WO2018016193A1 - Touch sensor and touch sensor system - Google Patents

Touch sensor and touch sensor system Download PDF

Info

Publication number
WO2018016193A1
WO2018016193A1 PCT/JP2017/020079 JP2017020079W WO2018016193A1 WO 2018016193 A1 WO2018016193 A1 WO 2018016193A1 JP 2017020079 W JP2017020079 W JP 2017020079W WO 2018016193 A1 WO2018016193 A1 WO 2018016193A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
contact
different material
material filling
unit
Prior art date
Application number
PCT/JP2017/020079
Other languages
French (fr)
Japanese (ja)
Inventor
里奈 林
俊樹 磯貝
Original Assignee
株式会社Soken
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017006727A external-priority patent/JP2018021888A/en
Application filed by 株式会社Soken, 株式会社デンソー filed Critical 株式会社Soken
Publication of WO2018016193A1 publication Critical patent/WO2018016193A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/04Measuring force or stress, in general by measuring elastic deformation of gauges, e.g. of springs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Definitions

  • the present disclosure relates to a contact sensor and a contact sensor system.
  • Patent Document 1 has a configuration in which a density change of a filling material is detected by being placed in a filling material filled in a soft object, a load is applied to the soft object, and contact with the soft object is detected. It is disclosed.
  • Patent Document 1 is based on the premise that the packing is a material whose density can change, and there are restrictions on the packing that can be applied.
  • the material that can change the density is likely to be loosened, and the change in density becomes unstable or difficult to change due to aging.
  • the density of the filler changes, it becomes difficult to determine whether the load has been applied to the soft object and the density has changed, or the density has changed due to aging, and detection of contact with the soft object becomes unstable. There is also a risk of becoming.
  • An object of the present disclosure is to provide a contact sensor and a contact sensor system capable of stably detecting contact with a soft object without limiting the applicable filler.
  • the foreign material filler is disposed in the filler.
  • the different material filling is filled in the different material filling part, is made of a material different from the filling, is compressed when the load is applied to the soft object, and is restored when the load is released.
  • At least one signal transmitting unit is provided in contact with a predetermined surface portion of the different material filling unit, and transmits a signal toward the different material filling.
  • the at least one signal receiving unit is provided in contact with a predetermined surface portion of the different material filling unit, and receives a signal transmitted from the signal transmission unit and propagated through the different material filling.
  • a contact detection part detects the contact to a soft object using the change of the reception state of the signal in a signal receiving part.
  • a different material filling part is arranged in the filling, and the different material filling part is filled with the different material filling, and the soft object is used by changing the reception state of the signal propagating through the different material filling. Detecting contact with Unlike the conventional configuration in which the density change of the filling material is detected to detect contact with the soft object, it is not necessary to detect the density change of the filling material. Can be detected stably. Moreover, since the different material filling part is provided in the filling, it can be applied to a ready-made product in which the material of the filling has been decided.
  • FIG. 1 is a plan view and a side view of a contact sensor showing a first embodiment
  • FIG. 2 is a perspective view showing a mode in which the contact sensor is provided on the arm protection member
  • FIG. 3 is a perspective view showing an aspect in which a person's arm is in contact with the protective member
  • FIG. 4 is a functional block diagram of the contact sensor
  • FIG. 5 is a flowchart.
  • FIG. 6 is a diagram illustrating types of signals, signal transmission units, and signal reception units
  • FIG. 7 is a perspective view showing an aspect in which the contact sensor is provided on the stuffed animal.
  • FIG. 1 is a plan view and a side view of a contact sensor showing a first embodiment
  • FIG. 2 is a perspective view showing a mode in which the contact sensor is provided on the arm protection member
  • FIG. 3 is a perspective view showing an aspect in which a person's arm is in contact with the protective member
  • FIG. 4 is a functional block diagram of the contact sensor
  • FIG. 5 is
  • FIG. 8 is a front view showing a mode in which the contact sensor is provided on the handle
  • FIG. 9 is a side view of the contact sensor
  • FIG. 10 is a side view of the contact sensor showing the second embodiment
  • FIG. 11 is a side view of a contact sensor showing a third embodiment.
  • FIG. 12 is a side view of a contact sensor showing a fourth embodiment
  • FIG. 13 is a functional block diagram of the contact sensor system
  • FIG. 14 is a side view of a contact sensor showing a fifth embodiment
  • FIG. 15 is a side view of a contact sensor showing a sixth embodiment
  • FIG. 16 is a flowchart
  • FIG. 17 is a plan view of the contact sensor
  • FIG. 18 is a side view of the contact sensor
  • FIG. 17 is a plan view of the contact sensor
  • FIG. 18 is a side view of the contact sensor
  • FIG. 19 is a plan view of the contact sensor
  • FIG. 20 is a side view of the contact sensor
  • FIG. 21 is a plan view of a contact sensor
  • FIG. 22 is a side view of the contact sensor
  • FIG. 23 is a plan view of the contact sensor
  • FIG. 24 is a side view of the contact sensor
  • FIG. 25 is a side view of a contact sensor showing a seventh embodiment
  • FIG. 26 is a side view of a contact sensor showing an eighth embodiment.
  • FIG. 27 is a flowchart
  • FIG. 28 is a side view of a contact sensor showing a ninth embodiment
  • FIG. 29 is a flowchart.
  • a protective member 3 (corresponding to a soft object) is attached to a predetermined portion of the arm 2 of the human coexistence robot 1.
  • the protective member 3 is filled with a filler 4.
  • the filling 4 is made of a relatively soft material such as sponge.
  • the human arm 201 does not directly contact the arm 2, but the human arm 201 contacts the protection member 3. Even if it is made of a hard material, the impact of the contact is reduced.
  • the arm 2 itself may be made of a soft material.
  • a rectangular parallelepiped different material filling portion 5 is formed at a predetermined portion of the filling 4, and the different material filling portion 5 is filled with a different material filling 6.
  • the foreign material filling part 5 is hollow, and the foreign material filler 6 is air.
  • the transmitting unit 7 and the receiving unit 8 are provided on the lower surface portion 5a (corresponding to a predetermined surface portion) that is the farthest from the upper surface portion 3a in which the human arm 201 may come into contact with the protective member 3 in the different material filling portion 5.
  • the transmission unit 7 includes a signal transmission unit 9 that transmits a signal toward the different material filling 6.
  • the receiving unit 8 includes a signal receiving unit 10 that receives a signal transmitted from the signal transmitting unit 9 and propagated through the foreign material filling 6, and a contact detection unit 11 that detects contact with the arm 2.
  • the signal transmission part 9 is LED which irradiates infrared rays.
  • the signal receiving unit 10 is an infrared phototransistor, and the infrared light irradiated from the signal transmitting unit 9 propagates through the different material filling 6 and is reflected by the upper surface portion 5b and the side surface portion 5c, so that the reflected infrared light is incident.
  • the contact detection unit 11 includes, for example, a CPU.
  • the contact detection unit 11 determines a change in the amount of received light and detects contact with the arm 2.
  • the contact sensor 12 includes the different material filler 5, the different material filler 6, the signal transmitter 9, the signal receiver 10, and the contact detector 11.
  • the contact detection unit 11 detects contact with the arm 2 in the following procedure.
  • the load acts on the different material filling portion 5 via the filler 4 and the direction in which the load is applied in the different material filling portion 5 (that is, (Vertical direction) shrinks, and the distance from the lower surface 5a to the upper surface 5b decreases. That is, the different material filling portion 5 is compressed in the vertical direction.
  • the propagation path of the light emitted from the signal transmission unit 9 changes, so that it enters the signal reception unit 10. The amount of received infrared light changes.
  • the contact detection unit 11 stores the amount of received infrared light when no load is applied as a reference value, and compares the amount of received infrared light with the reference value to determine the difference between the amount of received infrared light and the reference value. It is determined whether or not the threshold value is exceeded, and contact with the arm 2 is detected.
  • the contact detection unit 11 performs a contact detection process.
  • the contact detection unit 11 receives the amount of received infrared light from the signal receiving unit 10 (S1), calculates the difference between the received amount of received infrared light and a reference value (S2), and It is determined whether or not the calculated difference is greater than or equal to a threshold value (S3). If the contact detection unit 11 determines that the calculated difference is not greater than or equal to the threshold (S3: NO), it determines that no load is applied, that is, the human arm 201 is not in contact with the protection member 3, and step S1. Returning to step S1, the steps after step S1 are repeated.
  • the contact detection unit 11 determines that the calculated difference is equal to or greater than the threshold (S3: YES), the contact detection unit 11 determines that a load is applied, that is, the person's arm 201 is in contact with the protection member 3, and the person's arm 201 is detected.
  • the treatment for the contact is performed (S4).
  • the contact detection unit 11 outputs a stop signal to, for example, a drive unit (not shown) that controls the drive of the human coexistence robot 1 to stop the drive of the human coexistence robot 1 or notify the HMI unit (not shown).
  • a signal is output to notify that the human arm 201 is in contact.
  • the contact detection unit 11 determines whether or not there is a change in the reference value.
  • the human arm 201 is detached from the protective member 3 and the applied load is released, the compressed different material filling portion 5 is restored in the vertical direction, and the amount of received infrared light and the reference value are The difference is less than the threshold value.
  • the contact detection unit 11 determines that the calculated difference is less than the threshold (S5: YES)
  • the contact detection unit 11 determines whether or not the reference value has changed, and determines whether or not the reference value needs to be updated. (S6).
  • the contact detection unit 11 calculates the allowable range from the reference value used in the past determination, and if the reference value used in the current determination is within the allowable range, the reference value has not changed or has changed. Even if it is, it is determined that it is an error level, it is determined that there is no need to update the reference value (S6: NO), the process returns to step S1, and step S1 and subsequent steps are repeated.
  • the contact detection unit 11 determines that the reference value has changed beyond the error level, and determines that the reference value needs to be updated. (S6: YES), the reference value is updated (S7). That is, the contact detection unit 11 adds the amount of infrared light received this time when the given load is released to the amount of infrared light received for the past several times when no load is applied, and the total is calculated. Dividing by a predetermined number of times (past several times + 1), an average value of the current amount of received infrared light and the amount of received light of the past several times is calculated, and the calculated average value is updated as a reference value.
  • the contact detection unit 11 updates the reference value in this way, so that the packing 4 surrounding the different material filling unit 5 deteriorates over time, and the restoring force of the different material filling unit 5 (that is, the different material packing 6 Even if the restoring force) is reduced, it is possible to determine whether or not the human arm 201 is in contact with the protective member 3 without being affected by the reduction in the restoring force.
  • the contact detection unit 11 determines whether or not the termination condition for the contact detection process is satisfied (S8). If the contact detection unit 11 determines that the termination condition for the contact detection process is not satisfied (S8: NO), the process returns to step S1. Step S1 and subsequent steps are repeated. If the contact detection part 11 determines with the completion
  • the infrared signal is used as the signal and the infrared phototransistor is used as the signal receiving unit 10.
  • an infrared sensor or an infrared camera may be used as the signal receiving unit 10.
  • visible light may be used as a signal
  • an LED that emits visible light may be used as the signal transmission unit 9
  • a visible light phototransistor or a visible light camera that may receive visible light may be used as the signal reception unit 10.
  • millimeter waves may be used as signals
  • millimeter wave radars may be used as the signal transmission unit 9 and the signal reception unit 10.
  • ultrasonic waves may be used as signals
  • piezoelectric ceramics may be used as the signal transmission unit 9 and the signal reception unit 10.
  • a different material filling portion 5 is provided in the filling 4 and the contact with the arm 2 is detected using a change in the amount of received infrared light propagating through the different material filling 6 filled in the different material filling portion 5. I tried to do it. Thereby, since it is not necessary to detect the density change of the filler 4, the applicable filler 4 is not limited, and the contact with the arm 2 can be stably detected. Moreover, since it implement
  • the contact with the arm 2 was detected, and the reference value was updated. Thereby, even if the filling 4 surrounding the different material filling portion 5 deteriorates with time and the restoring force of the different material filling portion 5 is reduced, the contact with the arm 2 is not affected by the reduction of the restoring force. Can be detected.
  • the above is an example of the configuration applied to the contact sensor 12 that detects contact with the arm 2 of the human coexistence robot 1, but other soft objects may be targeted.
  • the stuffed toy 21 is filled with a filling 22, and a rectangular parallelepiped different material filling portion 23 is formed at a predetermined portion of the filling 22,
  • the different material filling portion 23 is filled with a different material filling 24.
  • the different material filling portion 23 is also hollow, and the different material filling 24 is also air.
  • a transmitting unit 25 and a receiving unit 26 are arranged side by side at a predetermined portion of the different material filling 24.
  • the transmission unit 25 is provided with a signal transmission unit 27, and the reception unit 26 is provided with a signal reception unit 28 and a contact detection unit 29.
  • the contact sensor 30 includes the different material filling unit 23, the different material filling 24, the signal transmission unit 27, the signal reception unit 28, and the contact detection unit 29.
  • the handle 31 in the configuration applied to the handle 31 of the automobile, the handle 31 is filled with a filling 32, and a rectangular parallelepiped different material filling portion 33 is formed at a predetermined portion of the filling 32.
  • the different material filling portion 33 is filled with a different material filling 34.
  • the different material filling portion 33 is also hollow, and the different material filling 34 is also air.
  • a transmitting unit 35 and a receiving unit 36 are arranged side by side at a predetermined portion of the different material filling 34.
  • the transmission unit 35 is provided with a signal transmission unit 37
  • the reception unit 36 is provided with a signal reception unit 38 and a contact detection unit 39.
  • the contact sensor 40 includes the different material filling unit 33, the different material filling 34, a signal transmission unit 37, a signal reception unit 38, and a contact detection unit 39.
  • a person that is, a driver grasps the handle 31 with the hand 203 and a load is applied
  • the light propagation path in the different material filling portion 33 changes to detect that the person has grasped the handle 31 with the hand 203. be able to.
  • contact with the handle 31 can be detected without impairing the handle of the handle 31, the design of the handle 31, and the like.
  • the protective member 3 is filled with the fillers 41 to 45, and the uppermost filler 41 with which the human arm 201 may come into contact is made of the softest material, It may be composed of a hard material stepwise from the bottom to the bottom.
  • the different material filling 6 is air, that is, a substance having no substance is disposed as the different material filling 6, but the second embodiment is different in material filling.
  • the substance having the substance is arranged.
  • a rectangular parallelepiped different material filling portion 51 is formed at a predetermined portion of the filling 4, and the different material filling portion 51 is filled with a different material filling 52.
  • the foreign material filling 52 is made of a material having a property of compressing when a load is applied and restoring when the applied load is released. In this case, a signal having a property of propagating through the different material filling 52 is employed. According to the second embodiment, the same effect as that of the first embodiment can be obtained. Moreover, compared with the structure which employ
  • a third embodiment will be described with reference to FIG. Description of the same parts as those of the first embodiment described above will be omitted, and different parts will be described.
  • a rectangular parallelepiped foreign material filling portion 5 is formed at a predetermined portion of the filler 4, but in the third embodiment, a hemispherical foreign material filling portion is formed. It is the composition which is.
  • a hemispherical different material filling portion 61 is formed at a predetermined portion of the filling 4, and the different material filling portion 61 is filled with a different material filling 62.
  • the transmitting unit 7 and the receiving unit 8 are provided on the lower surface portion 61a (corresponding to the predetermined surface portion) which is the farthest from the upper surface portion 3a where the human arm 201 may come into contact with the protective member 3 in the different material filling portion 61.
