WO2018018415A1 - 一种穿戴设备的佩戴状态判定方法及穿戴设备 - Google Patents

一种穿戴设备的佩戴状态判定方法及穿戴设备 Download PDF

Info

Publication number
WO2018018415A1
WO2018018415A1 PCT/CN2016/091719 CN2016091719W WO2018018415A1 WO 2018018415 A1 WO2018018415 A1 WO 2018018415A1 CN 2016091719 W CN2016091719 W CN 2016091719W WO 2018018415 A1 WO2018018415 A1 WO 2018018415A1
Authority
WO
WIPO (PCT)
Prior art keywords
wearing
wearable device
wearing state
sensor
state
Prior art date
Application number
PCT/CN2016/091719
Other languages
English (en)
French (fr)
Inventor
张奎
李红刚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/091719 priority Critical patent/WO2018018415A1/zh
Priority to CN201680065292.4A priority patent/CN108351668A/zh
Publication of WO2018018415A1 publication Critical patent/WO2018018415A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00

Definitions

  • the present invention relates to the field of electronic technologies, and in particular, to a method for determining a wearing state of a wearable device and a wearable device.
  • wearable devices are becoming one of the indispensable electronic devices.
  • the working mode of the wearable device in the wearing state and the non-wearing state is different. For example, when the wearable device is in the wearing state, all functions of the device can be supported, and when the wearable device is in the non-wearing device, When wearing the state, some non-essential applications may be turned off to reduce the power consumption of the wearable device and extend the standby time of the device. In this scenario, it is especially important to identify whether the wearable device is worn or not.
  • the detection method adopted generally detects whether the wearable device is blocked by the object by the infrared sensor, and if the object is blocked by the object, the wearable device is considered to be currently worn.
  • the infrared sensor recognizes that the wearable device is blocked by the object and cannot be equivalent to the wearable device being worn. For example, when the user puts the wearable device on other objects, it is not worn, but the infrared sensor recognizes it. If there is an object occlusion, then a wrong judgment will be made, which in turn will cause the wearable device to enter an operating mode according to the wearing state or an open/closed application error.
  • the present invention provides a wearing state determining method and a wearing device of a wearable device, which can improve the recognition accuracy of the wearing state of the wearable device.
  • the first aspect provides a method of determining a wearing state of a wearable device.
  • whether the wearing action occurs is detected by the capacitive sensor, and if the wearing action is detected, the wearing device is switched from the non-wearing state to the wearing state, and when the wearing device is in the wearing state, the infrared light is passed through
  • the sensor detects whether a disengagement action occurs, and if it is detected that the disengagement action occurs, the wearable device is switched from the wearing state to the non-wearing state.
  • the capacitive sensor when the wearable device is in the non-wearing state, the capacitive sensor can accurately detect whether the wearing action occurs.
  • the infrared sensor When the wearable device is in the wearing state, the infrared sensor can accurately detect whether the wear-out action occurs, and can pass The capacitive sensor and the infrared sensor respectively detect the wearing action and the disengaging action, determine the wearing state of the wearing device, and improve the recognition accuracy of the wearing state of the wearable device.
  • the wearing state comprises turning on the infrared sensor; and the non-wearing state comprises turning on the capacitive sensor.
  • the wearing state includes turning off the capacitive sensor to turn on the infrared sensor; and the non-wearing state includes turning off the infrared sensor to turn on the capacitive sensor.
  • the capacitive sensor when the wearable device is switched from the non-wearing state to the wearing state, the capacitive sensor is turned off and the infrared sensor is turned on; when the wearing state is switched to the non-wearing state, the infrared sensor is turned off and the capacitive sensor is turned on. That is, the capacitive sensor and the infrared sensor are turned on, which can reduce the power consumption of the wearable device and prolong the service life.
  • a trip-out action occurs when the infrared light intensity received at any time point within the time length is less than a preset light intensity threshold; or when the infrared sensor detects the third preset time length at any time point
  • the wearable device has no obstruction within a preset distance threshold, it is determined that the disengagement action occurs.
  • the acceleration sensor detects whether the wearing device is in a stationary state within a first preset time period, and if in a stationary state, switches the wearing device from a wearing state to a non-wearing state.
  • the acceleration sensor further detects whether the wearing device is in a stationary state for the first preset time period. If not, the capacitance sensor can be further verified to be correct, and the wearable device is currently in a wearing state; if it is in a static state , then you can recognize If the capacitance sensor detects an error, the wearable device is switched from the wearing state to the non-wearing state. That is to say, the acceleration sensor can calibrate the recognition result of the capacitance sensor, and when the capacitance sensor recognizes an error, the wearable device is switched back to the non-wearing state in time, thereby further improving the recognition accuracy of the wearing state of the wearable device.
  • a sixth possible implementation manner when the wearing device is in a non-wearing state, the wearing is ended. All applications running on the device except the ones in the preset protected application collection.
  • the wearable device can end unnecessary applications in the non-wearing state, thereby reducing power consumption of the wearable device.
  • a second aspect provides a wearable device, the wearable device comprising:
  • Wearing a motion detecting module, configured to detect, by the capacitive sensor, whether a wearing action occurs when the wearing device is in a non-wearing state;
  • a first switching module configured to switch the wearable device from a non-wearing state to a wearing state if a wearing action is detected
  • the off-the-action detection module is configured to detect, by the infrared sensor, whether the wear-out action occurs when the wearable device is in the wearing state;
  • a second switching module configured to switch the wearable device from a wearing state to a non-wearing state if a tripping action is detected.
  • the wearing state includes turning on the infrared sensor; and the non-wearing state includes turning on the capacitive sensor.
  • the wearing state includes turning off the capacitive sensor to turn on the infrared sensor; and the non-wearing state includes turning off the infrared sensor to turn on the capacitive sensor.
  • the wearing action detection module is specifically configured to: when it is detected that the capacitance value acquired by the capacitance sensor is greater than a preset capacitance threshold, it is determined that the wearing action occurs.
  • the detaching action detecting module is configured to: when detecting the infrared light intensity received by the infrared ray sensor at any time point within a second preset time period When the preset light intensity threshold is less than the preset light intensity threshold, it is determined that the wear-out action occurs; or when the wearable device has no obstruction within the preset distance threshold at any time point within the third preset time period detected by the infrared sensor , to determine the occurrence of the removal action.
  • the wearing device further includes:
  • a static detecting module configured to detect, by the acceleration sensor, whether the wearing device is in a stationary state during the first preset time period when the wearing device is in a wearing state
  • the second switching module is specifically configured to: when in a stationary state, switch the wearable device from a wearing state to a non-wearing state.
  • the device further includes:
  • an application ending module configured to end all applications except the application in the preset protection application set running in the wearable device when the wearable device is in the non-wearing state.
  • the third aspect provides another wearable device that includes a processor, a memory, an input device, and an output device.
  • the processor is coupled to the memory and input/output devices, for example, the processor can be coupled to the memory and input/output devices via a bus.
  • the input device is used to detect a wearing action, a disengagement action, or a stationary state of the wearable device.
  • the output device is used to output and display image data.
  • the storage area is used to store program code for performing the above method.
  • the processor is configured to perform some or all of the processes of the first aspect.
  • FIG. 1 is a flow chart showing a method for determining a wearing state of a wearable device according to an embodiment of the present invention. intention;
  • FIG. 2 is a schematic structural diagram of a wearable device according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a wear action according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a stripping action according to an embodiment of the present invention.
  • FIG. 5 is a simplified schematic diagram of a looping process of a wearing state determining method of a wearable device according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of another wearable device according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart diagram of a method for determining a wearing state of a wearable device according to an embodiment of the present invention.
  • the wearable device may be a device that can be worn by the user, such as a smart watch or a smart hand, equipped with a capacitive sensor, an infrared sensor, and an acceleration sensor (or may be a sensing device that achieves the same function). Rings, smart glasses, etc.
  • FIG. 2 is a schematic structural diagram of a wearable device according to an embodiment of the present invention.
  • the wearable device includes an input device 1000, an output device 2000, a processor 3000, and a memory 4000, and the input device 1000, the output device 2000, the processor 3000, and the memory 4000 are connected by a bus 5000.
  • the input device 1000 may specifically be a sensor of the wearable device (including an infrared sensor, a capacitive sensor, and an acceleration sensor) for detecting a wearing action, a disengaging action, or a stationary state of the wearing device.
  • a sensor of the wearable device including an infrared sensor, a capacitive sensor, and an acceleration sensor
  • other hardware devices such as a touch panel or a physical button may also be included.
  • the output device 2000 may specifically be a display screen, a signal indicator or a speaker of the wearable device, for displaying image data, playing audio data, or presenting other photoelectric signal data.
  • the processor 3000 is configured to support the wearable device to perform the corresponding functions in the above methods.
  • the processor 3000 can be a central processing unit (CPU), a network processor (in English: network processor, NP), a hardware chip, or any combination thereof.
