WO2018018111A1 - Industrial yeast lvy127 genetically modified via the oxy-reductive xylose conversion pathway, genetic expression cartridges, method for obtaining ethanol 2g and use of the yeast lvy127 - Google Patents

Industrial yeast lvy127 genetically modified via the oxy-reductive xylose conversion pathway, genetic expression cartridges, method for obtaining ethanol 2g and use of the yeast lvy127 Download PDF

Info

Publication number
WO2018018111A1
WO2018018111A1 PCT/BR2017/000064 BR2017000064W WO2018018111A1 WO 2018018111 A1 WO2018018111 A1 WO 2018018111A1 BR 2017000064 W BR2017000064 W BR 2017000064W WO 2018018111 A1 WO2018018111 A1 WO 2018018111A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
yeast
promoter
terminator
lvy127
Prior art date
Application number
PCT/BR2017/000064
Other languages
French (fr)
Portuguese (pt)
Inventor
Leandro Vieira DOS SANTOS
Gonçalo Amarante Guimarães PEREIRA
Renan Augusto Siqueira PIROLLA
Original Assignee
Universidade Estadual De Campinas - Unicamp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Estadual De Campinas - Unicamp filed Critical Universidade Estadual De Campinas - Unicamp
Publication of WO2018018111A1 publication Critical patent/WO2018018111A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/22Processes using, or culture media containing, cellulose or hydrolysates thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • C12N1/18Baker's yeast; Brewer's yeast
    • C12N1/185Saccharomyces isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/85Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/85Saccharomyces
    • C12R2001/865Saccharomyces cerevisiae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to LVY127 genetically modified industrial yeast with the oxy-reductive xylose conversion pathway, gene expression cassettes, 2G ethanol production process and use of LVY127 yeast.
  • the invention has application in the ethanol production sector.
  • Ethanol can be produced from different sources of raw materials, such as corn, beet, wheat, sugar cane, among others.
  • the ethanol production process in Brazil essentially uses sugar cane as its raw material.
  • the high productive capacity of this crop and the appropriate climatic conditions for its cultivation in the country allowed to obtain a low cost production model, making Brazil a world reference in ethanol production.
  • Ethanol is obtained through the n-inland fermentation pathway of dornas where the wort (sugarcane juice and molasses) and a high concentration of yeast cells (10-17% w / v) are added. .
  • Broth and molasses are used as substrates and ethanol concentrations of 8-11% (v / v) are achieved over a period of 6-1 hours at 32-35 ° C.
  • After fermentation, all contents are centrifuged and fermented must (wine) goes to the distillation towers. Cells collected by centrifugation are treated with acid sulfuric acid and reused repeatedly in new fermentative cycles / with at least 2 fermentations per day over a period of 200-250 days.
  • the cell recycling characteristic of the Brazilian ethanol production process utilizes a high concentration of cells at the beginning of fermentation contributing to low growth and high ethanol yield (90-92% of theoretical conversion yield) (Basso et al., 2008). .
  • PE-2 and CAT-1 were used in approximately 150 distilleries, representing 60% of ethanol produced in Brazil (Basso et al., 2008).
  • strains PE-2 and CAT-1 are being studied further in order to understand the characteristics that differentiate them from others on an industrial scale.
  • Argueso et al. (2009), noting that commercially available PE-2 stocks had a wide variety of karyotypes, selected and characterized a single colony called JAY270.
  • Molecular analyzes have shown that the PE-2 genome is highly heterozygous (2 SNPs / kb), both structurally and at the nucleotide level, showing structural polymorphisms between homologous chromosomes.
  • PE-2 The high adaptability of PE-2 to the stressful conditions imposed on a fermentation vessel is directly linked to its heterogeneous genomic architecture, making such strains ideal for creating a new generation of industrial organisms, idealized for new production technologies. ethanol and other biotechnological processes (Argueso & Pereira, 2010).
  • Cofactors play an essential role in a large number of biochemical reactions and in the production of different compounds (Liu et al., 2006). They participate in a number of physiological functions, including energy metabolism regulation, intracellular redox state adjustment, carbon flow control, mitochondrial activity, cell cycle regulation, and virulence modulation.
  • NADH / NAD + and NADPH / NADP + - cofactors are involved in 740 and 887 biochemical reactions and interact with 433 and 462 enzymes, respectively (Chen et al., 2014).
  • NAD + acts on oxidations, usually associated with catabolic processes, while NADPH is used in reductions, usually associated with anabolic processes.
  • NAD + or NADP +
  • NADPH or NADH
  • oxyreductases also called dehydrogenases
  • Nicotinamide adenine dinucleotide (MAD + in its oxidized form) and its analog nicotinamide adenine nucleotide phosphate (NADP +) are formed by two nucleotides linked by their phosphate groups via a phosphohydride bond. Both coenzymes had been reversibly reduced in the nicotinamide ring.
  • the second proton removed from the substrate is released into the aqueous solvent (Nelson & Cox, 2011).
  • NADH is generated primarily in cytosol by glycolysis and mitochondria by the cyclic acid cycle (TCA) (Vemuri et al., 2006).
  • TCA cyclic acid cycle
  • glucose is oxidized using NAD + as cofactor, which is simultaneously converted into its reduced form, NADH, in an equivalent amount.
  • NADH is a cofactor highly used in various metabolic reactions, any change in NADH / NAD + rate leads to major changes in metabolism.
  • NADH / NAD * balance is an important factor in maintaining glycolytic flow. Therefore, NAD + depletion may force flow to cease.
  • NADH produced in glycolysis fatty acid oxidation and the citric acid cycle must be oxidized to NAD * to achieve a redox equilibrium (Liu et al., 2006).
  • NADH reoxidation in S. cerevisiae There are at least five mechanisms for NADH reoxidation in S. cerevisiae: alcoholic fermentation; glycerol production; intramitochondrial NADH oxidation via NADH internal raitochondrial dehydrogenase; and cytosolic regeneration via external mitochondrial NADH dehydrogenases or via glycerol-3-phosphate during respiration (Bakker et al., 2001).
  • Yeast regeneration of NAD * from NADH can occur in aerobiosis, the electron transport chain, with oxygen as the final electron acceptor, and with the production of large amounts of ATP.
  • Mitochondrial NADH is oxidized by a membrane-bound internal mitochondrial NADH dehydrogenase encoded by the NDI1 gene. Or it may occur under anaerobic conditions in fermentation, primarily for acetaldehyde as electron acceptor in a reaction where & Alcohol dehydrogenase catalyzes the oxidation of NADH to NAD +, to produce ethanol and carbon dioxide from pyruvate.
  • Cytosolic NADH is oxidized by two membrane-bound external (cytosolic) mitochondrial NADH dehydrogenases encoded by the NDE1 and NDE2 genes with catalytic sites in contact with the cytosol. Additionally, glycerol-3-phosphate dehydrogenases
  • NADPH may be generated mainly in the reactions catalyzed by two dehydrogenases in the oxidative phase of pentose phosphate (ZWF1, glucose-6- ⁇ dehydrogenase and GND1, 6-phosphogluconate dehydrogenase) in the isocitrate-catalyzed reaction.
  • ZWF1 pentose phosphate
  • GND1 6-phosphogluconate dehydrogenase
  • NADP + dependent dehydrogenase ⁇ 2
  • NADP * dependent acetaldehyde catalyzed reaction ALD6
  • MAE1 malic enzyme catalyzed reaction
  • the pentose phosphate pathway represents the major NADPH production pathway in yeast (Santos et al., 2004; Wang et al., 2013).
  • the pentose phosphate pathway is mainly enzyme-controlled, with NADPH and ATP competitively inhibiting glucose-6-dehydrogenase (ZNFD and 6-phosphogluconate dehydrogenase (GND1).
  • ZNFD and 6-phosphogluconate dehydrogenase GNF1
  • GNFD and 6-phosphogluconate dehydrogenase GNF1
  • STB5 also responsible for suppressing PGI expression, which encodes phosphoglycosis isomerase at the junction between the glycolytic pathway and the pathogen.
  • This transcription factor plays a key role in redirecting carbon flow to provide additional NADPH in response to oxidative stress, for example, and is responsible for maintaining the basal flow of PPP under anaerobic conditions (Celton et al., 2012b).
  • Celton (2012) has shown that yeast cells respond to increased NADPH demand by increasing flow through the pentose phosphate and acetate formation pathways, corresponding to 80 and 20% of NADPH demand, respectively. .
  • Some pentose phosphate genes are up-regulated as demand for NADPH increases.
  • GND1 and SOL3 are induced when a moderate concentration of NADPH is required by the addition of acetoin.
  • TAL1 and TKL1 are also up-regulated (Celton et al., 2012a).
  • Redox balance occurs when cofactor production and consumption are approximately equal. Unbalancing the oxyductive potential can cause cell damage, energy and carbon expenditure and disrupt all cellular metabolism. The number and availability of cofactors in the cell may become a limiting step, being essential in various metabolic reactions and in the production of different compounds. Therefore, manipulations in the redox balance and the amount of cofactors produced by the cell can be a powerful tool in improving yeast fermentative performance (Liu et al., 2006; Chen et al., 2014). Redox balance can be regulated by different approaches, such as regulation of the metabolic pathway by adjusting gene expression, protein engineering involving cofactor binding site, genome restructuring by removal of redundant genes that use cofactors, coenzyme regeneration by protein restructuring. metabolic pathways, among others (Chen et al., 2014).
  • Second generation ethanol or cellulosic ethanol consists of converting polymers that form the plant cell wall into ethanol. These polymers constitute cellulose, hemicellulose and lignin, and their hydrolysis provides fermentable sugars, represented by hepheres and pentose, which can be converted to ethanol by 5. cerevisiae. Hexoses are usually used by S. ceravlsiae. However, wild strains of these yeasts cannot metabolize the xylose and arablnose pentoses present in the biorass. Given their significant share in the constitution of biomass, the full use of these compounds would increase the yield and the viability of the second generation ethanol production process.
  • Metabolic engineering of yeasts for introducing metabolic pathways of xylose consumption focuses on two major pathways: the Xylcse Reductase - Xylitol Dehydrogenase (XR-XDH) pathway and the Xylose Isomerase (XI) pathway.
