WO2018016108A1 - Heating and firing apparatus and firing method for fly ash - Google Patents

Heating and firing apparatus and firing method for fly ash Download PDF

Info

Publication number
WO2018016108A1
WO2018016108A1 PCT/JP2017/005421 JP2017005421W WO2018016108A1 WO 2018016108 A1 WO2018016108 A1 WO 2018016108A1 JP 2017005421 W JP2017005421 W JP 2017005421W WO 2018016108 A1 WO2018016108 A1 WO 2018016108A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
unburned carbon
fly ash
combustion
raw powder
Prior art date
Application number
PCT/JP2017/005421
Other languages
French (fr)
Japanese (ja)
Inventor
一成 謝花
好雄 岸田
拓人 南出
三島 剛
Original Assignee
株式会社リュウクス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リュウクス filed Critical 株式会社リュウクス
Priority to CN201780039618.0A priority Critical patent/CN109328119B/en
Publication of WO2018016108A1 publication Critical patent/WO2018016108A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/10Rotary-drum furnaces, i.e. horizontal or slightly inclined internally heated, e.g. by means of passages in the wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/32Arrangement of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D13/00Apparatus for preheating charges; Arrangements for preheating charges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/08Screw feeders; Screw dischargers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a fly ash heating and baking apparatus and a baking method.
  • fly ash produced as a by-product at thermal power plants is widely used as a concrete admixture.
  • fly ash When fly ash is used as an admixture for concrete, it is necessary to reduce the unburned carbon content contained in fly ash as much as possible.
  • Patent Document 1 discloses a modified fly ash and a manufacturing method thereof. According to this method, the self-burning of unburned carbon is carried out while stirring and conveying the raw fly ash having an unburned carbon content of 3.90 to 7.70% by weight and an average particle size of 18.40 to 20.80 microns. It is said that the reformed fly ash can be recovered by heating to a temperature, and subsequently maintaining the heating temperature within a temperature range of 600 to 950 ° C. for self-combustion and then indirectly cooling to 200 ° C. or lower. Yes.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a miniaturized fly ash heating and firing apparatus and firing method.
  • the present invention is a heating and firing apparatus having a combustion furnace for burning and reducing the unburned carbon of raw powder containing fly ash and unburned carbon, wherein the combustion furnace agitates the unburned carbon in the furnace And a combustion means for burning fuel toward the inside of the furnace filled with oxygen supplied from the oxygen supply means. Heating at least the unburned carbon in the raw powder supplied to the combustion furnace to a heating set temperature higher than a temperature lower by at least 200 ° C. than the ignition temperature of the unburned carbon.
  • An apparatus is provided separately, and the heating apparatus is a heating and firing apparatus configured to heat the unburned carbon without using internal combustion that requires air in an internal space where the unburned carbon exists.
  • a downsized fly ash heating and firing apparatus and firing method can be provided.
  • the block diagram which shows the structure of the heat-baking apparatus and heating reforming system of fly ash.
  • the block diagram which shows the detail of a structure of a fixed_quantity
  • the block diagram which shows the detail of a structure of a carbon high temperature oxidation furnace.
  • FIG. 1 is a block diagram showing a configuration of a heat reforming system 1 including a fly ash heating and firing apparatus 2.
  • the fly ash heat reforming system 1 includes a heating and firing apparatus 2 for reforming fly ash by heating and burning unburned carbon contained in the fly ash raw powder, and the supplied fly ash raw powder.
  • the stored fly ash reservoir 3, the quantitative supply device 4 that quantitatively supplies the stored fly ash raw powder to the heating and baking apparatus 2, and the high-temperature fly ash modified by the heating and baking apparatus 2 are cooled.
  • the cooling equipment 5, the dust removing device 6 that removes dust and the like contained in the exhaust gas discharged by the heating and firing device 2 during the heat combustion process, and the exhaust gas from which dust and the like have been removed by the dust removing device 6 are removed from the heating reforming system 1.
  • an exhaust device 7 for discharging the gas.
  • the heating and firing apparatus 2 includes a power heating apparatus 8 (heating apparatus) that heats unburned carbon by induction heating, and a carbon high-temperature oxidation furnace 9 (combustion furnace) that burns unburned carbon.
  • the fly ash raw powder is mainly composed of silica (SiO 2) and may contain alumina (Al 2 O 3).
  • the fly ash reservoir 3 has a hollow cylindrical shape whose axis is directed in the vertical direction, and is provided with an inlet 3c at the upper end.
  • the cylindrical lower portion is reduced in diameter toward the lower side,
  • a connecting pipe 3b having a connecting port 3a at the lower end is connected to the lower lower end.
  • the fly ash reservoir 3 is connected to the supply pipe 17 of the quantitative supply device 4 through the connection port 3a.
  • the fly ash reservoir 3 stores the fly ash raw powder charged into the charging port 3c, and supplies the fly ash raw powder from the connection port 3a to the quantitative supply device 4 by gravity drop. Thereby, the fly ash reservoir 3 functions as a raw material hopper using fly ash raw powder as a raw material.
  • the fly ash reservoir 3 includes a preheating device 10.
  • the preheating device 10 is connected to the exhaust gas port 9a of the carbon high-temperature oxidation furnace 9 and connected to the remaining heat supply pipe 13 for sucking the exhaust gas, and connected to the other end of the remaining heat supply pipe 13 and connected to the fly ash reservoir 3.
  • An annular preheat circulation pipe 11 that circulates the exhaust gas at a close position, a discharge pipe 14 that is connected to the preheat circulation pipe 11 at one end and discharges the exhaust gas to the dust removing device 6 at the other end, and a discharge pipe 14 And a control valve 16 for switching execution / stop of exhaust gas, and a signal for switching exhaust execution / stop by the control valve 16 by detecting the temperature of the exhaust gas circulated in the residual heat circulation pipe 11. And a temperature sensor 15 for performing the operation.
  • a high-temperature exhaust gas of 200 ° C. or higher is supplied from the exhaust gas port 9 a of the carbon high-temperature oxidation furnace 9 through the residual heat supply pipe 13, and this high-temperature exhaust gas is supplied to the residual heat circulation pipe 11 in the vicinity of the fly ash reservoir 3.
  • the fly ash raw powder in the fly ash reservoir 3 is preheated and the exhaust gas in the residual heat circulation pipe 11 is lowered to a predetermined temperature, and the control valve 16 opens the discharge pipe to discharge the exhaust pipe.
  • the exhaust gas is discharged from 14 to the dust removing device 6.
  • a high temperature exhaust gas of 200 ° C. or higher is supplied from the residual heat supply pipe 13, and the temperature of the exhaust gas in the residual heat circulation pipe 11 that has decreased is reduced. High temperature is maintained at a predetermined temperature.
  • the predetermined temperature is set to 200 ° C. in this embodiment, but is not limited to 200 ° C.
  • the low-temperature exhaust gas discharged from the residual heat circulation pipe 11 is discharged out of the heating reforming system 1 from the exhaust device 7 via the dust removal device 6.
  • the quantitative supply device 4 has a cylindrical shape, a supply pipe 17 whose axis is oriented substantially in the horizontal direction, and a shaft 18 that is disposed on the axis of the supply pipe 17 and that can rotate about the axis.
  • a screw 19 that is provided around the outer peripheral surface of the shaft 18 and rotates together with the shaft 18 to convey the fly ash raw powder preheated inside the supply pipe 17, and a drive device 20 that drives the shaft 18 to rotate about its axis. It has.
  • the supply pipe 17 is connected at its rear end to a flange 21d at one end of a heat treatment pipe 21 provided in the power heating device 8 by a flange 17d. That is, the supply pipe 17 and the heat treatment pipe 21 have the same inner diameter and are connected in a straight line via the connection port 17a.
  • An inlet 17b is opened on the upper surface of the front peripheral wall of the supply pipe 17, and a connection port 3a of the fly ash reservoir 3 is connected to the opening.
  • the front end of the supply pipe 17 is sealed with a sealing plate 17c.
  • the shaft 18 is disposed so that one end reaches the vicinity of the connection port 17a of the supply pipe 17 through the sealing plate 17c.
  • the shaft 18 that protrudes outward from the supply pipe 17 from the sealing plate 17 c is rotatably supported by a pair of bearings 20 a and 20 b through which the shaft 18 is inserted, outside the supply pipe 17.
  • the screw 19 is a spiral blade and is housed inside the supply pipe 17 in the radial direction together with the shaft 18.
  • the outer diameter and pitch of the screw 19 are appropriately selected depending on the properties of the preheated fly ash raw powder and the amount of extrusion.
  • the driving device 20 includes an electric motor 20g, a driving sprocket 20c attached to the rotary shaft 20f of the electric motor 20g, a driven sprocket 20d attached to the rear end of the shaft 18, and a driving sprocket 20c. And a chain 20e for connecting the sprocket 20d.
  • the rotational force of the electric motor 20g is transmitted to the driving sprocket 20c via the rotating shaft 20f, and further to the driven sprocket 20d via the chain 20e.
  • the driven sprocket 20d is It is transmitted to the attached shaft 18.
  • the screw 19 rotates around the axis of the shaft 18 together with the shaft 18 inside the supply pipe 17 by the rotational force from the electric motor 20g transmitted to the shaft 18.
  • the preheated fly ash raw powder stored in the fly ash reservoir 3 is supplied by gravity to the front stage of the supply pipe 17 via the inlet 17b opened on the front side peripheral wall of the supply pipe 17. It becomes a clogged state without a gap.
  • the preheated fly ash raw powder supplied to the front stage of the supply pipe 17 is gradually sent out to the rear side of the supply pipe 17 by the screw 19 without being clogged.
  • tube 17 is supplied to the heat processing pipe
  • the preheated fly ash raw powder is continuously supplied by dropping from the fly ash reservoir 3 to the front stage of the supply pipe 17 after the preheated fly ash raw powder has moved, without gaps.
  • the clogged state is maintained.
  • the preheated fly ash raw powder can be continuously supplied to the electric power heating device 8 at a predetermined fixed amount per unit time by controlling the rotation speed of the electric motor 20g to a predetermined value.
  • the term “packed without gaps” does not mean that there are not even minute gaps between adjacent particles in the fly ash raw powder, but indicates that the adjacent particles are in contact and overlapping.
  • the state in which the fly ash raw powder is clogged in the supply pipe 17 and the heat treatment pipe 21 in the subsequent stage without crevice is a state in which more than half of the internal space is clogged, and is a state in which more than 70% is clogged. It is preferable that
  • the heating and firing apparatus 2 includes a power heating apparatus 8 (heating apparatus) for heating fly ash raw powder (particularly unburned carbon contained therein), and a carbon high-temperature oxidation furnace 9 (combustion furnace) for burning unburned carbon. And.
  • the power heating device 8 includes a heat treatment tube 21, an induction coil 22, a high frequency induction heating power source (high frequency inverter) 23, and a high frequency converter feeder 24 connected between the induction coil 22 and the high frequency induction heating power source 23.
  • a control device 25 that controls the output of the high-frequency induction heating power source 23 by a computer and a temperature sensor TS that is attached to the heat treatment tube 21 and measures temperature are provided.
  • the heat treatment tube 21 has a hollow cylindrical shape with the axis centering substantially in the horizontal direction.
  • the cylindrical inner diameter of the heat treatment tube 21 can be 200 millimeters or less, preferably 100 millimeters or less, and in this embodiment is configured to 100 millimeters or less.
  • the heat treatment tube 21 may have a cylindrical shape having a columnar central axis therein. In this case, the distance (radial direction distance) between the cylindrical inner peripheral surface of the heat treatment tube 21 and the central axis surface can be set to 100 millimeters or less, and preferably 50 millimeters or less.
  • Flange 21d, 21e is provided at both cylindrical ends of the heat treatment tube 21.
  • a flange 21 d at the front end of the heat treatment tube 21 is connected to the supply pipe 17 of the quantitative supply device 4, and a flange 21 e at the rear end of the heat treatment tube 21 is connected to the charging unit 30 of the carbon high temperature oxidation furnace 9.
  • the supply pipe 17, the heat treatment pipe 21, and the charging section 30 have the same inner diameter and are arranged and connected in a straight line so that the axes are connected.
  • the heat treatment tube 21 is made of a carbon material containing a large amount of iron.
  • the heat treatment tube 21 is preferably made of a magnetic metal having heat resistance of 600 ° C. which is at least an ignition temperature (self-combustion temperature).
  • the inner surface of the heat treatment tube 21 does not need to be uneven, and may have a fine surface roughness that allows the fly ash raw material to slide. By doing so, the fly ash raw powder can be heated while being smoothly moved. It should be noted that the inner surface of the heat treatment tube 21 may be slightly uneven as long as it is not a polished surface like a mirror surface.
  • the induction coil 22 is provided so as to be wound around the outer periphery of the heat treatment tube 21.
  • the induction coil 22 is provided in a plurality of stages from the front stage to the rear stage.
  • the induction coil 22 is composed of three coils: a front stage coil 22a, a middle stage coil 22b, and a rear stage coil 22c.
  • the front coil 22a is wound around the front part 21a of the heat treatment tube 21
  • the middle coil 22b is wound around the middle part 21b of the heat treatment tube
  • the rear coil 22c is wound around the rear part 21c of the heat treatment tube 21. It is rolled up.
  • one temperature sensor TS is provided corresponding to each induction coil 22, and in this embodiment, the temperature sensor TS is provided in the front stage portion 21 a, the middle stage portion 21 b, and the rear stage portion 21 c of the heat treatment tube 21.
  • TS1, TS2, and TS3 are provided respectively. Then, the data of each measured temperature obtained by the temperature sensors TS1, TS2, and TS3 is acquired by the control device 25.
  • the high frequency induction heating power source 23 is a power source that can output a high frequency alternating current.
  • the high frequency output from the high frequency induction heating power source 23 can be 20 kHz to 200 kHz, and preferably 20 kHz to 100 kHz.
  • the high-frequency induction heating power source 23 can be controlled by an external signal.
  • the high-frequency induction heating power source 23 includes three units of a power source 23a, a power source 23b, and a power source 23c corresponding to the induction coil 22 of each stage.
  • the high-frequency converter feeder 24a, the high-frequency converter feeder 24b, and The high-frequency converter feeder 24c is connected to the front-stage coil 22a, the middle-stage coil 22b, and the rear-stage coil 22c.
  • the control device 25 includes a high-frequency induction heating power source 23 so that the temperatures of the front stage part 21a, the middle stage part 21b, and the rear stage part 21c of the heat treatment tube 21 are kept constant at the set temperatures T1, T2, and T3, respectively. Control the output of.
  • the set temperature T3 is preferably set to be equal to or higher than the ignition temperature (self-combustion temperature) of unburned carbon
  • the set temperature T2 is preferably set to about 2/3 of the set temperature T3
  • the set temperature T1 is set to the set temperature. It is preferable to set the temperature to about 1/3 of T3.
  • the above-mentioned temperature of about 2/3 or about 1/3 refers to a temperature of about 2/3 or about 1/3 of the ignition temperature based on 0 ° C.
  • the set temperatures T1, T2, and T3 of the front stage portion 21a, the middle stage portion 21b, and the rear stage portion 21c are set to 200 ° C., 400 ° C., and 600 ° C., respectively.
  • the temperature is increased stepwise from the front stage to the rear stage, and the heating temperature at each position is set linearly so that the temperature rises linearly from the temperature before heating to the heating temperature of the last stage.
  • the set temperature T3 of the rear stage 21c, which is the last stage to 600 ° C, which is the ignition temperature (self-combustion temperature), and lowering the set temperature of the preceding stage, ignition (self-combustion) starts and runs out of control. Is preventing.
  • the control device 25 is also connected to the electric motor 20g provided in the above-described quantitative supply device 4 through a signal line, and can control the rotation speed of the electric motor 20g.
  • the preheated fly ash raw powder is supplied to the front stage portion 21a of the heat treatment tube 21 from the quantitative supply device 4 connected to the heat treatment tube 21 in a state of being packed without any gaps.
  • the fly ash raw powder reaches the upper part of the heat treatment tube 21 as the fly ash raw powder is pushed out.
  • the powder becomes clogged.
  • the fly ash raw powder is pushed out in the order of the front part 21 a, the middle part 21 b, and the rear part 21 c, and becomes packed in each part of the heat treatment tube 21. Therefore, in the heat treatment tube 21, the fly ash raw powder is not agitated, hardly flows, and moves in a packed state where the relative positions of the fly ash raw powders do not change so much.
  • An alternating current is output from the power supplies 23a, 23b, and 23c to the front coil 22a, the middle coil 22b, and the rear coil 22c via the high-frequency converter feeders 24a, 24b, and 24c, respectively.
  • a magnetic field is generated around the front coil 22a, the middle coil 22b, and the rear coil 22c through which an alternating current flows, that is, inside each of the front stage 21a, the middle stage 21b, and the rear stage 21c.
  • an eddy current flows by being induced by the magnetic field at each position of the front stage portion 21a, the middle stage portion 21b, and the rear stage portion 21c.
  • the eddy current flowing in the heat treatment tube 21 generates heat (that is, induction heating) due to the resistance of the heat treatment tube 21 itself, and this heat causes fly in the front stage portion 21a, the middle stage portion 21b, and the rear stage portion 21c. Heat the ash powder. Furthermore, since the unburned carbon contained in fly ash raw powder by several percent has conductivity, it is induction-heated at the front-stage part 21a, the middle-stage part 21b, and the rear-stage part 21c, respectively. The inside of the heat treatment tube 21 is in a state where the fly ash raw powder is clogged and there is almost no oxygen (air), in other words, there is no amount of oxygen (air) necessary for ignition (self-combustion) of unburned carbon.
  • heat that is, induction heating
  • the control device 25 acquires measured temperature data measured by the temperature sensors TS1, TS2, TS3.
  • the control device 25, on the contrary, lowers the output decrease signal at a high portion compared to the set temperatures T1, T2, T3 of the front stage portion 21a, the middle stage portion 21b, and the rear stage portion 21c.
  • An output increase signal is transmitted to each of the power supplies 23a, 23b, and 23c.
  • the power supplies 23a, 23b, and 23c that have received the signal reduce or increase the output according to their received signals.
  • control device 25 controls the outputs of the power supplies 23a, 23b, and 23c based on the measured temperature data of the temperature sensors TS1, TS2, and TS3, so that the front stage 21a, the middle stage 21b, and the rear stage 21c are controlled. Each temperature is brought close to the set temperature T1, T2, T3 and kept constant.
  • the content of unburned carbon contained in the fly ash raw powder is about several percent, but it is not constant and varies, and it is difficult to accurately grasp. Therefore, the calorific value of unburned carbon due to induction heating varies depending on the difference in the content of unburned carbon. This variation in the amount of generated heat further causes the temperature of the front stage part 21a, the middle stage part 21b, and the rear stage part 21c to fluctuate. Therefore, in order to keep the temperatures of the front stage part 21a, the middle stage part 21b, and the rear stage part 21c constant at the set temperatures T1, T2, and T3, the outputs of the power supplies 23a, 23b, and 23c must be greatly increased or decreased. Cases can also arise.