  • the compression with respect to the load is equal from any direction, and contact with the soft object can be stably detected in a wide range. That is, as illustrated in FIG.
  • the stuffed toy 21 has a shape close to a sphere, a range in which it is possible to detect that a person has stroked with the hand 202 is widened.
  • the third embodiment in addition to obtaining the same operational effects as those of the first embodiment, it is possible to stably detect contact with a soft object over a wide curved surface.
  • the first embodiment is a configuration in which one contact sensor 12 is arranged in one filling 4, but the fourth embodiment is a configuration in which a plurality of contact sensors are arranged in one filling. It is.
  • the contact sensor system 71 includes a plurality of contact sensors 73 arranged at equal intervals in the filling 72 and a server 82 arranged outside the soft object. Each of the contact sensors 73 has the same configuration as that of the contact sensor 12 described in the first embodiment.
  • the different material filling portion 74 is filled with the different material filling material 75, and a lower surface portion 74 a (predetermined) of the different material filling portion 74.
  • the transmission unit 76 and the reception unit 77 are arranged side by side on the surface).
  • the transmission unit 76 has a signal transmission unit 78.
  • the reception unit 8 includes a communication unit 81 that transmits a detection result to the outside.
  • the contact sensor 73 transmits a detection result to the server 82 by a method such as a wireless LAN, Bluetooth (registered trademark), BLE (Bluetooth Low Energy) (registered trademark), WiFi (registered trademark), or the like defined by IEEE 802.11, for example. To do.
  • the server 82 includes a communication unit 83 that receives the detection results transmitted from the plurality of contact sensors 73 and a processing unit 84 that processes the plurality of detection results.
  • the processing unit 84 stores the arrangement positions of the plurality of contact sensors 73, and calculates the action point and amount of the load on the soft object using the stored arrangement positions and detection results. That is, when a load is applied to any part, the processing unit 84 identifies the contact sensor 73 whose received light amount has changed from among the plurality of contact sensors 73, and distributes the change amount in proportion to the contact sensor 73. Calculate the point and amount of load applied.
  • the fourth embodiment in addition to being able to obtain the same operational effects as those of the first embodiment, it is possible to stably detect contact with a soft object over a wide planar area. For example, even if the arm of the human-symbiotic robot has a long shape, contact with the arm can be detected stably over a wide range.
  • a rectangular parallelepiped different material filling portion 91 is formed in a predetermined portion of the filling 4, and the different material filling portion 91 is filled with a different material filling 92.
  • the foreign material filling 92 is made of a material that has a property of compressing when a load is applied and restoring when the applied load is released.
  • Three transmitting units 93a to 93c and three receiving units 94a to 94c are arranged side by side on a lower surface portion 91a (corresponding to a predetermined surface portion) of the different material filling portion 91.
  • the fifth embodiment in addition to being able to obtain the same operational effects as those of the first embodiment, by arranging three transmitting units 93a to 93c and three receiving units 94a to 94c, respectively, A large amount of propagation can be ensured, and the contact with the soft object can be stably detected over a wide area in the same manner as in the fourth embodiment.
  • the different material filling part 91 is filled with one different material filling 92, but in the sixth embodiment, the different material filling part is filled with a plurality of different material fillings. It is the structure which is done.
  • the different material filling portion 91 is filled with a first foreign material filler 101 and a second foreign material filler 102.
  • the different material fillings 101 and 102 are each made of a material having a property of compressing when a load is applied and restoring when the applied load is released.
  • Transmitting units 93a to 93c and receiving units 94a to 94c are arranged side by side on the lower surface 91a of the different material filling portion 91.
  • the transmitting unit 93a is disposed in contact with only the first foreign material filler 101
  • the receiving unit 94a is disposed in contact with the first foreign material filler 101 and the second foreign material filler 102.
  • 93b, 93c and the receiving units 94b, 94c are arranged in contact with only the second foreign material filler 102.
  • the fact that the load is applied can be detected in a wide range, but the position where the load is applied cannot be specified accurately. That is, in the configuration in which the different material filling portion 91 is filled with one type of different material filling 92 and the plurality of transmission units 93a to 93c and the plurality of reception units 94a to 94c are arranged, when a load is applied, The amount of received light of the signals transmitted from the plurality of transmission units 93a to 93c and propagated through the different material filling 92 changes, but no difference occurs in the change in the amount of received light.
  • the received light amount of both the signal transmitted from the transmitting unit 93a and propagated through the different material filling 92 and the signal transmitted from the transmitting unit 93b and propagated through the different material filling 92 are changed. No difference occurs in the change in the amount of received light. Therefore, in the above-described configuration, the position where the load is applied cannot be accurately specified, and the resolution indicating the position where the load is applied cannot be increased.
  • the receiving unit 94a starts from the transmitting unit 93a.
  • the received light amount of both the signal transmitted and propagated through the first foreign material filler 101 and the signal transmitted from the transmission unit 93b and propagated through the second foreign material filler 102 are changed, and the received light amount is changed. A difference occurs. Therefore, the position where the load is applied can be specified accurately, and the resolution can be increased.
  • the transmission unit When the first foreign material filling 101 is made of a material having a relatively high signal propagation speed and the second foreign material filling 102 is made of a material having a relatively low signal propagation speed, the transmission unit When signals are transmitted simultaneously from both the transmission unit 93a and the transmission unit 93b, the signal transmitted from the transmission unit 93a is first received by the reception unit 94a, and then the signal transmitted from the transmission unit 93b is received by the reception unit 94a. Is done.
  • the amount of received light of signals transmitted from the transmission units 93a and 93b changes with respect to the amount of received light when no load is applied, and a difference occurs in the change in the amount of received light.
  • the change in the amount of received light of the signal transmitted from the transmission unit 93a becomes relatively large.
  • the position where the load is applied is biased toward the transmission unit 93b when viewed from the reception unit 94a, the change in the amount of received light of the signal transmitted from the transmission unit 93b becomes relatively large.
  • a control unit (not shown) is embedded in the filling 4, and the control unit controls the transmission timing of signals from the transmission units 93a to 93c, and the amount of change in the amount of received light in the reception units 94a to 94c. To calculate the position where the load is applied.
  • the control unit transmits signals simultaneously from all the transmission units 93a to 93c (S11).
  • the control unit acquires the received light amount of the signal transmitted from the transmission units 93a to 93c and propagated through the first foreign material filling 101 and received by the reception unit 94a (S12).
  • the control unit 12 converts the acquired amount of received light into a first conversion value by comparing with the amount of received light when no load is applied (S13).
  • control unit acquires the received light amount of the signal transmitted from the transmission units 93a to 93c and propagated through the second foreign material filler 102 and received by the reception unit 94a (S14).
  • the control unit converts the acquired amount of received light into a second conversion value by comparing with the amount of received light when no load is applied (S15).
  • the control unit uses the arrangement positions of the transmission units 93a to 93c, the first conversion value, and the second conversion value to calculate the position to which the load is applied using the mass point calculation method (S16).
  • the above demonstrated the structure by which the different material filling part 91 was filled with two types of different material fillings 101 and 102 the number of types of different material fillings with which a different material filling part is filled is adjusted.
  • the resolution can be adjusted. That is, as shown in FIG. 17 and FIG. 18, the different material filling section 111 is filled with four types of different material fillings 112 to 115, that is, two different types in two directions.
  • the resolution can be increased by a factor of 4 for a single configuration. Further, as shown in FIGS. 19 and 20, it is sufficient that the same kind of different material fillings do not adjoin each other, and the different material filling portion 111 is filled with two kinds of different material fillings 112 to 114 in two directions. The configuration may be acceptable.
  • the different material filling portion 111 is filled with four kinds of different material fillings 112 to 115 in a straight line, that is, four kinds in one direction, and comes into contact with the different material fillings 112 and 114. Even if the transmitting units 116a and 116b are arranged and the receiving units 117a and 117b are arranged in contact with the different material fillings 113 and 115, respectively, The resolution can be increased by a factor of 4 with respect to the various configurations. Also in this case, as shown in FIG. 23 and FIG.
  • the same kind of different material fillings do not have to be adjacent to each other, and the different material filling part 111 is filled with three kinds of different material fillings 112 to 114 in one direction.
  • the structure which is made may be sufficient.
  • the sixth embodiment as in the fifth embodiment, in addition to being able to stably detect contact with a soft object over a wide area in a plane, the position where a load is applied is accurately specified. Can increase the resolution.
  • the different material filling part 91 is filled with a plurality of different material fillings.
  • the upper surface part and the side wall part of the different material filling part 91 are provided. The reflectance is divided.
  • the wall surface portion 121 from right above the receiving unit 94 a to the lower end of the left side surface portion is processed with a color having a relatively high reflectance.
  • the wall surface portion 122 from the top of the receiving unit 94a to the lower end of the right side surface is processed with a color having a relatively low reflectance. That is, when signals are transmitted from both the transmission unit 93a and the transmission unit 93b at the same time, the signal transmitted from the transmission unit 93a is first received by the reception unit 94a, and then the signal transmitted from the transmission unit 93b is received. Received by unit 94a.
  • the amount of received light of the signals transmitted from the transmission units 93a and 93b changes with respect to the amount of received light when no load is applied, and a difference occurs in the change in the amount of received light. That is, if the position where the load is applied is biased toward the transmission unit 93a when viewed from the reception unit 94a, the change in the amount of received light of the signal transmitted from the transmission unit 93a becomes relatively large. On the other hand, if the position where the load is applied is biased toward the transmission unit 93b when viewed from the reception unit 94a, the change in the amount of received light of the signal transmitted from the transmission unit 93b becomes relatively large.
  • the resolution can be adjusted by adjusting the number of types of colors that are processed on the wall surface, as in the sixth embodiment.
  • the position to which a load is applied is accurately specified. Can increase the resolution.
  • the different material filling part 91 is filled with a plurality of different material fillings, but in the eighth embodiment, the different material filling part 91 is filled with one different material filling. And at least one of the wavelength, frequency and phase of the signal is different.
  • a rectangular parallelepiped different material filling portion 91 is formed in a predetermined portion of the filling 4, and the different material filling portion 91 is filled with a different material filling 92.
  • Three transmitting units 93a to 93c and three receiving units 94a to 94c are arranged side by side on the lower surface of the different material filling portion 91.
  • the transmitting unit 93a and the receiving unit 94a, the transmitting unit 93b and the receiving unit 94b, the transmitting unit 93c and the receiving unit 94c form a pair, and the signals transmitted by the transmitting units 93a to 93c are each of the wavelength, frequency and phase. At least one is different.
  • the wavelength and frequency are adjusted so that the propagation speed is increased in the order of the signal transmitted from the transmission unit 93a, the signal transmitted from the transmission unit 93b, and the signal transmitted from the transmission unit 93c.
  • the signals transmitted from the transmission unit 93a are first received by the reception units 94a to 94c, and the signals transmitted from the transmission unit 93b are subsequently transmitted to the reception units 94a to 94c.
  • the signals received and subsequently transmitted from the transmission unit 93c are received by the reception units 94b to 94c.
  • the control unit when the control unit simultaneously transmits signals from all the transmission units 93a to 93c (S21), the control unit acquires the received light amount of the signal according to the order of high propagation speed and converts it into a converted value. That is, when the receiving units 94a to 94c are classified as the first to third receiving units according to the order in which the signal reception timing is early, the control unit transmits the signals from the transmitting units 93a to 93c and receives them by the first receiving unit 94a. The received light amount of the received signal is acquired (S22). The control unit converts the acquired amount of received light into a first conversion value by comparing with the amount of received light when no load is applied (S23).
  • the control unit transmits the second signal transmitted from the transmission units 93a to 93c.
  • the received light amount of the signal received by the receiving unit 94b is acquired (S24).
  • the control unit converts the acquired amount of received light into a second conversion value by comparing with the amount of received light when no load is applied (S25).
  • the control unit transmits the third signal transmitted from the transmission units 93a to 93c.
  • the received light amount of the signal received by the receiving unit 94c is acquired (S26).
  • the control unit converts the acquired amount of received light into a third conversion value by comparing with the amount of received light when no load is applied (S27).
  • the control unit uses the arrangement positions of the transmission units 93a to 93c and the first to third conversion values to calculate a position to which a load is applied using a mass point calculation method (S28).
  • the eighth embodiment in addition to being able to stably detect contact with a soft object over a wide area in a plane, the position where a load is applied is accurately specified. Can increase the resolution.
  • the eighth embodiment is configured to vary the reception timing by changing the propagation speed and phase of the signal, but the ninth embodiment is configured to vary the reception timing by varying the signal transmission timing. is there.
  • the control unit synchronizes the signal reception timings of the reception units 94a to 94c with the transmission timings of the pair of transmission units 93a to 93c.
  • the control unit transmits a signal from the first transmission unit 93a (S31).
  • the received light amount of the signal transmitted from the transmission unit 93a and received by the first reception unit 94a is acquired (S32).
  • the control unit compares the acquired received light amount with the received light amount when no load is applied, and converts the received light amount into a first conversion value (S33).
  • the control unit starts from the second transmission unit 93b after a time t1 corresponding to a difference between a predetermined transmission timing of the signal from the transmission unit 93a and a transmission timing of the signal from the transmission unit 93b elapses.
  • a signal is transmitted (S34), and the received light amount of the signal transmitted from the second transmission unit 93b and received by the reception unit 94b is acquired (S35).
  • the control unit converts the acquired amount of received light into a second conversion value by comparing with the amount of received light when no load is applied (S36).
  • the control unit starts from the third transmission unit 93c after a time t2 corresponding to a difference between a predetermined transmission timing of the signal from the transmission unit 93b and a transmission timing of the signal from the transmission unit 93c has elapsed.
  • a signal is transmitted (S37), and the received light amount of the signal transmitted from the third transmission unit 93c and received by the third reception unit 94c is acquired (S38).
  • the control unit converts the acquired amount of received light into a third conversion value by comparing with the amount of received light when no load is applied (S39).
  • the control unit uses the arrangement positions of the transmission units 93a to 93c and the first to third conversion values to calculate a position to which a load is applied using a mass point calculation method (S40).
  • the position where a load is applied is accurately specified. Can increase the resolution.
  • the soft object may be a cushion or the like.
  • the configuration in which the plurality of contact sensors 73 are linearly arranged at equal intervals is illustrated, but the configuration in which the contact sensors 73 are arranged in a plane shape at equal intervals may be used.
  • the configuration in which the server 82 for processing a plurality of detection results is arranged outside the soft object is exemplified.
  • the same function as the server 82 is arranged in the soft object. good.