  • XR-XDH Xylcse Reductase - Xylitol Dehydrogenase
  • XI Xylose Isomerase
  • the XR-XDH pathway present in eukaryotic microorganisms, consists of two ozone reduction reactions, where xylose is reduced to xylitol by the action of the enzyme xylose reductase (XR), a NADPH / NADH mediated reaction and then , xylitol is oxidized to xylulose by the enzyme Xylitol dehydrogenase (XDH) mediated exclusively by NAD *.
  • XR xylose reductase
  • XDH Xylitol dehydrogenase
  • NAD * is regenerated in the respiratory chain, with oxygen as the final electron acceptor.
  • the reoxidation of excess NADH generated by the reaction of xylitol dehydrogenase is carried out through lower xylose compounds such as xylitol and glycerol by-products of fermentation.
  • Xylitol production occurs via xylose reductase, which due to the dual specificity of coenzyme can also use NADH. Since this mechanism involves the consumption of one xylose for each NADH generated, it has a high impact. negative on xylose ethanol yield (Hahn-Hagerdal et al., 2001; Aguiar et al., 2002; Kuyper et al., 2004; van Maria et al., 2007).
  • the triple mutation enzyme was introduced into a S. cerevisiae strain, replacing the wild-type S. stipitis XDH.
  • the Y-ARSdR strain produced 86% less xylitol and consequently 41% more ethanol compared to the parent strain (Watanabe et 2007).
  • the MA-N5 strain with the NADP + dependent mutant XOH showed a high yield of 0.49 g / g from total lignocellulosic hydrolyzate present sugars (Matsushika et al., 2009).
  • Khattab (2013) used site-directed mutagenesis strategies to produce a series of XRs that only use NADPH, which upon oxidation provides NADP + for the dependent NADP + XDH.
  • the resulting strains showed a reduction of 34.4 to 54.7% xylitol compared to the control strains, as well as 10 and 20% increases in ethanol production in two of the strains constructed with the new xylose reductases.
  • Another strategy for introducing an alternative NADH re-oxidation pathway was by introducing the alternative phosphocetolase pathway commonly found in prokaryotes.
  • the heterologous expression of Bacillus subtilis phosphotransacetylase and iSntamoeba histolytica acetaldehyde dehydrogenase aims at a deviation in the pentose phosphate pathway by the conversion of xylulose-5- ⁇ into glyceraldehyde-3-glic, and acetyl-P, which can be converted by phosphotransacetylase to acetyl-CoA, which is reduced to acetaldehyde by acetaldehyde dehydrogenase, using NADH as cofactor.
  • US20130040353 relates to ethanol production in the Saccharomyces cerevisiae medium and alteration of XR to have greater affinity for NADH rather than NADPH.
  • the present invention differs from the above documents in that it does not alter the XR sequence.
  • An XR that naturally already has higher affinity for NADH instead of NADPH was used, decreasing redox imbalance and increasing ethanol production.
  • US20120329104 relates to the combination of microorganisms for ethanol production and describes the creation of a lineage using the S. stipitls oxidative pathway.
  • No strategy was used to regulate the redox balance of the strain.
  • it was used in an industrial strain, more tolerant to inhibitors present in the 2G process and with characteristics of industrial interest.
  • various strategies have been employed to regulate the redoz balance of the strain and to improve ethanol production.
  • the cassettes used also differ in promoter and terminator, insertion region and marker used.
  • the present invention relates to LVY127 genetically modified industrial yeast with the oxy-reductive xylose conversion pathway, gene expression cassettes, 2G ethanol production process and use of LVY127 yeast.
  • Gene Expression Cassette 1 comprises:
  • XR - xylose reductase
  • PGK1 3-phosphoglycerate kinase
  • XDH S. stipitis xylitol dehydrogenase
  • nucleotide sequence is represented by SKQ ID NO: 1.
  • Gene Expression Cassette 2 comprises:
  • ADH1 ADH1
  • ADHD ADHD of the gene encoding xylulokinase enzyme in S. cerevisiae
  • S. cerevisiae URA3 gene together with its promoter and terminator, flanked by two loxP sites at each end and in the same orientation; and nucleotide sequence represented by SEQ ID NO: 2.
  • Gene Expression Cassette 3 comprises:
  • S. cerevlsiae URA3 gene together with its promoter and terminator, flanked by two loxP sites at each end and in the same orientation;
  • the genetically modified yeast is Saccharomyces cerevislae DSM32120.
  • Yeast LVY127 (D8K32120) is applicable to any process involving xylose consumption.
  • Figure 1 represents the flowchart of the development of the LVY127 strain (D8M32120).
  • Figure 2 is a graph showing xylose consumption by LVY127 strain (DSH32120) compared to wild-type PE-2 derived strain.
  • Figure 3 represents the overall fermentative performance graph of the LVY127 strain (DSM32120) in medium containing a mixture of glucose and xylose as carbon sources. The sugars and main products of fermentation are detailed in the caption.
  • Figure 4 represents the graph showing the metabolic pathway representing sugar consumption by the LVY127 strain (DSM32120), containing the S. stipitis XP and XDH.
  • Figure 5 is the representative schematic of plasmid pSsXRXDH, containing the 5. stipitis XR and XDH. The scheme was built using SnapGene software. Viewer the fragment containing the 5. stipitis XR and XDH genes was amplified from the pSsXRXDH vector and used for the 5. cerevisiae transformation.
  • the present invention relates to genetically modified industrial yeast LVY127 with the oxy-reductive zylose conversion pathway, gene expression cassettes, 2G ethanol production process and use of LVT127 yeast.
  • Gene Expression Cassette 1 comprises:
  • SEQ ID NO: 1 SEQ ID NO: 1.
  • Cassette 1 is flanked by regions showing 516 bp homology to S. cerevisiae centromere five.
  • Gene Expression Cassette 2 comprises:
  • ADHD promoter and terminator (ADH1) of the gene encoding the S. cerevisiae xylokinase enzyme [ADHD promoter and terminator (ADH1) of the gene encoding the S. cerevisiae xylokinase enzyme;
  • S. cerevisiae URA3 gene together with its promoter and terminator, flanked by two loxP sites at each end and in the same orientation;
  • nucleotide sequence is represented by SEQ AD NO: 2.
  • Gene Expression Cassette 3 comprises: S. stipltls xylitol dehydrogenase (XDH) gene under the action of the promoter and terminator of the gene encoding Giiceraldehyde 3-Phosphate Dehydrogenase, isoenzyme 1 (TDH1) in s. cerevisi Mom;
  • S. cerevisi ⁇ e URA3 gene together with its promoter and terminator, flanked by two loxP sites at each end and in the same orientation;
  • Cassette 3 refers to the second copy of the gene encoding xylitol dehydrogenase inserted at 454 bp from centromere three.
  • the genetically modified yeast is Saccharomyces cerevisi ⁇ e DSM32120.
  • xylose fermenter LVY127 (DSM32120) strain For the construction of the xylose fermenter LVY127 (DSM32120) strain, a spore of the industrial strain PE-2, widely used in the first generation ethanol industry, was used.
  • the PE-2 strain presents high fermentative performance and is highly tolerant to various industrial process stresses, becoming a robust platform for the introduction of the xylose conversion pathway.
  • the next step was to increase the xylose flux to xylulose-5- ⁇ by doubling the integrated copy number of the XDH and XKS1 genes (inserted near centromeres three and eight). , respectively), in addition to deletion of the gene encoding an aldose reductase, GRE3.
  • This gene has the same function as xylose reductase (XR), reducing xylose to xylitol, using exclusively NADPH as cofactor.
  • XR xylose reductase
  • Stipltis used in transformation uses both NADPH and NADH, although it has a higher affinity for the former.
  • GRE3 deletion is a described strategy aimed at decreasing xylitol, since its production would be exclusively via s XR.
  • stipltis which performs the oxidation of NADH to NAD * allowing increased flow by the dependent NAD * XDH, near the pathway gene.
  • Deletion of the GRE3 gene (LVY124) and increased copy number of XDH (LVY125) and XKS1 resulted in the LVY127 strain, object of the present invention, which showed 36% ethanol yield and decreased yields of xylitol t glycerol byproducts. with 8% and 8% respectively.
  • the transformation of yeast is done using the lithium acetate method described by Gietz and Schiestl (2007) .
  • the strain used for the transformation is a haploid spore mat ⁇ derived from the diploid S. cerev ⁇ siae PE-2. cassette introductions, the strain had the URA3 gene removed to be used as an auxotrophic tag.
  • the transformants were selected on YNB medium (without uracil) .
  • the removal of the marker can then be performed with plasmid pSH65 (Gueldener et al., 2002). , which contains the gene encoding Cre recombinase under the action of the galactose-inducible promoter.
  • the fermentative assay was performed in YPDX medium ( 20 g / l glucose and 50 g / l xylose) in 125 ml conical flasks and 80 ml working volume, starting the culture with approximately 1.0 GD. The temperature and stirring rate were kept constant at 30 ° C and 80 rpm respectively. Samples were taken to measure OD and for further analysis by high performance liquid chromatography (HPLC). Bioreactor cultivation [61] The fermentative assay was performed in YPDX medium (20 g / L glucose and 50 g / L xylose) in 2.5 L bioreactors, Labfors (Infors HT).
  • the working volume used was 1 L, with pH kept constant during cell growth at 5.5 by the addition of 6 mol / L aqueous NaOH solution, starting the culture with approximately 1/0 OD.
  • the temperature and stirring speed were kept constant at 30 and C and 150 rpm respectively.
  • the bioreactor culture medium and atmosphere were saturated with a nitrogen gas flow of 3 LN / min (normal liters per minute) for 10 minutes. Samples were taken to measure OD and for further analysis by high performance liquid chromatography (HPLC).
  • the concentrations of the compounds in the samples were determined by comparing the chromatographic peak areas obtained with the calibration curves.
  • the fermentative assay was conducted in medium containing a mixture of glucose and xylose at concentrations of 10 and 30 g / l, respectively.
  • the figure 2 demonstrates that the LVY127 strain is now able to consume all the xylose present in the medium, whereas the wild strain was unable to consume this sugar.
  • the experiment was conducted in triplicate.
  • LVY127 (D8M32120) yeast has application in any process involving the consumption of xylose.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Mycology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to industrial yeast LVY127 genetically modified via the oxy-reductive xylose conversion pathway, to genetic expression cartridges, to a method for obtaining ethanol 2G and to the use of the yeast LVY127.

