WO2018016219A1 - Ejector-type refrigeration cycle - Google Patents

Ejector-type refrigeration cycle Download PDF

Info

Publication number
WO2018016219A1
WO2018016219A1 PCT/JP2017/021414 JP2017021414W WO2018016219A1 WO 2018016219 A1 WO2018016219 A1 WO 2018016219A1 JP 2017021414 W JP2017021414 W JP 2017021414W WO 2018016219 A1 WO2018016219 A1 WO 2018016219A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pressure
passage
valve body
refrigerant passage
Prior art date
Application number
PCT/JP2017/021414
Other languages
French (fr)
Japanese (ja)
Inventor
龍 福島
照之 堀田
池上 真
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018016219A1 publication Critical patent/WO2018016219A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/126Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a diaphragm, bellows, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits

Definitions

  • the present disclosure relates to an ejector refrigeration cycle including an ejector.
  • an ejector-type refrigeration cycle which is a vapor compression refrigeration cycle apparatus including an ejector
  • This type of ejector sucks the refrigerant flowing out of the evaporator from the refrigerant suction port and sucks the injected refrigerant and the sucked refrigerant in the ejector refrigeration cycle by the suction action of the high-speed jet refrigerant jetted from the nozzle section.
  • a suction pressurizing action (so-called pump action) in which the pressure is increased by mixing in the section is exhibited.
  • the refrigerant whose pressure has been increased by the pump action of the ejector is caused to flow out to the suction port side of the compressor.
  • the pressure of the suction refrigerant can be increased as compared with a normal refrigeration cycle apparatus in which the refrigerant evaporation pressure in the evaporator and the pressure of the suction refrigerant sucked into the compressor are substantially equal. Therefore, in the ejector refrigeration cycle, the power consumption of the compressor can be reduced as compared with a normal refrigeration cycle apparatus, and the coefficient of performance (COP) of the cycle can be improved.
  • the pumping action of the ejector described above is caused by the suction action and speed energy of the injected refrigerant injected from the nozzle part, so that the flow rate of the injected refrigerant decreases during low load operation where the flow rate of refrigerant circulating in the cycle decreases.
  • the pumping action is also reduced. If the pumping action is reduced, the refrigerant cannot flow into the evaporator, and the ejector refrigeration cycle may not be able to exhibit the refrigeration capacity.
  • Patent Document 1 discloses an ejector refrigeration cycle configured to be able to switch between a refrigerant circuit during normal operation and a refrigerant circuit during low-load operation.
  • the ejector-type refrigeration cycle of Patent Document 1 includes a bypass passage that allows the high-pressure refrigerant flowing out of the radiator to flow around the nozzle portion of the ejector.
  • the refrigerant circuit is switched to a refrigerant circuit that causes high pressure refrigerant to flow into the nozzle portion of the ejector and cause the ejector to exert a pumping action.
  • the high-pressure refrigerant is caused to flow into the bypass passage and switched to a similar refrigerant circuit of a normal refrigerant cycle device.
  • Patent Document 1 the ejector refrigeration cycle of Patent Document 1 employs a three-way valve as a refrigerant circuit switching device for switching the refrigerant circuit.
  • Patent Document 1 does not describe a specific configuration of the three-way valve.
  • a detection device for determining the operation condition of the electric three-way valve and a control device for controlling the operation of the electric three-way valve are provided. Necessary. For this reason, it becomes easy to invite the enlargement as the whole ejector type refrigerating cycle, and the complexity of a control mode. Therefore, it is desirable that a refrigerant circuit switching device that automatically operates according to a load change by a mechanical mechanism is employed.
  • a refrigerant circuit switching device of a mechanical mechanism for example, when a differential pressure valve that opens and closes a bypass passage according to a pressure difference between a high-pressure side refrigerant and a low-pressure side refrigerant in a cycle, the differential pressure valve is bypassed during low load operation. Even if the passage is opened, the inlet side of the nozzle part of the ejector cannot be closed. As a result, the high-pressure refrigerant flows into both the bypass passage and the nozzle portion of the ejector, and the refrigerant circuit cannot be switched reliably.
  • an object of the present disclosure is to provide an ejector-type refrigeration cycle in which a refrigerant circuit can be switched mechanically and reliably according to a load change.
  • an ejector refrigeration cycle includes a compressor that compresses and discharges a refrigerant, a radiator that dissipates heat from the refrigerant discharged from the compressor, and an outflow from the radiator.
  • An ejector having a boosting unit that sucks the refrigerant from the refrigerant suction port by the suction action of the jetted refrigerant jetted from the nozzle unit that depressurizes the refrigerant, and mixes the injected refrigerant and the suction refrigerant sucked from the refrigerant suction port to boost the pressure;
  • An evaporator that evaporates the refrigerant and flows out to the refrigerant suction port side, a bypass path that bypasses the nozzle section and guides the refrigerant radiated by the radiator to the upstream side from the refrigerant outlet of the evaporator, and a bypass path
  • a decompression section for decompressing the refrigerant flowing into the evaporator, and opening and closing the first refrigerant passage for guiding the refrigerant radiated by the radiator to the nozzle section side, and bypassing the refrigerant radiated by the radiator
  • the circuit switching valve is configured by a mechanical mechanism that closes the other when either one of the first refrigerant passage and the second refrigerant passage is opened. Further, when the differential pressure before and after subtracting the refrigerant pressure on the suction port side from the refrigerant pressure on the discharge port side of the compressor is lower than a predetermined reference front and rear differential pressure, the circuit switching valve Open the passage.
  • the circuit switching valve a mechanical mechanism that closes one of the first refrigerant passage and the second refrigerant passage when the other one is opened is adopted, and the front-rear differential pressure is the reference front-rear differential pressure. When it is lower than that, the one that opens the second refrigerant passage is adopted.
  • the circuit switching valve sets the reference front-rear differential pressure so as to open the first refrigerant passage side, so that the refrigerant radiated by the radiator flows into the ejector nozzle section.
  • the refrigerant circuit can be switched to.
  • annular cycle a normal refrigeration cycle in which the second refrigerant passage side opens and the refrigerant radiated by the radiator flows into the evaporator through the bypass passage. Therefore, it is easy to return the refrigeration oil remaining in the evaporator to the compressor at the start of the cycle.
  • the pressure difference obtained by subtracting the low-pressure side pressure of the refrigerant on the downstream side of the decompression section from the high-pressure side pressure of the refrigerant on the upstream side of the circuit switching valve as the circuit switching valve is a predetermined reference pressure.
  • the difference is greater than or equal to the difference, the first refrigerant passage is opened and the second refrigerant passage is closed. Further, when the pressure difference is lower than the reference pressure difference, the first refrigerant passage is closed and the first refrigerant passage is closed. You may employ
  • the first refrigerant passage is opened when the high pressure side pressure of the refrigerant upstream of the circuit switching valve is equal to or higher than a predetermined reference high pressure side pressure as the circuit switching valve.
  • the second refrigerant passage may be closed, and when the high-pressure side pressure is lower than the reference high-pressure side pressure, the first refrigerant passage may be closed and the second refrigerant passage may be opened.
  • the front-rear differential pressure when the high-pressure side pressure is the reference high-pressure side pressure may be set to the reference front-rear differential pressure.
  • refrigerant dissipated by a radiator means a refrigerant dissipated by at least a part of the radiator.
  • leading to the upstream side of the refrigerant outlet of the evaporator includes guiding to the upstream side of the refrigerant inlet of the evaporator. Furthermore, if it is upstream from the refrigerant outlet of the evaporator, it also includes guiding to the downstream side of the refrigerant outlet of the evaporator (for example, in the refrigerant passage of the evaporator).
  • the first embodiment will be described with reference to FIGS.
  • the ejector refrigeration cycle 10 of this embodiment shown in the overall configuration diagram of FIG. 1 is applied to a vehicle air conditioner, and has a function of cooling blown air that is blown into a vehicle interior (indoor space) that is an air-conditioning target space. Fulfill. Therefore, the fluid to be cooled in the ejector refrigeration cycle 10 is blown air.
  • the refrigerant circuit can be switched according to the air conditioning heat load. More specifically, during normal operation, the circuit is switched to a refrigerant circuit through which refrigerant flows as shown by the black arrows in FIG. 1, and during low load operation where the thermal load of the ejector refrigeration cycle 10 is lower than during normal operation. 1 can be switched to a refrigerant circuit through which the refrigerant flows, as indicated by the white arrows in FIG.
  • the ejector refrigeration cycle 10 employs an HFC refrigerant (specifically, R134a) as a refrigerant, and constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the refrigerant critical pressure.
  • This refrigerant is mixed with refrigerating machine oil for lubricating the compressor 11, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • the compressor 11 sucks the refrigerant and discharges it until it becomes a high-pressure refrigerant.
  • the compressor 11 is disposed in an engine room together with an engine (internal combustion engine) that outputs a driving force for vehicle travel.
  • the compressor 11 is an engine-driven compressor that is driven by a rotational driving force output from the engine via a pulley, a belt, and the like.
  • the compressor 11 is a swash plate type variable displacement compressor configured such that the refrigerant discharge capacity can be adjusted by changing the discharge capacity.
  • the compressor 11 has a discharge capacity control valve (not shown) for changing the discharge capacity. The operation of the discharge capacity control valve is controlled by a control current output from a control device described later.
  • the refrigerant inlet side of the condenser 12 a of the radiator 12 is connected to the discharge port of the compressor 11.
  • the radiator 12 is a heat exchanger for heat radiation that radiates and cools the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the outside air (outside air) blown from the cooling fan 12d. .
  • the radiator 12 is arranged on the vehicle front side in the engine room.
  • the condensing unit 12a is a heat exchange unit for condensation that exchanges heat between the high-pressure gas-phase refrigerant discharged from the compressor 11 and the outside air blown from the cooling fan 12d, and dissipates the high-pressure gas-phase refrigerant to condense.
  • the receiver unit 12b is a refrigerant container that separates the gas-liquid refrigerant flowing out from the condensing unit 12a and stores excess liquid-phase refrigerant.
  • the supercooling unit 12c is a heat exchange unit for supercooling that heat-exchanges the liquid refrigerant flowing out from the receiver unit 12b and the outside air blown from the cooling fan 12d to supercool the liquid refrigerant.
  • the cooling fan 12d is an electric blower whose rotation speed (amount of blown air) is controlled by a control voltage output from the control device.
  • FIG. 2 is a schematic cross-sectional view showing a state in which the circuit switching valve 13 is switched to a refrigerant circuit that causes the refrigerant flowing out of the radiator 12 to flow into the nozzle portion 15a side of the ejector 15.
  • FIG. 3 is a schematic cross-sectional view showing a state where the circuit switching valve 13 is switched to a refrigerant circuit that allows the refrigerant flowing out of the radiator 12 to flow into the bypass passage 20 side.
  • FIG. 4 is a schematic view showing a state where the circuit switching valve 13 instantaneously opens both the refrigerant passage on the nozzle portion 15a side and the refrigerant passage on the bypass passage 20 side when the circuit switching valve 13 switches the refrigerant circuit.
  • FIG. 4 is a schematic view showing a state where the circuit switching valve 13 instantaneously opens both the refrigerant passage on the nozzle portion 15a side and the refrigerant passage on the bypass passage 20 side when the circuit switching valve 13 switches the refrigerant circuit.
  • the circuit switching valve 13 includes a valve body 31, a valve body 32, a coil spring 33, and the like. As shown in FIGS. 2 to 4, the valve body 31 is formed in a prismatic shape or a cylindrical shape by combining a plurality of structural members made of metal or resin. The valve body 31 forms an outer shell of the circuit switching valve 13 and houses a valve body 32, a coil spring 33, and the like therein.
  • the valve body 31 has a high-pressure refrigerant inlet 31a, a first refrigerant outlet 31b, and a second refrigerant outlet 31c.
  • a plurality of refrigerant passages such as an inflow passage 30a, a first refrigerant passage 30b, and a second refrigerant passage 30c are formed inside the valve body 31.
  • the high-pressure refrigerant inlet 31a is a refrigerant inlet through which the refrigerant that has flowed out of the radiator 12 flows into the inflow passage 30a.
  • the first refrigerant outlet 31b is a refrigerant outlet through which refrigerant flowing through the first refrigerant passage 30b flows out to the nozzle portion 15a side of the ejector 15 (more specifically, to the refrigerant inlet side of the expansion valve 14 described later).
  • the second refrigerant outlet 31c is a refrigerant outlet through which the refrigerant flowing through the second refrigerant passage 30c flows out to the bypass passage 20 side.
  • the first refrigerant passage 30b is a refrigerant passage that communicates with the inflow passage 30a and guides the refrigerant flowing out of the radiator 12 to the nozzle portion 15a side of the ejector 15.
  • the second refrigerant passage 30c is a refrigerant passage that communicates with the inflow passage 30a and guides the refrigerant flowing out of the radiator 12 to the bypass passage 20 side.
  • the valve body 32 includes a spherical ball valve 32a that opens and closes the inlet of the first refrigerant passage 30b, and a disk-like plate valve 32b that opens and closes the inlet of the second refrigerant passage 30c.
  • a rubber seal member 32c is disposed in a portion of the plate-like valve 32b that contacts the inlet of the second refrigerant passage 30c.
  • the ball valve 32a and the plate valve 32b are connected by a connecting rod extending in the displacement direction of the valve body 32.
  • the plate valve 32b is displaced toward the side that opens the second refrigerant passage 30c.
  • the plate-like valve 32b is displaced toward the side closing the second refrigerant passage 30c.
  • valve body 32 is connected to a pressure receiving portion 34 disposed in a columnar space of the second refrigerant passage 30c on the downstream side of the refrigerant flow with respect to the plate-like valve 32b.
  • the pressure receiving part 34 is formed of a metal columnar member.
  • the inner diameter of the second refrigerant passage 30c and the outer diameter of the pressure receiving portion 34 are in a dimensional relationship with a clearance fit. For this reason, the pressure receiving part 34 is disposed in the second refrigerant passage 30c so as to be slidable in the central axis direction.
  • an O-ring as a seal member is disposed in the gap between the inner peripheral surface of the second refrigerant passage 30c and the outer peripheral surface of the pressure receiving portion 34, and the refrigerant does not leak from these gaps.
  • the pressure receiving portion 34 is formed with an orifice hole 34a extending in the central axis direction and communicating the inlet side of the second refrigerant passage 30c and the outlet side of the second refrigerant passage 30c.
  • the orifice hole 34a is formed with a sufficiently thin diameter with respect to the second refrigerant passage 30c.
  • the refrigerant flowing through the second refrigerant passage 30c and flowing out from the second refrigerant outlet 31c is decompressed when passing through the orifice hole 34a. Further, a differential pressure between the inlet side pressure Pri of the inlet side refrigerant in the orifice hole 34a and the outlet side pressure Pro of the outlet side refrigerant in the orifice hole 34a acts on the pressure receiving portion 34.
  • the orifice hole 34a is a pressure reducing unit that depressurizes the refrigerant flowing into the evaporator 19 to be described later via the bypass passage 20.
  • the pressure reducing part is formed in the circuit switching valve 13
  • the pressure reducing part and the circuit switching valve are integrally formed.
  • the coil spring 33 is an elastic member that applies a load to the valve body portion 32 while the ball valve 32a closes the first refrigerant passage 30b and the plate-like valve 32b opens the second refrigerant passage 30c.
  • the load of the coil spring 33 of this embodiment is set as follows. First, in the following description, a value obtained by subtracting the low pressure side pressure PL of the refrigerant downstream of the orifice hole 34a from the high pressure side pressure PH of the refrigerant upstream of the circuit switching valve 13 is defined as a pressure difference ⁇ P.
  • the load of the coil spring 33 of the present embodiment opens the first refrigerant passage 30b and closes the second refrigerant passage 30c. Is set to On the other hand, when the pressure difference ⁇ P is lower than the reference pressure difference K ⁇ P, the first refrigerant passage 30b is closed and the second refrigerant passage 30c is opened.
  • the low-pressure side pressure PL is the pressure of the refrigerant on the downstream side of the orifice hole 34a, the pressure of the refrigerant on the inlet side of the evaporator 19, the pressure of the refrigerant on the outlet side of the evaporator 19 described later, or the compressor 11
  • the pressure of the suction refrigerant can be adopted.
  • the pressure of the evaporator 19 outlet side refrigerant is adopted as the low pressure side pressure PL.
  • the outlet side pressure Pro of the outlet side refrigerant of the orifice hole 34a may be adopted as the low pressure side pressure PL.
  • the front-rear differential pressure ⁇ Pc obtained by subtracting the refrigerant pressure on the suction side from the refrigerant pressure on the discharge port side of the compressor 11 when the pressure difference ⁇ P is the reference pressure difference K ⁇ P is obtained.
  • the pressure is defined as K ⁇ Pc. Therefore, when the front-rear differential pressure ⁇ Pc is lower than the reference front-rear differential pressure K ⁇ Pc, the load of the coil spring 33 according to the present embodiment closes the first refrigerant passage 30b and the second refrigerant. It is set to open the passage 30c.
  • the circuit switching valve 13 of the present embodiment is a mechanical mechanism that selectively opens one of the first refrigerant passage 30b and the second refrigerant passage 30c (that is, closes the other when one of them is opened). It consists of
  • the set load and various specifications of the coil spring 33 are determined so as to satisfy the following formulas F1 to F3.
  • A1 is the difference between the high pressure side pressure PH and the inlet side pressure Pri of the valve body portion 32 when the valve body portion 32 closes the second refrigerant passage 30c. This is the first pressure receiving area A1 where pressure acts.
  • a ⁇ b> 2 is a second pressure receiving area A ⁇ b> 2 in which a differential pressure between the inlet side pressure Pri and the outlet side pressure Pro of the pressure receiving unit 34 acts.
  • Fsp1 is a first set load Fsp1 that the coil spring 33 acts on the valve body portion 32 when the pressure difference ⁇ P becomes the reference pressure difference K ⁇ P.
  • FIG. 2 to FIG. 4 a portion corresponding to the diameter of the first pressure receiving area A1 having a circular shape is denoted by A1. The same applies to the second pressure receiving area A2 and the third pressure receiving area.
  • the relationship of the above formula F1 is realized by the difference between the inner diameter and the outer diameter of the cylindrical seat portion 31d with which the seal member 32c of the plate valve 32b abuts.
  • the set load and various specifications of the coil spring 33 are determined so as to satisfy the relationships of the following formulas F4 to F6.
  • A3 indicates that when the valve body 32 closes the first refrigerant passage 30b, the high pressure side pressure PH and the first refrigerant passage 30b side ( That is, it is the third pressure receiving area A3 on which the differential pressure with the nozzle side pressure Pnoz on the inlet side of the nozzle portion 15a acts.
  • Fsp2 is a second set load Fsp2 that the coil spring 33 acts on the valve body portion 32 when the valve body portion 32 closes the first refrigerant passage 30b.
  • valve body 31 is provided with a receiving member 33a for supporting the coil spring 33.
  • the receiving member 33a is fixed to the valve body 31 with screws. Therefore, the load of the coil spring 33 can be adjusted by displacing the receiving member 33a.
  • the refrigerant inlet side of the expansion valve 14 is connected to the first refrigerant outlet 31b of the circuit switching valve 13.
  • the expansion valve 14 is a so-called external pressure equalizing box type temperature expansion valve.
  • the expansion valve 14 is a flow rate adjusting device that depressurizes the high-pressure liquid-phase refrigerant that has flowed out of the supercooling portion 12c of the radiator 12 until it becomes an intermediate-pressure refrigerant and adjusts the circulating refrigerant flow rate that circulates in the cycle. Further, the expansion valve 14 of the present embodiment adjusts the circulating refrigerant flow rate so that the superheat degree SH of the evaporator 19 outlet side refrigerant approaches a predetermined reference superheat degree KSH.
  • Such an expansion valve 14 includes a temperature sensing part having a displacement member (diaphragm) that is displaced according to the temperature and pressure of the refrigerant that has flowed out of the evaporator 19, and the outlet of the evaporator 19 according to the displacement of the displacement member. It is possible to employ one in which the valve opening degree (refrigerant flow rate) is adjusted by a mechanical mechanism so that the superheat degree of the side refrigerant approaches the reference superheat degree.
  • the inlet side of the nozzle portion 15 a of the ejector 15 is connected to the refrigerant outlet of the expansion valve 14.
  • the ejector 15 functions as a decompression device that decompresses the refrigerant flowing out of the expansion valve 14 (that is, the refrigerant flowing out of the radiator 12) during normal operation.
  • the ejector 15 injects the refrigerant that has flowed out of the expansion valve 14 by reducing the pressure at the nozzle portion 15a, and the refrigerant that has flowed out of the evaporator 19 by the suction action of the injected refrigerant that is injected at a high speed (that is, the evaporator 19). It functions as a refrigerant transport device that sucks and transports (exit-side refrigerant).
  • the ejector 15 has a nozzle portion 15a and a body portion 15b.
  • the nozzle portion 15a is formed of a substantially cylindrical member made of metal (stainless steel in the present embodiment) that gradually tapers in the direction of refrigerant flow.
  • the nozzle portion 15a decompresses the refrigerant in an isentropic manner in the refrigerant passage formed inside.
  • a throat portion (minimum passage area portion) having the smallest passage cross-sectional area is formed, and further, from the throat portion toward the refrigerant injection port for injecting the refrigerant.
  • a divergent portion in which the refrigerant passage area is enlarged is formed. That is, the nozzle portion 15a is configured as a Laval nozzle.
  • the nozzle unit 15a is set such that the flow rate of the injected refrigerant injected from the refrigerant injection port is equal to or higher than the sonic speed during normal operation of the ejector refrigeration cycle 10.
  • the body portion 15b is formed of a cylindrical member made of metal (in this embodiment, made of an aluminum alloy), and functions as a fixing member that supports and fixes the nozzle portion 15a therein, and forms an outer shell of the ejector 15. To do.
  • the nozzle portion 15a is fixed by press-fitting so as to be accommodated inside the longitudinal end of the body portion 15b. For this reason, a refrigerant
  • a refrigerant suction port 15c provided so as to penetrate the inside and outside of the outer peripheral surface of the body portion 15b and communicate with the refrigerant injection port of the nozzle portion 15a is provided in a portion corresponding to the outer peripheral side of the nozzle portion 15a. Is formed.
  • the refrigerant suction port 15c is a through hole that sucks the refrigerant that has flowed out of the evaporator 19 into the ejector 15 by the suction action of the injection refrigerant that is injected from the nozzle portion 15a.
  • a suction passage that guides the suction refrigerant sucked from the refrigerant suction port 15c to the refrigerant injection port side of the nozzle portion 15a, and a suction refrigerant that flows into the ejector 15 through the suction passage.
  • a diffuser portion 15d which is a pressure increasing portion that increases the pressure by mixing the injected refrigerant, is formed.
  • the diffuser portion 15d is disposed so as to be continuous with the outlet of the suction passage, and is formed so that the refrigerant passage area gradually increases.
  • the inlet side of the accumulator 16 is connected to the refrigerant outlet of the diffuser part 15d.
  • the accumulator 16 is a gas-liquid separation unit that separates the gas-liquid refrigerant flowing out of the diffuser unit 15d.
  • the accumulator 16 is provided with a gas phase refrigerant outlet through which the separated gas phase refrigerant flows out and a liquid phase refrigerant outlet through which the separated liquid phase refrigerant flows out.
  • One refrigerant inlet of the three-way joint 18 is connected to the liquid phase refrigerant outlet of the accumulator 16 via a check valve 17.
  • the check valve 17 only allows the refrigerant flowing out from the liquid-phase refrigerant outlet of the accumulator 16 to flow to the three-way joint 18 side.
  • the three-way joint 18 is a pipe joint having three refrigerant outlets.
  • two of the three refrigerant inlets / outlets are used as refrigerant inlets, and the remaining one is used as a refrigerant outlet.
  • the refrigerant inlet of the evaporator 19 is connected to the refrigerant outlet of the three-way joint 18. Therefore, the check valve 17 is a suppression mechanism that suppresses the refrigerant from flowing from the inlet side of the evaporator 19 to the liquid phase refrigerant outlet side of the accumulator 16.
  • the evaporator 19 performs heat exchange between the low-pressure refrigerant decompressed by the ejector 15 and the blown air blown into the vehicle compartment from the blower fan 19a, thereby evaporating the low-pressure refrigerant and exerting an endothermic effect. It is a vessel.
  • the blower fan 19a is an electric blower in which the rotation speed (the amount of blown air) is controlled by a control voltage output from the control device.
  • the refrigerant suction port 15 c side of the ejector 15 is connected to the outlet side of the evaporator 19. Further, the suction port side of the compressor 11 is connected to the gas-phase refrigerant outlet of the accumulator 16.
  • bypass passage 20 guides the refrigerant radiated by the radiator 12 to the side of the three-way joint 18 disposed on the upstream side of the refrigerant flow from the refrigerant outlet of the evaporator 19 by bypassing the nozzle portion 15a of the ejector 15. It is a refrigerant passage.
  • a control device (not shown) includes a known microcomputer including a CPU, a ROM, a RAM, and the like and its peripheral circuits. This control device performs various calculations and processes based on a control program stored in the ROM. The control device controls the operation of the various electric compressors 11 and the cooling fan 12d described above.
  • the control device is connected to a plurality of air conditioning control sensor groups such as an inside air temperature sensor, an outside air temperature sensor, a solar radiation sensor, an evaporator temperature sensor, an outlet side temperature sensor, and an outlet side pressure sensor.
  • the detected value is input.
  • the inside air temperature sensor is an inside air temperature detecting device that detects the vehicle interior temperature.
  • the outside air temperature sensor is an outside air temperature detecting device that detects outside air temperature.
  • a solar radiation sensor is a solar radiation amount detection apparatus which detects the solar radiation amount in a vehicle interior.
  • the evaporator temperature sensor is an evaporator temperature detection device that detects the blown air temperature (evaporator temperature) of the evaporator 19.
  • the outlet side temperature sensor is an outlet side temperature detecting device that detects the temperature of the radiator 12 outlet side refrigerant.
  • the outlet-side pressure sensor is an outlet-side pressure detection device that detects the pressure of the radiator 12 outlet-side refrigerant.
  • an operation panel (not shown) disposed near the instrument panel in the front part of the vehicle interior is connected to the input side of the control device, and operation signals from various operation switches provided on the operation panel are input to the control device.
  • various operation switches provided on the operation panel there are provided an air conditioning operation switch for requesting air conditioning in the vehicle interior, a vehicle interior temperature setting switch for setting the vehicle interior temperature, and the like.
  • control device of the present embodiment is configured such that a control unit that controls the operation of various control target devices connected to the output side is integrally configured.