  • the chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the above PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), and a general array logic (GAL). Or any combination thereof.
  • the memory 4000 is used to store program codes and the like.
  • the memory 4000 may include a volatile memory (English: volatile memory), such as random access memory (English: random access memory, abbreviation: RAM); the memory 4000 may also include non-volatile memory (English: non-volatile memory) For example, read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: solid-state drive , abbreviation: SSD); the memory 4000 may also include a combination of the above types of memories.
  • ROM read-only memory
  • flash memory English: flash memory
  • HDD hard disk drive
  • SSD solid state drive
  • the wearing device may include two states: a wearing state and a non-wearing state, wherein the wearing state may refer to a state in which the wearing device is worn by the user, and the non-wearing state may refer to the wearing device not being worn by the user. status.
  • the method includes:
  • step S101 the wearable device is powered on.
  • step S102 the processor turns on the capacitive sensor.
  • the wearable device When the wearable device is initially powered on, the wearable device may be in a non-wearing state by default, and the non-wearing state includes turning on the capacitive sensor.
  • the wearable device when the wearable device is powered on, two scenarios may be included. The first is that the processor only turns on the capacitive sensor; the second is that the processor turns on the capacitive sensor and the infrared sensor at the same time.
  • the processor analyzes the wearing state of the wearable device according to the data of the capacitive sensor. Therefore, in the second scenario, the processor may temporarily not use the data of the infrared sensor. The processing is performed or combined with the data of the infrared sensor to further analyze the wearing state of the wearing device.
  • step S103 the processor detects whether a wearing action occurs by using the capacitive sensor, and if it is detected that the wearing action occurs, step S104 is performed; otherwise, step S103 is performed.
  • Capacitive sensor (English: Capacitance Sensor), is a kind of conversion of other quantities into capacitors The changes reflect the instrument.
  • the wearing action may refer to an action that occurs when the user wears the wearing device that is not worn on a certain time or a certain period of time.
  • the capacitive sensor touches different materials, the detected capacitance value is different, and when the user wears the wearing device, the wearing device is usually attached to the skin for a period of time, for example, when wearing the smart watch, The smart watch will be pressed against the wrist for a moment or a period of time, and the capacitance detected close to the skin is usually very high compared to other materials.
  • the processor detects that the capacitance value acquired by the capacitive sensor at a certain instant or a certain period of time is greater than a preset capacitance threshold, it can be determined that the wearing action occurs, and if the processor detects If the capacitance value obtained by the capacitive sensor is less than the preset capacitance threshold, it can be considered that the wearing action does not occur, that is, the wearable device is still in the non-wearing state.
  • the capacitive sensor can acquire a moment or a certain period of time when the user is close to the wrist while wearing the smart watch.
  • the capacitance value is 60102pF
  • the processor can detect that the capacitance value acquired by the capacitance sensor is 60102pF is greater than the preset capacitance threshold of 60000pF, and the processor can determine that the wearing action occurs at this time.
  • the processor can detect the obtained by the capacitive sensor. If the capacitance value of 55000 pF is less than 60000 pF of the preset capacitance threshold, the processor can determine that no wearing action has occurred at this time.
  • the setting of the capacitance threshold may be set according to an average value or a range of capacitance values of the wearable device attached to the skin detected by multiple experiments, so that it is determined according to the capacitance threshold whether the user will wear The device is attached to the skin.
  • Step S104 the processor switches the wearable device from the non-wearing state to the wearing state.
  • the wearable device can be switched from the non-wearing state to the wearing state, that is, the wearing device enters the wearing state.
  • the processor does not need to detect whether the wearing action occurs through the capacitive sensor, so the wearing device in the wearing state can include two scenarios, the first is that the processor turns off the capacitive sensor; the second is that the processor does not turn off the capacitive sensor.
  • the data of the capacitive sensor can be temporarily processed.
  • the wearing state includes turning on the infrared sensor, according to the step mentioned in step S102.
  • the processor only turns on the capacitive sensor, and when the wearable device switches to the wearing state, the processor can turn on the infrared sensor, and analyze the wearing state of the wearing device according to the data of the infrared sensor;
  • the processor has turned on the capacitive sensor and the infrared sensor at the same time.
  • the processor does not need to open the infrared sensor, but starts to process the data of the infrared sensor.
  • the infrared sensor when the wearable device is in the wearing state, the infrared sensor needs to be in an open state, and the capacitive sensor may be in an open state or a closed state.
  • the processor may enable some applications or functions that are only supported in the wearing state, for example, the processor may enable the payment function only in the wearing state; When wearing the state, the processor can turn on the measurement function of signs such as heart rate pulse.
  • step S105 the processor detects whether the disengaged state occurs by the infrared sensor. If it is detected that the disengagement action occurs, step S106 is performed; otherwise, step S105 is performed.
  • Infrared Ray Sensor (English: Infrared Ray Sensor) is a sensor that uses the physical properties of infrared light to measure. Infrared is also called infrared light, which has the properties of reflection, refraction, scattering, interference, absorption and so on.
  • the stripping action may refer to an action that occurs when the user wears the wearing device from himself or at a certain time.
  • the function of the infrared sensor is very large, and it can detect the intensity of the infrared light or detect whether there is a covering in a certain range. Therefore, according to these two characteristics of the infrared sensor, the processor detects whether or not the wearing action occurs by the infrared sensor. You can also have any of the following two ways:
  • Manner 1 When the processor detects that the infrared light intensity received by the infrared sensor at any time point within the second preset duration is less than a preset light intensity threshold, determining that the disconnection action occurs.
  • the infrared sensor can emit infrared rays. If there is an object blocking, the emitted infrared rays will be reflected back. The closer the object is to the infrared sensor, the smaller the loss when reflected back, and the reflected infrared light intensity received. On the other hand, if the obstruction is farther away from the infrared sensor, the greater the loss when reflected back, the lower the infrared intensity received back.
  • the processor obtains the intensity of the infrared light received by the infrared sensor, and determines whether the infrared light intensity received at any time point within the second preset time is less than the preset light intensity threshold, and if so, Then, it can be considered that the wearable device is far away from the user's body for a second preset time period, and then the processor can confirm that the wear-out action has occurred.
  • the processor can acquire the infrared sensor.
  • the intensity of the infrared light received in each of the 3s is less than 50 cd, and the processor can confirm that the stripping action has taken place.
  • the setting of the light intensity threshold may be set according to the average value or range of the light intensity data when the wearable device is detected by multiple experiments, so that the user can be determined according to the light intensity threshold. Whether to take the wearable device off the body.
  • Manner 2 When the processor detects that the wearable device has no obstruction within a preset distance threshold at any time point within the third preset duration by the infrared sensor, determining that the disengagement action occurs.
  • the infrared sensor can emit infrared rays, and if there is an object blocking, the emitted infrared rays will be reflected back, and it can be determined that an object is blocked.
  • the obstruction herein may specifically refer to the user's body.
  • the wearable device When the user takes off the wearable device, there is usually a period of time when the wearable device is far away from the user's body. For example, when the smart watch is worn off, the smart watch will be removed from the wrist for a period of time, away from the wrist. A large distance is generated, at which point the infrared sensor can detect that the wearable device is unobstructed within this distance.
  • the processor can detect whether there is an obstruction by using an infrared sensor, and if the processor detects that the wearable device has no obstruction within a preset distance threshold at any time point within the third preset duration by the infrared sensor, That is to say, the wearable device is away from the user's body for a predetermined period of time, and the processor can determine that the wear-out action has taken place.
  • the processor can detect that the detected time is detected at any time within 2 s by the infrared sensor. The result is that the wearable device has no obstruction within 2 cm, so the processor can determine that the disengagement action has taken place.
  • the processor can Make sure that no stripping action has taken place.
  • the setting of the distance threshold may be set according to the average value or range of the distance from the body or a certain part of the body when the wearable device is detected by multiple experiments, so as to be based on the distance.
  • the threshold can determine if the user has removed the wearable device from the body.
  • Step S106 the processor switches the wearable device from the wearing state to the non-wearing state.
  • the processor switches the wearable device from the wearing state to the non-wearing state, that is, the wearing device enters the non-wearing state.
  • the processor does not need to detect whether the wear-off action occurs through the infrared sensor, so the wearable device in the non-wearing state may include two scenarios, the first is that the processor turns off the infrared sensor; the second is that the processor does not turn off. Infrared sensor, but the data of the infrared sensor can be temporarily processed.
  • the non-wearing state includes turning on the capacitive sensor.