Description

LEVEDURA INDUSTRIAL GENETICAMENTE MODIFICADA LVY127 COM A VIA QXI-HEDUTIVA DE CONVERSÃO DE XLLOSE, CASSETES DE EXPRESSÃO OENICA, PROCESSO DE OBTENÇÃO DE ETANOL 26 E USO DA LEVEDURA LVX127 LVY127 GENETICALLY MODIFIED INDUSTRIAL Yeast WITH QXI-HEDUCTIVE XLLOSE CONVERSION, OENIC EXPRESSION CASSETS, ETHANOL 26 OBTAINING PROCESS, AND LVX127 USE
CAMPO DA INVENÇÃO FIELD OF INVENTION
[1] A presente invenção refere-se a levedura industrial geneticamente modificada LVY127 com a via oxi-redutiva de conversão de xilose, cassetes de expressão gênica, processo de obtenção de etanol 2G e uso da levedura LVY127.  [1] The present invention relates to LVY127 genetically modified industrial yeast with the oxy-reductive xylose conversion pathway, gene expression cassettes, 2G ethanol production process and use of LVY127 yeast.
[2] A invenção tem aplicação no setor de produção de etanol [2] The invention has application in the ethanol production sector.
2G. 2G.
FUNDAMENT0S DA INVENÇÃO  BACKGROUND OF THE INVENTION
[3] Estados Unidos e Brasil são os dois principais produtores mundiais de etanol, responsáveis, respectivamente, por 40 e 27 bilhões de litros de etanol produzidos em 2009 (Perrone et al., 2010). O etanol pode ser produzido a partir de diferentes fontes de matórias-primas, como milho, beterraba, trigo, cana-de-açúcar, entre outros. O processo de produção de etanol no Brasil utiliza essencialmente a cana-de-açúcar como matèria-prima. A alta capacidade produtiva dessa cultura e as condições climáticas apropriadas para o seu plantio no pais permitiram a obtenção de um modelo de produção de baixo custo, tornando o Brasil uma referência mundial na produção de etanol.  [3] The United States and Brazil are the world's two largest producers of ethanol, accounting respectively for 40 and 27 billion liters of ethanol produced in 2009 (Perrone et al., 2010). Ethanol can be produced from different sources of raw materials, such as corn, beet, wheat, sugar cane, among others. The ethanol production process in Brazil essentially uses sugar cane as its raw material. The high productive capacity of this crop and the appropriate climatic conditions for its cultivation in the country allowed to obtain a low cost production model, making Brazil a world reference in ethanol production.
[4] A obtenção de etanol se dá pela via fermentativa nc- interior de dornas onde são adicionados o mosto (caldo e melaço de cana-de-açúcar) e uma alta concentração de células de levedura (10-17% m/v). O caldo e melaço sflo usados como substratos e concentrações de etanol de 8-11% (v/v) sâo alcançadas em um período de 6-1 lhs a 32-35"C. Apôs a fermentação, todo o conteúdo é centrifugado e o mosto fermentado (vinho) segue para as torres de destilação. As células coletadas por centrifugação são tratadas com ácido sulfúrico e reutilizadas repetidamente em novos ciclos fermentativos/ com pelo menos 2 fermentações por dia, em um periodo de 200-250 dias. O reciclo celular característico do processo brasileiro de produção de etanol utiliza uma alta concentração de células no inicio da fermentação contribuindo para um reduzido crescimento e alto rendimento em etanol (90-92% do rendimento teórico de conversão) (Basso et al., 2008) . [4] Ethanol is obtained through the n-inland fermentation pathway of dornas where the wort (sugarcane juice and molasses) and a high concentration of yeast cells (10-17% w / v) are added. . Broth and molasses are used as substrates and ethanol concentrations of 8-11% (v / v) are achieved over a period of 6-1 hours at 32-35 ° C. After fermentation, all contents are centrifuged and fermented must (wine) goes to the distillation towers. Cells collected by centrifugation are treated with acid sulfuric acid and reused repeatedly in new fermentative cycles / with at least 2 fermentations per day over a period of 200-250 days. The cell recycling characteristic of the Brazilian ethanol production process utilizes a high concentration of cells at the beginning of fermentation contributing to low growth and high ethanol yield (90-92% of theoretical conversion yield) (Basso et al., 2008). .
[51 As condições estressantes do processo de produção, como alta concentração de etanol, altas temperaturas, estresse osmótico, acidez e contaminação bacteriana, resultaram no isolamento de leveduras selvagens mais adaptadas e que substituíam as linhagens iniciadoras da fermentação em curtos períodos de 20-30 dias de reciclo celular (Siiva- Filho et al., 2005). Basso (2008) analisou 350 isolados quanto a características de interesse industrial desejáveis como floculaçao, rendimento, velocidade de fermentação, taxa de crescimento, capacidade de reciclo, produção de espuma e capacidade de implantação nas destilarias. Dentre as linhagens selecionadas, destacaram-se PE-2, CAT-1 e BG-1 por apresentarem um desempenho eficiente e & habilidade de competir com as leveduras nativas, sobrevivendo e dominando o processo de fermentação industrial. Em 2008, PE-2 e CAT-1 foram usadas em aproximadamente 150 destilarias, representando 60% do etanol produzido no Brasil (Basso et al., 2008). Tendo em vista seu alto desempenho fermentativo, as linhagens PE-2 e CAT-1 estão sendo estudadas mais profundamente a fim de se compreender as características que as diferenciam em relação ás demais em escala industrial. Argueso et al. (2009), ao observarem que os estoques comercialmente disponíveis da PE-2 apresentavam grande variedade de cariôtipos, selecionaram e caracterizaram uma colónia única, denominada JAY270. Análises moleculares mostraram que o genoma de PE-2 é altamente heterozigoto (2 SNPs/kb) , tanto estruturalmente quanto a nível de nucleotideos, apresentando polimorfismos estruturais entre cromossomos homólogos. A alta capacidade de adaptação de PE- 2 às condições estressantes impostas em uma dorna de fermentação está diretamente ligada a sua arquitetura genômica heterogénea, tornando tais cepas ideais para a criação de uma nova geração de organismos industriais, idealizados para as novas tecnologias de produção de etanol e outros processos biotecnológicos (Argueso & Pereira, 2010) . [51 Stressful conditions in the production process, such as high ethanol concentration, high temperatures, osmotic stress, acidity and bacterial contamination, resulted in the isolation of more adapted wild yeasts that replaced fermentation starters in short periods of 20-30 days of cellular recycling (Siiva-Filho et al., 2005). Basso (2008) analyzed 350 isolates for desirable characteristics of industrial interest such as flocculation, yield, fermentation speed, growth rate, recycle capacity, foam production and distillery deployment capacity. Among the selected strains, PE-2, CAT-1 and BG-1 stood out for their efficient performance and ability to compete with native yeasts, surviving and dominating the industrial fermentation process. In 2008, PE-2 and CAT-1 were used in approximately 150 distilleries, representing 60% of ethanol produced in Brazil (Basso et al., 2008). In view of their high fermentative performance, strains PE-2 and CAT-1 are being studied further in order to understand the characteristics that differentiate them from others on an industrial scale. Argueso et al. (2009), noting that commercially available PE-2 stocks had a wide variety of karyotypes, selected and characterized a single colony called JAY270. Molecular analyzes have shown that the PE-2 genome is highly heterozygous (2 SNPs / kb), both structurally and at the nucleotide level, showing structural polymorphisms between homologous chromosomes. The high adaptability of PE-2 to the stressful conditions imposed on a fermentation vessel is directly linked to its heterogeneous genomic architecture, making such strains ideal for creating a new generation of industrial organisms, idealized for new production technologies. ethanol and other biotechnological processes (Argueso & Pereira, 2010).
[6] Cofatores desempenham um papel essencial em um grande numero de reações bioquímicas e na produção de diferentes compostos (Liu et al., 2006). Eles participam de uma série de funções fisiológicas, incluindo a regulação de metabolismo energético, ajuste do estado redox intracelular, controle do fluxo de carbono, atividade mitocondrial, regulação do ciclo celular e modulação da virulência. Em microrganismos, os cofatores NADH/NAD+ e NADPH/NADP+- estão envolvidos em 740 e 887 reaçóes bioquímicas e interagem com 433 e 462 enzimas, respectivamente (Chen et al., 2014). O NAD+ atua em oxidações, geralmente associadas a processos catabólicos, enquanto o NADPH é utilizado em reduções, geralmente associadas a processos anabólicos. As reações onde ocorre a incorporação de um ion hidreto pelo NAD+ (ou NADP+) a partir de um substrato reduzido, ou NADPH (ou NADH) doa um ion hidreto para um substrato oxidado são conhecidas como oxirredutases, também denominadas desidrogenases (Nelson & Cox, 2011) .  [6] Cofactors play an essential role in a large number of biochemical reactions and in the production of different compounds (Liu et al., 2006). They participate in a number of physiological functions, including energy metabolism regulation, intracellular redox state adjustment, carbon flow control, mitochondrial activity, cell cycle regulation, and virulence modulation. In microorganisms, NADH / NAD + and NADPH / NADP + - cofactors are involved in 740 and 887 biochemical reactions and interact with 433 and 462 enzymes, respectively (Chen et al., 2014). NAD + acts on oxidations, usually associated with catabolic processes, while NADPH is used in reductions, usually associated with anabolic processes. Reactions where NAD + (or NADP +) incorporates an ion hydride from a reduced substrate, or NADPH (or NADH) donates an ion hydride to an oxidized substrate are known as oxyreductases, also called dehydrogenases (Nelson & Cox, 2011).
[7] A nicotinamida adenina dinucleotideo (MAD+ em sua forma oxidada) e o seu análogo nicotinamida adenina nucleotideo fosfato (NADP+) são formados por dois nucleotideos ligados por seus grupos fosfato por meio de uma ligação fosfoanidrido. Ambas as coenzimas sofrera redução reversível do anel nicotinamida. A medida que uma molécula de substrato sofre oxidação (desidrogenação), liberando dois átomos de hidrogénio, a forma oxidada do nucleotideo (NAD+ ou NADP+) recebe um Ion hidreto (:H-, o equivalente a um próton e dois elètrons) , sendo transformada na sua forma reduzida (NADH ou NADPH) . 0 segundo próton removido do substrato é liberado no solvente aquoso (Nelson & Cox, 2011) . [7] Nicotinamide adenine dinucleotide (MAD + in its oxidized form) and its analog nicotinamide adenine nucleotide phosphate (NADP +) are formed by two nucleotides linked by their phosphate groups via a phosphohydride bond. Both coenzymes had been reversibly reduced in the nicotinamide ring. As a substrate molecule undergoes oxidation (dehydrogenation), releasing two hydrogen atoms, the oxidized form of the nucleotide (NAD + or NADP +) receives one hydride ion (: H-, the equivalent of one proton and two electrons), being transformed into its reduced form (NADH or NADPH). The second proton removed from the substrate is released into the aqueous solvent (Nelson & Cox, 2011).
[8] Em S. cezeviaiae há um aumento de complexidade em teimos de balanço entre a formação e consumo de cofatores, já que nao há atividade de uma transidrogenase que possa converter NADH diretamente em NADPH. Além disso, como o metabolismo é compartimentaiizado, n&o havendo fluxo de cofatores entre mitocóndria e citosol, a formação e consumo dos cofatores NADH e NADPH deve ser balanceada em cada compartimento, o que impõe restrições no fluxo de carbono. Assim sendo, devem existir mecanismos distintos para re-oxidar os cofatores no citosol e mitocóndria (Santos et al., 2004; Vemuri et al., 2006) .  [8] In S. cezeviaiae there is increased complexity in balancing stubbornness between formation and consumption of cofactors, as there is no activity of a transhydrogenase that can convert NADH directly into NADPH. In addition, since metabolism is compartmentalized and there is no cofactor flow between mitochondria and cytosol, the formation and consumption of NADH and NADPH cofactors must be balanced in each compartment, which imposes carbon flow restrictions. Therefore, there must be distinct mechanisms to re-oxidate cofactors in cytosol and mitochondria (Santos et al., 2004; Vemuri et al., 2006).
[9] NADH é gerado primariamente no citosol pela glicòlise e na mitocóndria pelo ciclo do ácido cíclico (TCA) (Vemuri et al., 2006). No citosol, a glicose è oxidada usando NAD+ como cofator, o qual é simultaneamente convertido na sua forma reduzida, NADH, em quantidade equivalente. Sendo o NADH um cofator altamente utilizado em diversas reações metabólicas, qualquer alteração na taxa NADH/NAD+ leva A grandes alterações no metabolismo. O balanço NADH/NAD* è um fator importante na manutenção do fluxo glicolitico. Assim sendo, a depleção de NAD+ pode forçar o fluxo a cessar. A fim de aumentar a atividade glicolitica, o NADH produzido na glicòlise, oxidação de ácidos graxos e o ciclo de ácido cítrico deve ser oxidado a NAD* para alcançar um equilibrio redox (Liu et al., 2006).  [9] NADH is generated primarily in cytosol by glycolysis and mitochondria by the cyclic acid cycle (TCA) (Vemuri et al., 2006). In cytosol, glucose is oxidized using NAD + as cofactor, which is simultaneously converted into its reduced form, NADH, in an equivalent amount. Since NADH is a cofactor highly used in various metabolic reactions, any change in NADH / NAD + rate leads to major changes in metabolism. NADH / NAD * balance is an important factor in maintaining glycolytic flow. Therefore, NAD + depletion may force flow to cease. In order to increase glycolytic activity, NADH produced in glycolysis, fatty acid oxidation and the citric acid cycle must be oxidized to NAD * to achieve a redox equilibrium (Liu et al., 2006).
