rotor joint 23.
  • the outer diameter of the upper end of the screw motor rotor 32 is screwed to the anti-drop cap 42 of the anti-drop assembly 4, and the inner diameter of the upper end is connected to the transmitting device 64 of the measurement transmission system 6.
  • the screw motor rotor 32 has a hollow structure for internally placing the transmission device 62 of the measurement transmission system 6 and the power supply unit 63.
  • the anti-drop assembly 4 of the screw drilling tool system (motor system 20) in the near-bit drilling while drilling measuring system 10 includes anti-drop prevention. Short the 41 and the anti-drop cap 42.
  • the lower end of the anti-skid stub 41 is connected to the screw motor stator 31 by a screw thread, and the upper end is connected to the non-magnetic drill collar 7 by a screw thread to constitute an outer casing portion of the motor system 20.
  • the inner portion of the anti-shock stub 41 has a launching device 64 for measuring the transport system 6, so that its material and function are the same as those of the non-magnetic drill collar 7.
  • the center of the anti-drop cap 42 has an axially penetrating through hole, and the lower end is connected to the screw motor rotor 32 by a screw thread to constitute an inner rotating portion of the motor system 20.
  • the outer wall of the upper end of the anti-drop cap 42 is provided with a flange, and the inner wall of the lower end of the anti-shock 41 is provided with a limiting shoulder.
  • the outer diameter of the flange of the anti-dropping cap 42 is larger than the inner diameter of the limiting shoulder of the short-circuiting 41.
  • Embodiment 1-6 is basically the same as Embodiment 1-6, except that the measurement transmission system 6 in the near-bit drilling while drilling measurement system 10 shown in FIG. 1 is composed of a measuring device 61, a transmission device 62, a power supply device 63, and a transmitting device. 64 composition.
  • the measuring device 61 is a well inclined/azimuth gamma measuring short section disposed in the driving shaft 11 of the screw drilling tool system (motor system 20), and the distance from the lower end surface of the screw drilling tool system is within 1 meter.
  • the measuring device 61 (well inclination/azimuth gamma measurement short circuit) includes an azimuth gamma sensor, an azimuth gamma circuit module, a well inclination sensor, a well deviation circuit module, a probe tube, wherein the probe tube is disposed in a support ring in the transmission shaft 11 14 and relatively fixed.
  • the lower portion of the probe tube is a solid hole, and the upper end is screwed to the transmission device 62 to protect the internal sensor and the circuit module and serve as a power interface for the measuring device 61 (well slant/azimu gamma measurement short circuit).
  • the azimuth gamma sensor, the azimuth gamma circuit module, the well inclination sensor and the well deviation circuit module are sequentially disposed in the probe tube, and the azimuth gamma sensor is a sensor for measuring the natural gamma of the formation, and the collected data is transmitted to the azimuth gamma circuit module.
  • azimuth gamma circuit module consists of various electronic components and circuit boards, the main processing
  • the formation azimuth gamma data collected by the gamma sensor; the well inclination sensor and the well deviation circuit module are used for measuring and calculating the inclination data, wherein the inclination data measured by the inclination sensor includes a well angle and a well inclination azimuth.
  • the transmitting device 64 of the measuring transmission system 6 is disposed at the upper portion of the screw motor rotor 32 of the screw drilling tool system, and passes through the through hole in the middle of the anti-dropping cap 42 through the inner cavity of the anti-drop shorting 41 that protrudes into the anti-drop assembly 4.
  • the lower end is connected to the power supply device 63 by a thread, and is used for wirelessly transmitting the well inclination data and the azimuth gamma data measured by the near bit to the receiving device 51 of the wireless receiving system 5;
  • the lower end of the transmission device 62 of the measurement transmission system 6 is screwed to the probe tube, the upper end is screwed to the power supply unit 63, and provides a passage for the transmission of measurement data information and the transmission of the measurement transmission system 6 power; the measurement transmission system 6 is located at the transmission shaft
  • the through holes of the assembly 1, the cardan shaft assembly 2 and the inner rotating portion of the motor assembly 3 are fixed relative to the rotating portion of the motor system 20, and are rotatable relative to the outer casing of the motor system 20 with the rotating portion;
  • the lower end of the power supply device 63 of the measurement transmission system 6 is screwed to the transmission device 62, and the upper end is screwed to the transmitting device 64, relatively closer to the transmitting device 64, to supply electrical energy to the measuring device 61 and the transmitting device 64;
  • This embodiment is basically the same as the embodiment 1-7, and the difference is that the non-magnetic shorting 7 (non-magnetic drill collar) in the near-bit drill-while-drilling measurement system 10 is set in the anti-drop assembly 4 and The upper part is connected between the drill strings, and the lower part is screwed with the anti-drop short 41 of the anti-drop assembly 4, and the upper part is screwed with the drill string.
  • Both the transmitting device 64 of the measuring transmission system 6 and the receiving device 51 of the wireless receiving system 5 are disposed in the non-magnetic drill collar 7, but the anti-drop shorting 41 of the anti-drop assembly 4 may be free of non-magnetic material.
  • This embodiment is basically the same as Embodiments 1-7, except that the non-magnetic shorting 7 (non-magnetic drill collar) in the near-bit drilling while measuring system 10 is disposed between the motor system 20 and the upper connecting drill string ( There is no anti-drop assembly 4), the lower part is screwed to the screw motor stator 31 of the motor assembly 3, and the upper part is screwed to the drill string.
  • the transmitting device 64 of the measuring transmission system 6 and the receiving device 51 of the wireless receiving system 5 are both disposed in the non-magnetic drill collar 7.
  • This embodiment is basically the same as the embodiment 1-9, and the difference is that the wireless receiving device 51 of the wireless receiving system 5 in the near-bit drilling while drilling measuring system 10 is disposed in the upper part of the anti-drop assembly 4 as shown in FIG.
  • the connected non-magnetic drill collar 7 is fixed relative to the non-magnetic drill collar 7, and when the motor system 20 is in operation, the measurement transmission system 6 is rotated relative to the wireless receiving device 51, and the wireless receiving device 51 of the wireless receiving system 5 and the measurement transmission system 6 are transmitted.
  • Device 61 is wirelessly transmitted Transmission signal.
  • the wireless receiving device 51 transmits the received measurement data information to the ground.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Earth Drilling (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

