WO2018014656A1 - 一种控制信息设计方法、基站、终端及*** - Google Patents

一种控制信息设计方法、基站、终端及*** Download PDF

Info

Publication number
WO2018014656A1
WO2018014656A1 PCT/CN2017/085926 CN2017085926W WO2018014656A1 WO 2018014656 A1 WO2018014656 A1 WO 2018014656A1 CN 2017085926 W CN2017085926 W CN 2017085926W WO 2018014656 A1 WO2018014656 A1 WO 2018014656A1
Authority
WO
WIPO (PCT)
Prior art keywords
mcs
terminal
scheduling grant
uplink scheduling
grant information
Prior art date
Application number
PCT/CN2017/085926
Other languages
English (en)
French (fr)
Inventor
王建中
Original Assignee
深圳市金立通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市金立通信设备有限公司 filed Critical 深圳市金立通信设备有限公司
Publication of WO2018014656A1 publication Critical patent/WO2018014656A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a control information design method, a base station, a terminal, and a system.
  • the uplink data transmission is controlled by the uplink scheduling grant information transmitted on the downlink control channel PDCCH, and the current 3GPP also tends to use this method for uplink scheduling.
  • the modulation and coding strategy used by the terminal to transmit uplink data on the Physical Uplink Shared Channel (PUSCH) is not accurately determined in the uplink scheduling grant information for controlling the uplink data transmission (Modulation and Coding).
  • Scheme, referred to as MCS) level makes PUSCH data transmission with high bit error rate, low system performance or low efficiency of system resources.
  • the embodiment of the present invention provides a control information design method, a base station, a terminal, and a system, so as to enable the MCS level used by the terminal to transmit PUSCH data to be more matched with the channel quality of the subframe on the PUSCH, thereby improving system performance and usage efficiency.
  • an embodiment of the present invention provides a control information design method, where the method includes:
  • the base station generates uplink scheduling grant information corresponding to at least one uplink subframe scheduled in the at least one uplink subframe, where the uplink scheduling grant information includes MCS level information,
  • the MCS level information includes an MCS reference level and an MCS offset;
  • an embodiment of the present invention provides a control information design method, where the method includes:
  • uplink scheduling grant information sent by the base station, where the uplink scheduling grant information includes MCS level information, where the MCS level information includes an MCS reference level and an MCS offset;
  • the terminal obtains an MCS level used by the terminal to transmit at least one uplink subframe on the PUSCH according to the MCS reference level and the MCS offset.
  • an embodiment of the present invention provides a base station, where the base station includes:
  • a determining unit configured to determine at least one uplink subframe that is transmitted by the terminal
  • a generating unit configured to generate uplink scheduling grant information corresponding to at least one uplink subframe scheduled in the at least one uplink subframe, where the uplink scheduling grant information includes MCS level information, where the MCS level information includes an MCS reference level And the MCS offset;
  • a sending unit configured to send the uplink scheduling grant information to the terminal, so that the terminal obtains, according to the MCS reference level and the MCS offset, that the terminal sends the scheduled at least on the PUSCH
  • an embodiment of the present invention provides a terminal, where the terminal includes:
  • a receiving unit configured to receive uplink scheduling grant information sent by the base station, where the uplink scheduling grant information includes MCS level information, where the MCS level information includes an MCS reference level and an MCS offset;
  • a determining unit configured by the terminal, according to the MCS reference level and the MCS offset, an MCS level used by the terminal to send at least one uplink subframe on the PUSCH.
  • an embodiment of the present invention provides a control information design system, where the control information design system includes the base station according to the third aspect and the terminal according to the fourth aspect.
  • the base station after determining, by the base station, the terminal performs at least one uplink subframe for uplink transmission, the base station generates uplink scheduling grant information corresponding to the scheduled at least one uplink subframe, where the uplink scheduling grant is permitted.
  • the information includes MCS level information, and the MCS level information Including the MCS reference level and the MCS offset, the base station then sends the uplink scheduling grant information to the terminal, and after receiving the uplink scheduling grant information, the terminal obtains at least one terminal on the PUSCH according to the MCS reference level and the MCS offset.
  • the MCS level used when uplink subframes.