  • the power supplies 23a, 23b, and 23c have an appropriate output range, and an output exceeding the appropriate output range is not preferable because an excessive load is applied to the power supply 23a. Therefore, in addition to controlling the outputs of the power supplies 23a, 23b, and 23c, new control is added so that the amount of unburned carbon contained in the fly ash raw powder per unit time supplied to the heat treatment tube 21 is constant. is doing. That is, based on the measured temperature data of the temperature sensor TS3, the control device 25 increases or decreases the number of rotations of the electric motor 20g provided in the quantitative supply device 4 so that the temperature of the rear stage portion 21c becomes constant at the set temperature T3. It is supposed to let you. That is, the control device 25 also controls the rotational speed of the electric motor 20g.
  • the outputs of the power supplies 23a, 23b, and 23c are individually controlled based on the measured temperature data of the temperature sensors TS1, TS2, and TS3, and the rotation speed of the electric motor 20g is controlled at the last stage. This is executed based on measured temperature data of a certain temperature sensor TS3.
  • control device 25 performs cascade control that combines control of the number of revolutions of the electric motor 20g in addition to control of the output of the power source 23c. Therefore, delicate temperature adjustment of unburned carbon is possible. Thereby, the temperature of the fly ash raw powder in the rear stage part 21c is more accurately maintained at the set temperature T3 of the rear stage part 21c.
  • the fly ash raw powder supplied into the heat treatment tube 21 is contained in the fly ash raw powder and the same while moving in the heat treatment tube 21 in a substantially oxygen-free state without supply of oxygen.
  • the unburned carbon is heated stepwise by the heat treatment tube 21 that is heated stepwise by induction heating of the front coil 22a, the middle coil 22b, and the rear coil 22c.
  • the fly ash raw powder containing unburned carbon heated to the set temperature T3 is put into the carbon high-temperature oxidation furnace 9 of the next step.
  • the set temperature T3 is set to 600 ° C. in this embodiment, but is set higher than a temperature (for example, 400 ° C.) that is at least 200 ° C. lower than the ignition temperature of the unburned carbon (for example, 600 ° C.). You may set more than preheating preset temperature.
  • induction heating is used to heat the fly ash raw powder in the heat treatment tube 21, but the present invention is not limited to induction heating. If the fly ash raw powder in the heat treatment tube 21 can be heated in an almost oxygen-free state, for example, it is heated from the outside of the heat treatment tube 21 by using an external heat source, or in the axial center portion of the heat treatment tube 21. A heating device may be provided to heat from the inside.
  • the heat treatment tube 21 in order to raise the temperature of the unburned carbon to the ignition temperature or higher, the heat treatment tube 21 is divided into three steps, and the set temperatures of the steps are set in steps T1, T2, and Although it is set to T3 and heating is performed in three stages, the heating is not limited to three stages, and may be performed in appropriate plural stages.
  • the plurality of stages are preferably set to appropriate stages such as heating in 1 to 5 stages.
  • the carbon high-temperature oxidation furnace 9 has a furnace body 26 that is a hollow cylindrical kiln whose axis is oriented in a substantially horizontal direction, and the furnace body 26 can be rotated around the axis.
  • the rotary furnace includes a furnace body support part 27 supported at the lower part, an input side hood 28 that covers one end part of the furnace body 26, and a discharge side hood 29 that covers the other end part of the furnace body 26.
  • the furnace body 26 has a substantially cylindrical shape as a whole, and is provided with a cover portion 26 b at one end connected to the input side hood 28.
  • the cover portion 26b has a disk shape with a hole in the center, and the outer peripheral portion of the disk is connected to the edge of one end of the cylindrical shape.
  • screw blades 26c Inside the furnace body 26, there are provided screw blades 26c in which convex portions that are convex inwardly continue in a screw shape along the inner peripheral surface.
  • the inner surface (inner surface) including the screw blades 26c and the cover portion 26b of the furnace body 26 is covered with an aluminum oxide refractory material to form an inner lining 26a.
  • the furnace body 26 can avoid metal corrosion under high temperature caused by vanadium oxide contained in the fly ash raw powder and can have fire resistance of about 1000 ° C. .
  • the inner lining 26a has an uneven finish such that plasterers applied plaster or earthen walls to the walls of houses and fences, and has a rougher surface than the metal surface.
  • the unevenness can be an unevenness having an average height difference of 50 microns or more, and the average height difference is preferably 1 cm to 5 cm.
  • the unevenness of the inner lining 26a improves the frictional force and prevents the fly ash raw powder that self-combusts from moving relative to the inner surface of the furnace body 26 so as to slide in a lump-like state without stirring. Ash raw powder can be stirred.
  • An appropriate cooling device (not shown) for preventing a temperature rise in the room is provided outside the furnace body 26.
  • the furnace body support portion 27 is chained to a rotating body 27a that rotatably supports the outer peripheral surface of the furnace body 26, an installation base 27b on which the rotating body 27a is installed, and a driven sprocket 27c attached to the rotating body 27a. And a drive motor 27f for driving a drive-side sprocket 27e connected through 27d. Thereby, by controlling the rotational speed of the drive motor 27f, the rotational speed around the axis of the furnace body 26 can be changed, and the furnace body 26 can be kept rotating at the set rotational speed.
  • the charging side hood 28 has a charging unit 30 for charging the fly ash raw powder heated by the power heating device 8 into the furnace body 26, and for discharging the combustion gas generated in the furnace body 26 as exhaust gas. And an exhaust gas port 9a.
  • the charging unit 30 is a pipe that penetrates the charging side hood 28 in the front-rear direction.
  • the axis is substantially coincident with the central axis of the furnace body 26, and one end is connected to the flange 21 e at the rear end of the heat treatment pipe 21 of the power heating device 8.
  • the other end is opened in the furnace body 26 to form a charging port 30a.
  • the inner diameter of the charging unit 30 is the same as the inner diameter of the heat treatment tube 21, and the axis of the charging unit 30 is configured to coincide with the axis of the heat processing tube 21.
  • the opening surface 30b of the insertion port 30a faces upward.
  • a leakage prevention portion 30c in which the lower part of the tube that has been cylindrical and curved upward is curved.
  • the fly ash raw powder containing unburned carbon heated by the electric power heating device 8 is supplied by being pushed out from the heat treatment tube 21 to the charging unit 30 and further pushed out into the furnace body 26 from the charging port 30a. It is thrown. At this time, the fly ash raw powder pushed out in the charging unit 30 is spilled by the leakage preventing unit 30c without being spilled immediately, and further pushed out and then overflowed from the upward charging port 30a. It is thrown into. Thereby, the state where the fly ash raw powder is packed without gaps in the charging unit 30 can be maintained, and in particular, the state where the fly ash raw powder is packed without gaps in the heat treatment tube 21 can be maintained.
  • the fly ash raw powder is prevented from collapsing and a space with oxygen in the charging unit 30 and the heat treatment tube 21 is prevented, and combustion gas, oxygen and the like enter the charging unit 30 and the heat processing tube 21.
  • FIG. since the fly ash raw powder can be introduced so that the fly ash raw powder overflows while reliably covering the entire opening of the input port 30a, oxygen (air) from the input port 30a to the inside of the input unit 30 can be introduced. Inflow can be reliably prevented, and unburned carbon in the fly ash raw powder can be more reliably prevented from starting to ignite (self-combustion) in the charging unit 30 or the heat treatment tube 21.
  • the carbon high temperature oxidation furnace 9 receives a small amount of fly ash raw powder supplied to the internal space, and heats and burns this small amount of fly ash raw powder while stirring.
  • the amount of fly ash raw powder in the carbon high-temperature oxidation furnace 9 can be half or less of the internal space, preferably 30% or less, more preferably 10% or less. % Or less is more preferable.
  • the above-described residual heat supply pipe 13 is connected to the exhaust gas port 9a.
  • An exhaust gas pipe 31 branched from the residual heat supply pipe 13 is connected to the residual heat supply pipe 13.
  • the exhaust gas pipe 31 is connected to the dust removing device 6 (see FIG. 1) via the heat exchanger 32. Therefore, the hot exhaust gas discharged from the exhaust gas port 9 a and flowing in the exhaust gas pipe 31 is cooled by the heat exchanger 32 and then sent to the dust removing device 6.
  • the discharge side hood 29 includes an auxiliary combustion burner 33 for injecting and burning fuel together with air (primary air) into the furnace body 26, a plurality of blowing nozzles 34 for blowing air (tertiary air) into the furnace body 26, and a discharge port 35 is provided.
  • the auxiliary combustion burner 33 burns fuel and heats the inside of the furnace body 26 to a high temperature.
  • the auxiliary combustion burner 33 is located on the central axis of the furnace body 26, and is arranged so that the ejection hole 33a for ejecting fuel faces the inlet 30a for fly ash raw powder.
  • the plurality of blowing nozzles 34 are arranged so as to surround the auxiliary combustion burner 33, and are swung by a rotation mechanism (not shown) around the auxiliary combustion burner 33 along the inner surface facing the furnace body 26 of the discharge side hood 29. To do. More specifically, a plurality of blowing nozzles 34 are arranged at equal distances from the auxiliary burner 33 so that the distance between them is also equal. When viewed in the direction of the rotation axis of the furnace body 26, the blowing nozzles 34 are arranged. Makes a vertex of the polygon. In this embodiment, four blowing nozzles 34 are arranged so as to form square vertices when viewed in the rotation axis direction of the furnace body 26.
  • Each of the plurality of blowing nozzles 34 feeds air (tertiary air) at the same amount and constant speed as a counterflow in the direction of movement of the fly ash raw powder (right direction in FIG. 3) and the opposite direction (left direction in FIG. 3).
  • the amount of air around the auxiliary burner 33 is made substantially equal.
  • the air (primary air) supplied to the auxiliary burner 33 and the air (tertiary air) blown into the furnace body 26 from the blow nozzle 34 are taken in by the pushing fan 36 and the furnace body via the heat exchanger 32. 26 is the air sent into the air. Therefore, air (primary air) and air (tertiary air) are heated in the heat exchanger 32 by heat exchange with high-temperature exhaust gas flowing through the exhaust gas pipe 31. This prevents the temperature of the air (primary air and tertiary air) from being too low relative to the temperature inside the furnace body 26 and prevents the air (primary air and tertiary air) from lowering the temperature inside the furnace body 26 as much as possible. is doing.
  • the discharge port 35 is provided in the lower part of the discharge side hood 29 and is connected to the cooling facility 5.
  • the fly ash raw powder charged into the furnace body 26 from the charging port 30a of the charging unit 30 is gradually stirred toward the discharge port 35 while being stirred by the screw blades 26c in the furnace body 26 rotating around the axis. Moving. During this movement, the unburned carbon contained in the fly ash raw powder is burned (oxidized) in a high-temperature oxygen atmosphere to emit carbon dioxide and heat to be removed. The temperature in the furnace body 26 at this time is 800 to 900 ° C. Then, the fly ash raw powder that has reached the discharge port 35 is discharged to the cooling facility 5.
  • the rotation speed of the drive motor 27f provided in the furnace body support part 27 is adjusted according to the amount of unburned carbon contained in the fly ash raw powder to be processed.
  • the rotational speed around the axial center of the furnace body 26 is changed, and the moving speed of the fly ash raw powder moving in the furnace body 26 is adjusted by the rotating screw blades 26c, thereby adjusting the increase / decrease in the combustion time. it can.
  • the moving speed of the fly ash raw powder is reduced, the residence time in the furnace body 26 is lengthened and the combustion time is increased. Conversely, if the moving speed is increased, the residence time in the furnace body 26 is increased. Shortens and burns down.
  • the dust remover 6 includes a front cyclone 6a and a rear bag filter 6b.
  • the former cyclone 6a after being discharged from the preheating device 10 of the fly ash reservoir 3 through the exhaust pipe 14 for exhausting the exhaust gas whose temperature has decreased and the exhaust gas port 9a of the carbon high temperature oxidation furnace 9, An exhaust gas pipe 31 through which the exhaust gas cooled by the heat exchanger 32 flows is connected.
  • the dust remover 6 removes dust and the like contained in the exhaust gas flowing in through the exhaust pipe 14 and the exhaust gas pipe 31 using the cyclone 6a and the bag filter 6b, and then exhausts the exhaust gas from which the dust and the like are removed. Discharge to device 7.
  • the exhaust device 7 attracts the exhaust gas from which dust or the like has been removed by the dust removal device 6 with the attracting fan 7a, and then exhausts it outside the heating reforming system 1 through the exhaust tower 7b.
  • the cooling facility 5 receives the fly ash raw powder discharged from the discharge port 35 of the carbon high-temperature oxidation furnace 9 and containing unburned carbon reduced by the combustion, and performs a cooling process.
  • the heating and firing apparatus 2 is a heating in which at least unburned carbon in the fly ash raw powder supplied to the combustion furnace (carbon high temperature oxidation furnace 9) is set higher than a temperature at least 200 ° C. lower than the ignition temperature of the unburned carbon. Since the heating device (electric power heating device 8) for heating above the set temperature is provided in the front stage of the combustion furnace (carbon high temperature oxidation furnace 9), the combustion furnace itself can be made small-scale, thereby reducing the capital investment. Can be suppressed. In addition, since less fuel is used in the combustion furnace, energy costs can be suppressed.
  • the fly ash raw powder is heated only from the carbon high-temperature oxidation furnace 9 from room temperature (room temperature) to the ignition temperature, a large amount of fuel and air are consumed by the auxiliary burner 33 and the entire space inside the furnace body 26 is fried. It is necessary to heat the ash raw powder. For this reason, it is necessary to secure a wide space inside the furnace body 26 for a long time.
  • the fly ash raw powder is raised to the ignition temperature and further unburned by heating it with the electric power heating device 8 at a heating set temperature that is set close to the ignition temperature.
  • the time during which the fly ash raw powder to be burned is burned by the carbon high-temperature oxidation furnace 9 can be shortened (the time for burning from the normal temperature to the ignition temperature can be omitted).
  • the distance moved within the body 26 can be shortened. Therefore, the furnace body 26 can be reduced in size by reducing the distance, and the overall size of the carbon high temperature oxidation furnace 9 can be reduced.
  • the heating device includes a transport pipe (heat treatment pipe 21) for transporting the raw powder to the combustion furnace, and does not supply oxygen into the transport pipe, and the oxygen-free heating means for heating the unburned carbon to a heating set temperature or higher. It is comprised by.
  • a transport pipe heat treatment pipe 21
  • the oxygen-free heating means for heating the unburned carbon to a heating set temperature or higher. It is comprised by.
  • unburned carbon can be heated without relying on internal combustion that requires air in the transport pipe (heat treatment pipe 21). Therefore, the heating device is not increased in scale, and the thermal efficiency is good. That is, the electric power heating device 8 does not require a combustion space in which air is supplied as in the furnace body 26 and heats the fly ash raw powder in a state where the heat treatment tube 21 is packed in the gap without any gap.
  • the size can be reduced to half or less, more specifically, to 1/5 or less.
  • fly ash raw powder can be directly heated from the circumference
  • unburned carbon in the fly ash raw powder can be heated by induction heating, direct heating can be realized.
  • the heating device (electric power heating device 8) intensively heats the heat treatment tube 21 arranged in the vicinity of the induction coil supplied with the alternating current from the high frequency power supply by induction heating using a high frequency power source having high energy density. . Therefore, high speed heating of fly ash raw powder containing unburned carbon is possible, and energy efficiency is also good. In addition, the scale of the apparatus can be reduced, and it is space-saving and compact.
  • the combustion furnace (carbon high-temperature oxidation furnace 9) is opposed to the charging port 30a, and a charging port 30a for charging fly ash raw powder containing unburned carbon heated by a heating device (power heating device 8) into the combustion furnace.
  • a discharge part (discharge port 35) through which the modified fly ash is combusted at the position and the reformed fly ash is discharged, and the auxiliary burner 33 (combustion means) is disposed on the discharge part side in the combustion furnace.
  • a fuel ejection hole 33a is disposed.
  • the opening surface 30b of the charging port 30a faces upward and the leakage preventing portion 30c is provided, the fly ash raw powder is charged into the furnace body 26 so as to overflow from the opening surface 30b. Therefore, the combustion gas, oxygen, and the like in the furnace body 26 are less likely to enter the heating device into the pipe of the charging unit 30 packed with fly ash raw powder. Therefore, it is difficult for combustion to occur in the electric power heating device 8, and unintentional carbon in the fly ash raw powder can be prevented from igniting in the electric power heating device 8 and excessively rising in temperature.
  • the heating device electric power heating device 8
  • at least one of the supply amount of the fly ash raw powder supplied by the quantitative supply device 4 to the heating device and the output of the high-frequency power source (high-frequency induction heating power source 23) is adjusted.
  • the unburned carbon contained in the powder is heated. Therefore, delicate temperature adjustment of unburned carbon is possible.
  • the combustion furnace corresponds to the carbon high temperature oxidation furnace 9
  • the stirring means corresponds to the furnace body 26, the screw blades 26c, and the furnace body support portion 27,
  • the oxygen supply means corresponds to the blowing nozzle 34
  • the combustion means corresponds to the auxiliary burner 33
  • the heating device corresponds to the power heating device 8
  • the transfer tube corresponds to the heat treatment tube 21
  • the oxygen unnecessary heating means corresponds to the induction coil 22, the high frequency induction heating power source 23, the high frequency converter feeder 24, and the control device 25,
  • the induction coils correspond to the induction coil 22, the front coil 22a, the middle coil 22b, and the rear coil 22c
  • the high frequency power source corresponds to the high frequency induction heating power source 23, the power source 23a, the power source 23b, and the power source 23c.
  • the inlet corresponds to the inlet 30a
  • the discharge part corresponds to the discharge port 35
  • the ejection hole corresponds to the ejection hole 33a
  • the opening surface corresponds to the opening surface 30b, but the present invention is not limited to this embodiment, and may be various other embodiments.
  • the power heating device 8 may be a facility that can heat the fly ash raw powder packed in the heat treatment tube 21, and may be configured to be heated by providing a heater around the heat treatment tube 21.
  • an appropriate heater is arranged at the axial center position in the heat treatment tube 21, and fly ash raw powder is placed between the heater and the heat treatment tube 21.
  • the surrounding fly ash raw powder may be heated by the heat of the heater in a clogged state. Even in the case of these configurations, the fly ash raw powder can be heated in a compact manner without requiring oxygen supply.
  • the present invention can be used in industries that require firing (heat reforming) of fly ash.