一种近钻头随钻测量***(10),其包括马达***(20)、测量传输***(6)、无线接收***(5)和无磁短接(7),测量传输***(6)设置在马达***(20)内部,测量传输***(6)的发射装置(64)和无线接收***(5)的接收装置(51)设置在无磁内腔内。在钻头钻进过程中能更准确的实时测量钻头所在地层的方位伽马和井斜参数并向无线接收***(5)实时无线传输。与常规随钻测量作业相比,钻头随钻测量***(10)测量位置更靠近钻头,无滞后描述井眼轨迹和测量地层伽马,极大提高了钻遇率。与常规近钻头随钻测量作业相比,近钻头随钻测量***(10)井眼轨迹控制能力(造斜、纠斜)更强,地质参数描述更准确。从而极大地提高储层钻遇率和无滞后描述井眼轨迹,降低钻井成本和提高采出率。

Description

一种近钻头随钻测量*** 技术领域
本发明属于钻井技术领域。
背景技术
在石油钻采领域,定向井技术是提高原油采收率,稳定油田产量的重要技术,特别是针对复杂油气藏,其钻遇率与井眼轨迹控制一直是制约钻采成本降低的主要因素,而精确的随钻测量钻头所在位置地层信息数据对提高钻遇率与井眼轨迹控制具有决定性的作用,为实现良好的储层钻遇效果,地质跟踪导向技术便成为定向井开发中不可缺少的关键技术。定向井地质导向跟踪技术是以井下实际地质特征来确定和控制井眼轨迹,精确地控制井下钻具命中目的层位。而定向井钻遇最佳目的层位,即有效储层,关键技术在井眼轨迹控制,保证钻头在有效储层中穿行,尽量避免钻遇夹层。
常规随钻测量方式的随钻测量仪器设置在马达的上部,其测量位置距离马达***的下端面大都在10米以上,在钻进过程中常常因为远离钻头而不能实时准确测量钻头所在位置地层数据信息导致钻头穿出油气藏,特别是薄油气藏。
而使用常规近钻头随钻测量方式可以克服不能实时准确测量钻头所在位置地层数据信息的缺点,其是把近钻头随钻测量短节设置在马达***的下部并与钻头直接相连,使其测量位置靠近钻头,但是因为在钻头与马达***之间增加了随钻测量短节,加长了钻头与马达弯点之间的距离,从而降低了钻头的可控性,增加了钻具在井底的摩擦和扭矩以及钻头工作时的振动。由于常规近钻头随钻测量方式增加了近钻头随钻测量短节使井下钻具组合结构发生改变导致其力学特性发生变化,从而使钻具的造斜能力降低,导致井下钻具对井眼轨迹的控制能力不足,常常因为井眼轨迹控制的滞后造成纠偏过长。而钻头在井底工作时的振动所产生的冲击加剧了钻头等井下工具的损坏。另一方面,常规近钻头随钻测量的数据信息通过无线发射到接收装置时,无线发射信号必须穿过螺杆钻具***的阻碍,传输距离远且信号传输的稳定性和可靠性差。
发明内容
本发明的目的在于:针对现有钻探领域存在的上述问题,提供一种能够测量靠近钻头的地层数据信息,从而能更准确地实时获得钻头所在地层的数据信息和井眼轨迹参数的近钻头随钻测量***,以提高钻头钻遇率并保持较高的钻具导向控制能力,增强井眼轨迹可控性,提高采出率,降低钻井成本。
本发明目的通过下述技术方案来实现:
一种近钻头随钻测量***,包括马达***、测量传输***、无线接收***、无磁短接,所述马达***由外部壳体和内部转动部分组成,所述无磁短接设置在所述马达***上方,且无磁短接与马达***之间直接连接或连接钻具或短接,所述马达***的内部转动部分的内部设置有孔,所述测量传输***包括采集、测量数据的测量装置,将测量装置的数据发射给无线接收***的发射装置,将测量装置的数据传输给发射装置的传输装置,以及为测量装置和发射装置提供电能的电源装置,测量传输***的测量装置和传输装置设置在所述马达***的内部转动部分的孔内,其中测量装置设置在所述马达***的下1/3位置以内,且距马达***的下端面的距离在2米以内;测量传输***的发射装置设置在马达***的内部转动部分的上部并伸入无磁内腔中,测量传输***相对所述马达***转动部分固定,能随转动部分一起相对马达***的外部壳体转动;无线接收***的无线接收装置设置在无磁短接内且相对无磁短接固定,马达***工作时,测量传输***相对无线接收***转动,无线接收装置与发射装置通过无线传输的方式传输信号。
作为选择,所述测量装置设置在距马达***的下端面1.5米的距离以内。作为进一步优选,所述测量装置设置在距马达***的下端面1米的距离以内。
作为选择,所述马达***为螺杆钻具***。螺杆钻具***能够提供较大的扭矩和转速,具有优良的导向钻进能力,是导向钻井中极好的马达工具。且螺杆钻具***结构紧凑,适用于定向井和从式井,与随钻测量***配合能够准确进行造斜,定向和纠偏,可提高工程质量并降低钻井成本。