  • the processor turns off the capacitive sensor when the wearing device is in the wearing state, and the wearing device switches to In the non-wearing state, the processor can turn on the capacitive sensor, and analyze the wearing state of the wearing device according to the data of the capacitive sensor; in the second scenario, the processor does not turn off the capacitive sensor when the wearing device is in the wearing state, and then wears
  • the processor does not need to turn on the capacitive sensor, but starts processing the data of the capacitive sensor.
  • the capacitive sensor when the wearable device is in the non-wearing state, the capacitive sensor needs to be in an open state, and the infrared sensor may be in an open state or a closed state.
  • the processor may end all applications except the application in the preset protected application set running in the wearable device, wherein the preset protection
  • the application collection can be an application that the user or the user is accustomed to not being turned off or disabled in a non-wearing state, such as a clock, etc., while other applications that are not part of the protected application set can end. It can save the power consumption of the wearable device.
  • the scenarios of opening and closing of the capacitive sensor and the infrared sensor can be summarized.
  • three scenarios may be included: in the first scenario, the capacitive sensor and the infrared sensor are simultaneously turned on at the time of power-on, and are always turned on after being turned on, but only the basis for performing data analysis is different; In the two scenarios, the wearable device turns on the capacitive sensor when the wearer is in the non-wearing state, turns off the infrared sensor, and is in the worn state.
  • the capacitive sensor When the infrared sensor is turned on, the capacitive sensor is turned off; in the third scenario, the capacitive sensor is turned on when the device is turned on, and the device is always turned on, while the wearable device only turns on the infrared sensor when in the wearing state, and only turns off the infrared sensor when not in the worn state. Or, the infrared sensor is turned on when the device is turned on, and the device is always turned on, and the wearable device only turns on the capacitive sensor when the device is not worn, and only the capacitive sensor is turned off when the device is worn.
  • step S107 may be further performed.
  • the processor may turn on the acceleration sensor when the wearable device is powered on in step S102.
  • the wearing state of step S104 the acceleration sensor may be included, that is, the processor turns on the acceleration sensor when switching the wearable device from the non-wearing state to the wearing state.
  • Step S107 The processor detects, by the acceleration sensor, whether the wearable device is in a stationary state within a first preset time period, and if in a stationary state, performs step S106; otherwise, performs step S107.
  • Accelerometer (English: Accelerate Sensor), an accelerometer is a sensor that measures the acceleration force (the force acting on an object while it is accelerating).
  • the acceleration sensor can detect the acceleration, and if the wearable device is idle at a certain position, the acceleration sensor can not detect any acceleration. In this way, the processor can determine whether the wearable device is at a standstill by the acceleration sensor.
  • the processor may detect whether the acceleration sensor acquires acceleration within a first preset duration, and if the processor detects that the acceleration sensor has acquired acceleration, the processor may determine that the acceleration is within the first preset duration.
  • the wearable device is not in a stationary state; if the processor does not detect that the acceleration sensor has acquired acceleration, it may be determined that the wearable device is in a stationary state for the first predetermined duration. For example, if the first preset duration is 5 minutes, if the processor detects that the acceleration sensor has not acquired the acceleration for 5 consecutive minutes, it can be determined that the wearable device within the first preset duration is always in a stationary state.
  • step S105 there is no strict sequential execution sequence between step S105 and step S107, which can be performed at the same time.
  • the two steps are only two branches after the wearable device enters the wearing state.
  • step S102 to step S107 can be an independent execution process, also It can be a cyclic execution process, and can start from any step to form a loop process as shown in FIG. 5.
  • the wearable device when the wearable device is in the non-wearing state, it is detected by the capacitive sensor whether the wearing action occurs, because the capacitive sensor can recognize whether the wearing device is in close contact with the user's body, and avoid occlusion by the infrared sensor.
  • This method recognizes other physical obstructions other than the human body as the human body and causes the wearing state to be switched incorrectly; when the wearing device is in the wearing state, the infrared sensor detects whether the disengaging action occurs, because the wearable device has the wearable device after the user wears the wearing device There may be swaying, etc., and it is impossible to keep close to the body.
  • the capacitive sensor is easy to misidentify when the wearing device is not close to the body, and the infrared sensor can recognize whether there is an obstruction in a certain distance range. That is to say, even if the wearing device is not close enough to the body, as long as the preset distance range is not exceeded, it can be considered that no disengagement action occurs, and the wearing state switching error is prevented due to the occurrence of the disengagement action of the capacitive sensor due to the swaying misidentification.
  • the wearable device when the wearable device is switched from the non-wearing state to the wearing state, there is a scenario in which the capacitive sensor is turned off while the infrared sensor is turned on; when the wearing state is switched to the non-wearing state, there is a scenario in which the infrared sensor is turned off and turned on at the same time.
  • Capacitive sensor That is, the capacitive sensor and the infrared sensor are turned on, which can reduce the power consumption of the wearable device and prolong the service life.
  • the acceleration sensor further detects whether the wearable device is in a static state during the first preset time period, and can verify whether the detection of the previous capacitive sensor is correct: if the wearable device is not in a static state, it can be determined that the capacitive sensor is correctly detected, and the wearable device is It is in the wearing state; if the wearing device is in a stationary state, it can be determined that the capacitive sensor detects an error, and the processor can switch the wearing device from the wearing state to the non-wearing state.
  • the acceleration sensor can calibrate the recognition result of the capacitance sensor, and when the capacitance sensor recognizes an error, the wearable device is switched back to the non-wearing state in time, thereby further improving the recognition accuracy of the wearing state of the wearable device.
  • the method can detect the wearing state of the wearing device by the detection of the wearing action and the disengaging action by the capacitive sensor and the infrared sensor respectively, improve the recognition accuracy of the wearing state of the wearing device, and reduce the power consumption of the wearing device. .
  • FIG. 6 is a schematic structural diagram of another wearable device according to an embodiment of the present invention.
  • the wearable device of the present example inherits the execution steps of the above embodiment, and specifically refines the execution of each step.
  • Line module As shown in FIG. 6, the wearable device includes: a wearing action detecting module 610, a first switching module 620, a wear-out action detecting module 630, and a second switching module 640, wherein:
  • the wearing action detecting module 610 is configured to detect whether a wearing action occurs by the capacitive sensor when the wearing device is in the non-wearing state.
  • the wearing action detecting module 610 may be specifically configured to determine that a wearing action occurs when detecting that the capacitance value acquired by the capacitive sensor is greater than a preset capacitance threshold.
  • a preset capacitance threshold For a detailed description of the wearing action detection, reference may be made to the description of the foregoing step S103, and details are not described herein again.
  • the first switching module 620 is configured to switch the wearable device from a non-wearing state to a wearing state when a wearing action occurs.
  • the first switching module 620 can also be used to turn off the capacitive sensor or turn on the infrared sensor when the wearable device is switched to the wearing state.
  • the detachment action detecting module 630 is configured to detect whether a detachment action occurs by the infrared ray sensor when the wearable device is in the wearing state.
  • the off-the-action detection module 630 may be specifically configured to determine that the infrared light intensity received at any time point within the second preset duration is less than a preset light intensity threshold. Wearing action; or determining that the wear-out action occurs when the wearable device has no obstruction within a preset distance threshold at any time point within the third preset time period detected by the infrared sensor.
  • the second switching module 640 is configured to detect that the wearable device is switched from the wearing state to the non-wearing state when the detaching action occurs.
  • the second switching module 640 can also be used to turn off the infrared sensor or turn on the capacitive sensor when the wearable device is switched from the wearing state to the non-wearing state. For details, refer to the description of the foregoing step S106, and details are not described herein again.
  • the wearable device further includes a static detection module 650, specifically,
  • the stationary detecting module 650 is configured to detect, by the acceleration sensor, whether the wearing device is in a stationary state during the first preset time period when the wearing device is in the wearing state.
  • the second switching module 640 is configured to switch the wearable device from the wearing state to the non-wearing state when the stationary detecting module 650 detects that the wearing device is in a stationary state.
  • the wearable device further includes an application end module 660, specifically,
  • the application end module 660 is configured to end all applications except the application in the preset protection application set running in the wearable device when the wearable device is in the non-wearing state.
  • the preset protection application set may be an application that is not turned off or disabled in a non-wearing state, such as a clock, etc., by the user or according to the user's habit, and other applications that are not part of the protected application set. It can be ended, which can save the power consumption of the wearable device.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: Flash disk, Read-Only Memory (ROM), Random Access Memory (RAM), disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一种穿戴设备的佩戴状态判定方法,该方法包括:当穿戴设备处于非佩戴状态时,处理器通过电容传感器检测是否发生佩戴动作(S103),若检测到发生佩戴动作,处理器将穿戴设备由非佩戴状态切换至佩戴状态(S104),当穿戴设备处于佩戴状态时,处理器通过红外线传感器检测是否发生脱戴动作(S105),若检测到发生脱戴动作,处理器将穿戴设备由佩戴状态切换至非佩戴状态(S106)。该方法分别使用电容传感器和红外线传感器的来检测佩戴动作和脱戴动作,进而确定穿戴设备当前的佩戴状态,提高了可穿戴设备的佩戴状态的识别准确率,同时降低穿戴设备的功耗。