  • the configuration (hardware and software) for controlling the operation of the system constitutes a control unit of each control target device.
  • the configuration for controlling the refrigerant discharge capacity of the compressor 11 by controlling the operation of the discharge capacity control valve of the compressor 11 constitutes the discharge capacity control unit.
  • the discharge capacity control unit may be configured as a separate control device with respect to the control device.
  • the operation of the ejector refrigeration cycle 10 of the present embodiment having the above configuration will be described.
  • the refrigerant circuit during normal operation and the refrigerant circuit during low-load operation can be switched.
  • the refrigerant circuit is switched to the refrigerant circuit during normal operation, and the pressure difference ⁇ P Is switched to the refrigerant circuit at the time of low load operation when the pressure difference is equal to or less than the reference pressure difference K ⁇ P.
  • the control device executes an air conditioning control program stored in advance, and the electric motor and cooling fan of the compressor 11 12d and the operation of the blower fan 19a are controlled.
  • the refrigerant in the ejector refrigeration cycle 10 is often pressure-equalized, except when the vehicle is restarted in a short time after stopping.
  • the front-rear differential pressure ⁇ Pc is lower than the reference front-rear differential pressure K ⁇ Pc. Therefore, in the circuit switching valve 13, as shown in FIG. 3, the first refrigerant passage 30b is closed and the second refrigerant passage 30c is opened.
  • the refrigerant pressure in the cycle has a relationship shown in the following formulas F7 to F10.
  • PH Pri (F7) Pri> Pro (F8) Pro ⁇ PL (F9) Pro ⁇ Pnoz (F10)
  • the load on the side that opens the first refrigerant passage 30b due to the pressure difference ⁇ P that is, (A2-A3) ⁇ ⁇ P
  • the state where the second refrigerant passage 30c is opened is maintained until it becomes larger than the set load Fsp2.
  • the pressure of the refrigerant on the outlet side of the radiator 12 (that is, the refrigerant pressure at the high pressure refrigerant inlet 31a of the circuit switching valve 13) is adopted as the high pressure side pressure PH. Further, the pressure of the refrigerant on the inlet side of the expansion valve 14 (that is, the refrigerant pressure at the first refrigerant outlet 31b of the circuit switching valve 13) is employed as the nozzle side pressure Pnoz.
  • valve body portion When the pressure difference ⁇ P between the high-pressure side pressure PH and the low-pressure side pressure PL is expanded by the suction compression action of the compressor 11 during normal operation and reaches the reference pressure difference K ⁇ P, the valve body portion is shown in FIG.
  • the 32 ball valves 32a open the first refrigerant passage 30b, and the plate-like valve 32b is displaced to close the second refrigerant passage 30c. That is, both the first refrigerant passage 30b and the second refrigerant passage 30c are opened.
  • the pressure in the cycle changes to a relationship represented by mathematical formulas F11 and F12 below.
  • PH ⁇ Pri (F12) the first refrigerant passage 30b is caused by the pressure difference ⁇ P. Is larger than the second set load Fsp2 on the side where the first refrigerant passage 30b is closed instantaneously.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the condenser 12 a of the radiator 12.
  • the refrigerant flowing into the condensing part 12a exchanges heat with the outside air blown from the cooling fan 12d, and dissipates heat to condense.
  • the refrigerant condensed in the condensing unit 12a is gas-liquid separated in the receiver unit 12b.
  • the liquid phase refrigerant separated from the gas and liquid by the receiver unit 12b exchanges heat with the outside air blown from the cooling fan 12d by the supercooling unit 12c, and further dissipates heat to become a supercooled liquid phase refrigerant (a in FIG. 5). Point ⁇ b).
  • the valve body 32 opens the first refrigerant passage 30b and closes the second refrigerant passage 30c, so that the refrigerant flowing into the inflow passage 30a flows from the first refrigerant outlet 31b. It flows out and flows into the expansion valve 14.
  • the refrigerant that has flowed into the expansion valve 14 is decompressed in an enthalpy manner until it becomes an intermediate pressure refrigerant (point b ⁇ point b1 in FIG. 5).
  • the opening degree of the expansion valve 14 is adjusted such that the superheat degree SH of the evaporator 19 outlet side refrigerant (point h in FIG. 5) approaches the reference superheat degree KSH.
  • the intermediate pressure refrigerant that has flowed out of the expansion valve 14 flows into the nozzle portion 15 a of the ejector 15.
  • the refrigerant flowing into the nozzle portion 15a is isentropically depressurized and injected (point b1 ⁇ c in FIG. 5).
  • the refrigerant on the outlet side of the evaporator 19 is sucked from the refrigerant suction port 15 c of the ejector 15 by the suction action of the jet refrigerant.
  • the refrigerant injected from the nozzle portion 15a and the suction refrigerant sucked from the refrigerant suction port 15c flow into the diffuser portion 15d (point c ⁇ d, point h1 ⁇ d in FIG. 5).
  • the suction passage of the present embodiment is formed in a shape in which the passage cross-sectional area decreases in the refrigerant flow direction. For this reason, the suction refrigerant passing through the suction passage increases the flow velocity while decreasing the pressure (point h ⁇ point h1 in FIG. 5). Thereby, the speed difference between the suction refrigerant and the injection refrigerant is reduced, and the energy loss (mixing loss) when the suction refrigerant and the injection refrigerant are mixed in the diffuser portion 15d is reduced.
  • the velocity energy of the refrigerant is converted into pressure energy by expanding the refrigerant passage area.
  • the pressure of the mixed refrigerant of the injected refrigerant and the suction refrigerant increases (point d ⁇ point e in FIG. 5).
  • the refrigerant that has flowed out of the diffuser portion 15d flows into the accumulator 16 and is separated into gas and liquid.
  • a pressure loss occurs (point g ⁇ point g1 in FIG. 5).
  • the ejector refrigeration cycle 10 during normal operation operates as described above, and can cool the blown air blown into the passenger compartment.
  • the power consumption of the compressor 11 can be reduced compared with the normal refrigeration cycle apparatus in which the refrigerant evaporation pressure in the evaporator and the pressure of the refrigerant sucked by the compressor are substantially equal.
  • Coefficient of performance (COP) can be improved.
  • the suction pressure increase action (so-called pump action) of the ejector 15 during normal operation is caused by the suction action and speed energy of the high-speed jet refrigerant injected from the nozzle portion 15a.
  • the nozzle portion 15a of the ejector 15 is bypassed and switched to a refrigerant circuit that allows the refrigerant to flow, so that the refrigeration capacity can be reliably exhibited.
  • valve body portion 32 of the valve body 32 is shown in FIG.
  • the ball valve 32a is displaced toward the side of closing the first refrigerant passage 30b, and the plate valve 32b opens the second refrigerant passage 30c. That is, both the first refrigerant passage 30b and the second refrigerant passage 30c are opened.
  • the first pressure receiving area A1 is larger than the second pressure receiving area A2 as shown in Formula F1, and therefore, as shown in Formula F3, the first refrigerant passage 30b is caused by the pressure difference ⁇ P. Is smaller than the second set load Fsp1 on the side that closes the first refrigerant passage 30b instantaneously (ie, A2 ⁇ K ⁇ P).
  • the high-temperature and high-pressure refrigerant (point a in FIG. 6) discharged from the compressor 11 is supercooled by the radiator 12 in the same manner as during normal operation. It becomes a phase refrigerant (point a ⁇ b in FIG. 6).
  • the supercooled liquid phase refrigerant that has flowed out of the supercooling portion 12 c of the radiator 12 flows into the inflow passage 30 a of the circuit switching valve 13.
  • valve body 32 closes the first refrigerant passage 30b and opens the second refrigerant passage 30c, so that the refrigerant that has flowed into the inflow passage 30a goes to the second refrigerant passage 30c. Inflow.
  • the refrigerant flowing into the second refrigerant passage 30c is decompressed in an enthalpy manner at an orifice hole 34a provided in the pressure receiving portion 34 of the valve body 32 (point b ⁇ point g in FIG. 6), and the second refrigerant outlet 31c. And flows into the bypass path 20.
  • the refrigerant flowing into the bypass passage 20 flows into the evaporator 19 via the three-way joint 18.
  • the refrigerant flowing into the evaporator 19 absorbs heat from the blown air blown by the blower fan 19a and evaporates (g point ⁇ h point in FIG. 6). Thereby, blowing air is cooled.
  • the refrigerant that has flowed out of the evaporator 19 flows into the refrigerant suction port 15 c of the ejector 15.
  • the flow rate characteristic of the orifice hole 34a of the present embodiment is that the refrigerant that flows out of the evaporator 19 (that is, the refrigerant on the outlet side of the evaporator 19) is a saturated gas phase refrigerant or gas-liquid when the low load operation is performed. It is set to be a two-phase refrigerant. For this reason, the expansion valve 14 closes the throttle passage during low-load operation.
  • coolant is a saturated gaseous-phase refrigerant
  • the gas-phase refrigerant separated by the accumulator 16 is sucked into the compressor 11 and compressed again (point h ⁇ point a in FIG. 6).
  • the ejector refrigeration cycle 10 during low-load operation operates as described above, and can cool the blown air blown into the passenger compartment.
  • the discharge capacity control unit of the control device increases the refrigerant discharge capacity of the compressor 11.
  • the pressure difference ⁇ P becomes larger than the reference pressure difference K ⁇ P
  • the valve body portion 32 of the circuit switching valve 13 opens the first refrigerant passage 30b and closes the second refrigerant passage 30c.
  • a mechanical mechanism is employed as the circuit switching valve 13 that closes one of the first refrigerant passage 30b and the second refrigerant passage 30c when the other is opened. Further, as the circuit switching valve 13, a valve that opens the second refrigerant passage when the front-rear differential pressure ⁇ Pc is lower than the reference front-rear differential pressure K ⁇ Pc is employed.
  • the circuit switching valve 13 opens the first refrigerant passage 30b, so that the refrigerant dissipated by the radiator 12 can flow into the nozzle portion 15a of the ejector 15. Further, at the time of low load operation, the circuit switching valve 13 opens the second refrigerant passage 30c side so that the refrigerant radiated by the radiator 12 flows into the bypass passage 20 and is led to the refrigerant inlet side of the evaporator 19. Can do.
  • the refrigerant circuit can be switched mechanically and reliably in accordance with the load fluctuation.
  • the front-rear differential pressure ⁇ Pc becomes lower than the reference front-rear differential pressure K ⁇ Pc.
  • the second refrigerant passage 30c is opened, and the refrigerant radiated by the radiator 12 is caused to flow into the evaporator 19 via the bypass passage 20.
  • a normal refrigeration cycle (so-called annular cycle) can be formed. Therefore, the refrigerating machine oil staying in the evaporator 19 is easily returned to the compressor 11 at the start of the cycle.
  • the circuit switching valve 13 when the pressure difference ⁇ P is greater than or equal to the reference pressure difference K ⁇ P, the first refrigerant passage 30b is opened, and the pressure difference ⁇ P is lower than the reference pressure difference K ⁇ P.
  • the one that opens the second refrigerant passage 30c is employed.
  • the pressure difference ⁇ P is greater than or equal to the reference pressure difference K ⁇ P. In this case, it is possible to instantaneously switch from the refrigerant circuit during normal operation to the refrigerant circuit during low-load operation.
  • the second pressure receiving area A2, the third pressure receiving area A3, and the set load Fsp2 of the coil spring 33 are set so as to satisfy the above formulas F4 to F6, the pressure difference ⁇ P becomes lower than the reference pressure difference K ⁇ P. In this case, it is possible to instantaneously switch from the refrigerant circuit during low load operation to the refrigerant circuit during normal operation.
  • the pressure reducing portion is configured by the orifice hole 34a of the pressure receiving portion 34, the pressure reducing portion can be easily formed.
  • a refrigerant passage that connects the upstream and downstream sides of the refrigerant flow of the pressure receiving portion 34 may be formed in the valve body 31, and an orifice, a capillary tube, or the like as a decompression portion may be disposed in the refrigerant passage.
  • FIG. 7 is a schematic cross-sectional view showing a state in which the circuit switching valve 24 switches to a refrigerant circuit that allows the refrigerant flowing out of the radiator 12 to flow into the nozzle portion 15a side of the ejector 15.
  • FIG. 8 is a schematic cross-sectional view showing a state in which the circuit switching valve 24 is switched to a refrigerant circuit that allows the refrigerant flowing out of the radiator 12 to flow into the bypass path 20 side.
  • the circuit switching valve 24 includes a valve body 41, a first valve body portion 42, a first coil spring 43, a first drive mechanism 44, a second valve body portion 45, a second coil spring 46, a second drive mechanism 47, and the like. Yes.
  • the valve body 41 is formed in a prismatic shape or a cylindrical shape by combining a plurality of structural members made of metal or resin.
  • the valve body 41 forms an outer shell of the circuit switching valve 24 and houses the first valve body portion 42, the first coil spring 43, the second valve body portion 45, the second coil spring 46, and the like.
  • the valve body 41 is formed with a high-pressure refrigerant inlet 41a, a first refrigerant outlet 41b, and a second refrigerant outlet 41c similar to the circuit switching valve 13 described in the first embodiment.
  • a plurality of refrigerant passages such as an inflow passage 40a, a first refrigerant passage 40b, and a second refrigerant passage 40c similar to the circuit switching valve 13 are formed inside the valve body 41.
  • the first valve body portion 42 is a cylindrical valve body that opens and closes the first refrigerant passage 40b.
  • the first coil spring 43 is a first elastic member that applies a load on the side that opens the first refrigerant passage 40 b to the first valve body portion 42.
  • the first drive mechanism 44 is for displacing the first valve body 42 according to the high-pressure side pressure PH of the refrigerant upstream of the circuit switching valve 24 (in this embodiment, the pressure of the refrigerant on the outlet side of the radiator 12). Outputs driving force.
  • the first drive mechanism 44 is attached to the outside of the valve body 41 as shown in FIGS.
  • the first drive mechanism 44 has a first case 44a and a first diaphragm 44b.
  • the first case 44a is a first space forming member formed by joining the opening side of metal cup-shaped members (that is, cup-shaped members). For this reason, a space is formed inside the first case 44a.
  • the 1st diaphragm 44b which is a 1st pressure response member is arrange
  • the first diaphragm 44b is formed of a metal circular thin plate.
  • the outer peripheral edge of the first diaphragm 44b is fixed to the first case 44a over the entire circumference. For this reason, the internal space of the first case 44a is partitioned into two spaces, a first enclosure space 44c and a first introduction space 44d, by the first diaphragm 44b.
  • an inert gas in this embodiment, helium gas
  • the first introduction space 44d communicates with the inflow passage 40a.
  • the refrigerant pressure in the first introduction space 44d becomes the high-pressure side pressure PH of the radiator 12 outlet-side refrigerant. Therefore, the first diaphragm 44b is displaced according to the pressure difference between the pressure of the inert gas in the enclosed space 44c and the high-pressure side pressure PH.
  • the inert gas in the first enclosed space 44c does not change greatly even if the temperature changes slightly. For this reason, the pressure in the 1st enclosure space 44c of this embodiment becomes substantially constant under the general use environment of the ejector-type refrigeration cycle 10. Accordingly, the first diaphragm 44b of the present embodiment is displaced substantially according to the high pressure side pressure PH of the radiator 12 outlet side refrigerant.
  • the displacement of the first diaphragm 44b is transmitted to the first valve body portion 42 via the columnar first operating rod 42a extending in the displacement direction of the first valve body portion 42.
  • the high-pressure side pressure PH is equal to or higher than a predetermined reference high-pressure side pressure KPH, the first enclosed space 44c so that the first valve body portion 42 opens the first refrigerant passage 40b.
  • the reference sealing pressure of the inert gas is set.
  • the second valve body portion 45 is a spherical valve body that opens and closes the second refrigerant passage 40c.
  • the second coil spring 46 is a second elastic member that applies a load on the side that closes the second refrigerant passage 40 c to the second valve body portion 45.
  • the second drive mechanism 47 outputs a driving force for displacing the second valve body portion 45 according to the high-pressure side pressure PH of the refrigerant upstream of the circuit switching valve 24.
  • the second drive mechanism 47 is attached to the outside of the valve body 41 as shown in FIGS.
  • the basic configuration of the second drive mechanism 47 is the same as that of the first drive mechanism 44. Accordingly, the second drive mechanism 47 includes a second case 47a that is a second space forming member and a second diaphragm 47b that is a second pressure responsive member.
  • the internal space of the second case 47a is divided into two spaces, a second enclosure space 47c and a second introduction space 47d, by a second diaphragm 47b. Similar to the first diaphragm 44b of the first drive mechanism 44, the second diaphragm 47b is displaced substantially according to the high-pressure side pressure PH of the radiator 12 outlet side refrigerant.
  • the displacement of the second diaphragm 47 b is transmitted to the second valve body 45 via a cylindrical second operating rod 45 a extending in the displacement direction of the second valve body 45.
  • the circuit switching valve 24 of the present embodiment when the high pressure side pressure PH is equal to or higher than the reference high pressure side pressure KPH, the first refrigerant passage 40b is opened and the second refrigerant passage 40c is closed.
  • the high pressure side pressure PH is lower than the reference high pressure side pressure KPH, the first refrigerant passage 40b is closed and the second refrigerant passage 40c is opened.
  • the front-rear differential pressure ⁇ Pc of the compressor 11 when the high-pressure side pressure PH is the reference high-pressure side pressure KPH is defined as a reference front-rear differential pressure K ⁇ Pc.
  • the front-rear differential pressure ⁇ Pc is lower than the reference front-rear differential pressure K ⁇ Pc, such as when starting a general cycle, the first refrigerant passage 40b is opened. While closing, the second refrigerant passage 40c is opened.
  • a fixed throttle is disposed as a decompression unit that decompresses the refrigerant flowing into the evaporator 19 in the bypass passage 20.
  • this fixed throttle an orifice, a capillary tube or the like can be employed.
  • the circuit switching valve 24 having the first and second drive mechanisms 44 and 47 is employed.
  • the drive mechanism that displaces the pressure responsive member (diaphragm) by the pressure difference between the gas pressure in the enclosed space and the refrigerant pressure in the introduction space the pressure in the introduction space (in this embodiment, the high pressure side pressure PH). )
  • the enclosed space functions as a damper. For this reason, sudden displacement of the pressure responsive member (diaphragm) is suppressed.
  • the refrigerant circuit can be switched mechanically and reliably according to the load fluctuation.
  • the first valve body portion 42 of the present embodiment is formed with a first pilot hole 42b that allows the inflow passage 40a and the first refrigerant passage 40b to communicate with each other.
  • the first operating rod 42a is arranged to open and close the first pilot hole 42b according to the displacement of the first diaphragm 44b.
  • the valve body 41 is formed with a communication passage 41d for communicating the inflow passage 40a and the first refrigerant passage 40b.
  • Other configurations of the circuit switching valve 24 are the same as those of the second embodiment.
  • the operation of the circuit switching valve 24 of this embodiment will be described.
  • the high-pressure side pressure PH increases, the first diaphragm 44b is displaced to the side that reduces the first enclosed space 44c.
  • the high pressure side pressure PH becomes equal to or higher than the reference high pressure side pressure KPH, the first operating rod 42a connected to the first diaphragm 44b opens the first pilot hole 42b.
  • the refrigerant flowing out of the radiator 12 flows into the downstream side of the first valve body portion 42 through the communication passage 41d and the first pilot hole 42b.
  • the pressure difference between the refrigerant pressure upstream of the refrigerant flow of the first valve body portion 42 and the refrigerant pressure of the downstream side is reduced, and the first valve body portion 42 opens the first refrigerant passage 40b by the load of the first coil spring 43. .
  • the first diaphragm 44b is displaced to the side that expands the first enclosed space 44c, and the first operating rod 42a closes the first pilot hole 42b of the first valve body portion 42.
  • the high pressure side pressure PH becomes equal to or higher than the reference high pressure side pressure KPH, the first valve body 42 is displaced together with the first operating rod 42a to close the first refrigerant passage 40b.
  • circuit switching valve 24 other operations of the circuit switching valve 24 are the same as in the second embodiment. Also in the circuit switching valve 24 of this embodiment, when the high pressure side pressure PH is equal to or higher than the reference high pressure side pressure KPH, the first refrigerant passage 40b is opened and the second refrigerant passage 40c is closed. On the other hand, when the high pressure side pressure PH is lower than the reference high pressure side pressure KPH, the first refrigerant passage 40b is closed and the second refrigerant passage 40c is opened.
  • the first valve body 42 can be opened by opening and closing the pilot hole 42b. Accordingly, the first valve body portion 42 can be opened with a relatively small driving force, and an increase in the size of the first drive mechanism 44 can be suppressed.
  • the second valve body portion 45 communicates the inflow passage 40a and the second refrigerant passage 40c.
  • the second pilot hole 45b may be provided, and the second diaphragm 47b of the second drive mechanism 47 may be connected to a second operating rod 45a that opens and closes the second pilot hole 45b.
  • the circuit switching valve 25 includes a valve body 51, a first valve body 52, a first coil spring 53, a second valve body 55, a second coil spring 56, a common drive mechanism 57, a common operation rod 58, and the like.
  • the valve body 51 is formed in a prismatic shape or a cylindrical shape by combining a plurality of structural members made of metal or resin.
  • the valve body 51 forms an outer shell of the circuit switching valve 24 and accommodates a first valve body 52, a first coil spring 53, a second valve body 55, a second coil spring 56, a common operating rod 58, and the like. To do.
  • the valve body 51 is formed with a high-pressure refrigerant inlet 51a, a first refrigerant outlet 51b, and a second refrigerant outlet 51c similar to the circuit switching valve 13 described in the first embodiment.
  • a plurality of refrigerant passages such as an inflow passage 50a, a first refrigerant passage 50b, and a second refrigerant passage 50c similar to the circuit switching valve 13 are formed inside the valve body 51.
  • the first valve body 52 is a cylindrical valve body that opens and closes the inlet of the first refrigerant passage 50b.
  • the first coil spring 53 is a first elastic member that applies a load that closes the first refrigerant passage 50 b to the first valve body 52.
  • a through hole penetrating in the axial direction is formed at the center of the first valve body 52.
  • a common operating rod 58 is disposed inside the through hole.
  • the second valve body portion 55 is a spherical valve body that opens and closes the inlet portion of the second refrigerant passage 50c.
  • the second coil spring 56 is a second elastic member that applies a load on the side that closes the second refrigerant passage 50 c to the second valve body portion 55.
  • the common drive mechanism 57 has a common case 57a that is a common space forming member and a common diaphragm 57b that is a common pressure response member.
  • the internal space of the shared case 57a is divided into two spaces, a shared enclosed space 57c and a shared introduction space 57d, by a shared diaphragm 57b.
  • the common diaphragm 57b is displaced substantially according to the high pressure side pressure PH of the radiator 12 outlet side refrigerant.
  • the displacement of the common diaphragm 57b is caused by the first valve body 52 and the second valve body through the cylindrical common operating rod 58 extending in the displacement direction of the first valve body 52 and the second valve body 55. 55 is transmitted to both.
  • the common operation rod 58 is also displaced to the same side as the common diaphragm 57b.
  • the 1st valve body part 52 is displaced to the side which closes the 1st refrigerant path 50b with the load of the 1st coil spring 53.
  • the 2nd valve body part 55 is displaced to the side which opens the 2nd refrigerant path 50c with the common action
  • the first refrigerant passage 50b is opened and the second refrigerant passage 50c is closed, so that the high-pressure side pressure PH is
  • the reference sealing pressure of the inert gas in the shared sealing space 57c is set so that the first refrigerant passage 50b is closed and the second refrigerant passage 50c is opened.
  • the cycle configuration of the ejector refrigeration cycle is not limited to the configuration disclosed in the above-described embodiment.
  • an auxiliary evaporator that evaporates the refrigerant may be disposed between the refrigerant outlet of the diffuser portion 15 d of the ejector 15 and the inlet of the accumulator 16.
  • the refrigerant evaporating pressure (refrigerant evaporating temperature) in the auxiliary evaporator can be made higher than the refrigerant evaporating pressure (refrigerant evaporating temperature) in the evaporator 19 by the boosting action of the ejector 15. Therefore, in both evaporators, the refrigerant can be evaporated at different temperature zones. Furthermore, even during low-load operation, the evaporator 19 and the auxiliary evaporator can be connected in series, and the refrigeration capacity can be exhibited in both evaporators.
  • an internal heat exchanger for exchanging heat between the high-pressure refrigerant flowing out from the radiator 12 and the low-pressure refrigerant flowing out from the evaporator 19 or the suction refrigerant sucked into the compressor 11 may be added to the ejector refrigeration cycle 10. Good.
  • Each component device constituting the ejector refrigeration cycle 10 is not limited to that disclosed in the above-described embodiment.
  • a normal radiator including only the condensing unit 12a may be employed.
  • a receiver-integrated condenser that integrates a receiver (receiver) that separates the gas-liquid of the refrigerant radiated by this radiator and stores excess liquid phase refrigerant is adopted. Also good.
  • the expansion valve 14 is adopted.
  • the expansion valve 14 is not an essential component in the ejector refrigeration cycle.
  • the expansion valve 14, the ejector 15, the accumulator 16, and the like may be integrally configured.
  • a needle-shaped or conical valve body portion is disposed inside the nozzle portion 15a of the ejector 15, and the valve body portion is displaced so that the superheat degree SH of the evaporator 19 outlet side refrigerant approaches the reference superheat degree KSH.
  • the expansion valve 14 and the ejector 15 may be integrated.
  • the refrigerant is not limited to this.
  • HFO refrigerants R1234yf, HFO-1234ze, HFO-1234zd
  • a supercritical refrigeration cycle in which carbon dioxide is employed as the refrigerant and the high-pressure side refrigerant pressure is equal to or higher than the critical pressure of the refrigerant may be configured.
  • the ejector refrigeration cycle 10 is applied to a vehicle air conditioner.
  • the application of the ejector refrigeration cycle 10 is not limited thereto.
  • the present invention may be applied to a stationary air conditioner, a cold / hot storage, a cooling / heating device for a vending machine, and the like.
  • the radiator 12 of the ejector-type refrigeration cycle 10 including the ejector 15 is an outdoor heat exchanger that exchanges heat between the refrigerant and the outside air
  • the evaporator 19 is used side heat exchange that cools the blown air. It is a vessel.
  • the evaporator 19 may be used as an outdoor heat exchanger that absorbs heat from a heat source such as outside air
  • the radiator 12 may be used as a use side heat exchanger that heats a heated fluid such as air or water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Safety Valves (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

An ejector-type refrigeration cycle is provided with: a compressor; a radiator; an ejector; an evaporator; a diversion passage for diverting refrigerant that has released heat in the radiator away from the nozzle part of the ejector and guiding the refrigerant to the upstream side of the refrigerant outlet of the evaporator; a decompression unit (34a) for decompressing the refrigerant flowing into the evaporator via the diversion passage; and a circuit-switching valve (13) for opening and closing a first refrigerant passage (30b) for guiding the refrigerant to the nozzle part, and opening and closing a second refrigerant passage (30c) for guiding the refrigerant to the diversion passage. The circuit-switching valve is constituted from a mechanical mechanism for closing the first refrigerant passage (30b) or the second refrigerant passage (30c) when the other refrigerant passage is opened. The circuit-switching valve opens the second refrigerant passage (30c) when the before-after pressure difference (ΔPc) obtained by subtracting the refrigerant pressure on the intake side of the compressor from the refrigerant pressure on the discharge side is lower than a preset reference before-after pressure difference (KΔPc).

