WO2018014690A1 - 传输信号的方法和装置 - Google Patents

传输信号的方法和装置 Download PDF

Info

Publication number
WO2018014690A1
WO2018014690A1 PCT/CN2017/089160 CN2017089160W WO2018014690A1 WO 2018014690 A1 WO2018014690 A1 WO 2018014690A1 CN 2017089160 W CN2017089160 W CN 2017089160W WO 2018014690 A1 WO2018014690 A1 WO 2018014690A1
Authority
WO
WIPO (PCT)
Prior art keywords
subcarrier
order modulated
order
channel
signal
Prior art date
Application number
PCT/CN2017/089160
Other languages
English (en)
French (fr)
Inventor
吴涛
颜敏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020187037829A priority Critical patent/KR102187119B1/ko
Priority to JP2019500271A priority patent/JP6780823B2/ja
Priority to EP17830324.4A priority patent/EP3468089B1/en
Publication of WO2018014690A1 publication Critical patent/WO2018014690A1/zh
Priority to US16/252,200 priority patent/US10819555B2/en
Priority to US17/080,311 priority patent/US11444818B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/023Multiplexing of multicarrier modulation signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/183Multiresolution systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3488Multiresolution systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/362Modulation using more than one carrier, e.g. with quadrature carriers, separately amplitude modulated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels

Definitions

  • the present application relates to the field of communications and, more particularly, to methods and apparatus for transmitting signals.
  • the Wireless Local Access Network (WLAN) standard based on Orthogonal Frequency Division Multiplexing (OFDM) technology consists of gradual evolution of 802.11a, 802.11n, 802.11ac, 802.11ad and other standards.
  • OFDM Orthogonal Frequency Division Multiplexing
  • 802.11ad uses the 60 GHz spectrum of the high frequency carrier.
  • each channel can be divided in the frequency band of 60 GHz, and the bandwidth of each channel is 2.16 GHz.
  • 802.11ad only one channel can be used to transmit signals at the same time. If only one channel is used to transmit signals, more diversity cannot be achieved flexibly, and the diversity gain effect is not significant.
  • Embodiments of the present application provide a method and apparatus for transmitting signals, which can improve the efficiency of diversity gain.
  • a method of transmitting a signal comprising:
  • the plurality of low-order modulated signals are signals to be transmitted, and the N high-order modulated signals are transmitted on the N subcarriers by combining the plurality of low-order modulated signals into N high-order modulated signals.
  • the N subcarriers are subcarriers on frequency domain resources of M channels, and the efficiency of diversity gain can be improved.
  • combining the plurality of low-order modulated signals into N high-order modulated signals includes:
  • the N higher order modulated signals are determined based on the plurality of low order modulated signals and the channel matrix Q.
  • the high-order modulated signal can be split into a combination of a plurality of low-order modulated signals.
  • the high-order modulated signal can be obtained by multiplying the channel matrix Q by a column vector composed of a plurality of low-order modulated signals.
  • the N high-order modulated signals are transmitted on N subcarriers, including:
  • a plurality of high-order modulated signals may be transmitted on a plurality of subcarriers of a plurality of channels, that is, k high-orders of the plurality of high-order modulated signals are transmitted on k subcarriers of the mth channel of the M channels. Modulate the signal so that there is Effectively achieve diversity gain.
  • m 1, 2, . . . , M.
  • the M channels are the first channel and the second channel, respectively.
  • the N subcarriers are a first subcarrier, a second subcarrier, a third subcarrier, and a fourth subcarrier, respectively, and the N high-order modulated signals are respectively a first high-order modulated signal x 1 and a second high-order modulation.
  • the N high-order modulated signals are transmitted on the N subcarriers, including:
  • the fourth higher order modulated signal x 4 is transmitted on the fourth subcarrier of the second channel.
  • the plurality of low-order modulated signals are s 1 , s 2 , s 3 , and s 4 , wherein the channel matrix Q is any one of the following formulas:
  • the M channels are respectively the first channel and the second channel.
  • the N subcarriers are a first subcarrier, a second subcarrier, a third subcarrier, a fourth subcarrier, a fifth subcarrier, a sixth subcarrier, a seventh subcarrier, and an eighth subcarrier, respectively And the ninth subcarrier, wherein the N high order modulation signals are a first high order modulation signal x 1 , a second high order modulation signal x 2 , a third higher order modulation signal x 3 , and a fourth higher order modulation signal x 4 a fifth higher order modulated signal x 5 , a sixth higher order modulated signal x 6 , a seventh higher order modulated signal x 7 , an eighth higher order modulated signal x 8 and a ninth higher order modulated signal x 9 ;
  • the N high-order modulated signals are transmitted on the N subcarriers, including:
  • the transmission signal of the ninth order modulation x 9.
  • the plurality of low-order modulated signals are s 1 , s 2 , s 3 , s 4 , s 5 , s 6 , s 7 , s 8 , and s 9 , wherein the channel matrix Q is of the following formula:
  • the N high-order modulated signals are transmitted on the N subcarriers, including:
  • the plurality of high-order modulated signals may be transmitted on a plurality of sub-carriers of the plurality of sub-bands, wherein the plurality of sub-bands are divided according to the frequency domain resources of the broadband.
  • the N subbands are a first subband, a second subband, and a third subband, respectively.
  • the N high-order modulated signals are transmitted on the N subcarriers of the N subbands, including:
  • the plurality of low-order modulated signals are s 1 and s 2 , and the channel matrix The The The The Or, the channel matrix The The The The The
  • the N subbands are a first subband, a second subband, and a third subband, respectively.
  • the N subcarriers are respectively a first subcarrier, a second subcarrier, and a third subcarrier
  • second higher order modulated signal x 2 ⁇ 2 s 1 + ⁇ 2 s 2 + ⁇ 2 s 3
  • third higher order modulated signal x 3 ⁇ 3 s 1 + ⁇ 3 s 2 + ⁇ 3 s 3 ;
  • the N high-order modulated signals are transmitted on the N subcarriers of the N subbands, including:
  • the third higher order modulated signal x 3 ⁇ 3 s 1 + ⁇ 3 s 2 + ⁇ 3 s 3 is transmitted on the third subcarrier of the third subband.
  • the plurality of low-order modulated signals are s 1 , s 2, and s 3 , and the channel matrix Among them, the The
  • apparatus for transmitting a signal for performing the method of any of the above first aspect or any of the possible implementations of the first aspect.
  • the apparatus comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • an apparatus for transmitting a signal comprising: a receiver, a transmitter, a memory, a processor, and a bus system.
  • the receiver, the transmitter, the memory and the processor are connected by the bus system, the memory is for storing instructions for executing the instructions stored by the memory to control the receiver to receive signals and control the sending
  • the transmitter transmits a signal, and when the processor executes the memory stored instructions, the execution causes the processor to perform the method of the first aspect or any of the possible implementations of the first aspect.
  • a computer readable medium for storing a computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • FIG. 1 is a schematic diagram of channel division according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an application scenario of an embodiment of the present application.
  • 3 is a schematic diagram of a constellation diagram of quadrature phase shift keying.
  • 4 is a schematic diagram of a constellation diagram of 16 orthogonal amplitude modulation.
  • Figure 5 is a schematic diagram of a constellation diagram of 64 quadrature amplitude modulation.
  • Figure 6 is another schematic diagram of a constellation of 64 quadrature amplitude modulation.
  • Figure 7 is a schematic illustration of a constellation of 256 quadrature amplitude modulation.
  • FIG. 8 is a schematic flowchart of a method of transmitting a signal according to an embodiment of the present application.
  • 9 is a schematic diagram of the principle of channel aggregation.
  • FIG. 10 is a schematic diagram of an example of two-channel aggregation according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another example of two-channel aggregation according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another example of two-channel aggregation according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of another example of two-channel aggregation according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of another example of two-channel aggregation according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of still another example of two-channel aggregation according to an embodiment of the present application.
  • 16 is a diagram showing an example of three-channel aggregation according to an embodiment of the present application.
  • 17 is a diagram showing another example of three-channel aggregation according to an embodiment of the present application.
  • 18 is a schematic diagram of a data structure of a wideband channel.
  • FIG. 19 is a diagram showing an example of a wideband channel according to an embodiment of the present application.
  • 20 is a schematic diagram of another example of a wideband channel in accordance with an embodiment of the present application.
  • 21 is a schematic block diagram of an apparatus for transmitting a signal according to an embodiment of the present application.
  • FIG. 22 is a schematic structural diagram of an apparatus for transmitting a signal according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • the channel in the embodiment of the present application refers to four channels into which the 60 GHz free frequency band is divided, corresponding to the numbers 1, 2, 3, and 4 in FIG. 1 .
  • the bandwidth is 2.16 GHz
  • the corresponding center frequencies are 58.320 GHz, 60.480 GHz, 62.640 GHz, and 64.800 GHz, respectively.
  • FIG. 2 shows a schematic diagram of an application scenario.
  • the technical solution of the embodiment of the present application can be applied to communication between an access point (AP) and a station (STA) in a Wireless Fidelity (Wi-Fi) network.
  • AP access point
  • STA station
  • Wi-Fi Wireless Fidelity
  • STA1 102 and STA2 102 are connected to the AP 101.
  • the AP 101 can communicate with the STA 102 via wireless signals.
  • the wireless signals commonly used for communication are transmitted and received in a certain modulation manner, and can be classified into two types: single carrier modulation and multi-carrier modulation.
  • FIG. 2 is described by taking STA1 102 and STA2 102 as an example, and the system may further include More STAs, etc.
  • the STA in FIG. 2 may be a terminal, a mobile station (MS) or a mobile terminal (Mobile Terminal), etc., for example, a notebook, a mobile device, or the like.
  • the terminal can communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the terminal can be a mobile phone (or "cellular" phone) or a computer with a mobile terminal, etc., for example,
  • the terminal can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges voice and/or data with the wireless access network.
  • the AP in Figure 2 is used to provide a communication link between the STA and the network, and is an access point where the terminal enters the network.
  • the embodiments of the present application are also described by using only the APs and STAs in the WLAN system as an example. However, the present application is not limited thereto, and the method and apparatus according to the embodiments of the present application may also be applied to base stations and user equipments in other communication systems; Similarly, it should be understood that the embodiment of the present application is only described by taking a WLAN system as an example, but the application is not limited thereto, and the method and apparatus according to the embodiments of the present application may also be applied to other communication systems.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the technical solution of the embodiment of the present application can be applied to the OFDM system.
  • OFDM is a multi-carrier modulation scheme that overcomes the frequency selective fading of the channel by reducing and eliminating the effects of crosstalk between codes.
  • the modulation modes supported by OFDM include staggered quadriphase shift keying (SQPSK), quadrature phase shift keying (QPSK), 16 quadrature amplitude modulation (QAM), and 32QAM.
  • SQPSK and QPSK A Dual Carrier Modulation (DCM) method is employed.
  • DCM is a method to improve transmission performance by using frequency diversity.
  • Simultaneously transmitting on different frequencies (carriers) for example, x 1 , x 2 are transmitted on frequency f 1 and frequency f 2 , respectively, to achieve the effect of frequency diversity.
  • s 1 , s 2 can be expressed as among them
  • DCM requires signals s 1 , s 2 and x 1 , x 2 to be points on a typical constellation.
  • a typical implementation is: when s 1 , s 2 are QPSK signals, multiplying Q by s 1 , s 2 to generate two 16QAM signals x 1 , x 2 , wherein
  • the present application proposes multiple sub-signals of multiple channels.
  • a scheme for transmission on a carrier The core idea of the transmission signal of the present application is to combine multiple channels with multiple subcarriers to realize signal transmission on multiple channels, which can improve the efficiency of diversity gain.
  • a high-order modulation signal is denoted by x
  • a low-order modulation signal is denoted by s
  • the high-order modulation signal and the low-order modulation signal may be represented in a matrix form, specifically including the following cases:
  • QPSK Binary Phase Shift Keying (BPSK) + BPSK
  • the QPSK signal x can be split into a combination of two low-order modulated signal BPSK signals.
  • the value of the QPSK signal x can be:
  • FIG. 3 shows a schematic diagram of a constellation diagram of QPSK. As shown in FIG. 3, the four black points in the figure correspond to the values of the QPSK signal x.
  • x can be split into two BPSK signals s 1 , a combination of s 2 , expressed as Wherein, the value of s 1 includes ⁇ 1, -1 ⁇ , the value of s 2 includes ⁇ 1, -1 ⁇ , and the combination of ⁇ 1 and ⁇ 2 has two modes.
  • Table 1 shows the ⁇ 1 , ⁇ 2
  • the combination coefficient is shown in Table 1:
  • the 16QAM signal x can be split into a combination of two low-order modulated signal QPSK signals.
  • the value of the 16QAM signal x can be as follows:
  • Figure 4 shows a schematic diagram of a 16QAM constellation diagram, as shown in Figure 4, sixteen blacks in the figure. The point corresponds to the value of the 16QAM signal x.
  • x is split into two QPSK signals s 1 , a combination of s 2 , which can be expressed as Wherein, the value of s 1 includes The value of s 2 includes There are four ways to combine ⁇ 1 and ⁇ 2 , and Table 2 shows the combination coefficients of ⁇ 1 and ⁇ 2 , as shown in Table 2:
  • the 64QAM signal x can be split into a combination of three low-order modulated signal QPSK signals.
  • the value of the 64QAM signal x can be as follows:
  • FIG. 5 shows a schematic diagram of a constellation diagram of 64QAM. As shown in FIG. 5, the sixty-four black points in the figure correspond to the values of the 16QAM signal x.
  • x is split into three combinations of QPSK signals s 1 , s 2 , and s 3 , which can be expressed as Wherein, the value of s 1 includes The value of s 2 includes The value of s 3 includes There are many ways to combine ⁇ 1 , ⁇ 2 , and ⁇ 3 , and 24 are listed here. Table 3 shows the combination coefficients of ⁇ 1 , ⁇ 2 , and ⁇ 3 , as shown in Table 3:
  • x generates 8 sets of baseline combinations according to the basis combination coefficients of ⁇ 1 , ⁇ 2 , ⁇ 3 in Table 3, ie The eight sets of baseline combinations for x are:
  • the 64QAM signal x can also be split into a combination of a low-order modulation signal, one QPSK signal, and one 16QAM signal.
  • the value of the 64QAM signal x can be as follows:
  • FIG. 6 shows another schematic diagram of a constellation diagram of 64QAM. As shown in FIG. 6, sixty-four black points in the figure correspond to the values of the 64QAM signal x.
  • x is split into a combination of a QPSK signal s 1 and s 2 of the 16QAM signal can be expressed as Wherein, the value of s 1 includes The value of s 2 includes There are four ways to combine ⁇ 1 and ⁇ 2 , and Table 4 shows the combination coefficients of ⁇ 1 and ⁇ 2 , as shown in Table 4:
  • the 256QAM signal x can also be split into a combination of four QPSK signals.
  • the value of the 256QAM signal x can be as follows:
  • Figure 7 shows a schematic diagram of a constellation diagram of 256QAM, as shown in Figure 7, 256 in the figure.
  • the black dot corresponds to the value of the 64QAM signal x.
  • x is split into four QPSK signals s 1 , s 2 , s 3 , and s 4 combinations, which can be expressed as Wherein, the value of s 1 includes The value of s 2 includes The value of s 3 includes The value of s 4 includes There are many ways to combine the coefficients of ⁇ 1 , ⁇ 2 , ⁇ 3 , and ⁇ 4 , and 64 are listed here. Table 5 shows the combination coefficients of ⁇ 1 , ⁇ 2 , ⁇ 3 , and ⁇ 4 , as shown in Table 5:
  • x generates 16 sets of baseline combinations according to the basis combination coefficients of ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 in Table 5, ie They are:
  • FIG. 8 shows a schematic flow diagram of a method 300 of transmitting a signal in accordance with an embodiment of the present application. As shown in FIG. 8, the method 300 includes:
  • the N high-order modulated signals are transmitted on N subcarriers, where the N subcarriers are subcarriers on frequency domain resources of M channels, where the nth high order modulation in the N high order modulated signals
  • the signal to be transmitted is a low-order modulation signal
  • the low-order modulation signal is combined into a high-order modulation signal
  • the low-order modulation signal to be transmitted is passed through the high-order modulation signal on multiple channels. Transfer.
  • the plurality of low-order modulation signals may be N or N/2, which is not limited thereto.
  • the corresponding four higher-order modulated signals are transmitted on four subcarriers.
  • the N subcarriers are subcarriers on the frequency domain resources of the M channels, including the following cases: First, the N subcarriers are subcarriers on a certain one of the M channels; second, N The subcarriers are subcarriers on a certain subband of the N subbands, wherein the N subbands are subbands of the wideband channel divided by frequency domain resources.
  • N and M are integers greater than or equal to 2.
  • N is introduced to indicate that there are multiple higher order modulated signals, or multiple subcarriers, and the nth higher order modulated signal is transmitted on the nth subcarrier.
  • M is introduced to indicate that there are multiple channels, and N subcarriers are subcarriers on frequency domain resources of M channels.
  • the relationship between the number of the sub-carriers N and the number of the channels M may be selected in combination with a specific case. For example, it may be 4 sub-carriers on 2 channels or 9 sub-carriers on 3 channels, which is not limited.
  • the method for transmitting a signal in the embodiment of the present application transmits the N high-order modulated signals on N subcarriers by combining a plurality of low-order modulated signals into N high-order modulated signals, where the N subcarriers are M.
  • the subcarriers on the frequency domain resources of the channel can improve the efficiency of the diversity gain.
  • combining the plurality of low-order modulated signals into the N high-order modulated signals includes:
  • the N higher order modulated signals are determined based on the plurality of low order modulated signals and the channel matrix Q.
  • the column vectors composed of the plurality of low-order modulated signals may be multiplied by the channel matrix Q to obtain the N high-order modulated signals.
  • the specific operation can refer to various situations in which the high-order modulation signal described above is split into low-order modulation signals, and details are not described herein.
  • multiple subcarriers are subcarriers on multiple channels; or, multiple subcarriers are subcarriers on multiple subbands, and the multiple subbands are divided according to frequency domain resources of the wideband channel.
  • a plurality of subcarriers are subcarriers on a plurality of channels
  • a plurality of subcarriers are subcarriers on a plurality of subbands
  • a wideband channel means a "wideband channel” scheme.
  • channel aggregation the data of the channel channel 1 is coded and modulated, and then multiplied by the corresponding carrier frequency signal.
  • the channel channel 2 data is coded and multiplied by the corresponding carrier frequency signal.
  • the channel channel 3 data is coded and multiplied by the corresponding carrier frequency signal.
  • the data of the last 3 channels are superimposed and sent out.
  • transmitting the N high-order modulated signals on the N subcarriers including:
  • a plurality of higher order modulated signals may be transmitted on multiple subcarriers of each of the plurality of channels.
  • k higher order modulated signals of the N higher order modulated signals are transmitted on k subcarriers of the mth channel of the M channels.
  • N M ⁇ k
  • k is an integer greater than 2
  • m 1, 2, ..., M.
  • three of the nine high-order modulated signals are on three subcarriers of one of the three channels (such as the mth channel).
  • the transmission is performed (ie, 9 high-order modulated signals are transmitted on 9 subcarriers at the time of 3-channel aggregation).
  • the high-order modulated signals are transmitted independently on different channels.
  • the difference between the present application and the prior art transmission on only one channel is that the transmission of a plurality of high-order modulated signals on subcarriers of a plurality of channels can improve the efficiency of the frequency diversity gain.
  • the frequency diversity gain is generated because: since the channel has frequency domain selective fading, if the signal transmitted on one channel is dispersed into a plurality of channels, and then the dispersed signal is corrected back through the channel matrix Q, the not only is improved. The accuracy of the signal, and the frequency diversity gain is achieved.
  • the method for transmitting a signal in the embodiment of the present application transmits the N high-order modulated signals on N subcarriers by combining a plurality of low-order modulated signals into N high-order modulated signals, where the N subcarriers are M. Subcarriers on the frequency domain resources of the channel. Specifically, by transmitting k high-order modulated signals among the N high-order modulated signals on k subcarriers of the mth channel among the M channels, the efficiency of the diversity gain can be improved.
  • the M channels are respectively a first channel and a second channel, where the N subcarriers are a first subcarrier, a second subcarrier, and a first a third subcarrier and a fourth subcarrier, wherein the N high order modulated signals are a first high order modulated signal x 1 , a second higher order modulated signal x 2 , a third higher order modulated signal x 3 and a fourth higher order modulation, respectively signal x 4;
  • the transmitting the N high-order modulated signals on the N subcarriers includes:
  • the fourth higher order modulated signal x 4 is transmitted on the fourth subcarrier of the second channel.
  • FIG. 10 shows an example of an example of two-channel aggregation according to an embodiment of the present application.
  • the first high-order modulated signal x 1 is transmitted on the first subcarrier of the first channel
  • the second higher-order modulated signal x 2 is transmitted on the second subcarrier of the second channel.
  • the transmission on multiple subcarriers achieves diversity gain.
  • the first subcarrier and the second subcarrier have the same sequence number
  • the third subcarrier and the fourth subcarrier have the same sequence number.
  • the interval between the first subcarrier and the third subcarrier is half of the number of subcarriers for which the user transmits data.