Description

一种穿戴设备的佩戴状态判定方法及穿戴设备 技术领域
本发明涉及电子技术领域,尤其涉及一种穿戴设备的佩戴状态判定方法及穿戴设备。
背景技术
随着可穿戴设备的功能越来越多越来越完善,可穿戴设备也日渐成为人们必不可少的一种电子设备之一。一般来说,可穿戴设备在佩戴状态和非佩戴状态时的工作模式是有所区别的,例如,当可穿戴设备处于佩戴状态时,可以支持该设备的所有功能,而当可穿戴设备处于非佩戴状态时,可能会关闭一些非必要的应用以减少可穿戴设备的功耗,延长设备待机时间。在这种情景下,识别可穿戴设备究竟是处于佩戴状态还是非佩戴状态就显得尤为重要。目前,采用的检测方法通常是通过红外线传感器检测可穿戴设备是否被物体遮挡,如果检测到被物体遮挡,则认为可穿戴设备当前是处于佩戴状态的。但是,红外线传感器识别到可穿戴设备被物体遮挡是不能等同于可穿戴设备处于佩戴状态的,例如,当用户将可穿戴设备放在其他物体上时,并没有佩戴它,而红外线传感器识别出来却有物体遮挡,那么就会做出错误的判断,进而也会导致可穿戴设备依据佩戴状态所进入的工作模式或者开启/关闭的应用程序发生错误。
发明内容
本发明提供了一种穿戴设备的佩戴状态判定方法及穿戴设备,可以提高可穿戴设备的佩戴状态的识别准确率。
第一方面提供了一种穿戴设备的佩戴状态判定方法。当穿戴设备处于非佩戴状态时,通过电容传感器检测是否发生佩戴动作,若检测到发生佩戴动作,则将所述穿戴设备由非佩戴状态切换至佩戴状态,当穿戴设备处于佩戴状态时,通过红外线传感器检测是否发生脱戴动作,若检测到发生脱戴动作,则将所述穿戴设备由佩戴状态切换至非佩戴状态。
在该技术方案中,穿戴设备处于非佩戴状态时,通过电容传感器可以比较准确的检测是否发生佩戴动作,穿戴设备处于佩戴状态时,通过红外线传感器可以比较准确的检测是否发生脱戴动作,可以通过电容传感器和红外线传感器分别对穿戴动作和脱戴动作的检测,确定穿戴设备的佩戴状态,提高可穿戴设备的佩戴状态的识别准确率。
在第一方面的第一种可能的实现方式中,所述佩戴状态包括开启所述红外线传感器;所述非佩戴状态包括开启所述电容传感器。
在第一方面的第二种可能的实现方式中,所述佩戴状态包括关闭所述电容传感器,开启所述红外线传感器;所述非佩戴状态包括关闭所述红外线传感器,开启所述电容传感器。
在该技术方案中,在穿戴设备由非佩戴状态切换至佩戴状态时,关闭电容传感器同时开启红外传感器;由佩戴状态切换至非佩戴状态时,关闭红外线传感器同时开启电容传感器。即电容传感器和红外线传感器轮换开启,可以降低穿戴设备的功耗,延长使用寿命。
结合第一方面或第一方面的第一种至第二种中任一种可能的实现方式,在第一方面的第三种可能的实现方式中,当检测到通过所述电容传感器获取到的电容值大于预设的电容阈值时,确定发生佩戴动作。
结合第一方面或第一方面的第一种至第三种中任一种可能的实现方式,在第一方面的第四种可能的实现方式中,当检测到所述红外线传感器在第二预设时长内的任意时间点接收到的红外光强均小于预设的光强阈值时,确定发生脱戴动作;或当通过所述红外线传感器检测到第三预设时长内的任意时间点所述穿戴设备在预设的距离阈值内均无遮挡物时,确定发生脱戴动作。
结合第一方面或第一方面的第一种至第四种中任一种可能的实现方式,在第一方面的第五种可能的实现方式中,当所述穿戴设备处于佩戴状态时,通过加速度传感器检测第一预设时长内所述穿戴设备是否处于静止状态,若处于静止状态,则将所述穿戴设备由佩戴状态切换至非佩戴状态。
在该技术方案中,通过加速度传感器进一步检测第一预设时长内穿戴设备是否处于静止状态,如果不处于静止状态,那么可以进一步验证电容传感器检测正确,穿戴设备当前处于佩戴状态;如果处于静止状态,那么可以认 为电容传感器检测出现错误,那么就将穿戴设备由佩戴状态切换至非佩戴状态。也就是说,加速度传感器可以对电容传感器的识别结果进行校准,在电容传感器识别出现错误时,及时将穿戴设备切换回非佩戴状态,从而进一步提高可穿戴设备的佩戴状态的识别准确率。
结合第一方面或第一方面的第一种至第五种中任一种可能的实现方式,在第六种可能的实现方式中,当所述穿戴设备处于非佩戴状态时,结束所述穿戴设备中运行的除预设的保护应用程序集合中的应用程序之外的所有应用程序。
在该技术方案中,可穿戴设备可以在非佩戴状态时结束不必要的应用程序,从而降低穿戴设备的功耗。
第二方面提供了一种穿戴设备,该穿戴设备包括:
佩戴动作检测模块,用于当穿戴设备处于非佩戴状态时,通过电容传感器检测是否发生佩戴动作;
第一切换模块,用于若检测到发生佩戴动作,则将所述穿戴设备由非佩戴状态切换至佩戴状态;
脱戴动作检测模块,用于当穿戴设备处于佩戴状态时,通过红外线传感器检测是否发生脱戴动作;
第二切换模块,用于若检测到发生脱戴动作,则将所述穿戴设备由佩戴状态切换至非佩戴状态。
在第二方面的第一种可能的实现方式中,所述佩戴状态包括开启所述红外线传感器;所述非佩戴状态包括开启所述电容传感器。
在第二方面的第二种可能的实现方式中,所述佩戴状态包括关闭所述电容传感器,开启所述红外线传感器;所述非佩戴状态包括关闭所述红外线传感器,开启所述电容传感器。
结合第二方面或第二方面的第一种至第二种中任一种可能的实现方式,在第二方面的第三种可能的实现方式中,所述佩戴动作检测模块具体用于:当检测到通过所述电容传感器获取到的电容值大于预设的电容阈值时,确定发生佩戴动作。
结合第二方面或第二方面的第一种至第三种中任一种可能的实现方式, 在第二方面的第四种可能的实现方式中,所述脱戴动作检测模块具体用于:当检测到所述红外线传感器在第二预设时长内的任意时间点接收到的红外光强均小于预设的光强阈值时,确定发生脱戴动作;或当通过所述红外线传感器检测到第三预设时长内的任意时间点所述穿戴设备在预设的距离阈值内均无遮挡物时,确定发生脱戴动作。
结合第二方面或第二方面的第一种至第四种中任一种可能的实现方式,在第五种可能的实现方式中,所述穿戴设备还包括:
静止检测模块,用于当所述穿戴设备处于佩戴状态时,通过加速度传感器检测第一预设时长内所述穿戴设备是否处于静止状态;
第二切换模块具体用于:若处于静止状态,则将所述穿戴设备由佩戴状态切换至非佩戴状态。
结合第二方面或第二方面的第一种至第五种中任一种可能的实现方式,在第六种可能的实现方式中,所述装置还包括:
应用结束模块,用于当所述穿戴设备处于非佩戴状态时,结束所述穿戴设备中运行的除预设的保护应用程序集合中的应用程序之外的所有应用程序。
第三方面提供了另一种穿戴设备,该穿戴设备包括处理器、存储器、输入设备以及输出设备。处理器连接到存储器和输入/输出设备,例如处理器可以通过总线连接到存储器和输入/输出设备。输入设备用于检测穿戴设备的佩戴动作、脱戴动作或静止状态。输出设备用于输出、显示图像数据。存储区用于存储执行上述方法的程序代码。处理器用于执行第一方面的部分或全部流程。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种穿戴设备的佩戴状态判定方法的流程示 意图;
图2是本发明实施例提供的一种穿戴设备的结构示意图;
图3是本发明实施例提供的一种穿戴动作的示意图;
图4是本发明实施例提供的一种脱戴动作的示意图;
图5是本发明实施例提供的一种穿戴设备的佩戴状态判定方法的循环流程简化示意图;
图6是本发明实施例提供的另一种穿戴设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,图1是本发明实施例中提出的一种穿戴设备的佩戴状态判定方法的流程示意图。在本实施例中,穿戴设备可以是配备有电容传感器、红外线传感器以及加速度传感器(或者是可以是实现相同功能的感应装置)的一种可以被用户穿戴在身上的设备,例如智能手表、智能手环、智能眼镜等。具体的,可以参阅图2,图2是本发明实施例提供的一种穿戴设备的结构示意图。该穿戴设备包括输入设备1000、输出设备2000、处理器3000和存储器4000,上述输入设备1000、输出设备2000、处理器3000和存储器4000通过总线5000连接。
其中,输入设备1000具体可以为穿戴设备的传感器(包括红外线传感器、电容传感器以及加速度传感器),用于检测穿戴设备的佩戴动作、脱戴动作或静止状态。另外,也可以包括触控面板或者物理按键等其他硬件装置。
输出设备2000具体可以为穿戴设备的显示屏、信号指示灯或者扬声器等,用于显示图像数据、播放音频数据或者呈现其他光电信号数据。