Abstract

A touch sensor 12 that senses a touch on a soft object filled with a filler 4, is provided with: a different-material-filled part 5 which is arranged in the filler 4; a different-material filler 6 with which the different-material-filled part 5 is filled and which is formed from a material different from that of the filler 4, the different-material filler 6 being configured to be compressed by application of a load onto the soft object and to recover by removal of the load; at least one signal transmission unit which is provided so as to be in contact with a predetermined surface part 5a of the different-material-filled part 5 and which transmits a signal toward the different-material filler 6; at least one signal reception unit which is provided so as to be in contact with the predetermined surface part 5a of the different-material-filled part 5 and which receives the signal having been transmitted from the signal transmission unit and having propagated through the different-material filler 6; and a touch sensing unit which senses touch on the soft object by using the change in a signal reception status in the signal reception unit.

Description

接触センサ及び接触センサシステムContact sensor and contact sensor system 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年7月21日に出願された日本出願番号2016-143326号と、2017年1月18日に出願された日本出願番号2017-006727号とに基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2016-143326 filed on July 21, 2016 and Japanese Application No. 2017-006727 filed on January 18, 2017, the description of which is here Incorporate content.
 本開示は、接触センサ及び接触センサシステムに関する。 The present disclosure relates to a contact sensor and a contact sensor system.
 例えば人共存ロボットのアームに取り付けられる保護部材、ぬいぐるみ、クッション等の柔物体への接触を検知する接触センサが供されている。例えば特許文献1には、柔物体に充填されている充填物の中に配置され、荷重が柔物体に与えられることによる充填物の密度変化を検知し、柔物体への接触を検知する構成が開示されている。 For example, there are provided contact sensors that detect contact with soft objects such as protective members, stuffed animals, and cushions that are attached to the arm of a coexisting robot. For example, Patent Document 1 has a configuration in which a density change of a filling material is detected by being placed in a filling material filled in a soft object, a load is applied to the soft object, and contact with the soft object is detected. It is disclosed.
特開2013-036794号公報JP 2013-036794 A
 特許文献1では、充填物が密度変化し得る素材であることが前提であり、適用し得る充填物に制約がある。又、密度変化し得する素材はヘタリが生じ易く、経年劣化により密度変化が不安定になったり密度変化し難くなったりする。その結果、充填物が密度変化しても、荷重が柔物体に与えられて密度変化したのか、又は経年劣化により密度変化したのかを判定し難くなり、柔物体への接触の検知が不安定になる虞もある。 Patent Document 1 is based on the premise that the packing is a material whose density can change, and there are restrictions on the packing that can be applied. In addition, the material that can change the density is likely to be loosened, and the change in density becomes unstable or difficult to change due to aging. As a result, even if the density of the filler changes, it becomes difficult to determine whether the load has been applied to the soft object and the density has changed, or the density has changed due to aging, and detection of contact with the soft object becomes unstable. There is also a risk of becoming.
 本開示は、適用し得る充填物が限定されることなく、柔物体への接触を安定的に検知することができる接触センサ及び接触センサシステムを提供することにある。
 本開示の一態様によれば、充填物が充填されている柔物体への接触を検知する接触センサにおいて、異素材充填部は、充填物の中に配置されている。異素材充填物は、異素材充填部に充填され、充填物とは異なる素材で構成され、荷重が柔物体に与えられたことで圧縮し、荷重が解かれたことで復元するように構成されている。少なくとも一つ以上の信号発信部は、異素材充填部の所定面部に接して設けられ、信号を異素材充填物に向けて発信する。少なくとも一つ以上の信号受信部は、異素材充填部の所定面部に接して設けられ、信号発信部から発信されて異素材充填物を伝播した信号を受信する。接触検知部は、信号受信部における信号の受信状態の変化を用い、柔物体への接触を検知する。
An object of the present disclosure is to provide a contact sensor and a contact sensor system capable of stably detecting contact with a soft object without limiting the applicable filler.
According to one aspect of the present disclosure, in the contact sensor that detects contact with a soft object that is filled with a filler, the foreign material filler is disposed in the filler. The different material filling is filled in the different material filling part, is made of a material different from the filling, is compressed when the load is applied to the soft object, and is restored when the load is released. ing. At least one signal transmitting unit is provided in contact with a predetermined surface portion of the different material filling unit, and transmits a signal toward the different material filling. The at least one signal receiving unit is provided in contact with a predetermined surface portion of the different material filling unit, and receives a signal transmitted from the signal transmission unit and propagated through the different material filling. A contact detection part detects the contact to a soft object using the change of the reception state of the signal in a signal receiving part.
 充填物の中に異素材充填部が配置され、その異素材充填部に異素材充填物が充填されている構成とし、その異素材充填物を伝播する信号の受信状態の変化を用い、柔物体への接触を検知するようにした。充填物の密度変化を検知して柔物体への接触を検知する従来構成とは異なり、充填物の密度変化を検知する必要がないので、適用し得る充填物が限定されることなく、柔物体への接触を安定的に検知することができる。又、充填物の中に異素材充填部を設けて実現するので、充填物の素材が既決されている既製品にも適用することができる。 A different material filling part is arranged in the filling, and the different material filling part is filled with the different material filling, and the soft object is used by changing the reception state of the signal propagating through the different material filling. Detecting contact with Unlike the conventional configuration in which the density change of the filling material is detected to detect contact with the soft object, it is not necessary to detect the density change of the filling material. Can be detected stably. Moreover, since the different material filling part is provided in the filling, it can be applied to a ready-made product in which the material of the filling has been decided.
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1の実施形態を示す接触センサの平面図及び側面図であり、 図2は、接触センサがアームの保護部材に設けられている態様を示す斜視図であり、 図3は、人の腕が保護部材に接触している態様を示す斜視図であり、 図4は、接触センサの機能ブロック図であり、 図5は、フローチャートであり、 図6は、信号、信号発信部及び信号受信部の種類を示す図であり、 図7は、接触センサがぬいぐるみに設けられている態様を示す斜視図であり、 図8は、接触センサがハンドルに設けられている態様を示す正面図であり、 図9は、接触センサの側面図であり、 図10は、第2の実施形態を示す接触センサの側面図であり、 図11は、第3の実施形態を示す接触センサの側面図であり、 図12は、第4の実施形態を示す接触センサの側面図であり、 図13は、接触センサシステムの機能ブロック図であり、 図14は、第5の実施形態を示す接触センサの側面図であり、 図15は、第6の実施形態を示す接触センサの側面図であり、 図16は、フローチャートであり、 図17は、接触センサの平面図であり、 図18は、接触センサの側面図であり、 図19は、接触センサの平面図であり、 図20は、接触センサの側面図であり、 図21は、接触センサの平面図であり、 図22は、接触センサの側面図であり、 図23は、接触センサの平面図であり、 図24は、接触センサの側面図であり、 図25は、第7の実施形態を示す接触センサの側面図であり、 図26は、第8の実施形態を示す接触センサの側面図であり、 図27は、フローチャートであり、 図28は、第9の実施形態を示す接触センサの側面図であり、 図29は、フローチャートである。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a plan view and a side view of a contact sensor showing a first embodiment, FIG. 2 is a perspective view showing a mode in which the contact sensor is provided on the arm protection member; FIG. 3 is a perspective view showing an aspect in which a person's arm is in contact with the protective member; FIG. 4 is a functional block diagram of the contact sensor, FIG. 5 is a flowchart. FIG. 6 is a diagram illustrating types of signals, signal transmission units, and signal reception units, FIG. 7 is a perspective view showing an aspect in which the contact sensor is provided on the stuffed animal. FIG. 8 is a front view showing a mode in which the contact sensor is provided on the handle, FIG. 9 is a side view of the contact sensor, FIG. 10 is a side view of the contact sensor showing the second embodiment, FIG. 11 is a side view of a contact sensor showing a third embodiment. FIG. 12 is a side view of a contact sensor showing a fourth embodiment, FIG. 13 is a functional block diagram of the contact sensor system, FIG. 14 is a side view of a contact sensor showing a fifth embodiment, FIG. 15 is a side view of a contact sensor showing a sixth embodiment, FIG. 16 is a flowchart, FIG. 17 is a plan view of the contact sensor, FIG. 18 is a side view of the contact sensor, FIG. 19 is a plan view of the contact sensor, FIG. 20 is a side view of the contact sensor, FIG. 21 is a plan view of a contact sensor, FIG. 22 is a side view of the contact sensor, FIG. 23 is a plan view of the contact sensor, FIG. 24 is a side view of the contact sensor, FIG. 25 is a side view of a contact sensor showing a seventh embodiment, FIG. 26 is a side view of a contact sensor showing an eighth embodiment. FIG. 27 is a flowchart, FIG. 28 is a side view of a contact sensor showing a ninth embodiment, FIG. 29 is a flowchart.
 (第1の実施形態)
 以下、人共存ロボットのアームに取り付けられる保護部材を柔物体で構成し、その保護部材への接触を検知することで、アームへの接触を検知する接触センサに適用した第1の実施形態について図1から図6を参照して説明する。
(First embodiment)
Hereinafter, a first embodiment in which a protection member attached to an arm of a human coexistence robot is formed of a soft object and applied to a contact sensor that detects contact with the arm by detecting contact with the protection member will be described. A description will be given with reference to FIGS.
 図2に示すように、人共存ロボット1のアーム2の所定部位には保護部材3(柔物体に相当する)が取り付けられている。保護部材3には充填物4が充填されている。充填物4は例えばスポンジ等の比較的柔らかい素材で構成されている。このような構成では、図3に示すように、人の腕201がアーム2に直接接触するのではなく、人の腕201が保護部材3に接触するので、アーム2が例えば金属等の比較的硬い素材で構成されている場合でも接触の衝撃が和らげられる。尚、アーム2自体が柔らかい素材で構成されていても良い。 As shown in FIG. 2, a protective member 3 (corresponding to a soft object) is attached to a predetermined portion of the arm 2 of the human coexistence robot 1. The protective member 3 is filled with a filler 4. The filling 4 is made of a relatively soft material such as sponge. In such a configuration, as shown in FIG. 3, the human arm 201 does not directly contact the arm 2, but the human arm 201 contacts the protection member 3. Even if it is made of a hard material, the impact of the contact is reduced. The arm 2 itself may be made of a soft material.
 充填物4の所定部位には直方体状の異素材充填部5が形成されており、異素材充填部5には異素材充填物6が充填されている。異素材充填部5は中空であり、異素材充填物6は空気である。異素材充填部5のうち人の腕201が保護部材3に接触する可能性がある上面部3aから最も遠い箇所である下面部5a(所定面部に相当する)には発信ユニット7と受信ユニット8とが並んで配置されている。即ち、発信ユニット7と受信ユニット8とは、異素材充填部5の下面部5aに接すると共に荷重が与えられる方向に対して直交する方向に並んで配置されている。 A rectangular parallelepiped different material filling portion 5 is formed at a predetermined portion of the filling 4, and the different material filling portion 5 is filled with a different material filling 6. The foreign material filling part 5 is hollow, and the foreign material filler 6 is air. The transmitting unit 7 and the receiving unit 8 are provided on the lower surface portion 5a (corresponding to a predetermined surface portion) that is the farthest from the upper surface portion 3a in which the human arm 201 may come into contact with the protective member 3 in the different material filling portion 5. Are arranged side by side. That is, the transmission unit 7 and the reception unit 8 are arranged side by side in a direction perpendicular to the direction in which a load is applied while being in contact with the lower surface portion 5 a of the different material filling portion 5.
 図4に示すように、発信ユニット7は、信号を異素材充填物6に向けて発信する信号発信部9を有する。受信ユニット8は、信号発信部9から発信されて異素材充填物6を伝播した信号を受信する信号受信部10と、アーム2への接触を検知する接触検知部11とを有する。信号発信部9は、赤外線を照射するLEDである。信号受信部10は、赤外線フォトトランジスタであり、信号発信部9から照射された赤外線が異素材充填物6を伝播して上面部5bや側面部5cで反射することで、その反射した赤外線を入射し、その入射した赤外線の受光量を接触検知部11に出力する。接触検知部11は、例えばCPUから構成されており、赤外線の受光量を信号受信部10から入力すると、その受光量の変化を判定し、アーム2への接触を検知する。接触センサ12は、これら異素材充填部5と、異素材充填物6と、信号発信部9と、信号受信部10と、接触検知部11とを含んで構成されている。 As shown in FIG. 4, the transmission unit 7 includes a signal transmission unit 9 that transmits a signal toward the different material filling 6. The receiving unit 8 includes a signal receiving unit 10 that receives a signal transmitted from the signal transmitting unit 9 and propagated through the foreign material filling 6, and a contact detection unit 11 that detects contact with the arm 2. The signal transmission part 9 is LED which irradiates infrared rays. The signal receiving unit 10 is an infrared phototransistor, and the infrared light irradiated from the signal transmitting unit 9 propagates through the different material filling 6 and is reflected by the upper surface portion 5b and the side surface portion 5c, so that the reflected infrared light is incident. Then, the received amount of incident infrared light is output to the contact detection unit 11. The contact detection unit 11 includes, for example, a CPU. When the amount of received infrared light is input from the signal receiving unit 10, the contact detection unit 11 determines a change in the amount of received light and detects contact with the arm 2. The contact sensor 12 includes the different material filler 5, the different material filler 6, the signal transmitter 9, the signal receiver 10, and the contact detector 11.
 接触検知部11は、アーム2への接触を以下に示す手順で検知する。人の腕201が保護部材3に接触し、荷重が与えられると、その荷重が充填物4を介して異素材充填部5に作用し、異素材充填部5において荷重が与えられた方向(即ち上下方向)が縮み、下面部5aから上面部5bまでの距離が狭まる。即ち、異素材充填部5は上下方向に圧縮する。このとき、荷重が与えられる前後で信号発信部9から照射される赤外線の光量が一定であると、信号発信部9から照射された光の伝播経路が変化することで、信号受信部10に入射される赤外線の受光量が変化する。接触検知部11は、荷重が与えられていないときの赤外線の受光量を基準値として記憶しており、赤外線の受光量と基準値とを照合し、赤外線の受光量と基準値との差が閾値以上であるか否かを判定し、アーム2への接触を検知する。 The contact detection unit 11 detects contact with the arm 2 in the following procedure. When the human arm 201 comes into contact with the protective member 3 and a load is applied, the load acts on the different material filling portion 5 via the filler 4 and the direction in which the load is applied in the different material filling portion 5 (that is, (Vertical direction) shrinks, and the distance from the lower surface 5a to the upper surface 5b decreases. That is, the different material filling portion 5 is compressed in the vertical direction. At this time, if the amount of infrared light emitted from the signal transmission unit 9 is constant before and after the load is applied, the propagation path of the light emitted from the signal transmission unit 9 changes, so that it enters the signal reception unit 10. The amount of received infrared light changes. The contact detection unit 11 stores the amount of received infrared light when no load is applied as a reference value, and compares the amount of received infrared light with the reference value to determine the difference between the amount of received infrared light and the reference value. It is determined whether or not the threshold value is exceeded, and contact with the arm 2 is detected.
 次に、上記した構成の作用について図5を参照して説明する。接触検知部11は、接触検知処理を行う。接触検知部11は、接触検知処理を開始すると、信号受信部10から赤外線の受光量を入力し(S1)、その入力した赤外線の受光量と基準値との差を算出し(S2)、その算出した差が閾値以上であるか否かを判定する(S3)。接触検知部11は、算出した差が閾値以上でないと判定すると(S3:NO)、荷重が与えられていない、即ち、人の腕201が保護部材3に接触していないと判定し、ステップS1に戻り、ステップS1以降を繰り返す。 Next, the operation of the above configuration will be described with reference to FIG. The contact detection unit 11 performs a contact detection process. When the contact detection unit 11 starts the contact detection process, it receives the amount of received infrared light from the signal receiving unit 10 (S1), calculates the difference between the received amount of received infrared light and a reference value (S2), and It is determined whether or not the calculated difference is greater than or equal to a threshold value (S3). If the contact detection unit 11 determines that the calculated difference is not greater than or equal to the threshold (S3: NO), it determines that no load is applied, that is, the human arm 201 is not in contact with the protection member 3, and step S1. Returning to step S1, the steps after step S1 are repeated.
 ここで、人の腕201が保護部材3に接触し、荷重が与えられると、異素材充填部5が上下方向に圧縮し、赤外線の受光量と基準値との差が閾値以上となる。接触検知部11は、算出した差が閾値以上であると判定すると(S3:YES)、荷重が与えられた、即ち、人の腕201が保護部材3に接触したと判定し、人の腕201が接触したことに対する処置を実施する(S4)。接触検知部11は、例えば人共存ロボット1の駆動を制御する駆動部(図示せず)に停止信号を出力し、人共存ロボット1の駆動を停止させたり、HMI部(図示せず)に通知信号を出力し、人の腕201が接触したことを通知したりする。 Here, when the human arm 201 comes into contact with the protective member 3 and a load is applied, the different material filling portion 5 is compressed in the vertical direction, and the difference between the amount of received infrared light and the reference value is equal to or greater than the threshold value. When the contact detection unit 11 determines that the calculated difference is equal to or greater than the threshold (S3: YES), the contact detection unit 11 determines that a load is applied, that is, the person's arm 201 is in contact with the protection member 3, and the person's arm 201 is detected. The treatment for the contact is performed (S4). The contact detection unit 11 outputs a stop signal to, for example, a drive unit (not shown) that controls the drive of the human coexistence robot 1 to stop the drive of the human coexistence robot 1 or notify the HMI unit (not shown). A signal is output to notify that the human arm 201 is in contact.