作为进一步选择,螺杆钻具***的转动部分至少包括传动轴,挠轴和螺杆马达转子,所述测量装置设置于所述螺杆钻具***的传动轴内部,相对传动轴固定,能随传动轴一起转动。螺杆钻具***的传动轴直接与钻头相连,测量装置距离钻头很近,能更准确的实时测量钻头所在位置地层的数据信息。测量装置设置在传动轴内部,没有增加钻头到马达弯点之间的距离,从而增强了对钻头的导向可控性,也减少了因钻头与马达之间增加短节(工具)而增加钻具在井底的摩擦和扭矩,并可降低钻头工作时的振动。从而使钻具保持高的造斜与纠斜能力,保证井眼轨迹质量,降低钻井成本,提高采出率,减小钻压传递阻力提高钻井效率,并且降低钻头在井底振动冲击力,从而减少钻头等井下工具因振动冲击引起的损坏。
作为进一步选择,所述发射装置设置于所述螺杆马达转子的上部,相对螺杆马达转子固定,能随螺杆马达转子一起转动。发射装置设置于所述螺杆马达转子的上部使发射装置接近无线接收***的接收装置,发射装置与接收装置之间信号传输无障碍阻隔,且整个测量传输***一起随着钻头转动,可以有效保护测量传输***。
作为选择,所述测量传输***的电源装置设置在所述马达***的内部转动部分的孔内,并位于测量装置与发射装置之间,相对更靠近发射装置。电源装置为测量传输***提供可靠的能源供应,保证测量传输***持续不断的稳定工作。
作为选择,所述测量装置包括方位伽马传感器和井斜传感器,所述方位伽马传感器采集方位伽马数据,所述井斜传感器测量井斜数据。在定向钻井过程中,钻头所在地层的方位伽马数据和井斜数据是钻进中主要的也是最重要的基本数据。其直接决定了井眼轨迹的质量和钻头钻遇率,影响采出率与钻井成本。
作为选择,所述马达***与无磁短接之间设有防掉总成,所述防掉总成包括防掉短接和防掉帽,所述防掉帽中心具有轴向贯通的通孔,设置在马达***的内部转动部分的上部并固定,所述测量传输***的发射装置从防掉帽中间的通孔穿过并伸入无磁的防掉短接内腔中,所述防掉短接下部与所述马达***的外部壳体连接,上部与无磁短接相连,且下端内壁上设有限位台肩;所述防掉帽的上端外壁设有凸缘,所述凸缘用于在下部壳体断裂时抵接于所述限位台肩处。防掉总成可以防止钻具***壳体断裂时掉落到井底而增加打捞成本,可降低钻进风险,提高本专利的安全可靠性。
作为选择,无磁短接为无磁钻铤,且当无磁短接与马达***之间直接连接时,测量传输***的发射装置伸入无磁钻铤内腔中。本专利的发射装置和接收装置之间通过无线传输信号,有磁短接会干扰和影响无线信号稳定可靠地传输。且无磁钻铤可以作为钻柱的一部分,具有扶正效果,也不影响无线信号的传输。
前述本发明主方案及其各进一步选择方案可以自由组合以形成多个方案,均为本发明可采用并要求保护的方案;且本发明,(各非冲突选择)选择之间以及和其他选择之间也可以自由组合。本领域技术人员在了解本发明方案后根据现有技术和公知常识可明了有多种组合,均为本发明所要保护的技术方案,在此不做穷举。
本发明的有益效果:本发明的近钻头随钻测量***,通过在马达***内靠近钻头的部分设置测量装置,使钻头在钻进过程中能够更准确的测量钻头所在位置地层的实时数据信息和井眼轨迹参数,并实时向上稳定可靠地无线传输所测量的数据信息到无线接收***的接收装置。随钻测量***设置在马达***内部,可保持钻具高的造斜与纠斜能力。
本发明相对常规随钻测量方式,测量位置距离马达***的下端面在2米以内(甚至更短,在1.5米、1米以内)且靠近钻头,在钻进过程中能实时准确测量钻头所在位置地层数据信息,从而能有效避免钻头穿出油气藏,特别是薄油气藏,极大地提高油层钻遇率和无滞后描述井眼轨迹。
本发明相对常规近钻头随钻测量方式,测量装置设置在钻头与造斜弯点之间,不影响钻 头与弯点之间的距离关系(钻头与马达之间无需增加任何短接或工具,钻头与马达及弯点的距离不增加),从而增强了对钻头的可控性,减少因钻头与马达之间增加短节(工具)而增加钻具在井底的摩擦和扭矩,并可降低钻头工作时的振动。从而使钻具保持高的造斜与纠斜能力,保证井眼轨迹质量,降低钻井成本和提高采出率;减小钻压传递阻力提高钻井效率,并且降低钻头在井底振动冲击力,从而减少钻头等井下工具因振动冲击引起的损坏。另一方面,本发明相对常规近钻头随钻测量的数据信息通过无线发射到接收***的接收装置时,无线信号不需穿过螺杆钻具***,而直接通过测量传输***的传输装置(有线传输)传输到无线接收***的接收装置附近的发射装置,然后再无线传输给接收装置,使数据无线传输距离大大缩短且传输通道无障碍,增强了信号传输的稳定性和可靠性。
本发明的近钻头随钻测量***结构紧凑,将测量传输***设置在马达***内部,在没有改变钻具组合结构的情况下解决了准确地实时获得钻头所在地层的数据信息和井眼轨迹参数的问题,提高钻头钻遇率并保持较高的钻具导向控制能力,增强井眼轨迹可控性,提高采出率,降低钻井成本。而且使测量传输***的发射装置与接收***的接收装置之间实现近距离无障碍无线通讯传输,实现测量数据的近测近传,提高了数据传输的稳定性和可靠性。本发明的测量装置离钻头近,且测量装置离钻头越近,钻头在钻进过程中越能够更准确地测量钻头所在位置地层的实时数据信息和井眼轨迹参数,钻头钻遇率和采出率越高。
附图说明