处理器3000被配置为支持穿戴设备执行上述方法中相应的功能。该处理器3000可以是中央处理器(英文:central processing unit,CPU),网络处理器(英文:network processor,NP),硬件芯片或者其任意组合。上述硬件芯 片可以是专用集成电路(英文:application-specific integrated circuit,ASIC),可编程逻辑器件(英文:programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(英文:complex programmable logic device,CPLD),现场可编程逻辑门阵列(英文:field-programmable gate array,FPGA),通用阵列逻辑(英文:generic array logic,GAL)或其任意组合。
存储器4000用于存储程序代码等。存储器4000可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random access memory,缩写:RAM);存储器4000也可以包括非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD);存储器4000还可以包括上述种类的存储器的组合。
进一步地,本发明实施例中,穿戴设备可以包括佩戴状态和非佩戴状态两种状态,其中佩戴状态可以指穿戴设备被用户佩戴了的状态,而非佩戴状态则可以指穿戴设备未被用户佩戴的状态。
如图1所示,所述方法包括:
步骤S101,穿戴设备开机。
步骤S102,处理器开启电容传感器。
穿戴设备在初始开机时,可以默认该穿戴设备当前处于非佩戴状态,非佩戴状态包括开启电容传感器。
进一步的,在穿戴设备开机时,可以包括两种情景,第一种是处理器仅开启电容传感器;第二种是处理器将电容传感器和红外线传感器同时开启。
需要说明的是,处理器在穿戴设备处于非佩戴状态的情况下,依据该电容传感器的数据分析该穿戴设备的佩戴状态,因此在上述第二种情景中,处理器可以暂不对红外线传感器的数据做处理,或者结合该红外线传感器的数据进一步分析该穿戴设备的佩戴状态。
步骤S103,处理器通过电容传感器检测是否发生佩戴动作,若检测到发生佩戴动作,则执行步骤S104;否则,执行步骤S103。
电容传感器(英文:Capacitance Sensor),是一种将其他量的变换以电容 的变化体现出来的仪器。佩戴动作可以指用户将未佩戴的穿戴设备佩戴在自己身上的某一时刻或者某一段时间内发生的动作。电容传感器在接触不同材料时,检测到的电容值大小是有所不同的,而用户在佩戴穿戴设备时,通常都会有一段时间将穿戴设备紧贴在皮肤上,例如,在佩戴智能手表时候,会有一瞬间或者一段时间将智能手表紧贴在手腕上,较于接触其他材料来说,此时紧贴皮肤检测到的电容值通常都是很高的。那么可以认为,当处理器检测到电容传感器在某一瞬间或者某一时间段内获取到的电容值大于一个预设的电容阈值时,就可以确定发生了佩戴动作,反之,如果处理器检测到电容传感器获取到的电容值小于预设的电容阈值,则可以认为未发生佩戴动作,即穿戴设备当前仍处于非佩戴状态。
例如,假设穿戴设备预设的电容阈值为60000pF,当用户进行如图3所示的佩戴手表动作时,电容传感器就可以获取到用户在佩戴智能手表时紧贴手腕的某一瞬间或者某一段时间的电容值为60102pF,则处理器可以检测到电容传感器获取到的电容值60102pF是大于预设的电容阈值的60000pF的,则处理器可以确定此时发生了佩戴动作。
又例如,假设穿戴设备预设的电容阈值为60000pF,当穿戴设备被放置在一块质地为铁的物体上时,电容传感器获取到的电容值为55000pF,则处理器可以检测到电容传感器获取到的电容值55000pF是小于预设的电容阈值的60000pF的,则处理器可以确定此时未发生佩戴动作。
需要说明的是,这里电容阈值的设定可以是根据多次实验检测到的穿戴设备贴在皮肤上的电容值的平均值或者范围进行设定的,从而根据该电容阈值可以确定用户是否将穿戴设备贴在了皮肤上。
步骤S104,处理器将穿戴设备由非佩戴状态切换至佩戴状态。
当处理器检测到发生佩戴动作后,则可以将穿戴设备由非佩戴状态切换至佩戴状态,即穿戴设备进入佩戴状态。此时处理器无需再通过电容传感器对佩戴动作是否发生进行检测,因此处于佩戴状态的穿戴设备可以包括两种情景,第一种是处理器关闭电容传感器;第二种是处理器不关闭电容传感器,但可以暂不对电容传感器的数据做处理。
具体来说,佩戴状态包括开启红外线传感器,根据步骤S102中提到的 两种情景,在第一种情景中,处理器仅开启了电容传感器,那么穿戴设备切换至佩戴状态时,处理器可以开启红外线传感器,依据该红外线传感器的数据分析该穿戴设备的佩戴状态;在第二种情景中,处理器已经同时开启了电容传感器和红外线传感器,那么穿戴设备切换至佩戴状态时,处理器就无需再对红外线传感器进行开启,而是开始处理红外线传感器的数据即可。
总体来说,穿戴设备在佩戴状态时,红外线传感器需处于开启状态,电容传感器可以是开启状态也可以是关闭状态。
在本发明实施例中,穿戴设备在佩戴状态的情况下,处理器可以开启一些仅支持佩戴状态下使用的应用程序或者功能,例如,仅在佩戴状态时,处理器可以开启支付功能;仅在佩戴状态时,处理器可以开启心率脉搏等体征的测量功能。
步骤S105,处理器通过红外线传感器检测是否发生脱戴状态,若检测到发生脱戴动作,则执行步骤S106;否则,执行步骤S105。
红外线传感器(英文:Infrared Ray Sensor),是一种利用红外线的物理性质来进行测量的传感器。红外线又称红外光,它具有反射、折射、散射、干涉、吸收等性质。脱戴动作可以指用户将佩戴的穿戴设备从自己身上摘取下来的某一时刻或者某一段时间内发生的动作。红外线传感器的功能非常多,既可以检测红外光的强度,也可以检测一定范围内是否有遮挡物,因此,根据红外线传感器的这两种特性,处理器通过红外线传感器检测是否发生脱戴动作的方法也可以有以下两种方式中的任一种:
方式一:当处理器检测到所述红外线传感器在第二预设时长内的任意时间点接收到的红外光强均小于预设的光强阈值时,确定发生脱戴动作。
红外线传感器可以发射红外线,如果有物体遮挡时,就会将发射的红外线反射回来,遮挡物体离红外线传感器越近,那么反射回来时的损耗就越小,则接收到的反射回来的红外光强就越高;反之,若遮挡物离红外线传感器越远,那么反射回来时的损耗就越大,则接收到的反射回来的红外光强就越低。用户在脱下穿戴设备时,通常都会有一段时间穿戴设备离用户的身体有一段较远的距离,例如,在脱戴智能手表时,会有一段时间将智能手表从手腕上摘下,距离手腕产生较大的距离,此时,红外线传感器检测到的红外光强就 会很小。由此原理,处理器获取红外线传感器接收到的红外光的光强,判断是否在第二预设时长内的任意时间点接收到的红外光强均小于预设的光强阈值时,如果是,那么可以认为穿戴设备在第二预设时长的时间内均远离用户的身体,那么处理器可以确认发生了脱戴动作。
例如,假设预设的光强阈值为50cd(坎德拉,光强单位),第二预设时长为3s,当用户进行如图4所示的脱戴手表动作时,处理器可以获取到红外线传感器在3s内每次接收到的红外线的光线强度都是小于50cd的,那么处理器可以确认发生了脱戴动作。
需要说明的是,这里光强阈值的设定可以是根据多次实验检测到的穿戴设备被摘下时的光强数据的平均值或者范围进行设定的,从而根据该光强阈值可以确定用户是否将穿戴设备从身上摘下。
方式二:当处理器通过所述红外线传感器检测到第三预设时长内的任意时间点所述穿戴设备在预设的距离阈值内均无遮挡物时,确定发生脱戴动作。
红外线传感器可以发射红外线,如果有物体遮挡时,就会将发射的红外线反射回来,则可以确定有物体遮挡。在该实现方式中,这里的遮挡物可以具体指用户的身体。用户在脱下穿戴设备时,通常都会有一段时间穿戴设备离用户的身体有一段较远的距离,例如,在脱戴智能手表时,会有一段时间将智能手表从手腕上摘下,距离手腕产生较大的距离,此时,红外线传感器就可以检测到穿戴设备在这段距离内无遮挡物。由此原理,处理器可以通过红外线传感器检测是否有遮挡物,如果处理器通过红外线传感器检测到第三预设时长内的任意时间点穿戴设备在预设的距离阈值内均无遮挡物时,也就是说穿戴设备在第三预设时长的时间内均远离用户的身体,那么处理器可以确定发生了脱戴动作。
例如,假设预设的距离阈值为2cm,第三预设时长为2s,当用户进行如图4所示的脱戴手表动作时,处理器通过红外线传感器可以检测到在2s内任意时间点检测到的结果都是穿戴设备在2cm内均无遮挡物,那么处理器可以确定发生了脱戴动作。反之,如果此时用户未摘下穿戴设备,只是穿戴设备有所晃动,离用户身体的距离大约是会有1cm的距离,红外线传感器就可以检测到2cm内是有遮挡物的,那么处理器可以确定没有发生脱戴动作。
需要说明的是,这里距离阈值的设定可以是根据多次实验检测到的穿戴设备被摘下时的距离身体或者身体某一部位的距离的平均值或范围进行设定的,从而根据该距离阈值可以确定用户是否将穿戴设备从身上摘下。