Abstract

Provided are a low energy cost heating and firing apparatus and a low energy cost firing method for fly ash. A heating and firing apparatus 2 has a combustion furnace for burning and reducing the amount of unburned carbon in a raw powder including fly ash and the unburned carbon. The combustion furnace comprises: a stirring means for stirring the unburned carbon in the furnace; an oxygen supply means for supplying oxygen into the furnace; and a combustion means for burning fuel into the furnace filled with oxygen supplied from the oxygen supply means. A heating device for preheating the unburned carbon to be supplied to the combustion furnace to or above a preheating set temperature set to be higher than a temperature at least 200°C lower than the ignition temperature of the unburned carbon is provided at a stage before the combustion furnace.

Description

フライアッシュの加熱焼成装置及び焼成方法Apparatus and method for heating and firing fly ash
 この発明は、フライアッシュの加熱焼成装置及び焼成方法に関する。 The present invention relates to a fly ash heating and baking apparatus and a baking method.
 火力発電所などで副産されるフライアッシュは、コンクリート用混和材として広く用いられるようになっている。フライアッシュをコンクリート用混和材として使用する場合には、フライアッシュに含まれる未燃カーボン含有量をできるだけ低減しておく必要がある。 Fly ash produced as a by-product at thermal power plants is widely used as a concrete admixture. When fly ash is used as an admixture for concrete, it is necessary to reduce the unburned carbon content contained in fly ash as much as possible.
 例えば、特許文献1には、改質フライアッシュとその製造方法が開示されている。この方法によれば、未燃カーボン含有率が3.90~7.70重量%で平均粒径が18.40~20.80ミクロンメートルの原料フライアッシュを攪拌流動搬送しながら未燃カーボンの自燃温度まで加熱し、続いて加熱温度を600~950℃の温度範囲内に保持して自燃焼成し、次いで間接冷却して200℃以下にして改質フライアッシュを回収することができるとされている。 For example, Patent Document 1 discloses a modified fly ash and a manufacturing method thereof. According to this method, the self-burning of unburned carbon is carried out while stirring and conveying the raw fly ash having an unburned carbon content of 3.90 to 7.70% by weight and an average particle size of 18.40 to 20.80 microns. It is said that the reformed fly ash can be recovered by heating to a temperature, and subsequently maintaining the heating temperature within a temperature range of 600 to 950 ° C. for self-combustion and then indirectly cooling to 200 ° C. or lower. Yes.
特開2008-126117号公報JP 2008-126117 A
 しかし、上述した改質フライアッシュとその製造方法に開示されている装置は、大きな装置であったために、より小型化することが求められていた。 However, since the apparatus disclosed in the above-described modified fly ash and the manufacturing method thereof is a large apparatus, there has been a demand for further downsizing.
 本願発明は、上述の問題に鑑みてなされたものであり、小型化したフライアッシュの加熱焼成装置及び焼成方法を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object thereof is to provide a miniaturized fly ash heating and firing apparatus and firing method.
 本願発明は、フライアッシュと未燃カーボンとを含む原粉の前記未燃カーボンを燃焼し減少させる燃焼炉を有する加熱焼成装置であって、前記燃焼炉は、炉内の前記未燃カーボンを撹拌させる撹拌手段と、前記炉内に酸素を供給する酸素供給手段と、前記酸素供給手段から供給された酸素で充満する前記炉内に向けて燃料を燃焼させる燃焼手段とを有し、前記燃焼炉の前段に、前記燃焼炉へ供給する前記原粉中の少なくとも前記未燃カーボンを、前記未燃カーボンの発火温度に対して少なくとも200℃低い温度より高く設定された加熱設定温度以上に加熱する加熱装置を別途備え、前記加熱装置は、前記未燃カーボンのある内部空間での空気を必要とする内部燃焼によらずに前記未燃カーボンを加熱する構成である加熱焼成装置であることを特徴とする。 The present invention is a heating and firing apparatus having a combustion furnace for burning and reducing the unburned carbon of raw powder containing fly ash and unburned carbon, wherein the combustion furnace agitates the unburned carbon in the furnace And a combustion means for burning fuel toward the inside of the furnace filled with oxygen supplied from the oxygen supply means. Heating at least the unburned carbon in the raw powder supplied to the combustion furnace to a heating set temperature higher than a temperature lower by at least 200 ° C. than the ignition temperature of the unburned carbon. An apparatus is provided separately, and the heating apparatus is a heating and firing apparatus configured to heat the unburned carbon without using internal combustion that requires air in an internal space where the unburned carbon exists. The features.
 本願発明により、小型化したフライアッシュの加熱焼成装置及び焼成方法を提供できる。 According to the present invention, a downsized fly ash heating and firing apparatus and firing method can be provided.
フライアッシュの加熱焼成装置及び加熱改質システムの構成を示すブロック図。The block diagram which shows the structure of the heat-baking apparatus and heating reforming system of fly ash. 定量供給装置及び電力加熱装置の構成の詳細を示すブロック図。The block diagram which shows the detail of a structure of a fixed_quantity | feed_rate supply apparatus and an electric power heating apparatus. 炭素高温酸化炉の構成の詳細を示すブロック図。The block diagram which shows the detail of a structure of a carbon high temperature oxidation furnace.
 以下、本願発明の一実施形態を図面と共に説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 図1は、フライアッシュの加熱焼成装置2を含む加熱改質システム1の構成を示すブロック図である。 FIG. 1 is a block diagram showing a configuration of a heat reforming system 1 including a fly ash heating and firing apparatus 2.
 フライアッシュの加熱改質システム1は、フライアッシュ原粉に含有されている未燃カーボンを加熱し燃焼させることによりフライアッシュの改質を行う加熱焼成装置2と、投入されたフライアッシュ原粉を貯留するフライアッシュ貯留器3と、貯留されているフライアッシュ原粉を加熱焼成装置2に定量的に供給する定量供給装置4と、加熱焼成装置2で改質された高温のフライアッシュを冷却する冷却設備5と、加熱燃焼処理時に加熱焼成装置2が排出する排気ガスに含まれる塵等を除去する除塵装置6と、除塵装置6で塵等が除去された排気ガスを加熱改質システム1外に排出する排気装置7と、を備えている。 The fly ash heat reforming system 1 includes a heating and firing apparatus 2 for reforming fly ash by heating and burning unburned carbon contained in the fly ash raw powder, and the supplied fly ash raw powder. The stored fly ash reservoir 3, the quantitative supply device 4 that quantitatively supplies the stored fly ash raw powder to the heating and baking apparatus 2, and the high-temperature fly ash modified by the heating and baking apparatus 2 are cooled. The cooling equipment 5, the dust removing device 6 that removes dust and the like contained in the exhaust gas discharged by the heating and firing device 2 during the heat combustion process, and the exhaust gas from which dust and the like have been removed by the dust removing device 6 are removed from the heating reforming system 1. And an exhaust device 7 for discharging the gas.
 尚、加熱焼成装置2は、誘導加熱により未燃カーボンを加熱する電力加熱装置8(加熱装置)と、未燃カーボンを燃焼させる炭素高温酸化炉9(燃焼炉)とを備えている。 
 また、フライアッシュ原粉は、シリカ(SiO2)が主成分であり、アルミナ(Al2O3)が含まれていても良い。
The heating and firing apparatus 2 includes a power heating apparatus 8 (heating apparatus) that heats unburned carbon by induction heating, and a carbon high-temperature oxidation furnace 9 (combustion furnace) that burns unburned carbon.
In addition, the fly ash raw powder is mainly composed of silica (SiO 2) and may contain alumina (Al 2 O 3).
   <フライアッシュ貯留器>
 フライアッシュ貯留器3は、軸心が上下方向を向いた内部が中空の筒状で、上端に投入口3cが設けられ、当該筒状の下部は下方に向かって縮径し、当該筒状の下部下端には、連結口3aを下端に備えた連結管3bが連結されている。そして、連結口3aを介して、フライアッシュ貯留器3は、定量供給装置4の供給管17に連結されている。
<Fly ash reservoir>
The fly ash reservoir 3 has a hollow cylindrical shape whose axis is directed in the vertical direction, and is provided with an inlet 3c at the upper end. The cylindrical lower portion is reduced in diameter toward the lower side, A connecting pipe 3b having a connecting port 3a at the lower end is connected to the lower lower end. The fly ash reservoir 3 is connected to the supply pipe 17 of the quantitative supply device 4 through the connection port 3a.
 フライアッシュ貯留器3は、投入口3cに投入されたフライアッシュ原粉を貯留し、重力落下により連結口3aから定量供給装置4へフライアッシュ原粉を供給する。これにより、フライアッシュ貯留器3は、フライアッシュ原粉を原料とする原料ホッパーとして機能する。 The fly ash reservoir 3 stores the fly ash raw powder charged into the charging port 3c, and supplies the fly ash raw powder from the connection port 3a to the quantitative supply device 4 by gravity drop. Thereby, the fly ash reservoir 3 functions as a raw material hopper using fly ash raw powder as a raw material.
 フライアッシュ貯留器3は、予熱装置10を備えている。 
 予熱装置10は、炭素高温酸化炉9の排気ガス口9aに一端が連結されて排気ガスを吸引する余熱供給パイプ13と、この余熱供給パイプ13の他端に連結されてフライアッシュ貯留器3の近接位置で前記排気ガスを循環させる環状の余熱循環パイプ11と、余熱循環パイプ11に一端が連結されて前記排気ガスを他端の除塵装置6へ排出するための排出パイプ14と、排出パイプ14の途中に設けられて排気ガスの排気の実行/停止を切り替えるコントロール弁16と、余熱循環パイプ11で循環する排気ガスの温度を検知して前記コントロール弁16による排気の実行/停止の切り替え信号とする温度センサ15と、を備えている。
The fly ash reservoir 3 includes a preheating device 10.
The preheating device 10 is connected to the exhaust gas port 9a of the carbon high-temperature oxidation furnace 9 and connected to the remaining heat supply pipe 13 for sucking the exhaust gas, and connected to the other end of the remaining heat supply pipe 13 and connected to the fly ash reservoir 3. An annular preheat circulation pipe 11 that circulates the exhaust gas at a close position, a discharge pipe 14 that is connected to the preheat circulation pipe 11 at one end and discharges the exhaust gas to the dust removing device 6 at the other end, and a discharge pipe 14 And a control valve 16 for switching execution / stop of exhaust gas, and a signal for switching exhaust execution / stop by the control valve 16 by detecting the temperature of the exhaust gas circulated in the residual heat circulation pipe 11. And a temperature sensor 15 for performing the operation.
 これにより、炭素高温酸化炉9の排気ガス口9aから余熱供給パイプ13を通じて200℃以上の高温の排気ガスの供給を受け、この高温の排気ガスをフライアッシュ貯留器3の近傍で余熱循環パイプ11により循環させてフライアッシュ貯留器3内のフライアッシュ原粉を予熱し、余熱循環パイプ11内の排気ガスの温度が予め設定された所定温度にまで低下するとコントロール弁16により弁を開いて排出パイプ14から排気ガスを除塵装置6へ排出する。排気ガスの排出により余熱循環パイプ11の排気ガスが減少するに伴って余熱供給パイプ13から200℃以上の高温の排気ガスが供給され、低下していた余熱循環パイプ11内の排気ガスの温度が高温となって所定温度に維持される。 As a result, a high-temperature exhaust gas of 200 ° C. or higher is supplied from the exhaust gas port 9 a of the carbon high-temperature oxidation furnace 9 through the residual heat supply pipe 13, and this high-temperature exhaust gas is supplied to the residual heat circulation pipe 11 in the vicinity of the fly ash reservoir 3. The fly ash raw powder in the fly ash reservoir 3 is preheated and the exhaust gas in the residual heat circulation pipe 11 is lowered to a predetermined temperature, and the control valve 16 opens the discharge pipe to discharge the exhaust pipe. The exhaust gas is discharged from 14 to the dust removing device 6. As the exhaust gas in the residual heat circulation pipe 11 decreases due to the exhaust gas exhaust, a high temperature exhaust gas of 200 ° C. or higher is supplied from the residual heat supply pipe 13, and the temperature of the exhaust gas in the residual heat circulation pipe 11 that has decreased is reduced. High temperature is maintained at a predetermined temperature.
 尚、所定温度は、この実施例では、200℃に設定されているが、200℃に限るものではない。 
 最終的に、余熱循環パイプ11から排出された低温の排気ガスは、除塵装置6を介して、排気装置7から加熱改質システム1外に排出される。
The predetermined temperature is set to 200 ° C. in this embodiment, but is not limited to 200 ° C.
Finally, the low-temperature exhaust gas discharged from the residual heat circulation pipe 11 is discharged out of the heating reforming system 1 from the exhaust device 7 via the dust removal device 6.
   <定量供給装置>
 図2に示すように、定量供給装置4は、円筒状で、軸心が略水平方向を向いている供給管17と、供給管17の軸心上に配置され軸回りに回転可能なシャフト18と、シャフト18の外周面に周設されシャフト18と共に回転することにより供給管17内部において予熱されたフライアッシュ原粉を搬送するスクリュー19と、シャフト18を軸回りに回転駆動させる駆動装置20とを備えている。
<Quantitative supply device>
As shown in FIG. 2, the quantitative supply device 4 has a cylindrical shape, a supply pipe 17 whose axis is oriented substantially in the horizontal direction, and a shaft 18 that is disposed on the axis of the supply pipe 17 and that can rotate about the axis. A screw 19 that is provided around the outer peripheral surface of the shaft 18 and rotates together with the shaft 18 to convey the fly ash raw powder preheated inside the supply pipe 17, and a drive device 20 that drives the shaft 18 to rotate about its axis. It has.
 供給管17は、その後端が電力加熱装置8に設けられている加熱処理管21の一端のフランジ21dにフランジ17dで連結されている。すなわち、供給管17と加熱処理管21は、内径が同径で連結口17aを介して一直線に連結されている。供給管17の前段側周壁には、上面に流入口17bが開口され、当該開口にフライアッシュ貯留器3の連結口3aが連結されている。供給管17の前端は、封止板17cにより封止されている。 The supply pipe 17 is connected at its rear end to a flange 21d at one end of a heat treatment pipe 21 provided in the power heating device 8 by a flange 17d. That is, the supply pipe 17 and the heat treatment pipe 21 have the same inner diameter and are connected in a straight line via the connection port 17a. An inlet 17b is opened on the upper surface of the front peripheral wall of the supply pipe 17, and a connection port 3a of the fly ash reservoir 3 is connected to the opening. The front end of the supply pipe 17 is sealed with a sealing plate 17c.
 シャフト18は、封止板17cを貫通して一端が供給管17の連結口17a付近まで到達するよう配置されている。封止板17cから供給管17の外方に突出したシャフト18は、供給管17の外部で、シャフト18が挿通する一対の軸受け20a、20bにより、回転可能に支持されている。  The shaft 18 is disposed so that one end reaches the vicinity of the connection port 17a of the supply pipe 17 through the sealing plate 17c. The shaft 18 that protrudes outward from the supply pipe 17 from the sealing plate 17 c is rotatably supported by a pair of bearings 20 a and 20 b through which the shaft 18 is inserted, outside the supply pipe 17. *
 スクリュー19は、螺旋状の羽根で、シャフト18と共に、供給管17の径方向内側に収容されている。尚、スクリュー19の外径やピッチは、予熱されたフライアッシュ原粉の性状や押し出し量により適宜選定される。 The screw 19 is a spiral blade and is housed inside the supply pipe 17 in the radial direction together with the shaft 18. In addition, the outer diameter and pitch of the screw 19 are appropriately selected depending on the properties of the preheated fly ash raw powder and the amount of extrusion.
 駆動装置20は、電動モータ20gと、電動モータ20gの回転軸20fに取り付けられている駆動用スプロケット20cと、シャフト18の後端に取り付けられている従動用スプロケット20dと、駆動用スプロケット20cと従動用スプロケット20dとを連結するチェーン20eとを備えている。これにより、電動モータ20gの回転力は、回転軸20fを介して、駆動用スプロケット20cに伝達され、さらに、チェーン20eを介して、従動用スプロケット20dに伝達され、最後に、従動用スプロケット20dが取り付けられたシャフト18に伝達される。 The driving device 20 includes an electric motor 20g, a driving sprocket 20c attached to the rotary shaft 20f of the electric motor 20g, a driven sprocket 20d attached to the rear end of the shaft 18, and a driving sprocket 20c. And a chain 20e for connecting the sprocket 20d. As a result, the rotational force of the electric motor 20g is transmitted to the driving sprocket 20c via the rotating shaft 20f, and further to the driven sprocket 20d via the chain 20e. Finally, the driven sprocket 20d is It is transmitted to the attached shaft 18.
 この構造により、シャフト18に伝達される電動モータ20gからの回転力により、スクリュー19は、供給管17内部においてシャフト18と共にシャフト18の軸回りに回転する。他方、フライアッシュ貯留器3に貯蔵されている予熱されたフライアッシュ原粉は、重力により、供給管17の前段側周壁に開設された流入口17bを介して、供給管17の前段に供給され、隙間なく詰まった状態となる。供給管17の前段に供給された予熱されたフライアッシュ原粉は、スクリュー19により、隙間なく詰まった状態のまま供給管17の後方側に徐々に送り出される。そして、供給管17の後端にまで送り出された予熱されたフライアッシュ原粉は、連結口17aを介して、電力加熱装置8の加熱処理管21に供給される。 With this structure, the screw 19 rotates around the axis of the shaft 18 together with the shaft 18 inside the supply pipe 17 by the rotational force from the electric motor 20g transmitted to the shaft 18. On the other hand, the preheated fly ash raw powder stored in the fly ash reservoir 3 is supplied by gravity to the front stage of the supply pipe 17 via the inlet 17b opened on the front side peripheral wall of the supply pipe 17. It becomes a clogged state without a gap. The preheated fly ash raw powder supplied to the front stage of the supply pipe 17 is gradually sent out to the rear side of the supply pipe 17 by the screw 19 without being clogged. And the preheated fly ash raw powder sent out to the rear end of the supply pipe | tube 17 is supplied to the heat processing pipe | tube 21 of the electric power heating apparatus 8 via the connection port 17a.
 また、予熱されたフライアッシュ原粉が移動した後の供給管17の前段には、後続の予熱されたフライアッシュ原粉がフライアッシュ貯留器3から重力落下して連続して供給され、隙間なく詰まった状態が維持される。このため、電動モータ20gの回転数を所定の値に一定に制御することで、予熱されたフライアッシュ原粉を単位時間当たり所定の一定量で電力加熱装置8に連続して供給できる。尚、隙間なく詰まっているとは、フライアッシュ原粉中の隣り合う粒子間の微小な隙間さえも無いということではなく、隣り合う粒子同士が接触して重なり合っている状態であることを指す。なお、供給管17およびその後段の加熱処理管21内においてフライアッシュ原粉が隙間なく詰まった状態とは、内部空間の半分以上詰まっている状態とすることができ、7割以上詰まっている状態とすることが好ましい。 Further, the preheated fly ash raw powder is continuously supplied by dropping from the fly ash reservoir 3 to the front stage of the supply pipe 17 after the preheated fly ash raw powder has moved, without gaps. The clogged state is maintained. For this reason, the preheated fly ash raw powder can be continuously supplied to the electric power heating device 8 at a predetermined fixed amount per unit time by controlling the rotation speed of the electric motor 20g to a predetermined value. The term “packed without gaps” does not mean that there are not even minute gaps between adjacent particles in the fly ash raw powder, but indicates that the adjacent particles are in contact and overlapping. The state in which the fly ash raw powder is clogged in the supply pipe 17 and the heat treatment pipe 21 in the subsequent stage without crevice is a state in which more than half of the internal space is clogged, and is a state in which more than 70% is clogged. It is preferable that