图1为本发明实施例1的结构示意图;
图2为本发明实施例3的近钻头随钻测量***的传动轴总成示意图。
图3为本发明实施例4的近钻头随钻测量***的万向轴总成示意图。
图4为本发明实施例5的近钻头随钻测量***的螺杆马达总成示意图。
图5为本发明实施例6的近钻头随钻测量***的防掉总成示意图。
具体实施方式
下列非限制性实施例用于说明本发明。
实施例1:
参考图1所示,一种近钻头随钻测量***10,包括马达***20、测量传输***6、无线接收***5、无磁短接7。所述马达***20由外部壳体和内部转动部分组成,所述无磁短接7设置在所述马达***20上方,且无磁短接7与马达***20之间直接连接或连接钻具或短接,所述马达***20的内部转动部分的内部设置有孔,所述测量传输***6包括采集、测量数据的测量装置61,将测量装置61的数据发射给无线接收***5的发射装置64, 将测量装置61的数据传输给发射装置64的传输装置62,以及为测量装置61和发射装置64提供电能的电源装置63,测量传输***6的测量装置61和传输装置62设置在所述马达***20的内部转动部分的孔内,其中测量装置61设置在所述马达***20的下1/3位置以内,且距马达***20的下端面的距离在2米以内;测量传输***6的发射装置64设置在马达***20的内部转动部分的上部并伸入无磁内腔中,测量传输***6相对所述马达***20转动部分固定,可随转动部分一起相对马达***20的外部壳体转动;无线接收***5的无线接收装置51设置在无磁短接7内且相对无磁短接7固定,马达***20工作时,测量传输***6相对无线接收***5转动,无线接收***5的无线接收装置51与测量传输***6的发射装置61通过无线传输的方式传输信号。
作为选择,所述测量装置61设置在距马达***20的下端面1.5米的距离以内。作为进一步优选,所述测量装置61设置在距马达***20的下端面1米的距离以内。
作为选择,所述马达***20为螺杆钻具***。作为选择,螺杆钻具***的转动部分至少包括传动轴11,万向轴22和螺杆马达转子32,所述测量装置61设置于所述螺杆钻具***的传动轴内部11,相对传动轴11固定,可随传动轴11一起转动。
作为选择,所述发射装置64设置于所述螺杆马达转子32的上部,相对螺杆马达转子32固定,可随螺杆马达转子32一起转动。
作为选择,所述测量传输***6的电源装置63设置在所述马达***20的内部转动部分的孔内,并位于测量装置61与发射装置64之间,相对更靠近发射装置64,为测量装置61及发射装置64提供电能。
作为选择,所述测量装置61包括方位伽马传感器和井斜传感器,所述方位伽马传感器采集方位伽马数据,所述井斜传感器测量井斜数据。
作为选择,无磁短接7为无磁钻铤。当无磁短接7与马达***20之间直接连接时,测量传输***6的发射装置64伸入无磁钻铤内腔中。
实施例2:
一种近钻头随钻测量***10,与实施例1基本相同,其区别在于:包括马达***20、测量传输***6、无线接收***5和无磁短接7。其中所述无磁短接7为无磁钻铤,所述马达***20为螺杆钻具***,如图1所示,由传动轴总成1、万向轴总成2、马达总成3和防掉总成4组成。其分别都带有外壳和内部可旋转部分,且各自的外壳通过螺纹依次连接组成马达***20的外部壳体,各自的内部可旋转部分通过螺纹依次连接组成马达***20的内部转动部分,可将内部转动部分的内部设计为通孔,不仅为钻头传递破岩的动力同时 还作为测量传输***6的载体。无磁钻铤通过螺纹连接在马达***20的外部壳体上端。
实施例3:
本实施例与实施例1、2基本相同,其区别在于:如图2所示是本近钻头随钻测量***10中螺杆钻具***(马达***20)的传动轴总成1,包括传动轴11、轴承组12、传动轴壳体13和支撑环14,其中传动轴11上端通过螺纹与万向轴总成2连接,下端通过螺纹与钻头连接,轴颈各部装入轴承组12(径向轴承和推力轴承组),主要作用为钻头传递钻压、转速和扭矩,内部通孔设置测量装置61(井斜、方位伽马测量短接)。传动轴壳体13通过上端螺纹与万向轴壳体24连接,为马达***20外部壳体的一部分,其主要作用为向下传递钻压并保护内部设备。轴承组12设置在传动轴11与传动轴壳体13之间,其主要作用为传递传动轴总成1所受的径向与轴向载荷,并保证传动轴11扭矩的传递。支撑环14设置在传动轴11的内孔中,靠近传动轴11下端面,其作用是稳定测量装置61(井斜、方位伽马测量短接),防止测量装置61(井斜、方位伽马测量短接)晃动或与传动轴11发生碰撞。
实施例4:
本实施例与实施例1-3基本相同,其区别在于:如图3所示是本近钻头随钻测量***10中螺杆钻具***(马达***20)的万向轴总成2,包括导流接头21、挠轴22、转子接头23和万向轴壳体24,其中导流接头21位于万向轴壳体24内,导流接头21的下端与传动轴11螺纹连接,其主要作用是向传动轴11传递扭矩和转速。导流接头21的侧壁上具有贯通至其内孔的泥浆通道,用以将泥浆导入传动轴11的内孔中。挠轴22的上端与下端分别插接于所述转子接头23的下端和导流接头21的上端并铆接。其中导流接头21、挠轴22和转子接头23均有互相贯通的通孔,其用来作为测量传输***6的通道。万向轴壳体24通过螺纹下端与传动轴壳体13连接,上端与螺杆马达定子31螺纹连接,作为马达***20外部壳体的一部分。万向轴总成2的主要作用是将螺杆马达转子32的偏心运动转化为同轴转动,向下传递扭矩和转速。并为测量传输***6的传输装置62提供通道和保护。
实施例5:
本实施例与实施例1-4基本相同,其区别在于:如图4所示是本近钻头随钻测量***10中螺杆钻具***(马达***20)的马达总成3,包括螺杆马达定子31和螺杆马达转子32,螺杆马达定子31的下端与万向轴壳体24的上端通过螺纹连接,上端通过螺纹与防掉总成4的防掉短节41相连,使螺杆马达定子31成为马达***外部壳体的一部分。螺杆马 达定子31的内壁为具有一定空间几何参数的橡胶衬套,使螺杆马达定子31与位于其内的螺杆马达转子32组成马达总成3。螺杆马达转子32具有一定空间几何参数的螺旋曲面,与螺杆马达定子31内壁的橡胶衬套形成共轭副,在钻井液的驱动下,螺杆马达转子32在螺杆马达定子31内作行星运动,以输出转速和扭矩。螺杆马达转子32通过螺纹下端与万向轴总成2的转子接头23连接,使螺杆马达转子32可以通过转子接头23向挠轴22传递输出转速和扭矩。螺杆马达转子32的上端外径与防掉总成4的防掉帽42螺纹连接,上端内径与测量传输***6的发射装置64连接。螺杆马达转子32为中空结构,内部用来放置测量传输***6的传输装置62与电源装置63。
实施例6:
本实施例与实施例1-5基本相同,其区别在于:如图5所示是本近钻头随钻测量***10中螺杆钻具***(马达***20)的防掉总成4,包括防掉短接41和防掉帽42。其中防掉短节41的下端通过螺纹与螺杆马达定子31连接,上端通过螺纹与无磁钻铤7相连,从而组成马达***20的外部壳体部分。所述防掉短节41内腔中有测量传输***6的发射装置64,所以其材料和功能与无磁钻铤7相同。所述防掉帽42中心具有轴向贯穿的通孔,下端通过螺纹与螺杆马达转子32连接,从而组成马达***20的内部转动部分。防掉帽42的上端外壁设有凸缘,防掉短接41的下端内壁设有限位台肩,防掉帽42的凸缘外径大于防掉短接41限位台肩的内径,当下部壳体断裂时,凸缘卡接于限位台肩处以轴向限位,能够提出下部钻具。
实施例7:
本实施例与实施例1-6基本相同,其区别在于:如图1所示本近钻头随钻测量***10中的测量传输***6由测量装置61、传输装置62、电源装置63和发射装置64组成。其中测量装置61为井斜/方位伽马测量短节,设置在所述螺杆钻具***(马达***20)传动轴11内,且距螺杆钻具***下端面的距离在1米以内。测量装置61(井斜/方位伽马测量短接)包括方位伽马传感器、方位伽马电路模块、井斜传感器、井斜电路模块、探管,其中探管设置在传动轴11内的支撑环14上并与其相对固定。探管下部为实孔,上端与传输装置62通过螺纹连接,以保护内部传感器及电路模块并作为测量装置61(井斜/方位伽马测量短接)的电源接口。方位伽马传感器、方位伽马电路模块、井斜传感器和井斜电路模块依次设置在探管内,方位伽马传感器是测量地层自然伽马的传感器,其采集的数据传至方位伽马电路模块进行处理;方位伽马电路模块由各种电子元件和电路板组成,主要处理方 位伽马传感器采集的地层方位伽马数据;井斜传感器及井斜电路模块用于测量并计算井斜数据,其中井斜传感器测量的井斜数据,包括井斜角和井斜方位角。
测量传输***6的发射装置64设置在螺杆钻具***的螺杆马达转子32的上部,并从防掉帽42中间的通孔穿过伸入防掉总成4的防掉短接41的内腔中,其下端通过螺纹与电源装置63连接,用于将近钻头测量的井斜数据、方位伽马数据向上部无线传输至无线接收***5的接收装置51;
测量传输***6的传输装置62下端与探管通过螺纹连接,上端与电源装置63通过螺纹连接,并为测量数据信息的传输和测量传输***6电能的传输提供通道;测量传输***6位于传动轴总成1、万向轴总成2和马达总成3的内部转动部分的通孔中,相对所述马达***20转动部分固定,可随转动部分一起相对马达***20的外部壳体转动;
测量传输***6的电源装置63下端与传输装置62螺纹连接,上端与发射装置64通过螺纹连接,相对更靠近发射装置64,为测量装置61及发射装置64提供电能;
实施例8:
本实施例与实施例1-7基本相同,其区别在于:如图1所示本近钻头随钻测量***10中的无磁短接7(无磁钻铤)设置在防掉总成4与上部连接钻柱之间,下部与防掉总成4的防掉短接41螺纹连接,上部与钻柱螺纹连接。所述测量传输***6的发射装置64与无线接收***5的接收装置51都设置在无磁钻铤7内,但防掉总成4的防掉短接41可以不用无磁材料。