Description

エジェクタ式冷凍サイクルEjector refrigeration cycle 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年7月18日に出願された日本特許出願2016-140960号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2016-140960 filed on July 18, 2016, the contents of which are incorporated herein by reference.
 本開示は、エジェクタを備えるエジェクタ式冷凍サイクルに関する。 The present disclosure relates to an ejector refrigeration cycle including an ejector.
 従来、エジェクタを備える蒸気圧縮式の冷凍サイクル装置であるエジェクタ式冷凍サイクルが知られている。この種のエジェクタは、エジェクタ式冷凍サイクルにおいて、ノズル部から噴射された高速度の噴射冷媒の吸引作用によって、蒸発器から流出した冷媒を冷媒吸引口から吸引し、噴射冷媒と吸引冷媒とをディフューザ部にて混合させて昇圧させる吸引昇圧作用(いわゆる、ポンプ作用)を発揮する。 Conventionally, an ejector-type refrigeration cycle, which is a vapor compression refrigeration cycle apparatus including an ejector, is known. This type of ejector sucks the refrigerant flowing out of the evaporator from the refrigerant suction port and sucks the injected refrigerant and the sucked refrigerant in the ejector refrigeration cycle by the suction action of the high-speed jet refrigerant jetted from the nozzle section. A suction pressurizing action (so-called pump action) in which the pressure is increased by mixing in the section is exhibited.
 さらに、エジェクタ式冷凍サイクルでは、エジェクタのポンプ作用によって昇圧された冷媒を圧縮機の吸入口側へ流出させる。これにより、エジェクタ式冷凍サイクルでは、蒸発器における冷媒蒸発圧力と圧縮機へ吸入される吸入冷媒の圧力が略同等となる通常の冷凍サイクル装置よりも、吸入冷媒の圧力を上昇させることができる。従って、エジェクタ式冷凍サイクルでは、通常の冷凍サイクル装置よりも圧縮機の消費動力を低減させて、サイクルの成績係数(COP)の向上を狙うことができる。 Furthermore, in the ejector type refrigeration cycle, the refrigerant whose pressure has been increased by the pump action of the ejector is caused to flow out to the suction port side of the compressor. Thereby, in the ejector type refrigeration cycle, the pressure of the suction refrigerant can be increased as compared with a normal refrigeration cycle apparatus in which the refrigerant evaporation pressure in the evaporator and the pressure of the suction refrigerant sucked into the compressor are substantially equal. Therefore, in the ejector refrigeration cycle, the power consumption of the compressor can be reduced as compared with a normal refrigeration cycle apparatus, and the coefficient of performance (COP) of the cycle can be improved.
 ところが、上述したエジェクタのポンプ作用は、ノズル部から噴射される噴射冷媒の吸引作用および速度エネルギによって生じるので、サイクルを循環する冷媒流量が低下する低負荷運転時には、噴射冷媒の流速が低下してポンプ作用も小さくなってしまう。そして、ポンプ作用が小さくなってしまうと、蒸発器へ冷媒を流入させることができなくなり、エジェクタ式冷凍サイクルが冷凍能力を発揮できなくなってしまうおそれがある。 However, the pumping action of the ejector described above is caused by the suction action and speed energy of the injected refrigerant injected from the nozzle part, so that the flow rate of the injected refrigerant decreases during low load operation where the flow rate of refrigerant circulating in the cycle decreases. The pumping action is also reduced. If the pumping action is reduced, the refrigerant cannot flow into the evaporator, and the ejector refrigeration cycle may not be able to exhibit the refrigeration capacity.
 これに対して、特許文献1には、通常運転時における冷媒回路と低負荷運転時における冷媒回路とを切替可能に構成されたエジェクタ式冷凍サイクルが開示されている。 On the other hand, Patent Document 1 discloses an ejector refrigeration cycle configured to be able to switch between a refrigerant circuit during normal operation and a refrigerant circuit during low-load operation.
 具体的には、特許文献1のエジェクタ式冷凍サイクルでは、放熱器から流出した高圧冷媒をエジェクタのノズル部を迂回させて流す迂回通路を備えている。そして、通常運転時には、高圧冷媒をエジェクタのノズル部へ流入させてエジェクタにポンプ作用を発揮させる冷媒回路に切り替える。一方、低負荷運転時には、高圧冷媒を迂回通路へ流入させて通常の冷媒サイクル装置の同様の冷媒回路に切り替える。 Specifically, the ejector-type refrigeration cycle of Patent Document 1 includes a bypass passage that allows the high-pressure refrigerant flowing out of the radiator to flow around the nozzle portion of the ejector. During normal operation, the refrigerant circuit is switched to a refrigerant circuit that causes high pressure refrigerant to flow into the nozzle portion of the ejector and cause the ejector to exert a pumping action. On the other hand, at the time of low load operation, the high-pressure refrigerant is caused to flow into the bypass passage and switched to a similar refrigerant circuit of a normal refrigerant cycle device.
 これにより、特許文献1のエジェクタ式冷凍サイクルでは、負荷変動によらず冷凍能力を発揮できるようにしている。 Thus, in the ejector refrigeration cycle of Patent Document 1, the refrigeration capacity can be exhibited regardless of load fluctuations.
特許第4078901号公報Japanese Patent No. 4078901
 ところで、特許文献1のエジェクタ式冷凍サイクルでは、冷媒回路を切り替える冷媒回路切替装置として、三方弁を採用している。しかし、特許文献1には、この三方弁の具体的構成について記載されていない。 Incidentally, the ejector refrigeration cycle of Patent Document 1 employs a three-way valve as a refrigerant circuit switching device for switching the refrigerant circuit. However, Patent Document 1 does not describe a specific configuration of the three-way valve.
 例えば、三方弁として、電気的に作動する電気式三方弁が採用されていると、電気式三方弁の作動条件を判定するための検出装置や、電気式三方弁の作動を制御する制御装置が必要となる。このため、エジェクタ式冷凍サイクル全体としての大型化や、制御態様の複雑化を招きやすい。従って、冷媒回路切替装置としては、機械的な機構によって負荷変動に応じて自動的に作動するものが採用されていることが望ましい。 For example, when an electrically operated three-way valve is employed as the three-way valve, a detection device for determining the operation condition of the electric three-way valve and a control device for controlling the operation of the electric three-way valve are provided. Necessary. For this reason, it becomes easy to invite the enlargement as the whole ejector type refrigerating cycle, and the complexity of a control mode. Therefore, it is desirable that a refrigerant circuit switching device that automatically operates according to a load change by a mechanical mechanism is employed.
 しかしながら、機械的な機構の冷媒回路切替装置として、例えば、サイクルの高圧側冷媒と低圧側冷媒との圧力差に応じて迂回通路を開閉する差圧弁を採用すると、低負荷運転時に差圧弁が迂回通路を開いても、エジェクタのノズル部の入口側を閉じることができない。その結果、高圧冷媒が迂回通路側とエジェクタのノズル部側の双方へ流入してしまい、冷媒回路を確実に切り替えることができなくなってしまう。 However, as a refrigerant circuit switching device of a mechanical mechanism, for example, when a differential pressure valve that opens and closes a bypass passage according to a pressure difference between a high-pressure side refrigerant and a low-pressure side refrigerant in a cycle, the differential pressure valve is bypassed during low load operation. Even if the passage is opened, the inlet side of the nozzle part of the ejector cannot be closed. As a result, the high-pressure refrigerant flows into both the bypass passage and the nozzle portion of the ejector, and the refrigerant circuit cannot be switched reliably.
 本開示は、上記点に鑑み、負荷変動に応じて冷媒回路を、機械的に、かつ、確実に切替可能に構成されたエジェクタ式冷凍サイクルを提供することを目的とする。 In view of the above points, an object of the present disclosure is to provide an ejector-type refrigeration cycle in which a refrigerant circuit can be switched mechanically and reliably according to a load change.
 上記目的を達成するため、本開示の一態様において、エジェクタ式冷凍サイクルは、冷媒を圧縮して吐出する圧縮機と、圧縮機から吐出された冷媒を放熱させる放熱器と、放熱器から流出した冷媒を減圧させるノズル部から噴射された噴射冷媒の吸引作用によって冷媒吸引口から冷媒を吸引し、噴射冷媒と冷媒吸引口から吸引された吸引冷媒とを混合させて昇圧させる昇圧部を有するエジェクタと、冷媒を蒸発させて冷媒吸引口側へ流出させる蒸発器と、放熱器にて放熱した冷媒を、ノズル部を迂回させて蒸発器の冷媒出口よりも上流側へ導く迂回通路と、迂回通路を介して蒸発器へ流入する冷媒を減圧させる減圧部と、放熱器にて放熱した冷媒をノズル部側へ導く第1冷媒通路を開閉するとともに、放熱器にて放熱した冷媒を迂回通路側へ導く第2冷媒通路を開閉する回路切替弁と、を備える。 In order to achieve the above object, in one aspect of the present disclosure, an ejector refrigeration cycle includes a compressor that compresses and discharges a refrigerant, a radiator that dissipates heat from the refrigerant discharged from the compressor, and an outflow from the radiator. An ejector having a boosting unit that sucks the refrigerant from the refrigerant suction port by the suction action of the jetted refrigerant jetted from the nozzle unit that depressurizes the refrigerant, and mixes the injected refrigerant and the suction refrigerant sucked from the refrigerant suction port to boost the pressure; An evaporator that evaporates the refrigerant and flows out to the refrigerant suction port side, a bypass path that bypasses the nozzle section and guides the refrigerant radiated by the radiator to the upstream side from the refrigerant outlet of the evaporator, and a bypass path A decompression section for decompressing the refrigerant flowing into the evaporator, and opening and closing the first refrigerant passage for guiding the refrigerant radiated by the radiator to the nozzle section side, and bypassing the refrigerant radiated by the radiator Comprising a circuit switching valve for opening and closing the second refrigerant passage for introducing, a.
 回路切替弁は、第1冷媒通路および第2冷媒通路のいずれか一方を開いた際に他方を閉じる機械的機構で構成されている。さらに、回路切替弁は、圧縮機の吐出口側の冷媒圧力から吸入口側の冷媒圧力を減算した前後差圧が予め定めた基準前後差圧よりも低くなっている際には、第2冷媒通路を開く。 The circuit switching valve is configured by a mechanical mechanism that closes the other when either one of the first refrigerant passage and the second refrigerant passage is opened. Further, when the differential pressure before and after subtracting the refrigerant pressure on the suction port side from the refrigerant pressure on the discharge port side of the compressor is lower than a predetermined reference front and rear differential pressure, the circuit switching valve Open the passage.
 これによれば、回路切替弁として、第1冷媒通路および第2冷媒通路のいずれか一方を開いた際に他方を閉じる機械的機構が採用されており、さらに、前後差圧が基準前後差圧よりも低くなっている際に、第2冷媒通路を開くものを採用している。 According to this, as the circuit switching valve, a mechanical mechanism that closes one of the first refrigerant passage and the second refrigerant passage when the other one is opened is adopted, and the front-rear differential pressure is the reference front-rear differential pressure. When it is lower than that, the one that opens the second refrigerant passage is adopted.
 従って、前後差圧が大きくなる通常運転時に、回路切替弁が、第1冷媒通路側を開くように基準前後差圧を設定することで、放熱器にて放熱した冷媒をエジェクタのノズル部へ流入させる冷媒回路に切り替えることができる。 Therefore, during normal operation when the front-rear differential pressure increases, the circuit switching valve sets the reference front-rear differential pressure so as to open the first refrigerant passage side, so that the refrigerant radiated by the radiator flows into the ejector nozzle section. The refrigerant circuit can be switched to.
 さらに、前後差圧が小さくなる低負荷運転時に、回路切替弁が、第2冷媒通路側を開くように基準前後差圧を設定することで、放熱器にて放熱した冷媒を迂回通路へ流入させて蒸発器の冷媒入口側へ導くことができる。 Furthermore, during low load operation where the front-rear differential pressure is reduced, the circuit switching valve sets the reference front-rear differential pressure so that the second refrigerant passage side is opened, so that the refrigerant radiated by the radiator flows into the bypass passage. Can be led to the refrigerant inlet side of the evaporator.
 すなわち、負荷変動に応じて冷媒回路を、機械的に、かつ、確実に切替可能に構成されたエジェクタ式冷凍サイクルを提供することができる。 That is, it is possible to provide an ejector-type refrigeration cycle configured such that the refrigerant circuit can be switched mechanically and reliably in accordance with load fluctuations.
 ここで、サイクルの起動時等にサイクル内の均圧化が進行していると、前後差圧が基準前後差圧よりも低くなる。 Here, if pressure equalization in the cycle is in progress at the start of the cycle, the differential pressure across the front and rear becomes lower than the differential pressure across the reference.
 従って、サイクルの起動時には、第2冷媒通路側が開き、放熱器にて放熱した冷媒を、迂回通路を介して蒸発器へ流入させる、通常の冷凍サイクル(いわゆる、環状サイクル)を形成することができる。従って、サイクルの起動時に、蒸発器内に滞留している冷凍機油を圧縮機へ戻しやすい。 Therefore, at the start of the cycle, a normal refrigeration cycle (so-called annular cycle) can be formed in which the second refrigerant passage side opens and the refrigerant radiated by the radiator flows into the evaporator through the bypass passage. . Therefore, it is easy to return the refrigeration oil remaining in the evaporator to the compressor at the start of the cycle.
 また、上記のエジェクタ式冷凍サイクルにおいて、回路切替弁として、回路切替弁の上流側の冷媒の高圧側圧力から減圧部の下流側の冷媒の低圧側圧力を減算した圧力差が予め定めた基準圧力差以上となっている際には、第1冷媒通路を開くとともに第2冷媒通路を閉じ、さらに、圧力差が基準圧力差よりも低くなっている際には、第1冷媒通路を閉じるとともに第2冷媒通路を開くものを採用してもよい。 In the ejector refrigeration cycle, the pressure difference obtained by subtracting the low-pressure side pressure of the refrigerant on the downstream side of the decompression section from the high-pressure side pressure of the refrigerant on the upstream side of the circuit switching valve as the circuit switching valve is a predetermined reference pressure. When the difference is greater than or equal to the difference, the first refrigerant passage is opened and the second refrigerant passage is closed. Further, when the pressure difference is lower than the reference pressure difference, the first refrigerant passage is closed and the first refrigerant passage is closed. You may employ | adopt what opens 2 refrigerant paths.
 この場合は、圧力差が基準圧力差になっている際の前後差圧を、基準前後差圧に設定すればよい。 In this case, the front-rear differential pressure when the pressure difference is the reference pressure difference may be set to the reference front-rear differential pressure.
 また、上記のエジェクタ式冷凍サイクルにおいて、回路切替弁として、回路切替弁の上流側の冷媒の高圧側圧力が予め定めた基準高圧側圧力以上となっている際には、第1冷媒通路を開くとともに第2冷媒通路を閉じ、さらに、高圧側圧力が基準高圧側圧力より低くなっている際には、第1冷媒通路を閉じるとともに第2冷媒通路を開くものを採用してもよい。 In the ejector refrigeration cycle, the first refrigerant passage is opened when the high pressure side pressure of the refrigerant upstream of the circuit switching valve is equal to or higher than a predetermined reference high pressure side pressure as the circuit switching valve. In addition, the second refrigerant passage may be closed, and when the high-pressure side pressure is lower than the reference high-pressure side pressure, the first refrigerant passage may be closed and the second refrigerant passage may be opened.
 この場合は、高圧側圧力が基準高圧側圧力になっている際の前後差圧を、基準前後差圧に設定すればよい。 In this case, the front-rear differential pressure when the high-pressure side pressure is the reference high-pressure side pressure may be set to the reference front-rear differential pressure.
 ここで、「放熱器にて放熱した冷媒」とは、放熱器の少なくとも一部で放熱した冷媒を意味している。また、「蒸発器の冷媒出口よりも上流側へ導く」とは、蒸発器の冷媒入口よりも上流側へ導くことも含まれる。さらに、蒸発器の冷媒出口よりも上流側であれば、蒸発器の冷媒出口よりも下流側(例えば、蒸発器の冷媒通路内)へ導くことも含まれる。 Here, “refrigerant dissipated by a radiator” means a refrigerant dissipated by at least a part of the radiator. Further, “leading to the upstream side of the refrigerant outlet of the evaporator” includes guiding to the upstream side of the refrigerant inlet of the evaporator. Furthermore, if it is upstream from the refrigerant outlet of the evaporator, it also includes guiding to the downstream side of the refrigerant outlet of the evaporator (for example, in the refrigerant passage of the evaporator).
 なお、特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す。 In addition, the code | symbol in the bracket | parenthesis of each means described in the claim shows the correspondence with the specific means as described in the embodiment described later.
第1実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。It is a typical whole block diagram of the ejector-type refrigerating cycle of 1st Embodiment. 第1実施形態の回路切替弁が第1冷媒通路を開いた際の軸方向断面図である。It is an axial sectional view when the circuit switching valve of the first embodiment opens the first refrigerant passage. 第1実施形態の回路切替弁が第2冷媒通路を開いた際の軸方向断面図である。It is an axial direction sectional view at the time of the circuit change-over valve of a 1st embodiment opening the 2nd refrigerant passage. 第1実施形態の回路切替弁が瞬間的に第1冷媒通路および第2冷媒通路の双方を開いている状態の軸方向断面図である。FIG. 3 is an axial cross-sectional view of a state in which the circuit switching valve of the first embodiment instantaneously opens both the first refrigerant passage and the second refrigerant passage. 第1実施形態のエジェクタ式冷凍サイクルの通常運転時における冷媒の状態の変化を示すモリエル線図である。It is a Mollier diagram which shows the change of the state of the refrigerant | coolant at the time of normal driving | operating of the ejector-type refrigerating cycle of 1st Embodiment. 第1実施形態のエジェクタ式冷凍サイクルの低負荷運転時における冷媒の状態の変化を示すモリエル線図である。It is a Mollier diagram which shows the change of the state of the refrigerant | coolant at the time of the low load driving | running of the ejector type refrigeration cycle of 1st Embodiment. 第2実施形態の回路切替弁が第1冷媒通路を開いた際の軸方向断面図である。It is an axial direction sectional view at the time of the circuit change-over valve of a 2nd embodiment opening the 1st refrigerant passage. 第2実施形態の回路切替弁が第2冷媒通路を開いた際の軸方向断面図である。It is an axial direction sectional view at the time of the circuit change-over valve of a 2nd embodiment opening the 2nd refrigerant passage. 第3実施形態の回路切替弁が第1冷媒通路を開いた際の軸方向断面図である。It is an axial direction sectional view at the time of the circuit change-over valve of a 3rd embodiment opening the 1st refrigerant passage. 第4実施形態の回路切替弁が第1冷媒通路を開いた際の軸方向断面図である。It is an axial direction sectional view at the time of the circuit change-over valve of a 4th embodiment opening the 1st refrigerant passage. 第5実施形態の回路切替弁が第1冷媒通路を開いた際の軸方向断面図である。It is an axial sectional view at the time of the circuit change-over valve of a 5th embodiment opening the 1st refrigerant passage. 第5実施形態の回路切替弁が第2冷媒通路を開いた際の軸方向断面図である。It is an axial sectional view at the time of the circuit change-over valve of a 5th embodiment opening the 2nd refrigerant passage.
 (第1実施形態)
 図1~図6を用いて、第1実施形態を説明する。図1の全体構成図に示す本実施形態のエジェクタ式冷凍サイクル10は、車両用空調装置に適用されており、空調対象空間である車室内(室内空間)へ送風される送風空気を冷却する機能を果たす。従って、エジェクタ式冷凍サイクル10の冷却対象流体は、送風空気である。
(First embodiment)
The first embodiment will be described with reference to FIGS. The ejector refrigeration cycle 10 of this embodiment shown in the overall configuration diagram of FIG. 1 is applied to a vehicle air conditioner, and has a function of cooling blown air that is blown into a vehicle interior (indoor space) that is an air-conditioning target space. Fulfill. Therefore, the fluid to be cooled in the ejector refrigeration cycle 10 is blown air.
 このエジェクタ式冷凍サイクル10では、空調熱負荷に応じて、冷媒回路を切り替えることができる。より具体的には、通常運転時は、図1の黒塗矢印に示すように冷媒が流れる冷媒回路に切り替え、通常運転時よりもエジェクタ式冷凍サイクル10の熱負荷が低くなる低負荷運転時は、図1の白抜矢印に示すように冷媒が流れる冷媒回路に切り替えることができる。 In the ejector refrigeration cycle 10, the refrigerant circuit can be switched according to the air conditioning heat load. More specifically, during normal operation, the circuit is switched to a refrigerant circuit through which refrigerant flows as shown by the black arrows in FIG. 1, and during low load operation where the thermal load of the ejector refrigeration cycle 10 is lower than during normal operation. 1 can be switched to a refrigerant circuit through which the refrigerant flows, as indicated by the white arrows in FIG.
 さらに、エジェクタ式冷凍サイクル10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。この冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。 Furthermore, the ejector refrigeration cycle 10 employs an HFC refrigerant (specifically, R134a) as a refrigerant, and constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the refrigerant critical pressure. This refrigerant is mixed with refrigerating machine oil for lubricating the compressor 11, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
 エジェクタ式冷凍サイクル10の構成機器のうち、圧縮機11は、冷媒を吸入して高圧冷媒となるまで昇圧して吐出する。圧縮機11は、車両走行用の駆動力を出力するエンジン(内燃機関)とともにエンジンルーム内に配置されている。圧縮機11は、プーリ、ベルト等を介してエンジンから出力される回転駆動力によって駆動されるエンジン駆動式の圧縮機である。 Among the components of the ejector refrigeration cycle 10, the compressor 11 sucks the refrigerant and discharges it until it becomes a high-pressure refrigerant. The compressor 11 is disposed in an engine room together with an engine (internal combustion engine) that outputs a driving force for vehicle travel. The compressor 11 is an engine-driven compressor that is driven by a rotational driving force output from the engine via a pulley, a belt, and the like.
 より具体的には、この圧縮機11は、吐出容量を変化させることによって冷媒吐出能力を調整可能に構成された斜板式の可変容量型圧縮機である。圧縮機11では、吐出容量を変化させるための図示しない吐出容量制御弁を有している。吐出容量制御弁は、後述する制御装置から出力される制御電流によって、その作動が制御される。 More specifically, the compressor 11 is a swash plate type variable displacement compressor configured such that the refrigerant discharge capacity can be adjusted by changing the discharge capacity. The compressor 11 has a discharge capacity control valve (not shown) for changing the discharge capacity. The operation of the discharge capacity control valve is controlled by a control current output from a control device described later.
 圧縮機11の吐出口には、放熱器12の凝縮部12aの冷媒入口側が接続されている。放熱器12は、圧縮機11から吐出された高圧冷媒と冷却ファン12dから送風された車室外空気(外気)を熱交換させることによって、高圧冷媒を放熱させて冷却する放熱用熱交換器である。放熱器12は、エンジンルーム内の車両前方側に配置されている。 The refrigerant inlet side of the condenser 12 a of the radiator 12 is connected to the discharge port of the compressor 11. The radiator 12 is a heat exchanger for heat radiation that radiates and cools the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the outside air (outside air) blown from the cooling fan 12d. . The radiator 12 is arranged on the vehicle front side in the engine room.
 より具体的には、この放熱器12は、凝縮部12a、レシーバ部12b、および過冷却部12cを有する、いわゆるサブクール型の凝縮器として構成されている。 More specifically, the radiator 12 is configured as a so-called subcool type condenser having a condensing unit 12a, a receiver unit 12b, and a supercooling unit 12c.
 凝縮部12aは、圧縮機11から吐出された高圧気相冷媒と冷却ファン12dから送風された外気とを熱交換させ、高圧気相冷媒を放熱させて凝縮させる凝縮用の熱交換部である。レシーバ部12bは、凝縮部12aから流出した冷媒の気液を分離して余剰液相冷媒を蓄える冷媒容器である。過冷却部12cは、レシーバ部12bから流出した液相冷媒と冷却ファン12dから送風される外気とを熱交換させ、液相冷媒を過冷却する過冷却用の熱交換部である。 The condensing unit 12a is a heat exchange unit for condensation that exchanges heat between the high-pressure gas-phase refrigerant discharged from the compressor 11 and the outside air blown from the cooling fan 12d, and dissipates the high-pressure gas-phase refrigerant to condense. The receiver unit 12b is a refrigerant container that separates the gas-liquid refrigerant flowing out from the condensing unit 12a and stores excess liquid-phase refrigerant. The supercooling unit 12c is a heat exchange unit for supercooling that heat-exchanges the liquid refrigerant flowing out from the receiver unit 12b and the outside air blown from the cooling fan 12d to supercool the liquid refrigerant.
 冷却ファン12dは、制御装置から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。 The cooling fan 12d is an electric blower whose rotation speed (amount of blown air) is controlled by a control voltage output from the control device.
 放熱器12の過冷却部12cの冷媒出口には、回路切替弁13の高圧冷媒入口31aが接続されている。回路切替弁13は、放熱器12の過冷却部12cから流出した冷媒を後述するエジェクタ15のノズル部15aへ流入させる通常運転時の冷媒回路と、放熱器12の過冷却部12cから流出した冷媒を後述する迂回通路20へ流入させる低負荷運転時の冷媒回路とを切り替える冷媒回路切替装置である。 The high-pressure refrigerant inlet 31 a of the circuit switching valve 13 is connected to the refrigerant outlet of the supercooling section 12 c of the radiator 12. The circuit switching valve 13 includes a refrigerant circuit during normal operation in which the refrigerant flowing out from the supercooling section 12c of the radiator 12 flows into a nozzle section 15a of an ejector 15 described later, and the refrigerant flowing out from the subcooling section 12c of the radiator 12. Is a refrigerant circuit switching device for switching between a refrigerant circuit and a refrigerant circuit during low load operation that flows into a bypass passage 20 described later.