[10] Existem, pelo menos, cinco mecanismos para reoxidaçâo do NADH em S. cerevisiae: fermentação alcoólica; produção de glicerol; oxidação de NADH intramitocondrial via NADH desidrogenase raitocondrial interna; e regeneração citosólica através de NADH desidrogenases mitocondriais externas ou via glicerol-3-fosfato, durante a respiração (Bakker et al., 2001) . [10] There are at least five mechanisms for NADH reoxidation in S. cerevisiae: alcoholic fermentation; glycerol production; intramitochondrial NADH oxidation via NADH internal raitochondrial dehydrogenase; and cytosolic regeneration via external mitochondrial NADH dehydrogenases or via glycerol-3-phosphate during respiration (Bakker et al., 2001).
[11] A regeneração de NAD* a partir de NADH pela levedura pode ocorrer em aerobiose, na cadeia de transporte de elétrons, com oxigénio como aceptor final de elétrons e com a produção de grande quantidade de ATP. O NADH mitocondrial é oxidado por uma NADH desidrogenase mitocondrial interna ligada a membrana e codificada pelo gene NDI1. Ou pode acontecer sob condições anaeróbicas, na fermentação alcoólica, primariamente com o acetaldeido como aceptor de elétrons, em uma reaçao onde & álcool desidrogenase catalisa a oxidação da NADH a NAD+, com a produção de etanol e dióxido de carbono a partir de piruvato. O NADH citosólico é oxidado por duas NADH desidrogenases mitocondriais externas (citosólicas) ligadas a membrana, codificadas pelos genes NDE1 e NDE2 com sitios catalíticos em contato cora o citosol. Adicionalmente, glicerol-3-fosfato desidrogenases[11] Yeast regeneration of NAD * from NADH can occur in aerobiosis, the electron transport chain, with oxygen as the final electron acceptor, and with the production of large amounts of ATP. Mitochondrial NADH is oxidized by a membrane-bound internal mitochondrial NADH dehydrogenase encoded by the NDI1 gene. Or it may occur under anaerobic conditions in fermentation, primarily for acetaldehyde as electron acceptor in a reaction where & Alcohol dehydrogenase catalyzes the oxidation of NADH to NAD +, to produce ethanol and carbon dioxide from pyruvate. Cytosolic NADH is oxidized by two membrane-bound external (cytosolic) mitochondrial NADH dehydrogenases encoded by the NDE1 and NDE2 genes with catalytic sites in contact with the cytosol. Additionally, glycerol-3-phosphate dehydrogenases
(codificadas por GPD1 e GPD2) oxidam o NADH citosólico com concomitante formação de glicerol. Sob condições anaeróbicas, o NADH originado da produção de ácidos orgânicos, biomassa, entre outros, é re-oxidado a NAD* pela formação de glicerol, já que a respiração não è possível e a formação de etanol é um processo redox-neutro (Bro et al., 2006; Liu et al., 2006; Vemuri et al., 2006). (encoded by GPD1 and GPD2) oxidize cytosolic NADH with concomitant glycerol formation. Under anaerobic conditions, NADH originating from the production of organic acids, biomass, among others, is re-oxidized to NAD * by glycerol formation, as respiration is not possible and ethanol formation is a redox neutral process (Bro et al., 2006; Liu et al., 2006; Vemuri et al., 2006).
[12] Em S. cerevisiae, NADPH pode ser gerado, principalmente, nas reações catalisadas por duas desidrogenases na fase oxidativa das pentoses fosfato (ZWF1, glicose-6-Ρ desidrogenase e GND1, 6-fosfogluconato desidrogenase), na reação catalisada pela isocitrato desidrogenase NADP+ dependente (ΙΌΡ2) , na reação catalisada pela acetaldeido desidrogenase NADP* dependente (ALD6) e na reação catalisada pela enzima málica (MAE1) . De todas citadas acima, a via das pentoses fosfato representa a principal via de produção de NADPH na levedura (Santos et ai., 2004; Wang et ai., 2013) . [12] In S. cerevisiae, NADPH may be generated mainly in the reactions catalyzed by two dehydrogenases in the oxidative phase of pentose phosphate (ZWF1, glucose-6-Ρ dehydrogenase and GND1, 6-phosphogluconate dehydrogenase) in the isocitrate-catalyzed reaction. NADP + dependent dehydrogenase (ΙΌΡ2), the NADP * dependent acetaldehyde catalyzed reaction (ALD6) and the malic enzyme catalyzed reaction (MAE1). Of all cited above, the pentose phosphate pathway represents the major NADPH production pathway in yeast (Santos et al., 2004; Wang et al., 2013).
[13] A via das pentoses fosfato è controlada principalmente em nivel enzimático, com NADPH e ATP inibindo competitivamente a glicose-6-Ρ desidrogenase (ZNFD e 6- fosfogluconato desidrogenase (GNDl). A regulação coordenada dos genes envolvidos com o metabolismo de NADPH, incluindo a maioria dos genes da PPP, foi reportado sob condições de stress oxidativo. A ativacáo de genes dependentes de NADPH envolve STB5, responsável também por reprimir a expressão de PGI, que codifica a fosfoglicose isomerase na junção entre a via glicolitica e a da pentose fosfato. Esse fator de transcrição desempenha um papel fundamental no redirecionamento do fluxo de carbono para fornecer NADPH adicional em resposta a estresse oxidativo, por exemplo, além de ser responsável por manter o fluxo basal da PPP sob condições anaeróbicas (Celton et al., 2012b).  [13] The pentose phosphate pathway is mainly enzyme-controlled, with NADPH and ATP competitively inhibiting glucose-6-dehydrogenase (ZNFD and 6-phosphogluconate dehydrogenase (GND1). Coordinated regulation of genes involved with NADPH metabolism , including most PPP genes, has been reported under conditions of oxidative stress.NADPH-dependent gene activation involves STB5, also responsible for suppressing PGI expression, which encodes phosphoglycosis isomerase at the junction between the glycolytic pathway and the pathogen. This transcription factor plays a key role in redirecting carbon flow to provide additional NADPH in response to oxidative stress, for example, and is responsible for maintaining the basal flow of PPP under anaerobic conditions (Celton et al., 2012b).
[14] Celton (2012) demonstrou que células de levedura respondem ao aumento da demanda de NADPH com o aumento do fluxo através das vias da pentose fosfato e de formação de acetato, o que corresponde a 80 e 20% da demanda de NADPH, respectivamente. Alguns genes da pentose fosfato são regulados positivamente com o aumento da demanda por NADPH. GNDl e SOL3 são induzidos quando uma concentração moderada de NADPH é necessária pela adição de acetoina. Quando essa demanda aumenta, dois genes da fase não oxidativa da pentose fosfato, TAL1 e TKL1 também são regulados positivamente (Celton et al., 2012a).  [14] Celton (2012) has shown that yeast cells respond to increased NADPH demand by increasing flow through the pentose phosphate and acetate formation pathways, corresponding to 80 and 20% of NADPH demand, respectively. . Some pentose phosphate genes are up-regulated as demand for NADPH increases. GND1 and SOL3 are induced when a moderate concentration of NADPH is required by the addition of acetoin. When this demand increases, two genes from the non-oxidative phase of pentose phosphate, TAL1 and TKL1 are also up-regulated (Celton et al., 2012a).
[15] O balanço redox ocorre quando a produção e o consumo de cofatores são aproximadamente iguais. Desbalancear o potencial oxi-redutivo pode causar prejuízos a célula, gasto de energia e carbono e prejudicar todo o metabolismo celular. A quantidade e disponibilidade de cofatores na célula pode se tornar um passo limitante, sendo essenciais em diversas reações metabólicas e na produção de diferentes compostos. Assim sendo, manipulações no balanço redox e na quantidade de cofatores produzidos pela célula pode ser uma poderosa ferramenta no melhoramento da performance fermentativa da levedura (Liu et al., 2006; Chen et al., 2014). O balanço redox pode ser regulado por diferentes abordagens, como regulação da via metabólica pelo ajuste da expressão dos genes, engenharia de proteínas envolvendo sitio de ligação aos cofatores, restruturação do genoma pela remoção de genes redundantes que utilizam cofatores, regeneração de coenziraas pela restruturação das rotas metabólicas, entre outros (Chen et al., 2014) . [15] Redox balance occurs when cofactor production and consumption are approximately equal. Unbalancing the oxyductive potential can cause cell damage, energy and carbon expenditure and disrupt all cellular metabolism. The number and availability of cofactors in the cell may become a limiting step, being essential in various metabolic reactions and in the production of different compounds. Therefore, manipulations in the redox balance and the amount of cofactors produced by the cell can be a powerful tool in improving yeast fermentative performance (Liu et al., 2006; Chen et al., 2014). Redox balance can be regulated by different approaches, such as regulation of the metabolic pathway by adjusting gene expression, protein engineering involving cofactor binding site, genome restructuring by removal of redundant genes that use cofactors, coenzyme regeneration by protein restructuring. metabolic pathways, among others (Chen et al., 2014).
[16] Além das alternativas descritas acima, um método passível de gerar avanços na produção de etanol por 5. cerevisiaet e que nflo envolve manipulação genética direta é a aplicação de uma corrente elétrica para estimular o metabolismo da levedura em fermentadores modificados com eletrodos, denominados reatores bioelétricos (Thrash and Coates, 2008) . Nesse reator modificado, microrganismos sâo cultivados em uma câmara contendo um eletrodo que recebe a corrente elétrica de um circuito acoplado a uma fonte, transferindo elétrons as células. Os elétrons recebidos pelas células podem, então, ser utilizados em reaçóes do metabolismo envolvendo redução de substratos, fornecendo poder redutor às células, diminuindo a geração de subprodutos e consequentemente aumentando a produção de etanol.  [16] In addition to the alternatives described above, one method that can lead to advances in ethanol production by 5. cerevisiaet and which does not involve direct genetic manipulation is the application of an electric current to stimulate yeast metabolism in electrode-modified fermenters called bioelectric reactors (Thrash and Coates, 2008). In this modified reactor, microorganisms are grown in a chamber containing an electrode that receives the electric current from a circuit coupled to a source, transferring electrons to the cells. The electrons received by the cells can then be used in metabolism reactions involving substrate reduction, providing reducing power to the cells, reducing the generation of byproducts and consequently increasing the ethanol production.
[17] o etanol de segunda geração ou etanol celulósico consiste na convers&o de polímeros que formam a parede celular vegetal em etanol. Estes polímeros constituem a celulose, hemicelulose e lignina, e sua hidrólise disponibiliza açúcares fermentesciveis, representados por he-foaes e pentosee, que podem ser convertidos a etanol por 5. cerevisiae. Hexoses são normalmente utilizadas por S. ceravlsiae. Porém, linhagens selvagens dessas leveduras não conseguem metabolizar as pentoses xilose e arablnose presentes na biornassa. Tendo em vista sua significativa parcela na constituição da biomassa, a completa utilização desses compostos aumentaria o rendimento e a viabilização do processo de produção de etanol de segunda geração. [17] Second generation ethanol or cellulosic ethanol consists of converting polymers that form the plant cell wall into ethanol. These polymers constitute cellulose, hemicellulose and lignin, and their hydrolysis provides fermentable sugars, represented by hepheres and pentose, which can be converted to ethanol by 5. cerevisiae. Hexoses are usually used by S. ceravlsiae. However, wild strains of these yeasts cannot metabolize the xylose and arablnose pentoses present in the biorass. Given their significant share in the constitution of biomass, the full use of these compounds would increase the yield and the viability of the second generation ethanol production process.
[18] A engenharia metabólica de leveduras para introdução das vias metabólicas de consumo de xilose tem como foco duas vias principais: a via Xilcse Redutase - Xilitol Desidrogenase (XR-XDH) e a via Xilose Isomerase (XI) . A via XR-XDH, presente em micro-organismos eucariotos, consiste em duas reações de ozi-redução, onde a xilose é reduzida a xilitol pela ação da enzima xilose redutase (XR) , em uma reaçâo mediada por NADPH/NADH e em seguida, o xilitol e oxidado a xilulose por meio da enzima xilitol desidrogenase (XDH) , mediada exclusivamente por NAD*. A diferença de especificidade pelos cofatores gera o desbalanço redox. Para gerar NADPH para a reaçâo da xilose redutase, parte do carbono da xilose deve ser direcionado através da fase oxidativa da pentoses fosfato, envolvendo as reações de glicose-6-fosfato desidrogenase e 6-fosfogluconato. Apesar de permitir uma eficiente regeneração de NADPH, ocorre perda de carbono na forma de CO: o que impacte o rendimento de etanol a partir de xilose (van Maris et al., 2007). [18] Metabolic engineering of yeasts for introducing metabolic pathways of xylose consumption focuses on two major pathways: the Xylcse Reductase - Xylitol Dehydrogenase (XR-XDH) pathway and the Xylose Isomerase (XI) pathway. The XR-XDH pathway, present in eukaryotic microorganisms, consists of two ozone reduction reactions, where xylose is reduced to xylitol by the action of the enzyme xylose reductase (XR), a NADPH / NADH mediated reaction and then , xylitol is oxidized to xylulose by the enzyme Xylitol dehydrogenase (XDH) mediated exclusively by NAD *. The difference in specificity by the cofactors generates the redox imbalance. To generate NADPH for the xylose reductase reaction, part of the xylose carbon must be directed through the oxidative phase of pentose phosphate, involving the glucose-6-phosphate dehydrogenase and 6-phosphogluconate reactions. Although allowing efficient NADPH regeneration, carbon loss occurs in the form of CO: which impacts the yield of ethanol from xylose (van Maris et al., 2007).