 接触検知部11は、基準値に変化があるか否かを判定する。
 ここで、人の腕201が保護部材3から離脱し、与えられていた荷重が解かれると、圧縮していた異素材充填部5が上下方向に復元し、赤外線の受光量と基準値との差が閾値未満となる。接触検知部11は、その算出した差が閾値未満であると判定すると(S5:YES)、基準値が変化しているか否かを判定し、基準値を更新する必要があるか否かを判定する(S6)。即ち、接触検知部11は、例えば過去の判定で用いた基準値から許容範囲を計算し、今回の判定で用いた基準値が許容範囲内であれば、基準値が変化していない、又は変化していても誤差程度であると判定し、基準値を更新する必要がないと判定し(S6:NO)、ステップS1に戻り、ステップS1以降を繰り返す。
The contact detection unit 11 determines whether or not there is a change in the reference value.
Here, when the human arm 201 is detached from the protective member 3 and the applied load is released, the compressed different material filling portion 5 is restored in the vertical direction, and the amount of received infrared light and the reference value are The difference is less than the threshold value. When the contact detection unit 11 determines that the calculated difference is less than the threshold (S5: YES), the contact detection unit 11 determines whether or not the reference value has changed, and determines whether or not the reference value needs to be updated. (S6). That is, for example, the contact detection unit 11 calculates the allowable range from the reference value used in the past determination, and if the reference value used in the current determination is within the allowable range, the reference value has not changed or has changed. Even if it is, it is determined that it is an error level, it is determined that there is no need to update the reference value (S6: NO), the process returns to step S1, and step S1 and subsequent steps are repeated.
 一方、接触検知部11は、今回の判定で用いた基準値が許容範囲外であれば、基準値が誤差程度を超えて変化していると判定し、基準値を更新する必要があると判定し(S6:YES)、基準値を更新する(S7)。即ち、接触検知部11は、与えられていた荷重が解かれたときの今回の赤外線の受光量を、荷重が与えられていないときの過去数回分の赤外線の受光量に加算し、その総計を所定回数(過去数回+1)で除し、今回の赤外線の受光量と過去数回分の赤外線の受光量との平均値を算出し、その算出した平均値を基準値として更新する。接触検知部11は、このように基準値を更新することで、異素材充填部5を囲んでいる充填物4が経年劣化して異素材充填部5の復元力(即ち異素材充填物6の復元力)が低下したとしても、その復元力の低下の影響を受けずに人の腕201が保護部材3に接触したか否かを判定することが可能となる。 On the other hand, if the reference value used in this determination is outside the allowable range, the contact detection unit 11 determines that the reference value has changed beyond the error level, and determines that the reference value needs to be updated. (S6: YES), the reference value is updated (S7). That is, the contact detection unit 11 adds the amount of infrared light received this time when the given load is released to the amount of infrared light received for the past several times when no load is applied, and the total is calculated. Dividing by a predetermined number of times (past several times + 1), an average value of the current amount of received infrared light and the amount of received light of the past several times is calculated, and the calculated average value is updated as a reference value. The contact detection unit 11 updates the reference value in this way, so that the packing 4 surrounding the different material filling unit 5 deteriorates over time, and the restoring force of the different material filling unit 5 (that is, the different material packing 6 Even if the restoring force) is reduced, it is possible to determine whether or not the human arm 201 is in contact with the protective member 3 without being affected by the reduction in the restoring force.
 接触検知部11は、接触検知処理の終了条件が成立したか否かを判定し(S8)、接触検知処理の終了条件が成立していないと判定すると(S8:NO)、ステップS1に戻り、ステップS1以降を繰り返す。接触検知部11は、接触検知処理の終了条件が成立したと判定すると(S8:YES)、接触検知処理を終了する。 The contact detection unit 11 determines whether or not the termination condition for the contact detection process is satisfied (S8). If the contact detection unit 11 determines that the termination condition for the contact detection process is not satisfied (S8: NO), the process returns to step S1. Step S1 and subsequent steps are repeated. If the contact detection part 11 determines with the completion | finish conditions of a contact detection process having been satisfied (S8: YES), it will complete | finish a contact detection process.
 尚、以上は、信号として赤外線を用い、信号受信部10として赤外線フォトトランジスタを用いた構成を例示したが、図6に示すように、信号受信部10として赤外線センサや赤外線カメラを用いても良い。又、信号として可視光を用い、信号発信部9として可視光を照射するLEDを用い、信号受信部10として可視光を入射する可視光フォトトランジスタや可視光カメラを用いても良い。又、信号としてミリ波を用い、信号発信部9及び信号受信部10としてミリ波レーダを用いても良い。更に、信号として超音波を用い、信号発信部9及び信号受信部10として圧電セラミックを用いても良い。又、信号発信部9と信号受信部10とが一体に構成されているフォトリフレクタを用いても良い。 In the above description, the infrared signal is used as the signal and the infrared phototransistor is used as the signal receiving unit 10. However, as shown in FIG. 6, an infrared sensor or an infrared camera may be used as the signal receiving unit 10. . Alternatively, visible light may be used as a signal, an LED that emits visible light may be used as the signal transmission unit 9, and a visible light phototransistor or a visible light camera that may receive visible light may be used as the signal reception unit 10. Further, millimeter waves may be used as signals, and millimeter wave radars may be used as the signal transmission unit 9 and the signal reception unit 10. Further, ultrasonic waves may be used as signals, and piezoelectric ceramics may be used as the signal transmission unit 9 and the signal reception unit 10. Moreover, you may use the photo reflector with which the signal transmission part 9 and the signal receiving part 10 were comprised integrally.
 以上に説明したように第1の実施形態によれば、次に示す効果を得ることができる。
 充填物4の中に異素材充填部5が設けられ、その異素材充填部5に充填されている異素材充填物6を伝播する赤外線の受光量の変化を用い、アーム2への接触を検知するようにした。これにより、充填物4の密度変化を検知する必要がないので、適用し得る充填物4が限定されることなく、アーム2への接触を安定的に検知することができる。又、充填物4の中に異素材充填部5を設けることで実現するので、充填物4の素材が既決されている既製品にも適用することができる。
As described above, according to the first embodiment, the following effects can be obtained.
A different material filling portion 5 is provided in the filling 4 and the contact with the arm 2 is detected using a change in the amount of received infrared light propagating through the different material filling 6 filled in the different material filling portion 5. I tried to do it. Thereby, since it is not necessary to detect the density change of the filler 4, the applicable filler 4 is not limited, and the contact with the arm 2 can be stably detected. Moreover, since it implement | achieves by providing the different raw material filling part 5 in the filler 4, it can apply also to the ready-made product for which the raw material of the filler 4 has been decided.
 又、赤外線の受光量と基準値との差が閾値以上であるか否かを判定し、アーム2への接触を検知し、基準値を更新するようにした。これにより、異素材充填部5を囲んでいる充填物4が経年劣化して異素材充填部5の復元力が低下したとしても、その復元力の低下の影響を受けずにアーム2への接触を検知することができる。 In addition, it was determined whether or not the difference between the amount of received infrared light and the reference value is greater than or equal to a threshold value, the contact with the arm 2 was detected, and the reference value was updated. Thereby, even if the filling 4 surrounding the different material filling portion 5 deteriorates with time and the restoring force of the different material filling portion 5 is reduced, the contact with the arm 2 is not affected by the reduction of the restoring force. Can be detected.
 以上は、人共存ロボット1のアーム2への接触を検知する接触センサ12に適用した構成を例示したが、他の柔物体を対象としても良い。図7に示すように、ぬいぐるみ21に適用した構成では、ぬいぐるみ21には充填物22が充填されており、充填物22の所定部位には直方体状の異素材充填部23が形成されており、異素材充填部23には異素材充填物24が充填されている。異素材充填部23も中空であり、異素材充填物24も空気である。異素材充填物24の所定部位には発信ユニット25と受信ユニット26とが並んで配置されている。発信ユニット25には信号発信部27が設けられ、受信ユニット26には信号受信部28と接触検知部29とが設けられている。接触センサ30は、これら異素材充填部23と、異素材充填物24と、信号発信部27と、信号受信部28と、接触検知部29とを含んで構成されている。例えば人が手202でぬいぐるみ21を撫で、荷重が与えられると、異素材充填部23における光の伝播経路が変化することで、人が手202でぬいぐるみ21を撫でたことを検知することができる。ぬいぐるみ21に適用した構成では、ぬいぐるみ21が持つ柔らかさ、癒しさ、親しみ等を損なうことなく、ぬいぐるみ21への接触を検知すると共に、インタラクション性を持たせることができる。 The above is an example of the configuration applied to the contact sensor 12 that detects contact with the arm 2 of the human coexistence robot 1, but other soft objects may be targeted. As shown in FIG. 7, in the configuration applied to the stuffed toy 21, the stuffed toy 21 is filled with a filling 22, and a rectangular parallelepiped different material filling portion 23 is formed at a predetermined portion of the filling 22, The different material filling portion 23 is filled with a different material filling 24. The different material filling portion 23 is also hollow, and the different material filling 24 is also air. A transmitting unit 25 and a receiving unit 26 are arranged side by side at a predetermined portion of the different material filling 24. The transmission unit 25 is provided with a signal transmission unit 27, and the reception unit 26 is provided with a signal reception unit 28 and a contact detection unit 29. The contact sensor 30 includes the different material filling unit 23, the different material filling 24, the signal transmission unit 27, the signal reception unit 28, and the contact detection unit 29. For example, when a person strokes the stuffed toy 21 with a hand 202 and a load is applied, the propagation path of light in the different material filling portion 23 changes, so that it is possible to detect that the person has stroked the stuffed toy 21 with the hand 202. . In the configuration applied to the stuffed toy 21, it is possible to detect the contact with the stuffed toy 21 without impairing the softness, healing, friendliness, etc. of the stuffed toy 21 and to provide interaction.
 又、図8に示すように、自動車のハンドル31に適用した構成では、ハンドル31には充填物32が充填されており、充填物32の所定部位には直方体状の異素材充填部33が形成されており、異素材充填部33には異素材充填物34が充填されている。異素材充填部33も中空であり、異素材充填物34も空気である。異素材充填物34の所定部位には発信ユニット35と受信ユニット36とが並んで配置されている。発信ユニット35には信号発信部37が設けられ、受信ユニット36には信号受信部38と接触検知部39とが設けられている。接触センサ40は、これら異素材充填部33と、異素材充填物34と、信号発信部37と、信号受信部38と、接触検知部39とを含んで構成される。人(即ちドライバ)が手203でハンドル31を握り、荷重が与えられると、異素材充填部33における光の伝播経路が変化することで、人が手203でハンドル31を握ったことを検知することができる。このようにハンドル31に適用した構成では、ハンドル31の手触り、ハンドル31の意匠等を損なうことなく、ハンドル31への接触を検知することができる。 Further, as shown in FIG. 8, in the configuration applied to the handle 31 of the automobile, the handle 31 is filled with a filling 32, and a rectangular parallelepiped different material filling portion 33 is formed at a predetermined portion of the filling 32. The different material filling portion 33 is filled with a different material filling 34. The different material filling portion 33 is also hollow, and the different material filling 34 is also air. A transmitting unit 35 and a receiving unit 36 are arranged side by side at a predetermined portion of the different material filling 34. The transmission unit 35 is provided with a signal transmission unit 37, and the reception unit 36 is provided with a signal reception unit 38 and a contact detection unit 39. The contact sensor 40 includes the different material filling unit 33, the different material filling 34, a signal transmission unit 37, a signal reception unit 38, and a contact detection unit 39. When a person (that is, a driver) grasps the handle 31 with the hand 203 and a load is applied, the light propagation path in the different material filling portion 33 changes to detect that the person has grasped the handle 31 with the hand 203. be able to. In the configuration applied to the handle 31 as described above, contact with the handle 31 can be detected without impairing the handle of the handle 31, the design of the handle 31, and the like.
 又、保護部材3に充填される充填物4の素材に制限はなく、互いに異なる素材の複数の充填物が層状に充填されていても良い。即ち、図9に示すように、保護部材3に充填物41~45が層状に充填され、人の腕201が接触する可能性がある最上位の充填物41が最も柔らかい素材で構成され、上側から下側に向かって硬い素材で段階的に構成されていても良い。 Moreover, there is no restriction | limiting in the raw material of the filler 4 with which the protection member 3 is filled, The several filler of the mutually different raw material may be filled in the layer form. That is, as shown in FIG. 9, the protective member 3 is filled with the fillers 41 to 45, and the uppermost filler 41 with which the human arm 201 may come into contact is made of the softest material, It may be composed of a hard material stepwise from the bottom to the bottom.
 (第2の実施形態)
 次に、第2の実施形態について図10を参照して説明する。前述した第1の実施形態と同一部分については説明を省略し、異なる部分について説明する。第1の実施形態は、異素材充填物6が空気であり、即ち異素材充填物6として実体を有しない物質が配置されている構成であるが、第2の実施形態は、異素材充填物として実体を有する物質が配置されている構成である。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIG. Description of the same parts as those of the first embodiment described above will be omitted, and different parts will be described. In the first embodiment, the different material filling 6 is air, that is, a substance having no substance is disposed as the different material filling 6, but the second embodiment is different in material filling. The substance having the substance is arranged.
 充填物4の所定部位には直方体状の異素材充填部51が形成されており、異素材充填部51には異素材充填物52が充填されている。異素材充填物52は、荷重が与えられると圧縮し、与えられていた荷重が解かれると復元する性質を有する素材で構成されている。この場合、異素材充填物52を伝播する性質を有する信号を採用する。第2の実施形態によれば、第1の実施形態と同様の作用効果を得ることができる。又、異素材充填物として実体を有しない異素材充填物6を採用する構成に比べ、実体を有する異素材充填物52を採用することで、強度を高めることができる。 A rectangular parallelepiped different material filling portion 51 is formed at a predetermined portion of the filling 4, and the different material filling portion 51 is filled with a different material filling 52. The foreign material filling 52 is made of a material having a property of compressing when a load is applied and restoring when the applied load is released. In this case, a signal having a property of propagating through the different material filling 52 is employed. According to the second embodiment, the same effect as that of the first embodiment can be obtained. Moreover, compared with the structure which employ | adopts the different material filler 6 which does not have an entity as a different material filler, intensity | strength can be raised by employ | adopting the different material filler 52 which has an entity.
 (第3の実施形態)
 次に、第3の実施形態について図11を参照して説明する。前述した第1の実施形態と同一部分については説明を省略し、異なる部分について説明する。第1の実施形態は、充填物4の所定部位に直方体状の異素材充填部5が形成されている構成であるが、第3の実施形態は、半球形状の異素材充填部が形成されている構成である。
(Third embodiment)
Next, a third embodiment will be described with reference to FIG. Description of the same parts as those of the first embodiment described above will be omitted, and different parts will be described. In the first embodiment, a rectangular parallelepiped foreign material filling portion 5 is formed at a predetermined portion of the filler 4, but in the third embodiment, a hemispherical foreign material filling portion is formed. It is the composition which is.
 充填物4の所定部位には半球形状の異素材充填部61が形成されており、異素材充填部61には異素材充填物62が充填されている。異素材充填部61のうち人の腕201が保護部材3に接触する可能性がある上面部3aから最も遠い箇所である下面部61a(所定面部に相当する)には発信ユニット7と受信ユニット8とが並んで配置されている。異素材充填部61が半球形状の形成されている構成では、荷重に対する圧縮がどの方向からも等しくなり、柔物体への接触を広範囲で安定的に検知することができる。即ち、図7に例示したようにぬいぐるみ21が球体に近い形状であれば、人が手202で撫でたことを検知可能な範囲が広くなる。第3の実施形態によれば、第1の実施形態と同様の作用効果を得ることができることに加え、柔物体への接触を曲面的な広範囲で安定的に検知することができる。 A hemispherical different material filling portion 61 is formed at a predetermined portion of the filling 4, and the different material filling portion 61 is filled with a different material filling 62. The transmitting unit 7 and the receiving unit 8 are provided on the lower surface portion 61a (corresponding to the predetermined surface portion) which is the farthest from the upper surface portion 3a where the human arm 201 may come into contact with the protective member 3 in the different material filling portion 61. Are arranged side by side. In the configuration in which the different material filling portion 61 is formed in a hemispherical shape, the compression with respect to the load is equal from any direction, and contact with the soft object can be stably detected in a wide range. That is, as illustrated in FIG. 7, if the stuffed toy 21 has a shape close to a sphere, a range in which it is possible to detect that a person has stroked with the hand 202 is widened. According to the third embodiment, in addition to obtaining the same operational effects as those of the first embodiment, it is possible to stably detect contact with a soft object over a wide curved surface.
 (第4の実施形態)
 次に、第4の実施形態について図12及び図13を参照して説明する。前述した第1の実施形態と同一部分については説明を省略し、異なる部分について説明する。第1の実施形態は、一つの充填物4に一つの接触センサ12が配置されている構成であるが、第4の実施形態は、一つの充填物に複数の接触センサが配置されている構成である。