 回路切替弁13の詳細構成については、図2~図4を用いて説明する。図2は、回路切替弁13が、放熱器12から流出した冷媒をエジェクタ15のノズル部15a側へ流入させる冷媒回路に切り替えている状態を示す模式的な断面図である。図3は、回路切替弁13が、放熱器12から流出した冷媒を迂回通路20側へ流入させる冷媒回路に切り替えている状態を示す模式的な断面図である。 The detailed configuration of the circuit switching valve 13 will be described with reference to FIGS. FIG. 2 is a schematic cross-sectional view showing a state in which the circuit switching valve 13 is switched to a refrigerant circuit that causes the refrigerant flowing out of the radiator 12 to flow into the nozzle portion 15a side of the ejector 15. FIG. 3 is a schematic cross-sectional view showing a state where the circuit switching valve 13 is switched to a refrigerant circuit that allows the refrigerant flowing out of the radiator 12 to flow into the bypass passage 20 side.
 さらに、図4は、回路切替弁13が、冷媒回路を切り替える際に、瞬間的に、冷媒をノズル部15a側の冷媒通路および迂回通路20側の冷媒通路の双方を開いた状態を示す模式的な断面図である。 Further, FIG. 4 is a schematic view showing a state where the circuit switching valve 13 instantaneously opens both the refrigerant passage on the nozzle portion 15a side and the refrigerant passage on the bypass passage 20 side when the circuit switching valve 13 switches the refrigerant circuit. FIG.
 回路切替弁13は、バルブボデー31、弁体部32、コイルバネ33等を有している。バルブボデー31は、図2~図4に示すように、金属製あるいは樹脂製の複数の構成部材を組み合わせることによって、角柱状あるいは円柱状に形成されている。バルブボデー31は、回路切替弁13の外殻を形成するとともに、内部に弁体部32、コイルバネ33等を収容する。 The circuit switching valve 13 includes a valve body 31, a valve body 32, a coil spring 33, and the like. As shown in FIGS. 2 to 4, the valve body 31 is formed in a prismatic shape or a cylindrical shape by combining a plurality of structural members made of metal or resin. The valve body 31 forms an outer shell of the circuit switching valve 13 and houses a valve body 32, a coil spring 33, and the like therein.
 バルブボデー31には、高圧冷媒入口31a、第1冷媒出口31b、第2冷媒出口31cが形成されている。また、バルブボデー31の内部には、流入通路30a、第1冷媒通路30b、第2冷媒通路30cといった複数の冷媒通路が形成されている。 The valve body 31 has a high-pressure refrigerant inlet 31a, a first refrigerant outlet 31b, and a second refrigerant outlet 31c. A plurality of refrigerant passages such as an inflow passage 30a, a first refrigerant passage 30b, and a second refrigerant passage 30c are formed inside the valve body 31.
 高圧冷媒入口31aは、放熱器12から流出した冷媒を流入通路30a内に流入させる冷媒入口である。第1冷媒出口31bは、第1冷媒通路30bを流通する冷媒をエジェクタ15のノズル部15a側(より具体的には、後述する膨張弁14の冷媒入口側)へ流出させる冷媒出口である。第2冷媒出口31cは、第2冷媒通路30cを流通する冷媒を迂回通路20側へ流出させる冷媒出口である。 The high-pressure refrigerant inlet 31a is a refrigerant inlet through which the refrigerant that has flowed out of the radiator 12 flows into the inflow passage 30a. The first refrigerant outlet 31b is a refrigerant outlet through which refrigerant flowing through the first refrigerant passage 30b flows out to the nozzle portion 15a side of the ejector 15 (more specifically, to the refrigerant inlet side of the expansion valve 14 described later). The second refrigerant outlet 31c is a refrigerant outlet through which the refrigerant flowing through the second refrigerant passage 30c flows out to the bypass passage 20 side.
 第1冷媒通路30bは、流入通路30aに連通して、放熱器12から流出した冷媒をエジェクタ15のノズル部15a側へ導く冷媒通路である。第2冷媒通路30cは、流入通路30aに連通して、放熱器12から流出した冷媒を迂回通路20側へ導く冷媒通路である。 The first refrigerant passage 30b is a refrigerant passage that communicates with the inflow passage 30a and guides the refrigerant flowing out of the radiator 12 to the nozzle portion 15a side of the ejector 15. The second refrigerant passage 30c is a refrigerant passage that communicates with the inflow passage 30a and guides the refrigerant flowing out of the radiator 12 to the bypass passage 20 side.
 弁体部32は、第1冷媒通路30bの入口部を開閉する球体状のボールバルブ32a、および第2冷媒通路30cの入口部を開閉する円板状の板状バルブ32bを有している。板状バルブ32bのうち、第2冷媒通路30cの入口部に当接する部位には、ゴム製のシール部材32cが配置されている。 The valve body 32 includes a spherical ball valve 32a that opens and closes the inlet of the first refrigerant passage 30b, and a disk-like plate valve 32b that opens and closes the inlet of the second refrigerant passage 30c. A rubber seal member 32c is disposed in a portion of the plate-like valve 32b that contacts the inlet of the second refrigerant passage 30c.
 ボールバルブ32aと板状バルブ32bは、弁体部32の変位方向へ延びる連結棒によって連結されている。そして、ボールバルブ32aが第1冷媒通路30bを閉じる側に変位すると、板状バルブ32bが第2冷媒通路30cを開く側に変位する。また、ボールバルブ32aが第1冷媒通路30bを開く側に変位すると、板状バルブ32bが第2冷媒通路30cを閉じる側に変位する。 The ball valve 32a and the plate valve 32b are connected by a connecting rod extending in the displacement direction of the valve body 32. When the ball valve 32a is displaced toward the side that closes the first refrigerant passage 30b, the plate valve 32b is displaced toward the side that opens the second refrigerant passage 30c. Further, when the ball valve 32a is displaced toward the side opening the first refrigerant passage 30b, the plate-like valve 32b is displaced toward the side closing the second refrigerant passage 30c.
 さらに、弁体部32には、板状バルブ32bよりも冷媒流れ下流側の第2冷媒通路30cの円柱状の空間内に配置された受圧部34が連結されている。受圧部34は金属製の円柱状部材で形成されている。第2冷媒通路30cの内径と受圧部34の外径は、隙間バメの寸法関係になっている。このため、受圧部34は、第2冷媒通路30c内に中心軸方向へ摺動可能に配置されている。 Furthermore, the valve body 32 is connected to a pressure receiving portion 34 disposed in a columnar space of the second refrigerant passage 30c on the downstream side of the refrigerant flow with respect to the plate-like valve 32b. The pressure receiving part 34 is formed of a metal columnar member. The inner diameter of the second refrigerant passage 30c and the outer diameter of the pressure receiving portion 34 are in a dimensional relationship with a clearance fit. For this reason, the pressure receiving part 34 is disposed in the second refrigerant passage 30c so as to be slidable in the central axis direction.
 なお、第2冷媒通路30cの内周面と受圧部34の外周面との隙間には、シール部材としてのOリングが配置されており、これらの隙間から冷媒が漏れることはない。 It should be noted that an O-ring as a seal member is disposed in the gap between the inner peripheral surface of the second refrigerant passage 30c and the outer peripheral surface of the pressure receiving portion 34, and the refrigerant does not leak from these gaps.
 また、受圧部34には、中心軸方向に延びて、第2冷媒通路30cの入口側と第2冷媒通路30cの出口側とを連通させるオリフィス孔34aが形成されている。オリフィス孔34aは、第2冷媒通路30cに対して、充分に細い径で形成されている。 Further, the pressure receiving portion 34 is formed with an orifice hole 34a extending in the central axis direction and communicating the inlet side of the second refrigerant passage 30c and the outlet side of the second refrigerant passage 30c. The orifice hole 34a is formed with a sufficiently thin diameter with respect to the second refrigerant passage 30c.
 従って、第2冷媒通路30cを流通して第2冷媒出口31cから流出する冷媒は、オリフィス孔34aを通過する際に減圧される。さらに、受圧部34には、オリフィス孔34aの入口側冷媒の入口側圧力Priとオリフィス孔34aの出口側冷媒の出口側圧力Proとの差圧が作用する。 Therefore, the refrigerant flowing through the second refrigerant passage 30c and flowing out from the second refrigerant outlet 31c is decompressed when passing through the orifice hole 34a. Further, a differential pressure between the inlet side pressure Pri of the inlet side refrigerant in the orifice hole 34a and the outlet side pressure Pro of the outlet side refrigerant in the orifice hole 34a acts on the pressure receiving portion 34.
 つまり、オリフィス孔34aは、迂回通路20を介して後述する蒸発器19へ流入する冷媒を減圧させる減圧部である。本実施形態では、減圧部が回路切替弁13内に形成されていることによって、減圧部と回路切替弁が一体的に形成されている。 That is, the orifice hole 34a is a pressure reducing unit that depressurizes the refrigerant flowing into the evaporator 19 to be described later via the bypass passage 20. In the present embodiment, since the pressure reducing part is formed in the circuit switching valve 13, the pressure reducing part and the circuit switching valve are integrally formed.
 コイルバネ33は、弁体部32に対して、ボールバルブ32aが第1冷媒通路30bを閉じるとともに、板状バルブ32bが第2冷媒通路30cを開く側に荷重をかける弾性部材である。 The coil spring 33 is an elastic member that applies a load to the valve body portion 32 while the ball valve 32a closes the first refrigerant passage 30b and the plate-like valve 32b opens the second refrigerant passage 30c.
 本実施形態のコイルバネ33の荷重は、次に示すように設定されている。まず、以下の説明では、回路切替弁13の上流側の冷媒の高圧側圧力PHからオリフィス孔34aよりも下流側の冷媒の低圧側圧力PLを減算した値を圧力差ΔPと定義する。 The load of the coil spring 33 of this embodiment is set as follows. First, in the following description, a value obtained by subtracting the low pressure side pressure PL of the refrigerant downstream of the orifice hole 34a from the high pressure side pressure PH of the refrigerant upstream of the circuit switching valve 13 is defined as a pressure difference ΔP.
 この際、本実施形態のコイルバネ33の荷重は、圧力差ΔPが予め定めた基準圧力差KΔP以上となっている際には、第1冷媒通路30bを開くとともに、第2冷媒通路30cを閉じるように設定されている。一方、圧力差ΔPが基準圧力差KΔPよりも低くなっている際には、第1冷媒通路30bを閉じるとともに、第2冷媒通路30cを開くように設定されている。 At this time, when the pressure difference ΔP is equal to or larger than a predetermined reference pressure difference KΔP, the load of the coil spring 33 of the present embodiment opens the first refrigerant passage 30b and closes the second refrigerant passage 30c. Is set to On the other hand, when the pressure difference ΔP is lower than the reference pressure difference KΔP, the first refrigerant passage 30b is closed and the second refrigerant passage 30c is opened.
 ここで、低圧側圧力PLは、オリフィス孔34aよりも下流側の冷媒の圧力であるから、後述する蒸発器19の入口側冷媒の圧力、蒸発器19の出口側冷媒の圧力、あるいは、圧縮機11吸入冷媒の圧力を採用することができる。本実施形態では、低圧側圧力PLとして、蒸発器19出口側冷媒の圧力を採用している。もちろん、低圧側圧力PLとして、オリフィス孔34aの出口側冷媒の出口側圧力Proを採用してもよい。 Here, since the low-pressure side pressure PL is the pressure of the refrigerant on the downstream side of the orifice hole 34a, the pressure of the refrigerant on the inlet side of the evaporator 19, the pressure of the refrigerant on the outlet side of the evaporator 19 described later, or the compressor 11 The pressure of the suction refrigerant can be adopted. In this embodiment, the pressure of the evaporator 19 outlet side refrigerant is adopted as the low pressure side pressure PL. Of course, the outlet side pressure Pro of the outlet side refrigerant of the orifice hole 34a may be adopted as the low pressure side pressure PL.
 さらに、本実施形態では、圧力差ΔPが基準圧力差KΔPになっている際の圧縮機11の吐出口側の冷媒圧力から吸入口側の冷媒圧力を減算した前後差圧ΔPcを、基準前後差圧KΔPcと定義する。このため、本実施形態のコイルバネ33の荷重は、前後差圧ΔPcが基準前後差圧KΔPcよりも低くなっている際には、回路切替弁13が第1冷媒通路30bを閉じるとともに、第2冷媒通路30cを開くように設定されている。 Further, in this embodiment, the front-rear differential pressure ΔPc obtained by subtracting the refrigerant pressure on the suction side from the refrigerant pressure on the discharge port side of the compressor 11 when the pressure difference ΔP is the reference pressure difference KΔP is obtained. The pressure is defined as KΔPc. Therefore, when the front-rear differential pressure ΔPc is lower than the reference front-rear differential pressure KΔPc, the load of the coil spring 33 according to the present embodiment closes the first refrigerant passage 30b and the second refrigerant. It is set to open the passage 30c.
 つまり、本実施形態の回路切替弁13は、第1冷媒通路30bおよび第2冷媒通路30cのいずれか一方を選択的に開く(すなわち、いずれか一方を開いた際に他方を閉じる)機械的機構で構成されている。 That is, the circuit switching valve 13 of the present embodiment is a mechanical mechanism that selectively opens one of the first refrigerant passage 30b and the second refrigerant passage 30c (that is, closes the other when one of them is opened). It consists of
 また、本実施形態の回路切替弁13では、以下数式F1~F3の関係を満たすようにコイルバネ33の設定荷重および各種諸元が決定されている。
A1>A2 …(F1)
A1×KΔP>Fsp1 …(F2)
Fsp1>A2×KΔP …(F3)
 ここで、A1は、図2~図4に示すように、弁体部32が第2冷媒通路30cを閉じた際に、弁体部32のうち高圧側圧力PHと入口側圧力Priとの差圧が作用する第1受圧面積A1である。A2は、受圧部34うち入口側圧力Priと出口側圧力Proとの差圧が作用する第2受圧面積A2である。Fsp1は、圧力差ΔPが基準圧力差KΔPとなった際にコイルバネ33が弁体部32に作用させる第1セット荷重Fsp1である。
Further, in the circuit switching valve 13 of the present embodiment, the set load and various specifications of the coil spring 33 are determined so as to satisfy the following formulas F1 to F3.
A1> A2 (F1)
A1 × KΔP> Fsp1 (F2)
Fsp1> A2 × KΔP (F3)
Here, as shown in FIGS. 2 to 4, A1 is the difference between the high pressure side pressure PH and the inlet side pressure Pri of the valve body portion 32 when the valve body portion 32 closes the second refrigerant passage 30c. This is the first pressure receiving area A1 where pressure acts. A <b> 2 is a second pressure receiving area A <b> 2 in which a differential pressure between the inlet side pressure Pri and the outlet side pressure Pro of the pressure receiving unit 34 acts. Fsp1 is a first set load Fsp1 that the coil spring 33 acts on the valve body portion 32 when the pressure difference ΔP becomes the reference pressure difference KΔP.
 なお、図2~図4では、円形状となる第1受圧面積A1の直径に相当する箇所にA1の符号を付している。このことは、第2受圧面積A2、および第3受圧面積においても同様である。 In FIG. 2 to FIG. 4, a portion corresponding to the diameter of the first pressure receiving area A1 having a circular shape is denoted by A1. The same applies to the second pressure receiving area A2 and the third pressure receiving area.
 また、本実施形態では、板状バルブ32bのシール部材32cが当接する円筒状のシート部31dの内径と外径の差によって、上記数式F1の関係を実現している。 Further, in the present embodiment, the relationship of the above formula F1 is realized by the difference between the inner diameter and the outer diameter of the cylindrical seat portion 31d with which the seal member 32c of the plate valve 32b abuts.
 これに加えて、本実施形態の回路切替弁13では、以下数式F4~F6の関係を満たすようにコイルバネ33の設定荷重および各種諸元が決定されている。
A2>A3 …(F4)
Fsp2>(A2-A3)×KΔP …(F5)
A2×KΔP>Fsp2 …(F6)
 ここで、A3は、図2~図4に示すように、弁体部32が第1冷媒通路30bを閉じた際に、弁体部32のうち高圧側圧力PHと第1冷媒通路30b側(すなわち、ノズル部15aの入口側)のノズル側圧力Pnozとの差圧が作用する第3受圧面積A3である。Fsp2は、弁体部32が第1冷媒通路30bを閉じている際にコイルバネ33が弁体部32に作用させる第2セット荷重Fsp2である。
In addition to this, in the circuit switching valve 13 of the present embodiment, the set load and various specifications of the coil spring 33 are determined so as to satisfy the relationships of the following formulas F4 to F6.
A2> A3 (F4)
Fsp2> (A2-A3) × KΔP (F5)
A2 × KΔP> Fsp2 (F6)
Here, as shown in FIGS. 2 to 4, A3 indicates that when the valve body 32 closes the first refrigerant passage 30b, the high pressure side pressure PH and the first refrigerant passage 30b side ( That is, it is the third pressure receiving area A3 on which the differential pressure with the nozzle side pressure Pnoz on the inlet side of the nozzle portion 15a acts. Fsp2 is a second set load Fsp2 that the coil spring 33 acts on the valve body portion 32 when the valve body portion 32 closes the first refrigerant passage 30b.
 さらに、バルブボデー31には、コイルバネ33を支持する受け部材33aが配置されている。この受け部材33aは、バルブボデー31にネジ止めにて固定されている。従って、コイルバネ33の荷重は、受け部材33aを変位させることによって調整することができる。 Further, the valve body 31 is provided with a receiving member 33a for supporting the coil spring 33. The receiving member 33a is fixed to the valve body 31 with screws. Therefore, the load of the coil spring 33 can be adjusted by displacing the receiving member 33a.
 回路切替弁13の第1冷媒出口31bには、膨張弁14の冷媒入口側が接続されている。この膨張弁14は、いわゆる外部均圧式のボックス型の温度式膨張弁である。 The refrigerant inlet side of the expansion valve 14 is connected to the first refrigerant outlet 31b of the circuit switching valve 13. The expansion valve 14 is a so-called external pressure equalizing box type temperature expansion valve.
 膨張弁14は、放熱器12の過冷却部12cから流出した高圧液相冷媒を中間圧冷媒となるまで減圧させるとともに、サイクルを循環する循環冷媒流量を調整する流量調整装置である。さらに、本実施形態の膨張弁14は、蒸発器19出口側冷媒の過熱度SHが、予め定めた基準過熱度KSHに近づくように循環冷媒流量を調整する。 The expansion valve 14 is a flow rate adjusting device that depressurizes the high-pressure liquid-phase refrigerant that has flowed out of the supercooling portion 12c of the radiator 12 until it becomes an intermediate-pressure refrigerant and adjusts the circulating refrigerant flow rate that circulates in the cycle. Further, the expansion valve 14 of the present embodiment adjusts the circulating refrigerant flow rate so that the superheat degree SH of the evaporator 19 outlet side refrigerant approaches a predetermined reference superheat degree KSH.
 このような膨張弁14としては、蒸発器19から流出した冷媒の温度および圧力に応じて変位する変位部材(ダイヤフラム)を有する感温部を備え、この変位部材の変位に応じて蒸発器19出口側冷媒の過熱度が基準過熱度に近づくように機械的機構によって弁開度(冷媒流量)が調整されるものを採用することができる。 Such an expansion valve 14 includes a temperature sensing part having a displacement member (diaphragm) that is displaced according to the temperature and pressure of the refrigerant that has flowed out of the evaporator 19, and the outlet of the evaporator 19 according to the displacement of the displacement member. It is possible to employ one in which the valve opening degree (refrigerant flow rate) is adjusted by a mechanical mechanism so that the superheat degree of the side refrigerant approaches the reference superheat degree.
 膨張弁14の冷媒出口には、エジェクタ15のノズル部15aの入口側が接続されている。エジェクタ15は、通常運転時に、膨張弁14から流出した冷媒(すなわち、放熱器12から流出した冷媒)を減圧させる減圧装置としての機能を果たす。 The inlet side of the nozzle portion 15 a of the ejector 15 is connected to the refrigerant outlet of the expansion valve 14. The ejector 15 functions as a decompression device that decompresses the refrigerant flowing out of the expansion valve 14 (that is, the refrigerant flowing out of the radiator 12) during normal operation.
 さらに、エジェクタ15は、膨張弁14から流出した冷媒をノズル部15aで減圧させて噴射し、高速度で噴射される噴射冷媒の吸引作用によって蒸発器19から流出した冷媒を(すなわち、蒸発器19出口側冷媒)を吸引して輸送する冷媒輸送装置としての機能を果たす。 Further, the ejector 15 injects the refrigerant that has flowed out of the expansion valve 14 by reducing the pressure at the nozzle portion 15a, and the refrigerant that has flowed out of the evaporator 19 by the suction action of the injected refrigerant that is injected at a high speed (that is, the evaporator 19). It functions as a refrigerant transport device that sucks and transports (exit-side refrigerant).
 より具体的には、エジェクタ15は、ノズル部15aおよびボデー部15bを有している。ノズル部15aは、冷媒の流れ方向に向かって徐々に先細る形状の金属製(本実施形態では、ステンレス製)の略円筒状部材で形成されている。ノズル部15aは、内部に形成された冷媒通路にて冷媒を等エントロピ的に減圧させる。 More specifically, the ejector 15 has a nozzle portion 15a and a body portion 15b. The nozzle portion 15a is formed of a substantially cylindrical member made of metal (stainless steel in the present embodiment) that gradually tapers in the direction of refrigerant flow. The nozzle portion 15a decompresses the refrigerant in an isentropic manner in the refrigerant passage formed inside.
 ノズル部15aの内部に形成された冷媒通路には、通路断面積が最も縮小した喉部(最小通路面積部)が形成され、さらに、この喉部から冷媒を噴射する冷媒噴射口へ向かうに伴って冷媒通路面積が拡大する末広部が形成されている。つまり、ノズル部15aは、ラバールノズルとして構成されている。 In the refrigerant passage formed in the nozzle portion 15a, a throat portion (minimum passage area portion) having the smallest passage cross-sectional area is formed, and further, from the throat portion toward the refrigerant injection port for injecting the refrigerant. As a result, a divergent portion in which the refrigerant passage area is enlarged is formed. That is, the nozzle portion 15a is configured as a Laval nozzle.
 さらに、本実施形態では、ノズル部15aとして、エジェクタ式冷凍サイクル10の通常作動時に、冷媒噴射口から噴射される噴射冷媒の流速が音速以上となるように設定されたものが採用されている。もちろん、ノズル部15aを先細ノズルで構成してもよい。 Furthermore, in the present embodiment, the nozzle unit 15a is set such that the flow rate of the injected refrigerant injected from the refrigerant injection port is equal to or higher than the sonic speed during normal operation of the ejector refrigeration cycle 10. Of course, you may comprise the nozzle part 15a with a tapered nozzle.
 ボデー部15bは、金属製(本実施形態では、アルミニウム合金製)の円筒状部材で形成されており、内部にノズル部15aを支持固定する固定部材として機能するとともに、エジェクタ15の外殻を形成する。ノズル部15aは、ボデー部15bの長手方向一端側の内部に収容されるように圧入にて固定されている。このため、ノズル部15aとボデー部15bとの固定部(圧入部)から冷媒が漏れることはない。 The body portion 15b is formed of a cylindrical member made of metal (in this embodiment, made of an aluminum alloy), and functions as a fixing member that supports and fixes the nozzle portion 15a therein, and forms an outer shell of the ejector 15. To do. The nozzle portion 15a is fixed by press-fitting so as to be accommodated inside the longitudinal end of the body portion 15b. For this reason, a refrigerant | coolant does not leak from the fixing | fixed part (press-fit part) of the nozzle part 15a and the body part 15b.
 また、ボデー部15bの外周面のうち、ノズル部15aの外周側に対応する部位には、その内外を貫通してノズル部15aの冷媒噴射口と連通するように設けられた冷媒吸引口15cが形成されている。この冷媒吸引口15cは、ノズル部15aから噴射される噴射冷媒の吸引作用によって、蒸発器19から流出した冷媒をエジェクタ15の内部へ吸引する貫通穴である。 In addition, a refrigerant suction port 15c provided so as to penetrate the inside and outside of the outer peripheral surface of the body portion 15b and communicate with the refrigerant injection port of the nozzle portion 15a is provided in a portion corresponding to the outer peripheral side of the nozzle portion 15a. Is formed. The refrigerant suction port 15c is a through hole that sucks the refrigerant that has flowed out of the evaporator 19 into the ejector 15 by the suction action of the injection refrigerant that is injected from the nozzle portion 15a.
 さらに、ボデー部15bの内部には、冷媒吸引口15cから吸引された吸引冷媒をノズル部15aの冷媒噴射口側へ導く吸引通路、および吸引通路を介してエジェクタ15の内部へ流入した吸引冷媒と噴射冷媒とを混合させて昇圧させる昇圧部であるディフューザ部15dが形成されている。 Further, inside the body portion 15b, a suction passage that guides the suction refrigerant sucked from the refrigerant suction port 15c to the refrigerant injection port side of the nozzle portion 15a, and a suction refrigerant that flows into the ejector 15 through the suction passage. A diffuser portion 15d, which is a pressure increasing portion that increases the pressure by mixing the injected refrigerant, is formed.
 ディフューザ部15dは、吸引通路の出口に連続するように配置されて、冷媒通路面積が徐々に拡大するように形成されている。これにより、噴射冷媒と吸引冷媒とを混合させながら、その流速を減速させて噴射冷媒と吸引冷媒との混合冷媒の圧力を上昇させる機能を果たす。従って、エジェクタ15は、冷媒を吸引して、混合冷媒を昇圧させる吸引昇圧作用(いわゆる、ポンプ作用)を発揮することができる。 The diffuser portion 15d is disposed so as to be continuous with the outlet of the suction passage, and is formed so that the refrigerant passage area gradually increases. Thereby, while mixing the injection refrigerant and the suction refrigerant, a function of reducing the flow velocity and increasing the pressure of the mixed refrigerant of the injection refrigerant and the suction refrigerant is achieved. Therefore, the ejector 15 can exhibit a suction pressure increasing action (so-called pump action) for sucking the refrigerant and boosting the mixed refrigerant.
 ディフューザ部15dの冷媒出口には、アキュムレータ16の入口側が接続されている。アキュムレータ16は、ディフューザ部15dから流出した冷媒の気液を分離する気液分離部である。アキュムレータ16には、分離された気相冷媒を流出させる気相冷媒出口と、分離された液相冷媒を流出させるための液相冷媒出口が設けられている。 The inlet side of the accumulator 16 is connected to the refrigerant outlet of the diffuser part 15d. The accumulator 16 is a gas-liquid separation unit that separates the gas-liquid refrigerant flowing out of the diffuser unit 15d. The accumulator 16 is provided with a gas phase refrigerant outlet through which the separated gas phase refrigerant flows out and a liquid phase refrigerant outlet through which the separated liquid phase refrigerant flows out.
 アキュムレータ16の液相冷媒出口には、逆止弁17を介して、三方継手18の一方の冷媒入口が接続されている。逆止弁17は、アキュムレータ16の液相冷媒出口から流出した冷媒が三方継手18側へ流れることのみを許容する。 One refrigerant inlet of the three-way joint 18 is connected to the liquid phase refrigerant outlet of the accumulator 16 via a check valve 17. The check valve 17 only allows the refrigerant flowing out from the liquid-phase refrigerant outlet of the accumulator 16 to flow to the three-way joint 18 side.