[19] Em aerobiose, o NAD* è regenerado na cadeia respiratória, com o oxigénio como aceptor final de elétrons. Sob limitadas concentrações de oxigénio, a reoxidaçao do excesso de NADH, gerado através da reaçâo da xilitol desidrogenase, é realizada através de compostos mais reduzidos que a xilose, como xilitol e glicerol, subprodutos da fermentação. A produção do xilitol ocorre via xilose redutase, que devido a dupla especificidade pela coenzixna, pode usar também NADH. Como esse mecanismo envolve o consumo de uma xilose para cada NADH gerado, tem um alto impacto negativo no rendimento de etanol obtido a partir de xilose (Hahn-Hagerdal et al., 2001; Aguiar et al., 2002; Kuyper et al., 2004; van Maria et al., 2007). [19] In aerobiosis, NAD * is regenerated in the respiratory chain, with oxygen as the final electron acceptor. Under limited oxygen concentrations, the reoxidation of excess NADH generated by the reaction of xylitol dehydrogenase is carried out through lower xylose compounds such as xylitol and glycerol by-products of fermentation. Xylitol production occurs via xylose reductase, which due to the dual specificity of coenzyme can also use NADH. Since this mechanism involves the consumption of one xylose for each NADH generated, it has a high impact. negative on xylose ethanol yield (Hahn-Hagerdal et al., 2001; Aguiar et al., 2002; Kuyper et al., 2004; van Maria et al., 2007).
[20] Apesar de S. cerevlsíae possuir os genes que codificam uma aldose redutase dependente da NADH IGRE3) e uma xilitol desidrogenase (Xyl2)r eles n&o permitem seu crescimento eficiente em xilose. A superexpressâo desses genes usando promotores endógenos permitiu o crescimento em shakers, com taxa de crescimento de 0.01 h-1 em D-xilose e rendimento de xilitol de 55%. Sob condições anaeróbicas, essas linhagens foram incapazes de crescer (van Maris et al., 2007). [20] Although S. cerevisiae possess genes encoding a NADH dependent aldose reductase IGRE3) and xylitol dehydrogenase (XYL2) R & they will not permit their efficient growth in xylose. Overexpression of these genes using endogenous promoters allowed growth in shakers, with growth rate of 0.01 h-1 in D-xylose and 55% xylitol yield. Under anaerobic conditions, these strains were unable to grow (van Maris et al., 2007).
[21] A XR e XDH mais comumente usada em estudos envolvendo a via oxi-redutiva de conversão de xilose pertence a levedura Scheffersomyces stlpitis. Devido a preferência da XR de S. stipitis por NADPH, enquanto que a XDH produz apenas NADH, o acúmulo de xilitol resultante e o baixo rendimento de etanol tem sido atribuido a esse desbalanço de cofatores. Diversos estudos focaram em estratégias para resolver esse problema. Sitios de ligação aos cofatores em xiloses redutases são alvo de técnicas de engenharia de proteínas, visando aumentar a afinidade por NADH em relação a NADPH. Porém, o aumento da taxa de NADH/NADPH nesses estudos se deve a uma diminuição na eficiência catalítica de ligação ao NADPH pela XR, enquanto que o real aumento na afinidade de ligação ao NADH ó bem baixo (Liang et al., 2007; Watanabe et. al., 2007; Bengtsson et al., 2009; Runquist et al., 2010; Cai et al. , 2012) . [21] The XR and XDH most commonly used in studies involving the oxy-reductive pathway of xylose conversion belong to Scheffersomyces stlpitis yeast. Due to the preference of S. stipitis XR over NADPH, whereas XDH produces only NADH, the resulting xylitol accumulation and low ethanol yield have been attributed to such cofactor unbalance. Several studies have focused on strategies to solve this problem. Cofactor binding sites in xylose reductases are the target of protein engineering techniques to increase NADH affinity for NADPH. However, the increase in the NADH / NADPH rate in these studies is due to a decrease in the catalytic efficiency of NADPH binding by XR, while the actual increase in NADH binding affinity is quite low (Liang et al., 2007; Watanabe). et al., 2007; Bengtsson et al., 2009; Runquist et al., 2010; Cai et al., 2012).
[22] Em uma abordagem similar, Watanabe (2005) alterou completamente a afinidade da enzima xilitol desidrogenase de 5. stípitls de NAD* para NADP' através de mutagênese sitio dirigida. As enzimas com duplas mutações (D207A/I203R e D207A/F209S) tiveram aumento na afinidade por NADP , mas a preferência por NAD+ ainda se mantinha superior. As enzimas com mutações triplas (D207A/I203R/F209S) e quádruplas (D207A/I208R/F209S/N211P.) mostraram valores maiores que 4500 vezes em kcat/Kra com NADP+ em relação a enzima selvagem, atingindo valores comparáveis ao kcat/Km com NAD+ em relação a enzima selvagem. Em estudo posterior, a enzima com a tripla mutação foi introduzida em uma linhagem de S. cerevisiae, substituindo a XDH selvagem de S. stipitis. A linhagem Y- ARSdR produziu 86% menos xilitol e consequentemente 41» mais etanol em relaç&o a linhagem parental (Watanabe et 2007) . A linhagem MA-N5 com a XOH mutante NADP+ dependente apresentou alto rendimento de 0.49 g/g a partir dos açúcares totais presentes hidrolisado lignocelulósico (Matsushika et al., 2009). Com a finalidade de melhorar o balanço de cofatcres nessas linhagens, Khattab (2013) utilizou estratégias de mutagénese sitio dirigida para produzir uma série de XR que utilizam unicamente NADPH, que ao ser oxidado, fornece NADP+ para a XDH NADP+ dependente. As linhagens resultantes apresentaram redução de xilitol de 34.4 a 54.7% em relação a linhagem controle, além de aumentos de 10 e 20% na produção de etanol em duas das linhagens construídas com as novas xiloses redutases. [22] In a similar approach, Watanabe (2005) completely altered the affinity of the enzyme xylitol dehydrogenase from 5. NAD * to NADP 'stypotypes by site-directed mutagenesis. Double-mutated enzymes (D207A / I203R and D207A / F209S) had increased affinity for NADP, but preference for NAD + was still higher. Triple mutated (D207A / I203R / F209S) and quadruple enzymes (D207A / I208R / F209S / N211P.) Showed values greater than 4500 times in kcat / Kra with NADP + relative to wild enzyme, reaching values comparable to kcat / Km with NAD + relative to wild enzyme. In a later study, the triple mutation enzyme was introduced into a S. cerevisiae strain, replacing the wild-type S. stipitis XDH. The Y-ARSdR strain produced 86% less xylitol and consequently 41% more ethanol compared to the parent strain (Watanabe et 2007). The MA-N5 strain with the NADP + dependent mutant XOH showed a high yield of 0.49 g / g from total lignocellulosic hydrolyzate present sugars (Matsushika et al., 2009). In order to improve the cofactor balance in these strains, Khattab (2013) used site-directed mutagenesis strategies to produce a series of XRs that only use NADPH, which upon oxidation provides NADP + for the dependent NADP + XDH. The resulting strains showed a reduction of 34.4 to 54.7% xylitol compared to the control strains, as well as 10 and 20% increases in ethanol production in two of the strains constructed with the new xylose reductases.
[23] Diferente das abordagens descritas acima, que modificam racional ou aleatoriamente as enzimas da via de conversão de xilose, outras estratégias foram descritas na liter*cura onde ocorre alteração nas vias centrais de consumo de açúcares visando alteração e ajuste no balanço de cofatores. A diminuição da produção de NADPH pela inativação dos genes da fase oxidativa da via das pentoses fosfato, GND1, que codifica a 6-fosfogluconato desidrogenase ou ZWFl, que codifica a glicose 6-fosfato desidrogenase, resultou em linhagens com redução na produção de xilitol e aumento do rendimento de etanol obtido a partir de xilose. Porém, tais linhagens tiveram uma diminuição significativa na velocidade de consumo de xilose, explicado pela redução desse açúcar estar acontecendo mediada principalmente através de NADH, pela ação da enzima xilose redutase (XR) , com especificidade por ambos os cofatores. Outro fato observado foi o aumento da quantidade de acetato produzido, o que sugere que a produção de acetato a partir de acetaldeido se tornou a nova fonte de fornecimento de NADPH para a XP. (Jeppsson et ai., 2002; Cai et al., 2012) . [23] Unlike the approaches described above, which rationally or randomly modify the enzymes of the xylose conversion pathway, other strategies have been described in literature * where alteration occurs in the central sugar consumption pathways aiming at alteration and adjustment in cofactor balance. Decreased NADPH production by inactivation of the oxidative phase genes of the pentose phosphate pathway, GND1, which encodes 6-phosphogluconate dehydrogenase or ZWFl, which encodes glucose 6-phosphate dehydrogenase, resulted in reduced xylitol and increased yield of ethanol obtained from xylose. However, such strains had a significant decrease in the rate of xylose consumption, explained by the reduction of this sugar happening mainly mediated by NADH, by the action of the enzyme xylose reductase (XR), with specificity for both cofactors. Another fact observed was the increase in the amount of acetate produced, suggesting that acetate production from acetaldehyde has become the new source of NADPH supply to XP. (Jeppsson et al., 2002; Cai et al., 2012).
124] Para facilitar a regeneração de NADPH, a expressão de uma gliceraldeido-3-fosfato desidrogenase de Kluyveromyces lactis NADP* dependente IGDP) , associada com a deleçâo de ZWF1 resultou em uma linhagem com maior rendimento de etanol a partir de xilose. A regeneração de NADPH através desse gene não está associada a produção de CO:, como acontece na via das pentoses fosfato, justificando a melhor performance em relação a linhagem que não possui o GOP expresso. Tal abordagem permite a criação de um sistema de regeneração de cofatores não ligado a perda de carbono através da produção de CO2, o que resulta em maior quantidade de etanol produzido (Verho et al., 2003) .  124] To facilitate the regeneration of NADPH, the expression of a KDP (dependent IGDP-dependent Kluyveromyces lactis NADP * glyceraldehyde-3-phosphate dehydrogenase) associated with deletion of ZWF1 resulted in a lineage with higher ethanol yield from xylose. The regeneration of NADPH through this gene is not associated with CO: production, as it happens in the pentose phosphate pathway, justifying the best performance in relation to the strain that does not have the expressed GOP. Such an approach allows the creation of a non-carbon loss cofactor regeneration system through the production of CO2, which results in a higher amount of ethanol produced (Verho et al., 2003).
[25] Outra estratégia visando a introdução de uma via alternativa de re-oxidação de NADH foi através da introdução da rota alternativa da fosfocetolase, comumente encontrada em procariotos. A expressão heterôloga da fosfotransacetilase de Bacillus subtilis e da acetaldeido desidrogenase de iSntamoeba histolytica visa um desvio na via das pentoses fosfato, pela conversão de xilulose-5-Ρ em gliceraldeido-3-Ρ, que entra na via glicolitica, e acetil- P, que pode ser convertido pela fosfotransacetilase em acetil-CoA, o que é reduzido a acetaldeido pela acetaldeido desidrogenase, com a utilização de NADH como cofator. A introdução desses genes era S. cerevislae resultou em uma linhagem com aumento de 25% na produção de etanol, devido a uma menor formação do subproduto xilitol (Sonderegger et al., 2004}. [26] Apesar dos esforços em estratégias para regular e ajustar o balanço redox em linhagens contendo a via oxi- redutiva de conversão de xilose, outras razões desconhecidas, além do desbalanço redox, sâo responsáveis pela alta quantidade de xilitol produzindo e baixa produtividade de etanol em condições anaeróbicas de consumo de xilose. Outros esforços como o desenvolvimento de uma rede metabólica e regulatória, levando em conta todo o metabolismo redox da célula deve ser considerado para resolver esse problema (Cai et ai., 2012). [25] Another strategy for introducing an alternative NADH re-oxidation pathway was by introducing the alternative phosphocetolase pathway commonly found in prokaryotes. The heterologous expression of Bacillus subtilis phosphotransacetylase and iSntamoeba histolytica acetaldehyde dehydrogenase aims at a deviation in the pentose phosphate pathway by the conversion of xylulose-5-Ρ into glyceraldehyde-3-glic, and acetyl-P, which can be converted by phosphotransacetylase to acetyl-CoA, which is reduced to acetaldehyde by acetaldehyde dehydrogenase, using NADH as cofactor. The introduction of these genes into S. cerevislae resulted in a 25% increase in lineage in ethanol production due to less formation of the xylitol byproduct (Sonderegger et al., 2004}. [26] Despite efforts in strategies to regulate and adjust the redox balance in strains containing the oxidoredoxyl conversion pathway, other unknown reasons besides redox imbalance are responsible for the high amount of xylitol producing and low ethanol productivity. under anaerobic conditions of xylose consumption. Other efforts such as the development of a metabolic and regulatory network, taking into account the entire redox metabolism of the cell must be considered to solve this problem (Cai et al., 2012).
[27] Xiong, M. et a1.__0 documento refere-se à alteração da xylose reductase para aumentar a produção de etanol em Saccharomyces cezevisiae, mais especificamente na alteração da XR para ter maior afinidade por NADH ao invés de NADPH. [27] Xiong, M. et al. The document refers to altering xylose reductase to increase ethanol production in Saccharomyces cezevisiae, more specifically altering XR to have greater affinity for NADH than NADPH.