步骤S106,处理器将穿戴设备由佩戴状态切换至非佩戴状态。
处理器将穿戴设备由佩戴状态切换至非佩戴状态,即穿戴设备进入非佩戴状态。此时处理器无需再通过红外线传感器对脱戴动作是否发生进行检测,因此处于非佩戴状态的穿戴设备可以包括两种情景,第一种是处理器关闭红外线传感器;第二中是处理器不关闭红外线传感器,但可以暂不对红外线传感器的数据做处理。
具体来说,非佩戴状态包括开启电容传感器,根据步骤S104中提到的两种情景,在第一种情景中,处理器在穿戴设备处于佩戴状态时就关闭了电容传感器,那么穿戴设备切换至非佩戴状态时,处理器可以开启电容传感器,依据该电容传感器的数据分析该穿戴设备的佩戴状态;在第二种情景中,处理器在穿戴设备处于佩戴状态时并未关闭电容传感器,那么穿戴设备切换至非佩戴状态时,处理器无需再开启电容传感器,而是开始处理电容传感器的数据即可。
总体来说,穿戴设备在非佩戴状态时,电容传感器需处于开启状态,红外线传感器可以是开启状态也可以是关闭状态。
在本发明实施例中,穿戴设备在非佩戴状态的情况下,处理器可以结束穿戴设备中运行的除预设的保护应用程序集合中的应用程序之外的所有应用程序,其中预设的保护应用程序集合可以是用户自己或者根据用户习惯设定的一些在非佩戴状态下不会被关闭或禁用的应用程序,例如时钟等,而其他不属于保护应用程序集合的应用程序则都可以结束,可以节省穿戴设备的功耗。
根据上述步骤S102至步骤S106的描述,可以对电容传感器和红外线传感器的开启和关闭的情景进行总结。在本发明实施例中,可以包括三种情景:第一种情景中,电容传感器和红外线传感器在开机时同时开启,并且后续一直处于开启状态,只是进行数据分析的依据处理器会有区分;第二种情景中,穿戴设备在非佩戴状态时开启电容传感器,关闭红外线传感器,在佩戴状态 时开启红外线传感器,关闭电容传感器;第三种情景中,开机时开启电容传感器,并且后续一直处于开启状态,而穿戴设备在佩戴状态时仅开启红外线传感器,在非佩戴状态时仅关闭红外线传感器,或,开机时开启红外线传感器,并且后续一直处于开启状态,而穿戴设备在非佩戴状态时仅开启电容传感器,在佩戴状态时仅关闭电容传感器。
可选的,在步骤S104执行之后,可以进一步执行步骤S107。
需要说明的是,本发明实施例针对加速度传感器的开启有两种情景,第一种情景中,处理器可以在步骤S102穿戴设备开机时开启加速度传感器;第二种情景中,步骤S104的佩戴状态可以包括开启加速度传感器,即处理器在将穿戴设备从非佩戴状态切换至佩戴状态时就开启了加速度传感器。
步骤S107,处理器通过加速度传感器检测第一预设时长内所述穿戴设备是否处于静止状态,若处于静止状态,则执行步骤S106;否则,执行步骤S107。
加速度传感器(英文:Accelerate Sensor),加速度传感器是一种能够测量加速力(当物体在加速过程中作用在物体上的力)的传感器。穿戴设备在运动、晃动等使用过程中必然会产生加速度,那么加速度传感器就可以检测到加速度,而如果穿戴设备是闲置在某一位置处于静止的情况,那么加速度传感器就检测不到任何的加速度,这样处理器就可以通过加速度传感器就可以判断出穿戴设备是否处于静止状态。
在本发明实施中,处理器可以检测加速度传感器在第一预设时长内是否有获取到加速度,如果处理器检测到加速度传感器有获取到加速度,那么处理器可以确定在第一预设时长内的穿戴设备并非处于静止状态;如果处理器未检测到加速度传感器有获取到加速度,那么可以确定在第一预设时长内的穿戴设备一直处于静止状态。例如,假设第一预设时长为5分钟,如果处理器检测到连续5分钟加速度传感器都没有获取到加速度,那么可以确定第一预设时长内的穿戴设备一直处于静止状态。
需要说明的是,步骤S105和步骤S107之间没有严格的先后执行顺序,可以同时执行,两个步骤只是在穿戴设备进入佩戴状态后的两个分支。
可以看出的是,步骤S102至步骤S107可以是一个独立的执行过程,也 可以是一个循环执行的过程,可以从其中任一步骤开始进行循环,形成如图5所示的循环流程。
在图1所示的实施例中,穿戴设备处于非佩戴状态时,通过电容传感器检测是否发生佩戴动作,因为电容传感器可以识别穿戴设备是否有出现紧贴用户身体的情况,避免通过红外线传感器识别遮挡物这种方法将非人体的其他质地遮挡物识别为人体而导致佩戴状态切换错误;穿戴设备处于佩戴状态时,通过红外线传感器检测是否发生脱戴动作,因为用户佩戴好穿戴设备后,穿戴设备有可能出现晃动等情况,不可能一直紧贴身体,电容传感器在穿戴设备不够紧贴身体的情况下容易误识别发生了脱戴动作,而红外线传感器可以识别一定距离范围是否有遮挡物的情况,也就是说即使穿戴设备不够紧贴身体,只要不超过预设的距离范围,都可以认为没有发生脱戴动作,避免电容传感器因为佩戴晃动误识别发生脱戴动作而导致佩戴状态切换错误。另一方面,在穿戴设备由非佩戴状态切换至佩戴状态时,存在一种情景为关闭电容传感器同时开启红外传感器;由佩戴状态切换至非佩戴状态时,存在一种情景为关闭红外线传感器同时开启电容传感器。即电容传感器和红外线传感器轮换开启,这种方式可以降低穿戴设备的功耗,延长使用寿命。再一方面,通过加速度传感器进一步检测第一预设时长内穿戴设备是否处于静止状态,可以验证之前电容传感器的检测是否正确:如果穿戴设备不处于静止状态,那么可以确定电容传感器检测正确,穿戴设备是处于佩戴状态;如果穿戴设备处于静止状态,那么可以判定电容传感器检测出现错误,处理器可以将穿戴设备由佩戴状态切换至非佩戴状态。也就是说,加速度传感器可以对电容传感器的识别结果进行校准,在电容传感器识别出现错误时,及时将穿戴设备切换回非佩戴状态,从而进一步提高可穿戴设备的佩戴状态的识别准确率。总的来说,该方法可以通过电容传感器和红外线传感器分别对穿戴动作和脱戴动作的检测,确定穿戴设备的佩戴状态,提高穿戴设备的佩戴状态的识别准确率,同时降低穿戴设备的功耗。
请参阅图6,图6是本发明实施例提供的另一种穿戴设备的结构示意图。本事实例的穿戴设备继承上述实施例的执行步骤,具体细化了每个步骤的执 行模块。如图6所示,该穿戴设备包括:佩戴动作检测模块610、第一切换模块620、脱戴动作检测模块630以及第二切换模块640,其中:
佩戴动作检测模块610用于当穿戴设备处于非佩戴状态时,通过电容传感器检测是否发生佩戴动作。例如,佩戴动作检测模块610可以具体用于当检测到通过所述电容传感器获取到的电容值大于预设的电容阈值时,确定发生佩戴动作。关于佩戴动作检测的具体说明可参照前述步骤S103的描述,在此不再赘述。
第一切换模块620用于检测到发生佩戴动作时,将所述穿戴设备由非佩戴状态切换至佩戴状态。第一切换模块620在将穿戴设备切换至佩戴状态时,还可以用于关闭电容传感器或者开启红外线传感器,具体说明可参照前述步骤S104的描述,在此不再赘述。
脱戴动作检测模块630用于当穿戴设备处于佩戴状态时,通过红外线传感器检测是否发生脱戴动作。示例的,脱戴动作检测模块630可以具体用于当检测到所述红外线传感器在第二预设时长内的任意时间点接收到的红外光强均小于预设的光强阈值时,确定发生脱戴动作;或当通过所述红外线传感器检测到第三预设时长内的任意时间点所述穿戴设备在预设的距离阈值内均无遮挡物时,确定发生脱戴动作。关于脱戴动作检测的具体说明可参照前述步骤S105的描述,在此不再赘述。
第二切换模块640用于检测到发生脱戴动作时,将所述穿戴设备由佩戴状态切换至非佩戴状态。第二切换模块640在将穿戴设备由佩戴状态切换至非佩戴状态时,还可以用于关闭红外线传感器或者开启电容传感器,具体说明可参照前述步骤S106的描述,在此不再赘述。
在可选实施例中,所述穿戴设备还包括静止检测模块650,具体的,
静止检测模块650用于当穿戴设备处于佩戴状态时,通过加速度传感器检测第一预设时长内所述穿戴设备是否处于静止状态。在该可选实施例中,第二切换模块640用于当静止检测模块650检测到穿戴设备处于静止状态时,将穿戴设备由佩戴状态切换至非佩戴状态。具体说明可参照前述步骤S107的描述,在此不再赘述。
可选的,所述穿戴设备还包括应用结束模块660,具体的,
应用结束模块660用于穿戴设备处于非佩戴状态时,结束所述穿戴设备中运行的除预设的保护应用程序集合中的应用程序之外的所有应用程序。其中预设的保护应用程序集合可以是用户自己或者根据用户习惯设定的一些在非佩戴状态下不会被关闭或禁用的应用程序,例如时钟等,而其他不属于保护应用程序集合的应用程序则都可以结束,可以节省穿戴设备的功耗。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
以上对本发明实施例所提供的内容下载方法及相关设备、***进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (21)