(Fourth embodiment)
Next, a fourth embodiment will be described with reference to FIGS. Description of the same parts as those of the first embodiment described above will be omitted, and different parts will be described. The first embodiment is a configuration in which one contact sensor 12 is arranged in one filling 4, but the fourth embodiment is a configuration in which a plurality of contact sensors are arranged in one filling. It is.
 接触センサシステム71は、充填物72の中に等間隔で配置されている複数の接触センサ73と、柔物体の外部に配置されているサーバ82とを有する。接触センサ73は、それぞれ第1の実施形態で説明した接触センサ12と同様の構成であり、異素材充填部74に異素材充填物75が充填され、異素材充填部74の下面部74a(所定面部に相当する)に発信ユニット76と受信ユニット77とが並んで配置されている。発信ユニット76は、信号発信部78を有する。受信ユニット8は、信号受信部79と接触検知部80とに加え、検知結果を外部に送信する通信部81を有する。接触センサ73は、それぞれ例えばIEEE802.11で規定される無線LAN、Bluetooth(登録商標)、BLE(Bluetooth Low Energy)(登録商標)、WiFi(登録商標)等の方式により検知結果をサーバ82に送信する。 The contact sensor system 71 includes a plurality of contact sensors 73 arranged at equal intervals in the filling 72 and a server 82 arranged outside the soft object. Each of the contact sensors 73 has the same configuration as that of the contact sensor 12 described in the first embodiment. The different material filling portion 74 is filled with the different material filling material 75, and a lower surface portion 74 a (predetermined) of the different material filling portion 74. The transmission unit 76 and the reception unit 77 are arranged side by side on the surface). The transmission unit 76 has a signal transmission unit 78. In addition to the signal receiving unit 79 and the contact detection unit 80, the reception unit 8 includes a communication unit 81 that transmits a detection result to the outside. The contact sensor 73 transmits a detection result to the server 82 by a method such as a wireless LAN, Bluetooth (registered trademark), BLE (Bluetooth Low Energy) (registered trademark), WiFi (registered trademark), or the like defined by IEEE 802.11, for example. To do.
 サーバ82は、複数の接触センサ73から送信された検知結果を受信する通信部83と、複数の検知結果を処理する処理部84とを有する。処理部84は、複数の接触センサ73の配置位置を記憶しており、その記憶している配置位置及び検知結果を用い、柔物体への荷重の作用点及び量を算出する。即ち、処理部84は、何れかの箇所に荷重が与えられると、複数の接触センサ73のうち受光量が変化した接触センサ73を特定し、その変化量を比例配分することで、その与えられた荷重の作用点及び量を算出する。第4の実施形態によれば、第1の実施形態と同様の作用効果を得ることができることに加え、柔物体への接触を平面的な広範囲で安定的に検知することができる。例えば人共存ロボットのアームが長い形状であっても、アームへの接触を広範囲で安定的に検知することができる。 The server 82 includes a communication unit 83 that receives the detection results transmitted from the plurality of contact sensors 73 and a processing unit 84 that processes the plurality of detection results. The processing unit 84 stores the arrangement positions of the plurality of contact sensors 73, and calculates the action point and amount of the load on the soft object using the stored arrangement positions and detection results. That is, when a load is applied to any part, the processing unit 84 identifies the contact sensor 73 whose received light amount has changed from among the plurality of contact sensors 73, and distributes the change amount in proportion to the contact sensor 73. Calculate the point and amount of load applied. According to the fourth embodiment, in addition to being able to obtain the same operational effects as those of the first embodiment, it is possible to stably detect contact with a soft object over a wide planar area. For example, even if the arm of the human-symbiotic robot has a long shape, contact with the arm can be detected stably over a wide range.
 (第5の実施形態)
 次に、第5の実施形態について図14を参照して説明する。前述した第2の実施形態と同一部分については説明を省略し、異なる部分について説明する。第2の実施形態は、一つの異素材充填部51に一つの発信ユニット7と一つの受信ユニット8とが配置されている構成であるが、第5の実施形態は、一つの異素材充填部に複数の発信ユニットと複数の受信ユニットとが配置されている構成である。
(Fifth embodiment)
Next, a fifth embodiment will be described with reference to FIG. Description of the same parts as those of the second embodiment described above will be omitted, and different parts will be described. In the second embodiment, one transmission unit 7 and one reception unit 8 are arranged in one different material filling unit 51, but the fifth embodiment is one different material filling unit 51. In this configuration, a plurality of transmitting units and a plurality of receiving units are arranged.
 充填物4の所定部位には直方体状の異素材充填部91が形成されており、異素材充填部91には異素材充填物92が充填されている。異素材充填物92は、荷重が与えられると圧縮し、与えられていた荷重が解かれると復元する性質を有する素材で構成されている。異素材充填部91の下面部91a(所定面部に相当する)には3個の発信ユニット93a~93cと3個の受信ユニット94a~94cとが並んで配置されている。 A rectangular parallelepiped different material filling portion 91 is formed in a predetermined portion of the filling 4, and the different material filling portion 91 is filled with a different material filling 92. The foreign material filling 92 is made of a material that has a property of compressing when a load is applied and restoring when the applied load is released. Three transmitting units 93a to 93c and three receiving units 94a to 94c are arranged side by side on a lower surface portion 91a (corresponding to a predetermined surface portion) of the different material filling portion 91.
 第5の実施形態によれば、第1の実施形態と同様の作用効果を得ることができることに加え、発信ユニット93a~93cと受信ユニット94a~94cとをそれぞれ3個ずつ配置したことで、信号の伝播量を多く確保することができ、第4の実施形態と同様に柔物体への接触を平面的な広範囲で安定的に検知することができる。 According to the fifth embodiment, in addition to being able to obtain the same operational effects as those of the first embodiment, by arranging three transmitting units 93a to 93c and three receiving units 94a to 94c, respectively, A large amount of propagation can be ensured, and the contact with the soft object can be stably detected over a wide area in the same manner as in the fourth embodiment.
 (第6の実施形態)
 次に、第6の実施形態について図15から図24を参照して説明する。前述した第5の実施形態と同一部分については説明を省略し、異なる部分について説明する。第5の実施形態は、異素材充填部91に一つの異素材充填物92が充填されている構成であるが、第6の実施形態は、異素材充填部に複数の異素材充填物が充填されている構成である。
(Sixth embodiment)
Next, a sixth embodiment will be described with reference to FIGS. Description of the same parts as those of the fifth embodiment described above will be omitted, and different parts will be described. In the fifth embodiment, the different material filling part 91 is filled with one different material filling 92, but in the sixth embodiment, the different material filling part is filled with a plurality of different material fillings. It is the structure which is done.
 異素材充填部91には第1の異素材充填物101及び第2の異素材充填物102が充填されている。異素材充填物101,102は、それぞれ荷重が与えられると圧縮し、与えられていた荷重が解かれると復元する性質を有する素材で構成されている。異素材充填部91の下面部91aには発信ユニット93a~93cと受信ユニット94a~94cとが並んで配置されている。発信ユニット93aは第1の異素材充填物101のみに接して配置され、受信ユニット94aは第1の異素材充填物101及び第2の異素材充填物102に跨って接して配置され、発信ユニット93b,93c及び受信ユニット94b,94cは第2の異素材充填物102のみに接して配置されている。 The different material filling portion 91 is filled with a first foreign material filler 101 and a second foreign material filler 102. The different material fillings 101 and 102 are each made of a material having a property of compressing when a load is applied and restoring when the applied load is released. Transmitting units 93a to 93c and receiving units 94a to 94c are arranged side by side on the lower surface 91a of the different material filling portion 91. The transmitting unit 93a is disposed in contact with only the first foreign material filler 101, and the receiving unit 94a is disposed in contact with the first foreign material filler 101 and the second foreign material filler 102. 93b, 93c and the receiving units 94b, 94c are arranged in contact with only the second foreign material filler 102.
 前述した第5の実施形態では、荷重が与えられると、荷重が与えられたこと自体は広範囲で検知することができるが、荷重が与えられた位置を正確に特定することができない。即ち、異素材充填部91に1種類の異素材充填物92が充填され、複数の発信ユニット93a~93cと複数の受信ユニット94a~94cとが配置されている構成では、荷重が与えられると、複数の発信ユニット93a~93cから発信されて異素材充填物92を伝播した信号の受光量が変化するが、その受光量の変化に差分が発生しない。例えば受信ユニット94aでは、発信ユニット93aから発信されて異素材充填物92を伝播した信号と発信ユニット93bから発信されて異素材充填物92を伝播した信号との両方の受光量が変化するが、その受光量の変化に差分が発生しない。そのため、上記した構成では、荷重が与えられた位置を正確に特定することができず、荷重が与えられた位置を示す解像度を高めることができない。 In the fifth embodiment described above, when a load is applied, the fact that the load is applied can be detected in a wide range, but the position where the load is applied cannot be specified accurately. That is, in the configuration in which the different material filling portion 91 is filled with one type of different material filling 92 and the plurality of transmission units 93a to 93c and the plurality of reception units 94a to 94c are arranged, when a load is applied, The amount of received light of the signals transmitted from the plurality of transmission units 93a to 93c and propagated through the different material filling 92 changes, but no difference occurs in the change in the amount of received light. For example, in the receiving unit 94a, the received light amount of both the signal transmitted from the transmitting unit 93a and propagated through the different material filling 92 and the signal transmitted from the transmitting unit 93b and propagated through the different material filling 92 are changed. No difference occurs in the change in the amount of received light. Therefore, in the above-described configuration, the position where the load is applied cannot be accurately specified, and the resolution indicating the position where the load is applied cannot be increased.
 これに対し、異素材充填部91に信号の伝播速度が異なる2種類の異素材充填物101,102が充填されている構成では、荷重が与えられると、例えば受信ユニット94aでは、発信ユニット93aから発信されて第1の異素材充填物101を伝播した信号と発信ユニット93bから発信されて第2の異素材充填物102を伝播した信号との両方の受光量が変化し、その受光量の変化に差分が発生する。そのため、荷重が与えられた位置を正確に特定することができ、解像度を高めることができる。 On the other hand, in the configuration in which the different material filling portions 91 are filled with two different material fillings 101 and 102 having different signal propagation speeds, when a load is applied, for example, the receiving unit 94a starts from the transmitting unit 93a. The received light amount of both the signal transmitted and propagated through the first foreign material filler 101 and the signal transmitted from the transmission unit 93b and propagated through the second foreign material filler 102 are changed, and the received light amount is changed. A difference occurs. Therefore, the position where the load is applied can be specified accurately, and the resolution can be increased.
 信号の伝播速度が比較的速い素材で第1の異素材充填物101が構成され、信号の伝播速度が比較的遅い素材で第2の異素材充填物102が構成されている場合に、発信ユニット93aと発信ユニット93bとの両方から信号を同時に発信させると、最初に発信ユニット93aから発信された信号が受信ユニット94aに受信され、続いて発信ユニット93bから発信された信号が受信ユニット94aに受信される。ここで、荷重が与えられると、発信ユニット93a,93bから発信された信号の受光量は荷重が与えられていないときの受光量に対して変化し、その受光量の変化に差分が発生する。即ち、荷重が与えられた位置が受信ユニット94aから見て発信ユニット93a側に偏っていれば、発信ユニット93aから発信された信号の受光量の変化が相対的に大きくなる。一方、荷重が与えられた位置が受信ユニット94aから見て発信ユニット93b側に偏っていれば、発信ユニット93bから発信された信号の受光量の変化が相対的に大きくなる。 When the first foreign material filling 101 is made of a material having a relatively high signal propagation speed and the second foreign material filling 102 is made of a material having a relatively low signal propagation speed, the transmission unit When signals are transmitted simultaneously from both the transmission unit 93a and the transmission unit 93b, the signal transmitted from the transmission unit 93a is first received by the reception unit 94a, and then the signal transmitted from the transmission unit 93b is received by the reception unit 94a. Is done. Here, when a load is applied, the amount of received light of signals transmitted from the transmission units 93a and 93b changes with respect to the amount of received light when no load is applied, and a difference occurs in the change in the amount of received light. That is, if the position where the load is applied is biased toward the transmission unit 93a when viewed from the reception unit 94a, the change in the amount of received light of the signal transmitted from the transmission unit 93a becomes relatively large. On the other hand, if the position where the load is applied is biased toward the transmission unit 93b when viewed from the reception unit 94a, the change in the amount of received light of the signal transmitted from the transmission unit 93b becomes relatively large.
 次に、上記した構成の作用について図16を参照して説明する。ここでは、例えば充填物4に制御部(図示せず)が埋設され、その制御部が発信ユニット93a~93cからの信号の発信タイミングを制御すると共に、受信ユニット94a~94cにおける受光量の変化量により荷重が与えられた位置を計算する。 Next, the operation of the above configuration will be described with reference to FIG. Here, for example, a control unit (not shown) is embedded in the filling 4, and the control unit controls the transmission timing of signals from the transmission units 93a to 93c, and the amount of change in the amount of received light in the reception units 94a to 94c. To calculate the position where the load is applied.
 制御部は、全ての発信ユニット93a~93cから信号を同時に発信させる(S11)。制御部は、発信ユニット93a~93cから発信されて第1の異素材充填物101を伝播して受信ユニット94aに受信された信号の受光量を取得する(S12)。制御部12は、その取得した受光量を、荷重が与えられていないときの受光量と比較して第1の変換値に変換する(S13)。 The control unit transmits signals simultaneously from all the transmission units 93a to 93c (S11). The control unit acquires the received light amount of the signal transmitted from the transmission units 93a to 93c and propagated through the first foreign material filling 101 and received by the reception unit 94a (S12). The control unit 12 converts the acquired amount of received light into a first conversion value by comparing with the amount of received light when no load is applied (S13).
 次いで、制御部は、発信ユニット93a~93cから発信されて第2の異素材充填物102を伝播して受信ユニット94aに受信された信号の受光量を取得する(S14)。制御部は、その取得した受光量を、荷重が与えられていないときの受光量と比較して第2の変換値に変換する(S15)。制御部は、発信ユニット93a~93cの配置位置と、第1の変換値及び第2の変換値とを用い、質点計算の手法を用いて荷重が与えられた位置を計算する(S16)。 Next, the control unit acquires the received light amount of the signal transmitted from the transmission units 93a to 93c and propagated through the second foreign material filler 102 and received by the reception unit 94a (S14). The control unit converts the acquired amount of received light into a second conversion value by comparing with the amount of received light when no load is applied (S15). The control unit uses the arrangement positions of the transmission units 93a to 93c, the first conversion value, and the second conversion value to calculate the position to which the load is applied using the mass point calculation method (S16).
 尚、以上は、受信ユニット94aに受信された信号の受光量について説明したが、受信ユニット94b,94cに受信された信号の受光量についても同様である。又、以上は、異素材充填部91に2種類の異素材充填物101,102が充填されている構成を説明したが、異素材充填部に充填される異素材充填物の種類数を調整することで、解像度を調整することができる。即ち、図17及び図18に示すように、異素材充填部111に4種類の異素材充填物112~115が格子状、即ち2方向に2種類ずつ充填され、異素材充填物112,114に接してそれぞれ発信ユニット116a,116bが配置され、異素材充填物113,115に接してそれぞれ受信ユニット117a,117bが配置されている構成では、異素材充填部91に充填される異素材充填物の1種類とした構成に対して解像度を4倍に高めることができる。又、図19及び図20に示すように、同種の異素材充填物が隣り合わなければ良く、異素材充填部111に3種類の異素材充填物112~114が2方向に2種類ずつ充填されている構成でも良い。 Although the above description has been given of the amount of light received by the receiving unit 94a, the same applies to the amount of light received by the receiving units 94b and 94c. Moreover, although the above demonstrated the structure by which the different material filling part 91 was filled with two types of different material fillings 101 and 102, the number of types of different material fillings with which a different material filling part is filled is adjusted. Thus, the resolution can be adjusted. That is, as shown in FIG. 17 and FIG. 18, the different material filling section 111 is filled with four types of different material fillings 112 to 115, that is, two different types in two directions. In the configuration in which the transmission units 116a and 116b are arranged in contact with each other and the reception units 117a and 117b are arranged in contact with the different material fillings 113 and 115, respectively, The resolution can be increased by a factor of 4 for a single configuration. Further, as shown in FIGS. 19 and 20, it is sufficient that the same kind of different material fillings do not adjoin each other, and the different material filling portion 111 is filled with two kinds of different material fillings 112 to 114 in two directions. The configuration may be acceptable.