   <加熱焼成装置>
 加熱焼成装置2は、フライアッシュ原粉(特に内部に含まれている未燃カーボン)を加熱する電力加熱装置8(加熱装置)と、未燃カーボンを燃焼させる炭素高温酸化炉9(燃焼炉)とを備えている。
<Heating and firing equipment>
The heating and firing apparatus 2 includes a power heating apparatus 8 (heating apparatus) for heating fly ash raw powder (particularly unburned carbon contained therein), and a carbon high-temperature oxidation furnace 9 (combustion furnace) for burning unburned carbon. And.
   <電力加熱装置>
 電力加熱装置8は、加熱処理管21と、誘導コイル22と、高周波誘導加熱電源(高周波インバータ)23と、誘導コイル22と高周波誘導加熱電源23との間に接続された高周波変換器フィーダ24と、高周波誘導加熱電源23の出力をコンピュータ制御する制御装置25と、加熱処理管21に取り付けられ温度の測定をする温度センサTSと、を備えている。
<Power heating device>
The power heating device 8 includes a heat treatment tube 21, an induction coil 22, a high frequency induction heating power source (high frequency inverter) 23, and a high frequency converter feeder 24 connected between the induction coil 22 and the high frequency induction heating power source 23. A control device 25 that controls the output of the high-frequency induction heating power source 23 by a computer and a temperature sensor TS that is attached to the heat treatment tube 21 and measures temperature are provided.
 加熱処理管21は、軸心が略水平方向を向いた内部が中空の円筒状である。加熱処理管21の円筒状の内径は、200ミリメートル以下とすることができ、100ミリメートル以下が好ましく、この実施例では100ミリメートル以下に構成されている。尚、加熱処理管21を、円柱状の中心軸を内部に備えた円筒状としてもよい。この場合、加熱処理管21における円筒状の内周面と中心軸表面との距離(半径方向距離)を100ミリメートル以下とすることができ、50ミリメートル以下とすることが好ましい。加熱処理管21の円筒状の両端には、フランジ21d、21eが設けられている。加熱処理管21の前端のフランジ21dは、定量供給装置4の供給管17に連結され、加熱処理管21の後端のフランジ21eは、炭素高温酸化炉9の投入部30に連結されている。供給管17と加熱処理管21と投入部30とは、管の内径が同一であり、軸心がつながるように一直線上に配置接続されている。加熱処理管21は、鉄を多く含んだ炭素材で作製されている。尚、加熱処理管21は、最低でも発火温度(自燃温度)である600℃の耐熱性のある磁性体金属で作製するのが好ましい。また、加熱処理管21の内面は、凹凸を設ける必要はなく、フライアッシュ原料が滑り動くような表面粗さの細かいもので良い。こうすることで、フライアッシュ原粉をスムーズに移動させつつ加熱することができる。なお、加熱処理管21の内面は、鏡面のようにまで磨いた表面でなければ、若干の凹凸があってもよい。 The heat treatment tube 21 has a hollow cylindrical shape with the axis centering substantially in the horizontal direction. The cylindrical inner diameter of the heat treatment tube 21 can be 200 millimeters or less, preferably 100 millimeters or less, and in this embodiment is configured to 100 millimeters or less. Note that the heat treatment tube 21 may have a cylindrical shape having a columnar central axis therein. In this case, the distance (radial direction distance) between the cylindrical inner peripheral surface of the heat treatment tube 21 and the central axis surface can be set to 100 millimeters or less, and preferably 50 millimeters or less. Flange 21d, 21e is provided at both cylindrical ends of the heat treatment tube 21. A flange 21 d at the front end of the heat treatment tube 21 is connected to the supply pipe 17 of the quantitative supply device 4, and a flange 21 e at the rear end of the heat treatment tube 21 is connected to the charging unit 30 of the carbon high temperature oxidation furnace 9. The supply pipe 17, the heat treatment pipe 21, and the charging section 30 have the same inner diameter and are arranged and connected in a straight line so that the axes are connected. The heat treatment tube 21 is made of a carbon material containing a large amount of iron. The heat treatment tube 21 is preferably made of a magnetic metal having heat resistance of 600 ° C. which is at least an ignition temperature (self-combustion temperature). Further, the inner surface of the heat treatment tube 21 does not need to be uneven, and may have a fine surface roughness that allows the fly ash raw material to slide. By doing so, the fly ash raw powder can be heated while being smoothly moved. It should be noted that the inner surface of the heat treatment tube 21 may be slightly uneven as long as it is not a polished surface like a mirror surface.
 誘導コイル22は、加熱処理管21の外周に巻き付けるように設けられている。誘導コイル22は、前段から後段に向かって複数段階に設けられ、この実施例では、前段コイル22a、中段コイル22b、及び後段コイル22cの3つのコイルで構成されている。そして、前段コイル22aは、加熱処理管21の前段部21aに巻かれ、中段コイル22bは、加熱処理管21の中段部21bに巻かれ、後段コイル22cは、加熱処理管21の後段部21cに巻かれている。 The induction coil 22 is provided so as to be wound around the outer periphery of the heat treatment tube 21. The induction coil 22 is provided in a plurality of stages from the front stage to the rear stage. In this embodiment, the induction coil 22 is composed of three coils: a front stage coil 22a, a middle stage coil 22b, and a rear stage coil 22c. The front coil 22a is wound around the front part 21a of the heat treatment tube 21, the middle coil 22b is wound around the middle part 21b of the heat treatment tube 21, and the rear coil 22c is wound around the rear part 21c of the heat treatment tube 21. It is rolled up.
 また、温度センサTSは、各段の誘導コイル22に対応して夫々1つずつ設けられ、この実施例では、加熱処理管21の前段部21a、中段部21b、及び後段部21cに、温度センサTS1,TS2、及びTS3が、夫々設けられている。そして、温度センサTS1,TS2、及びTS3が測定し得られた各測定温度のデータは、制御装置25に取得される。 Further, one temperature sensor TS is provided corresponding to each induction coil 22, and in this embodiment, the temperature sensor TS is provided in the front stage portion 21 a, the middle stage portion 21 b, and the rear stage portion 21 c of the heat treatment tube 21. TS1, TS2, and TS3 are provided respectively. Then, the data of each measured temperature obtained by the temperature sensors TS1, TS2, and TS3 is acquired by the control device 25.
 高周波誘導加熱電源23は、高周波の交流電流を出力することのできる電源である。高周波誘導加熱電源23が出力する高周波は、20kHz~200kHzとすることができ、20kHz~100kHzとすることが好ましい。また、高周波誘導加熱電源23は、外部信号による出力制御が可能である。高周波誘導加熱電源23は、各段の誘導コイル22に対応して、電源23a、電源23b、及び電源23cの3台が用意されており、夫々高周波変換器フィーダ24a、高周波変換器フィーダ24b、及び高周波変換器フィーダ24cを介して、前段コイル22a、中段コイル22b、及び後段コイル22cに接続されている。 The high frequency induction heating power source 23 is a power source that can output a high frequency alternating current. The high frequency output from the high frequency induction heating power source 23 can be 20 kHz to 200 kHz, and preferably 20 kHz to 100 kHz. The high-frequency induction heating power source 23 can be controlled by an external signal. The high-frequency induction heating power source 23 includes three units of a power source 23a, a power source 23b, and a power source 23c corresponding to the induction coil 22 of each stage. The high-frequency converter feeder 24a, the high-frequency converter feeder 24b, and The high-frequency converter feeder 24c is connected to the front-stage coil 22a, the middle-stage coil 22b, and the rear-stage coil 22c.
 制御装置25は、加熱処理管21の前段部21a、中段部21b、及び後段部21cの温度が、夫々各設定温度T1,T2,及びT3に一定に保持されるように、高周波誘導加熱電源23の出力の制御をする。設定温度T3は、未燃カーボンの発火温度(自燃温度)以上に設定するのが好ましく、設定温度T2は設定温度T3の2/3程度の温度に設定するのが好ましく、設定温度T1は設定温度T3の1/3程度の温度に設定するのが好ましい。尚、上述の2/3程度の温度や1/3程度の温度は、摂氏0℃を基準とする発火温度の2/3程度や1/3程度の温度をいう。この実施例では、前段部21a、中段部21b、及び後段部21cの設定温度T1,T2,及びT3は、夫々200℃、400℃、及び600℃に設定されている。このように、前段から後段へ段階的に温度を高めており、加熱前の温度から最後段の加熱温度まで線形に温度が上昇するように各位置での加熱温度を線形に設定している。最後段となる後段部21cの設定温度T3を発火温度(自燃温度)である600℃とし、その前段の設定温度をそれより低くしておくことで、途中で発火(自燃)が始まり暴走することを防止している。また、制御装置25は、上述の定量供給装置4に備えられた電動モータ20gとも信号線で接続されており、電動モータ20gの回転数の制御もできるようになっている。 The control device 25 includes a high-frequency induction heating power source 23 so that the temperatures of the front stage part 21a, the middle stage part 21b, and the rear stage part 21c of the heat treatment tube 21 are kept constant at the set temperatures T1, T2, and T3, respectively. Control the output of. The set temperature T3 is preferably set to be equal to or higher than the ignition temperature (self-combustion temperature) of unburned carbon, the set temperature T2 is preferably set to about 2/3 of the set temperature T3, and the set temperature T1 is set to the set temperature. It is preferable to set the temperature to about 1/3 of T3. The above-mentioned temperature of about 2/3 or about 1/3 refers to a temperature of about 2/3 or about 1/3 of the ignition temperature based on 0 ° C. In this embodiment, the set temperatures T1, T2, and T3 of the front stage portion 21a, the middle stage portion 21b, and the rear stage portion 21c are set to 200 ° C., 400 ° C., and 600 ° C., respectively. In this way, the temperature is increased stepwise from the front stage to the rear stage, and the heating temperature at each position is set linearly so that the temperature rises linearly from the temperature before heating to the heating temperature of the last stage. By setting the set temperature T3 of the rear stage 21c, which is the last stage, to 600 ° C, which is the ignition temperature (self-combustion temperature), and lowering the set temperature of the preceding stage, ignition (self-combustion) starts and runs out of control. Is preventing. The control device 25 is also connected to the electric motor 20g provided in the above-described quantitative supply device 4 through a signal line, and can control the rotation speed of the electric motor 20g.
 加熱処理管21の前段部21aには、加熱処理管21に連結された定量供給装置4から、予熱されたフライアッシュ原粉が隙間なく詰まった状態で供給される。このとき、供給され始めた最初の部分のフライアッシュ原粉は崩れながら供給されて上部まで詰まっていなくとも、フライアッシュ原粉が押し出されてくるにつれて加熱処理管21の管内の上部までフライアッシュ原粉が詰まった状態になっていく。こうして、フライアッシュ原粉は、前段部21a、中段部21b、後段部21cと順番に押し出され、加熱処理管21の各部内に詰まった状態となっていく。従って、加熱処理管21内において、フライアッシュ原粉は、撹拌されることがなく、流動も殆どなく、フライアッシュ原粉同士の相対位置があまり変化しない詰まった状態で移動していく。 The preheated fly ash raw powder is supplied to the front stage portion 21a of the heat treatment tube 21 from the quantitative supply device 4 connected to the heat treatment tube 21 in a state of being packed without any gaps. At this time, even if the first portion of the fly ash raw powder that has started to be supplied is supplied while collapsing and is not clogged up to the upper part, the fly ash raw powder reaches the upper part of the heat treatment tube 21 as the fly ash raw powder is pushed out. The powder becomes clogged. Thus, the fly ash raw powder is pushed out in the order of the front part 21 a, the middle part 21 b, and the rear part 21 c, and becomes packed in each part of the heat treatment tube 21. Therefore, in the heat treatment tube 21, the fly ash raw powder is not agitated, hardly flows, and moves in a packed state where the relative positions of the fly ash raw powders do not change so much.
 前段コイル22a、中段コイル22b、後段コイル22cには、高周波変換器フィーダ24a,24b,24cを介して、電源23a,23b,23cから夫々交流電流が出力される。これにより、交流電流が流れる前段コイル22a、中段コイル22b、後段コイル22cの周り、すなわち前段部21a、中段部21b、後段部21cの各内部に、磁界が生じる。磁性体金属により形成されている加熱処理管21は、前段部21a、中段部21b、後段部21cの各位置において、当該磁界に誘導されて渦電流が流れるようになる。そして、加熱処理管21に流れる渦電流は、加熱処理管21自身の抵抗により熱を発生し(すなわち誘導加熱される)、この熱により、前段部21a、中段部21b、後段部21c内のフライアッシュ原粉を熱する。さらに、フライアッシュ原粉に数%程度含まれている未燃カーボンは、導電性を有しているため、前段部21a、中段部21b、後段部21cにて夫々誘導加熱される。
 加熱処理管21の内部は、フライアッシュ原粉が詰まっていて酸素(空気)が殆ど無い状態、言い換えれば未燃カーボンの発火(自燃)に必要な量の酸素(空気)が無い状態、さらに言えば、フライアッシュ原粉に酸素(空気)が殆ど触れない状態(フライアッシュや未燃カーボン等の粒子が互いに接触し合っている隙間に存在している酸素(空気)程度しか触れない状態)に保たれている。このため、加熱処理管21の内部で未燃カーボンが発火(自燃)して想定温度よりも温度上昇することを防止できる。
An alternating current is output from the power supplies 23a, 23b, and 23c to the front coil 22a, the middle coil 22b, and the rear coil 22c via the high- frequency converter feeders 24a, 24b, and 24c, respectively. Thereby, a magnetic field is generated around the front coil 22a, the middle coil 22b, and the rear coil 22c through which an alternating current flows, that is, inside each of the front stage 21a, the middle stage 21b, and the rear stage 21c. In the heat treatment tube 21 formed of a magnetic metal, an eddy current flows by being induced by the magnetic field at each position of the front stage portion 21a, the middle stage portion 21b, and the rear stage portion 21c. The eddy current flowing in the heat treatment tube 21 generates heat (that is, induction heating) due to the resistance of the heat treatment tube 21 itself, and this heat causes fly in the front stage portion 21a, the middle stage portion 21b, and the rear stage portion 21c. Heat the ash powder. Furthermore, since the unburned carbon contained in fly ash raw powder by several percent has conductivity, it is induction-heated at the front-stage part 21a, the middle-stage part 21b, and the rear-stage part 21c, respectively.
The inside of the heat treatment tube 21 is in a state where the fly ash raw powder is clogged and there is almost no oxygen (air), in other words, there is no amount of oxygen (air) necessary for ignition (self-combustion) of unburned carbon. For example, in a state where oxygen (air) hardly touches the fly ash raw powder (a state where only oxygen (air) present in a gap where particles such as fly ash and unburned carbon are in contact with each other) It is kept. For this reason, it is possible to prevent unburned carbon from igniting (self-combustion) inside the heat treatment tube 21 and raising the temperature from the assumed temperature.
 制御装置25は、温度センサTS1,TS2,TS3が測定した測定温度データを取得する。制御装置25は、取得した夫々の測定温度が前段部21a、中段部21b、後段部21cの各設定温度T1,T2,T3と比較して、高い部位には出力低下の信号を、逆に低い部位には出力上昇の信号を、電源23a,23b,23cに夫々送信する。信号を受信した電源23a,23b,23cは、自身の受信信号に従って、出力を低下もしくは上昇させる。このようにして、温度センサTS1,TS2,TS3の測定温度データを基に、制御装置25が電源23a,23b,23cの出力を制御することにより、前段部21a、中段部21b、後段部21cの各温度は、夫々設定温度T1,T2,T3に近づけられ、一定に保持される。 The control device 25 acquires measured temperature data measured by the temperature sensors TS1, TS2, TS3. The control device 25, on the contrary, lowers the output decrease signal at a high portion compared to the set temperatures T1, T2, T3 of the front stage portion 21a, the middle stage portion 21b, and the rear stage portion 21c. An output increase signal is transmitted to each of the power supplies 23a, 23b, and 23c. The power supplies 23a, 23b, and 23c that have received the signal reduce or increase the output according to their received signals. In this way, the control device 25 controls the outputs of the power supplies 23a, 23b, and 23c based on the measured temperature data of the temperature sensors TS1, TS2, and TS3, so that the front stage 21a, the middle stage 21b, and the rear stage 21c are controlled. Each temperature is brought close to the set temperature T1, T2, T3 and kept constant.
 ところで、フライアッシュ原粉に含まれる未燃カーボンの含有量は、数%程度であるが、一定ではなく、ばらつきがあり、しかも、正確に把握することが困難である。そのため、未燃カーボンの含有量の違いにより、誘導加熱による未燃カーボンの発熱量は変動する。この発熱量の変動は、さらに、前段部21a、中段部21b、後段部21cの温度を変動させる原因となる。そのため、前段部21a、中段部21b、後段部21cの温度を、設定温度T1,T2,T3に一定に保持するためには、上述の電源23a,23b,23cの出力を大きく増減させなければならない場合も生じ得る。しかし、電源23a,23b,23cには、適正な出力範囲があり、その適正な出力範囲を超えての出力は、電源23aに過重な負荷が掛かり、好ましいものではない。そこで、電源23a,23b,23cの出力の制御に加えて、加熱処理管21に供給される単位時間あたりのフライアッシュ原粉に含まれる未燃カーボン量が一定になるような新たな制御を付加している。すなわち、温度センサTS3の測定温度データを基に、後段部21cの温度が設定温度T3に一定になるように、制御装置25は、定量供給装置4に備えられた電動モータ20gの回転数を増減させるようになっている。つまり、制御装置25は、電動モータ20gの回転数の制御も行うようになっている。 Incidentally, the content of unburned carbon contained in the fly ash raw powder is about several percent, but it is not constant and varies, and it is difficult to accurately grasp. Therefore, the calorific value of unburned carbon due to induction heating varies depending on the difference in the content of unburned carbon. This variation in the amount of generated heat further causes the temperature of the front stage part 21a, the middle stage part 21b, and the rear stage part 21c to fluctuate. Therefore, in order to keep the temperatures of the front stage part 21a, the middle stage part 21b, and the rear stage part 21c constant at the set temperatures T1, T2, and T3, the outputs of the power supplies 23a, 23b, and 23c must be greatly increased or decreased. Cases can also arise. However, the power supplies 23a, 23b, and 23c have an appropriate output range, and an output exceeding the appropriate output range is not preferable because an excessive load is applied to the power supply 23a. Therefore, in addition to controlling the outputs of the power supplies 23a, 23b, and 23c, new control is added so that the amount of unburned carbon contained in the fly ash raw powder per unit time supplied to the heat treatment tube 21 is constant. is doing. That is, based on the measured temperature data of the temperature sensor TS3, the control device 25 increases or decreases the number of rotations of the electric motor 20g provided in the quantitative supply device 4 so that the temperature of the rear stage portion 21c becomes constant at the set temperature T3. It is supposed to let you. That is, the control device 25 also controls the rotational speed of the electric motor 20g.