 三方継手18は3つの冷媒出入口を有する配管継手である。本実施形態では、3の冷媒出入口のうち2つを冷媒入口として利用し、残りの1つを冷媒出口として利用している。三方継手18の冷媒出口には、蒸発器19の冷媒入口が接続されている。従って、逆止弁17は、冷媒が蒸発器19の入口側からアキュムレータ16の液相冷媒出口側へ流れることを抑制する抑制機構である。 The three-way joint 18 is a pipe joint having three refrigerant outlets. In the present embodiment, two of the three refrigerant inlets / outlets are used as refrigerant inlets, and the remaining one is used as a refrigerant outlet. The refrigerant inlet of the evaporator 19 is connected to the refrigerant outlet of the three-way joint 18. Therefore, the check valve 17 is a suppression mechanism that suppresses the refrigerant from flowing from the inlet side of the evaporator 19 to the liquid phase refrigerant outlet side of the accumulator 16.
 蒸発器19は、エジェクタ15にて減圧された低圧冷媒と送風ファン19aから車室内へ送風される送風空気とを熱交換させることによって、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器である。 The evaporator 19 performs heat exchange between the low-pressure refrigerant decompressed by the ejector 15 and the blown air blown into the vehicle compartment from the blower fan 19a, thereby evaporating the low-pressure refrigerant and exerting an endothermic effect. It is a vessel.
 送風ファン19aは、制御装置から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。蒸発器19の出口側には、エジェクタ15の冷媒吸引口15c側が接続されている。さらに、アキュムレータ16の気相冷媒出口には、圧縮機11の吸入口側が接続されている。 The blower fan 19a is an electric blower in which the rotation speed (the amount of blown air) is controlled by a control voltage output from the control device. The refrigerant suction port 15 c side of the ejector 15 is connected to the outlet side of the evaporator 19. Further, the suction port side of the compressor 11 is connected to the gas-phase refrigerant outlet of the accumulator 16.
 また、回路切替弁13の第2冷媒出口31cには、迂回通路20の入口側が接続されている。迂回通路20の出口側には、三方継手18の他方の冷媒入口が接続されている。従って、迂回通路20は、放熱器12にて放熱した冷媒を、エジェクタ15のノズル部15aを迂回させて、蒸発器19の冷媒出口よりも冷媒流れ上流側に配置された三方継手18側へ導く冷媒通路である。 Further, the inlet side of the bypass passage 20 is connected to the second refrigerant outlet 31c of the circuit switching valve 13. The other refrigerant inlet of the three-way joint 18 is connected to the outlet side of the bypass passage 20. Therefore, the bypass passage 20 guides the refrigerant radiated by the radiator 12 to the side of the three-way joint 18 disposed on the upstream side of the refrigerant flow from the refrigerant outlet of the evaporator 19 by bypassing the nozzle portion 15a of the ejector 15. It is a refrigerant passage.
 次に、図示しない制御装置は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成される。この制御装置は、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行う。制御装置は、上述の各種電気式の圧縮機11、冷却ファン12d等の作動を制御する。 Next, a control device (not shown) includes a known microcomputer including a CPU, a ROM, a RAM, and the like and its peripheral circuits. This control device performs various calculations and processes based on a control program stored in the ROM. The control device controls the operation of the various electric compressors 11 and the cooling fan 12d described above.
 また、制御装置には、内気温センサ、外気温センサ、日射センサ、蒸発器温度センサ、出口側温度センサ、出口側圧力センサ等の複数の空調制御用のセンサ群が接続され、これらのセンサ群の検出値が入力される。 The control device is connected to a plurality of air conditioning control sensor groups such as an inside air temperature sensor, an outside air temperature sensor, a solar radiation sensor, an evaporator temperature sensor, an outlet side temperature sensor, and an outlet side pressure sensor. The detected value is input.
 より具体的には、内気温センサは、車室内温度を検出する内気温検出装置である。外気温センサは、外気温を検出する外気温検出装置である。日射センサは、車室内の日射量を検出する日射量検出装置である。蒸発器温度センサは、蒸発器19の吹出空気温度(蒸発器温度)を検出する蒸発器温度検出装置である。出口側温度センサは、放熱器12出口側冷媒の温度を検出する出口側温度検出装置である。出口側圧力センサは、放熱器12出口側冷媒の圧力を検出する出口側圧力検出装置である。 More specifically, the inside air temperature sensor is an inside air temperature detecting device that detects the vehicle interior temperature. The outside air temperature sensor is an outside air temperature detecting device that detects outside air temperature. A solar radiation sensor is a solar radiation amount detection apparatus which detects the solar radiation amount in a vehicle interior. The evaporator temperature sensor is an evaporator temperature detection device that detects the blown air temperature (evaporator temperature) of the evaporator 19. The outlet side temperature sensor is an outlet side temperature detecting device that detects the temperature of the radiator 12 outlet side refrigerant. The outlet-side pressure sensor is an outlet-side pressure detection device that detects the pressure of the radiator 12 outlet-side refrigerant.
 さらに、制御装置の入力側には、車室内前部の計器盤付近に配置された図示しない操作パネルが接続され、この操作パネルに設けられた各種操作スイッチからの操作信号が制御装置へ入力される。操作パネルに設けられた各種操作スイッチとしては、車室内空調を行うことを要求する空調作動スイッチ、車室内温度を設定する車室内温度設定スイッチ等が設けられている。 Furthermore, an operation panel (not shown) disposed near the instrument panel in the front part of the vehicle interior is connected to the input side of the control device, and operation signals from various operation switches provided on the operation panel are input to the control device. The As various operation switches provided on the operation panel, there are provided an air conditioning operation switch for requesting air conditioning in the vehicle interior, a vehicle interior temperature setting switch for setting the vehicle interior temperature, and the like.
 なお、本実施形態の制御装置は、その出力側に接続された各種の制御対象機器の作動を制御する制御部が一体的に構成されたものであるが、制御装置のうち、各制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が各制御対象機器の制御部を構成している。 Note that the control device of the present embodiment is configured such that a control unit that controls the operation of various control target devices connected to the output side is integrally configured. The configuration (hardware and software) for controlling the operation of the system constitutes a control unit of each control target device.
 例えば、本実施形態では、圧縮機11の吐出容量制御弁の作動を制御することによって、圧縮機11の冷媒吐出能力を制御する構成が吐出能力制御部を構成している。もちろん、吐出能力制御部を制御装置に対して、別体の制御装置で構成してもよい。 For example, in the present embodiment, the configuration for controlling the refrigerant discharge capacity of the compressor 11 by controlling the operation of the discharge capacity control valve of the compressor 11 constitutes the discharge capacity control unit. Of course, the discharge capacity control unit may be configured as a separate control device with respect to the control device.
 次に、上記構成における本実施形態のエジェクタ式冷凍サイクル10の作動について説明する。前述の如く、本実施形態のエジェクタ式冷凍サイクル10では、通常運転時の冷媒回路と低負荷運転時の冷媒回路とを切り替えることができる。 Next, the operation of the ejector refrigeration cycle 10 of the present embodiment having the above configuration will be described. As described above, in the ejector refrigeration cycle 10 of the present embodiment, the refrigerant circuit during normal operation and the refrigerant circuit during low-load operation can be switched.
 より具体的には、本実施形態のエジェクタ式冷凍サイクル10では、回路切替弁13における圧力差ΔPが基準圧力差KΔPより大きくなっている際に通常運転時の冷媒回路に切り替えられ、圧力差ΔPが基準圧力差KΔP以下となっている際に低負荷運転時の冷媒回路に切り替えられる。 More specifically, in the ejector refrigeration cycle 10 of the present embodiment, when the pressure difference ΔP in the circuit switching valve 13 is larger than the reference pressure difference KΔP, the refrigerant circuit is switched to the refrigerant circuit during normal operation, and the pressure difference ΔP Is switched to the refrigerant circuit at the time of low load operation when the pressure difference is equal to or less than the reference pressure difference KΔP.
 まず、通常運転時の作動について説明する。本実施形態のエジェクタ式冷凍サイクル10では、操作パネルの作動スイッチが投入(ON)されると、制御装置が、予め記憶された空調制御プログラムを実行して、圧縮機11の電動モータ、冷却ファン12d、送風ファン19a等の作動を制御する。 First, the operation during normal operation will be described. In the ejector refrigeration cycle 10 of this embodiment, when the operation switch of the operation panel is turned on (ON), the control device executes an air conditioning control program stored in advance, and the electric motor and cooling fan of the compressor 11 12d and the operation of the blower fan 19a are controlled.
 ここで、車両の停止後、短時間で再起動する場合等を除き、一般的に、サイクルの起動時には、エジェクタ式冷凍サイクル10内の冷媒の均圧化がなされていることが多い。そして、冷媒の均圧化がなされている場合には、前後差圧ΔPcが基準前後差圧KΔPcよりも低くなる。従って、回路切替弁13では、図3に示すように、第1冷媒通路30bが閉じ、第2冷媒通路30cが開いた状態となる。 Here, generally, when the cycle is started, the refrigerant in the ejector refrigeration cycle 10 is often pressure-equalized, except when the vehicle is restarted in a short time after stopping. When the refrigerant is equalized, the front-rear differential pressure ΔPc is lower than the reference front-rear differential pressure KΔPc. Therefore, in the circuit switching valve 13, as shown in FIG. 3, the first refrigerant passage 30b is closed and the second refrigerant passage 30c is opened.
 その結果、サイクルの起動直後のエジェクタ式冷凍サイクル10では、図1の白抜矢印に示すように冷媒が流れる。この際、サイクル内の冷媒圧力は、以下、数式F7~F10に示す関係になっている。
PH=Pri …(F7)
Pri>Pro …(F8)
Pro≒PL …(F9)
Pro≒Pnoz …(F10)
 このため、前述した数式F5に示すように、圧力差ΔPによって第1冷媒通路30bを開く側の荷重(すなわち、(A2-A3)×ΔP)が、第1冷媒通路30bを閉じる側の第2セット荷重Fsp2より大きくなるまで、第2冷媒通路30cを開いた状態が維持される。
As a result, in the ejector refrigeration cycle 10 immediately after the start of the cycle, the refrigerant flows as shown by the white arrow in FIG. At this time, the refrigerant pressure in the cycle has a relationship shown in the following formulas F7 to F10.
PH = Pri (F7)
Pri> Pro (F8)
Pro ≒ PL (F9)
Pro≈Pnoz (F10)
For this reason, as shown in Formula F5, the load on the side that opens the first refrigerant passage 30b due to the pressure difference ΔP (that is, (A2-A3) × ΔP) is the second on the side that closes the first refrigerant passage 30b. The state where the second refrigerant passage 30c is opened is maintained until it becomes larger than the set load Fsp2.
 なお、本実施形態では、高圧側圧力PHとして放熱器12出口側冷媒の圧力(すなわち、回路切替弁13の高圧冷媒入口31aにおける冷媒圧力)を採用している。また、ノズル側圧力Pnozとして、膨張弁14入口側冷媒の圧力(すなわち、回路切替弁13の第1冷媒出口31bにおける冷媒圧力)を採用している。 In the present embodiment, the pressure of the refrigerant on the outlet side of the radiator 12 (that is, the refrigerant pressure at the high pressure refrigerant inlet 31a of the circuit switching valve 13) is adopted as the high pressure side pressure PH. Further, the pressure of the refrigerant on the inlet side of the expansion valve 14 (that is, the refrigerant pressure at the first refrigerant outlet 31b of the circuit switching valve 13) is employed as the nozzle side pressure Pnoz.
 そして、通常運転時の圧縮機11の吸入圧縮作用によって、高圧側圧力PHと低圧側圧力PLとの圧力差ΔPが拡大し、基準圧力差KΔPに到達すると、図4に示すように弁体部32のボールバルブ32aが第1冷媒通路30bを開くとともに、板状バルブ32bが第2冷媒通路30cを閉じる側に変位する。すなわち、第1冷媒通路30bおよび第2冷媒通路30cの双方が開いた状態になる。 When the pressure difference ΔP between the high-pressure side pressure PH and the low-pressure side pressure PL is expanded by the suction compression action of the compressor 11 during normal operation and reaches the reference pressure difference KΔP, the valve body portion is shown in FIG. The 32 ball valves 32a open the first refrigerant passage 30b, and the plate-like valve 32b is displaced to close the second refrigerant passage 30c. That is, both the first refrigerant passage 30b and the second refrigerant passage 30c are opened.
 この際、サイクル内の圧力は、以下、数式F11、F12に示す関係に変化する。
PH≒Pnoz …(F11)
PH≒Pri …(F12)
 ここで、本実施形態では、数式F4に示すように、第2受圧面積A2が第3受圧面積A3よりも大きくなっているので、数式F6に示すように、圧力差ΔPによって第1冷媒通路30bを開く側の荷重(すなわち、A2×ΔP)が、瞬時に第1冷媒通路30bを閉じる側の第2セット荷重Fsp2よりも大きくなる。
At this time, the pressure in the cycle changes to a relationship represented by mathematical formulas F11 and F12 below.
PH≈Pnoz (F11)
PH≈Pri (F12)
Here, in the present embodiment, since the second pressure receiving area A2 is larger than the third pressure receiving area A3 as shown in Formula F4, as shown in Formula F6, the first refrigerant passage 30b is caused by the pressure difference ΔP. Is larger than the second set load Fsp2 on the side where the first refrigerant passage 30b is closed instantaneously.
 その結果、第1冷媒通路30bおよび第2冷媒通路30cの双方が開いた状態から、瞬時に、図2に示すように、第1冷媒通路30bが開き、第2冷媒通路30cが閉じた状態となる。このため、通常運転時のエジェクタ式冷凍サイクル10では、図1の黒塗矢印に示すように冷媒が流れる。 As a result, from the state where both the first refrigerant passage 30b and the second refrigerant passage 30c are opened, as shown in FIG. 2, the first refrigerant passage 30b is opened and the second refrigerant passage 30c is closed as shown in FIG. Become. For this reason, in the ejector refrigeration cycle 10 during normal operation, the refrigerant flows as shown by the black arrows in FIG.
 より具体的には、図5のモリエル線図に示すように、圧縮機11から吐出された高温高圧冷媒(図5のa点)は、放熱器12の凝縮部12aへ流入する。凝縮部12aへ流入した冷媒は、冷却ファン12dから送風された外気と熱交換し、放熱して凝縮する。凝縮部12aにて凝縮した冷媒は、レシーバ部12bにて気液分離される。レシーバ部12bにて気液分離された液相冷媒は、過冷却部12cにて冷却ファン12dから送風された外気と熱交換し、さらに放熱して過冷却液相冷媒となる(図5のa点→b点)。 More specifically, as shown in the Mollier diagram of FIG. 5, the high-temperature and high-pressure refrigerant discharged from the compressor 11 (point a in FIG. 5) flows into the condenser 12 a of the radiator 12. The refrigerant flowing into the condensing part 12a exchanges heat with the outside air blown from the cooling fan 12d, and dissipates heat to condense. The refrigerant condensed in the condensing unit 12a is gas-liquid separated in the receiver unit 12b. The liquid phase refrigerant separated from the gas and liquid by the receiver unit 12b exchanges heat with the outside air blown from the cooling fan 12d by the supercooling unit 12c, and further dissipates heat to become a supercooled liquid phase refrigerant (a in FIG. 5). Point → b).
 放熱器12の過冷却部12cから流出した過冷却液相冷媒は、回路切替弁13の高圧冷媒入口31aから流入通路30aへ流入する。通常運転時の回路切替弁13では、弁体部32が第1冷媒通路30bを開くとともに、第2冷媒通路30cを閉じているので、流入通路30aへ流入した冷媒は、第1冷媒出口31bから流出して、膨張弁14へ流入する。 The supercooled liquid phase refrigerant that has flowed out of the supercooling portion 12c of the radiator 12 flows from the high-pressure refrigerant inlet 31a of the circuit switching valve 13 into the inflow passage 30a. In the circuit switching valve 13 during normal operation, the valve body 32 opens the first refrigerant passage 30b and closes the second refrigerant passage 30c, so that the refrigerant flowing into the inflow passage 30a flows from the first refrigerant outlet 31b. It flows out and flows into the expansion valve 14.
 膨張弁14へ流入した冷媒は、中間圧冷媒となるまで等エンタルピ的に減圧される(図5のb点→b1点)。この際、膨張弁14の絞り開度は、蒸発器19出口側冷媒(図5のh点)の過熱度SHが基準過熱度KSHに近づくように調整される。膨張弁14から流出した中間圧冷媒はエジェクタ15のノズル部15aへ流入する。 The refrigerant that has flowed into the expansion valve 14 is decompressed in an enthalpy manner until it becomes an intermediate pressure refrigerant (point b → point b1 in FIG. 5). At this time, the opening degree of the expansion valve 14 is adjusted such that the superheat degree SH of the evaporator 19 outlet side refrigerant (point h in FIG. 5) approaches the reference superheat degree KSH. The intermediate pressure refrigerant that has flowed out of the expansion valve 14 flows into the nozzle portion 15 a of the ejector 15.
 ノズル部15aへ流入した冷媒は、等エントロピ的に減圧されて噴射される(図5のb1→c点)。そして、この噴射冷媒の吸引作用によって、蒸発器19出口側冷媒が、エジェクタ15の冷媒吸引口15cから吸引される。ノズル部15aから噴射された噴射冷媒および冷媒吸引口15cから吸引された吸引冷媒は、ディフューザ部15dへ流入する(図5のc→d点、h1点→d点)。 The refrigerant flowing into the nozzle portion 15a is isentropically depressurized and injected (point b1 → c in FIG. 5). The refrigerant on the outlet side of the evaporator 19 is sucked from the refrigerant suction port 15 c of the ejector 15 by the suction action of the jet refrigerant. The refrigerant injected from the nozzle portion 15a and the suction refrigerant sucked from the refrigerant suction port 15c flow into the diffuser portion 15d (point c → d, point h1 → d in FIG. 5).
 ここで、本実施形態の吸引通路は、冷媒流れ方向に向かって通路断面積が縮小する形状に形成されている。このため、吸引通路を通過する吸引冷媒は、その圧力を低下させながら(図5のh点→h1点)、流速を増加させる。これにより、吸引冷媒と噴射冷媒との速度差を縮小し、ディフューザ部15dにて吸引冷媒と噴射冷媒が混合する際のエネルギ損失(混合損失)を減少させている。 Here, the suction passage of the present embodiment is formed in a shape in which the passage cross-sectional area decreases in the refrigerant flow direction. For this reason, the suction refrigerant passing through the suction passage increases the flow velocity while decreasing the pressure (point h → point h1 in FIG. 5). Thereby, the speed difference between the suction refrigerant and the injection refrigerant is reduced, and the energy loss (mixing loss) when the suction refrigerant and the injection refrigerant are mixed in the diffuser portion 15d is reduced.
 ディフューザ部15dでは、冷媒通路面積の拡大により、冷媒の速度エネルギが圧力エネルギに変換される。これにより、噴射冷媒と吸引冷媒との混合冷媒の圧力が上昇する(図5のd点→e点)。ディフューザ部15dから流出した冷媒はアキュムレータ16へ流入して気液分離される。 In the diffuser portion 15d, the velocity energy of the refrigerant is converted into pressure energy by expanding the refrigerant passage area. Thereby, the pressure of the mixed refrigerant of the injected refrigerant and the suction refrigerant increases (point d → point e in FIG. 5). The refrigerant that has flowed out of the diffuser portion 15d flows into the accumulator 16 and is separated into gas and liquid.
 アキュムレータ16にて分離された液相冷媒(図5のg点)は、逆止弁17および三方継手18を介して、蒸発器19へ流入する。液相冷媒が逆止弁17を通過する際には、圧力損失が生じる(図5のg点→g1点)。蒸発器19へ流入した冷媒は、送風ファン19aによって送風された送風空気から吸熱して蒸発する(図5のg1点→h点)。これにより、送風空気が冷却される。 The liquid refrigerant (g point in FIG. 5) separated by the accumulator 16 flows into the evaporator 19 via the check valve 17 and the three-way joint 18. When the liquid-phase refrigerant passes through the check valve 17, a pressure loss occurs (point g → point g1 in FIG. 5). The refrigerant flowing into the evaporator 19 absorbs heat from the blown air blown by the blower fan 19a and evaporates (g1 point → h point in FIG. 5). Thereby, blowing air is cooled.
 一方、アキュムレータ16にて分離された気相冷媒(図5のf点)は、圧縮機11へ吸入されて再び圧縮される(図5のf点→a点)。 On the other hand, the gas-phase refrigerant separated by the accumulator 16 (point f in FIG. 5) is sucked into the compressor 11 and compressed again (point f → point a in FIG. 5).
 通常運転時のエジェクタ式冷凍サイクル10は、以上の如く作動して、車室内へ送風される送風空気を冷却することができる。 The ejector refrigeration cycle 10 during normal operation operates as described above, and can cool the blown air blown into the passenger compartment.
 また、通常運転時のエジェクタ式冷凍サイクル10では、ディフューザ部15dにて昇圧された冷媒を圧縮機11へ吸入させることができる。従って、エジェクタ式冷凍サイクル10によれば、蒸発器における冷媒蒸発圧力と圧縮機吸入冷媒の圧力が略同等となる通常の冷凍サイクル装置よりも、圧縮機11の消費動力を低減させて、サイクルの成績係数(COP)を向上させることができる。 Further, in the ejector refrigeration cycle 10 during normal operation, the refrigerant whose pressure has been increased by the diffuser portion 15d can be sucked into the compressor 11. Therefore, according to the ejector-type refrigeration cycle 10, the power consumption of the compressor 11 can be reduced compared with the normal refrigeration cycle apparatus in which the refrigerant evaporation pressure in the evaporator and the pressure of the refrigerant sucked by the compressor are substantially equal. Coefficient of performance (COP) can be improved.
 ここで、通常運転時におけるエジェクタ15の吸引昇圧作用(いわゆる、ポンプ作用)は、ノズル部15aから噴射される高速度の噴射冷媒の吸引作用および速度エネルギによって生じる。 Here, the suction pressure increase action (so-called pump action) of the ejector 15 during normal operation is caused by the suction action and speed energy of the high-speed jet refrigerant injected from the nozzle portion 15a.
 このため、サイクルを循環する冷媒流量が低下する低負荷運転時には、噴射冷媒の流速が低下してポンプ作用も小さくなってしまう。さらに、ポンプ作用が小さくなってしまうと、蒸発器19へ冷媒を流入させることができなくなってしまい、エジェクタ式冷凍サイクル10が冷凍能力を発揮できなくなってしまうおそれがある。 For this reason, at the time of low load operation in which the flow rate of the refrigerant circulating in the cycle is lowered, the flow rate of the injected refrigerant is lowered and the pump action is also reduced. Furthermore, if the pumping action is reduced, the refrigerant cannot be allowed to flow into the evaporator 19, and the ejector refrigeration cycle 10 may not be able to exhibit the refrigeration capacity.
 そこで、本実施形態のエジェクタ式冷凍サイクル10では、低負荷運転時には、エジェクタ15のノズル部15aを迂回させて冷媒を流す冷媒回路に切り替えて冷凍能力を確実に発揮できるようにしている。 Therefore, in the ejector-type refrigeration cycle 10 of the present embodiment, during low-load operation, the nozzle portion 15a of the ejector 15 is bypassed and switched to a refrigerant circuit that allows the refrigerant to flow, so that the refrigeration capacity can be reliably exhibited.
 より詳細には、通常運転時には、弁体部32が第1冷媒通路30bを開き、第2冷媒通路30cを閉じているので、サイクルの冷媒圧力は、以下、数式F13、F14に示す関係になっている。
PH=Pnoz …(F13)
PH=Pri …(F14)
 このため、前述した数式F2に示すように、圧力差ΔPによって第1冷媒通路30bを開く側の荷重(すなわち、A1×KΔP)が、第1冷媒通路30bを閉じる側の第1セット荷重Fsp1よりも小さくなるまで、第1冷媒通路30bを開いた状態を維持することができる。
More specifically, during normal operation, the valve body 32 opens the first refrigerant passage 30b and closes the second refrigerant passage 30c, so that the refrigerant pressure in the cycle has a relationship expressed by the following formulas F13 and F14. ing.
PH = Pnoz (F13)
PH = Pri (F14)
Therefore, as shown in Formula F2 described above, the load on the side that opens the first refrigerant passage 30b due to the pressure difference ΔP (ie, A1 × KΔP) is greater than the first set load Fsp1 on the side that closes the first refrigerant passage 30b. The first refrigerant passage 30b can be kept open until the value becomes smaller.
 そして、サイクルに要求される負荷が低下して、高圧側圧力PHと低圧側圧力PLとの圧力差ΔPが縮小し、基準圧力差KΔPに到達すると、図4に示すように弁体部32のボールバルブ32aが第1冷媒通路30bを閉じる側に変位するとともに、板状バルブ32bが第2冷媒通路30cを開く。すなわち、第1冷媒通路30bおよび第2冷媒通路30cの双方が開いた状態になる。 Then, when the load required for the cycle decreases and the pressure difference ΔP between the high pressure side pressure PH and the low pressure side pressure PL decreases and reaches the reference pressure difference KΔP, the valve body portion 32 of the valve body 32 is shown in FIG. The ball valve 32a is displaced toward the side of closing the first refrigerant passage 30b, and the plate valve 32b opens the second refrigerant passage 30c. That is, both the first refrigerant passage 30b and the second refrigerant passage 30c are opened.
 この際、本実施形態では、数式F1に示すように、第1受圧面積A1が第2受圧面積A2よりも大きくなっているので、数式F3に示すように、圧力差ΔPによって第1冷媒通路30bを開く側の荷重(すなわち、A2×KΔP)が、瞬時に第1冷媒通路30bを閉じる側の第2セット荷重Fsp1よりも小さくなる。 At this time, in the present embodiment, the first pressure receiving area A1 is larger than the second pressure receiving area A2 as shown in Formula F1, and therefore, as shown in Formula F3, the first refrigerant passage 30b is caused by the pressure difference ΔP. Is smaller than the second set load Fsp1 on the side that closes the first refrigerant passage 30b instantaneously (ie, A2 × KΔP).
 その結果、第1冷媒通路30bおよび第2冷媒通路30cの双方が開いた状態から、瞬時に図3に示すように、第1冷媒通路30bが閉じ、第2冷媒通路30cが開いた状態となる。このため、低負荷運転時のエジェクタ式冷凍サイクル10では、図1の白抜矢印に示すように冷媒が流れる。 As a result, from the state where both the first refrigerant passage 30b and the second refrigerant passage 30c are opened, the first refrigerant passage 30b is instantaneously closed and the second refrigerant passage 30c is opened as shown in FIG. . For this reason, in the ejector refrigeration cycle 10 during low-load operation, the refrigerant flows as indicated by the white arrows in FIG.