  1. 一种穿戴设备的佩戴状态判定方法,其特征在于,包括:
    当穿戴设备处于非佩戴状态时,通过电容传感器检测是否发生佩戴动作;
    若检测到发生佩戴动作,则将所述穿戴设备由非佩戴状态切换至佩戴状态;
    当穿戴设备处于佩戴状态时,通过红外线传感器检测是否发生脱戴动作;
    若检测到发生脱戴动作,则将所述穿戴设备由佩戴状态切换至非佩戴状态。
  2. 如权利要求1所述的穿戴设备,其特征在于,所述佩戴状态包括开启所述红外线传感器;所述非佩戴状态包括开启所述电容传感器。
  3. 如权利要求1所述的方法,其特征在于,所述佩戴状态包括关闭所述电容传感器,开启所述红外线传感器;所述非佩戴状态包括关闭所述红外线传感器,开启所述电容传感器。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述通过所述电容传感器检测是否发生佩戴动作,包括:
    当检测到通过所述电容传感器获取到的电容值大于预设的电容阈值时,确定发生佩戴动作。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述通过所述红外线传感器检测是否发生脱戴动作,包括:
    当检测到所述红外线传感器在第二预设时长内的任意时间点接收到的红外光强均小于预设的光强阈值时,确定发生脱戴动作;或
    当通过所述红外线传感器检测到第三预设时长内的任意时间点所述穿戴设备在预设的距离阈值内均无遮挡物时,确定发生脱戴动作。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    当所述穿戴设备处于佩戴状态时,通过加速度传感器检测第一预设时长内所述穿戴设备是否处于静止状态;
    若处于静止状态,则将所述穿戴设备由佩戴状态切换至非佩戴状态。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    当所述穿戴设备处于非佩戴状态时,结束所述穿戴设备中运行的除预设的保护应用程序集合中的应用程序之外的所有应用程序。
  8. 一种穿戴设备,其特征在于,包括:
    佩戴动作检测模块,用于当穿戴设备处于非佩戴状态时,通过电容传感器检测是否发生佩戴动作;
    第一切换模块,用于若检测到发生佩戴动作,则将所述穿戴设备由非佩戴状态切换至佩戴状态;
    脱戴动作检测模块,用于当穿戴设备处于佩戴状态时,通过红外线传感器检测是否发生脱戴动作;
    第二切换模块,用于若检测到发生脱戴动作,则将所述穿戴设备由佩戴状态切换至非佩戴状态。
  9. 如权利要求8所述的穿戴设备,其特征在于,所述佩戴状态包括开启所述红外线传感器;所述非佩戴状态包括开启所述电容传感器。
  10. 如权利要求8所述的穿戴设备,其特征在于,所述佩戴状态包括关闭所述电容传感器,开启所述红外线传感器;所述非佩戴状态包括关闭所述红外线传感器,开启所述电容传感器。
  11. 如权利要求8-10任一项所述的穿戴设备,其特征在于,所述佩戴动作检测模块具体用于:
    当检测到通过所述电容传感器获取到的电容值大于预设的电容阈值时,确定发生佩戴动作。
  12. 如权利要求8-11任一项所述的穿戴设备,其特征在于,所述脱戴动作检测模块具体用于:
    当检测到所述红外线传感器在第二预设时长内的任意时间点接收到的红外光强均小于预设的光强阈值时,确定发生脱戴动作;或
    当通过所述红外线传感器检测到第三预设时长内的任意时间点所述穿戴设备在预设的距离阈值内均无遮挡物时,确定发生脱戴动作。
  13. 如权利要求8-12任一项所述的穿戴设备,其特征在于,所述穿戴设备还包括:
    静止检测模块,用于当所述穿戴设备处于佩戴状态时,通过加速度传感器检测第一预设时长内所述穿戴设备是否处于静止状态;
    第二切换模块具体用于:
    若处于静止状态,则将所述穿戴设备由佩戴状态切换至非佩戴状态。
  14. 如权利要求8-13任一项所述的穿戴设备,其特征在于,所述穿戴设备还包括:
    应用结束模块,用于当所述穿戴设备处于非佩戴状态时,结束所述穿戴设备中运行的除预设的保护应用程序集合中的应用程序之外的所有应用程序。
  15. 一种穿戴设备,其特征在于,所述穿戴设备包括输入设备、输出设备、处理器和存储器,其中所述存储器用于存储程序代码,且所述处理器调用所述存储器中存储的程序代码执行以下操作:
    当穿戴设备处于非佩戴状态时,通过电容传感器检测是否发生佩戴动作;
    若检测到发生佩戴动作,则将所述穿戴设备由非佩戴状态切换至佩戴状态;
    当穿戴设备处于佩戴状态时,通过红外线传感器检测是否发生脱戴动作;
    若检测到发生脱戴动作,则将所述穿戴设备由佩戴状态切换至非佩戴状态。
  16. 如权利要求15所述的穿戴设备,其特征在于,所述佩戴状态包括开启所述红外线传感器;所述非佩戴状态包括开启所述电容传感器。
  17. 如权利要求15所述的穿戴设备,其特征在于,所述佩戴状态包括关闭所述电容传感器,开启所述红外线传感器;所述非佩戴状态包括关闭所述红外线传感器,开启所述电容传感器。
  18. 如权利要求15-17任一项所述的穿戴设备,其特征在于,所述处理器还用于执行以下操作:
    当检测到通过所述电容传感器获取到的电容值大于预设的电容阈值时,确定发生佩戴动作。
  19. 如权利要求15-18任一项所述的穿戴设备,其特征在于,所述处理器还用于执行以下操作:
    当检测到所述红外线传感器在第二预设时长内的任意时间点接收到的红外光强均小于预设的光强阈值时,确定发生脱戴动作;或
    当通过所述红外线传感器检测到第三预设时长内的任意时间点所述穿戴设备在预设的距离阈值内均无遮挡物时,确定发生脱戴动作。
  20. 如权利要求15-19任一项所述的穿戴设备,其特征在于,所述穿戴设备还包括加速度传感器:
    所述处理器还用于执行以下操作:
    当所述穿戴设备处于佩戴状态时,通过加速度传感器检测第一预设时长内所述穿戴设备是否处于静止状态;
    若处于静止状态,则将所述穿戴设备由佩戴状态切换至非佩戴状态。
  21. 如权利要求15-20任一项所述的穿戴设备,其特征在于,所述处理器还用于执行以下操作:
    当所述穿戴设备处于非佩戴状态时,结束所述穿戴设备中运行的除预设的保护应用程序集合中的应用程序之外的所有应用程序。
PCT/CN2016/091719 2016-07-26 2016-07-26 一种穿戴设备的佩戴状态判定方法及穿戴设备 WO2018018415A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/091719 WO2018018415A1 (zh) 2016-07-26 2016-07-26 一种穿戴设备的佩戴状态判定方法及穿戴设备
CN201680065292.4A CN108351668A (zh) 2016-07-26 2016-07-26 一种穿戴设备的佩戴状态判定方法及穿戴设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/091719 WO2018018415A1 (zh) 2016-07-26 2016-07-26 一种穿戴设备的佩戴状态判定方法及穿戴设备