  • the plurality of low-order modulated signals are s 1 , s 2 , s 3 , and s 4 , wherein the channel matrix Q is any one of the following formulas:
  • FIG. 11 shows an example of an example of two-channel aggregation according to an embodiment of the present application.
  • the first high-order modulated signal x 1 is transmitted on the first subcarrier of the first channel
  • the second higher-order modulated signal x 2 is on the second subcarrier of the second channel.
  • higher order modulation signal is the third x 3 on the third subcarrier of the first channel transmission
  • the efficiency of the diversity gain can be improved by transmitting four high-order modulated signals on four of the two channels.
  • Channel matrix s 1 , s 2 , s 3 , s 4 are BPSK modulated signals, x 1 , x 2 , x 3 , x 4 are 16QAM modulated signals, and x 1 , x 2 , x 3 , x 4 are BPSK modulated signals s 1 , s 2 , s 3 , s 4 are combined by different coefficients.
  • FIG. 12 shows an example of an example of two-channel aggregation according to an embodiment of the present application.
  • the first high-order modulated signal x 1 is transmitted on the first subcarrier of the first channel
  • the second higher-order modulated signal x 2 is on the second subcarrier of the second channel.
  • transmission, higher order modulation signal is the third x 3 on the third subcarrier of the first channel transmission
  • higher order modulation fourth transmission signal x 4 on the fourth subcarrier of the second channel.
  • the efficiency of the diversity gain can be improved by transmitting four high-order modulated signals on four of the two channels.
  • Channel matrix s 1 , s 2 , s 3 , s 4 are QPSK modulated signals, x 1 , x 2 , x 3 , x 4 are 16QAM modulated signals, and x 1 , x 4 are modulated signals s 1 , s 2 by a set of QPSK Combining with different coefficients, x 2 , x 3 are combined by a set of QPSK modulated signals s 3 , s 4 using different coefficients.
  • FIG. 13 shows an example of an example of two-channel aggregation according to an embodiment of the present application.
  • the first high-order modulated signal x 1 is transmitted on the first subcarrier of the first channel
  • the second higher-order modulated signal x 2 is on the second subcarrier of the second channel.
  • transmission, higher order modulation signal is the third x 3 on the third subcarrier of the first channel transmission
  • higher order modulation fourth transmission signal x 4 on the fourth subcarrier of the second channel.
  • the efficiency of the diversity gain can be improved by transmitting four high-order modulated signals on four of the two channels.
  • Channel matrix s 1 , s 2 , s 3 , s 4 are QPSK modulated signals, x 1 , x 2 , x 3 , x 4 are 256QAM modulated signals, and x 1 , x 2 , x 3 , x 4 are modulated by 4 QPSK
  • the signals s 1 , s 2 , s 3 , s 4 are combined using different coefficients.
  • FIG. 14 shows an example of an example of two-channel aggregation according to an embodiment of the present application.
  • the first high-order modulated signal x 1 is transmitted on the first subcarrier of the first channel
  • the second higher-order modulated signal x 2 is on the second subcarrier of the second channel.
  • transmission, higher order modulation signal is the third x 3 on the third subcarrier of the first channel transmission
  • higher order modulation fourth transmission signal x 4 on the fourth subcarrier of the second channel.
  • the efficiency of the diversity gain can be improved by transmitting four high-order modulated signals on four of the two channels.
  • Channel matrix s 1 , s 3 is a QPSK modulated signal
  • s 2 , s 4 are 16QAM modulated signals
  • x 1 , x 2 , x 3 , x 4 are 64QAM modulated signals
  • x 1 , x 4 are QPSK modulated signals s 1
  • the 16QAM modulated signal s 2 is combined by different coefficients
  • x 2 , x 3 are formed by combining the QPSK modulated signal s 3 and the 16QAM modulated signal s 4 with different coefficients.
  • FIG. 15 shows an example of an example of two-channel aggregation according to an embodiment of the present application.
  • the first high-order modulated signal x 1 is transmitted on the first subcarrier of the first channel
  • the second higher-order modulated signal x 2 is on the second subcarrier of the second channel.
  • transmission, higher order modulation signal is the third x 3 on the third subcarrier of the first channel transmission
  • higher order modulation fourth transmission signal x 4 on the fourth subcarrier of the second channel.
  • the efficiency of the diversity gain can be improved by transmitting four high-order modulated signals on four of the two channels.
  • the method for transmitting a signal in the embodiment of the present application transmits the N high-order modulated signals on N subcarriers by combining a plurality of low-order modulated signals into N high-order modulated signals, where the N subcarriers are M. Subcarriers on the frequency domain resources of the channel. Specifically, by transmitting k high-order modulated signals among the N high-order modulated signals on k subcarriers of the mth channel among the M channels, the efficiency of the diversity gain can be improved.
  • the M channels are a first channel, a second channel, and a third channel, respectively, where the N subcarriers are a first subcarrier and a second a subcarrier, a third subcarrier, a fourth subcarrier, a fifth subcarrier, a sixth subcarrier, a seventh subcarrier, an eighth subcarrier, and a ninth subcarrier, wherein the N high order modulated signals are respectively the first high The order modulation signal x 1 , the second higher order modulation signal x 2 , the third higher order modulation signal x 3 , the fourth higher order modulation signal x 4 , the fifth higher order modulation signal x 5 , and the sixth higher order modulation signal x 6 , seventh order modulation signals x 7, x 8 eighth order modulation signal and the ninth-order modulation signal x 9;
  • the transmitting the N high-order modulated signals on the N subcarriers includes:
  • the eighth higher order modulated signal x 8 is transmitted on the eighth subcarrier of the second channel.
  • the transmission signal of the ninth order modulation x 9.
  • FIG. 16 shows an example of an example of three-channel convergence according to an embodiment of the present application.
  • the specific transmission scheme of the high-order modulation signal is: transmitting the first high-order modulation signal x 1 on the first subcarrier of the first channel, and the second higher-order modulation signal x 2 on the second channel.
  • the first subcarrier, the second subcarrier, and the third subcarrier have the same sequence number
  • the fourth subcarrier, the fifth subcarrier, and the sixth subcarrier have the same sequence number
  • the seventh subcarrier, the eighth subcarrier, and the ninth subcarrier are the same.
  • the interval between the first subcarrier and the fourth subcarrier, and the interval between the fourth subcarrier and the seventh subcarrier are separated by 1/3 of the number of subcarriers for transmitting data in 802.12 Ay.
  • nine high-order modulated signals can be obtained: x 1 , x 2 , x 3 , x 4 ,...x 9 , specifically expressed as:
  • the plurality of low-order modulated signals are s 1 , s 2 , s 3 , s 4 , s 5 , s 6 , s 7 , s 8 , and s 9 , wherein the channel matrix Q is of the following formula:
  • Channel matrix s 1 , s 2 , s 3 , s 4 , s 5 , s 6 , s 7 , s 8 , s 9 are 64QAM modulated signals, x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 are QPSK modulated signals.
  • x 1 , x 5 , x 9 are 64 QAM signals of three QPSK signals s 1 , s 2 , s 3 combined according to different coefficients
  • x 2 , x 6 , x 7 are three QPSK signals s 4 , s 5 , s 6 64QAM signals combined according to different coefficients
  • x 3 , x 4 , x 8 are 64QAM signals of three QPSK signals s 7 , s 8 , s 9 according to different coefficients.
  • FIG. 17 shows an example of an example of three-channel convergence according to an embodiment of the present application.
  • the specific transmission scheme of the high-order modulation signal is: transmitting the first high-order modulation signal x 1 on the first subcarrier of the first channel, and the second high-order modulation signal x 2 transmission, higher order modulation third transmission signal x 3 on the third subcarrier in a third channel in the second subcarrier of the second channel; X 4 on the fourth high-level modulation signal in a fourth subcarrier of the first channel Transmission, the fifth higher-order modulated signal x 5 is transmitted on the fifth subcarrier of the second channel, and the sixth higher-order modulated signal x 6 is transmitted on the sixth subcarrier of the third channel; the seventh higher-order modulated signal x 7 on the seventh sub-carriers of the first transmission channel, an eighth x 8 high-order modulation signal transmitted on the eighth subcarriers of the second channel, a ninth order modulation signal x 9 in
  • the efficiency of the diversity gain can be improved by transmitting nine high-order modulated signals on nine of the three channels.
  • the method for transmitting a signal in the embodiment of the present application transmits the N high-order modulated signals on N subcarriers by combining a plurality of low-order modulated signals into N high-order modulated signals, where the N subcarriers are M. Subcarriers on the frequency domain resources of the channel. Specifically, by transmitting k high-order modulated signals among the N high-order modulated signals on k subcarriers of the mth channel among the M channels, the efficiency of the diversity gain can be improved.
  • FIG. 18 is a schematic diagram showing an OFDM data structure.
  • a multi-carrier OFDM data structure is composed of a Cyclisc Prefix (CP) and an OFDM symbol, and subcarriers in a frequency domain of an OFDM symbol are used to transmit data.
  • the modulated OFDM symbol (where the symbol can be understood as a modulated signal) constitutes a block of data in the frequency domain and then converted from the frequency domain to the corresponding time domain signal via an inverse Fourier transform.
  • transmitting the N high-order modulated signals on the N subcarriers including:
  • the plurality of high-order modulated signals may be transmitted on multiple subcarriers of the plurality of subbands, where the plurality of subcarriers are subcarriers on the plurality of subbands, for example, transmitting on the N subcarriers of the N subbands.
  • N high order modulated signals the nth subcarrier of the N subcarriers being a subcarrier on the nth subband of the N subbands. That is to say, the subcarrier used for transmitting the high-order modulated signal is a subcarrier on the subband.
  • the multiple subbands are multiple subbands that divide the bandwidth of the channel according to the frequency domain resources.
  • the high order modulated signal can be transmitted on multiple subcarriers of the plurality of subbands.
  • the method for transmitting a signal in the embodiment of the present application transmits the N high-order modulated signals on N subcarriers by combining a plurality of low-order modulated signals into N high-order modulated signals, where the N subcarriers are M. Subcarriers on the frequency domain resources of the channel. Specifically, by transmitting N high-order modulated signals on N subcarriers of a plurality of subbands, the efficiency of diversity gain can be improved.
  • the N subbands are a first subband, a second subband, a third subband, and a fourth subband, respectively, and the N subcarriers are respectively the first subcarrier.
  • x 1 * is a conjugate of x 1 and x 2 * is a conjugate of x 2 ;
  • the transmitting the N high-order modulated signals on the N subcarriers of the N subbands including:
  • the subcarriers in the OFDM frequency domain can be divided into four subbands or subblocks, and then the low-order modulated signals s 1 and s 2 to be transmitted are combined into four high-order modulated signals, respectively.
  • the sub-carriers of the sub-bands are transmitted.
  • FIG. 19 is a schematic diagram showing a transmission scheme when OFDM is divided into 4 sub-bands. As shown in FIG.
  • the four high-order modulated signals are respectively transmitted on one of the four sub-bands. It should be understood that the transmission of high-order modulated signals can also be performed for other sub-carriers on the sub-band, which is not limited thereto. For example, in this example, if there are 1000 high-order modulated signals, parallel transmission can be performed on multiple subcarriers of four sub-bands in the form of one set of four high-order modulated signals. Of course, this is only for facilitating the understanding of the solution by those skilled in the art, and does not constitute a limitation of the present application.
  • Other subcarriers on a subband may also transmit other high-order modulated signals.
  • only the first subcarrier is taken as an example for description.
  • the other subcarriers except the first subcarrier in the first subband may transmit other high-order modulated signals in parallel, which is not limited.
  • the other sub-bands in Fig. 19 and the conditions appearing below are similar to the first sub-bands and will not be described later.
  • the efficiency of the diversity gain can be improved by transmitting four high-order modulated signals on four sub-carriers of four sub-bands.
  • the channel matrix The The The The Or, the channel matrix The The The The The
  • the high-order modulated signals x 1 and x 2 are QPSK signals, which can be obtained by combining the combined coefficients in Table 1 above.
  • the low-order modulated signals s 1 and s 2 are QPSK modulated signals
  • the high-order modulated signals x 1 and x 2 are 16QAM signals, in combination with the combined coefficients in Table 2 above, Corresponding channel matrix
  • the method for transmitting a signal in the embodiment of the present application transmits the N high-order modulated signals on N subcarriers by combining a plurality of low-order modulated signals into N high-order modulated signals, where the N subcarriers are M. Subcarriers on the frequency domain resources of the channel. Specifically, by transmitting N modulated signals on N subcarriers of a plurality of subbands, the efficiency of diversity gain can be improved.
  • the N subbands are a first subband, a second subband, and a third subband, respectively, where the N subcarriers are a first subcarrier and a second subcarrier, respectively.
  • the N high-order modulated signals are transmitted on the N subcarriers of the N subbands, including:
  • the third higher order modulated signal x 3 ⁇ 3 s 1 + ⁇ 3 s 2 + ⁇ 3 s 3 is transmitted on the third subcarrier of the third subband.
  • the subcarriers in the OFDM frequency domain can be divided into three subbands or subblocks, and then the low order modulated signals s 1 , s 2 and s 3 to be transmitted are respectively performed on the subcarriers of the three subbands.
  • FIG. 20 is a schematic diagram showing a transmission scheme when OFDM is divided into three sub-bands. As shown in FIG.
  • the method for transmitting a signal in the embodiment of the present application transmits the N high-order modulated signals on N subcarriers by combining a plurality of low-order modulated signals into N high-order modulated signals, where the N subcarriers are M. Subcarriers on the frequency domain resources of the channel. Specifically, by transmitting N modulated signals on N subcarriers of a plurality of subbands, the efficiency of diversity gain can be improved.
  • the plurality of low-order modulated signals are s 1 , s 2, and s 3 , and the channel matrix Among them, the The
  • the low-order modulated signals s 1 , s 2 and s 3 are QPSK modulated signals
  • the high-order modulated signals x 1 , x 2 , x 3 are 64QAM modulated signals, combined with the combined coefficients in Table 3 above, selected Any combination of coefficients can be obtained Corresponding channel matrix
  • the efficiency of the diversity gain can be improved by transmitting three high-order modulated signals on three sub-carriers of three sub-bands.
  • ⁇ , ⁇ , ⁇ may be any set of coefficients in Table 3, and no limitation is imposed thereon.
  • the method for transmitting a signal in the embodiment of the present application transmits the N high-order modulated signals on N subcarriers by combining a plurality of low-order modulated signals into N high-order modulated signals, where the N subcarriers are M. Subcarriers on the frequency domain resources of the channel. Specifically, by transmitting N modulated signals on N subcarriers of a plurality of subbands, the efficiency of diversity gain can be improved.
  • FIG. 21 shows a schematic block diagram of an apparatus 900 for storing data in accordance with an embodiment of the present application.
  • the apparatus 900 includes:
  • a determining module 910 configured to combine the plurality of low-order modulated signals into N high-order modulated signals
  • the transmission module 920 is configured to transmit, on the N subcarriers, the N high-order modulated signals determined by the determining module 910, where the N subcarriers are subcarriers on a frequency domain resource of the M channels, where the N high order Modulated signal
  • the apparatus for transmitting a signal in the embodiment of the present application transmits the N high-order modulated signals on N subcarriers by combining a plurality of low-order modulated signals into N high-order modulated signals, where the N subcarriers are M channels.
  • the subcarriers on the frequency domain resources can improve the efficiency of the diversity gain.
  • the determining module 910 is specifically configured to:
  • the N higher order modulated signals are determined based on the plurality of low order modulated signals and the channel matrix Q.
  • the transmission module 920 is specifically configured to:
  • the M channels are respectively a first channel and a second channel, where the N subcarriers are a first subcarrier, a second subcarrier, and a first a third subcarrier and a fourth subcarrier, wherein the N high order modulated signals are a first high order modulated signal x 1 , a second higher order modulated signal x 2 , a third higher order modulated signal x 3 and a fourth higher order modulation, respectively signal x 4;
  • the transmission module is specifically configured to:
  • the fourth higher order modulated signal x 4 is transmitted on the fourth subcarrier of the second channel.
  • the plurality of low-order modulated signals are s 1 , s 2 , s 3 , and s 4 , wherein the channel matrix Q is any one of the following formulas:
  • the M channels are a first channel, a second channel, and a third channel, respectively, where the N subcarriers are a first subcarrier and a second a subcarrier, a third subcarrier, a fourth subcarrier, a fifth subcarrier, a sixth subcarrier, a seventh subcarrier, an eighth subcarrier, and a ninth subcarrier, wherein the N high order modulated signals are respectively the first high The order modulation signal x 1 , the second higher order modulation signal x 2 , the third higher order modulation signal x 3 , the fourth higher order modulation signal x 4 , the fifth higher order modulation signal x 5 , and the sixth higher order modulation signal x 6 , seventh order modulation signals x 7, x 8 eighth order modulation signal and the ninth-order modulation signal x 9;
  • the transmission module 920 is specifically configured to:
  • the transmission signal of the ninth order modulation x 9.
  • the plurality of low-order modulated signals are s 1 , s 2 , s 3 , s 4 , s 5 , s 6 , s 7 , s 8 , and s 9 , wherein the channel matrix Q is of the following formula:
  • the apparatus for transmitting a signal in the embodiment of the present application transmits the N high-order modulated signals on N subcarriers by combining a plurality of low-order modulated signals into N high-order modulated signals, where the N subcarriers are M. Subcarriers on the frequency domain resources of the channel. Specifically, by transmitting N modulated signals on subcarriers of M channels, the efficiency of diversity gain can be improved.
  • the transmission module 920 is specifically configured to:
  • the N subbands are a first subband, a second subband, a third subband, and a fourth subband, respectively, and the N subcarriers are respectively the first subcarrier.
  • x 1 * is a conjugate of x 1 and x 2 * is a conjugate of x 2 ;
  • the transmission module is specifically configured to:
  • the plurality of low-order modulated signals are s 1 and s 2 , and the channel matrix The The The The Or, the channel matrix The The The The The
  • the N subbands are a first subband, a second subband, and a third subband, respectively, where the N subcarriers are a first subcarrier and a second subcarrier, respectively.
  • the transmission module 920 is specifically configured to:
  • the third higher order modulated signal x 3 ⁇ 3 s 1 + ⁇ 3 s 2 + ⁇ 3 s 3 is transmitted on the third subcarrier of the third subband.
  • the plurality of low-order modulated signals are s 1 , s 2, and s 3 , and the channel matrix Among them, the The
  • the apparatus for transmitting a signal in the embodiment of the present application transmits the N high-order modulated signals on N subcarriers by combining a plurality of low-order modulated signals into N high-order modulated signals, where the N subcarriers are M. Subcarriers on the frequency domain resources of the channel. Specifically, by transmitting N modulated signals on subcarriers of a plurality of subbands, the efficiency of diversity gain can be improved.
  • the apparatus 900 for storing data according to an embodiment of the present application may correspond to an execution subject of a method according to an embodiment of the present application, and the above-described and other operations and/or functions of respective modules in the apparatus 900 storing data are respectively implemented in order to implement the foregoing The corresponding process of the method is not repeated here for the sake of brevity.
  • the apparatus for transmitting a signal in the embodiment of the present application transmits the N high-order modulated signals on N subcarriers by combining a plurality of low-order modulated signals into N high-order modulated signals, where the N subcarriers are M
  • the subcarriers on the frequency domain resources of the channel can improve the efficiency of the diversity gain.
  • FIG. 22 shows the structure of an apparatus for transmitting signals according to another embodiment of the present application, including at least one processor 1002 (eg, a CPU), at least one network interface 1005 or other communication interface, a memory 1006, and at least one communication bus 1003. Used to implement connection communication between these devices.
  • the processor 1002 is configured to execute executable modules, such as computer programs, stored in the memory 1006.
  • the memory 1006 may include a high speed random access memory (RAM), and may also include a non-volatile memory such as at least one disk memory.
  • a communication connection with at least one other network element is achieved by at least one network interface 1005, which may be wired or wireless.
  • the memory 1006 stores a program 10061 that can be executed by the processor 1002.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory RAM, a magnetic disk, or an optical disk, and the like, which can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Optical Communication System (AREA)