 又、図21及び図22に示すように、異素材充填部111に4種類の異素材充填物112~115が直線状、即ち1方向に4種類充填され、異素材充填物112,114に接してそれぞれ発信ユニット116a,116bが配置され、異素材充填物113,115に接してそれぞれ受信ユニット117a,117bが配置されている構成でも、異素材充填部91に充填される異素材充填物の1種類とした構成に対して解像度を4倍に高めることができる。又、この場合も、図23及び図24に示すように、同種の異素材充填物が隣り合わなければ良く、異素材充填部111に3種類の異素材充填物112~114が1方向に充填されている構成でも良い。第6の実施形態によれば、第5の実施形態と同様に柔物体への接触を平面的な広範囲で安定的に検知することができることに加え、荷重が与えられた位置を正確に特定することができ、解像度を高めることができる。 Further, as shown in FIG. 21 and FIG. 22, the different material filling portion 111 is filled with four kinds of different material fillings 112 to 115 in a straight line, that is, four kinds in one direction, and comes into contact with the different material fillings 112 and 114. Even if the transmitting units 116a and 116b are arranged and the receiving units 117a and 117b are arranged in contact with the different material fillings 113 and 115, respectively, The resolution can be increased by a factor of 4 with respect to the various configurations. Also in this case, as shown in FIG. 23 and FIG. 24, the same kind of different material fillings do not have to be adjacent to each other, and the different material filling part 111 is filled with three kinds of different material fillings 112 to 114 in one direction. The structure which is made may be sufficient. According to the sixth embodiment, as in the fifth embodiment, in addition to being able to stably detect contact with a soft object over a wide area in a plane, the position where a load is applied is accurately specified. Can increase the resolution.
 (第7の実施形態)
 次に、第7の実施形態について図25を参照して説明する。前述した第6の実施形態と同一部分については説明を省略し、異なる部分について説明する。第6の実施形態は、異素材充填部91に複数の異素材充填物が充填されている構成であるが、第7の実施形態は、異素材充填部91の上面部及び側面部の壁面部の反射率が区分されている構成である。
(Seventh embodiment)
Next, a seventh embodiment will be described with reference to FIG. Description of the same parts as those of the sixth embodiment described above will be omitted, and different parts will be described. In the sixth embodiment, the different material filling part 91 is filled with a plurality of different material fillings. However, in the seventh embodiment, the upper surface part and the side wall part of the different material filling part 91 are provided. The reflectance is divided.
 異素材充填部91の上面部のうち受信ユニット94aの真上から左側面部の下端までの壁面部121は反射率が相対的に高い色の加工が施されており、異素材充填部91の上面部のうち受信ユニット94aの上から右側面部の下端までの壁面部122は反射率が相対的に低い色の加工が施されている。即ち、発信ユニット93aと発信ユニット93bとの両方から信号を同時に発信させると、最初に発信ユニット93aから発信された信号が受信ユニット94aに受信され、続いて発信ユニット93bから発信された信号が受信ユニット94aに受信される。ここでも、荷重が与えられると、発信ユニット93a,93bから発信された信号の受光量は荷重が与えられていないときの受光量に対して変化し、その受光量の変化に差分が発生する。即ち、荷重が与えられた位置が受信ユニット94aから見て発信ユニット93a側に偏っていれば、発信ユニット93aから発信された信号の受光量の変化が相対的に大きくなる。一方、荷重が与えられた位置が受信ユニット94aから見て発信ユニット93b側に偏っていれば、発信ユニット93bから発信された信号の受光量の変化が相対的に大きくなる。尚、壁面部に加工が施される色の種類数を調整することで、第6の実施形態と同様に、解像度を調整することができる。第7の実施形態によれば、第6の実施形態と同様に柔物体への接触を平面的な広範囲で安定的に検知することができることに加え、荷重が与えられた位置を正確に特定することができ、解像度を高めることができる。 Of the upper surface portion of the different material filling portion 91, the wall surface portion 121 from right above the receiving unit 94 a to the lower end of the left side surface portion is processed with a color having a relatively high reflectance. The wall surface portion 122 from the top of the receiving unit 94a to the lower end of the right side surface is processed with a color having a relatively low reflectance. That is, when signals are transmitted from both the transmission unit 93a and the transmission unit 93b at the same time, the signal transmitted from the transmission unit 93a is first received by the reception unit 94a, and then the signal transmitted from the transmission unit 93b is received. Received by unit 94a. Again, when a load is applied, the amount of received light of the signals transmitted from the transmission units 93a and 93b changes with respect to the amount of received light when no load is applied, and a difference occurs in the change in the amount of received light. That is, if the position where the load is applied is biased toward the transmission unit 93a when viewed from the reception unit 94a, the change in the amount of received light of the signal transmitted from the transmission unit 93a becomes relatively large. On the other hand, if the position where the load is applied is biased toward the transmission unit 93b when viewed from the reception unit 94a, the change in the amount of received light of the signal transmitted from the transmission unit 93b becomes relatively large. It should be noted that the resolution can be adjusted by adjusting the number of types of colors that are processed on the wall surface, as in the sixth embodiment. According to the seventh embodiment, similarly to the sixth embodiment, in addition to being able to stably detect contact with a soft object over a wide area in a plane, the position to which a load is applied is accurately specified. Can increase the resolution.
 (第8の実施形態)
 次に、第8の実施形態について図26及び図27を参照して説明する。前述した第6の実施形態と同一部分については説明を省略し、異なる部分について説明する。第6の実施形態は、異素材充填部91に複数の異素材充填物が充填されている構成であるが、第8の実施形態は、異素材充填部91に一つの異素材充填物が充填され、信号の波長、周波数及び位相のうち少なくとも何れかが異なる構成である。
(Eighth embodiment)
Next, an eighth embodiment will be described with reference to FIGS. Description of the same parts as those of the sixth embodiment described above will be omitted, and different parts will be described. In the sixth embodiment, the different material filling part 91 is filled with a plurality of different material fillings, but in the eighth embodiment, the different material filling part 91 is filled with one different material filling. And at least one of the wavelength, frequency and phase of the signal is different.
 充填物4の所定部位には直方体状の異素材充填部91が形成されており、異素材充填部91には異素材充填物92が充填されている。異素材充填部91の下面部には3個の発信ユニット93a~93cと3個の受信ユニット94a~94cとが並んで配置されている。発信ユニット93aと受信ユニット94a、発信ユニット93bと受信ユニット94b、発信ユニット93cと受信ユニット94cは、それぞれ対を形成し、発信ユニット93a~93cがそれぞれ発信する信号は、波長、周波数及び位相のうち少なくとも何れかが異なる。この場合、「伝播速度=波長×周波数」の関係から、発信ユニット93a~93cがそれぞれ発信する信号の周波数が同じであれば、それぞれの信号の波長が異なると、それぞれの信号の伝播速度が異なり、発信ユニット93a~93cがそれぞれ発信する信号の波長が同じであれば、それぞれの信号の周波数が異なると、それぞれの信号の伝播速度が異なる。 A rectangular parallelepiped different material filling portion 91 is formed in a predetermined portion of the filling 4, and the different material filling portion 91 is filled with a different material filling 92. Three transmitting units 93a to 93c and three receiving units 94a to 94c are arranged side by side on the lower surface of the different material filling portion 91. The transmitting unit 93a and the receiving unit 94a, the transmitting unit 93b and the receiving unit 94b, the transmitting unit 93c and the receiving unit 94c form a pair, and the signals transmitted by the transmitting units 93a to 93c are each of the wavelength, frequency and phase. At least one is different. In this case, from the relationship of “propagation speed = wavelength × frequency”, if the frequency of the signal transmitted from each of the transmission units 93a to 93c is the same, the propagation speed of each signal differs if the wavelength of each signal is different. If the wavelengths of the signals transmitted by the transmission units 93a to 93c are the same, the propagation speed of each signal is different if the frequency of each signal is different.
 即ち、発信ユニット93aから発信される信号、発信ユニット93bから発信される信号、発信ユニット93cから発信される信号の順序で伝播速度が速くなるように波長や周波数が調整されていれば、全ての発信ユニット93a~93cから信号を同時に発信させると、最初に発信ユニット93aから発信された信号が受信ユニット94a~94cに受信され、続いて発信ユニット93bから発信された信号が受信ユニット94a~94cに受信され、続いて発信ユニット93cから発信された信号が受信ユニット94b~94cに受信される。 That is, if the wavelength and frequency are adjusted so that the propagation speed is increased in the order of the signal transmitted from the transmission unit 93a, the signal transmitted from the transmission unit 93b, and the signal transmitted from the transmission unit 93c, When signals are simultaneously transmitted from the transmission units 93a to 93c, the signals transmitted from the transmission unit 93a are first received by the reception units 94a to 94c, and the signals transmitted from the transmission unit 93b are subsequently transmitted to the reception units 94a to 94c. The signals received and subsequently transmitted from the transmission unit 93c are received by the reception units 94b to 94c.
 この場合、制御部は、全ての発信ユニット93a~93cから信号を同時に発信させると(S21)、伝播速度が速い順序にしたがって信号の受光量を取得して変換値に変換する。即ち、信号の受信タイミングが早い順序にしたがって受信ユニット94a~94cを第1~第3の受信ユニットとして区分すると、制御部は、発信ユニット93a~93cから発信されて第1の受信ユニット94aに受信された信号の受光量を取得する(S22)。制御部は、その取得した受光量を、荷重が与えられていないときの受光量と比較して第1の変換値に変換する(S23)。 In this case, when the control unit simultaneously transmits signals from all the transmission units 93a to 93c (S21), the control unit acquires the received light amount of the signal according to the order of high propagation speed and converts it into a converted value. That is, when the receiving units 94a to 94c are classified as the first to third receiving units according to the order in which the signal reception timing is early, the control unit transmits the signals from the transmitting units 93a to 93c and receives them by the first receiving unit 94a. The received light amount of the received signal is acquired (S22). The control unit converts the acquired amount of received light into a first conversion value by comparing with the amount of received light when no load is applied (S23).
 次いで、制御部は、発信ユニット93aから発信される信号と発信ユニット93bから発信される信号との伝播速度の差に相当する時間t1が経過した後、発信ユニット93a~93cから発信されて第2の受信ユニット94bに受信された信号の受光量を取得する(S24)。制御部は、その取得した受光量を、荷重が与えられていないときの受光量と比較して第2の変換値に変換する(S25)。 Next, after the time t1 corresponding to the difference in propagation speed between the signal transmitted from the transmission unit 93a and the signal transmitted from the transmission unit 93b has elapsed, the control unit transmits the second signal transmitted from the transmission units 93a to 93c. The received light amount of the signal received by the receiving unit 94b is acquired (S24). The control unit converts the acquired amount of received light into a second conversion value by comparing with the amount of received light when no load is applied (S25).
 次いで、制御部は、発信ユニット93bから発信される信号と発信ユニット93cから発信される信号との伝播速度の差に相当する時間t2が経過した後、発信ユニット93a~93cから発信されて第3の受信ユニット94cに受信された信号の受光量を取得する(S26)。制御部は、その取得した受光量を、荷重が与えられていないときの受光量と比較して第3の変換値に変換する(S27)。制御部は、発信ユニット93a~93cの配置位置と、第1の変換値から第3の変換値とを用い、質点計算の手法を用いて荷重が与えられた位置を計算する(S28)。尚、以上は、発信ユニット93a~93cから発信される信号の伝播速度が異なる場合を説明したが、信号の位相が異なる構成でも同様である。第8の実施形態によれば、第6の実施形態と同様に柔物体への接触を平面的な広範囲で安定的に検知することができることに加え、荷重が与えられた位置を正確に特定することができ、解像度を高めることができる。 Next, after the time t2 corresponding to the difference in propagation speed between the signal transmitted from the transmission unit 93b and the signal transmitted from the transmission unit 93c has elapsed, the control unit transmits the third signal transmitted from the transmission units 93a to 93c. The received light amount of the signal received by the receiving unit 94c is acquired (S26). The control unit converts the acquired amount of received light into a third conversion value by comparing with the amount of received light when no load is applied (S27). The control unit uses the arrangement positions of the transmission units 93a to 93c and the first to third conversion values to calculate a position to which a load is applied using a mass point calculation method (S28). Although the case where the propagation speeds of the signals transmitted from the transmission units 93a to 93c are different from each other has been described above, the same applies to configurations having different signal phases. According to the eighth embodiment, as in the sixth embodiment, in addition to being able to stably detect contact with a soft object over a wide area in a plane, the position where a load is applied is accurately specified. Can increase the resolution.
 (第9の実施形態)
 次に、第9の実施形態について図28及び図29を参照して説明する。前述した第8の実施形態と同一部分については説明を省略し、異なる部分について説明する。第8の実施形態は、信号の伝播速度や位相を異ならせて受信タイミングを異ならせる構成さであるが、第9の実施形態は、信号の発信タイミングを異ならせて受信タイミングを異ならせる構成である。
(Ninth embodiment)
Next, a ninth embodiment will be described with reference to FIGS. A description of the same parts as those in the above-described eighth embodiment will be omitted, and different parts will be described. The eighth embodiment is configured to vary the reception timing by changing the propagation speed and phase of the signal, but the ninth embodiment is configured to vary the reception timing by varying the signal transmission timing. is there.
 制御部は、受信ユニット94a~94cにおける信号の受信タイミングを、対となる発信ユニット93a~93cの発信タイミングと同期させる。信号の発信タイミングが早い順序にしたがって発信ユニット93a~93cを第1~第3の送信ユニットとして区分すると、制御部は、第1の発信ユニット93aから信号を発信させ(S31)、その第1の発信ユニット93aから発信されて第1の受信ユニット94aに受信された信号の受光量を取得する(S32)。制御部は、その取得した受光量を、荷重が与えられていないときの受光量と比較して第1の変換値に変換する(S33)。 The control unit synchronizes the signal reception timings of the reception units 94a to 94c with the transmission timings of the pair of transmission units 93a to 93c. When the transmission units 93a to 93c are classified as the first to third transmission units in the order of early signal transmission timing, the control unit transmits a signal from the first transmission unit 93a (S31). The received light amount of the signal transmitted from the transmission unit 93a and received by the first reception unit 94a is acquired (S32). The control unit compares the acquired received light amount with the received light amount when no load is applied, and converts the received light amount into a first conversion value (S33).
 次いで、制御部は、予め定められている発信ユニット93aからの信号の発信タイミングと発信ユニット93bからの信号の発信タイミングとの差に相当する時間t1が経過した後、第2の発信ユニット93bから信号を発信させ(S34)、その第2の発信ユニット93bから発信されて受信ユニット94bに受信された信号の受光量を取得する(S35)。制御部は、その取得した受光量を、荷重が与えられていないときの受光量と比較して第2の変換値に変換する(S36)。 Next, the control unit starts from the second transmission unit 93b after a time t1 corresponding to a difference between a predetermined transmission timing of the signal from the transmission unit 93a and a transmission timing of the signal from the transmission unit 93b elapses. A signal is transmitted (S34), and the received light amount of the signal transmitted from the second transmission unit 93b and received by the reception unit 94b is acquired (S35). The control unit converts the acquired amount of received light into a second conversion value by comparing with the amount of received light when no load is applied (S36).
 次いで、制御部は、予め定められている発信ユニット93bからの信号の発信タイミングと発信ユニット93cからの信号の発信タイミングとの差に相当する時間t2が経過した後、第3の発信ユニット93cから信号を発信させ(S37)、その第3の発信ユニット93cから発信されて第3の受信ユニット94cに受信された信号の受光量を取得する(S38)。制御部は、その取得した受光量を、荷重が与えられていないときの受光量と比較して第3の変換値に変換する(S39)。制御部は、発信ユニット93a~93cの配置位置と、第1の変換値から第3の変換値とを用い、質点計算の手法を用いて荷重が与えられた位置を計算する(S40)。第9の実施形態によれば、第8の実施形態と同様に柔物体への接触を平面的な広範囲で安定的に検知することができることに加え、荷重が与えられた位置を正確に特定することができ、解像度を高めることができる。 Next, the control unit starts from the third transmission unit 93c after a time t2 corresponding to a difference between a predetermined transmission timing of the signal from the transmission unit 93b and a transmission timing of the signal from the transmission unit 93c has elapsed. A signal is transmitted (S37), and the received light amount of the signal transmitted from the third transmission unit 93c and received by the third reception unit 94c is acquired (S38). The control unit converts the acquired amount of received light into a third conversion value by comparing with the amount of received light when no load is applied (S39). The control unit uses the arrangement positions of the transmission units 93a to 93c and the first to third conversion values to calculate a position to which a load is applied using a mass point calculation method (S40). According to the ninth embodiment, as in the eighth embodiment, in addition to being able to stably detect contact with a soft object over a wide area in a plane, the position where a load is applied is accurately specified. Can increase the resolution.
 (その他の実施形態)
 本開示は、実施例に準拠して記述されたが、当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、更には、それらに一要素のみ、それ以上、或いはそれ以下を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
(Other embodiments)
Although the present disclosure has been described with reference to the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.
 柔物体は、クッション等でも良い。
 第4の実施形態では、複数の接触センサ73が直線状に等間隔に配置されている構成を例示したが、接触センサ73が面状に等間隔に配置されている構成でも良い。
The soft object may be a cushion or the like.
In the fourth embodiment, the configuration in which the plurality of contact sensors 73 are linearly arranged at equal intervals is illustrated, but the configuration in which the contact sensors 73 are arranged in a plane shape at equal intervals may be used.
 第4の実施形態では、複数の検知結果を処理するサーバ82が柔物体の外部に配置されている構成を例示したが、サーバ82と同等の機能が柔物体の内部に配置されている構成でも良い。 In the fourth embodiment, the configuration in which the server 82 for processing a plurality of detection results is arranged outside the soft object is exemplified. However, the same function as the server 82 is arranged in the soft object. good.