实施例9:
本实施例与实施例1-7基本相同,其区别在于:本近钻头随钻测量***10中的无磁短接7(无磁钻铤)设置在马达***20与上部连接钻柱之间(没有防掉总成4),下部与马达总成3的螺杆马达定子31螺纹连接,上部与钻柱螺纹连接。所述测量传输***6的发射装置64与无线接收***5的接收装置51都设置在无磁钻铤7内。
实施例10:
本实施例与实施例1-9基本相同,其区别在于:如图1所示本近钻头随钻测量***10中的无线接收***5的无线接收装置51设置在与防掉总成4上部相连接的无磁钻铤7内且相对无磁钻铤7固定,马达***20工作时,测量传输***6相对无线接收装置51转动,无线接收***5的无线接收装置51与测量传输***6的发射装置61通过无线传输的方式 传输信号。无线接收装置51会将接收的测量数据信息传输到地面。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种近钻头随钻测量***,包括马达***、测量传输***、无线接收***、无磁短接,所述马达***由外部壳体和内部转动部分组成,所述无磁短接设置在所述马达***上方,且无磁短接与马达***之间直接连接或连接钻具或短接,其特征在于:所述马达***的内部转动部分的内部设置有孔,所述测量传输***包括采集、测量数据的测量装置,将测量装置的数据发射给无线接收***的发射装置,将测量装置的数据传输给发射装置的传输装置,以及为测量装置和发射装置提供电能的电源装置,测量传输***的测量装置和传输装置设置在所述马达***的内部转动部分的孔内,其中测量装置设置在所述马达***的下1/3位置以内,且距马达***的下端面的距离在2米以内;测量传输***的发射装置设置在马达***的内部转动部分的上部并伸入无磁内腔中,测量传输***相对所述马达***转动部分固定,能随转动部分一起相对马达***的外部壳体转动;无线接收***的无线接收装置设置在无磁短接内且相对无磁短接固定,马达***工作时,测量传输***相对无线接收***转动,无线接收装置与发射装置通过无线传输的方式传输信号。
  2. 如权利要求1所述的近钻头随钻测量***,其特征在于:所述测量装置设置在距马达***的下端面1.5米的距离以内。
  3. 如权利要求2所述的近钻头随钻测量***,其特征在于:所述测量装置设置在距马达***的下端面1米的距离以内。
  4. 如权利要求1、2或3所述的近钻头随钻测量***,其特征在于:所述马达***为螺杆钻具***。
  5. 如权利要求4所述的近钻头随钻测量***,其特征在于:螺杆钻具***的转动部分至少包括传动轴,挠轴和螺杆马达转子,所述测量装置设置于所述螺杆钻具***的传动轴内部,相对传动轴固定,能随传动轴一起转动。
  6. 如权利要求5所述的近钻头随钻测量***,其特征在于:所述发射装置设置于所述螺杆马达转子的上部,相对螺杆马达转子固定,能随螺杆马达转子一起转动。
  7. 如权利要求1所述的近钻头随钻测量***,其特征在于:所述测量传输***的电源装置设置在所述马达***的内部转动部分的孔内,并位于测量装置与发射装置之间,相对更靠近发射装置。
  8. 如权利要求1所述的近钻头随钻测量***,其特征在于:所述测量装置包括方位伽马传感器和井斜传感器,所述方位伽马传感器采集方位伽马数据,所述井斜传感器测量井斜数据。
  9. 如权利要求1所述的近钻头随钻测量***,其特征在于:所述马达***与无磁短接之间设有防掉总成,所述防掉总成包括防掉短接和防掉帽,所述防掉帽中心具有轴向贯通的通孔,设置在马达***的内部转动部分的上部并固定,所述测量传输***的发射装置从防掉帽中间 的通孔穿过并伸入无磁的防掉短接内腔中,所述防掉短接下部与所述马达***的外部壳体连接,上部与无磁短接相连,且下端内壁上设有限位台肩;所述防掉帽的上端外壁设有凸缘,所述凸缘用于在下部壳体断裂时抵接于所述限位台肩处。
  10. 如权利要求1所述的近钻头随钻测量***,其特征在于:无磁短接为无磁钻铤,且当无磁短接与马达***之间直接连接时,测量传输***的发射装置伸入无磁钻铤内腔中。
PCT/CN2016/098445 2016-07-26 2016-09-08 一种近钻头随钻测量*** WO2018018712A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/748,120 US10465497B2 (en) 2016-07-26 2016-09-08 Near-bit measurement while drilling system
RU2018116240A RU2682400C1 (ru) 2016-07-26 2016-09-08 Система измерения в процессе бурения вблизи от долота