 より具体的には、図6のモリエル線図に示すように、圧縮機11から吐出された高温高圧冷媒(図6のa点)は、通常運転時と同様に放熱器12にて過冷却液相冷媒となる(図6のa点→b点)。放熱器12の過冷却部12cから流出した過冷却液相冷媒は、回路切替弁13の流入通路30aへ流入する。 More specifically, as shown in the Mollier diagram of FIG. 6, the high-temperature and high-pressure refrigerant (point a in FIG. 6) discharged from the compressor 11 is supercooled by the radiator 12 in the same manner as during normal operation. It becomes a phase refrigerant (point a → b in FIG. 6). The supercooled liquid phase refrigerant that has flowed out of the supercooling portion 12 c of the radiator 12 flows into the inflow passage 30 a of the circuit switching valve 13.
 低負荷運転時の回路切替弁13では、弁体部32が第1冷媒通路30bを閉じるとともに、第2冷媒通路30cを開いているので、流入通路30aへ流入した冷媒は第2冷媒通路30cへ流入する。 In the circuit switching valve 13 during low load operation, the valve body 32 closes the first refrigerant passage 30b and opens the second refrigerant passage 30c, so that the refrigerant that has flowed into the inflow passage 30a goes to the second refrigerant passage 30c. Inflow.
 第2冷媒通路30cへ流入した冷媒は、弁体部32の受圧部34に設けられたオリフィス孔34aにて等エンタルピ的に減圧され(図6のb点→g点)、第2冷媒出口31cから流出して、迂回通路20へ流入する。迂回通路20へ流入した冷媒は、三方継手18を介して、蒸発器19へ流入する。 The refrigerant flowing into the second refrigerant passage 30c is decompressed in an enthalpy manner at an orifice hole 34a provided in the pressure receiving portion 34 of the valve body 32 (point b → point g in FIG. 6), and the second refrigerant outlet 31c. And flows into the bypass path 20. The refrigerant flowing into the bypass passage 20 flows into the evaporator 19 via the three-way joint 18.
 蒸発器19へ流入した冷媒は、送風ファン19aによって送風された送風空気から吸熱して蒸発する(図6のg点→h点)。これにより、送風空気が冷却される。蒸発器19から流出した冷媒は、エジェクタ15の冷媒吸引口15cへ流入する。 The refrigerant flowing into the evaporator 19 absorbs heat from the blown air blown by the blower fan 19a and evaporates (g point → h point in FIG. 6). Thereby, blowing air is cooled. The refrigerant that has flowed out of the evaporator 19 flows into the refrigerant suction port 15 c of the ejector 15.
 ここで、本実施形態のオリフィス孔34aの流量特性は、低負荷運転時となった際に、蒸発器19から流出した冷媒(すなわち、蒸発器19出口側冷媒)が飽和気相冷媒あるいは気液二相冷媒となるように設定されている。このため、膨張弁14は、低負荷運転時になると、絞り通路を閉塞させる。なお、図6では、蒸発器19出口側冷媒が飽和気相冷媒となっている際のモリエル線図を示している。 Here, the flow rate characteristic of the orifice hole 34a of the present embodiment is that the refrigerant that flows out of the evaporator 19 (that is, the refrigerant on the outlet side of the evaporator 19) is a saturated gas phase refrigerant or gas-liquid when the low load operation is performed. It is set to be a two-phase refrigerant. For this reason, the expansion valve 14 closes the throttle passage during low-load operation. In addition, in FIG. 6, the Mollier diagram in case the evaporator 19 exit side refrigerant | coolant is a saturated gaseous-phase refrigerant | coolant is shown.
 エジェクタ15の冷媒吸引口15cへ流入した冷媒は、吸引通路およびディフューザ部15dを流通して、アキュムレータ16へ流入する。アキュムレータ16にて分離された気相冷媒は、圧縮機11へ吸入され再び圧縮される(図6のh点→a点)。 The refrigerant that has flowed into the refrigerant suction port 15c of the ejector 15 flows into the accumulator 16 through the suction passage and the diffuser portion 15d. The gas-phase refrigerant separated by the accumulator 16 is sucked into the compressor 11 and compressed again (point h → point a in FIG. 6).
 低負荷運転時のエジェクタ式冷凍サイクル10は、以上の如く作動して、車室内へ送風される送風空気を冷却することができる。 The ejector refrigeration cycle 10 during low-load operation operates as described above, and can cool the blown air blown into the passenger compartment.
 さらに、低負荷運転時の冷媒回路に切り替わっている際に、エジェクタ式冷凍サイクル10の熱負荷が増加すると、制御装置の吐出能力制御部が圧縮機11の冷媒吐出能力を上昇させる。これにより、圧力差ΔPが基準圧力差KΔPより大きくなり、回路切替弁13の弁体部32が第1冷媒通路30bを開くとともに、第2冷媒通路30cを閉じる。その後の作動は、上述した通常運転時の作動で説明した通りである。 Furthermore, when the heat load of the ejector refrigeration cycle 10 increases while switching to the refrigerant circuit during low-load operation, the discharge capacity control unit of the control device increases the refrigerant discharge capacity of the compressor 11. Thereby, the pressure difference ΔP becomes larger than the reference pressure difference KΔP, and the valve body portion 32 of the circuit switching valve 13 opens the first refrigerant passage 30b and closes the second refrigerant passage 30c. The subsequent operation is as described in the above-described operation during normal operation.
 本実施形態のエジェクタ式冷凍サイクル10では、回路切替弁13として、第1冷媒通路30bおよび第2冷媒通路30cのいずれか一方を開いた際に他方を閉じる機械的機構が採用されている。さらに、回路切替弁13として、前後差圧ΔPcが基準前後差圧KΔPcよりも低くなっている際に第2冷媒通路を開くものが採用されている。 In the ejector refrigeration cycle 10 of the present embodiment, a mechanical mechanism is employed as the circuit switching valve 13 that closes one of the first refrigerant passage 30b and the second refrigerant passage 30c when the other is opened. Further, as the circuit switching valve 13, a valve that opens the second refrigerant passage when the front-rear differential pressure ΔPc is lower than the reference front-rear differential pressure KΔPc is employed.
 従って、通常運転時には、回路切替弁13が、第1冷媒通路30b側を開くことによって、放熱器12にて放熱した冷媒をエジェクタ15のノズル部15aへ流入させることができる。さらに、低負荷運転時には、回路切替弁13が、第2冷媒通路30c側を開くことによって、放熱器12にて放熱した冷媒を迂回通路20へ流入させて蒸発器19の冷媒入口側へ導くことができる。 Therefore, during normal operation, the circuit switching valve 13 opens the first refrigerant passage 30b, so that the refrigerant dissipated by the radiator 12 can flow into the nozzle portion 15a of the ejector 15. Further, at the time of low load operation, the circuit switching valve 13 opens the second refrigerant passage 30c side so that the refrigerant radiated by the radiator 12 flows into the bypass passage 20 and is led to the refrigerant inlet side of the evaporator 19. Can do.
 すなわち、本実施形態のエジェクタ式冷凍サイクル10では、負荷変動に応じて冷媒回路を、機械的に、かつ、確実に切り替えることができる。 That is, in the ejector type refrigeration cycle 10 of the present embodiment, the refrigerant circuit can be switched mechanically and reliably in accordance with the load fluctuation.
 ここで、サイクルの起動時にサイクル内の圧力の均圧化が進行している際には、前後差圧ΔPcが基準前後差圧KΔPcよりも低くなる。 Here, when the pressure equalization of the pressure in the cycle is in progress at the start of the cycle, the front-rear differential pressure ΔPc becomes lower than the reference front-rear differential pressure KΔPc.
 従って、本実施形態のエジェクタ式冷凍サイクル10によれば、サイクルの起動時には、第2冷媒通路30cが開き、放熱器12にて放熱した冷媒を、迂回通路20を介して蒸発器19へ流入させる、通常の冷凍サイクル(いわゆる、環状サイクル)を形成することができる。従って、サイクルの起動時に、蒸発器19内に滞留している冷凍機油を圧縮機11へ戻しやすい。 Therefore, according to the ejector refrigeration cycle 10 of the present embodiment, at the start of the cycle, the second refrigerant passage 30c is opened, and the refrigerant radiated by the radiator 12 is caused to flow into the evaporator 19 via the bypass passage 20. A normal refrigeration cycle (so-called annular cycle) can be formed. Therefore, the refrigerating machine oil staying in the evaporator 19 is easily returned to the compressor 11 at the start of the cycle.
 また、本実施形態では、回路切替弁13として、圧力差ΔPが基準圧力差KΔP以上となっている際に、第1冷媒通路30bを開き、さらに、圧力差ΔPが基準圧力差KΔPよりも低くなっている際に、第2冷媒通路30cを開くものを採用している。 In the present embodiment, as the circuit switching valve 13, when the pressure difference ΔP is greater than or equal to the reference pressure difference KΔP, the first refrigerant passage 30b is opened, and the pressure difference ΔP is lower than the reference pressure difference KΔP. In this case, the one that opens the second refrigerant passage 30c is employed.
 そして、上記数式F1~F3を満足するように、第1受圧面積A1、第2受圧面積A2、およびコイルバネ33の設定荷重Fsp1を設定しているので、圧力差ΔPが基準圧力差KΔP以上となった際に、通常運転時の冷媒回路から低負荷運転時の冷媒回路へ、瞬時に切り替えることができる。 Since the first pressure receiving area A1, the second pressure receiving area A2, and the set load Fsp1 of the coil spring 33 are set so as to satisfy the above formulas F1 to F3, the pressure difference ΔP is greater than or equal to the reference pressure difference KΔP. In this case, it is possible to instantaneously switch from the refrigerant circuit during normal operation to the refrigerant circuit during low-load operation.
 さらに、上記数式F4~F6を満足するように、第2受圧面積A2、第3受圧面積A3、およびコイルバネ33の設定荷重Fsp2を設定しているので、圧力差ΔPが基準圧力差KΔPより低くなった際に、低負荷運転時の冷媒回路から通常運転時の冷媒回路へ、瞬時に切り替えることができる。 Further, since the second pressure receiving area A2, the third pressure receiving area A3, and the set load Fsp2 of the coil spring 33 are set so as to satisfy the above formulas F4 to F6, the pressure difference ΔP becomes lower than the reference pressure difference KΔP. In this case, it is possible to instantaneously switch from the refrigerant circuit during low load operation to the refrigerant circuit during normal operation.
 また、本実施形態の回路切替弁13では、受圧部34のオリフィス孔34aによって、減圧部を構成しているので、容易に減圧部を形成することができる。もちろん、バルブボデー31に受圧部34の冷媒流れ上流側と下流側との接続する冷媒通路を形成し、この冷媒通路に減圧部としてのオリフィス、キャピラリチューブ等を配置してもよい。 Further, in the circuit switching valve 13 of the present embodiment, since the pressure reducing portion is configured by the orifice hole 34a of the pressure receiving portion 34, the pressure reducing portion can be easily formed. Of course, a refrigerant passage that connects the upstream and downstream sides of the refrigerant flow of the pressure receiving portion 34 may be formed in the valve body 31, and an orifice, a capillary tube, or the like as a decompression portion may be disposed in the refrigerant passage.
 (第2実施形態)
 本実施形態では、第1実施形態に対して、回路切替弁の構成を変更した例を説明する。具体的には、本実施形態のエジェクタ式冷凍サイクル10では、図7、図8に示す回路切替弁24を採用している。
(Second Embodiment)
This embodiment demonstrates the example which changed the structure of the circuit switching valve with respect to 1st Embodiment. Specifically, in the ejector refrigeration cycle 10 of the present embodiment, the circuit switching valve 24 shown in FIGS. 7 and 8 is employed.
 図7は、回路切替弁24が、放熱器12から流出した冷媒をエジェクタ15のノズル部15a側へ流入させる冷媒回路に切り替えている状態を示す模式的な断面図である。図8は、回路切替弁24が、放熱器12から流出した冷媒を迂回通路20側へ流入させる冷媒回路に切り替えている状態を示す模式的な断面図である。 FIG. 7 is a schematic cross-sectional view showing a state in which the circuit switching valve 24 switches to a refrigerant circuit that allows the refrigerant flowing out of the radiator 12 to flow into the nozzle portion 15a side of the ejector 15. FIG. 8 is a schematic cross-sectional view showing a state in which the circuit switching valve 24 is switched to a refrigerant circuit that allows the refrigerant flowing out of the radiator 12 to flow into the bypass path 20 side.
 回路切替弁24は、バルブボデー41、第1弁体部42、第1コイルバネ43、第1駆動機構44、第2弁体部45、第2コイルバネ46、第2駆動機構47等を有している。 The circuit switching valve 24 includes a valve body 41, a first valve body portion 42, a first coil spring 43, a first drive mechanism 44, a second valve body portion 45, a second coil spring 46, a second drive mechanism 47, and the like. Yes.
 バルブボデー41は、図7、図8に示すように、金属製あるいは樹脂製の複数の構成部材を組み合わせることによって、角柱状あるいは円柱状に形成されている。バルブボデー41は、回路切替弁24の外殻を形成するとともに、内部に第1弁体部42、第1コイルバネ43、第2弁体部45、第2コイルバネ46等を収容する。 As shown in FIGS. 7 and 8, the valve body 41 is formed in a prismatic shape or a cylindrical shape by combining a plurality of structural members made of metal or resin. The valve body 41 forms an outer shell of the circuit switching valve 24 and houses the first valve body portion 42, the first coil spring 43, the second valve body portion 45, the second coil spring 46, and the like.
 バルブボデー41には、第1実施形態で説明した回路切替弁13と同様の高圧冷媒入口41a、第1冷媒出口41b、第2冷媒出口41cが形成されている。また、バルブボデー41の内部には、回路切替弁13と同様の流入通路40a、第1冷媒通路40b、第2冷媒通路40cといった複数の冷媒通路が形成されている。 The valve body 41 is formed with a high-pressure refrigerant inlet 41a, a first refrigerant outlet 41b, and a second refrigerant outlet 41c similar to the circuit switching valve 13 described in the first embodiment. In addition, a plurality of refrigerant passages such as an inflow passage 40a, a first refrigerant passage 40b, and a second refrigerant passage 40c similar to the circuit switching valve 13 are formed inside the valve body 41.
 第1弁体部42は、第1冷媒通路40bを開閉する円柱状の弁体である。第1コイルバネ43は、第1弁体部42に対して、第1冷媒通路40bを開く側の荷重をかける第1弾性部材である。第1駆動機構44は、回路切替弁24の上流側の冷媒の高圧側圧力PH(本実施形態では、放熱器12出口側冷媒の圧力)に応じて第1弁体部42を変位させるための駆動力を出力する。 The first valve body portion 42 is a cylindrical valve body that opens and closes the first refrigerant passage 40b. The first coil spring 43 is a first elastic member that applies a load on the side that opens the first refrigerant passage 40 b to the first valve body portion 42. The first drive mechanism 44 is for displacing the first valve body 42 according to the high-pressure side pressure PH of the refrigerant upstream of the circuit switching valve 24 (in this embodiment, the pressure of the refrigerant on the outlet side of the radiator 12). Outputs driving force.
 より具体的には、第1駆動機構44は、図7、図8に示すように、バルブボデー41の外部に取り付けられている。第1駆動機構44は、第1ケース44aおよび第1ダイヤフラム44bを有している。第1ケース44aは、金属製の杯状部材(すなわち、カップ状部材)の開口部側同士を結合させることによって形成された第1空間形成部材である。このため、第1ケース44aの内部に空間が形成されている。 More specifically, the first drive mechanism 44 is attached to the outside of the valve body 41 as shown in FIGS. The first drive mechanism 44 has a first case 44a and a first diaphragm 44b. The first case 44a is a first space forming member formed by joining the opening side of metal cup-shaped members (that is, cup-shaped members). For this reason, a space is formed inside the first case 44a.
 第1ケース44aの内部には、第1圧力応動部材である第1ダイヤフラム44bが配置されている。第1ダイヤフラム44bは、金属製の円形薄板で形成されている。第1ダイヤフラム44bの外周縁部は全周に亘って、第1ケース44aに固定されている。このため、第1ケース44aの内部空間は、第1ダイヤフラム44bによって、第1封入空間44cおよび第1導入空間44dの2つの空間に仕切られている。 The 1st diaphragm 44b which is a 1st pressure response member is arrange | positioned inside the 1st case 44a. The first diaphragm 44b is formed of a metal circular thin plate. The outer peripheral edge of the first diaphragm 44b is fixed to the first case 44a over the entire circumference. For this reason, the internal space of the first case 44a is partitioned into two spaces, a first enclosure space 44c and a first introduction space 44d, by the first diaphragm 44b.
 第1封入空間44cには、不活性ガス(本実施形態では、ヘリウムガス)が予め定めた基準封入圧力となるように封入されている。一方、第1導入空間44dは、流入通路40aに連通している。このため、第1導入空間44d内の冷媒圧力は、放熱器12出口側冷媒の高圧側圧力PHとなる。従って、第1ダイヤフラム44bは、封入空間44c内の不活性ガスの圧力と高圧側圧力PHとの圧力差に応じて変位する。 In the first enclosure space 44c, an inert gas (in this embodiment, helium gas) is enclosed so as to have a predetermined reference enclosure pressure. On the other hand, the first introduction space 44d communicates with the inflow passage 40a. For this reason, the refrigerant pressure in the first introduction space 44d becomes the high-pressure side pressure PH of the radiator 12 outlet-side refrigerant. Therefore, the first diaphragm 44b is displaced according to the pressure difference between the pressure of the inert gas in the enclosed space 44c and the high-pressure side pressure PH.
 ここで、ボイル・シャルルの法則からも明らかなように、第1封入空間44c内の不活性ガスは、僅かに温度変化が生じても大きく圧力変化しない。このため、本実施形態の第1封入空間44c内の圧力は、エジェクタ式冷凍サイクル10の一般的な使用環境下では、略一定となる。従って、本実施形態の第1ダイヤフラム44bは、実質的に放熱器12出口側冷媒の高圧側圧力PHに応じて変位する。 Here, as is clear from Boyle-Charles' law, the inert gas in the first enclosed space 44c does not change greatly even if the temperature changes slightly. For this reason, the pressure in the 1st enclosure space 44c of this embodiment becomes substantially constant under the general use environment of the ejector-type refrigeration cycle 10. Accordingly, the first diaphragm 44b of the present embodiment is displaced substantially according to the high pressure side pressure PH of the radiator 12 outlet side refrigerant.
 さらに、第1ダイヤフラム44bの変位は、第1弁体部42の変位方向に延びる円柱状の第1作動棒42aを介して、第1弁体部42に伝達される。 Furthermore, the displacement of the first diaphragm 44b is transmitted to the first valve body portion 42 via the columnar first operating rod 42a extending in the displacement direction of the first valve body portion 42.
 従って、高圧側圧力PHが上昇して、第1ダイヤフラム44bが第1封入空間44cを縮小させる側へ変位すると、図7に示すように、第1弁体部42は、第1冷媒通路40bを開く側へ変位する。一方、高圧側圧力PHが低下して、第1ダイヤフラム44bが第1封入空間44cを拡大させる側へ変位すると、図8に示すように、第1弁体部42は、第1冷媒通路40bを閉じる側へ変位する。 Accordingly, when the high-pressure side pressure PH rises and the first diaphragm 44b is displaced to the side that reduces the first enclosed space 44c, as shown in FIG. 7, the first valve body portion 42 moves through the first refrigerant passage 40b. Displace to open side. On the other hand, when the high pressure side pressure PH decreases and the first diaphragm 44b is displaced to the side that expands the first enclosed space 44c, as shown in FIG. 8, the first valve body portion 42 moves through the first refrigerant passage 40b. Displace to close side.
 そこで、本実施形態では、高圧側圧力PHが予め定めた基準高圧側圧力KPH以上となっている際に、第1弁体部42が第1冷媒通路40bを開くように、第1封入空間44c内の不活性ガスの基準封入圧力を設定している。 Therefore, in the present embodiment, when the high-pressure side pressure PH is equal to or higher than a predetermined reference high-pressure side pressure KPH, the first enclosed space 44c so that the first valve body portion 42 opens the first refrigerant passage 40b. The reference sealing pressure of the inert gas is set.
 次に、第2弁体部45は、第2冷媒通路40cを開閉する球状の弁体である。第2コイルバネ46は、第2弁体部45に対して、第2冷媒通路40cを閉じる側の荷重をかける第2弾性部材である。第2駆動機構47は、回路切替弁24の上流側の冷媒の高圧側圧力PHに応じて第2弁体部45を変位させるための駆動力を出力する。 Next, the second valve body portion 45 is a spherical valve body that opens and closes the second refrigerant passage 40c. The second coil spring 46 is a second elastic member that applies a load on the side that closes the second refrigerant passage 40 c to the second valve body portion 45. The second drive mechanism 47 outputs a driving force for displacing the second valve body portion 45 according to the high-pressure side pressure PH of the refrigerant upstream of the circuit switching valve 24.
 第2駆動機構47は、図7、図8に示すように、バルブボデー41の外部に取り付けられている。第2駆動機構47の基本的構成は、第1駆動機構44と同様である。従って、第2駆動機構47は、第2空間形成部材である第2ケース47a、第2圧力応動部材である第2ダイヤフラム47bを有している。 The second drive mechanism 47 is attached to the outside of the valve body 41 as shown in FIGS. The basic configuration of the second drive mechanism 47 is the same as that of the first drive mechanism 44. Accordingly, the second drive mechanism 47 includes a second case 47a that is a second space forming member and a second diaphragm 47b that is a second pressure responsive member.
 第2ケース47aの内部空間は、第2ダイヤフラム47bによって、第2封入空間47cおよび第2導入空間47dの2つの空間に仕切られている。第2ダイヤフラム47bは、第1駆動機構44の第1ダイヤフラム44bと同様に、実質的に放熱器12出口側冷媒の高圧側圧力PHに応じて変位する。 The internal space of the second case 47a is divided into two spaces, a second enclosure space 47c and a second introduction space 47d, by a second diaphragm 47b. Similar to the first diaphragm 44b of the first drive mechanism 44, the second diaphragm 47b is displaced substantially according to the high-pressure side pressure PH of the radiator 12 outlet side refrigerant.
 さらに、第2ダイヤフラム47bの変位は、第2弁体部45の変位方向に延びる円柱状の第2作動棒45aを介して、第2弁体部45に伝達される。 Furthermore, the displacement of the second diaphragm 47 b is transmitted to the second valve body 45 via a cylindrical second operating rod 45 a extending in the displacement direction of the second valve body 45.
 従って、高圧側圧力PHが上昇して、第2ダイヤフラム47bが第2封入空間47cを縮小させる側へ変位すると、図7に示すように、第2弁体部45は、第2冷媒通路40cを閉じる側へ変位する。一方、高圧側圧力PHが低下して、第2ダイヤフラム47bが第2封入空間47cを拡大させる側へ変位すると、図8に示すように、第2弁体部45は、第2冷媒通路40cを開く側へ変位する。 Therefore, when the high-pressure side pressure PH rises and the second diaphragm 47b is displaced to the side that reduces the second enclosed space 47c, the second valve body portion 45 moves through the second refrigerant passage 40c as shown in FIG. Displace to close side. On the other hand, when the high pressure side pressure PH decreases and the second diaphragm 47b is displaced to the side that expands the second enclosed space 47c, the second valve body portion 45 moves through the second refrigerant passage 40c as shown in FIG. Displace to open side.
 そこで、本実施形態では、高圧側圧力PHが基準高圧側圧力KPH以上となっている際に、第2弁体部45が第2冷媒通路40cを閉じるように、第2封入空間47c内の不活性ガスの基準封入圧力を設定している。従って、第1封入空間44c内の不活性ガスの基準封入圧力と第2封入空間47c内の不活性ガスの基準封入圧力は同じである。 Therefore, in the present embodiment, when the high-pressure side pressure PH is equal to or higher than the reference high-pressure side pressure KPH, the second valve body portion 45 is closed in the second enclosed space 47c so as to close the second refrigerant passage 40c. The reference sealing pressure of active gas is set. Therefore, the reference sealing pressure of the inert gas in the first sealing space 44c is the same as the reference sealing pressure of the inert gas in the second sealing space 47c.
 これにより、本実施形態の回路切替弁24では、高圧側圧力PHが基準高圧側圧力KPH以上となっている際には、第1冷媒通路40bを開くとともに第2冷媒通路40cを閉じる。一方、高圧側圧力PHが基準高圧側圧力KPHより低くなっている際には、第1冷媒通路40bを閉じるとともに第2冷媒通路40cを開く。 Thereby, in the circuit switching valve 24 of the present embodiment, when the high pressure side pressure PH is equal to or higher than the reference high pressure side pressure KPH, the first refrigerant passage 40b is opened and the second refrigerant passage 40c is closed. On the other hand, when the high pressure side pressure PH is lower than the reference high pressure side pressure KPH, the first refrigerant passage 40b is closed and the second refrigerant passage 40c is opened.
 さらに、本実施形態では、高圧側圧力PHが基準高圧側圧力KPHになっている際の圧縮機11の前後差圧ΔPcを、基準前後差圧KΔPcと定義する。このため、本実施形態の回路切替弁24では、一般的なサイクルの起動時のように、前後差圧ΔPcが基準前後差圧KΔPcよりも低くなっている際には、第1冷媒通路40bを閉じるとともに、第2冷媒通路40cを開く。 Furthermore, in this embodiment, the front-rear differential pressure ΔPc of the compressor 11 when the high-pressure side pressure PH is the reference high-pressure side pressure KPH is defined as a reference front-rear differential pressure KΔPc. For this reason, in the circuit switching valve 24 of the present embodiment, when the front-rear differential pressure ΔPc is lower than the reference front-rear differential pressure KΔPc, such as when starting a general cycle, the first refrigerant passage 40b is opened. While closing, the second refrigerant passage 40c is opened.
 また、本実施形態のエジェクタ式冷凍サイクル10では、迂回通路20に蒸発器19へ流入する冷媒を減圧させる減圧部としての固定絞りが配置されている。この固定絞りとしては、オリフィス、キャピラリチューブ等を採用することができる。 Further, in the ejector refrigeration cycle 10 of the present embodiment, a fixed throttle is disposed as a decompression unit that decompresses the refrigerant flowing into the evaporator 19 in the bypass passage 20. As this fixed throttle, an orifice, a capillary tube or the like can be employed.
 その他のエジェクタ式冷凍サイクル10の構成および作動は、第1実施形態と同様である。従って、本実施形態のエジェクタ式冷凍サイクル10においても、第1実施形態と同様の効果を得ることができる。 Other configurations and operations of the ejector refrigeration cycle 10 are the same as those in the first embodiment. Therefore, also in the ejector type refrigeration cycle 10 of the present embodiment, the same effect as that of the first embodiment can be obtained.