Abstract

本申请公开了一种传输信号的方法和装置。该方法包括:将多个低阶调制信号组合成N个高阶调制信号;在N个子载波上传输该N个高阶调制信号,该N个子载波为M个信道的频域资源上的子载波,其中,该N个高阶调制信号中的第n个高阶调制信号在该N个子载波中的第n个子载波上传输,该N为大于或等于2的整数,该M为大于或等于2的整数,其中,n=1,2,…,N。本申请实施例的传输信号的方法和装置,能够提高分集增益的效率。

Description

传输信号的方法和装置
本申请要求于2016年07月19日提交中国专利局、申请号为201610569237.0、发明名称为“传输信号的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及传输信号的方法和装置。
背景技术
基于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术的无线局域网(Wireless local Access Network,WLAN)标准由逐步演进的802.11a、802.11n、802.11ac、802.11ad等标准组成。目前,无线高清音频信号的传输802.11ad主要用于实现家庭内部无线高清音视频信号的传输,为家庭多媒体应用带来更完备的高清视频解决方案。802.11ad抛弃了拥挤的2.4GHz和5GHz频段,而是使用高频载波的60GHz频谱。
目前,在60GHz的频带中可以划分4个信道,每个信道的带宽为2.16GHz。但是在802.11ad中,只能同时使用一个信道传输信号。若只采用一个信道传输信号,则不能灵活得实现更多的分集,分集增益效果不显著。
发明内容
本申请实施例提供了一种传输信号的方法和装置,能够提高分集增益的效率。
第一方面,提供了一种传输信号的方法,包括:
将多个低阶调制信号组合成N个高阶调制信号;
在N个子载波上传输该N个高阶调制信号,该N个子载波为M个信道的频域资源上的子载波,其中,该N个高阶调制信号中的第n个高阶调制信号在该N个子载波中的第n个子载波上传输,该N为大于或等于2的整数,该M为大于或等于2的整数,其中,n=1,2,…,N。
在本申请实施例中,多个低阶调制信号为待发送的信号,通过将多个低阶调制信号组合成N个高阶调制信号,在N个子载波上传输该N个高阶调制信号,该N个子载波为M个信道的频域资源上的子载波,能够提高分集增益的效率。
可选地,将多个低阶调制信号组合成N个高阶调制信号,包括:
根据该多个低阶调制信号和信道矩阵Q,确定该N个高阶调制信号。
这里,高阶调制信号可以拆分成多个低阶调制信号的组合。例如,高阶调制信号可以通过信道矩阵Q与多个低阶调制信号组成的列向量相乘的方式获取。
结合第一方面,在第一种可能的实现方式中,在N个子载波上传输该N个高阶调制信号,包括:
在该M个信道中第m个信道的k个子载波上传输该N个高阶调制信号中的k个高阶调制信号,其中,N=M×k,k为大于2的整数,m=1,2,…,M。
这里,多个高阶调制信号可以在多个信道的多个子载波上进行传输,即在M个信道中第m个信道的k个子载波上传输该多个高阶调制信号中的k个高阶调制信号,从而有 效地实现分集增益。其中,N=M×k,k为大于2的整数,m=1,2,…,M。
结合第一方面或第一方面的第一种可能的实现方式,在第二种可能的实现方式中,在M=2,N=4时,该M个信道分别为第一信道和第二信道,该N个子载波分别为第一子载波、第二子载波、第三子载波和第四子载波,该N个高阶调制信号分别为第一高阶调制信号x1、第二高阶调制信号x2、第三高阶调制信号x3和第四高阶调制信号x4
其中,在N个子载波上传输该N个高阶调制信号,包括:
在该第一信道的该第一子载波上,传输该第一高阶调制信号x1
在该第二信道的该第二子载波上,传输该第二高阶调制信号x2
在该第一信道的该第三子载波上,传输该第三高阶调制信号x3
在该第二信道的该第四子载波上,传输该第四高阶调制信号x4
可选地,该多个低阶调制信号为s1、s2、s3和s4,其中,该信道矩阵Q为下式中的任一种:
Figure PCTCN2017089160-appb-000001
Figure PCTCN2017089160-appb-000002
结合第一方面或第一方面的第一种可能的实现方式,在第三种可能的实现方式中,在M=3,N=9时,该M个信道分别为第一信道、第二信道和第三信道,该N个子载波分别为第一子载波、第二子载波、第三子载波、第四子载波、第五子载波、第六子载波、第七子载波、第八子载波和第九子载波,该N个高阶调制信号分别为第一高阶调制信号x1、第二高阶调制信号x2、第三高阶调制信号x3、第四高阶调制信号x4、第五高阶调制信号x5、第六高阶调制信号x6、第七高阶调制信号x7、第八高阶调制信号x8和第九高阶调制信号x9
其中,在N个子载波上传输该N个高阶调制信号,包括:
在该第一信道的该第一子载波上,传输该第一高阶调制信号x1
在该第二信道的该第二子载波上,传输该第二高阶调制信号x2
在该第三信道的该第三子载波上,传输该第三高阶调制信号x3
在该第一信道的该第四子载波上,传输该第四高阶调制信号x4
在该第二信道的该第五子载波上,传输该第五高阶调制信号x5
在该第三信道的该第六子载波上,传输该第六高阶调制信号x6
在该第一信道的该第七子载波上,传输该第七高阶调制信号x7
在该第二信道的该第八子载波上,传输该第八高阶调制信号x8
在该第三信道的该第九子载波上,传输该第九高阶调制信号x9
可选地,该多个低阶调制信号为s1、s2、s3、s4、s5、s6、s7、s8和s9,其中,该信道矩阵Q为下式:
Figure PCTCN2017089160-appb-000003
结合第一方面,在第四种可能的实现方式中,在N个子载波上传输该N个高阶调制信号,包括:
在N个子带的该N个子载波上传输该N个高阶调制信号,该N个子载波中的第n个子载波为该N个子带中的第n个子带上的子载波,其中,该N个子带为该M个信道的频域资源上的子带。
这里,多个高阶调制信号可以在多个子带的多个子载波上进行传输,其中,多个子带是根据宽带的频域资源划分的。
结合第一方面的第四种可能的实现方式,在第五种可能的实现方式中,在N=4时,该N个子带分别为第一子带、第二子带、第三子带和第四子带,该N个子载波分别为第一子载波、第二子载波、第三子载波和第四子载波,该N个高阶调制信号分别为第一高阶调制信号x1=α1s11s2、第二高阶调制信号x2=α2s12s2、第三高阶调制信号
Figure PCTCN2017089160-appb-000004
和第四高阶调制信号
Figure PCTCN2017089160-appb-000005
其中,x1 *为x1的共轭,x2 *为x2的共轭;
其中,在N个子带的该N个子载波上传输该N个高阶调制信号,包括:
在该第一子带的该第一子载波上传输该第一高阶调制信号x1=α1s11s2
在该第二子带的该第二子载波上传输该第二高阶调制信号x2=α2s12s2
在该第三子带的该第三子载波上传输该第三高阶调制信号
Figure PCTCN2017089160-appb-000006
在该第四子带的该第四子载波上传输该第四高阶调制信号
Figure PCTCN2017089160-appb-000007
可选地,该多个低阶调制信号为s1和s2,该信道矩阵
Figure PCTCN2017089160-appb-000008
Figure PCTCN2017089160-appb-000009
Figure PCTCN2017089160-appb-000010
Figure PCTCN2017089160-appb-000011
Figure PCTCN2017089160-appb-000012
或者,该信道矩阵
Figure PCTCN2017089160-appb-000013
Figure PCTCN2017089160-appb-000014
Figure PCTCN2017089160-appb-000015
Figure PCTCN2017089160-appb-000016
Figure PCTCN2017089160-appb-000017
结合第一方面的第四种可能的实现方式,在第六种可能的实现方式中,在N=3时,该N个子带分别为第一子带、第二子带和第三子带,该N个子载波分别为第一子载波、第二子载波和第三子载波,该N个高阶调制信号分别为第一高阶调制信号x1=α1s11s21s3、第二高阶调制信号x2=α2s12s22s3、第三高阶调制信号x3=α3s13s23s3
其中,在N个子带的该N个子载波上传输该N个高阶调制信号,包括:
在该第一子带的该第一子载波上传输该第一高阶调制信号x1=α1s11s21s3
在该第二子带的该第二子载波上传输该第二高阶调制信号x2=α2s12s22s3
在该第三子带的该第三子载波上传输该第三高阶调制信号x3=α3s13s23s3
可选地,该多个低阶调制信号为s1、s2和s3,该信道矩阵
Figure PCTCN2017089160-appb-000018
其中,该
Figure PCTCN2017089160-appb-000019
Figure PCTCN2017089160-appb-000020
Figure PCTCN2017089160-appb-000021
第二方面,提供了一种传输信号的装置,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第三方面,提供了一种传输信号的装置,该装置包括:接收器、发送器、存储器、处理器和总线***。其中,该接收器、该发送器、该存储器和该处理器通过该总线***相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制接收器接收信号,并控制发送器发送信号,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第四方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
附图说明
图1是根据本申请实施例的信道划分的示意图;
图2是本申请实施例的一个应用场景的示意图。
图3是正交相移键控的星座图的示意图。
图4是16正交振幅调制的星座图的示意图。
图5是64正交振幅调制的星座图的一个示意图。
图6是64正交振幅调制的星座图的另一个示意图。
图7是256正交振幅调制的星座图的示意图。
图8是根据本申请实施例的传输信号的方法的示意性流程图。
图9是信道汇聚的原理示意图。
图10是根据本申请实施例的二信道汇聚的一个例子示意图。
图11是根据本申请实施例的二信道汇聚的另一个例子示意图。
图12是根据本申请实施例的二信道汇聚的另一个例子示意图。
图13是根据本申请实施例的二信道汇聚的另一个例子示意图。
图14是根据本申请实施例的二信道汇聚的另一个例子示意图。
图15是根据本申请实施例的二信道汇聚的再一个例子示意图。
图16是根据本申请实施例的三信道汇聚的一个例子示意图。
图17是根据本申请实施例的三信道汇聚的另一个例子示意图。
图18是宽带信道的数据结构示意图。
图19是根据本申请实施例的宽带信道的一个例子示意图。
图20是根据本申请实施例的宽带信道的另一个例子示意图。
图21是根据本申请实施例的传输信号的装置的示意性框图。
图22是根据本申请实施例的传输信号的装置的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行清楚描述。
应理解,本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、LTE频分双工(Frequency Division Duplex,FDD)***、LTE时分双工(Time Division Duplex,TDD)、通用移动通信***(Universal Mobile Telecommunication System,UMTS)等。
需要说明的是,如图1所示,本申请实施例中的信道指的是60GHz免费频段被划分成的4个信道,对应图1中的编号1、2、3和4,这4个信道的带宽为2.16GHz,对应的中心频率分别为58.320GHz、60.480GHz、62.640GHz和64.800GHz。
图2示出了应用场景的一个示意图。本申请实施例的技术方案可以应用于无线保真(Wireless Fidelity,Wi-Fi)网络中接入点(Access point,AP)和站点(Station,STA)之间的通信。如图2所示,STA1 102与STA2 102连接至AP101。AP101可以与STA 102通过无线信号进行通信。通常用于通信的无线信号是以某种调制方式进行发送和接收的,可以分为单载波调制和多载波调制两大类。
应理解,本申请实施例仅以图2中的应用场景为例进行说明,但本申请并不限于此,例如,图2中是以STA1 102和STA2 102为例进行描述,该***还可以包括更多的STA等。
还应理解,图2中的STA可以是终端(Terminal)、移动台(Mobile Station,MS)或移动终端(Mobile Terminal)等,例如,笔记本,手机设备等。终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,终端可以是移动电话(或称为“蜂窝”电话)或具有移动终端的计算机等,例如,终端还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语音和/或数据。图2中的AP用于提供STA与网络之间的通讯联系,是终端进入网络的接入点。
本申请实施例也仅以WLAN***中的AP和STA为例进行说明,但本申请并不限于此,根据本申请实施例的方法和装置还可以应用于其它通信***中的基站和用户设备;类似地,还应理解,本申请实施例仅以WLAN***为例进行说明,但本申请并不限于此,根据本申请实施例的方法和装置还可以应用于其它通信***。
在目前WIFI技术中,电气和电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.11ad技术的实现方案之一是正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)***。本申请实施例的技术方案可以应用于该OFDM***。OFDM是一种多载波调制方式,通过减小和消除码间串扰的影响来克服信道的频率选择性衰落。OFDM支持的调制方式包括交错四相调制(staggered quadriphase shift keying,SQPSK)、正交相移键控(Quadrature Phase Shift Keyin,QPSK)、16正交幅度调制(Quadrature Amplitude Modulation,QAM)以及32QAM,其中,SQPSK和QPSK 采用了双载波调制(Dual Carrier Modulation,DCM)方法。
其中,DCM是一种利用频率分集提升发送性能的方法。比如,对于待发送的两个信号s1,s2,将两个信号组合后生成的信号x1=α1s11s2与x2=α2s12s2在不同的频率(载波)上同时发送出去,例如,x1,x2分别在频率f1和频率f2上进行发送,以达到频率分集的效果。其中,s1,s2可以表示为
Figure PCTCN2017089160-appb-000022
其中,
Figure PCTCN2017089160-appb-000023
这里,DCM要求信号s1,s2与x1,x2均为典型星座图上的点。例如,一种典型的实现方式是:当s1,s2为QPSK信号时,将Q与s1,s2进行相乘,能够生成两个16QAM信号x1,x2,其中
Figure PCTCN2017089160-appb-000024
但是在现有802.11ad标准中,只能同时使用一个信道进行信号传输,造成传输吞吐率较低,并且也不能灵活得实现更多的分集,因此本申请提出了信号在多个信道的多个子载波上进行传输的方案。本申请的传输信号的核心思想在于:将多个信道与多个子载波进行结合,实现信号在多个信道上进行传输,能够提高分集增益的效率。
在本申请实施例中,信号在多个信道进行传输时,会涉及到“高阶调制信号拆分成多个低阶调制信号的组合”的相关内容。下面先对该高阶调制信号可以拆分成多个低阶调制信号的组合的相关内容进行详细介绍。为了描述方便,下文将采用x表示高阶调制信号,用s表示低阶调制信号,其中,高阶调制信号与低阶调制信号可表示为矩阵形式,具体包括以下情况:
(1)QPSK=二进制相移键控(Binary Phase Shift Keying,BPSK)+BPSK
当高阶调制信号为QPSK信号时,QPSK信号x可以拆分成2个低阶调制信号BPSK信号的组合。QPSK信号x的取值可以为:
Figure PCTCN2017089160-appb-000025
例如,图3示出了QPSK的星座图的示意图,如图3所示,图中的四个黑点即对应QPSK信号x的取值。
具体地,x可以拆分成两个BPSK信号s1,s2的组合,表示为
Figure PCTCN2017089160-appb-000026
其中,s1的取值包括{1,-1},s2的取值包括{1,-1},α12组合有两种方式,表1示出了α12的组合系数,如表1所示:
表1QPSK=BPSK+BPSK的组合系数
  α1 α2
组合1 1 j
组合2 1 -j
(2)16QAM=QPSK+QPSK
当高阶调制信号为16QAM信号时,16QAM信号x可以拆分成两个低阶调制信号QPSK信号的组合。16QAM信号x的取值可以为以下几种:
Figure PCTCN2017089160-appb-000027
例如,图4示出了16QAM的星座图的一个示意图,如图4所示,图中的十六个黑 点即对应16QAM信号x的取值。
具体地,x拆分成两个QPSK信号s1,s2的组合,可以表示为
Figure PCTCN2017089160-appb-000028
其中,s1的取值包括
Figure PCTCN2017089160-appb-000029
s2的取值包括
Figure PCTCN2017089160-appb-000030
α12组合有四种方式,表2示出了α12的组合系数,如表2所示:
表2 16QAM=QPSK+QPSK的组合系数
  α1 α2
组合1 1 2
组合2 1 -2
组合3 2 1
组合4 2 -1
根据上述α12的四种方式,代入x的表达式,可对应得到
Figure PCTCN2017089160-appb-000031
Figure PCTCN2017089160-appb-000032
Figure PCTCN2017089160-appb-000033
(3)64QAM=QPSK+QPSK+QPSK
当高阶调制信号为64QAM信号时,64QAM信号x可以拆分成3个低阶调制信号QPSK信号的组合。64QAM信号x的取值可以为以下几种:
Figure PCTCN2017089160-appb-000034
例如,图5示出了64QAM的星座图的一个示意图,如图5所示,图中的六十四个黑点即对应16QAM信号x的取值。
具体地,x拆分成三个QPSK信号s1,s2,s3的组合,可以表示为
Figure PCTCN2017089160-appb-000035
其中,s1的取值包括
Figure PCTCN2017089160-appb-000036
s2的取值包括
Figure PCTCN2017089160-appb-000037
s3的取值包括
Figure PCTCN2017089160-appb-000038
α123组合有多种方式,这里列举24种,表3示出了α123的组合系数,如表3所示:
表3 64QAM=QPSK+QPSK+QPSK中α123的组合系数
基组合 循环移位1 循环移位2
α123 α123 α123
(4,2,1) (1,4,2) (2,1,4)
(4,2,-1) (-1,4,2) (2,-1,4)
(4,-2,1) (1,4,-2) (-2,1,4)
(4,-2,-1) (-1,4,-2) (-2,-1,4)
(-4,2,1) (1,-4,2) (2,1,-4)
(-4,2,-1) (-1,-4,2) (2,-1,-4)
(-4,-2,1) (1,-4,-2) (-2,1,-4)
(-4,-2,-1) (-1,-4,-2) (-2,-1,-4)
其中,上述24种组合按照以下方式生成:
首先,x按照表3中α123的基组合系数生成8组基线组合,即
Figure PCTCN2017089160-appb-000039