[28] Khathaab, 8.M.R. et al. 0 documento refere-se a produção de bioetanol usando combinações de Saccharomyces cezevisiae, Xilose redutase e Xilitol desidiogenase, mais especificamente na alteração sitio especifica da XR para ter afinidade apenas por NADPH. [28] Khathaab, 8.M.R. et al. The document relates to bioethanol production using combinations of Saccharomyces cezevisiae, Xylose reductase and Xylitol dehydrogenase, more specifically in altering site specific XR to have affinity for NADPH only.
[29] O documento US20130040353 refere-se á produção de etanol no meio de Saccharomyces cerevisiae e a alteração da XR para ter maior afinidade por NADH ao invés de NADPH.  [29] US20130040353 relates to ethanol production in the Saccharomyces cerevisiae medium and alteration of XR to have greater affinity for NADH rather than NADPH.
[30] A presente invenção difere dos documentos apresentados acima, pois não faz alteração da sequência de XR. Foi utilizado uma XR que naturalmente já tem maior afinidade por NADH ao invés de NADPH, diminuindo o desbalanço redox e aumentando a produção de etanol.  [30] The present invention differs from the above documents in that it does not alter the XR sequence. An XR that naturally already has higher affinity for NADH instead of NADPH was used, decreasing redox imbalance and increasing ethanol production.
[31] 0 documento americano US20120329104 refere-se a combinação de microorganismos para a produção de etanol e descreve a criação de uma linhagem utilizando a via oxi- redutiva de S. stipitls. Não foi utilizado nenhuma estratégia para regular o balanço redox da linhagem. Na presente invenção foi utilizada em uma linhagem industrial, mais tolerante a inibidores presentes no processo 2G e com características de interesse industrial. Aléia disso, foram empregadas diversas estratégias para regular o balanço redoz da linhagem e melhorar a produção de etanol. Os cassetes utilizados também apresentam diferenças em relação ao promotor e terminador, região de inserção e marcador utilizado. [31] US20120329104 relates to the combination of microorganisms for ethanol production and describes the creation of a lineage using the S. stipitls oxidative pathway. No strategy was used to regulate the redox balance of the strain. In the present invention it was used in an industrial strain, more tolerant to inhibitors present in the 2G process and with characteristics of industrial interest. In addition, various strategies have been employed to regulate the redoz balance of the strain and to improve ethanol production. The cassettes used also differ in promoter and terminator, insertion region and marker used.
[32] Diante do exposto, seria útil se a técnica dispusesse de cassete de expressão e leveduras capazes de regular o balanço redoz: de uma linhagem industrial de S. cerevisiae, amplamente utilizada no setor de etanol 2G, contendo a via oxi-redutlva de consumo de xilose.  [32] Given the above, it would be helpful if the technique had expression cassettes and yeasts capable of regulating the redoz balance: an S. cerevisiae industrial strain, widely used in the 2G ethanol sector, containing the oxy-reductive pathway. xylose consumption.
BREVE DISCRIÇÃO DA INVENCAO BRIEF DESCRIPTION OF THE INVENTION
[33] A presente invenção refere-se a levedura industrial geneticamente modificada LVY127 com a via oxi-redutiva de conversão de xilose, cassetes de expressão gênica, processo de obtenção de etanol 2G e uso da levedura LVY127.  [33] The present invention relates to LVY127 genetically modified industrial yeast with the oxy-reductive xylose conversion pathway, gene expression cassettes, 2G ethanol production process and use of LVY127 yeast.
[34] O cassete de expressão gênica 1 compreende:  [34] Gene Expression Cassette 1 comprises:
- a xilose redutase (XR) de S. stipitis sob a açâo do promotor e terminador do gene que codifica 3-fosfoglicerato Quinase (PGK1) em S. cerevisiae;  - xylose reductase (XR) of S. stipitis under the action of the promoter and terminator of the gene encoding 3-phosphoglycerate kinase (PGK1) in S. cerevisiae;
- o gene URA3 de S. cerevisiae, juntamente com seu promotor e terminador, flanqueado por dois sitios loxP em cada extremidade e na mesma orientação;  the S. cerevisiae URA3 gene, together with its promoter and terminator, flanked by two loxP sites at each end and in the same orientation;
- gene xilitol desidrogenase (XDH) de S. stipitis sob a açao do promotor e terminador do gene que codifica a Gliceraldeido 3-Fosfato Desidrogenase, isoenzima 1 (TDHD em S. cerevisiae, clonados no vetor pRS304; e  - S. stipitis xylitol dehydrogenase (XDH) gene under the action of the promoter and terminator of the gene encoding Glyceraldehyde 3-Phosphate Dehydrogenase, isoenzyme 1 (TDHD in S. cerevisiae, cloned into pRS304 vector;
- sequência de nucleotideos é representada peia SKQ ID NO:1.  nucleotide sequence is represented by SKQ ID NO: 1.
[35] O cassete de expressão gênica 2 compreende:  [35] Gene Expression Cassette 2 comprises:
- promotor (ADH1) e terminador (ADHD do gene que codifica a enzima xiluloquinase em S. cerevisiae;  promoter (ADH1) and terminator (ADHD of the gene encoding xylulokinase enzyme in S. cerevisiae;
- gene URA3 de S. cerevisiae, juntamente com seu promotor e terminador, flanqueado por dois sitios loxP em cada extremidade e na mesma orientação; e - sequencia de nucleotideos representada pela SEQ ID NO:2. S. cerevisiae URA3 gene, together with its promoter and terminator, flanked by two loxP sites at each end and in the same orientation; and nucleotide sequence represented by SEQ ID NO: 2.
[36] O cassete de expressão gênica 3 compreende: [36] Gene Expression Cassette 3 comprises:
- gene xilitol desidrogenase (XDH) de S. stlpitis sob a acão do promotor e terminador do gene que codifica a Gliceraldeido 3-Fosfato Desidrogenase/ isoenzima 1 (TDH1) em S. cerevisiae;  - S. stlpitis xylitol dehydrogenase (XDH) gene under the action of the promoter and terminator of the gene encoding Glyceraldehyde 3-Phosphate Dehydrogenase / isoenzyme 1 (TDH1) in S. cerevisiae;
- gene URA3 de S. cerevlsiae, juntamente com seu promotor e terminador, flanqueado por dois sitios loxP em cada extremidade e na mesma orientação; e  S. cerevlsiae URA3 gene, together with its promoter and terminator, flanked by two loxP sites at each end and in the same orientation; and
- sequência de nucleotideos ê representada pela SEQ AD NO:3.  - nucleotide sequence is represented by SEQ AD NO: 3.
[37] A levedura geneticamente modificada é a Saccharomyces cerevislae DSM32120. [37] The genetically modified yeast is Saccharomyces cerevislae DSM32120.
[38] 0 processo de obtenção de etanol 2G é realizado com a levedura geneticamente modificada é a Sacchãromyces cerevísiae DSM32120.  [38] The process for obtaining 2G ethanol is carried out with the genetically modified yeast is Sacchromyces cerevísiae DSM32120.
[39] A levedura LVY127 (D8K32120) possui aplicação em qualquer processo que envolva o consumo de xilose.  [39] Yeast LVY127 (D8K32120) is applicable to any process involving xylose consumption.
BREVE DISCRIÇÃO DOS DESENHOS BRIEF DESCRIPTION OF DRAWINGS
[40] A Figura 1 representa o fluxograma do desenvolvimento da linhagem LVY127 (D8M32120) .  [40] Figure 1 represents the flowchart of the development of the LVY127 strain (D8M32120).
[41] A Figura 2 representa o gráfico que demonstra o consumo de xilose pela linhagem LVY127 (DSH32120) comparada com a linhagem selvagem derivada de PE-2.  [41] Figure 2 is a graph showing xylose consumption by LVY127 strain (DSH32120) compared to wild-type PE-2 derived strain.
[42] A Figura 3 representa o gráfico de desempenho fermentativo global da linhagem LVY127 (DSM32120) em meio contendo uma mistura de glicose e xilose como fontes de carbono. Os açúcares e principais produtos da fermentação estão discriminados na legenda.  [42] Figure 3 represents the overall fermentative performance graph of the LVY127 strain (DSM32120) in medium containing a mixture of glucose and xylose as carbon sources. The sugars and main products of fermentation are detailed in the caption.
[43] A Figura 4 representa o gráfico que demonstra a via metabólica representando o consumo de açúcares pela linhagem LVY127 (DSM32120), contendo as XP e XDH de S. stipitis.  [43] Figure 4 represents the graph showing the metabolic pathway representing sugar consumption by the LVY127 strain (DSM32120), containing the S. stipitis XP and XDH.
[44] A Figura 5 representa o esquema representativo do plasmídeo pSsXRXDH, contendo as XR e XDH de 5. stipitis. O esquema foi construído utilizando o software SnapGene Viewer. o fragmento contendo os genes XR e XDH de 5. stipitis foi amplificado do vetor pSsXRXDH e utilizado paia a transformação de 5. cerevisiae. [44] Figure 5 is the representative schematic of plasmid pSsXRXDH, containing the 5. stipitis XR and XDH. The scheme was built using SnapGene software. Viewer the fragment containing the 5. stipitis XR and XDH genes was amplified from the pSsXRXDH vector and used for the 5. cerevisiae transformation.
DISCRIÇÃO DETALHADA DA INVENCAO DETAILED DESCRIPTION OF THE INVENTION
f45j A presente invenção refere-se a levedura industrial geneticamente modificada LVY127 com a via oxi-redutiva de conversão de zilose, cassetes de expressão gênica, processo de obtenção de etanol 2G e uso da levedura LVTí127. The present invention relates to genetically modified industrial yeast LVY127 with the oxy-reductive zylose conversion pathway, gene expression cassettes, 2G ethanol production process and use of LVT127 yeast.
[46] 0 cassete de expressão gênica 1 compreende: [46] Gene Expression Cassette 1 comprises:
- a xilose redutase (XR) de $. stipitis sob a açào do promotor e terrainador do gene que codifica 3-fosfoglicerato Quinase iPGKl) em S. cerevisiae;  - xylose reductase (XR) of $. stipitis under the action of the promoter and terrainator of the gene encoding 3-phosphoglycerate kinase iPGK1) in S. cerevisiae;
- o gene URA3 de S. cerevisiae, juntamente com seu promotor e terminador, flanqueado por dois sitios loxP em cada extremidade e na mesma orientação;  the S. cerevisiae URA3 gene, together with its promoter and terminator, flanked by two loxP sites at each end and in the same orientation;
- gene xilitol desidrogenase (XDH) de S. stipitis sob a açâo do promotor e terminador do gene que codifica a Gliceraldeído 3-Fosfato Desidrogenase, isoenzima 1 (TDH1) em 5. cerevisiae, clonados no vetor pRS304; e  - S. stipitis xylitol dehydrogenase (XDH) gene under the action of the promoter and terminator of the gene encoding Glyceraldehyde 3-Phosphate Dehydrogenase, isoenzyme 1 (TDH1) in 5. cerevisiae, cloned into pRS304 vector; and
- sequência de nucleotideos é representada pela SEQ ID NO:1.  - nucleotide sequence is represented by SEQ ID NO: 1.
[47] 0 cassete 1 é flanqueado por regiões que apresentam homologia a 516pb do centrômero cinco de S. cerevisiae.  [47] Cassette 1 is flanked by regions showing 516 bp homology to S. cerevisiae centromere five.
148] 0 cassete de expressão gênica 2 compreende:  148] Gene Expression Cassette 2 comprises:
- promotor [ADHD e terminador (ADH1) do gene que codifica a enzima xiluloquínase de S. cerevisiae;  [ADHD promoter and terminator (ADH1) of the gene encoding the S. cerevisiae xylokinase enzyme;
- gene URA3 de S. cerevisiae, juntamente com seu promotor e terminador, flanqueado por dois sitios loxP em cada extremidade e na mesma orientação; e  S. cerevisiae URA3 gene, together with its promoter and terminator, flanked by two loxP sites at each end and in the same orientation; and
-sequência de nucleotideos è representada pela SEQ AD NO:2.  nucleotide sequence is represented by SEQ AD NO: 2.
[491 Para a construção do micro-organismo DSM 32120 a primeira inserção do cassete 2 ocorreu a 288 pb do centrômero dois e a segunda cópia está a 228 pb do centrômero oito. 150] O cassete de expressão gênica 3 compreende: - gene xilitol desidrogenase (XDH) de S. stipltls sob a acSo do promotor e terminador do gene que codifica a Giiceraldeido 3-Fosfato Desidrogenase, isoenzima 1 ( TDH1) em s. cerevisiãe; [491 For the construction of the DSM 32120 microorganism the first insertion of cassette 2 occurred at 288 bp from centromere two and the second copy is 228 bp from centromere eight. 150] Gene Expression Cassette 3 comprises: S. stipltls xylitol dehydrogenase (XDH) gene under the action of the promoter and terminator of the gene encoding Giiceraldehyde 3-Phosphate Dehydrogenase, isoenzyme 1 (TDH1) in s. cerevisi Mom;
- gene URA3 de S. cerevisiãe, juntamente com seu promotor e terminador, flanqueado por dois sitios loxP em cada extremidade e na mesma orientação; e  S. cerevisiãe URA3 gene, together with its promoter and terminator, flanked by two loxP sites at each end and in the same orientation; and
- sequência de nucleotideos é representada pela SEQ AD NO:3.  - nucleotide sequence is represented by SEQ AD NO: 3.
[51 ] 0 cassete 3 refere-se â segunda cópia do gene que codifica a xilitol desidrogenase inserido a 454 pb do centrômero três. [51] Cassette 3 refers to the second copy of the gene encoding xylitol dehydrogenase inserted at 454 bp from centromere three.
[52] A levedura geneticamente modificada é a Saccharomyces cerevisiãe DSM32120.  [52] The genetically modified yeast is Saccharomyces cerevisiãe DSM32120.
[53 ] As etapas da construção da LVY127 (DSM32120) envolveram a inserção de 1 cópia do gene que codifica a xilose redutase (XP.) de S. stipitis, 2 cópias do gene que codifica a xilitol desidrogenase (XOH) de S. stipitis, deleção da aldose redutase GRE3 e inserção de 2 cópias de XKS1 (Figura 1) .  [53] The construction steps of LVY127 (DSM32120) involved the insertion of 1 copy of the S. stipitis xylose reductase (XP.) Gene, 2 copies of the S. stipitis xylitol dehydrogenase (XOH) gene. , GRE3 aldose reductase deletion and insertion of 2 copies of XKS1 (Figure 1).