 すなわち、本実施形態では、回路切替弁24として、第1、第2駆動機構44、47を備えるものを採用している。このように封入空間内の気体圧力と導入空間内の冷媒圧力との圧力差によって、圧力応動部材(ダイヤフラム)を変位させる駆動機構では、導入空間内の圧力(本実施形態では、高圧側圧力PH)が急変動しても、封入空間がダンパーとして機能する。このため、圧力応動部材(ダイヤフラム)の急変位が抑制される。 That is, in the present embodiment, the circuit switching valve 24 having the first and second drive mechanisms 44 and 47 is employed. Thus, in the drive mechanism that displaces the pressure responsive member (diaphragm) by the pressure difference between the gas pressure in the enclosed space and the refrigerant pressure in the introduction space, the pressure in the introduction space (in this embodiment, the high pressure side pressure PH). ) Suddenly fluctuates, the enclosed space functions as a damper. For this reason, sudden displacement of the pressure responsive member (diaphragm) is suppressed.
 従って、通常運転時の冷媒回路と低負荷運転時の冷媒回路とを切り替える際の第1、第2弁体部42、45の振動やハンチング現象を抑制することができる。その結果、本実施形態のエジェクタ式冷凍サイクル10においても、負荷変動に応じて冷媒回路を、機械的に、かつ、確実に切り替えることができる。 Therefore, vibration and hunting phenomenon of the first and second valve body portions 42 and 45 when switching between the refrigerant circuit during normal operation and the refrigerant circuit during low-load operation can be suppressed. As a result, also in the ejector refrigeration cycle 10 of the present embodiment, the refrigerant circuit can be switched mechanically and reliably according to the load fluctuation.
 (第3実施形態)
 本実施形態では、第2実施形態に対して、図9に示すように、回路切替弁24の構成を変更した例を説明する。
(Third embodiment)
This embodiment demonstrates the example which changed the structure of the circuit switching valve 24 with respect to 2nd Embodiment, as shown in FIG.
 より具体的には、本実施形態の第1弁体部42には、流入通路40aと第1冷媒通路40bとを連通させる第1パイロット孔42bが形成されている。また、第1作動棒42aは、第1ダイヤフラム44bの変位に応じて、第1パイロット孔42bを開閉するように配置されている。さらに、バルブボデー41には、流入通路40aと第1冷媒通路40bとを連通させるための連通路41dが形成されている。その他の回路切替弁24の構成は、第2実施形態と同様である。 More specifically, the first valve body portion 42 of the present embodiment is formed with a first pilot hole 42b that allows the inflow passage 40a and the first refrigerant passage 40b to communicate with each other. The first operating rod 42a is arranged to open and close the first pilot hole 42b according to the displacement of the first diaphragm 44b. Further, the valve body 41 is formed with a communication passage 41d for communicating the inflow passage 40a and the first refrigerant passage 40b. Other configurations of the circuit switching valve 24 are the same as those of the second embodiment.
 次に、本実施形態の回路切替弁24の作動について説明する。まず、高圧側圧力PHが上昇すると第1ダイヤフラム44bが第1封入空間44cを縮小させる側に変位する。そして、高圧側圧力PHが基準高圧側圧力KPH以上になると、第1ダイヤフラム44bに連結された第1作動棒42aが第1パイロット孔42bを開く。 Next, the operation of the circuit switching valve 24 of this embodiment will be described. First, when the high-pressure side pressure PH increases, the first diaphragm 44b is displaced to the side that reduces the first enclosed space 44c. When the high pressure side pressure PH becomes equal to or higher than the reference high pressure side pressure KPH, the first operating rod 42a connected to the first diaphragm 44b opens the first pilot hole 42b.
 これにより、連通路41dおよび第1パイロット孔42bを介して、第1弁体部42の下流側に放熱器12から流出した冷媒が流れ込む。第1弁体部42の冷媒流れ上流側の冷媒圧力と下流側の冷媒圧力との圧力差が縮小し、第1コイルバネ43の荷重によって、第1弁体部42が第1冷媒通路40bを開く。 Thereby, the refrigerant flowing out of the radiator 12 flows into the downstream side of the first valve body portion 42 through the communication passage 41d and the first pilot hole 42b. The pressure difference between the refrigerant pressure upstream of the refrigerant flow of the first valve body portion 42 and the refrigerant pressure of the downstream side is reduced, and the first valve body portion 42 opens the first refrigerant passage 40b by the load of the first coil spring 43. .
 一方、高圧側圧力PHが上昇すると第1ダイヤフラム44bが第1封入空間44cを拡大させる側に変位して、第1作動棒42aが第1弁体部42の第1パイロット孔42bを閉じる。そして、高圧側圧力PHが基準高圧側圧力KPH以上になると、第1作動棒42aとともに第1弁体部42が変位して第1冷媒通路40bを閉じる。 On the other hand, when the high-pressure side pressure PH rises, the first diaphragm 44b is displaced to the side that expands the first enclosed space 44c, and the first operating rod 42a closes the first pilot hole 42b of the first valve body portion 42. When the high pressure side pressure PH becomes equal to or higher than the reference high pressure side pressure KPH, the first valve body 42 is displaced together with the first operating rod 42a to close the first refrigerant passage 40b.
 その他の回路切替弁24の作動は、第2実施形態と同様である。本実施形態の回路切替弁24においても、高圧側圧力PHが基準高圧側圧力KPH以上となっている際には、第1冷媒通路40bを開くとともに第2冷媒通路40cを閉じる。一方、高圧側圧力PHが基準高圧側圧力KPHより低くなっている際には、第1冷媒通路40bを閉じるとともに第2冷媒通路40cを開く。 Other operations of the circuit switching valve 24 are the same as in the second embodiment. Also in the circuit switching valve 24 of this embodiment, when the high pressure side pressure PH is equal to or higher than the reference high pressure side pressure KPH, the first refrigerant passage 40b is opened and the second refrigerant passage 40c is closed. On the other hand, when the high pressure side pressure PH is lower than the reference high pressure side pressure KPH, the first refrigerant passage 40b is closed and the second refrigerant passage 40c is opened.
 従って、本実施形態のエジェクタ式冷凍サイクル10においても、第2実施形態と同様の効果を得ることができる。 Therefore, also in the ejector type refrigeration cycle 10 of this embodiment, the same effect as that of the second embodiment can be obtained.
 さらに、本実施形態の回路切替弁24では、低負荷運転時に、第1弁体部42の冷媒流れ上流側の冷媒圧力と下流側の冷媒圧力との圧力差が大きくなっていても、第1パイロット孔42bを開閉することで、第1弁体部42を開くことができる。従って、比較的小さな駆動力で第1弁体部42を開くことができ、第1駆動機構44の大型化を抑制することができる。 Furthermore, in the circuit switching valve 24 of the present embodiment, even when the pressure difference between the refrigerant pressure upstream of the refrigerant flow in the first valve body 42 and the refrigerant pressure downstream is large during low load operation, The first valve body 42 can be opened by opening and closing the pilot hole 42b. Accordingly, the first valve body portion 42 can be opened with a relatively small driving force, and an increase in the size of the first drive mechanism 44 can be suppressed.
 なお、本実施形態では、第1弁体部42に第1パイロット孔42bを形成した例を説明したが、もちろん、第2弁体部45が、流入通路40aと第2冷媒通路40cとを連通させる第2パイロット孔45bを有し、第2駆動機構47の第2ダイヤフラム47bが第2パイロット孔45bを開閉する第2作動棒45aに連結されていてもよい。 In the present embodiment, an example in which the first pilot hole 42b is formed in the first valve body portion 42 has been described. Of course, the second valve body portion 45 communicates the inflow passage 40a and the second refrigerant passage 40c. The second pilot hole 45b may be provided, and the second diaphragm 47b of the second drive mechanism 47 may be connected to a second operating rod 45a that opens and closes the second pilot hole 45b.
 (第4実施形態)
 本実施形態では、第2実施形態に対して、図10に示すように、回路切替弁24の構成を変更した例を説明する。より具体的には、本実施形態の回路切替弁24は、第1封入空間44cと第2封入空間47cとを連通させる封入空間連通路41eを有している。その他の回路切替弁24およびエジェクタ式冷凍サイクル10の構成および作動は、第2実施形態と同様である。
(Fourth embodiment)
This embodiment demonstrates the example which changed the structure of the circuit switching valve 24 with respect to 2nd Embodiment, as shown in FIG. More specifically, the circuit switching valve 24 of the present embodiment has a sealed space communication path 41e that allows the first sealed space 44c and the second sealed space 47c to communicate with each other. Other configurations and operations of the circuit switching valve 24 and the ejector refrigeration cycle 10 are the same as those in the second embodiment.
 これによれば、第1封入空間44c内の不活性ガスの圧力と第2封入空間47c内の不活性ガスの圧力を一致させることができるので、第1弁体部42および第2弁体部45を確実に連動させることができる。従って、本実施形態のエジェクタ式冷凍サイクル10よれば、より一層、確実に負荷変動に応じて冷媒回路を切り替えることができる。 According to this, the pressure of the inert gas in the first sealed space 44c and the pressure of the inert gas in the second sealed space 47c can be matched, so the first valve body portion 42 and the second valve body portion. 45 can be reliably interlocked. Therefore, according to the ejector refrigeration cycle 10 of the present embodiment, the refrigerant circuit can be switched more reliably in accordance with the load fluctuation.
 (第5実施形態)
 本実施形態では、第2実施形態に対して、回路切替弁の構成を変更した例を説明する。具体的には、本実施形態のエジェクタ式冷凍サイクル10では、図11、図12に示す回路切替弁25を採用している。
(Fifth embodiment)
This embodiment demonstrates the example which changed the structure of the circuit switching valve with respect to 2nd Embodiment. Specifically, in the ejector type refrigeration cycle 10 of the present embodiment, the circuit switching valve 25 shown in FIGS. 11 and 12 is employed.
 図11は、回路切替弁25が、放熱器12から流出した冷媒をエジェクタ15のノズル部15a側へ流入させる冷媒回路に切り替えている状態を示す模式的な断面図である。図12は、回路切替弁25が、放熱器12から流出した冷媒を迂回通路20側へ流入させる冷媒回路に切り替えている状態を示す模式的な断面図である。 FIG. 11 is a schematic cross-sectional view showing a state in which the circuit switching valve 25 switches to a refrigerant circuit that allows the refrigerant flowing out of the radiator 12 to flow into the nozzle portion 15a side of the ejector 15. FIG. 12 is a schematic cross-sectional view showing a state where the circuit switching valve 25 is switched to a refrigerant circuit that allows the refrigerant flowing out of the radiator 12 to flow into the bypass passage 20 side.
 回路切替弁25は、バルブボデー51、第1弁体部52、第1コイルバネ53、第2弁体部55、第2コイルバネ56、共用駆動機構57、共用作動棒58等を有している。 The circuit switching valve 25 includes a valve body 51, a first valve body 52, a first coil spring 53, a second valve body 55, a second coil spring 56, a common drive mechanism 57, a common operation rod 58, and the like.
 バルブボデー51は、図11、図12に示すように、金属製あるいは樹脂製の複数の構成部材を組み合わせることによって、角柱状あるいは円柱状に形成されている。バルブボデー51は、回路切替弁24の外殻を形成するとともに、内部に第1弁体部52、第1コイルバネ53、第2弁体部55、第2コイルバネ56、共用作動棒58等を収容する。 As shown in FIGS. 11 and 12, the valve body 51 is formed in a prismatic shape or a cylindrical shape by combining a plurality of structural members made of metal or resin. The valve body 51 forms an outer shell of the circuit switching valve 24 and accommodates a first valve body 52, a first coil spring 53, a second valve body 55, a second coil spring 56, a common operating rod 58, and the like. To do.
 バルブボデー51には、第1実施形態で説明した回路切替弁13と同様の高圧冷媒入口51a、第1冷媒出口51b、第2冷媒出口51cが形成されている。また、バルブボデー51の内部には、回路切替弁13と同様の流入通路50a、第1冷媒通路50b、第2冷媒通路50cといった複数の冷媒通路が形成されている。 The valve body 51 is formed with a high-pressure refrigerant inlet 51a, a first refrigerant outlet 51b, and a second refrigerant outlet 51c similar to the circuit switching valve 13 described in the first embodiment. In addition, a plurality of refrigerant passages such as an inflow passage 50a, a first refrigerant passage 50b, and a second refrigerant passage 50c similar to the circuit switching valve 13 are formed inside the valve body 51.
 第1弁体部52は、第1冷媒通路50bの入口部を開閉する円柱状の弁体である。第1コイルバネ53は、第1弁体部52に対して、第1冷媒通路50bを閉じる側の荷重をかける第1弾性部材である。第1弁体部52の中心部には、軸方向に貫通する貫通穴が形成されている。この貫通穴の内部には、共用作動棒58が配置されている。 The first valve body 52 is a cylindrical valve body that opens and closes the inlet of the first refrigerant passage 50b. The first coil spring 53 is a first elastic member that applies a load that closes the first refrigerant passage 50 b to the first valve body 52. A through hole penetrating in the axial direction is formed at the center of the first valve body 52. A common operating rod 58 is disposed inside the through hole.
 第2弁体部55は、第2冷媒通路50cの入口部を開閉する球状の弁体である。第2コイルバネ56は、第2弁体部55に対して、第2冷媒通路50cを閉じる側の荷重をかける第2弾性部材である。 The second valve body portion 55 is a spherical valve body that opens and closes the inlet portion of the second refrigerant passage 50c. The second coil spring 56 is a second elastic member that applies a load on the side that closes the second refrigerant passage 50 c to the second valve body portion 55.
 共用駆動機構57は、第1弁体部52および第2弁体部55の双方を変位させるための駆動力を出力するものである。共用駆動機構57は、図11、図12に示すように、バルブボデー51の外部に取り付けられている。共用駆動機構57の基本的構成は、第2実施形態で説明した第1、第2駆動機構44、47と同様である。 The common drive mechanism 57 outputs a driving force for displacing both the first valve body portion 52 and the second valve body portion 55. The common drive mechanism 57 is attached to the outside of the valve body 51 as shown in FIGS. The basic configuration of the shared drive mechanism 57 is the same as that of the first and second drive mechanisms 44 and 47 described in the second embodiment.
 従って、共用駆動機構57は、共用空間形成部材である共用ケース57a、共用圧力応動部材である共用ダイヤフラム57bを有している。共用ケース57aの内部空間は、共用ダイヤフラム57bによって、共用封入空間57cおよび共用導入空間57dの2つの空間に仕切られている。共用ダイヤフラム57bは、実質的に放熱器12出口側冷媒の高圧側圧力PHに応じて変位する。 Therefore, the common drive mechanism 57 has a common case 57a that is a common space forming member and a common diaphragm 57b that is a common pressure response member. The internal space of the shared case 57a is divided into two spaces, a shared enclosed space 57c and a shared introduction space 57d, by a shared diaphragm 57b. The common diaphragm 57b is displaced substantially according to the high pressure side pressure PH of the radiator 12 outlet side refrigerant.
 さらに、共用ダイヤフラム57bの変位は、第1弁体部52および第2弁体部55の変位方向に延びる円柱状の共用作動棒58を介して、第1弁体部52および第2弁体部55の双方へ伝達される。 Further, the displacement of the common diaphragm 57b is caused by the first valve body 52 and the second valve body through the cylindrical common operating rod 58 extending in the displacement direction of the first valve body 52 and the second valve body 55. 55 is transmitted to both.
 具体的には、高圧側圧力PHが上昇して、共用ダイヤフラム57bが共用封入空間57cを縮小させる側へ変位すると、共用作動棒58も共用ダイヤフラム57bと同じ側へ変位する。これにより、図11に示すように、第1弁体部52は、共用作動棒58の外表面に形成された突起部58aと係合して第1冷媒通路50bを開く側へ変位する。一方、第2弁体部55は、第2コイルバネ56の荷重によって、第2冷媒通路50cを閉じる側へ変位する。 Specifically, when the high-pressure side pressure PH rises and the common diaphragm 57b is displaced to the side that reduces the common enclosed space 57c, the common operation rod 58 is also displaced to the same side as the common diaphragm 57b. As a result, as shown in FIG. 11, the first valve body 52 is engaged with the protrusion 58a formed on the outer surface of the common operation rod 58 and displaced to the side where the first refrigerant passage 50b is opened. On the other hand, the second valve body portion 55 is displaced toward the side of closing the second refrigerant passage 50 c by the load of the second coil spring 56.
 また、高圧側圧力PHが低下して、共用ダイヤフラム57bが共用封入空間57cを拡大させる側へ変位すると、共用作動棒58も共用ダイヤフラム57bと同じ側へ変位する。これにより、図12に示すように、第1弁体部52は、第1コイルバネ53の荷重によって、第1冷媒通路50bを閉じる側へ変位する。一方、第2弁体部55は、共用作動棒58とともに、第2冷媒通路50cを開く側へ変位する。 Further, when the high pressure side pressure PH is reduced and the common diaphragm 57b is displaced to the side that expands the common enclosed space 57c, the common operation rod 58 is also displaced to the same side as the common diaphragm 57b. Thereby, as shown in FIG. 12, the 1st valve body part 52 is displaced to the side which closes the 1st refrigerant path 50b with the load of the 1st coil spring 53. As shown in FIG. On the other hand, the 2nd valve body part 55 is displaced to the side which opens the 2nd refrigerant path 50c with the common action | operation stick | rod 58. FIG.
 そこで、本実施形態では、高圧側圧力PHが予め定めた基準高圧側圧力KPH以上となっている際には、第1冷媒通路50bを開くとともに第2冷媒通路50cを閉じ、高圧側圧力PHが基準高圧側圧力KPHより低くなっている際には、第1冷媒通路50bを閉じるとともに第2冷媒通路50cを開くように、共用封入空間57c内の不活性ガスの基準封入圧力を設定している。 Therefore, in the present embodiment, when the high-pressure side pressure PH is equal to or higher than a predetermined reference high-pressure side pressure KPH, the first refrigerant passage 50b is opened and the second refrigerant passage 50c is closed, so that the high-pressure side pressure PH is When the pressure is lower than the reference high pressure side pressure KPH, the reference sealing pressure of the inert gas in the shared sealing space 57c is set so that the first refrigerant passage 50b is closed and the second refrigerant passage 50c is opened. .
 その他のエジェクタ式冷凍サイクル10の構成および作動は、第2実施形態と同様である。従って、本実施形態のエジェクタ式冷凍サイクル10においても、第2実施形態と同様の効果を得ることができる。さらに、本実施形態の回路切替弁25によれば、第1弁体部52および第2弁体部55を変位させる駆動機構および作動棒を共通のものとすることができるので、回路切替弁25の小型化や低コスト化を図ることができる。 Other configurations and operations of the ejector refrigeration cycle 10 are the same as those in the second embodiment. Therefore, also in the ejector type refrigeration cycle 10 of the present embodiment, the same effect as that of the second embodiment can be obtained. Furthermore, according to the circuit switching valve 25 of the present embodiment, since the drive mechanism and the operating rod for displacing the first valve body portion 52 and the second valve body portion 55 can be made common, the circuit switching valve 25 Can be reduced in size and cost.
 (他の実施形態)
 本開示は上述の実施形態に限定されることなく、趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
(Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present disclosure.
 (1)エジェクタ式冷凍サイクルのサイクル構成は、上述の実施形態に開示された構成に限定されない。例えば、エジェクタ15のディフューザ部15dの冷媒出口とアキュムレータ16の入口との間に、冷媒を蒸発させる補助蒸発器を配置してもよい。 (1) The cycle configuration of the ejector refrigeration cycle is not limited to the configuration disclosed in the above-described embodiment. For example, an auxiliary evaporator that evaporates the refrigerant may be disposed between the refrigerant outlet of the diffuser portion 15 d of the ejector 15 and the inlet of the accumulator 16.
 これによれば、通常運転時には、エジェクタ15の昇圧作用によって、補助蒸発器における冷媒蒸発圧力(冷媒蒸発温度)を蒸発器19における冷媒蒸発圧力(冷媒蒸発温度)よりも上昇させることができる。従って、双方の蒸発器において、異なる温度帯で冷媒を蒸発させることができる。さらに、低負荷運転時にも、蒸発器19および補助蒸発器を直列的に接続して、双方の蒸発器にて、冷凍能力を発揮することができる。 According to this, during normal operation, the refrigerant evaporating pressure (refrigerant evaporating temperature) in the auxiliary evaporator can be made higher than the refrigerant evaporating pressure (refrigerant evaporating temperature) in the evaporator 19 by the boosting action of the ejector 15. Therefore, in both evaporators, the refrigerant can be evaporated at different temperature zones. Furthermore, even during low-load operation, the evaporator 19 and the auxiliary evaporator can be connected in series, and the refrigeration capacity can be exhibited in both evaporators.
 また、エジェクタ式冷凍サイクル10に、放熱器12から流出した高圧冷媒と、蒸発器19から流出した低圧冷媒あるいは圧縮機11へ吸入させる吸入冷媒とを熱交換させる内部熱交換器を追加してもよい。 Further, an internal heat exchanger for exchanging heat between the high-pressure refrigerant flowing out from the radiator 12 and the low-pressure refrigerant flowing out from the evaporator 19 or the suction refrigerant sucked into the compressor 11 may be added to the ejector refrigeration cycle 10. Good.
 (2)エジェクタ式冷凍サイクル10を構成する各構成機器は、上述の実施形態に開示されたものに限定されない。 (2) Each component device constituting the ejector refrigeration cycle 10 is not limited to that disclosed in the above-described embodiment.
 例えば、上述の実施形態では、圧縮機11として、エンジン駆動式の可変容量型圧縮機を採用した例を説明したが、圧縮機11として、電磁クラッチの断続により圧縮機の稼働率を変化させて冷媒吐出能力を調整する固定容量型圧縮機を採用してもよい。さらに、固定容量型圧縮機構と電動モータとを備え、電力を供給されることによって作動する電動圧縮機を採用してもよい。電動圧縮機では、電動モータの回転数を調整することによって、冷媒吐出能力を制御することができる。 For example, in the above-described embodiment, an example in which an engine-driven variable displacement compressor is employed as the compressor 11 has been described. However, as the compressor 11, the operating rate of the compressor is changed by the on / off of an electromagnetic clutch. You may employ | adopt the fixed capacity type compressor which adjusts a refrigerant | coolant discharge capability. Furthermore, you may employ | adopt an electric compressor provided with a fixed displacement type compression mechanism and an electric motor, and act | operating by supplying electric power. In the electric compressor, the refrigerant discharge capacity can be controlled by adjusting the rotation speed of the electric motor.
 また、上述の実施形態では、放熱器12として、サブクール型の熱交換器を採用した例を説明したが、凝縮部12aのみからなる通常の放熱器を採用してもよい。さらに、通常の放熱器とともに、この放熱器にて放熱した冷媒の気液を分離して余剰液相冷媒を蓄える受液器(レシーバ)を一体化させたレシーバ一体型の凝縮器を採用してもよい。 In the above-described embodiment, an example in which a subcool type heat exchanger is employed as the radiator 12 has been described, but a normal radiator including only the condensing unit 12a may be employed. In addition to a normal radiator, a receiver-integrated condenser that integrates a receiver (receiver) that separates the gas-liquid of the refrigerant radiated by this radiator and stores excess liquid phase refrigerant is adopted. Also good.
 また、上述の実施形態では、膨張弁14を採用したが、膨張弁14はエジェクタ式冷凍サイクルにおいて、必須の構成ではない。さらに、膨張弁14を採用する場合には、膨張弁14、エジェクタ15、アキュムレータ16等を一体的に構成してもよい。例えば、エジェクタ15のノズル部15aの内部にニードル状あるいは円錐状の弁体部を配置し、この弁体部を蒸発器19出口側冷媒の過熱度SHが基準過熱度KSHに近づくように変位させることで、膨張弁14とエジェクタ15とを一体化させてもよい。 In the above-described embodiment, the expansion valve 14 is adopted. However, the expansion valve 14 is not an essential component in the ejector refrigeration cycle. Further, when the expansion valve 14 is employed, the expansion valve 14, the ejector 15, the accumulator 16, and the like may be integrally configured. For example, a needle-shaped or conical valve body portion is disposed inside the nozzle portion 15a of the ejector 15, and the valve body portion is displaced so that the superheat degree SH of the evaporator 19 outlet side refrigerant approaches the reference superheat degree KSH. Thus, the expansion valve 14 and the ejector 15 may be integrated.
 また、上述の実施形態では、冷媒としてR134aを採用した例を説明したが、冷媒はこれに限定されない。例えば、HFO系冷媒(R1234yf、HFO-1234ze、HFO-1234zd)、R600a、R410A、R404A、R32、R407C、等を採用することができる。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。さらに、冷媒として二酸化炭素を採用して、高圧側冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成してもよい。 In the above-described embodiment, the example in which R134a is adopted as the refrigerant has been described, but the refrigerant is not limited to this. For example, HFO refrigerants (R1234yf, HFO-1234ze, HFO-1234zd), R600a, R410A, R404A, R32, R407C, etc. can be employed. Or you may employ | adopt the mixed refrigerant | coolant etc. which mixed multiple types among these refrigerant | coolants. Furthermore, a supercritical refrigeration cycle in which carbon dioxide is employed as the refrigerant and the high-pressure side refrigerant pressure is equal to or higher than the critical pressure of the refrigerant may be configured.
 (3)上述の実施形態では、エジェクタ式冷凍サイクル10を、車両用空調装置に適用した例を説明したが、エジェクタ式冷凍サイクル10の適用はこれに限定されない。例えば、据置型空調装置、冷温保存庫、自動販売機用冷却加熱装置等に適用してもよい。 (3) In the above-described embodiment, the example in which the ejector refrigeration cycle 10 is applied to a vehicle air conditioner has been described. However, the application of the ejector refrigeration cycle 10 is not limited thereto. For example, the present invention may be applied to a stationary air conditioner, a cold / hot storage, a cooling / heating device for a vending machine, and the like.
 また、上述の実施形態では、エジェクタ15を備えるエジェクタ式冷凍サイクル10の放熱器12を冷媒と外気とを熱交換させる室外側熱交換器とし、蒸発器19を送風空気を冷却する利用側熱交換器としている。これに対して、蒸発器19を外気等の熱源から吸熱する室外側熱交換器として用い、放熱器12を空気あるいは水等の被加熱流体を加熱する利用側熱交換器として用いてもよい。