x的8组基线组合取值分别为:
Figure PCTCN2017089160-appb-000040
Figure PCTCN2017089160-appb-000041
Figure PCTCN2017089160-appb-000042
然后根据上述8组基线组合分别循环移位两次,每移位一次生成8组值。
Figure PCTCN2017089160-appb-000043
循环移位1后得到
Figure PCTCN2017089160-appb-000044
循环移位2后得到
Figure PCTCN2017089160-appb-000045
其他x循环移位后的取值类似,不再赘述。
(4)64QAM=QPSK+16QAM
当高阶调制信号为64QAM信号时,64QAM信号x也可以拆分成低阶调制信号1个QPSK信号和1个16QAM信号的组合。64QAM信号x的取值可以为以下几种:
Figure PCTCN2017089160-appb-000046
例如,图6示出了64QAM的星座图的另一示意图,如图6所示,图中的六十四个黑点即对应64QAM信号x的取值。
具体地,x拆分成1个QPSK信号s1和1个16QAM信号s2的组合,可以表示为
Figure PCTCN2017089160-appb-000047
其中,s1的取值包括
Figure PCTCN2017089160-appb-000048
s2的取值包括
Figure PCTCN2017089160-appb-000049
α12组合有四种方式,表4示出了α12的组合系数,如表4所示:
表4 64QAM=QPSK+16QAM中α12的组合系数
  α1 α2
组合1 1 2
组合2 1 -2
组合3 2 1
组合4 2 -1
根据上述α12的四种方式,代入x的表达式,可对应得到
Figure PCTCN2017089160-appb-000050
Figure PCTCN2017089160-appb-000051
Figure PCTCN2017089160-appb-000052
(5)256QAM=QPSK+QPSK+QPSK+QPSK
当高阶调制信号为64QAM信号时,256QAM信号x也可以拆分成4个QPSK信号的组合。256QAM信号x的取值可以为以下几种:
Figure PCTCN2017089160-appb-000053
例如,图7示出了256QAM的星座图的示意图,如图7所示,图中的二百五十六个 黑点即对应64QAM信号x的取值。
具体地,x拆分成4个QPSK信号s1,s2,s3,s4的组合,可以表示为
Figure PCTCN2017089160-appb-000054
其中,s1的取值包括
Figure PCTCN2017089160-appb-000055
s2的取值包括
Figure PCTCN2017089160-appb-000056
s3的取值包括
Figure PCTCN2017089160-appb-000057
s4的取值包括
Figure PCTCN2017089160-appb-000058
α1234的组合系数有多种方式,这里列举64种,表5示出了α1234的组合系数,如表5所示:
表5 64QAM=QPSK+QPSK+QPSK+QPSK中α1234的组合系数
基线组合 循环移位1 循环移位2 循环移位3
α1234 α1234 α1234 α1234
(8,4,2,1) (1,8,4,2) (2,1,8,4) (4,2,1,8)
(8,4,2,-1) (-1,8,4,2) (2,-1,8,4) (4,2,-1,8)
(8,4,-2,1) (1,8,4,-2) (-2,1,8,4) (4,-2,1,8)
(8,4,-2,-1) (-1,8,4,-2) (-2,-1,8,4) (4,-2,-1,8)
(8,-4,2,1) (1,8,-4,2) (2,1,8,-4) (-4,2,1,8)
(8,-4,2,-1) (-1,8,-4,2) (2,-1,8,-4) (-4,2,-1,8)
(8,-4,-2,1) (1,8,-4,-2) (-2,1,8,-4) (-4,-2,1,8)
(8,-4,-2,-1) (-1,8,-4,-2) (-2,-1,8,-4) (-4,-2,-1,8)
(-8,4,2,1) (1,-8,4,2) (2,1,-8,4) (4,2,1,-8)
(-8,4,2,-1) (-1,-8,4,2) (2,-1,-8,4) (4,2,-1,-8)
(-8,4,-2,1) (1,-8,4,-2) (-2,1,-8,4) (4,-2,1,-8)
(-8,4,-2,-1) (-1,-8,4,-2) (-2,-1,-8,4) (4,-2,-1,-8)
(-8,-4,2,1) (1,-8,-4,2) (2,1,-8,-4) (-4,2,1,-8)
(-8,-4,2,-1) (-1,-8,-4,2) (2,-1,-8,-4) (-4,2,-1,-8)
(-8,-4,-2,1) (1,-8,-4,-2) (-2,1,-8,-4) (-4,-2,1,-8)
(-8,-4,-2,-1) (-1,-8,-4,-2) (-2,-1,-8,-4) (-4,-2,-1,-8)
其中,上述64种组合按照以下方式生成:
首先,x按照表5中α1234的基组合系数生成16组基线组合,即
Figure PCTCN2017089160-appb-000059
分别为:
Figure PCTCN2017089160-appb-000060
Figure PCTCN2017089160-appb-000061
Figure PCTCN2017089160-appb-000062
Figure PCTCN2017089160-appb-000063
Figure PCTCN2017089160-appb-000064
Figure PCTCN2017089160-appb-000065
然后根据上述16组基线组合分别循环移位两次,每移位一次生成16组值。
例如,将
Figure PCTCN2017089160-appb-000066
循环移位1位后得到
Figure PCTCN2017089160-appb-000067
循环移位2位后得到
Figure PCTCN2017089160-appb-000068
循环移位3位后得到
Figure PCTCN2017089160-appb-000069
其他x取值循环移位后的取值类似,这里不再赘述。
上面列举了一些高阶调制信号拆分成低阶调制信号的多种情况。应理解,高阶调制信号拆分成低阶调制信号的组合形式还可以有更多的组合或拆分形式,对此不作限制。
图8示出了根据本申请实施例的传输信号的方法300的示意性流程图。如图8所示,该方法300包括:
S310,将多个低阶调制信号组合成N个高阶调制信号;
S320,在N个子载波上传输该N个高阶调制信号,该N个子载波为M个信道的频域资源上的子载波,其中,该N个高阶调制信号中的第n个高阶调制信号在该N个子载波中的第n个子载波上传输,该N为大于或等于2的整数,该M为大于或等于2的整数,其中,n=1,2,…,N。
具体而言,传输信号的装置通过将多个低阶调制信号组合成N个高阶调制信号,然后在N个子载波上传输该N个高阶调制信号,其中,该N个子载波为多个(比如M个)信道的频域资源上的子载波,其中,该N个高阶调制信号中的第n个高阶调制信号在该N个子载波中的第n个子载波上传输,该N为大于或等于2的整数,该M为大于或等于2的整数,其中,n=1,2,…,N。
在本申请实施例中,待发送的信号为低阶调制信号,采用将低阶调制信号组合成高阶调制信号的形式,将待发送的低阶调制信号通过高阶调制信号在多个信道上进行传输。
在本申请实施例中,多个低阶调制信号可以是N个,也可以是N/2个,对此不作限定。比如,当2个低阶调制信号和其对应的共轭信号在子载波上传输时,对应的4个高阶调制信号在4个子载波上进行传输。
在本申请实施例中,N个子载波为M个信道的频域资源上的子载波,包括以下情况:其一,N个子载波为M个信道中某个信道上的子载波;其二,N个子载波为N个子带中某个子带上的子载波,其中N个子带是宽带信道通过频域资源划分的子带。
在本申请实施例中,N和M均为大于或等于2的整数。引入N是为了表示有多个高阶调制信号,或者表示多个子载波,并且第n个高阶调制信号在第n个子载波上传输。引入M是为了表示有多个信道,并且N个子载波为M个信道的频域资源上的子载波。而对于子载波N的数量与信道M的数量之间的关系可以结合具体情况选择,比如,可以是2个信道上的4个子载波,或者3个信道上的9个子载波,对此不作限制。
因此,本申请实施例的传输信号的方法,通过将多个低阶调制信号组合成N个高阶调制信号,在N个子载波上传输该N个高阶调制信号,该N个子载波为M个信道的频域资源上的子载波,能够提高分集增益的效率。
可选地,在本申请实施例中,将多个低阶调制信号组合成N个高阶调制信号,包括:
根据该多个低阶调制信号和信道矩阵Q,确定该N个高阶调制信号。
具体例如,在确定多个低阶调制信号的多个高阶调制信号时,可以将该多个低阶调制信号组成的列向量与信道矩阵Q相乘,从而得到该N个高阶调制信号。比如,具体操作可以参考前面介绍的高阶调制信号拆分成低阶调制信号的多种情况,在此不作赘述。
在本申请实施例中,多个子载波为多个信道上的子载波;或者,多个子载波为多个子带上的子载波,该多个子带是根据宽带信道的频域资源进行划分的。
本申请实施例的技术方案,可采用信道汇聚(channel aggregation)或宽带信道(wideband)方案来进行传输。这里,“多个子载波为多个信道上的子载波”即对应“信道汇聚”方案,“多个子载波为多个子带上的子载波”即对应“宽带信道”方案。
下面将详细介绍“信道汇聚”或“宽带信道”两个应用场景下本申请的技术方案。
首先介绍“信道汇聚”多种情况下的本申请实施例,在介绍具体实施例前,先结合图9描述“信道汇聚”的具体实现原理。这里以三个信道为例进行描述,如图9所示,信道channel 1的数据经过编码调制后乘上对应的载频信号
Figure PCTCN2017089160-appb-000070
信道channel 2的数据经过编码调制后乘上对应的载频信号
Figure PCTCN2017089160-appb-000071
信道channel 3的数据经过编码调制后乘上对应的载频信号
Figure PCTCN2017089160-appb-000072
最后3个信道的数据叠加在一起发送出去。
可选地,作为一个实施例,在N个子载波上传输该N个高阶调制信号,包括:
在该M个信道中第m个信道的k个子载波上传输该N个高阶调制信号中的k个高阶调制信号,其中,N=M×k,k为大于2的整数,m=1,2,…,M。
具体而言,多个高阶调制信号可以在多个信道中每个信道的多个子载波上进行传输。例如,N个高阶调制信号中的k个高阶调制信号在M个信道中第m个信道的k个子载波上进行传输。这里,N=M×k,k为大于2的整数,m=1,2,…,M。例如,当k=3,M=3,N=9时,9个高阶调制信号中的3个高阶调制信号在3个信道中某一个信道(比如第m个信道)的3个子载波上进行传输(即3信道汇聚时9个高阶调制信号在9个子载波上传输)。
应理解,这里引入m和M是用于表示多个信道中的某一个信道,并不对本申请构成具体限定。当然,其他引入的字母的作用是类似的,比如N个高阶调制信号中的k个高阶调制信号等,对此不作限定。
换言之,高阶调制信号在不同的信道上进行独立传输。这样,本申请与现有技术中只在一个信道上传输的区别在于:将多个高阶调制信号在多个信道的子载波上进行传输,能够提高频率分集增益的效率。这里,频率分集增益的产生原因在于:由于信道具有频域选择性衰落,若将在一个信道传输的信号分散到多个信道中去,然后通过信道矩阵Q将分散的信号纠正回来,不仅提高了信号的准确度,而且实现了频率分集增益。
因此,本申请实施例的传输信号的方法,通过将多个低阶调制信号组合成N个高阶调制信号,在N个子载波上传输该N个高阶调制信号,该N个子载波为M个信道的频域资源上的子载波。具体地,通过将N个高阶调制信号中的k个高阶调制信号在M个信道中第m个信道的k个子载波上进行传输,能够提高分集增益的效率。
可选地,作为一个实施例,在M=2,N=4时,该M个信道分别为第一信道和第二信道,该N个子载波分别为第一子载波、第二子载波、第三子载波和第四子载波,该N个高阶调制信号分别为第一高阶调制信号x1、第二高阶调制信号x2、第三高阶调制信号x3 和第四高阶调制信号x4
其中,该在N个子载波上传输该N个高阶调制信号,包括:
在该第一信道的该第一子载波上,传输该第一高阶调制信号x1
在该第二信道的该第二子载波上,传输该第二高阶调制信号x2
在该第一信道的该第三子载波上,传输该第三高阶调制信号x3
在该第二信道的该第四子载波上,传输该第四高阶调制信号x4
例如,将4个低阶调制信号s1,s2,s3,s4和信道矩阵Q相乘,可以得到4个高阶调制信号:x1,x2,x3,x4,具体表示为下式:
Figure PCTCN2017089160-appb-000073
因此,通过将4个高阶调制信号在2个信道中的4个子载波上进行传输,能够提高分集增益的效率。
应理解,本申请实施例中的编号“第一,第二…”只是为了区分不同的对象,比如为了区分不同的调制信号、不同的子载波或不同的信道等,并不构成对本申请实施例的限定,下文亦然。
图10示出了根据本申请实施例的二信道汇聚的一个例子示意图。如图10所示,将第一高阶调制信号x1在第一信道的第一子载波上传输,将第二高阶调制信号x2在第二信道的第二子载波上传输,将第三高阶调制信号x3在第一信道的第三子载波上传输,将第四高阶调制信号x4在第二信道的第四子载波上传输,从而使得高阶调制信号在多个信道的多个子载波上的传输,实现了分集增益。其中,第一子载波和第二子载波的序号相同,第三子载波和第四子载波序号相同。第一子载波和第三子载波的间隔用户传输数据的子载波数目的一半。
可选地,该多个低阶调制信号为s1、s2、s3和s4,其中,该信道矩阵Q为下式中的任一种:
Figure PCTCN2017089160-appb-000074
Figure PCTCN2017089160-appb-000075
下面结合具体的例子对本申请实施例进行详细描述。应注意,上下文中的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
对于2信道汇聚的DCM方案,具体包括以下情况:
(1)a.当对BPSK采用2信道汇聚时,高阶调制信号与低阶调制信号的表示如下式所示:
Figure PCTCN2017089160-appb-000076
其中,信道矩阵
Figure PCTCN2017089160-appb-000077
s1,s2,s3,s4为BPSK调制信号,x1,x2,x3,x4为QPSK调制信号,且x3=x2′,x4=x1′,其中,( )′表示求共轭。
例如,图11示出了根据本申请实施例的二信道汇聚的一个例子示意图。如图11所示,在该例中,第一高阶调制信号x1在第一信道的第一子载波上传输,将第二高阶调制信号x2在第二信道的第二子载波上传输,将第三高阶调制信号x3在第一信道的第三子载波上传输,将第四高阶调制信号x4在第二信道的第四子载波上传输,其中x3=x2′,x4=x1′,( )′表示求共轭。
因此,在该具体实现方式中,通过将4个高阶调制信号在2个信道中的4个子载波上进行传输,能够提高分集增益的效率。
b.当对BPSK采用2信道汇聚时,高阶调制信号与低阶调制信号的表示如下式所示:
Figure PCTCN2017089160-appb-000078
其中,信道矩阵
Figure PCTCN2017089160-appb-000079
s1,s2,s3,s4为BPSK调制信号,x1,x2,x3,x4为16QAM调制信号,并且x1,x2,x3,x4为BPSK调制信号s1,s2,s3,s4采用不同的系数合并而成。
例如,图12示出了根据本申请实施例的二信道汇聚的一个例子示意图。如图12所示,在该例中,第一高阶调制信号x1在第一信道的第一子载波上传输,将第二高阶调制信号x2在第二信道的第二子载波上传输,将第三高阶调制信号x3在第一信道的第三子载波上传输,将第四高阶调制信号x4在第二信道的第四子载波上传输。
因此,在该具体实现方式中,通过将4个高阶调制信号在2个信道中的4个子载波上进行传输,能够提高分集增益的效率。
(2)a.当对QPSK采用2信道汇聚时,高阶调制信号与低阶调制信号的表示如下式所示:
Figure PCTCN2017089160-appb-000080
其中,信道矩阵
Figure PCTCN2017089160-appb-000081
s1,s2,s3,s4为QPSK调制信号,x1,x2,x3,x4为16QAM调制信号,且x1,x4是由一组QPSK调制信号s1,s2采用不同的系数合并成,x2,x3是由一组QPSK调制信号s3,s4采用不同的系数合并成。
例如,图13示出了根据本申请实施例的二信道汇聚的一个例子示意图。如图13所示,在该例中,第一高阶调制信号x1在第一信道的第一子载波上传输,将第二高阶调制信号x2在第二信道的第二子载波上传输,将第三高阶调制信号x3在第一信道的第三子载波上传输,将第四高阶调制信号x4在第二信道的第四子载波上传输。
因此,在该具体实现方式中,通过将4个高阶调制信号在2个信道中的4个子载波上进行传输,能够提高分集增益的效率。
b.当对QPSK采用2信道汇聚时,高阶调制信号与低阶调制信号的表示如下式所示:
Figure PCTCN2017089160-appb-000082
其中,信道矩阵
Figure PCTCN2017089160-appb-000083
s1,s2,s3,s4为QPSK调制信号,x1,x2,x3,x4为256QAM调制信号,且x1,x2,x3,x4是由4个QPSK调制信号s1,s2,s3,s4采用不同的系数合并成。
例如,图14示出了根据本申请实施例的二信道汇聚的一个例子示意图。如图14所示,在该例中,第一高阶调制信号x1在第一信道的第一子载波上传输,将第二高阶调制信号x2在第二信道的第二子载波上传输,将第三高阶调制信号x3在第一信道的第三子载波上传输,将第四高阶调制信号x4在第二信道的第四子载波上传输。
因此,在该具体实现方式中,通过将4个高阶调制信号在2个信道中的4个子载波上进行传输,能够提高分集增益的效率。
(3)当对QPSK和QAM采用2信道汇聚时,高阶调制信号与低阶调制信号的表示如下式所示:
Figure PCTCN2017089160-appb-000084
其中,信道矩阵
Figure PCTCN2017089160-appb-000085
s1,s3为QPSK调制信号,s2,s4为16QAM调制信号,x1,x2,x3,x4为64QAM调制信号,且x1,x4是由QPSK调制信号s1,16QAM调制信号s2采用不同的系数合并成,x2,x3是由QPSK调制信号s3,16QAM调制信号s4采用不同的系数合并成。
例如,图15示出了根据本申请实施例的二信道汇聚的一个例子示意图。如图15所示,在该例中,第一高阶调制信号x1在第一信道的第一子载波上传输,将第二高阶调制信号x2在第二信道的第二子载波上传输,将第三高阶调制信号x3在第一信道的第三子载波上传输,将第四高阶调制信号x4在第二信道的第四子载波上传输。
因此,在该具体实现方式中,通过将4个高阶调制信号在2个信道中的4个子载波上进行传输,能够提高分集增益的效率。
应理解,上面描述的两信道汇聚时的多种方案,只是为了便于本领域的技术人员理解本申请的技术方案,并不对本申请构成限制。其中,上面描述的高阶调制信号与低阶调制信号的组合方式还可以有其他合理组合,对此不作限制。
因此,本申请实施例的传输信号的方法,通过将多个低阶调制信号组合成N个高阶调制信号,在N个子载波上传输该N个高阶调制信号,该N个子载波为M个信道的频域资源上的子载波。具体地,通过将N个高阶调制信号中的k个高阶调制信号在M个信道中第m个信道的k个子载波上进行传输,能够提高分集增益的效率。
可选地,作为一个实施例,在M=3,N=9时,该M个信道分别为第一信道、第二信道和第三信道,该N个子载波分别为第一子载波、第二子载波、第三子载波、第四子载波、第五子载波、第六子载波、第七子载波、第八子载波和第九子载波,该N个高阶调制信号分别为第一高阶调制信号x1、第二高阶调制信号x2、第三高阶调制信号x3、第四高阶调制信号x4、第五高阶调制信号x5、第六高阶调制信号x6、第七高阶调制信号x7、第八高阶调制信号x8和第九高阶调制信号x9
其中,该在N个子载波上传输该N个高阶调制信号,包括:
在该第一信道的该第一子载波上,传输该第一高阶调制信号x1
在该第二信道的该第二子载波上,传输该第二高阶调制信号x2
在该第三信道的该第三子载波上,传输该第三高阶调制信号x3
在该第一信道的该第四子载波上,传输该第四高阶调制信号x4
在该第二信道的该第五子载波上,传输该第五高阶调制信号x5
在该第三信道的该第六子载波上,传输该第六高阶调制信号x6
在该第一信道的该第七子载波上,传输该第七高阶调制信号x7
在该第二信道的该第八子载波上,传输该第八高阶调制信号x8
在该第三信道的该第九子载波上,传输该第九高阶调制信号x9
具体而言,当采用3信道汇聚方案时,9个低阶调制信号s1,s2,...,s9和矩阵Q相乘,能够输出9个高阶调制信号x1,x2,...,x4。例如,图16示出了根据本申请实施例的三信道汇聚的一个例子示意图。如图16所示,高阶调制信号的具体传输方案为:将第一高阶调制信号x1在第一信道的第一子载波上传输,第二高阶调制信号x2在第二信道的第二子载波上传输,第三高阶调制信号x3在第三信道的第三子载波上传输;第四高阶调制信号x4在第一信道的第四子载波上传输,第五高阶调制信号x5在第二信道的第五子载波上传输,第六高阶调制信号x6在第三信道的第六子载波上传输;第七高阶调制信号x7在第一信道的第七子载波上传输,第八高阶调制信号x8在第二信道的第八子载波上传输,第九高阶调制信号x9在第三信道的第九子载波上传输,从而使得高阶调制信号在多个信道的多个子载波上的传输,提高了分集增益的效率。
其中,第一子载波、第二子载波和第三子载波的序号相同,第四子载波、第五子载波和第六子载波序号相同,第七子载波、第八子载波和第九子载波序号相同。第一子载波、第四子载波的间隔,第四子载波、第七子载波的间隔在802.12Ay中间隔为用于传输数据的子载波数目的三分之一。
例如,将9个低阶调制信号s1,s2,...,s9和矩阵Q相乘,可以得到9个高阶调制信号:x1,x2,x3,x4,…x9,具体表示为下式:
Figure PCTCN2017089160-appb-000086
可选地,该多个低阶调制信号为s1、s2、s3、s4、s5、s6、s7、s8和s9,其中,该信道矩阵Q为下式:
Figure PCTCN2017089160-appb-000087
下面将结合具体的例子描述3信道汇聚时的方案,具体如下所示:
当对64QAM采用3信道汇聚时,高阶调制信号与低阶调制信号的表示如下式所示:
Figure PCTCN2017089160-appb-000088
其中,信道矩阵
Figure PCTCN2017089160-appb-000089
s1,s2,s3,s4,s5,s6,s7,s8,s9为64QAM调制信号,x1,x2,x3,x4,x5,x6,x7,x8,x9为QPSK调制信号。并且,x1,x5,x9为三个QPSK信号s1,s2,s3根据不同系数组合而成的64QAM信号,x2,x6,x7为三个QPSK信号s4,s5,s6根据不同系数组合而成的64QAM信号,x3,x4,x8为三个QPSK信号s7,s8,s9根据不同系数组合而成的64QAM信号。
例如,图17示出了根据本申请实施例的三信道汇聚的一个例子示意图。如图17所示,在该例中,高阶调制信号的具体传输方案为:将第一高阶调制信号x1在第一信道的第一子载波上传输,第二高阶调制信号x2在第二信道的第二子载波上传输,第三高阶调制信号x3在第三信道的第三子载波上传输;第四高阶调制信号x4在第一信道的第四子载波上传输,第五高阶调制信号x5在第二信道的第五子载波上传输,第六高阶调制信号x6在第三信道的第六子载波上传输;第七高阶调制信号x7在第一信道的第七子载波上传输,第八高阶调制信号x8在第二信道的第八子载波上传输,第九高阶调制信号x9在第三信道的第九子载波上传输,从而使得高阶调制信号在多个信道的多个子载波上的传输,提高了分集增益的效率。
因此,在该具体实现方式中,通过将9个高阶调制信号在3个信道中的9个子载波上进行传输,能够提高分集增益的效率。
因此,本申请实施例的传输信号的方法,通过将多个低阶调制信号组合成N个高阶调制信号,在N个子载波上传输该N个高阶调制信号,该N个子载波为M个信道的频域资源上的子载波。具体地,通过将N个高阶调制信号中的k个高阶调制信号在M个信道中第m个信道的k个子载波上进行传输,能够提高分集增益的效率。
前文描述了“信道汇聚”多种情况下的本申请实施例,下面将描述“宽带信道”的具体实施例。在介绍具体实施例前,先结合图18描述“宽带信道”的实现原理。
图18示出了OFDM数据结构的示意图,如图18所示,多载波的OFDM数据结构由循环前缀(Cyclisc Prefix,CP)和OFDM符号组成,OFDM符号频域上的子载波用于传输数据,调制后的OFDM符号(其中,符号可以理解为调制信号)构成频域上的数据块,然后经过逆傅里叶变换从频域转换至对应的时域信号。
在图18中,对于一个channel时,一个信道频域上有512子载波,子载波间隔为ΔF,在11ad中5.15625MHz,对应的带宽(Bandwidth,BW)为BW=2.64GHz,相应的,在时域上的信号传输时间为ΔT,在11ad中为0.38ns,总共传输512信号,对应的总传输时间T=194ns;
在图18中,对于两个channels时,二个信道时频域上有1024子载波,子载波间隔ΔF不变,对应的带宽为2BW=5.28GHz,相应的,在时域上的信号传输时间为ΔT为0.19ns,总共传输1024信号,对应的总传输时间T不变;
在图18中,对于三个channels时,三个信道时频域上有1536子载波,子载波间隔ΔF不变,对应的带宽为BW=7.92GHz,相应的,在时域上的信号传输时间为ΔT为0.1267ns,总共传输1536信号,对应的总传输时间T不变。
可选地,作为一个实施例,在N个子载波上传输该N个高阶调制信号,包括:
在N个子带的该N个子载波上传输该N个高阶调制信号,该N个子载波中的第n个子载波为该N个子带中的第n个子带上的子载波,其中,该N个子带为该M个信道的频域资源上的子带。
具体而言,多个高阶调制信号可以在多个子带的多个子载波上进行传输,该多个子载波是多个子带上的子载波,比如,在N个子带的该N个子载波上传输该N个高阶调制信号,该N个子载波中的第n个子载波为该N个子带中的第n个子带上的子载波。也就是说,传输高阶调制信号所采用的子载波为子带上的子载波。其中,多个子带为将信道的宽带按照频域资源划分的多个子带。这样,高阶调制信号可以在该多个子带中的多个子载波上进行传输。
因此,本申请实施例的传输信号的方法,通过将多个低阶调制信号组合成N个高阶调制信号,在N个子载波上传输该N个高阶调制信号,该N个子载波为M个信道的频域资源上的子载波。具体地,通过将N个高阶调制信号在多个子带的N个子载波上传输,能够提高分集增益的效率。
可选地,作为一个实施例,在N=4时,该N个子带分别为第一子带、第二子带、第三子带和第四子带,该N个子载波分别为第一子载波、第二子载波、第三子载波和第四子载波,该N个高阶调制信号分别为第一高阶调制信号x1=α1s11s2、第二高阶调制信号x2=α2s12s2、第三高阶调制信号
Figure PCTCN2017089160-appb-000090
和第四高阶调制信号
Figure PCTCN2017089160-appb-000091
其中,x1 *为x1的共轭,x2 *为x2的共轭;
其中,该在N个子带的该N个子载波上传输该N个高阶调制信号,包括:
在该第一子带的该第一子载波上传输该第一高阶调制信号x1=α1s11s2
在该第二子带的该第二子载波上传输该第二高阶调制信号x2=α2s12s2
在该第三子带的该第三子载波上传输该第三高阶调制信号
Figure PCTCN2017089160-appb-000092
在该第四子带的该第四子载波上传输该第四高阶调制信号
Figure PCTCN2017089160-appb-000093
具体而言,可以通过将OFDM频域上的子载波分为4个子带或子块,然后将待发送的低阶调制信号s1和s2组合成4个高阶调制信号后,分别在4个子带的子载波上进行传输。 图19示出了将OFDM划分为4个子带时的传输方案的示意图,如图19所示,具体的传输方案为:将第一高阶调制信号x1=α1s11s2在第一子带的第一子载波上进行传输,将第二高阶调制信号x2=α2s12s2在第二子带的第二子载波上进行传输,将第三高阶调制信号
Figure PCTCN2017089160-appb-000094
在第三子带的第三子载波上进行传输,将第四高阶调制信号
Figure PCTCN2017089160-appb-000095
在第四子带的第四子载波上进行传输。其中,
Figure PCTCN2017089160-appb-000096
为x1=α1s11s2的共轭,
Figure PCTCN2017089160-appb-000097
为x2=α2s12s2的共轭。
在本申请实施例中,4个高阶调制信号分别采用4个子带上的某一个子载波上进行传输。应理解,对于子带上的其他子载波也可以进行高阶调制信号的传输,对此不作限制。比如,在该例中,若有1000个高阶调制信号,则可以采用每4个高阶调制信号一组的形式,在4个子带的多个子载波上进行并行传输。当然,这只是便于本领域的技术人员理解该方案,并不构成对本申请的限制。
在本申请实施例中,以图19中的第一子带为例,第一子带上的第一子载波上传输的信号为x1=α1s11s2,而对于第一子带上的其他子载波,也可以传输其他高阶调制信号,这里仅以其中的第一子载波为例进行说明。
需要说明的是,图19中并非限制第一子带上的子载波只能传输x1=α1s11s2,这里只是以第一子带的第一子载波上传输x1=α1s11s2为例进行示意。在具体应用中,在第一子带中除了第一子载波以外的其他子载波可以并行传输其他高阶调制信号,对此不作限定。图19中其他子带以及下文出现的情况与该第一子带类似,以后将不作赘述。
因此,在该具体实现方式中,通过将4个高阶调制信号在4个子带的4个子载波上进行传输,能够提高分集增益的效率。
可选地,该信道矩阵
Figure PCTCN2017089160-appb-000098
Figure PCTCN2017089160-appb-000099
Figure PCTCN2017089160-appb-000100
Figure PCTCN2017089160-appb-000101
Figure PCTCN2017089160-appb-000102
或者,该信道矩阵
Figure PCTCN2017089160-appb-000103
Figure PCTCN2017089160-appb-000104
Figure PCTCN2017089160-appb-000105
Figure PCTCN2017089160-appb-000106
Figure PCTCN2017089160-appb-000107
具体而言,当低阶调制信号s1和s2是BPSK调制信号,高阶调制信号x1和x2为QPSK信号,结合前文表1中的组合系数,可以得到
Figure PCTCN2017089160-appb-000108
对应信道矩阵
Figure PCTCN2017089160-appb-000109
或者,当低阶调制信号s1和s2是QPSK调制信号,高阶调制信号x1和x2为16QAM信号,结合前文表2中的组合系数,
Figure PCTCN2017089160-appb-000110
Figure PCTCN2017089160-appb-000111
对应信道矩阵
Figure PCTCN2017089160-appb-000112
因此,本申请实施例的传输信号的方法,通过将多个低阶调制信号组合成N个高阶调制信号,在N个子载波上传输该N个高阶调制信号,该N个子载波为M个信道的频域资源上的子载波。具体地,通过将N个调制信号在多个子带的N个子载波上传输,能够提高分集增益的效率。
可选地,作为一个实施例,在N=3时,该N个子带分别为第一子带、第二子带和第三子带,该N个子载波分别为第一子载波、第二子载波和第三子载波,该N个高阶调制信号分别为第一高阶调制信号x1=α1s11s21s3、第二高阶调制信号x2=α2s12s22s3、第三高阶调制信号x3=α3s13s23s3
其中,在N个子带的该N个子载波上传输该N个高阶调制信号,包括:
在该第一子带的该第一子载波上传输该第一高阶调制信号x1=α1s11s21s3
在该第二子带的该第二子载波上传输该第二高阶调制信号x2=α2s12s22s3
在该第三子带的该第三子载波上传输该第三高阶调制信号x3=α3s13s23s3
具体而言,可以通过将OFDM频域上的子载波分为3个子带或子块,然后将待发送的低阶调制信号s1,s2和s3分别在3个子带的子载波上进行传输。图20示出了将OFDM划分为3个子带时的传输方案的示意图,如图20所示,具体的传输方案为:将第一高阶调制信号x1=α1s11s21s3在第一子带的第一子载波上进行传输,将第二高阶调制信号x2=α2s12s22s3在第二子带的第二子载波上进行传输,将第三高阶调制信号x3=α3s13s23s3在第三子带的第三子载波上进行传输。
因此,本申请实施例的传输信号的方法,通过将多个低阶调制信号组合成N个高阶调制信号,在N个子载波上传输该N个高阶调制信号,该N个子载波为M个信道的频域资源上的子载波。具体地,通过将N个调制信号在多个子带的N个子载波上传输,能够提高分集增益的效率。
可选地,该多个低阶调制信号为s1、s2和s3,该信道矩阵
Figure PCTCN2017089160-appb-000113
其中,该
Figure PCTCN2017089160-appb-000114
Figure PCTCN2017089160-appb-000115
Figure PCTCN2017089160-appb-000116
具体而言,当低阶调制信号s1,s2和s3为QPSK调制信号,高阶调制信号x1,x2,x3为64QAM调制信号,结合前文表3中的组合系数,选取其中任意一组组合系数,可以得到
Figure PCTCN2017089160-appb-000117
对应信道矩阵
Figure PCTCN2017089160-appb-000118
因此,在该具体实现方式中,通过将3个高阶调制信号在3个子带的3个子载波上进行传输,能够提高分集增益的效率。
应理解,α,β,γ的取值可以是表3中的任意一组系数,对此不作限制。
因此,本申请实施例的传输信号的方法,通过将多个低阶调制信号组合成N个高阶调制信号,在N个子载波上传输该N个高阶调制信号,该N个子载波为M个信道的频域资源上的子载波。具体地,通过将N个调制信号在多个子带的N个子载波上传输,能够提高分集增益的效率。
上文详细描述了根据本申请实施例的传输信号的方法,下面将描述根据本申请实施例的传输信号的装置。
图21示出了根据本申请实施例的存储数据的装置900的示意性框图。如图21所示,该装置900包括:
确定模块910,用于将多个低阶调制信号组合成N个高阶调制信号;
传输模块920,用于在N个子载波上传输该确定模块910确定的该N个高阶调制信号,该N个子载波为M个信道的频域资源上的子载波,其中,该N个高阶调制信号中 的第n个高阶调制信号在该N个子载波中的第n个子载波上传输,该N为大于或等于2的整数,该M为大于或等于2的整数,其中,n=1,2,…,N。
本申请实施例的传输信号的装置,通过将多个低阶调制信号组合成N个高阶调制信号,在N个子载波上传输该N个高阶调制信号,该N个子载波为M个信道的频域资源上的子载波,能够提高分集增益的效率。
可选地,该确定模块910具体用于:
根据该多个低阶调制信号和信道矩阵Q,确定该N个高阶调制信号。
可选地,作为一个实施例,该传输模块920具体用于:
在该M个信道中第m个信道的k个子载波上传输该N个高阶调制信号中的k个高阶调制信号,其中,N=M×k,k为大于2的整数,m=1,2,…,M。
可选地,作为一个实施例,在M=2,N=4时,该M个信道分别为第一信道和第二信道,该N个子载波分别为第一子载波、第二子载波、第三子载波和第四子载波,该N个高阶调制信号分别为第一高阶调制信号x1、第二高阶调制信号x2、第三高阶调制信号x3和第四高阶调制信号x4
其中,该传输模块具体用于:
在该第一信道的该第一子载波上,传输该第一高阶调制信号x1
在该第二信道的该第二子载波上,传输该第二高阶调制信号x2
在该第一信道的该第三子载波上,传输该第三高阶调制信号x3
在该第二信道的该第四子载波上,传输该第四高阶调制信号x4
可选地,该多个低阶调制信号为s1、s2、s3和s4,其中,该信道矩阵Q为下式中的任一种:
Figure PCTCN2017089160-appb-000119
Figure PCTCN2017089160-appb-000120
可选地,作为一个实施例,在M=3,N=9时,该M个信道分别为第一信道、第二信道和第三信道,该N个子载波分别为第一子载波、第二子载波、第三子载波、第四子载波、第五子载波、第六子载波、第七子载波、第八子载波和第九子载波,该N个高阶调制信号分别为第一高阶调制信号x1、第二高阶调制信号x2、第三高阶调制信号x3、第四高阶调制信号x4、第五高阶调制信号x5、第六高阶调制信号x6、第七高阶调制信号x7、第八高阶调制信号x8和第九高阶调制信号x9
其中,该传输模块920具体用于:
在该第一信道的该第一子载波上,传输该第一高阶调制信号x1
在该第二信道的该第二子载波上,传输该第二高阶调制信号x2
在该第三信道的该第三子载波上,传输该第三高阶调制信号x3
在该第一信道的该第四子载波上,传输该第四高阶调制信号x4
在该第二信道的该第五子载波上,传输该第五高阶调制信号x5
在该第三信道的该第六子载波上,传输该第六高阶调制信号x6
在该第一信道的该第七子载波上,传输该第七高阶调制信号x7
在该第二信道的该第八子载波上,传输该第八高阶调制信号x8
在该第三信道的该第九子载波上,传输该第九高阶调制信号x9
可选地,该多个低阶调制信号为s1、s2、s3、s4、s5、s6、s7、s8和s9,其中,该信道矩阵Q为下式:
Figure PCTCN2017089160-appb-000121
因此,本申请实施例的传输信号的装置,通过将多个低阶调制信号组合成N个高阶调制信号,在N个子载波上传输该N个高阶调制信号,该N个子载波为M个信道的频域资源上的子载波。具体地,通过将N个调制信号在M个信道的子载波上传输,能够提高分集增益的效率。
可选地,作为一个实施例,该传输模块920具体用于:
在N个子带的该N个子载波上传输该N个高阶调制信号,该N个子载波中的第n个子载波为该N个子带中的第n个子带上的子载波,其中,该N个子带为该M个信道的频域资源上的子带。
可选地,作为一个实施例,在N=4时,该N个子带分别为第一子带、第二子带、第三子带和第四子带,该N个子载波分别为第一子载波、第二子载波、第三子载波和第四子载波,该N个高阶调制信号分别为第一高阶调制信号x1=α1s11s2、第二高阶调制信号x2=α2s12s2、第三高阶调制信号
Figure PCTCN2017089160-appb-000122
和第四高阶调制信号
Figure PCTCN2017089160-appb-000123
其中,x1 *为x1的共轭,x2 *为x2的共轭;
其中,该传输模块具体用于:
在该第一子带的该第一子载波上传输该第一高阶调制信号x1=α1s11s2
在该第二子带的该第二子载波上传输该第二高阶调制信号x2=α2s12s2
在该第三子带的该第三子载波上传输该第三高阶调制信号
Figure PCTCN2017089160-appb-000124
在该第四子带的该第四子载波上传输该第四高阶调制信号
Figure PCTCN2017089160-appb-000125
可选地,该多个低阶调制信号为s1和s2,该信道矩阵
Figure PCTCN2017089160-appb-000126
Figure PCTCN2017089160-appb-000127
Figure PCTCN2017089160-appb-000128
Figure PCTCN2017089160-appb-000129
Figure PCTCN2017089160-appb-000130
或者,该信道矩阵
Figure PCTCN2017089160-appb-000131
Figure PCTCN2017089160-appb-000132
Figure PCTCN2017089160-appb-000133
Figure PCTCN2017089160-appb-000134