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610596074.5A CN106014391B (zh) 2016-07-26 2016-07-26 一种近钻头随钻测量***
CN201610596074.5 2016-07-26

Publications (1)

Publication Number Publication Date
WO2018018712A1 true WO2018018712A1 (zh) 2018-02-01

Family

ID=57114902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098445 WO2018018712A1 (zh) 2016-07-26 2016-09-08 一种近钻头随钻测量***

Country Status (4)

Country Link
US (1) US10465497B2 (zh)
CN (1) CN106014391B (zh)
RU (1) RU2682400C1 (zh)
WO (1) WO2018018712A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111911134A (zh) * 2020-07-10 2020-11-10 中石化江钻石油机械有限公司 一种近钻头地质导向***
CN112253238A (zh) * 2020-10-14 2021-01-22 武汉中交岩土工程有限责任公司 基于水平定向钻勘察的钻杆内线缆快速安装装置和方法
CN114737904A (zh) * 2022-05-19 2022-07-12 中国地质科学院勘探技术研究所 一种绳索取心近钻头随钻测量***及方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106351644A (zh) * 2016-10-18 2017-01-25 中石化石油工程技术服务有限公司 一种气体钻井井身轨迹随钻实时监测方法
CN106639898B (zh) * 2017-01-04 2019-05-24 北京赛诺凤凰能源科技有限公司 一种过线螺杆钻具
US20180216418A1 (en) * 2017-01-27 2018-08-02 Rime Downhole Technologies, Llc Adjustable Hydraulic Coupling For Drilling Tools And Related Methods
CN109915018B (zh) * 2017-12-07 2020-09-04 中国石油化工股份有限公司华北油气分公司石油工程技术研究院 一种三维井眼轨迹控制中工具面角的确定方法
CN108843242B (zh) * 2018-07-09 2023-06-09 西安石大斯泰瑞油田技术有限公司 一种低成本高造斜率和高机械钻速的旋转导向钻井***
CN108979625B (zh) * 2018-07-24 2021-05-14 中国石油大学(北京) 一种径向井轨迹测量装置及***
CN109441427A (zh) * 2018-12-05 2019-03-08 贝兹维仪器(苏州)有限公司 用于随钻测量设备的电路对接装置
CN109488289A (zh) * 2018-12-05 2019-03-19 贝兹维仪器(苏州)有限公司 一种多参数随钻测量设备
CN109322662A (zh) * 2018-12-05 2019-02-12 贝兹维仪器(苏州)有限公司 一种随钻测量短节
CN109403954B (zh) * 2018-12-18 2024-01-19 徐州天地岩土科技有限公司 一种实时钻孔测斜纠偏装置
CN110273677B (zh) * 2019-07-18 2023-01-17 北京六合伟业科技股份有限公司 一种短半径用随钻测斜仪
CN110847821B (zh) * 2019-10-25 2020-12-11 西安石大斯泰瑞油田技术有限公司 高造斜、高钻速旋转导向***
CN113494242A (zh) * 2020-04-02 2021-10-12 中国石油化工股份有限公司 一种旋转导向工具及其使用方法
CN113550733A (zh) * 2020-04-03 2021-10-26 中石化石油工程技术服务有限公司 一种连续油管工程用随钻测量短节及其使用方法
CN111852443B (zh) * 2020-06-11 2023-08-11 中国海洋石油集团有限公司 近钻头测量下短节以及近钻头测量装置
CN111594152B (zh) * 2020-06-30 2022-06-07 中国石油天然气集团有限公司 井下近钻头测量短节
CN112943097A (zh) * 2021-04-16 2021-06-11 万晓跃 一种高柔性井底自供电随钻***
CN113719237B (zh) * 2021-08-23 2023-10-27 中煤科工集团西安研究院有限公司 一种碎软薄煤层瓦斯抽采定向长钻孔施工钻具组合及方法
CN113882805A (zh) * 2021-08-31 2022-01-04 中国石油天然气集团有限公司 一种易斜难钻地层打快提速的钻具组合
CN114033361A (zh) * 2021-10-22 2022-02-11 中国石油大学(华东) 一种近钻头多参数井下随钻测控***
CN114439371B (zh) * 2022-01-27 2023-02-07 北京探矿工程研究所 一种受控超短半径导向钻井***及钻井方法
CN114508344B (zh) * 2022-01-30 2024-05-31 中煤科工集团西安研究院有限公司 一种煤矿井下多信道随钻测量地质导向***与施工方法
CN114687727B (zh) * 2022-03-23 2024-05-31 中煤科工集团西安研究院有限公司 定向钻孔煤矿井下岩石盾构巷道超前地质探查装置及方法
CN115059449B (zh) * 2022-06-22 2024-06-04 中煤科工集团西安研究院有限公司 一种煤矿井下自识别多参数近钻头随钻测量装置及方法
CN115370302B (zh) * 2022-08-19 2023-04-14 中国石油天然气集团有限公司 一种随钻无源磁导向***及方法
CN116398110B (zh) * 2023-04-14 2024-04-02 奥瑞拓能源科技股份有限公司 一种螺杆钻具工作状态检测装置和螺杆钻具计时器
CN117759162B (zh) * 2024-02-22 2024-04-30 成都希能能源科技有限公司 一种定向钻井的传动装置
CN118008267B (zh) * 2024-04-08 2024-06-11 上海达坦能源科技股份有限公司四川分公司 一种一体式随钻测量工具