[54] Para construção da linhagem LVY127 (DSM32120) fermentadora de xilose, foi utilizado um esporo da linhagem industrial PE-2, amplamente utilizada na indústria de etanol de primeira geração. A linhagem PE-2 apresenta alta performance fermentativa e é altamente tolerante a diversos estresses do processo industrial, se tornando uma plataforma robusta para a introdução da via de conversão de xilose. [54] For the construction of the xylose fermenter LVY127 (DSM32120) strain, a spore of the industrial strain PE-2, widely used in the first generation ethanol industry, was used. The PE-2 strain presents high fermentative performance and is highly tolerant to various industrial process stresses, becoming a robust platform for the introduction of the xylose conversion pathway.
[55] Os genes que expressam as enzimas XR e XDH de 5. stipitis foram cionados, respectivamente, sob a ação dos promotores PGK1 e TDH1, e inseridos a 516 pb do centrômero cinco, resultando na linhagem LVY103. A linhagem era capaz de consumir toda a xilose presente em meio de cultivo, produzindo etanol. Porém, utilizando apenas essas modificações, a maior parte da xilose foi convertida em xilitol. A superexpressão do gene XKSl sob açâo do promotor ADR1 deu origem a linhagem LVY123 e permitiu uma melhora significativa de desempenho, alcançando rendimento de etanol de 34% a partir dos açúcares totais (sendo 51* o rendimento teórico), e rendimento de xilitol de 19% e glicerol de 5,5H. 0 cassete contendo o gene XKS1 foi inserido próximo ao centrômero dois. [55] The genes expressing the 5. stipitis XR and XDH enzymes were cleaved, respectively, under the action of the PGK1 and TDH1 promoters, and inserted at 516 bp from centromere five, resulting in the LVY103 strain. The strain was able to consume all xylose present in culture medium, producing ethanol. Using only these modifications, however, most of the xylose was converted to xylitol. Overexpression of the XKS1 gene under the action of the ADR1 promoter gave rise to the LVY123 strain and allowed for an improvement. performance, reaching 34% ethanol yield from total sugars (51 * being theoretical yield), and 19% xylitol and 5.5H glycerol yield. The cassette containing the XKS1 gene was inserted near centromere two.
[56] Per apresentar um rendimento ainda distante do teórico, o próximo passo desenvolvido foi o aumento do fluxo xilose à xilulose-5-Ρ, com a duplicação do número de cópias integradas dos genes XDH e XKS1 {inseridos próximo aos centrómeros três e oito, respectivamente), além da delecao do gene que codifica uma aldose redutase, GRE3. Esse gene tem a mesma função que a xilose redutase (XR) , realizando a redução da xilose a xilitol, utilizando exclusivamente NADPH como cofator. 0 gene XR de $. stipltis utilizado na transformação utiliza tanto NADPH como NADH, embora tenha uma maior afinidade pelo primeiro. A deleção do GRE3 é uma estratégia descrita que visa a diminuição de xilitol, visto que sua produção seria exclusivamente via XR de s. stipltis, o qual realiza a oxidação de NADH a NAD* permitindo o aumento do fluxo pela XDH NAD* dependente, próximo gene da via. A deleção do gene GRE3 (LVY124) e o aumento do número de cópias do XDH (LVY125) e XKS1 resultou na linhagem LVY127, objeto da presente invenção, que apresentou rendimento de etanol de 36% e diminuição nos rendimentos dos subprodutos xilitol t glicerol, com 8% e 8%, respectivamente.  [56] Since the yield is still far from theoretic, the next step was to increase the xylose flux to xylulose-5-Ρ by doubling the integrated copy number of the XDH and XKS1 genes (inserted near centromeres three and eight). , respectively), in addition to deletion of the gene encoding an aldose reductase, GRE3. This gene has the same function as xylose reductase (XR), reducing xylose to xylitol, using exclusively NADPH as cofactor. The XR gene from $. Stipltis used in transformation uses both NADPH and NADH, although it has a higher affinity for the former. GRE3 deletion is a described strategy aimed at decreasing xylitol, since its production would be exclusively via s XR. stipltis, which performs the oxidation of NADH to NAD * allowing increased flow by the dependent NAD * XDH, near the pathway gene. Deletion of the GRE3 gene (LVY124) and increased copy number of XDH (LVY125) and XKS1 resulted in the LVY127 strain, object of the present invention, which showed 36% ethanol yield and decreased yields of xylitol t glycerol byproducts. with 8% and 8% respectively.
Examplo de concretizaçio Example of embodiment
Linhagens utilizadas Used strains
[57] Para os experimentos de clonagem e multiplicação dos plasmideos foi utilizada a linhagem bacteriana de Escherichia coli DH5μ (Stratagene®) . Quando necessário, a linhagem foi ativada á 37 *c por esgotamento em meio de cultura LB (Luria-Bertaini) . Paza a construção das linhagens foi utilizada a cepa industrial de S. cerevisiae PE-2, mantida em meio YEPD. Construção do casete de expressao [57] For plasmid cloning and multiplication experiments the Escherichia coli DH5μ bacterial strain (Stratagene®) was used. When necessary, the strain was activated at 37 ° C by depletion in LB (Luria-Bertaini) culture medium. For the construction of the strains was used the industrial strain of S. cerevisiae PE-2, maintained in YEPD medium. Expression cassette construction
[58] Para a construção dos cassetes foi utilizada a técnica descrita por Gibson et al. (2009), que consiste na fusão de fragmentos de DNA com um mix das enzimas T5 exonuclease, Taq ligase e DNA polimerase em uma única reaçâo. Para o processo de seleçâo, foi utilizado o sistema Cre/loxP (Gueldener et al., 2002). O gene URA3 foi amplificado por PCR, juntamente ao seu promotor e terminador, e foram adicionadas sequências loxP na mesma orientação/ nas duas extremidades, permitindo que esse marcador seja utilizado em os cassetes de transformação. Sequências de homologia ao local de inserção foram adicionadas nas extremidades dos cassetes.  [58] For the construction of cassettes, the technique described by Gibson et al. (2009), which consists of fusing DNA fragments with a mixture of T5 exonuclease, Taq ligase and DNA polymerase enzymes in a single reaction. For the selection process, the Cre / loxP system was used (Gueldener et al., 2002). The URA3 gene was PCR amplified, along with its promoter and terminator, and loxP sequences were added in the same orientation / at both ends, allowing this marker to be used in the transformation cassettes. Homology sequences at the insertion site were added at the ends of the cassettes.
Txmnmtormmçào dm lmvmdaxm m pxoemmmo dm seleçao Txmnmtormmm dm lmvmdaxm m pxoemmmo dm selection
(59} A transformação de levedura for feita utilizando o método de acetato de litio descrito por Gietz e Schiestl (2007) . A linhagem utilizada para a transformação ê um esporo haplóide mat α derivado do diplóide S. cerevísiae PE-2. Para iniciar as introduções dos cassetes, a linhagem teve o gene URA3 removido para ser utilizado como marca auxotròfica. Os transformantes foram selecionados em meio YNB (sem uracila) . A retirada do marcador pode então ser realizada com o plasmideo pSH65 (Gueldener et al., 2002), que contém o gene que codifica a recombinase Cre sob a açâo do promotor induzivel por galactose. (59} The transformation of yeast is done using the lithium acetate method described by Gietz and Schiestl (2007) .The strain used for the transformation is a haploid spore mat α derived from the diploid S. cerevísiae PE-2. cassette introductions, the strain had the URA3 gene removed to be used as an auxotrophic tag.The transformants were selected on YNB medium (without uracil) .The removal of the marker can then be performed with plasmid pSH65 (Gueldener et al., 2002). , which contains the gene encoding Cre recombinase under the action of the galactose-inducible promoter.
Ensaio fermentativo Fermentation test
Cultivo em erlenmeyer Erlenmeyer cultivation
160] 0 ensaio fermentativo foi realizado em meio YPDX (20 g/L de glicose e 50 g/L de xilose) em erlenmeyers de 125 ml e volume de trabalho de 80 ml, iniciando a cultura com GD de aproximadamente 1,0. A temperatura e velocidade de agitação foram mantidas constantes, respectivamente, em 30 °C e 80 rpm. Amostras foram retiradas para medir OD e para posterior análise por cromatografia liquida de alta eficiência (HPLC) . Cultivo em biorreator [61] 0 ensaio fermentativo foi realizado em meio YPDX (20 g/L de glicose e 50 g/L de xilose) em biorreatores de 2,5 L de volume útil, Labfors (Infors HT) . O volume de trabalho utilizado foi de 1 L, com pH mantido constante durante o crescimento celular em 5, 5 pela adição de solução aquosa de NaOH 6 mols/L, iniciando a cultura com OD de aproximadamente 1/0. A temperatura e velocidade de agitação foram mantidas constantes em 30 eC e 150 rpm respectivamente. Para garantir o estado de anaerobiose, antes da inoculação, o meio de cultivo e a atmosfera do biorreator foram saturados com fluxo de nitrogénio gasoso de 3 LN/min (litros normais poz minuto) durante 10 minutos. Amostras eram retiradas para medir OD e para posterior análise por cromatografia liquida de alta eficiência (HPLC) . 160] The fermentative assay was performed in YPDX medium ( 20 g / l glucose and 50 g / l xylose) in 125 ml conical flasks and 80 ml working volume, starting the culture with approximately 1.0 GD. The temperature and stirring rate were kept constant at 30 ° C and 80 rpm respectively. Samples were taken to measure OD and for further analysis by high performance liquid chromatography (HPLC). Bioreactor cultivation [61] The fermentative assay was performed in YPDX medium (20 g / L glucose and 50 g / L xylose) in 2.5 L bioreactors, Labfors (Infors HT). The working volume used was 1 L, with pH kept constant during cell growth at 5.5 by the addition of 6 mol / L aqueous NaOH solution, starting the culture with approximately 1/0 OD. The temperature and stirring speed were kept constant at 30 and C and 150 rpm respectively. To ensure anaerobic condition, prior to inoculation, the bioreactor culture medium and atmosphere were saturated with a nitrogen gas flow of 3 LN / min (normal liters per minute) for 10 minutes. Samples were taken to measure OD and for further analysis by high performance liquid chromatography (HPLC).
Quantificaçio dos produtos da fermentaçio  Quantification of fermentation products
[62] A quantificação de glicose, xilose, zilitol, glicerol, ácido acético e etanol foi realizada por Cromatografia Liquida de Alta Eficiência (HPLC) utilizando o cromatógrafo Alliance HT (Waters) com detector de Índice de refração (Waters 2414). As amostras foram analisadas por HPLC-RI utilizando a coluna de exclusão iõnica HPX-87H (300mm κ 7,8mm, BioRadS») , aquecida em forno a 35 EC, H2SO2mM (pH 2,3) como fase móvel a uma vazão de 0,6 raL/min. Uma curva padrão com as concentrações conhecidas com compostos de interesse também foram analisadas pelo mesmo procedimento. As concentrações dos compostos nas amostras foram determinadas por comparação das áreas dos picos cromatográficos obtidos com as curvas de calibração. O crescimento da linhagem LVY127, modificada com as vias de conversão de xilose, objeto da presente invenção, foi comparado com a linhagem selvagem PE-2, identificada na figura 2 como WT ("wild-type") . 0 ensaio fermentativo foi conduzido em meio contendo uma mistura de glicose e xilose- nas concentrações de 10 e 30 g/L, respectivamente. A figura 2 demonstra que a linhagem LVY127 agora é capa: de consumir toda a xilose presente no meio, enquanto que a linhagem selvagem não foi capaz de consumir esse açúcar. 0 experimento foi conduzido em triplicata. A levedura LVY127 (D8M32120) possui aplicação em qualquer processo que envolva o consumo de xilose. [62] Quantification of glucose, xylose, zylitol, glycerol, acetic acid and ethanol was performed by High Performance Liquid Chromatography (HPLC) using the Alliance HT (Waters) refractive index detector chromatograph (Waters 2414). Samples were analyzed by HPLC-RI using ion exclusion HPX-87H column (300mm κ 7,8mm, BioRadS '), heated in furnace 35 and C 2 H 2 SO mM (pH 2.3) as mobile phase at a flow rate of 0.6 raL / min. A standard curve with known concentrations of compounds of interest was also analyzed by the same procedure. The concentrations of the compounds in the samples were determined by comparing the chromatographic peak areas obtained with the calibration curves. The growth of the LVY127 strain, modified with the xylose conversion pathways object of the present invention, was compared to the wild type PE-2 strain, identified in figure 2 as WT ("wild-type"). The fermentative assay was conducted in medium containing a mixture of glucose and xylose at concentrations of 10 and 30 g / l, respectively. The figure 2 demonstrates that the LVY127 strain is now able to consume all the xylose present in the medium, whereas the wild strain was unable to consume this sugar. The experiment was conducted in triplicate. LVY127 (D8M32120) yeast has application in any process involving the consumption of xylose.
[63] A performance fermentativa da linhagem LVY127 (DSM32120) foi avaliada em condições semi-anaeròbicas em meio contendo xilose e glicose como fontes de carbono, iniciando com baixo volume de células com de
Figure imgf000022_0001
[63] The fermentative performance of the LVY127 strain (DSM32120) was evaluated under semi-anaerobic conditions in medium containing xylose and glucose as carbon sources, starting with low cell volume with
Figure imgf000022_0001
aproximadamente 1.0 (0.25 g DW/L) . A linhagem apresentou um rendimento de etanol de 36%, além de uma diminuição nos rendimentos dos subprodutos xilitol e glicerol em relação as linhagens predecessoras, com 6% e 8%, respectivamente. approximately 1.0 (0.25 g DW / L). The lineage showed an ethanol yield of 36%, besides a decrease in the yields of the xylitol and glycerol byproducts in relation to the predecessor lines, with 6% and 8%, respectively.