Figure PCTCN2017089160-appb-000135
可选地,作为一个实施例,在N=3时,该N个子带分别为第一子带、第二子带和第三子带,该N个子载波分别为第一子载波、第二子载波和第三子载波,该N个高阶调制 信号分别为第一高阶调制信号x1=α1s11s21s3、第二高阶调制信号x2=α2s12s22s3、第三高阶调制信号x3=α3s13s23s3
其中,该传输模块920具体用于:
在该第一子带的该第一子载波上传输该第一高阶调制信号x1=α1s11s21s3
在该第二子带的该第二子载波上传输该第二高阶调制信号x2=α2s12s22s3
在该第三子带的该第三子载波上传输该第三高阶调制信号x3=α3s13s23s3
可选地,该多个低阶调制信号为s1、s2和s3,该信道矩阵
Figure PCTCN2017089160-appb-000136
其中,该
Figure PCTCN2017089160-appb-000137
Figure PCTCN2017089160-appb-000138
Figure PCTCN2017089160-appb-000139
因此,本申请实施例的传输信号的装置,通过将多个低阶调制信号组合成N个高阶调制信号,在N个子载波上传输该N个高阶调制信号,该N个子载波为M个信道的频域资源上的子载波。具体地,通过将N个调制信号在多个子带的子载波上传输,能够提高分集增益的效率。
根据本申请实施例的存储数据的装置900可对应于根据本申请实施例的的方法的执行主体,并且存储数据的装置900中的各个模块的上述和其它操作和/或功能分别为了实现前述各个方法的相应流程,为了简洁,在此不再赘述。
本申请实施例的传输信号的装置,通过将多个低阶调制信号组合成N个高阶调制信号,在N个子载波上传输所述N个高阶调制信号,所述N个子载波为M个信道的频域资源上的子载波,能够提高分集增益的效率。
图22示出了本申请另一个实施例提供的传输信号的装置的结构,包括至少一个处理器1002(例如CPU),至少一个网络接口1005或者其他通信接口,存储器1006,和至少一个通信总线1003,用于实现这些装置之间的连接通信。处理器1002用于执行存储器1006中存储的可执行模块,例如计算机程序。存储器1006可能包含高速随机存取存储器(Random Access Memory,RAM),也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。通过至少一个网络接口1005(可以是有线或者无线)实现与至少一个其他网元之间的通信连接。
在一些实施方式中,存储器1006存储了程序10061,程序10061可以被处理器1002执行。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术 人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种传输信号的方法,其特征在于,包括:
    将多个低阶调制信号组合成N个高阶调制信号;
    在N个子载波上传输所述N个高阶调制信号,所述N个子载波为M个信道的频域资源上的子载波,其中,所述N个高阶调制信号中的第n个高阶调制信号在所述N个子载波中的第n个子载波上传输,所述N为大于或等于2的整数,所述M为大于或等于2的整数,其中,n=1,2,…,N。
  2. 根据权利要求1所述的方法,其特征在于,所述将多个低阶调制信号组合成N个高阶调制信号,包括:
    根据所述多个低阶调制信号和信道矩阵Q,确定所述N个高阶调制信号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述在N个子载波上传输所述N个高阶调制信号,包括:
    在所述M个信道中第m个信道的k个子载波上传输所述N个高阶调制信号中的k个高阶调制信号,其中,N=M×k,k为大于2的整数,m=1,2,…,M。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,在M=2,N=4时,所述M个信道分别为第一信道和第二信道,所述N个子载波分别为第一子载波、第二子载波、第三子载波和第四子载波,所述N个高阶调制信号分别为第一高阶调制信号x1、第二高阶调制信号x2、第三高阶调制信号x3和第四高阶调制信号x4
    其中,所述在N个子载波上传输所述N个高阶调制信号,包括:
    在所述第一信道的所述第一子载波上,传输所述第一高阶调制信号x1
    在所述第二信道的所述第二子载波上,传输所述第二高阶调制信号x2
    在所述第一信道的所述第三子载波上,传输所述第三高阶调制信号x3
    在所述第二信道的所述第四子载波上,传输所述第四高阶调制信号x4
  5. 根据权利要求4所述的方法,其特征在于,所述多个低阶调制信号为s1、s2、s3和s4,其中,所述信道矩阵Q为下式中的任一种:
    Figure PCTCN2017089160-appb-100001
    Figure PCTCN2017089160-appb-100002
  6. 根据权利要求1至3中任一项所述的方法,其特征在于,在M=3,N=9时,所述M个信道分别为第一信道、第二信道和第三信道,所述N个子载波分别为第一子载波、第二子载波、第三子载波、第四子载波、第五子载波、第六子载波、第七子载波、第八子载波和第九子载波,所述N个高阶调制信号分别为第一高阶调制信号x1、第二高阶调制信号x2、第三高阶调制信号x3、第四高阶调制信号x4、第五高阶调制信号x5、第六高阶调制信号x6、第七高阶调制信号x7、第八高阶调制信号x8和第九高阶调制信号x9
    其中,所述在N个子载波上传输所述N个高阶调制信号,包括:
    在所述第一信道的所述第一子载波上,传输所述第一高阶调制信号x1
    在所述第二信道的所述第二子载波上,传输所述第二高阶调制信号x2
    在所述第三信道的所述第三子载波上,传输所述第三高阶调制信号x3
    在所述第一信道的所述第四子载波上,传输所述第四高阶调制信号x4
    在所述第二信道的所述第五子载波上,传输所述第五高阶调制信号x5
    在所述第三信道的所述第六子载波上,传输所述第六高阶调制信号x6
    在所述第一信道的所述第七子载波上,传输所述第七高阶调制信号x7
    在所述第二信道的所述第八子载波上,传输所述第八高阶调制信号x8
    在所述第三信道的所述第九子载波上,传输所述第九高阶调制信号x9
  7. 根据权利要求6所述的方法,其特征在于,所述多个低阶调制信号为s1、s2、s3、s4、s5、s6、s7、s8和s9,其中,所述信道矩阵Q为下式:
    Figure PCTCN2017089160-appb-100003
  8. 根据权利要求1或2所述的方法,其特征在于,所述在N个子载波上传输所述N个高阶调制信号,包括:
    在N个子带的所述N个子载波上传输所述N个高阶调制信号,所述N个子载波中的第n个子载波为所述N个子带中的第n个子带上的子载波,其中,所述N个子带为所述M个信道的频域资源上的子带。
  9. 根据权利要求8所述的方法,其特征在于,在N=4时,所述N个子带分别为第一子带、第二子带、第三子带和第四子带,所述N个子载波分别为第一子载波、第二子载波、第三子载波和第四子载波,所述N个高阶调制信号分别为第一高阶调制信号x1=α1s11s2、第二高阶调制信号x2=α2s12s2、第三高阶调制信号
    Figure PCTCN2017089160-appb-100004
    和第四高阶调制信号
    Figure PCTCN2017089160-appb-100005
    其中,x1 *为x1的共轭,x2 *为x2的共轭;
    其中,所述在N个子带的所述N个子载波上传输所述N个高阶调制信号,包括:
    在所述第一子带的所述第一子载波上传输所述第一高阶调制信号x1=α1s11s2
    在所述第二子带的所述第二子载波上传输所述第二高阶调制信号x2=α2s12s2
    在所述第三子带的所述第三子载波上传输所述第三高阶调制信号
    Figure PCTCN2017089160-appb-100006
    在所述第四子带的所述第四子载波上传输所述第四高阶调制信号
    Figure PCTCN2017089160-appb-100007
  10. 根据权利要求9所述的方法,其特征在于,所述多个低阶调制信号为s1和s2,所述信道矩阵
    Figure PCTCN2017089160-appb-100008
    所述
    Figure PCTCN2017089160-appb-100009
    所述
    Figure PCTCN2017089160-appb-100010
    所述
    Figure PCTCN2017089160-appb-100011
    所述
    Figure PCTCN2017089160-appb-100012
    或者,所述信道矩阵
    Figure PCTCN2017089160-appb-100013
    所述
    Figure PCTCN2017089160-appb-100014
    所述
    Figure PCTCN2017089160-appb-100015
    所述
    Figure PCTCN2017089160-appb-100016
    所述
    Figure PCTCN2017089160-appb-100017
  11. 根据权利要求8所述的方法,其特征在于,在N=3时,所述N个子带分别为第一子带、第二子带和第三子带,所述N个子载波分别为第一子载波、第二子载波和第三子载波,所述N个高阶调制信号分别为第一高阶调制信号x1=α1s11s21s3、第二高阶调制信号x2=α2s12s22s3、第三高阶调制信号x3=α3s13s23s3
    其中,所述在N个子带的所述N个子载波上传输所述N个高阶调制信号,包括:
    在所述第一子带的所述第一子载波上传输所述第一高阶调制信号x1=α1s11s21s3
    在所述第二子带的所述第二子载波上传输所述第二高阶调制信号x2=α2s12s22s3
    在所述第三子带的所述第三子载波上传输所述第三高阶调制信号x3=α3s13s23s3
  12. 根据权利要求11所述的方法,其特征在于,所述多个低阶调制信号为s1、s2和s3,所述信道矩阵
    Figure PCTCN2017089160-appb-100018
    其中,所述
    Figure PCTCN2017089160-appb-100019
    所述
    Figure PCTCN2017089160-appb-100020
    所述
    Figure PCTCN2017089160-appb-100021
  13. 一种传输信号的装置,其特征在于,包括:
    确定模块,用于将多个低阶调制信号组合成N个高阶调制信号;
    传输模块,用于在N个子载波上传输所述确定模块确定的所述N个高阶调制信号,所述N个子载波为M个信道的频域资源上的子载波,其中,所述N个高阶调制信号中的第n个高阶调制信号在所述N个子载波中的第n个子载波上传输,所述N为大于或等于2的整数,所述M为大于或等于2的整数,其中,n=1,2,…,N。
  14. 根据权利要求13所述的装置,其特征在于,所述确定模块具体用于:
    根据所述多个低阶调制信号和信道矩阵Q,确定所述N个高阶调制信号。
  15. 根据权利要求13或14所述的装置,其特征在于,所述传输模块具体用于:
    在所述M个信道中第m个信道的k个子载波上传输所述N个高阶调制信号中的k个高阶调制信号,其中,N=M×k,k为大于2的整数,m=1,2,…,M。
  16. 根据权利要求13至15中任一项所述的装置,其特征在于,在M=2,N=4时,所述M个信道分别为第一信道和第二信道,所述N个子载波分别为第一子载波、第二子载波、第三子载波和第四子载波,所述N个高阶调制信号分别为第一高阶调制信号x1、第二高阶调制信号x2、第三高阶调制信号x3和第四高阶调制信号x4
    其中,所述传输模块具体用于:
    在所述第一信道的所述第一子载波上,传输所述第一高阶调制信号x1
    在所述第二信道的所述第二子载波上,传输所述第二高阶调制信号x2
    在所述第一信道的所述第三子载波上,传输所述第三高阶调制信号x3
    在所述第二信道的所述第四子载波上,传输所述第四高阶调制信号x4
  17. 根据权利要求16所述的装置,其特征在于,所述多个低阶调制信号为s1、s2、s3和s4,其中,所述信道矩阵Q为下式中的任一种:
    Figure PCTCN2017089160-appb-100022
    Figure PCTCN2017089160-appb-100023
  18. 根据权利要求13至15中任一项所述的装置,其特征在于,在M=3,N=9时,所述M个信道分别为第一信道、第二信道和第三信道,所述N个子载波分别为第一子载波、第二子载波、第三子载波、第四子载波、第五子载波、第六子载波、第七子载波、第八子载波和第九子载波,所述N个高阶调制信号分别为第一高阶调制信号x1、第二高阶调制信号x2、第三高阶调制信号x3、第四高阶调制信号x4、第五高阶调制信号x5、第六高阶调制信号x6、第七高阶调制信号x7、第八高阶调制信号x8和第九高阶调制信号x9
    其中,所述传输模块具体用于:
    在所述第一信道的所述第一子载波上,传输所述第一高阶调制信号x1
    在所述第二信道的所述第二子载波上,传输所述第二高阶调制信号x2
    在所述第三信道的所述第三子载波上,传输所述第三高阶调制信号x3
    在所述第一信道的所述第四子载波上,传输所述第四高阶调制信号x4
    在所述第二信道的所述第五子载波上,传输所述第五高阶调制信号x5
    在所述第三信道的所述第六子载波上,传输所述第六高阶调制信号x6
    在所述第一信道的所述第七子载波上,传输所述第七高阶调制信号x7
    在所述第二信道的所述第八子载波上,传输所述第八高阶调制信号x8
    在所述第三信道的所述第九子载波上,传输所述第九高阶调制信号x9
  19. 根据权利要求18所述的装置,其特征在于,所述多个低阶调制信号为s1、s2、s3、s4、s5、s6、s7、s8和s9,其中,所述信道矩阵Q为下式:
    Figure PCTCN2017089160-appb-100024
  20. 根据权利要求13或14所述的装置,其特征在于,所述传输模块具体用于:
    在N个子带的所述N个子载波上传输所述N个高阶调制信号,所述N个子载波中的第n个子载波为所述N个子带中的第n个子带上的子载波,其中,所述N个子带为所述M个信道的频域资源上的子带。
  21. 根据权利要求20所述的装置,其特征在于,在N=4时,所述N个子带分别为 第一子带、第二子带、第三子带和第四子带,所述N个子载波分别为第一子载波、第二子载波、第三子载波和第四子载波,所述N个高阶调制信号分别为第一高阶调制信号x1=α1s11s2、第二高阶调制信号x2=α2s12s2、第三高阶调制信号
    Figure PCTCN2017089160-appb-100025
    和第四高阶调制信号
    Figure PCTCN2017089160-appb-100026
    其中,x1 *为x1的共轭,x2 *为x2的共轭;
    其中,所述传输模块具体用于:
    在所述第一子带的所述第一子载波上传输所述第一高阶调制信号x1=α1s11s2
    在所述第二子带的所述第二子载波上传输所述第二高阶调制信号x2=α2s12s2
    在所述第三子带的所述第三子载波上传输所述第三高阶调制信号
    Figure PCTCN2017089160-appb-100027
    在所述第四子带的所述第四子载波上传输所述第四高阶调制信号
    Figure PCTCN2017089160-appb-100028
  22. 根据权利要求21所述的装置,其特征在于,所述多个低阶调制信号为s1和s2,所述信道矩阵
    Figure PCTCN2017089160-appb-100029
    所述
    Figure PCTCN2017089160-appb-100030
    所述
    Figure PCTCN2017089160-appb-100031
    所述
    Figure PCTCN2017089160-appb-100032
    所述
    Figure PCTCN2017089160-appb-100033
    或者,所述
    Figure PCTCN2017089160-appb-100034
    所述
    Figure PCTCN2017089160-appb-100035
    所述
    Figure PCTCN2017089160-appb-100036
    所述
    Figure PCTCN2017089160-appb-100037
  23. 根据权利要求20所述的装置,其特征在于,在N=3时,所述N个子带分别为第一子带、第二子带和第三子带,所述N个子载波分别为第一子载波、第二子载波和第三子载波,所述N个高阶调制信号分别为第一高阶调制信号x1=α1s11s21s3、第二高阶调制信号x2=α2s12s22s3、第三高阶调制信号x3=α3s13s23s3
    其中,所述传输模块具体用于:
    在所述第一子带的所述第一子载波上传输所述第一高阶调制信号x1=α1s11s21s3
    在所述第二子带的所述第二子载波上传输所述第二高阶调制信号x2=α2s12s22s3
    在所述第三子带的所述第三子载波上传输所述第三高阶调制信号x3=α3s13s23s3
  24. 根据权利要求23所述的装置,其特征在于,所述多个低阶调制信号为s1、s2和s3,所述信道矩阵
    Figure PCTCN2017089160-appb-100038
    其中,所述
    Figure PCTCN2017089160-appb-100039
    所述
    Figure PCTCN2017089160-appb-100040
    所述
    Figure PCTCN2017089160-appb-100041
PCT/CN2017/089160 2016-07-19 2017-06-20 传输信号的方法和装置 WO2018014690A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187037829A KR102187119B1 (ko) 2016-07-19 2017-06-20 신호 송신 방법 및 장치
JP2019500271A JP6780823B2 (ja) 2016-07-19 2017-06-20 信号伝送方法及び信号伝送装置
EP17830324.4A EP3468089B1 (en) 2016-07-19 2017-06-20 Signal transmission method and device
US16/252,200 US10819555B2 (en) 2016-07-19 2019-01-18 Signal transmission method and apparatus
US17/080,311 US11444818B2 (en) 2016-07-19 2020-10-26 Signal transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610569237.0A CN107634824B (zh) 2016-07-19 2016-07-19 传输信号的方法和装置
CN201610569237.0 2016-07-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/252,200 Continuation US10819555B2 (en) 2016-07-19 2019-01-18 Signal transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2018014690A1 true WO2018014690A1 (zh) 2018-01-25