Claims (14)

  1.  充填物(4,22,32,41~45)が充填されている柔物体(3,21,31)への接触を検知する接触センサ(12,30,40)において、
     前記充填物の中に配置されている異素材充填部(5,23,33,51,61,91,111)と、
     前記異素材充填部に充填され、前記充填物とは異なる素材で構成され、荷重が前記柔物体に与えられたことで圧縮し、荷重が解かれたことで復元するように構成されている異素材充填物(6,24,34,52,62,92,101,102,112~115)と、
     前記異素材充填部の所定面部(5a,61a,91a)に接して設けられ、信号を前記異素材充填物に向けて発信する少なくとも一つ以上の信号発信部(9,27,37)と、
     前記異素材充填部の前記所定面部に接して設けられ、前記信号発信部から発信されて前記異素材充填物を伝播した前記信号を受信する少なくとも一つ以上の信号受信部(10,28,38)と、
     前記信号受信部における信号の受信状態の変化を用い、前記柔物体への接触を検知する接触検知部(11,29,39)と、を備えた接触センサ。
    In the contact sensor (12, 30, 40) for detecting contact with the soft object (3, 21, 31) filled with the filler (4, 22, 32, 41 to 45),
    A different material filling portion (5, 23, 33, 51, 61, 91, 111) disposed in the filling;
    The different material filling portion is filled with a different material from the filling, and is compressed when a load is applied to the soft object, and is restored when the load is released. Material filling (6, 24, 34, 52, 62, 92, 101, 102, 112 to 115);
    At least one signal transmitter (9, 27, 37) that is provided in contact with a predetermined surface portion (5a, 61a, 91a) of the different material filling portion and transmits a signal toward the different material filling;
    At least one signal receiving unit (10, 28, 38) that is provided in contact with the predetermined surface portion of the different material filling unit and receives the signal transmitted from the signal transmission unit and propagated through the different material filling. )When,
    A contact sensor comprising: a contact detection unit (11, 29, 39) that detects a contact with the soft object using a change in a signal reception state in the signal reception unit.
  2.  前記異素材充填部(91)に、前記信号の伝播速度が他と異なる複数の前記異素材充填物(101,102)が充填されている請求項1に記載の接触センサ。 The contact sensor according to claim 1, wherein the different material filling portion (91) is filled with a plurality of the different material fillings (101, 102) having different propagation speeds of the signal.
  3.  前記異素材充填部に、所定の解像度に応じて前記複数の異素材充填物が充填されている請求項2に記載の接触センサ。 The contact sensor according to claim 2, wherein the different material filling portion is filled with the plurality of different material fillings according to a predetermined resolution.
  4.  前記信号発信部と前記信号受信部との対が複数であり、
     前記複数の信号発信部と信号受信部との対は、前記信号の波長、周波数及び位相のうち少なくとも何れかが他と異なる請求項1から3の何れか一項に記載の接触センサ。
    There are a plurality of pairs of the signal transmitter and the signal receiver,
    4. The contact sensor according to claim 1, wherein a pair of the plurality of signal transmission units and the signal reception unit is different from at least one of a wavelength, a frequency, and a phase of the signal from others.
  5.  前記信号発信部が複数であり、
     前記複数の信号発信部は、前記信号を他と異なる発信タイミングで発信する請求項1から4の何れか一項に記載の接触センサ。
    A plurality of the signal transmitters;
    The contact sensor according to any one of claims 1 to 4, wherein the plurality of signal transmission units transmit the signal at a transmission timing different from others.
  6.  前記信号受信部が複数であり、
     前記複数の信号受信部は、前記信号を他と異なる受信タイミングで受信する請求項5に記載の接触センサ。
    A plurality of the signal receivers;
    The contact sensor according to claim 5, wherein the plurality of signal receiving units receive the signal at a reception timing different from others.
  7.  前記接触検知部は、荷重が前記柔物体に与えられていないときの受信状態の値を基準値とし、その基準値からの変化量を算出し、前記柔物体への接触を検知する請求項1から6の何れか一項に記載の接触センサ。 The contact detection unit detects a contact with the soft object by calculating a change amount from the value of the reception state when no load is applied to the soft object as a reference value. The contact sensor as described in any one of 6 to 6.
  8.  前記信号発信部は、光を前記異素材充填物に向けて照射し、
     前記信号受信部は、前記信号発信部から照射されて前記異素材充填物を伝播した光を入射し、
     前記接触検知部は、前記信号受信部における受光量の変化を用い、前記柔物体への接触を検知する請求項1から7の何れか一項に記載の接触センサ。
    The signal transmitting unit irradiates light toward the different material filling,
    The signal receiving unit is incident on the light that is irradiated from the signal transmitting unit and propagates through the foreign material filling,
    The contact sensor according to any one of claims 1 to 7, wherein the contact detection unit detects contact with the soft object using a change in received light amount in the signal reception unit.
  9.  前記接触検知部は、前記基準値を更新する請求項8に記載の接触センサ。 The contact sensor according to claim 8, wherein the contact detection unit updates the reference value.
  10.  前記接触検知部は、前記柔物体に与えられていた荷重が解かれたことで前記異素材充填物が復元したときの受信状態の値を用い、前記基準値を更新する請求項9に記載の接触センサ。 The said contact detection part updates the said reference value using the value of the receiving state when the said different material filling restored | restored because the load provided to the said soft object was dissolved. Contact sensor.
  11.  前記異素材充填物(6,24,34,62)が空気である請求項1から10の何れか一項に記載の接触センサ。 The contact sensor according to any one of claims 1 to 10, wherein the foreign material filling (6, 24, 34, 62) is air.
  12.  前記異素材充填部(61)は、前記信号発信部における前記信号の発信方向及び前記信号受信部における前記信号の受信方向を半球状で覆う形状である請求項1から11の何れか一項に記載の接触センサ。 The said different-material filling part (61) is a shape which covers the transmission direction of the said signal in the said signal transmission part, and the reception direction of the said signal in the said signal reception part by hemisphere. The described contact sensor.
  13.  柔物体に充填されている充填物(72)の中に配置されている異素材充填部(74)と、前記異素材充填部に充填され、前記充填物とは異なる素材で構成され、荷重が前記柔物体に与えられたことで圧縮し、荷重が解かれたことで復元するように構成されている異素材充填物(75)と、前記異素材充填部の所定面部(74a)に接して設けられ、信号を前記異素材充填物に向けて発信する少なくとも一つ以上の信号発信部(78)と、前記異素材充填部の前記所定面部に接して設けられ、前記信号発信部から発信された前記信号を受信する少なくとも一つ以上の信号受信部(79)と、前記信号受信部における信号の受信状態の変化を用い、前記柔物体への接触を検知する接触検知部(80)と、を備えた複数の接触センサ(73)と、
     前記複数の接触センサの検知結果を入力して処理する処理部(84)と、を備え、
     前記複数の接触センサは、一つの前記充填物の中に互いに異なる位置に配置され、
     前記処理部は、前記複数の接触センサの配置位置及び検知結果を用い、前記柔物体への荷重の作用点及び量を算出する接触センサシステム(71)。
    The different material filling portion (74) disposed in the filling (72) filled in the soft object, the different material filling portion is filled with a material different from the filling, and the load is Compressed by being applied to the soft object and in contact with the different material filling (75) configured to be restored when the load is released, and a predetermined surface portion (74a) of the different material filling portion Provided at least one signal transmitting portion (78) for transmitting a signal toward the different material filling, and in contact with the predetermined surface portion of the different material filling portion, and transmitted from the signal transmitting portion. And at least one signal receiving unit (79) that receives the signal, and a contact detection unit (80) that detects contact with the soft object using a change in a signal reception state in the signal receiving unit, A plurality of contact sensors (73) comprising:
    A processing unit (84) for inputting and processing the detection results of the plurality of contact sensors,
    The plurality of contact sensors are arranged at different positions in the one filling,
    The said processing part is a contact sensor system (71) which calculates the action point and quantity of the load to the said soft object using the arrangement position and detection result of these contact sensors.
  14.  前記複数の接触センサは、等間隔で配置されている請求項13に記載の接触センサシステム。 The contact sensor system according to claim 13, wherein the plurality of contact sensors are arranged at equal intervals.
PCT/JP2017/020079 2016-07-21 2017-05-30 Touch sensor and touch sensor system WO2018016193A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016143326 2016-07-21
JP2016-143326 2016-07-21
JP2017-006727 2017-01-18
JP2017006727A JP2018021888A (en) 2016-07-21 2017-01-18 Contact sensor and contact sensor system