Claims

REIVINDICAçOES
1. Cassete de expressão gênica 1 caracterizado por compreender:  1. Gene expression cassette 1 comprising:
- xilose redutase(XR) de S. stipitís sob a açâo do promotor e termlnador do gene que codifica 3-fosfoglicerato Quinase (PGK1) em S. cerevislae;  - xylose reductase (XR) of S. stipitís under the action of the promoter and terminator of the gene encoding 3-phosphoglycerate kinase (PGK1) in S. cerevislae;
- gene URA3 de S. cerevísiae, juntamente com seu promotor e termlnador, flanqueado por dois sítios loxP em cada extremidade e na mesma orientação;  - S. cerevísiae URA3 gene, together with its promoter and terminator, flanked by two loxP sites at each end and in the same orientation;
- gene xilitol desidrogenase de S. stipitís sob a açâo do promotor e terminador do gene que codifica a Gliceraldeido 3-Fosfato Desidrogenase, isoenzima 1 ITDH1) em S. cerevísiae, clonados no vetor pRS304; e  - S. stipitís xylitol dehydrogenase gene under the action of the promoter and terminator of the gene encoding Glyceraldehyde 3-Phosphate Dehydrogenase, isoenzyme 1 ITDH1) in S. cerevisiae, cloned into vector pRS304; and
- sequência de nucleotideos representada pela SEQ AD NO: 1. - nucleotide sequence represented by SEQ AD NO: 1.
2. Cassete de expressão gênica 2 caracterizado por compreender: 2. Gene expression cassette 2 comprising:
- promotor (ADH1) e terminador (ADK1) do gene que codifica a enzima xiluloquinase em S. cerevislae;  promoter (ADH1) and terminator (ADK1) of the gene encoding the enzyme xylulokinase in S. cerevislae;
- gene URA3 de S. cerevísiae, juntamente com seu promotor e terminador, flanqueado por dois sítios lo/P em cada extremidade e na mesma orientação; e  - S. cerevísiae URA3 gene, together with its promoter and terminator, flanked by two lo / P sites at each end and in the same orientation; and
- sequência de nucleotideos representada pela SEQ AD NO: 2. - nucleotide sequence represented by SEQ AD NO: 2.
3. Cassete de expressão gênica 3 caracterizado por compreender : 3. Gene expression cassette 3 comprising:
- gene xilitol desidrogenase (XDH) de S. stipitis sob a acão do promotor e terminador do gene que codifica a Gliceraldeido 3-Fosfato Desidrogenase, isoenzima 1 (TDHl) em S. cerevísiae;  S. stipitis xylitol dehydrogenase (XDH) gene under the action of the promoter and terminator of the gene encoding Glyceraldehyde 3-Phosphate Dehydrogenase, isoenzyme 1 (TDH1) in S. cerevísiae;
- gene URA3 de S. cerevísiae, juntamente com seu promotor e terminador, flanqueado por dois sítios loxP em cada extremidade e na mesma orientação; e  - S. cerevísiae URA3 gene, together with its promoter and terminator, flanked by two loxP sites at each end and in the same orientation; and
- sequência de nucleotideos representada pela SEQ AD NO: 3. - nucleotide sequence represented by SEQ AD NO: 3.
4. Levedura geneticamente modificada oaraotarixada por ser4. Genetically Modified Yeast
Sacchaxomyces cerevísiae DSM32120. Sacchaxomyces cerevisiae DSM32120.
5. Levedura, de acordo com a reivindicação A, caractarisada por ser construída com a inserção de 1 cópia do gene que codifica a xilose redutase (XR) de S. stípltis, 2 cópias do gene que codifica a xilitol desidrogenase (XOH) de S. stipitls, deleção da aldose redutase GRE3 e inserção de 2 cópias de XKS1. Yeast according to claim A, characterized in that it is constructed with the insertion of 1 copy of the gene encoding S. xplose reductase (XR), 2 copies of the gene encoding xylitol dehydrogenase (XOH). stipitls, GRE3 aldose reductase deletion and insertion of 2 copies of XKS1.
6. Processo de obtenção de etanol 2G caraeterisado por ser realizado com a levedura Saccharomyces cerevisiae DSM32120. 6. Process for obtaining 2G ethanol characterized by being carried out with the yeast Saccharomyces cerevisiae DSM32120.
7. Uso da levedura conforme descrita nas reivindicações 4 e 5 oaractarisado por ser para aplicação em qualquer processo que envolva o consumo de xilose. Use of the yeast as described in claims 4 and 5 for use in any process involving the consumption of xylose.
PCT/BR2017/000064 2016-07-28 2017-06-26 Industrial yeast lvy127 genetically modified via the oxy-reductive xylose conversion pathway, genetic expression cartridges, method for obtaining ethanol 2g and use of the yeast lvy127 WO2018018111A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102016017560 2016-07-28
BRBR1020160175607 2016-07-28

Publications (1)

Publication Number Publication Date
WO2018018111A1 true WO2018018111A1 (en) 2018-02-01

Family

ID=61015163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2017/000064 WO2018018111A1 (en) 2016-07-28 2017-06-26 Industrial yeast lvy127 genetically modified via the oxy-reductive xylose conversion pathway, genetic expression cartridges, method for obtaining ethanol 2g and use of the yeast lvy127

Country Status (1)

Country Link
WO (1) WO2018018111A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866382A (en) * 1990-04-06 1999-02-02 Xyrofin Oy Xylose utilization by recombinant yeasts
US20090246857A1 (en) * 1996-05-06 2009-10-01 Purdue Research Foundation Stable recombinant yeasts for fermenting xylose to ethanol
US20120329104A1 (en) * 2011-06-27 2012-12-27 Seoul University Research and Business Foundation Modified microorganism having enhanced xylose utilization
BR102014014407A2 (en) * 2014-06-12 2016-04-19 Biocelere Agroindustrial Ltda expression cassette to transform eukaryotic cell, genetically modified micro-organism with efficient xylose consumption, process for biofuel and biochemical production and biofuel and / or biochemical thus produced
BR102014027984A2 (en) * 2014-11-07 2016-06-07 Biocelere Agroindustrial Ltda expression cassette, process, microorganism, biofuel and / or biochemical production process and biofuel and / or biochemical

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866382A (en) * 1990-04-06 1999-02-02 Xyrofin Oy Xylose utilization by recombinant yeasts
US20090246857A1 (en) * 1996-05-06 2009-10-01 Purdue Research Foundation Stable recombinant yeasts for fermenting xylose to ethanol
US20120329104A1 (en) * 2011-06-27 2012-12-27 Seoul University Research and Business Foundation Modified microorganism having enhanced xylose utilization
BR102014014407A2 (en) * 2014-06-12 2016-04-19 Biocelere Agroindustrial Ltda expression cassette to transform eukaryotic cell, genetically modified micro-organism with efficient xylose consumption, process for biofuel and biochemical production and biofuel and / or biochemical thus produced
BR102014027984A2 (en) * 2014-11-07 2016-06-07 Biocelere Agroindustrial Ltda expression cassette, process, microorganism, biofuel and / or biochemical production process and biofuel and / or biochemical

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ELIASSON, A. ET AL.: "Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures", APPL ENVIRON MICROBIOL, vol. 66, no. 8, 2000, pages 3381 - 3386, XP000973771 *
GUELDENER, U. ET AL.: "A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast", NUCLEIC ACIDS RES., vol. 30, no. 6, 2002, pages e23-1 - e23-8, XP002676129 *
HAHN-HAGERDAL, B. ET AL.: "Towards industrial pentose- fermenting yeast strains", APPL MICROBIOL BIOTECHNOL, vol. 74, no. 5, 2007, pages 937 - 953, XP019489564 *
JOHANSSON, B. ET AL.: "Overproduction of pentose phosphate pathway enzymes using a new CRE-loxP expression vector for repeated genomic integration in Saccharomyces cerevisiae", YEAST, vol. 19, no. 3, 2002, pages 225 - 231, XP002399562 *
KARHUMAA, K. ET AL.: "Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae", MICROB CELL FACT, vol. 6, no. 5, 2007, pages 1 - 10, XP021024086 *
KARHUMAA, K. ET AL.: "Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering", YEAST, vol. 22, no. 5, 2005, pages 359 - 368, XP002494168 *
TRAFF, K. L. ET AL.: "Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes", APPL ENVIRON MICROBIOL, vol. 67, no. 12, 2001, pages 5668 - 5674, XP055461812 *

Similar Documents

Publication Publication Date Title
Dasgupta et al. Challenges and prospects of xylitol production with whole cell bio-catalysis: A review
US11655484B2 (en) Electron consuming ethanol production pathway to displace glycerol formation in S. cerevisiae
Hou Anaerobic xylose fermentation by Spathaspora passalidarum
Wahlbom et al. Furfural, 5‐hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae
Bettiga et al. Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway
Almeida et al. NADH-vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae
Karhumaa et al. Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains
Kuyper et al. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle
Eliasson et al. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures
US8445243B2 (en) Hexose-pentose cofermenting yeast having excellent xylose fermentability and method for highly efficiently producing ethanol using the same
Sasaki et al. Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation
EP1727890B1 (en) Mutated xylose reductase in xylose-fermentation by s. cerevisiae
CN102046776B (en) thermotolerant yeast hansenula polymorpha for overexpression of xylose reductase , xylitol dehydrogenase and xylulokinase to improve xylose alcoholic fermentation
Wang et al. Coutilization of D-glucose, D-xylose, and L-arabinose in Saccharomyces cerevisiae by coexpressing the metabolic pathways and evolutionary engineering
Ehsani et al. Reversal of coenzyme specificity of 2, 3‐butanediol dehydrogenase from Saccharomyces cerevisae and in vivo functional analysis
Suzuki et al. High-temperature ethanol production by a series of recombinant xylose-fermenting Kluyveromyces marxianus strains
Matsushika et al. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase
Reshamwala et al. Exploiting the NADPH pool for xylitol production using recombinant Saccharomyces cerevisiae
US20180030482A1 (en) Use of acetaldehyde in the fermentative production of ethanol
CN106434402B (en) Saccharomyces cerevisiae strain for expressing xylose isomerase and construction method thereof
Tamakawa et al. Construction of a Candida utilis strain with ratio-optimized expression of xylose-metabolizing enzyme genes by cocktail multicopy integration method
US8603776B2 (en) Method for preparing xylose-utilizing strain
JP2009112289A (en) Xylose fermentation yeast and method for producing ethanol by using the same
JP2005507255A (en) Fungal microorganisms with enhanced ability to carry out biotechnology processes
WO2018018111A1 (en) Industrial yeast lvy127 genetically modified via the oxy-reductive xylose conversion pathway, genetic expression cartridges, method for obtaining ethanol 2g and use of the yeast lvy127

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833116

Country of ref document: EP

Kind code of ref document: A1