Family

ID=60991909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089160 WO2018014690A1 (zh) 2016-07-19 2017-06-20 传输信号的方法和装置

Country Status (6)

Country Link
US (2) US10819555B2 (zh)
EP (1) EP3468089B1 (zh)
JP (1) JP6780823B2 (zh)
KR (1) KR102187119B1 (zh)
CN (1) CN107634824B (zh)
WO (1) WO2018014690A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111083081A (zh) * 2018-10-19 2020-04-28 华为技术有限公司 基于双载波调制的数据通信方法及相关装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020057254A1 (en) * 2000-11-14 2002-05-16 Fujitsu Takamisawa Component Limited Input system and input device
CN101136725A (zh) * 2007-10-09 2008-03-05 北京邮电大学 用于无线网络的分层协同传输的实现方法
CN101409696A (zh) * 2008-11-14 2009-04-15 电子科技大学 基于分层高阶调制的分层组合均衡技术
CN101414898A (zh) * 2007-10-19 2009-04-22 华为技术有限公司 接收合并方法、***及设备
CN101471757A (zh) * 2007-12-25 2009-07-01 华为技术有限公司 一种接收合并方法、***和设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7359311B1 (en) 2003-04-18 2008-04-15 Cisco Technology, Inc. Decoding method and apparatus using channel state information for use in a wireless network receiver
US7616698B2 (en) 2003-11-04 2009-11-10 Atheros Communications, Inc. Multiple-input multiple output system and method
US7516390B2 (en) * 2005-01-10 2009-04-07 Broadcom Corporation LDPC (Low Density Parity Check) coding and interleaving implemented in MIMO communication systems
EP1898545A1 (en) * 2005-06-30 2008-03-12 Matsushita Electric Industrial Co., Ltd. Transmitter, receiver, and communication method
KR20070068799A (ko) * 2005-12-27 2007-07-02 삼성전자주식회사 멀티밴드 오에프디엠 심볼의 서브 캐리어 분기 방법
US8379738B2 (en) * 2007-03-16 2013-02-19 Samsung Electronics Co., Ltd. Methods and apparatus to improve performance and enable fast decoding of transmissions with multiple code blocks
KR101107940B1 (ko) * 2007-06-08 2012-01-25 콸콤 인코포레이티드 단일-캐리어 주파수 분할 다중 액세스에서 통신 채널들을 위한 계층적 변조
EP2269356B1 (en) * 2008-04-18 2018-07-25 Koninklijke Philips N.V. Improved Dual Carrier Modulation Precoding
CN101631097B (zh) * 2008-07-15 2013-01-30 展讯通信(上海)有限公司 多子带***的发送方法及其装置
JP5251984B2 (ja) * 2008-09-09 2013-07-31 富士通株式会社 送信機及び送信方法並びに受信機及び受信方法
JP5583115B2 (ja) 2009-03-10 2014-09-03 シャープ株式会社 無線通信システム、無線送信装置および無線送信装置の制御プログラム
CN101765123B (zh) * 2009-12-11 2012-05-23 哈尔滨工业大学 多用户mimo-ofdm上行链路资源分配方法
JP2013514739A (ja) 2009-12-17 2013-04-25 日本テキサス・インスツルメンツ株式会社 周波数ダイバーシティ及び位相回転
JP5699913B2 (ja) * 2011-11-21 2015-04-15 アイコム株式会社 通信機および通信方法
US9729289B2 (en) * 2013-08-12 2017-08-08 Texas Instruments Incorporated Frequency diversity modulation system and method
CN104363192B (zh) * 2014-10-21 2017-10-31 江苏中兴微通信息科技有限公司 一种兼容多种帧格式的mimo通信***的接收方法和装置
CN111934832B (zh) * 2016-07-15 2021-10-26 华为技术有限公司 基于多信道传输信号的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020057254A1 (en) * 2000-11-14 2002-05-16 Fujitsu Takamisawa Component Limited Input system and input device
CN101136725A (zh) * 2007-10-09 2008-03-05 北京邮电大学 用于无线网络的分层协同传输的实现方法
CN101414898A (zh) * 2007-10-19 2009-04-22 华为技术有限公司 接收合并方法、***及设备
CN101471757A (zh) * 2007-12-25 2009-07-01 华为技术有限公司 一种接收合并方法、***和设备
CN101409696A (zh) * 2008-11-14 2009-04-15 电子科技大学 基于分层高阶调制的分层组合均衡技术

Also Published As

Publication number Publication date
JP6780823B2 (ja) 2020-11-04
JP2019522938A (ja) 2019-08-15
US10819555B2 (en) 2020-10-27
EP3468089C0 (en) 2023-08-30
EP3468089A1 (en) 2019-04-10
KR20190011287A (ko) 2019-02-01
EP3468089A4 (en) 2019-06-19
EP3468089B1 (en) 2023-08-30
KR102187119B1 (ko) 2020-12-04
US20210105168A1 (en) 2021-04-08
US20190173729A1 (en) 2019-06-06
US11444818B2 (en) 2022-09-13
CN107634824B (zh) 2021-02-12
CN107634824A (zh) 2018-01-26

Similar Documents

Publication Publication Date Title
US10530543B2 (en) Method and apparatus of transmitting training signal in wireless local area network system
US10153933B2 (en) Method and apparatus for constructing very high throughput long training field sequences
CN109150480B (zh) 相位跟踪参考信号处理方法与装置
JP2022088659A (ja) 情報送信方法及び装置
US20110013583A1 (en) Constructing very high throughput short training field sequences
CN107623565B (zh) 基于多信道传输信号的方法和装置
US10033565B2 (en) Low peak-to-average power ratio long training field sequences
US20110222519A1 (en) Phase Rotating Method and Wireless Local Area Network Device
WO2022028370A1 (zh) 一种传输物理层协议数据单元的方法及装置
US11784772B2 (en) Method and apparatus for transmitting physical layer protocol data unit
US11444818B2 (en) Signal transmission method and apparatus
US9935747B2 (en) Transmitting node, receiving node and methods performed therein
JP2007506303A (ja) 高スループットの空間−周波数ブロック・コードを使用するマルチアンテナ・システムおよび方法
WO2021093616A1 (zh) 一种信号传输方法及装置
EP4333529A1 (en) Multi-user communication method and related communication apparatus
CN107979401B (zh) 传输信号的方法和装置
WO2017193834A1 (zh) 一种信号处理方法及装置
WO2018010515A1 (zh) 基于多信道传输信号的方法和装置
CN115706615A (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830324

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187037829

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019500271

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017830324

Country of ref document: EP

Effective date: 20190107

NENP Non-entry into the national phase

Ref country code: DE