Publications (1)

Publication Number Publication Date
WO2018018415A1 true WO2018018415A1 (zh) 2018-02-01

Family

ID=61015219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091719 WO2018018415A1 (zh) 2016-07-26 2016-07-26 一种穿戴设备的佩戴状态判定方法及穿戴设备

Country Status (2)

Country Link
CN (1) CN108351668A (zh)
WO (1) WO2018018415A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110084025A (zh) * 2019-04-29 2019-08-02 努比亚技术有限公司 一种支付安全验证方法、设备及计算机可读存储介质
CN110413134A (zh) * 2018-04-26 2019-11-05 Oppo广东移动通信有限公司 佩戴状态检测方法及相关设备
CN110687683A (zh) * 2019-11-12 2020-01-14 Oppo广东移动通信有限公司 智能眼镜控制方法及智能眼镜
CN112438726A (zh) * 2020-11-20 2021-03-05 深圳市卓翼科技股份有限公司 基于可穿戴设备的跌倒报警方法、可穿戴设备及存储介质
CN112733626A (zh) * 2020-12-28 2021-04-30 歌尔光学科技有限公司 基于手环的坐姿提醒方法、手环及计算机可读存储介质
CN113010025A (zh) * 2021-04-25 2021-06-22 歌尔股份有限公司 亮屏时长控制方法、设备、介质及计算机程序产品
CN113082548A (zh) * 2021-03-29 2021-07-09 未来穿戴技术有限公司 激光控制方法、装置及按摩设备
CN114366062A (zh) * 2022-03-18 2022-04-19 荣耀终端有限公司 可穿戴设备及其佩戴检测方法和介质
CN114745651A (zh) * 2022-02-28 2022-07-12 潍坊歌尔电子有限公司 耳机状态检测方法、耳机以及计算机可读存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109856699A (zh) * 2018-11-09 2019-06-07 速眠创新科技(深圳)有限公司 穿戴设备的佩戴检测方法、装置、穿戴设备和存储介质
CN110087292A (zh) * 2019-04-28 2019-08-02 努比亚技术有限公司 智能穿戴设备、节能控制方法以及计算机可读存储介质
WO2021081873A1 (zh) * 2019-10-31 2021-05-06 博世电动工具(中国)有限公司 安全帽及其智能模块
CN112155539A (zh) * 2020-09-23 2021-01-01 宇龙计算机通信科技(深圳)有限公司 手表报警方法、装置、存储介质及终端
CN113693565A (zh) * 2021-08-31 2021-11-26 歌尔科技有限公司 一种可穿戴设备及其佩戴检测方法
CN114485739B (zh) * 2021-12-27 2022-11-29 荣耀终端有限公司 参数校准方法和穿戴设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150371028A1 (en) * 2014-06-24 2015-12-24 Motorola Mobility Llc Wearable electronic device and method for securing same
CN105301949A (zh) * 2015-10-23 2016-02-03 广东小天才科技有限公司 一种智能手表佩戴状态的检测方法、***及智能手表
CN105516492A (zh) * 2015-12-09 2016-04-20 广东小天才科技有限公司 智能手表的信息提示方法及装置
CN205285286U (zh) * 2015-12-07 2016-06-08 上海科世达-华阳汽车电器有限公司 一种智能手环
CN105786155A (zh) * 2016-02-22 2016-07-20 广东小天才科技有限公司 一种可穿戴设备佩戴状态的判断方法及***

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103399483B (zh) * 2013-07-31 2016-12-07 东莞宇龙通信科技有限公司 可穿戴设备电源管理的方法和装置
US9848786B2 (en) * 2013-09-12 2017-12-26 Mattel, Inc. Infant monitoring system and methods
US9632532B2 (en) * 2014-07-23 2017-04-25 Lenovo (Singapore) Pte. Ltd. Configuring wearable devices
CN104375623B (zh) * 2014-11-28 2017-08-15 北京华网汇通技术服务有限公司 一种穿戴式智能设备及其节电控制方法
CN105167761B (zh) * 2015-09-22 2019-06-11 深圳市元征科技股份有限公司 智能穿戴设备佩戴状态检测方法及装置
CN105758452B (zh) * 2016-02-04 2018-05-15 歌尔股份有限公司 一种可穿戴设备的佩戴状态检测方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150371028A1 (en) * 2014-06-24 2015-12-24 Motorola Mobility Llc Wearable electronic device and method for securing same
CN105301949A (zh) * 2015-10-23 2016-02-03 广东小天才科技有限公司 一种智能手表佩戴状态的检测方法、***及智能手表
CN205285286U (zh) * 2015-12-07 2016-06-08 上海科世达-华阳汽车电器有限公司 一种智能手环
CN105516492A (zh) * 2015-12-09 2016-04-20 广东小天才科技有限公司 智能手表的信息提示方法及装置
CN105786155A (zh) * 2016-02-22 2016-07-20 广东小天才科技有限公司 一种可穿戴设备佩戴状态的判断方法及***

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110413134A (zh) * 2018-04-26 2019-11-05 Oppo广东移动通信有限公司 佩戴状态检测方法及相关设备
CN110413134B (zh) * 2018-04-26 2023-03-14 Oppo广东移动通信有限公司 佩戴状态检测方法及相关设备
CN110084025A (zh) * 2019-04-29 2019-08-02 努比亚技术有限公司 一种支付安全验证方法、设备及计算机可读存储介质
CN110084025B (zh) * 2019-04-29 2024-03-19 努比亚技术有限公司 一种支付安全验证方法、设备及计算机可读存储介质
CN110687683A (zh) * 2019-11-12 2020-01-14 Oppo广东移动通信有限公司 智能眼镜控制方法及智能眼镜
CN112438726A (zh) * 2020-11-20 2021-03-05 深圳市卓翼科技股份有限公司 基于可穿戴设备的跌倒报警方法、可穿戴设备及存储介质
CN112733626B (zh) * 2020-12-28 2023-02-28 歌尔科技有限公司 基于手环的坐姿提醒方法、手环及计算机可读存储介质
CN112733626A (zh) * 2020-12-28 2021-04-30 歌尔光学科技有限公司 基于手环的坐姿提醒方法、手环及计算机可读存储介质
CN113082548A (zh) * 2021-03-29 2021-07-09 未来穿戴技术有限公司 激光控制方法、装置及按摩设备
CN113010025A (zh) * 2021-04-25 2021-06-22 歌尔股份有限公司 亮屏时长控制方法、设备、介质及计算机程序产品
CN114745651A (zh) * 2022-02-28 2022-07-12 潍坊歌尔电子有限公司 耳机状态检测方法、耳机以及计算机可读存储介质
CN114366062A (zh) * 2022-03-18 2022-04-19 荣耀终端有限公司 可穿戴设备及其佩戴检测方法和介质
CN114366062B (zh) * 2022-03-18 2023-10-27 北京荣耀终端有限公司 可穿戴设备及其佩戴检测方法和介质

Also Published As

Publication number Publication date
CN108351668A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
WO2018018415A1 (zh) 一种穿戴设备的佩戴状态判定方法及穿戴设备
KR101850009B1 (ko) 레이더에 기반한 제스처 인식
US10999667B2 (en) Earbud and method for implementing wearing detection and touch operation
US11412981B2 (en) Intelligent device wearing detection method and intelligent device
US9971412B2 (en) Enabling device features according to gesture input
CN106462685B (zh) 可穿戴电子设备及保护其的方法
AU2017293746B2 (en) Electronic device and operating method thereof
CN105765516A (zh) 通过使用已知的和有待穿戴的传感器的手势检测***的分类
JP2018509590A (ja) スマート屈曲可能システムにおけるデバイスの屈曲率の判定
US9848175B2 (en) Projection method and electronic device
KR101423038B1 (ko) 정보 처리 장치 및 그의 패스워드 입력 모드 전환 방법
US20180031846A1 (en) Smart glasses and method for controlling the same
US9329684B2 (en) Eye tracking with detection of adequacy of lighting
WO2022021707A1 (zh) 睡眠检测方法、装置、智能穿戴设备及可读存储介质
EP3304751A1 (en) Sensor based signal transmission methods and apparatuses
US11284523B2 (en) Cumulative sensor in a foldable device
WO2017107813A1 (zh) 智能设备的操控装置、智能设备、操作控制方法及装置
US11093768B2 (en) Occupant monitoring device and occupant monitoring method
JP2015211455A (ja) 情報処理装置および情報処理装置の制御方法
KR101671956B1 (ko) 시스템 리세트 회로 및 방법
US20160042636A1 (en) Electronic device and method for turning off alarm for electronic device
WO2018010349A1 (zh) 触控事件的处理方法及装置、终端、计算机存储介质
CN105278861B (zh) 预设输入模式控制方法及装置
JP2016530481A (ja) スイッチ作動装置、移動機器、および、熱を放出する部分の存在によりスイッチを作動させる方法
US20160328957A1 (en) Information processing device and computer-readable recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16909996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16909996

Country of ref document: EP

Kind code of ref document: A1