 ここで、電源23a,23b,23cの出力の制御については、温度センサTS1,TS2,TS3の測定温度データを基に夫々個別に実行し、電動モータ20gの回転数の制御については、最後段である温度センサTS3の測定温度データを基に実行する。このようにすることで、各制御を簡潔にしつつ、電力加熱装置8の加熱処理管21から炭素高温酸化炉9へ供給する際のフライアッシュ原粉の温度を目的の温度(この実施例では600℃)に確実に高めることができる。 Here, the outputs of the power supplies 23a, 23b, and 23c are individually controlled based on the measured temperature data of the temperature sensors TS1, TS2, and TS3, and the rotation speed of the electric motor 20g is controlled at the last stage. This is executed based on measured temperature data of a certain temperature sensor TS3. By doing in this way, while making each control simple, the temperature of the fly ash raw powder at the time of supplying from the heat processing pipe | tube 21 of the electric power heating apparatus 8 to the carbon high temperature oxidation furnace 9 is made into the target temperature (in this embodiment, 600). ℃) can be reliably increased.
 以上のように、制御装置25は、電源23cの出力の制御に加えて、電動モータ20gの回転数の制御も組み合わせたカスケード制御を行っている。そのため、未燃カーボンの微妙な温度調整が可能である。これにより、後段部21c内のフライアッシュ原粉の温度は、後段部21cの設定温度T3に、より精度よく保持される。 As described above, the control device 25 performs cascade control that combines control of the number of revolutions of the electric motor 20g in addition to control of the output of the power source 23c. Therefore, delicate temperature adjustment of unburned carbon is possible. Thereby, the temperature of the fly ash raw powder in the rear stage part 21c is more accurately maintained at the set temperature T3 of the rear stage part 21c.
 このようにして、加熱処理管21内に供給されたフライアッシュ原粉が、酸素の供給が無くほぼ無酸素状態の加熱処理管21内を移動する間に、フライアッシュ原粉及びこれに含まれる未燃カーボンは、前段コイル22a、中段コイル22b、及び後段コイル22cの誘導加熱により段階的に加熱される加熱処理管21によって段階的に加熱される。そして、設定温度T3にまで加熱された未燃カーボンを含むフライアッシュ原粉は、次工程の炭素高温酸化炉9に投入される。 In this way, the fly ash raw powder supplied into the heat treatment tube 21 is contained in the fly ash raw powder and the same while moving in the heat treatment tube 21 in a substantially oxygen-free state without supply of oxygen. The unburned carbon is heated stepwise by the heat treatment tube 21 that is heated stepwise by induction heating of the front coil 22a, the middle coil 22b, and the rear coil 22c. Then, the fly ash raw powder containing unburned carbon heated to the set temperature T3 is put into the carbon high-temperature oxidation furnace 9 of the next step.
 尚、設定温度T3は、この実施例では、600℃に設定されているが、未燃カーボンの発火温度(例えば600℃)に対して少なくとも200℃低い温度(例えば400℃)より高く設定された予熱設定温度以上に設定してもよい。 The set temperature T3 is set to 600 ° C. in this embodiment, but is set higher than a temperature (for example, 400 ° C.) that is at least 200 ° C. lower than the ignition temperature of the unburned carbon (for example, 600 ° C.). You may set more than preheating preset temperature.
 また、この実施例では、加熱処理管21内のフライアッシュ原粉を加熱するのに、誘導加熱を用いたが、誘導加熱に限るものではない。加熱処理管21内のフライアッシュ原粉をほぼ無酸素状態で加熱できるのであれば、例えば、外部熱源を用いて、加熱処理管21の外部から加熱する、あるいは加熱処理管21の軸心部に加熱装置を設けて内側から加熱するようにしてもよい。 In this embodiment, induction heating is used to heat the fly ash raw powder in the heat treatment tube 21, but the present invention is not limited to induction heating. If the fly ash raw powder in the heat treatment tube 21 can be heated in an almost oxygen-free state, for example, it is heated from the outside of the heat treatment tube 21 by using an external heat source, or in the axial center portion of the heat treatment tube 21. A heating device may be provided to heat from the inside.
 また、この実施例では、未燃カーボンを発火温度以上にまで昇温するために、加熱処理管21を3つの段部に分けて、各段部の設定温度を段階的にT1、T2、及びT3に設定し、3段階で加熱しているが、3段階に限るものではなく、適宜の複数段階とすることができる。この複数段階は、例えば1~5段階で加熱するなど、適宜の段階とすることが好ましい。 Further, in this embodiment, in order to raise the temperature of the unburned carbon to the ignition temperature or higher, the heat treatment tube 21 is divided into three steps, and the set temperatures of the steps are set in steps T1, T2, and Although it is set to T3 and heating is performed in three stages, the heating is not limited to three stages, and may be performed in appropriate plural stages. The plurality of stages are preferably set to appropriate stages such as heating in 1 to 5 stages.
   <炭素高温酸化炉>
 図3に示すように、炭素高温酸化炉9は、軸心が略水平方向を向いた内部が中空の円筒状の窯である炉体26と、炉体26を軸心の回りに回転可能に下部で支持する炉体支持部27と、炉体26の一端部を覆う投入側フード28と、炉体26の他端部を覆う排出側フード29とを備えた回転式の炉である。
<Carbon high temperature oxidation furnace>
As shown in FIG. 3, the carbon high-temperature oxidation furnace 9 has a furnace body 26 that is a hollow cylindrical kiln whose axis is oriented in a substantially horizontal direction, and the furnace body 26 can be rotated around the axis. The rotary furnace includes a furnace body support part 27 supported at the lower part, an input side hood 28 that covers one end part of the furnace body 26, and a discharge side hood 29 that covers the other end part of the furnace body 26.
 炉体26は、全体が略円筒形状であり、投入側フード28に接続される一端にカバー部26bが設けられている。このカバー部26bは、中心に孔の空いた円盤状であり、円盤の外周部が円筒形状の一端の縁に接続された形状となっている。 The furnace body 26 has a substantially cylindrical shape as a whole, and is provided with a cover portion 26 b at one end connected to the input side hood 28. The cover portion 26b has a disk shape with a hole in the center, and the outer peripheral portion of the disk is connected to the edge of one end of the cylindrical shape.
 炉体26の内部には、内側へ凸となる凸状部が内周面に沿ってスクリュー状に連続するスクリュー羽根26cが設けられている。 Inside the furnace body 26, there are provided screw blades 26c in which convex portions that are convex inwardly continue in a screw shape along the inner peripheral surface.
 炉体26のスクリュー羽根26cおよびカバー部26bを含む内面(内側表面)は、酸化アルミ系の耐火材により被覆されて内ライニング26aが形成されている。この内ライニング26aを設けることにより、炉体26は、フライアッシュ原粉が含有する酸化バナジウムに起因する高温下での金属腐食を回避することができ、1000℃程度の耐火性を有することができる。 The inner surface (inner surface) including the screw blades 26c and the cover portion 26b of the furnace body 26 is covered with an aluminum oxide refractory material to form an inner lining 26a. By providing the inner lining 26a, the furnace body 26 can avoid metal corrosion under high temperature caused by vanadium oxide contained in the fly ash raw powder and can have fire resistance of about 1000 ° C. .
 また、この内ライニング26aは、左官職人が家屋や塀の壁に漆喰や土壁を塗ったような凹凸のある仕上がりになっており、金属表面よりも荒い表面になっている。この凹凸は、高低差の平均値が50ミクロン以上ある凹凸とすることができ、高低差の平均値が1cm~5cmとすることが好ましい。内ライニング26aの凹凸により、摩擦力が向上し、自燃するフライアッシュ原粉が炉体26の内面で撹拌されずに塊のような状態で滑るように相対移動することを防止し、凹凸によってフライアッシュ原粉を撹拌させることができる。 
 炉体26の外部には、室内の温度上昇を防止する適宜の冷却装置(図示省略)が設けられている。
Further, the inner lining 26a has an uneven finish such that plasterers applied plaster or earthen walls to the walls of houses and fences, and has a rougher surface than the metal surface. The unevenness can be an unevenness having an average height difference of 50 microns or more, and the average height difference is preferably 1 cm to 5 cm. The unevenness of the inner lining 26a improves the frictional force and prevents the fly ash raw powder that self-combusts from moving relative to the inner surface of the furnace body 26 so as to slide in a lump-like state without stirring. Ash raw powder can be stirred.
An appropriate cooling device (not shown) for preventing a temperature rise in the room is provided outside the furnace body 26.
 炉体支持部27は、炉体26の外周面を下方で回転可能に支持する回転体27aと、回転体27aを設置する設置台27bと、回転体27aに取り付けられた従動側スプロケット27cにチェーン27dを介して連結された駆動側スプロケット27eを駆動する駆動モータ27fとを備えている。これにより、駆動モータ27fの回転数を制御することにより、炉体26の軸心回りの回転速度を変えることができ、設定した回転速度で炉体26を回転させ続けることができる。 The furnace body support portion 27 is chained to a rotating body 27a that rotatably supports the outer peripheral surface of the furnace body 26, an installation base 27b on which the rotating body 27a is installed, and a driven sprocket 27c attached to the rotating body 27a. And a drive motor 27f for driving a drive-side sprocket 27e connected through 27d. Thereby, by controlling the rotational speed of the drive motor 27f, the rotational speed around the axis of the furnace body 26 can be changed, and the furnace body 26 can be kept rotating at the set rotational speed.
 投入側フード28には、電力加熱装置8で加熱されたフライアッシュ原粉を炉体26内に投入するための投入部30と、炉体26内で発生した燃焼ガスを排気ガスとして排出するための排気ガス口9aとが設けられている。 The charging side hood 28 has a charging unit 30 for charging the fly ash raw powder heated by the power heating device 8 into the furnace body 26, and for discharging the combustion gas generated in the furnace body 26 as exhaust gas. And an exhaust gas port 9a.
 投入部30は、投入側フード28を前後に貫通する管で、軸心が炉体26の中心軸とほぼ一致し、一端が電力加熱装置8の加熱処理管21の後端のフランジ21eに連結され、他端が炉体26内で開口し投入口30aを形成している。投入部30の内経は加熱処理管21の内径と同一であり、投入部30の軸心が加熱処理管21の軸心と一致するように構成されている。そして、投入口30aの開口面30bは上方を向いている。この投入口30a付近は、円筒形で続いてきた管の下部が上方へ湾曲した漏出防止部30cが設けられている。 The charging unit 30 is a pipe that penetrates the charging side hood 28 in the front-rear direction. The axis is substantially coincident with the central axis of the furnace body 26, and one end is connected to the flange 21 e at the rear end of the heat treatment pipe 21 of the power heating device 8. The other end is opened in the furnace body 26 to form a charging port 30a. The inner diameter of the charging unit 30 is the same as the inner diameter of the heat treatment tube 21, and the axis of the charging unit 30 is configured to coincide with the axis of the heat processing tube 21. The opening surface 30b of the insertion port 30a faces upward. In the vicinity of the inlet 30a, there is provided a leakage prevention portion 30c in which the lower part of the tube that has been cylindrical and curved upward is curved.
 これにより、電力加熱装置8で加熱された未燃カーボンを含むフライアッシュ原粉は、加熱処理管21から投入部30へ押し出されて供給され、さらに投入口30aから炉体26内に押し出されて投入される。このとき、投入部30内で押し出されてきたフライアッシュ原粉は、漏出防止部30cによってすぐにこぼれ落ちずにせき止められ、さらに押し出されてきた後に上向きの投入口30aから溢れるように炉体26内に投入される。これにより、投入部30内にフライアッシュ原粉が隙間なく詰まっている状態を維持し、特に、加熱処理管21内にフライアッシュ原粉が隙間なく詰まっている状態を維持することができる。従って、フライアッシュ原粉が崩れ出て投入部30内や加熱処理管21内に酸素のある空間が生じることを防止し、投入部30内や加熱処理管21内に燃焼ガスや酸素等が侵入し難いようにし、この酸素のある空間によってフライアッシュ原粉の未燃カーボンが燃焼(発火)することを防止できる。 Thereby, the fly ash raw powder containing unburned carbon heated by the electric power heating device 8 is supplied by being pushed out from the heat treatment tube 21 to the charging unit 30 and further pushed out into the furnace body 26 from the charging port 30a. It is thrown. At this time, the fly ash raw powder pushed out in the charging unit 30 is spilled by the leakage preventing unit 30c without being spilled immediately, and further pushed out and then overflowed from the upward charging port 30a. It is thrown into. Thereby, the state where the fly ash raw powder is packed without gaps in the charging unit 30 can be maintained, and in particular, the state where the fly ash raw powder is packed without gaps in the heat treatment tube 21 can be maintained. Accordingly, the fly ash raw powder is prevented from collapsing and a space with oxygen in the charging unit 30 and the heat treatment tube 21 is prevented, and combustion gas, oxygen and the like enter the charging unit 30 and the heat processing tube 21. This makes it possible to prevent the unburned carbon of the fly ash raw powder from burning (igniting) by this oxygen-containing space.
 なお、投入口30aは、開口の最下端が投入部30の上端と同じ高さからそれより上になるように形成してもよい。この場合、フライアッシュ原粉が投入口30aの開口全面を覆った状態を確実に保ちつつ溢れるようにフライアッシュ原粉を投入できるため、投入口30aから投入部30内部への酸素(空気)の流入を確実に防止でき、投入部30内や加熱処理管21内でフライアッシュ原粉中の未燃カーボンが発火(自燃)し始めることをより確実に防止できる。 In addition, you may form the insertion port 30a so that the lowest end of opening may become above it from the same height as the upper end of the insertion part 30. FIG. In this case, since the fly ash raw powder can be introduced so that the fly ash raw powder overflows while reliably covering the entire opening of the input port 30a, oxygen (air) from the input port 30a to the inside of the input unit 30 can be introduced. Inflow can be reliably prevented, and unburned carbon in the fly ash raw powder can be more reliably prevented from starting to ignite (self-combustion) in the charging unit 30 or the heat treatment tube 21.
 炭素高温酸化炉9は、内部空間に対して少量のフライアッシュ原粉の供給を受け、この少量のフライアッシュ原粉を撹拌しつつ加熱して燃焼させる。なお、炭素高温酸化炉9内のフライアッシュ原粉の量は、内部空間に対して半分以下とすることができ、30%以下とすることが好ましく、10%以下とすることがより好ましく、5%以下とすることがさらに好ましい。 The carbon high temperature oxidation furnace 9 receives a small amount of fly ash raw powder supplied to the internal space, and heats and burns this small amount of fly ash raw powder while stirring. Note that the amount of fly ash raw powder in the carbon high-temperature oxidation furnace 9 can be half or less of the internal space, preferably 30% or less, more preferably 10% or less. % Or less is more preferable.
 排気ガス口9aには、上述の余熱供給パイプ13が連結されている。余熱供給パイプ13には、余熱供給パイプ13から分岐された排気ガス管31が連結されている。排気ガス管31は、熱交換器32を経由して、除塵装置6(図1参照)に連結されている。そのため、排気ガス口9aから排出されて排気ガス管31内を流動する高温の排気ガスは、熱交換器32で冷却された後、除塵装置6に送られる。 The above-described residual heat supply pipe 13 is connected to the exhaust gas port 9a. An exhaust gas pipe 31 branched from the residual heat supply pipe 13 is connected to the residual heat supply pipe 13. The exhaust gas pipe 31 is connected to the dust removing device 6 (see FIG. 1) via the heat exchanger 32. Therefore, the hot exhaust gas discharged from the exhaust gas port 9 a and flowing in the exhaust gas pipe 31 is cooled by the heat exchanger 32 and then sent to the dust removing device 6.
 排出側フード29には、炉体26内に空気(一次エア)と共に燃料を噴出させ燃焼させる助燃バーナー33と、炉体26内に空気(三次エア)を吹き込む複数の吹き込みノズル34と、排出口35が設けられている。 The discharge side hood 29 includes an auxiliary combustion burner 33 for injecting and burning fuel together with air (primary air) into the furnace body 26, a plurality of blowing nozzles 34 for blowing air (tertiary air) into the furnace body 26, and a discharge port 35 is provided.
 助燃バーナー33は、燃料を燃焼させて炉体26内を高温に加熱する。助燃バーナー33は、炉体26の中心軸上に位置し、燃料を噴出させる噴出孔33aがフライアッシュ原粉の投入口30aに対向するように配置されている。 The auxiliary combustion burner 33 burns fuel and heats the inside of the furnace body 26 to a high temperature. The auxiliary combustion burner 33 is located on the central axis of the furnace body 26, and is arranged so that the ejection hole 33a for ejecting fuel faces the inlet 30a for fly ash raw powder.
 複数の吹き込みノズル34は、助燃バーナー33の周囲を囲むようにして配置され、排出側フード29の炉体26内に面する内面に沿って、助燃バーナー33を中心として回転機構(図示せず)により旋回する。詳述すると、複数の吹き込みノズル34は、助燃バーナー33から等距離の位置で互いの間隔も等距離となるように複数が配置されて、炉体26の回転軸方向に見ると吹き込みノズル34が多角形の頂点をなす。この実施例では、炉体26の回転軸方向に見て四角形の各頂点をなすように4つの吹き込みノズル34が配置されている。各複数の吹き込みノズル34は、空気(三次エア)をフライアッシュ原粉の移動方向(図3における右方向)と逆方向(図3における左方向)へ対向流として同量かつ等速で送り込み、助燃バーナー33の周囲の空気量がほぼ等しくなるようにしている。 The plurality of blowing nozzles 34 are arranged so as to surround the auxiliary combustion burner 33, and are swung by a rotation mechanism (not shown) around the auxiliary combustion burner 33 along the inner surface facing the furnace body 26 of the discharge side hood 29. To do. More specifically, a plurality of blowing nozzles 34 are arranged at equal distances from the auxiliary burner 33 so that the distance between them is also equal. When viewed in the direction of the rotation axis of the furnace body 26, the blowing nozzles 34 are arranged. Makes a vertex of the polygon. In this embodiment, four blowing nozzles 34 are arranged so as to form square vertices when viewed in the rotation axis direction of the furnace body 26. Each of the plurality of blowing nozzles 34 feeds air (tertiary air) at the same amount and constant speed as a counterflow in the direction of movement of the fly ash raw powder (right direction in FIG. 3) and the opposite direction (left direction in FIG. 3). The amount of air around the auxiliary burner 33 is made substantially equal.
 助燃バーナー33に供給される空気(一次エア)と吹き込みノズル34から炉体26内に吹き込まれる空気(三次エア)は、外の空気が押込ファン36により取り込まれ熱交換器32を介して炉体26内に送り込まれた空気である。そのため、空気(一次エア)と空気(三次エア)は、熱交換器32において、排気ガス管31を流動する高温の排気ガスとの熱交換により加熱される。これにより、炉体26内部の温度に対する空気(一次エア、三次エア)の温度が低すぎることを防止し、空気(一次エア、三次エア)が炉体26内の温度を低下させることをできるだけ防止している。さらに、これらの一次エアおよび三次エアが炭素高温酸化炉9におけるフライアッシュ原粉投入側に配置された排気ガス口9aから余熱供給パイプ13へ排出されるために、吹き込みノズル34から排気ガス口9aへ向かう対向流が確実に生じ、効率良い酸素供給(空気供給)および燃焼を実施できる。 The air (primary air) supplied to the auxiliary burner 33 and the air (tertiary air) blown into the furnace body 26 from the blow nozzle 34 are taken in by the pushing fan 36 and the furnace body via the heat exchanger 32. 26 is the air sent into the air. Therefore, air (primary air) and air (tertiary air) are heated in the heat exchanger 32 by heat exchange with high-temperature exhaust gas flowing through the exhaust gas pipe 31. This prevents the temperature of the air (primary air and tertiary air) from being too low relative to the temperature inside the furnace body 26 and prevents the air (primary air and tertiary air) from lowering the temperature inside the furnace body 26 as much as possible. is doing. Further, since these primary air and tertiary air are discharged from the exhaust gas port 9a arranged on the fly ash raw powder input side in the carbon high-temperature oxidation furnace 9 to the residual heat supply pipe 13, the exhaust gas port 9a A counterflow toward the head is reliably generated, and efficient oxygen supply (air supply) and combustion can be performed.