 
Further, in the above-described embodiment, the radiator 12 of the ejector-type refrigeration cycle 10 including the ejector 15 is an outdoor heat exchanger that exchanges heat between the refrigerant and the outside air, and the evaporator 19 is used side heat exchange that cools the blown air. It is a vessel. On the other hand, the evaporator 19 may be used as an outdoor heat exchanger that absorbs heat from a heat source such as outside air, and the radiator 12 may be used as a use side heat exchanger that heats a heated fluid such as air or water.

Claims (12)

  1.  冷媒を圧縮して吐出する圧縮機(11)と、
     前記圧縮機から吐出された冷媒を放熱させる放熱器(12)と、
     前記放熱器から流出した冷媒を減圧させるノズル部(15a)から噴射された噴射冷媒の吸引作用によって冷媒吸引口(15c)から冷媒を吸引し、前記噴射冷媒と前記冷媒吸引口から吸引された吸引冷媒とを混合させて昇圧させる昇圧部(15d)を有するエジェクタ(15)と、
     冷媒を蒸発させて前記冷媒吸引口側へ流出させる蒸発器(19)と、
     前記放熱器にて放熱した冷媒を、前記ノズル部を迂回させて前記蒸発器の冷媒出口よりも上流側へ導く迂回通路(20)と、
     前記迂回通路を介して前記蒸発器へ流入する冷媒を減圧させる減圧部(34a)と、
     前記放熱器にて放熱した冷媒を前記ノズル部側へ導く第1冷媒通路(30b、40b、50b)を開閉するとともに、前記放熱器にて放熱した冷媒を前記迂回通路側へ導く第2冷媒通路(30c、40c、50c)を開閉する回路切替弁(13、24、25)と、を備え、
     前記回路切替弁は、前記第1冷媒通路および前記第2冷媒通路のいずれか一方を開いた際に他方を閉じる機械的機構で構成されており、
     前記回路切替弁は、前記圧縮機の吐出口側の冷媒圧力から吸入口側の冷媒圧力を減算した前後差圧(ΔPc)が予め定めた基準前後差圧(KΔPc)よりも低くなっている際には、前記第2冷媒通路を開くエジェクタ式冷凍サイクル。
    A compressor (11) for compressing and discharging the refrigerant;
    A radiator (12) for dissipating heat from the refrigerant discharged from the compressor;
    The refrigerant sucked from the refrigerant suction port (15c) by the suction action of the jetted refrigerant jetted from the nozzle part (15a) for depressurizing the refrigerant flowing out of the radiator, and sucked from the jetted refrigerant and the refrigerant suction port An ejector (15) having a boosting section (15d) for mixing and increasing the pressure of the refrigerant;
    An evaporator (19) for evaporating the refrigerant to flow out to the refrigerant suction port side;
    A bypass passage (20) for guiding the refrigerant radiated by the radiator to the upstream side of the refrigerant outlet of the evaporator by bypassing the nozzle portion;
    A decompression section (34a) for decompressing the refrigerant flowing into the evaporator via the bypass passage;
    The second refrigerant passage that opens and closes the first refrigerant passages (30b, 40b, 50b) for guiding the refrigerant radiated by the radiator to the nozzle portion side and guides the refrigerant radiated by the radiator to the bypass passage side. Circuit switching valves (13, 24, 25) for opening and closing (30c, 40c, 50c),
    The circuit switching valve is configured by a mechanical mechanism that closes one of the first refrigerant passage and the second refrigerant passage when the other opens.
    In the circuit switching valve, when the front-rear differential pressure (ΔPc) obtained by subtracting the refrigerant pressure on the suction port side from the refrigerant pressure on the discharge port side of the compressor is lower than a predetermined reference front-rear differential pressure (KΔPc). The ejector-type refrigeration cycle that opens the second refrigerant passage.
  2.  前記回路切替弁(13)は、前記回路切替弁の上流側の冷媒の高圧側圧力(PH)から前記減圧部の下流側の冷媒の低圧側圧力(PL)を減算した圧力差(ΔP)が予め定めた基準圧力差(KΔP)以上となっている際には、前記第1冷媒通路を開くとともに前記第2冷媒通路を閉じ、
     前記回路切替弁(13)は、前記圧力差(ΔP)が前記基準圧力差(KΔP)よりも低くなっている際には、前記第1冷媒通路を閉じるとともに前記第2冷媒通路を開く請求項1に記載のエジェクタ式冷凍サイクル。
    The circuit switching valve (13) has a pressure difference (ΔP) obtained by subtracting the low pressure side pressure (PL) of the refrigerant on the downstream side of the decompression section from the high pressure side pressure (PH) of the refrigerant on the upstream side of the circuit switching valve. When the pressure difference is equal to or greater than a predetermined reference pressure difference (KΔP), the first refrigerant passage is opened and the second refrigerant passage is closed,
    The circuit switching valve (13) closes the first refrigerant passage and opens the second refrigerant passage when the pressure difference (ΔP) is lower than the reference pressure difference (KΔP). 2. The ejector refrigeration cycle according to 1.
  3.  前記回路切替弁(13)は、前記第1冷媒通路(30b)および前記第2冷媒通路(30c)が形成されたボデー(31)、前記第1冷媒通路および前記第2冷媒通路を開閉する弁体部(32)、前記弁体部に連結されて前記弁体部よりも冷媒流れ下流側に配置される受圧部(34)、および前記弁体部に対して荷重をかける弾性部材(33)を有し、
     前記受圧部には、前記減圧部の入口側冷媒の入口側圧力(Pri)と前記減圧部の出口側冷媒の出口側圧力(Pro)との差圧が作用しており、
     前記弾性部材は、前記弁体部に対して前記弁体部が前記第1冷媒通路を閉じるとともに前記第2冷媒通路を開く側に荷重をかけるものであり、
     前記弁体部が前記第2冷媒通路を閉じた際に、前記弁体部のうち前記高圧側圧力(PH)と前記減圧部の入口側冷媒の入口側圧力(Pri)との差圧が作用する面積である第1受圧面積をA1と定義し、
     前記受圧部のうち前記入口側圧力(Pri)と前記減圧部の出口側冷媒の出口側圧力(Pro)との差圧が作用する面積である第2受圧面積をA2と定義し、
     前記基準圧力差をKΔPと定義し、
     前記圧力差(ΔP)が前記基準圧力差(KΔP)となった際の前記弾性部材が前記弁体部に作用させる荷重を第1セット荷重Fsp1と定義したときに、
     A1>A2
     となっており、
     A1×KΔP>Fsp1、かつ、Fsp1>A2×KΔP
     となっている請求項2に記載のエジェクタ式冷凍サイクル。
    The circuit switching valve (13) includes a body (31) in which the first refrigerant passage (30b) and the second refrigerant passage (30c) are formed, and a valve that opens and closes the first refrigerant passage and the second refrigerant passage. A body part (32), a pressure receiving part (34) connected to the valve body part and arranged downstream of the valve body part, and an elastic member (33) for applying a load to the valve body part Have
    A differential pressure between the inlet side pressure (Pri) of the inlet side refrigerant of the pressure reducing part and the outlet side pressure (Pro) of the outlet side refrigerant of the pressure reducing part acts on the pressure receiving part,
    The elastic member applies a load to the valve body portion on the side where the valve body portion closes the first refrigerant passage and opens the second refrigerant passage,
    When the valve body portion closes the second refrigerant passage, a differential pressure between the high pressure side pressure (PH) of the valve body portion and the inlet side pressure (Pri) of the inlet side refrigerant of the pressure reducing portion acts. The first pressure receiving area that is the area to be defined is defined as A1,
    A second pressure receiving area, which is an area on which the differential pressure between the inlet side pressure (Pri) and the outlet side refrigerant outlet pressure (Pro) of the pressure reducing unit acts, is defined as A2.
    The reference pressure difference is defined as KΔP,
    When the load that the elastic member acts on the valve body when the pressure difference (ΔP) becomes the reference pressure difference (KΔP) is defined as a first set load Fsp1,
    A1> A2
    And
    A1 × KΔP> Fsp1 and Fsp1> A2 × KΔP
    The ejector type refrigeration cycle according to claim 2.
  4.  前記減圧部は、前記受圧部に形成されている請求項3に記載のエジェクタ式冷凍サイクル。 The ejector refrigeration cycle according to claim 3, wherein the pressure reducing part is formed in the pressure receiving part.
  5.  前記回路切替弁(13)は、前記第1冷媒通路(30b)および前記第2冷媒通路(30c)が形成されたボデー(31)、前記第1冷媒通路および前記第2冷媒通路を開閉する弁体部(32)、前記弁体部に連結されて前記弁体部よりも冷媒流れ下流側に配置される受圧部(34)、および前記弁体部に対して荷重をかける弾性部材(33)を有し、
     前記受圧部のうち入口側圧力(Pri)と前記減圧部の出口側冷媒の出口側圧力(Pro)との差圧が作用する面積である第2受圧面積をA2と定義し、
     前記弁体部が前記第1冷媒通路を閉じた際に、前記弁体部のうち前記高圧側圧力(PH)と前記ノズル部の入口側のノズル側圧力(Pnoz)との差圧が作用する面積である第3受圧面積をA3と定義し、
     前記基準圧力差をKΔPと定義し、
     前記弁体部が前記第1冷媒通路を閉じている際に前記弾性部材が前記弁体部に作用させる荷重を第2セット荷重Fsp2と定義したときに、
     A2>A3
     となっており、
     Fsp2>(A2-A3)×KΔP、かつ、A2×KΔP>Fsp2
     となっている請求項2ないし4のいずれか1つに記載のエジェクタ式冷凍サイクル。
    The circuit switching valve (13) includes a body (31) in which the first refrigerant passage (30b) and the second refrigerant passage (30c) are formed, and a valve that opens and closes the first refrigerant passage and the second refrigerant passage. A body part (32), a pressure receiving part (34) connected to the valve body part and arranged downstream of the valve body part in the refrigerant flow, and an elastic member (33) for applying a load to the valve body part Have
    The second pressure receiving area, which is an area where the differential pressure between the inlet side pressure (Pri) and the outlet side refrigerant outlet pressure (Pro) of the pressure reducing unit acts, is defined as A2.
    When the valve body portion closes the first refrigerant passage, a differential pressure between the high pressure side pressure (PH) and the nozzle side pressure (Pnoz) on the inlet side of the nozzle portion acts on the valve body portion. The third pressure receiving area, which is the area, is defined as A3,
    The reference pressure difference is defined as KΔP,
    When the load that the elastic member acts on the valve body portion when the valve body portion closes the first refrigerant passage is defined as a second set load Fsp2,
    A2> A3
    And
    Fsp2> (A2-A3) × KΔP and A2 × KΔP> Fsp2
    The ejector-type refrigeration cycle according to any one of claims 2 to 4.
  6.  前記回路切替弁(24、25)は、前記回路切替弁の上流側の冷媒の高圧側圧力(PH)が予め定めた基準高圧側圧力(KPH)以上となっている際には、前記第1冷媒通路を開くとともに前記第2冷媒通路を閉じ、
     前記回路切替弁(24、25)は、前記高圧側圧力(PH)が前記基準高圧側圧力(KPH)より低くなっている際には、前記第1冷媒通路を閉じるとともに前記第2冷媒通路を開く請求項1に記載のエジェクタ式冷凍サイクル。
    When the high-pressure side pressure (PH) of the refrigerant upstream of the circuit switching valve is equal to or higher than a predetermined reference high-pressure side pressure (KPH), the circuit switching valve (24, 25) Opening the refrigerant passage and closing the second refrigerant passage;
    When the high pressure side pressure (PH) is lower than the reference high pressure side pressure (KPH), the circuit switching valve (24, 25) closes the first refrigerant passage and opens the second refrigerant passage. The ejector-type refrigeration cycle according to claim 1, which is opened.
  7.  前記回路切替弁(24)は、前記放熱器にて放熱した冷媒を流入させる流入通路(40a)が形成されたボデー(41)、前記第1冷媒通路を開閉する第1弁体部(42)、前記第1弁体部を変位させる第1駆動機構(44)、前記第2冷媒通路を開閉する第2弁体部(45)、および前記第2弁体部を変位させる第2駆動機構(47)とを有し、
     前記第1冷媒通路(40b)および前記第2冷媒通路(40c)は、前記ボデーに形成されており、
     前記第1駆動機構は、予め定めた基準封入圧力となるように気体が封入される第1封入空間(44c)を形成する第1空間形成部材(44)、および前記第1封入空間内の気体圧力と前記流入通路内の冷媒圧力との圧力差に応じて変位する第1圧力応動部材(44b)を有し、
     前記第2駆動機構は、前記基準圧力となるように気体が封入される第2封入空間(47c)を形成する第2空間形成部材(47)、および前記第2封入空間内の気体圧力と前記流入通路内の冷媒圧力との圧力差に応じて変位する第2圧力応動部材(47b)を有している請求項6に記載のエジェクタ式冷凍サイクル。
    The circuit switching valve (24) includes a body (41) formed with an inflow passage (40a) for allowing the refrigerant radiated by the radiator to flow in, and a first valve body portion (42) for opening and closing the first refrigerant passage. A first drive mechanism (44) for displacing the first valve body, a second valve body (45) for opening and closing the second refrigerant passage, and a second drive mechanism (45) for displacing the second valve body. 47)
    The first refrigerant passage (40b) and the second refrigerant passage (40c) are formed in the body,
    The first drive mechanism includes a first space forming member (44) that forms a first sealed space (44c) in which a gas is sealed so as to have a predetermined reference sealed pressure, and a gas in the first sealed space. A first pressure responsive member (44b) that is displaced according to a pressure difference between the pressure and the refrigerant pressure in the inflow passage,
    The second drive mechanism includes a second space forming member (47) that forms a second sealed space (47c) in which gas is sealed so as to be the reference pressure, and the gas pressure in the second sealed space and the The ejector-type refrigeration cycle according to claim 6, further comprising a second pressure responsive member (47b) that is displaced according to a pressure difference from the refrigerant pressure in the inflow passage.
  8.  前記第1弁体部は、前記流入通路と前記第1冷媒通路とを連通させる第1パイロット孔(42b)を有し、
     前記第1圧力応動部材は、前記第1パイロット孔を開閉する第1作動棒(42a)に連結されている請求項7に記載のエジェクタ式冷凍サイクル。
    The first valve body portion has a first pilot hole (42b) for communicating the inflow passage and the first refrigerant passage,
    The ejector-type refrigeration cycle according to claim 7, wherein the first pressure responsive member is connected to a first operating rod (42a) that opens and closes the first pilot hole.
  9.  前記第1封入空間と前記第2封入空間とを連通させる封入空間連通路(41e)を有している請求項7または8に記載のエジェクタ式冷凍サイクル。 The ejector-type refrigeration cycle according to claim 7 or 8, further comprising an enclosed space communication path (41e) for communicating the first enclosed space and the second enclosed space.
  10.  前記回路切替弁(25)は、前記放熱器にて放熱した冷媒を流入させる流入通路(50a)が形成されたボデー(51)、前記第1冷媒通路(50b)を開閉する第1弁体部(52)、前記第2冷媒通路(50c)を開閉する第2弁体部(55)、並びに、前記第1弁体部および前記第2弁体部の双方を変位させる共用駆動機構(57)とを有し、
     前記第1冷媒通路および前記第2冷媒通路は、前記ボデーに形成されており、
     前記共用駆動機構は、予め定めた基準圧力となるように気体が封入される共用封入空間(57c)を形成する共用空間形成部材(57a)、前記共用空間形成部材内の気体圧力と前記流入通路内の冷媒圧力との差圧に応じて変位する共用圧力応動部材(57b)、前記共用圧力応動部材の変位を前記第1弁体部および前記第2弁体部の双方へ伝達する共用作動棒(58)を有している請求項6に記載のエジェクタ式冷凍サイクル。
    The circuit switching valve (25) includes a body (51) formed with an inflow passage (50a) for allowing the refrigerant radiated by the radiator to flow in, and a first valve body portion for opening and closing the first refrigerant passage (50b). (52), a second valve body portion (55) for opening and closing the second refrigerant passage (50c), and a common drive mechanism (57) for displacing both the first valve body portion and the second valve body portion. And
    The first refrigerant passage and the second refrigerant passage are formed in the body,
    The common drive mechanism includes a common space forming member (57a) that forms a common enclosed space (57c) in which gas is enclosed so as to have a predetermined reference pressure, a gas pressure in the common space forming member, and the inflow passage. A common pressure responsive member (57b) that displaces in accordance with a differential pressure with respect to the refrigerant pressure inside, and a common operating rod that transmits the displacement of the common pressure responsive member to both the first valve body and the second valve body. The ejector-type refrigeration cycle according to claim 6, having (58).
  11.  前記気体は、不活性ガスである請求項7ないし10のいずれか1つに記載のエジェクタ式冷凍サイクル。 The ejector refrigeration cycle according to any one of claims 7 to 10, wherein the gas is an inert gas.
  12.  さらに、前記昇圧部から流出した冷媒の気液を分離する気液分離部(16)と、
     冷媒が前記蒸発器の冷媒入口側から前記気液分離部の液相冷媒出口側へ流れること抑制する抑制機構(17)と、を備え、
     前記気液分離部の気相冷媒出口は、前記圧縮機の吸入口側に接続されており、
     前記液相冷媒出口は、前記蒸発器の冷媒入口側に接続されている請求項1ないし11のいずれか1つに記載のエジェクタ式冷凍サイクル。

     
    Furthermore, a gas-liquid separator (16) that separates the gas-liquid of the refrigerant that has flowed out of the pressurizer,
    A suppression mechanism (17) for suppressing the refrigerant from flowing from the refrigerant inlet side of the evaporator to the liquid phase refrigerant outlet side of the gas-liquid separation unit,
    A gas-phase refrigerant outlet of the gas-liquid separator is connected to an inlet side of the compressor;
    The ejector refrigeration cycle according to claim 1, wherein the liquid-phase refrigerant outlet is connected to a refrigerant inlet side of the evaporator.

PCT/JP2017/021414 2016-07-18 2017-06-09 Ejector-type refrigeration cycle WO2018016219A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-140960 2016-07-18
JP2016140960A JP6547698B2 (en) 2016-07-18 2016-07-18 Ejector type refrigeration cycle

Publications (1)

Publication Number Publication Date
WO2018016219A1 true WO2018016219A1 (en) 2018-01-25

Family

ID=60992084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021414 WO2018016219A1 (en) 2016-07-18 2017-06-09 Ejector-type refrigeration cycle

Country Status (2)

Country Link
JP (1) JP6547698B2 (en)
WO (1) WO2018016219A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017089964A (en) * 2015-11-09 2017-05-25 株式会社デンソー Ejector type refrigeration cycle
WO2022038950A1 (en) * 2020-08-17 2022-02-24 株式会社デンソー Refrigeration cycle device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271152U (en) * 1975-11-25 1977-05-27
JP2004053028A (en) * 2002-07-16 2004-02-19 Denso Corp Refrigeration cycle device
JP2005037093A (en) * 2003-07-18 2005-02-10 Tgk Co Ltd Refrigerating cycle
JP4078901B2 (en) * 2002-07-08 2008-04-23 株式会社デンソー Ejector cycle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271152U (en) * 1975-11-25 1977-05-27
JP4078901B2 (en) * 2002-07-08 2008-04-23 株式会社デンソー Ejector cycle
JP2004053028A (en) * 2002-07-16 2004-02-19 Denso Corp Refrigeration cycle device
JP2005037093A (en) * 2003-07-18 2005-02-10 Tgk Co Ltd Refrigerating cycle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017089964A (en) * 2015-11-09 2017-05-25 株式会社デンソー Ejector type refrigeration cycle
WO2022038950A1 (en) * 2020-08-17 2022-02-24 株式会社デンソー Refrigeration cycle device
JP7472714B2 (en) 2020-08-17 2024-04-23 株式会社デンソー Refrigeration Cycle Equipment

Also Published As

Publication number Publication date
JP6547698B2 (en) 2019-07-24
JP2018013248A (en) 2018-01-25

Similar Documents

Publication Publication Date Title
US10500925B2 (en) Refrigeration cycle device
US10378795B2 (en) Ejector and ejector refrigeration cycle
WO2015182057A1 (en) Ejector refrigeration cycle
US10029538B2 (en) Refrigeration cycle
WO2018198609A1 (en) Ejector refrigeration cycle
JP2018119542A (en) Ejector
JP2018146219A (en) Ejector module
WO2018016219A1 (en) Ejector-type refrigeration cycle
JP6512071B2 (en) Ejector type refrigeration cycle
WO2016143292A1 (en) Ejector-type refrigeration cycle
WO2019208428A1 (en) Ejector-type refrigeration cycle
JP6720934B2 (en) Ejector module
WO2017217142A1 (en) Refrigeration cycle device
JP2022088798A (en) Refrigeration cycle apparatus
JP7031482B2 (en) Ejector refrigeration cycle and flow control valve
WO2018159321A1 (en) Ejector module
JP6561919B2 (en) Ejector
WO2018047563A1 (en) Ejector
WO2018159323A1 (en) Ejector module and evaporator unit
WO2017179321A1 (en) Ejector
JP2008008505A (en) Ejector type refrigerating cycle
JP2019190795A (en) Ejector type refrigeration cycle
JP7119785B2 (en) Ejector refrigeration cycle and ejector module
JP6327088B2 (en) Ejector refrigeration cycle
WO2019155806A1 (en) Ejector-type refrigeration cycle, and ejector module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17830739

Country of ref document: EP

Kind code of ref document: A1