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5725061A (en) * 1996-05-24 1998-03-10 Applied Technologies Associates, Inc. Downhole drill bit drive motor assembly with an integral bilateral signal and power conduction path
RU2200835C2 (ru) * 2001-05-28 2003-03-20 Закрытое акционерное общество Научно-производственная фирма "Самарские Горизонты" Забойная телеметрическая система
CN101070757A (zh) * 2007-06-27 2007-11-14 中国石油天然气集团公司 近钻头测井数据过马达有线传输装置
CN101881155A (zh) * 2010-07-16 2010-11-10 大庆石油管理局 一种用于随钻测量仪器的有线测传马达
CN203702140U (zh) * 2013-11-08 2014-07-09 北京六合伟业科技股份有限公司 近钻头随钻测量通信***
CN205100962U (zh) * 2015-11-04 2016-03-23 东营仪锦能源科技有限公司 近钻头随钻地质导向测井仪
CN105464646A (zh) * 2015-12-24 2016-04-06 中国石油天然气集团公司 一种井下地质参数的通讯装置及方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO306522B1 (no) * 1992-01-21 1999-11-15 Anadrill Int Sa Fremgangsmaate for akustisk overföring av maalesignaler ved maaling under boring
US5467083A (en) * 1993-08-26 1995-11-14 Electric Power Research Institute Wireless downhole electromagnetic data transmission system and method
US6057784A (en) * 1997-09-02 2000-05-02 Schlumberger Technology Corporatioin Apparatus and system for making at-bit measurements while drilling
RU2239042C2 (ru) * 1999-12-10 2004-10-27 Шлюмбергер Холдингз Лимитед Способ бурения скважины и одновременного направления буровой коронки активно управляемой вращательной направляемой буровой системой и активно управляемая вращательная направляемая система
RU27839U1 (ru) * 2002-05-30 2003-02-20 Открытое акционерное общество Научно-производственное предприятие Научно-исследовательский и проектно-конструкторский институт геофизических исследований геологоразведочных скважин Устройство для измерений геофизических и технологических параметров в процессе бурения с электромагнитным каналом связи
CN2632286Y (zh) * 2003-06-27 2004-08-11 尹永清 螺杆钻具
US8827006B2 (en) * 2005-05-12 2014-09-09 Schlumberger Technology Corporation Apparatus and method for measuring while drilling
PL2279327T3 (pl) * 2008-04-18 2014-04-30 Dreco Energy Services Ltd Sposób i urządzenie do regulowania szybkości obrotowej wgłębnego narzędzia wiertniczego
CN201386557Y (zh) * 2009-04-30 2010-01-20 中国石油集团川庆钻探工程有限公司钻采工艺技术研究院 接力传输随钻测量装置
RU2401378C1 (ru) * 2009-08-06 2010-10-10 Николай Викторович Беляков Способ проводки стволов наклонных и горизонтальных скважин
CN201835825U (zh) * 2010-07-16 2011-05-18 大庆石油管理局 一种用于随钻测量仪器的有线测传马达
US9523244B2 (en) * 2012-11-21 2016-12-20 Scientific Drilling International, Inc. Drill bit for a drilling apparatus
US9657520B2 (en) * 2013-08-23 2017-05-23 Weatherford Technology Holdings, Llc Wired or ported transmission shaft and universal joints for downhole drilling motor
CN105339586B (zh) * 2013-09-03 2019-05-21 哈里伯顿能源服务公司 用于每分钟转数测量的螺旋管链路
US10520639B2 (en) * 2016-02-19 2019-12-31 China Petroleum & Chemical Corporation System for geosteering and formation evaluation utilizing near-bit sensors
CN205858331U (zh) * 2016-07-26 2017-01-04 奥瑞拓能源科技股份有限公司 一种近钻头随钻测量***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5725061A (en) * 1996-05-24 1998-03-10 Applied Technologies Associates, Inc. Downhole drill bit drive motor assembly with an integral bilateral signal and power conduction path
RU2200835C2 (ru) * 2001-05-28 2003-03-20 Закрытое акционерное общество Научно-производственная фирма "Самарские Горизонты" Забойная телеметрическая система
CN101070757A (zh) * 2007-06-27 2007-11-14 中国石油天然气集团公司 近钻头测井数据过马达有线传输装置
CN101881155A (zh) * 2010-07-16 2010-11-10 大庆石油管理局 一种用于随钻测量仪器的有线测传马达
CN203702140U (zh) * 2013-11-08 2014-07-09 北京六合伟业科技股份有限公司 近钻头随钻测量通信***
CN205100962U (zh) * 2015-11-04 2016-03-23 东营仪锦能源科技有限公司 近钻头随钻地质导向测井仪
CN105464646A (zh) * 2015-12-24 2016-04-06 中国石油天然气集团公司 一种井下地质参数的通讯装置及方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111911134A (zh) * 2020-07-10 2020-11-10 中石化江钻石油机械有限公司 一种近钻头地质导向***
CN112253238A (zh) * 2020-10-14 2021-01-22 武汉中交岩土工程有限责任公司 基于水平定向钻勘察的钻杆内线缆快速安装装置和方法
CN114737904A (zh) * 2022-05-19 2022-07-12 中国地质科学院勘探技术研究所 一种绳索取心近钻头随钻测量***及方法

Also Published As

Publication number Publication date
US20180355710A1 (en) 2018-12-13
CN106014391B (zh) 2023-03-28
US10465497B2 (en) 2019-11-05
RU2682400C1 (ru) 2019-03-19
CN106014391A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
WO2018018712A1 (zh) 一种近钻头随钻测量***
EP0900917B1 (en) An apparatus and system for making at-bit measurements while drilling
US7866415B2 (en) Steering device for downhole tools
US9022144B2 (en) Drill bit assembly having electrically isolated gap joint for measurement of reservoir properties
CN105637170B (zh) 定向钻探方法及定向钻探***
WO2020244665A1 (zh) 一种基于钻压转向传递结构的旋转导向钻井工具
US6550548B2 (en) Rotary steering tool system for directional drilling
CN205858331U (zh) 一种近钻头随钻测量***
GB2427632A (en) Transmitting MWD signals through a mud motor
US9080387B2 (en) Directional wellbore control by pilot hole guidance
US20130032399A1 (en) Systems and Methods for Directional Pulsed-Electric Drilling
US8567528B2 (en) Apparatus and method for directional drilling
US8854044B2 (en) Instrumented core barrels and methods of monitoring a core while the core is being cut
WO2020011111A1 (zh) 一种低成本高造斜率和高机械钻速的旋转导向钻井***
US10914120B2 (en) Flexible collar for a rotary steerable system
US9650844B2 (en) Bi-directional CV-joint for a rotary steerable system
US20160215611A1 (en) Method and apparatus for orienting a downhole tool
US12025005B2 (en) Easy building-up hybrid rotary steerable drilling system
US20220316279A1 (en) Easy building-up hybrid rotary steerable drilling system
EP2876255A2 (en) Instrumented core barrels and methods of monitoring a core while the core is being cut
US8205688B2 (en) Lead the bit rotary steerable system
US9938772B2 (en) System and process for drilling a planned wellbore trajectory with a downhole mud motor
AU2014208318A1 (en) Instrumented core barrels and methods of monitoring a core while the core is being cut

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018116240

Country of ref document: RU

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/05/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16910291

Country of ref document: EP

Kind code of ref document: A1