Publications (1)

Publication Number Publication Date
WO2018016193A1 true WO2018016193A1 (en) 2018-01-25

Family

ID=60992047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020079 WO2018016193A1 (en) 2016-07-21 2017-05-30 Touch sensor and touch sensor system

Country Status (1)

Country Link
WO (1) WO2018016193A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563773B2 (en) * 1975-07-26 1981-01-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563773B2 (en) * 1975-07-26 1981-01-27

Similar Documents

Publication Publication Date Title
JP6266112B2 (en) Fall detection method and fall detection system
US20140016113A1 (en) Distance sensor using structured light
CN108076624B (en) Prosthetic or exoskeleton components and methods of operating the same
US10768691B2 (en) Wearable motion tracking system
US20140055229A1 (en) Infra red based devices for guiding blind and visually impaired persons
GB2456773A (en) Sensing the position of a mobile object relative to a fixed object via ultrasound and infrared
WO2018118673A3 (en) Monitoring body movement or condition according to motion regimen with conformal electronics
EP2681900A1 (en) Ranging with body motion capture
KR20140014267A (en) Gesture recognition via an ad-hoc proximity sensor mesh for remotely controlling objects
JP2009268622A5 (en)
WO2005073836A3 (en) 3-d cursor control system
US9678207B2 (en) Object detection device and object detection method
WO2005080917A3 (en) Device to determine the road followed by a person on foot
JP5311389B2 (en) Walking support device for visually handicapped person and walking support system for visually handicapped person
WO2018016193A1 (en) Touch sensor and touch sensor system
JP6561852B2 (en) Heart rate detector
JP2018021888A (en) Contact sensor and contact sensor system
KR102088392B1 (en) System and methodof monitoing sleep apnea using radar
WO2015189691A3 (en) Intercommunication device of a pair of soles for shoes
TWI627430B (en) Device capable of accurately detecting biological dynamic characteristics or micro-movement of objects
JP6827472B2 (en) Mobile measuring device
KR20160057534A (en) Method for signal compensation using absorption coefficient and signal compensation apparatus using thereof
JP2019523082A5 (en)
KR20210126775A (en) Detection assembly, cleaning robot, driving road condition detection method and control method of cleaning robot
WO2020091302A3 (en) Massage device capable of measuring user body shape

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17830713

Country of ref document: EP

Kind code of ref document: A1