 このように、加熱された空気(一次エア)と空気(三次エア)が供給された炉体26内で、複数の吹き込みノズル34が、助燃バーナー33を取り巻くようにして旋回しながら空気(三次エア)を吹き込んでいるため、燃焼効率が高く、また、燃焼に必要な酸素量の供給の制御が容易である。 In this way, in the furnace body 26 to which heated air (primary air) and air (tertiary air) are supplied, a plurality of blowing nozzles 34 swirl around the auxiliary burner 33 while turning the air (tertiary air). ), The combustion efficiency is high, and the supply of the oxygen amount necessary for combustion is easy to control.
 排出口35は、排出側フード29の下部に設けられ、冷却設備5に連結されている。 The discharge port 35 is provided in the lower part of the discharge side hood 29 and is connected to the cooling facility 5.
 投入部30の投入口30aから炉体26内に投入されたフライアッシュ原粉は、軸心回りに回転する炉体26内で、スクリュー羽根26cにより撹拌されながら、排出口35に向かって徐々に移動する。この移動の間に、フライアッシュ原粉に含まれる未燃カーボンは、高温の酸素雰囲気中で燃焼(酸化)されて二酸化炭素と熱を発し除去される。この時の炉体26内の温度は、800~900℃になっている。そして、排出口35に到達したフライアッシュ原粉は冷却設備5に排出される。 The fly ash raw powder charged into the furnace body 26 from the charging port 30a of the charging unit 30 is gradually stirred toward the discharge port 35 while being stirred by the screw blades 26c in the furnace body 26 rotating around the axis. Moving. During this movement, the unburned carbon contained in the fly ash raw powder is burned (oxidized) in a high-temperature oxygen atmosphere to emit carbon dioxide and heat to be removed. The temperature in the furnace body 26 at this time is 800 to 900 ° C. Then, the fly ash raw powder that has reached the discharge port 35 is discharged to the cooling facility 5.
 尚、フライアッシュ原粉に含まれる未燃カーボン量は変動するため、燃焼時間は適宜増減させる必要がある。このため、処理するフライアッシュ原粉に含まれる未燃カーボン量に応じて、炉体支持部27に設けられた駆動モータ27fの回転数を調整する。これにより、炉体26の軸心回りの回転速度が変わり、回転するスクリュー羽根26cにより炉体26内を移動するフライアッシュ原粉の移動速度が調整されて、燃焼時間の増減を調整することができる。こうして、フライアッシュ原粉の移動速度を小さくすれば、炉体26内での滞留時間が長くなって燃焼時間が増加し、逆に移動速度を大きくすれば、炉体26内での滞留時間が短くなって燃焼時間が減少する。 In addition, since the amount of unburned carbon contained in the fly ash raw powder fluctuates, it is necessary to increase or decrease the combustion time as appropriate. For this reason, the rotation speed of the drive motor 27f provided in the furnace body support part 27 is adjusted according to the amount of unburned carbon contained in the fly ash raw powder to be processed. Thereby, the rotational speed around the axial center of the furnace body 26 is changed, and the moving speed of the fly ash raw powder moving in the furnace body 26 is adjusted by the rotating screw blades 26c, thereby adjusting the increase / decrease in the combustion time. it can. Thus, if the moving speed of the fly ash raw powder is reduced, the residence time in the furnace body 26 is lengthened and the combustion time is increased. Conversely, if the moving speed is increased, the residence time in the furnace body 26 is increased. Shortens and burns down.
   <除塵装置>
 図1に示したように、除塵装置6は、前段のサイクロン6aと後段のバグフィルター6bとを備えている。前段のサイクロン6aには、フライアッシュ貯留器3の予熱装置10から、温度が低下した排気ガスを排出するための排出パイプ14と、炭素高温酸化炉9の排気ガス口9aから排出された後、熱交換器32で冷却された排気ガスが流動する排気ガス管31とが、連結されている。
<Dust remover>
As shown in FIG. 1, the dust remover 6 includes a front cyclone 6a and a rear bag filter 6b. In the former cyclone 6a, after being discharged from the preheating device 10 of the fly ash reservoir 3 through the exhaust pipe 14 for exhausting the exhaust gas whose temperature has decreased and the exhaust gas port 9a of the carbon high temperature oxidation furnace 9, An exhaust gas pipe 31 through which the exhaust gas cooled by the heat exchanger 32 flows is connected.
 除塵装置6は、排出パイプ14及び排気ガス管31を介して流入した排気ガスに含まれ粉塵等を、サイクロン6aとバグフィルター6bを用いて除去した後、粉塵等が除去された排気ガスを排気装置7に排出する。 The dust remover 6 removes dust and the like contained in the exhaust gas flowing in through the exhaust pipe 14 and the exhaust gas pipe 31 using the cyclone 6a and the bag filter 6b, and then exhausts the exhaust gas from which the dust and the like are removed. Discharge to device 7.
   <排気装置>
 排気装置7は、除塵装置6で粉塵等が除去された排気ガスを誘引ファン7aで誘引した後、排気塔7bを介して加熱改質システム1外に排出する。
<Exhaust device>
The exhaust device 7 attracts the exhaust gas from which dust or the like has been removed by the dust removal device 6 with the attracting fan 7a, and then exhausts it outside the heating reforming system 1 through the exhaust tower 7b.
   <冷却設備>
 冷却設備5は、炭素高温酸化炉9の排出口35から排出された、含有する未燃カーボンが燃焼により減少したフライアッシュ原粉を受け入れ、冷却処理する。
<Cooling equipment>
The cooling facility 5 receives the fly ash raw powder discharged from the discharge port 35 of the carbon high-temperature oxidation furnace 9 and containing unburned carbon reduced by the combustion, and performs a cooling process.
 以上の構成と動作により、加熱改質システム1は、フライアッシュ原粉に含まれる未燃カーボンを除去して1%未満にすることができる。加熱焼成装置2は、燃焼炉(炭素高温酸化炉9)へ供給するフライアッシュ原粉中の少なくとも未燃カーボンを、未燃カーボンの発火温度に対して少なくとも200℃低い温度より高く設定された加熱設定温度以上に加熱する加熱装置(電力加熱装置8)を、燃焼炉(炭素高温酸化炉9)の前段に備えているため、燃焼炉自体を小規模にすることができ、それにより設備投資を抑制できる。また、燃焼炉で使用する燃料が少なくて済むため、エネルギーコストも抑制できる。 With the above configuration and operation, the heat reforming system 1 can remove unburned carbon contained in the fly ash raw powder to less than 1%. The heating and firing apparatus 2 is a heating in which at least unburned carbon in the fly ash raw powder supplied to the combustion furnace (carbon high temperature oxidation furnace 9) is set higher than a temperature at least 200 ° C. lower than the ignition temperature of the unburned carbon. Since the heating device (electric power heating device 8) for heating above the set temperature is provided in the front stage of the combustion furnace (carbon high temperature oxidation furnace 9), the combustion furnace itself can be made small-scale, thereby reducing the capital investment. Can be suppressed. In addition, since less fuel is used in the combustion furnace, energy costs can be suppressed.
 詳述すると、炭素高温酸化炉9のみによってフライアッシュ原粉を常温(室温)から発火温度まで加熱しようとすると、助燃バーナー33によって大量の燃料と空気を消費して炉体26内部の空間ごとフライアッシュ原粉を加熱する必要がある。このために炉体26内部の広い空間を長く確保する必要が生じる。 More specifically, when the fly ash raw powder is heated only from the carbon high-temperature oxidation furnace 9 from room temperature (room temperature) to the ignition temperature, a large amount of fuel and air are consumed by the auxiliary burner 33 and the entire space inside the furnace body 26 is fried. It is necessary to heat the ash raw powder. For this reason, it is necessary to secure a wide space inside the furnace body 26 for a long time.
 これに対して、発火温度に近く設定されている加熱設定温度以上に電力加熱装置8で加熱しておくことで、炭素高温酸化炉9では、フライアッシュ原粉を発火温度まで高めてさらに未燃カーボンを燃焼除去させる一連の流れのうち、発火温度から未燃カーボンを燃焼除去させる部分のみを処理すればよくなる。このため、処理するフライアッシュ原粉に対して炭素高温酸化炉9によって燃焼させている時間を短縮できる(常温から発火温度まで燃焼させる時間を省略できる)ため、フライアッシュ原粉を燃焼させながら炉体26内で移動させる距離を短縮できる。従って、距離を短縮する分だけ炉体26を小型にでき、炭素高温酸化炉9全体のサイズを小さくできる。 On the other hand, in the carbon high-temperature oxidation furnace 9, the fly ash raw powder is raised to the ignition temperature and further unburned by heating it with the electric power heating device 8 at a heating set temperature that is set close to the ignition temperature. Of the series of flows for burning and removing carbon, only the portion that burns and removes unburned carbon from the ignition temperature may be processed. For this reason, the time during which the fly ash raw powder to be burned is burned by the carbon high-temperature oxidation furnace 9 can be shortened (the time for burning from the normal temperature to the ignition temperature can be omitted). The distance moved within the body 26 can be shortened. Therefore, the furnace body 26 can be reduced in size by reducing the distance, and the overall size of the carbon high temperature oxidation furnace 9 can be reduced.
 さらに、加熱装置は、燃焼炉へ原粉を搬送する搬送管(加熱処理管21)を備え、搬送管内に酸素を供給せずに、未燃カーボンを加熱設定温度以上に加熱する酸素不要加熱手段により構成されている。これにより、搬送管(加熱処理管21)内での空気を必要とする内部燃焼によらずに未燃カーボンを加熱することができるようになる。そのため、加熱装置は大規模化せず、また、熱効率がよい。すなわち、電力加熱装置8は、炉体26内のように空気を供給した燃焼空間を必要とせず、加熱処理管21内に隙間なく詰まっている状態でフライアッシュ原粉を加熱するため、炭素高温酸化炉9と比べて半分以下、さらに言えば1/5以下の大きさにできる。そして、加熱処理管21の周囲からフライアッシュ原粉を直接的に加熱することができるため、効率良く加熱することができる。特に、フライアッシュ原粉中の未燃カーボンを誘導加熱で加熱できるために、直接加熱を実現できる。 Furthermore, the heating device includes a transport pipe (heat treatment pipe 21) for transporting the raw powder to the combustion furnace, and does not supply oxygen into the transport pipe, and the oxygen-free heating means for heating the unburned carbon to a heating set temperature or higher. It is comprised by. As a result, unburned carbon can be heated without relying on internal combustion that requires air in the transport pipe (heat treatment pipe 21). Therefore, the heating device is not increased in scale, and the thermal efficiency is good. That is, the electric power heating device 8 does not require a combustion space in which air is supplied as in the furnace body 26 and heats the fly ash raw powder in a state where the heat treatment tube 21 is packed in the gap without any gap. Compared with the oxidation furnace 9, the size can be reduced to half or less, more specifically, to 1/5 or less. And since fly ash raw powder can be directly heated from the circumference | surroundings of the heat processing pipe | tube 21, it can heat efficiently. In particular, since unburned carbon in the fly ash raw powder can be heated by induction heating, direct heating can be realized.
 加熱装置(電力加熱装置8)は、エネルギー密度の高い高周波電源を用いて、高周波電源から交流電流が供給された誘導コイルの近傍に配置された加熱処理管21を誘導加熱により集中的に加熱する。そのため、未燃カーボンを含むフライアッシュ原粉の高速加熱が可能であり、エネルギー効率も良い。また、装置規模を小さくすることができ、省スペースでコンパクトである。 The heating device (electric power heating device 8) intensively heats the heat treatment tube 21 arranged in the vicinity of the induction coil supplied with the alternating current from the high frequency power supply by induction heating using a high frequency power source having high energy density. . Therefore, high speed heating of fly ash raw powder containing unburned carbon is possible, and energy efficiency is also good. In addition, the scale of the apparatus can be reduced, and it is space-saving and compact.
 燃焼炉(炭素高温酸化炉9)は、加熱装置(電力加熱装置8)で加熱された未燃カーボンを含むフライアッシュ原粉を燃焼炉内に投入する投入口30aと、投入口30aと対向する位置でフライアッシュ原粉が燃焼し改質された改質フライアッシュが排出される排出部(排出口35)とを備え、燃焼炉内において、排出部側に、助燃バーナー33(燃焼手段)の燃料の噴出孔33aが配置されている。これにより、燃焼炉の炉体26内に流入するフライアッシュ原粉の流れと助燃バーナー33から噴出する燃焼ガスの流れとが対向流となるため、フライアッシュ原粉に含まれる未燃カーボンの燃焼反応が促進される。 The combustion furnace (carbon high-temperature oxidation furnace 9) is opposed to the charging port 30a, and a charging port 30a for charging fly ash raw powder containing unburned carbon heated by a heating device (power heating device 8) into the combustion furnace. And a discharge part (discharge port 35) through which the modified fly ash is combusted at the position and the reformed fly ash is discharged, and the auxiliary burner 33 (combustion means) is disposed on the discharge part side in the combustion furnace. A fuel ejection hole 33a is disposed. As a result, the flow of the fly ash raw powder flowing into the furnace body 26 of the combustion furnace and the flow of the combustion gas ejected from the auxiliary combustion burner 33 are opposed to each other, so that the combustion of unburned carbon contained in the fly ash raw powder The reaction is promoted.
 また、投入口30aの開口面30bが上方を向いており、漏出防止部30cが設けられているため、開口面30bから溢れ出るようにしてフライアッシュ原粉が炉体26内に投入される。そのため、炉体26内の燃焼ガスや酸素等は、フライアッシュ原粉が詰まった投入部30の管内に、さらには加熱装置に侵入し難くなっている。従って、電力加熱装置8内では燃焼が生じ難くなっており、電力加熱装置8内で意図せずフライアッシュ原粉中の未燃カーボンが発火して温度が上昇しすぎることを防止できる。 Further, since the opening surface 30b of the charging port 30a faces upward and the leakage preventing portion 30c is provided, the fly ash raw powder is charged into the furnace body 26 so as to overflow from the opening surface 30b. Therefore, the combustion gas, oxygen, and the like in the furnace body 26 are less likely to enter the heating device into the pipe of the charging unit 30 packed with fly ash raw powder. Therefore, it is difficult for combustion to occur in the electric power heating device 8, and unintentional carbon in the fly ash raw powder can be prevented from igniting in the electric power heating device 8 and excessively rising in temperature.
 加熱装置(電力加熱装置8)において、定量供給装置4が加熱装置へ供給するフライアッシュ原粉の供給量と高周波電源(高周波誘導加熱電源23)の出力の少なくとも一方を調整して、フライアッシュ原粉に含まれる未燃カーボンを加熱するようになっている。そのため、未燃カーボンの微妙な温度調整が可能である。 In the heating device (electric power heating device 8), at least one of the supply amount of the fly ash raw powder supplied by the quantitative supply device 4 to the heating device and the output of the high-frequency power source (high-frequency induction heating power source 23) is adjusted. The unburned carbon contained in the powder is heated. Therefore, delicate temperature adjustment of unburned carbon is possible.
 尚、本願発明と実施形態の対応において、
燃焼炉は、炭素高温酸化炉9に対応し、
撹拌手段は、炉体26、スクリュー羽根26c、及び炉体支持部27に対応し、
酸素供給手段は、吹き込みノズル34に対応し、
燃焼手段は、助燃バーナー33に対応し、
加熱装置は、電力加熱装置8に対応し、
搬送管は、加熱処理管21に対応し、
酸素不要加熱手段は、誘導コイル22、高周波誘導加熱電源23、高周波変換器フィーダ24、及び制御装置25に対応し、
誘導コイルは、誘導コイル22、前段コイル22a、中段コイル22b、及び後段コイル22cに対応し、
高周波電源は、高周波誘導加熱電源23、電源23a、電源23b、及び電源23cに対応し、
投入口は、投入口30aに対応し、
排出部は、排出口35に対応し、
噴出孔は、噴出孔33aに対応し、
開口面は、開口面30bに対応するが、本願発明は本実施形態に限られず他の様々な実施形態とすることができる。
In the correspondence between the present invention and the embodiment,
The combustion furnace corresponds to the carbon high temperature oxidation furnace 9,
The stirring means corresponds to the furnace body 26, the screw blades 26c, and the furnace body support portion 27,
The oxygen supply means corresponds to the blowing nozzle 34,
The combustion means corresponds to the auxiliary burner 33,
The heating device corresponds to the power heating device 8,
The transfer tube corresponds to the heat treatment tube 21,
The oxygen unnecessary heating means corresponds to the induction coil 22, the high frequency induction heating power source 23, the high frequency converter feeder 24, and the control device 25,
The induction coils correspond to the induction coil 22, the front coil 22a, the middle coil 22b, and the rear coil 22c,
The high frequency power source corresponds to the high frequency induction heating power source 23, the power source 23a, the power source 23b, and the power source 23c.
The inlet corresponds to the inlet 30a,
The discharge part corresponds to the discharge port 35,
The ejection hole corresponds to the ejection hole 33a,
The opening surface corresponds to the opening surface 30b, but the present invention is not limited to this embodiment, and may be various other embodiments.
 例えば、電力加熱装置8は、加熱処理管21内に詰まっているフライアッシュ原粉を加熱できる設備であればよく、加熱処理管21の周囲にヒーターを設けて加熱する構成としてもよい。また、加熱処理管21の外から加熱することに限らず、加熱処理管21内の軸心位置に適宜のヒーターを配置しておき、このヒーターと加熱処理管21の間にフライアッシュ原粉が詰まっている状態とし、ヒーターの熱によって周囲のフライアッシュ原粉を加熱してもよい。これらの構成の場合であっても、酸素供給を必要とせずにフライアッシュ原粉をコンパクトに加熱することができる。 For example, the power heating device 8 may be a facility that can heat the fly ash raw powder packed in the heat treatment tube 21, and may be configured to be heated by providing a heater around the heat treatment tube 21. In addition to heating from the outside of the heat treatment tube 21, an appropriate heater is arranged at the axial center position in the heat treatment tube 21, and fly ash raw powder is placed between the heater and the heat treatment tube 21. The surrounding fly ash raw powder may be heated by the heat of the heater in a clogged state. Even in the case of these configurations, the fly ash raw powder can be heated in a compact manner without requiring oxygen supply.
 本願発明は、フライアッシュを焼成(加熱改質)することを必要とする産業に利用することができる。 The present invention can be used in industries that require firing (heat reforming) of fly ash.
1…加熱改質システム
2…加熱焼成装置
3…フライアッシュ貯留器
4…定量供給装置
5…冷却設備
6…除塵装置
7…排気装置
8…電力加熱装置
9…炭素高温酸化炉
10…予熱装置
20…駆動装置
21…加熱処理管
22…誘導コイル
23…高周波誘導加熱電源
24…高周波変換器フィーダ
25…制御装置
26…炉体
27…炉体支持部
30…投入部
30a…投入口
30b…開口面
33…助燃バーナー
33a…噴出孔
34…吹き込みノズル
35…排出口
DESCRIPTION OF SYMBOLS 1 ... Heat reforming system 2 ... Heat-firing apparatus 3 ... Fly ash storage device 4 ... Fixed quantity supply device 5 ... Cooling equipment 6 ... Dust removal device 7 ... Exhaust device 8 ... Electric power heating device 9 ... Carbon high temperature oxidation furnace 10 ... Preheating device 20 ... Drive device 21 ... Heat treatment tube 22 ... Induction coil 23 ... High frequency induction heating power supply 24 ... High frequency converter feeder 25 ... Control device 26 ... Furnace body 27 ... Furnace body support part 30 ... Insertion part 30a ... Insertion port 30b ... Opening surface 33 ... Auxiliary burner 33a ... Blowout hole 34 ... Blow nozzle 35 ... Discharge port

Claims (8)

  1.  フライアッシュと未燃カーボンとを含む原粉の前記未燃カーボンを燃焼し減少させる燃焼炉を有する加熱焼成装置であって、
    前記燃焼炉は、炉内の前記未燃カーボンを撹拌させる撹拌手段と、前記炉内に酸素を供給する酸素供給手段と、前記酸素供給手段から供給された酸素で充満する前記炉内に向けて燃料を燃焼させる燃焼手段とを有し、
    前記燃焼炉の前段に、前記燃焼炉へ供給する前記原粉中の少なくとも前記未燃カーボンを、前記未燃カーボンの発火温度に対して少なくとも200℃低い温度より高く設定された加熱設定温度以上に加熱する加熱装置を別途備え、
    前記加熱装置は、前記未燃カーボンのある内部空間での空気を必要とする内部燃焼によらずに前記未燃カーボンを加熱する構成である
    加熱焼成装置。
    A heating and firing apparatus having a combustion furnace for burning and reducing the unburned carbon of the raw powder containing fly ash and unburned carbon,
    The combustion furnace is directed to a stirring means for stirring the unburned carbon in the furnace, an oxygen supply means for supplying oxygen into the furnace, and the furnace filled with oxygen supplied from the oxygen supply means. Combustion means for burning fuel,
    Prior to the combustion furnace, at least the unburned carbon in the raw powder supplied to the combustion furnace is at least a heating set temperature set higher than a temperature that is at least 200 ° C. lower than the ignition temperature of the unburned carbon. Separately equipped with a heating device to heat,
    The heating apparatus is a heating and firing apparatus configured to heat the unburned carbon without using internal combustion that requires air in an internal space where the unburned carbon exists.
  2.  前記加熱装置は、
    前記燃焼炉へ前記原粉を搬送する搬送管と、
    前記搬送管内に酸素を供給せずに、前記搬送管内の前記未燃カーボンを前記加熱設定温度以上に加熱する酸素不要加熱手段とを有する
    請求項1記載の加熱焼成装置。
    The heating device is
    A transport pipe for transporting the raw powder to the combustion furnace;
    The heating and baking apparatus according to claim 1, further comprising oxygen-free heating means for heating the unburned carbon in the transport pipe to the heating set temperature or higher without supplying oxygen into the transport pipe.
  3.  前記酸素不要加熱手段は、誘導コイルと、前記誘導コイルに接続された高周波電源とを有し、
    前記高周波電源から交流電流が供給された前記誘導コイルの近傍に配置された前記搬送管内の前記未燃カーボン又は/及び前記搬送管を誘導加熱により加熱する
    請求項2記載の加熱焼成装置。
    The oxygen-free heating means has an induction coil and a high-frequency power source connected to the induction coil,
    The heating and baking apparatus according to claim 2, wherein the unburned carbon and / or the transport pipe in the transport pipe disposed in the vicinity of the induction coil supplied with an alternating current from the high-frequency power source is heated by induction heating.
  4.  前記燃焼炉は、前記加熱装置で加熱された前記未燃カーボンを含む前記原粉を前記燃焼炉内に投入する投入口と、前記投入口と対向する位置で前記原粉が燃焼して改質された改質フライアッシュを排出する排出部を備え、
    前記燃焼炉内における前記排出部側に、前記燃焼手段の燃料の噴出孔が配置されている
    請求項1から3の何れかに記載の加熱焼成装置。
    The combustion furnace is modified by charging the raw powder containing the unburned carbon heated by the heating device into the combustion furnace, and the raw powder is combusted at a position facing the charging port. A discharge part for discharging the modified fly ash,
    The heating and firing apparatus according to any one of claims 1 to 3, wherein a fuel injection hole of the combustion means is disposed on the discharge portion side in the combustion furnace.
  5.  前記投入口は、開口面が上方を向いている
    請求項4記載の加熱焼成装置。
    The heating and baking apparatus according to claim 4, wherein an opening surface of the charging port faces upward.
  6.  前記加熱装置の前段に、前記原粉を前記加熱装置に供給する定量供給装置を、
    さらに備え、
    前記定量供給装置が前記加熱装置へ供給する前記原粉の供給量と前記高周波電源の出力の少なくとも一方を調整して、前記未燃カーボンを加熱する
    請求項3記載の加熱焼成装置。
    A quantitative supply device that supplies the raw powder to the heating device in the previous stage of the heating device,
    In addition,
    The heating and baking apparatus according to claim 3, wherein the unburned carbon is heated by adjusting at least one of a supply amount of the raw powder supplied to the heating apparatus by the quantitative supply apparatus and an output of the high-frequency power source.
  7.  前記燃焼炉内の燃焼空間体積に対して、前記燃焼炉内の前記フライアッシュが占める体積を3割以下とし、
    かつ、前記搬送管内の加熱空間体積に対して、前記搬送管内の前記フライアッシュが占める体積を8割以上とし、
    前記燃焼空間体積に対して前記加熱空間体積を半分以下とした
    請求項2、3、または6記載の加熱焼成装置。
    With respect to the combustion space volume in the combustion furnace, the volume occupied by the fly ash in the combustion furnace is 30% or less,
    And the volume occupied by the fly ash in the transport pipe is 80% or more of the heating space volume in the transport pipe,
    The heating and baking apparatus according to claim 2, 3, or 6, wherein the heating space volume is less than half of the combustion space volume.
  8.  フライアッシュと未燃カーボンとを含む原粉の前記未燃カーボンを燃焼し減少させる燃焼炉を有する加熱焼成装置であって、前記燃焼炉は、炉内の前記未燃カーボンを撹拌させる撹拌手段と、前記炉内に酸素を供給する酸素供給手段と、前記酸素供給手段から供給された酸素で充満する前記炉内に向けて燃料を燃焼させる燃焼手段と、を有し、前記燃焼炉の前段に、前記燃焼炉へ供給する前記原粉中の少なくとも前記未燃カーボンを、前記未燃カーボンの発火温度に対して少なくとも200℃低い温度より高く設定された加熱設定温度以上に加熱する加熱装置を別途備えた加熱焼成装置を用いて、
    前記原粉中の少なくとも前記未燃カーボンを、前記加熱装置で、前記未燃カーボンのある内部空間での空気を必要とする内部燃焼によらずに前記未燃カーボンの発火温度に対して少なくとも200℃低い温度より高く設定された加熱設定温度以上に加熱し、加熱された前記未燃カーボンを、前記酸素供給手段が供給する酸素が充満し、且つ、前記燃焼手段で燃焼する燃料からの発熱により前記未燃カーボンの発火温度以上に加熱された前記燃焼炉内で、前記未燃カーボンを撹拌手段で撹拌させながら自燃させる焼成方法。
    A heating and firing apparatus having a combustion furnace that burns and reduces the unburned carbon of raw powder containing fly ash and unburned carbon, the combustion furnace comprising stirring means for stirring the unburned carbon in the furnace; An oxygen supply means for supplying oxygen into the furnace; and a combustion means for combusting fuel toward the furnace filled with oxygen supplied from the oxygen supply means. And a heating device for heating at least the unburned carbon in the raw powder supplied to the combustion furnace to a heating set temperature higher than a temperature lower by at least 200 ° C. than the ignition temperature of the unburned carbon. Using the heating and baking equipment provided,
    At least 200 of the unburned carbon in the raw powder with respect to the ignition temperature of the unburned carbon without using internal combustion that requires air in the internal space where the unburned carbon exists in the heating device. The heating is performed at a temperature higher than the set temperature lower than the lower temperature, and the heated unburned carbon is filled with oxygen supplied by the oxygen supply means, and heat generated from the fuel combusted by the combustion means. A firing method in which the unburned carbon is self-burned while being stirred by a stirring means in the combustion furnace heated to an ignition temperature of the unburned carbon or higher.
PCT/JP2017/005421 2016-07-22 2017-02-15 Heating and firing apparatus and firing method for fly ash WO2018016108A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780039618.0A CN109328119B (en) 2016-07-22 2017-02-15 Heating and firing device and firing method for fly ash

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-144955 2016-07-22
JP2016144955A JP6089198B1 (en) 2016-07-22 2016-07-22 Apparatus and method for heating and firing fly ash

Publications (1)

Publication Number Publication Date
WO2018016108A1 true WO2018016108A1 (en) 2018-01-25

Family

ID=58261776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005421 WO2018016108A1 (en) 2016-07-22 2017-02-15 Heating and firing apparatus and firing method for fly ash

Country Status (4)

Country Link
JP (1) JP6089198B1 (en)
CN (1) CN109328119B (en)
TW (1) TWI662006B (en)
WO (1) WO2018016108A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112212321A (en) * 2019-07-11 2021-01-12 韩国能源技术研究院 Pure oxygen circulating fluidized bed combustion device for reburning fly ash

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6602817B2 (en) * 2017-06-07 2019-11-06 株式会社リュウクス Firing equipment and furnace
JP7068801B2 (en) * 2017-10-31 2022-05-17 日本製紙株式会社 Fly ash manufacturing equipment and manufacturing method
JP7013265B2 (en) * 2018-02-01 2022-01-31 川崎エンジニアリング株式会社 Fly ash heat reformer and heat reforming method
KR102185716B1 (en) * 2019-02-22 2020-12-03 운해이엔씨(주) Apparatus for recycling fly ash having quantum energy generator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160299A (en) * 1997-08-08 1999-03-02 Chichibu Onoda Cement Corp Modification of fly ash
JP2000263016A (en) * 1999-03-23 2000-09-26 Nippon Steel Corp Method and apparatus for treating molten fly ash or combustion fly ash
US20020189497A1 (en) * 2001-06-01 2002-12-19 Emr Microwave Technology Corporation Method of reducing carbon levels in fly ash
JP2007000780A (en) * 2005-06-23 2007-01-11 Taihei Kogyo Co Ltd Coal ash treating facility
JP2008126117A (en) * 2006-11-17 2008-06-05 Oita Technology Licensing Organization Ltd Industrial modified fly ash and its manufacturing method
JP2014087755A (en) * 2012-10-31 2014-05-15 Taiheiyo Cement Corp Production apparatus and method of construction material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8833279B1 (en) * 2005-06-17 2014-09-16 The SEFA Group Inc. Multiple output stream particle beneficiation and chemical processing
US8893892B2 (en) * 2005-12-07 2014-11-25 Taiheiyo Cement Corporation Apparatus and method for removing unburned carbon from fly ash
JP4917309B2 (en) * 2005-12-26 2012-04-18 三井造船株式会社 How to remove unburned carbon in fly ash
JP2011212517A (en) * 2010-03-31 2011-10-27 Jfe Engineering Corp Waste incineration fly ash treatment apparatus and method
CN201688395U (en) * 2010-05-24 2010-12-29 东莞市大步纸业有限公司 Boiler fly ash re-burning device
CN102641884B (en) * 2011-02-17 2015-04-01 章新喜 A processing method for circulating fluidized bed boiler fly ash
CN102620299A (en) * 2012-04-13 2012-08-01 南京信业能源科技有限公司 Cyclone melting device and method for fly ash preheating
CN103542407A (en) * 2013-10-28 2014-01-29 凤阳海泰科能源环境管理服务有限公司 Flying ash recirculating device and flying ash recirculating method for circulating fluidized bed boiler
CN105465791A (en) * 2015-11-18 2016-04-06 北京中科通用能源环保有限责任公司 Fly ash disposal system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160299A (en) * 1997-08-08 1999-03-02 Chichibu Onoda Cement Corp Modification of fly ash
JP2000263016A (en) * 1999-03-23 2000-09-26 Nippon Steel Corp Method and apparatus for treating molten fly ash or combustion fly ash
US20020189497A1 (en) * 2001-06-01 2002-12-19 Emr Microwave Technology Corporation Method of reducing carbon levels in fly ash
JP2007000780A (en) * 2005-06-23 2007-01-11 Taihei Kogyo Co Ltd Coal ash treating facility
JP2008126117A (en) * 2006-11-17 2008-06-05 Oita Technology Licensing Organization Ltd Industrial modified fly ash and its manufacturing method
JP2014087755A (en) * 2012-10-31 2014-05-15 Taiheiyo Cement Corp Production apparatus and method of construction material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112212321A (en) * 2019-07-11 2021-01-12 韩国能源技术研究院 Pure oxygen circulating fluidized bed combustion device for reburning fly ash

Also Published As

Publication number Publication date
CN109328119B (en) 2021-08-24
TWI662006B (en) 2019-06-11
JP6089198B1 (en) 2017-03-08
CN109328119A (en) 2019-02-12
JP2018012093A (en) 2018-01-25
TW201803831A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
JP6089198B1 (en) Apparatus and method for heating and firing fly ash
CN101900489B (en) Grate-kiln-circular cooler furnace drying device and furnace drying method thereof
JP2008215699A (en) Rotary kiln and drying device
JP5049093B2 (en) Laura Heartilkin
JP2011079890A (en) Multi-stage screw carbonization furnace
US20120247374A1 (en) Independent vector control system for gasification furnace
WO2007052621A1 (en) Rotary hearth furnace and method of operating the same
JP7013265B2 (en) Fly ash heat reformer and heat reforming method
JP2009287863A (en) Heat treatment apparatus
JP2011174703A (en) Degreasing furnace
JP6602817B2 (en) Firing equipment and furnace
CN104315838B (en) Gas-fired cupola
JP2009256746A (en) Method for adjusting furnace temperature in heating-combustion zone in rotary-hearth furnace, and rotary-hearth furnace
JP4963396B2 (en) Rotary hearth furnace and operating method thereof
KR100758993B1 (en) A rotary kiln furnace
JP4033878B2 (en) Exhaust gas treatment method
JP2005207627A (en) Flying ash treatment device
CN201811580U (en) Grate-rotary kiln-circularly cooling machine baking oven device
KR102326929B1 (en) Fluidized bed furnace of spiral flow type
CN218883954U (en) Biomass fuel fluidized bed furnace
JP2001317718A (en) Rotary kiln type melting furnace
CN210420017U (en) High-temperature smelting equipment for raw materials for machining precision parts
CN219828841U (en) Comprehensive carbon roasting flue gas treatment system
RU2737795C1 (en) Shaft furnace for calcination of carbonate raw material on solid fuel
JP5958276B2 (en) Concentrate burner, flash furnace, and method of operating the flash furnace

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17830630

Country of ref document: EP

Kind code of ref document: A1