  • the embodiment of the present invention determines the MCS level used by the terminal to send each uplink subframe by designing the MCS reference level and the MCS offset, so that the MCS level matches the channel quality of the uplink subframe transmitted by the terminal on the PUSCH, and the system is improved. Performance and efficiency of use.
  • FIG. 1 is a schematic structural diagram of a data transmission system according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method for designing control information according to an embodiment of the present invention
  • FIG. 3 is a schematic block diagram of a base station according to an embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of another base station according to an embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of a terminal according to an embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of another terminal according to an embodiment of the present invention.
  • the term “if” can be interpreted as “when” or “on” or “in response to determining” or “in response to detecting” depending on the context. .
  • the phrase “if determined” or “if detected [condition or event described]” may be interpreted in context to mean “once determined” or “in response to determining” or “once detected [condition or event described] ] or “in response to detecting [conditions or events described]”.
  • the terminals described in this embodiment of the invention include, but are not limited to, other portable devices such as mobile phones, laptop computers or tablet computers having touch sensitive surfaces (eg, touch screen displays and/or touch pads). It should also be understood that in some embodiments, the device is not a portable communication device, but a desktop computer having a touch sensitive surface (eg, a touch screen display and/or a touch pad).
  • the terminal including a display and a touch sensitive surface is described.
  • the terminal can include one or more other physical user interface devices such as a physical keyboard, mouse, and/or joystick.
  • the terminal supports a variety of applications, such as one or more of the following: drawing applications, presentation applications, word processing applications, website creation applications, disk burning applications, spreadsheet applications, gaming applications, phone applications Programs, video conferencing applications, email applications, instant messaging applications, workout support applications, photo management applications, digital camera applications, digital camera applications, web browsing applications, digital music player applications, and / or digital video player app.
  • applications such as one or more of the following: drawing applications, presentation applications, word processing applications, website creation applications, disk burning applications, spreadsheet applications, gaming applications, phone applications Programs, video conferencing applications, email applications, instant messaging applications, workout support applications, photo management applications, digital camera applications, digital camera applications, web browsing applications, digital music player applications, and / or digital video player app.
  • Various applications that can be executed on the terminal can use at least one common physical user interface device such as a touch sensitive surface. Can be adjusted between applications and / or within the corresponding application and / Or change one or more functions of the touch-sensitive surface and the corresponding information displayed on the terminal.
  • the common physical architecture of the terminal eg, a touch-sensitive surface
  • FIG. 1 is a schematic structural diagram of a data transmission system according to an embodiment of the present invention.
  • the data transmission system includes a base station 110 and a terminal 120, and data can be established between the base station 110 and the terminal 120.
  • the communication connection realizes data transmission.
  • the uplink data transmission is controlled by the uplink scheduling grant information transmitted on the downlink control channel. That is, the base station 110 transmits uplink scheduling grant information on the downlink control channel of a certain downlink subframe, and then the terminal 120 performs uplink data transmission in a subsequent uplink subframe.
  • the above description is merely exemplary, and the solution of the present invention is not limited to the LTE system. It can also be applied to other systems, such as next generation wireless communication systems.
  • the LAA Licensed-Assisted Access to Unlicensed Spectrum
  • the LAA system is introduced to implement the licensed spectrum (for example, the spectrum of the LTE system).
  • Use unlicensed spectrum resources such as 5 GHz spectrum
  • the LAA system needs to follow the existing mechanisms of the unlicensed spectrum on the basis of the LTE system.
  • countries have separately stipulated the use of unlicensed spectrum.
  • LBT listen before talk
  • LBT listen before talk
  • the use of LBT (listen before talk) mechanism in the unlicensed frequency band that is, the mechanism of listening and speaking before, before sending data, Whether the state of the listening channel is idle, and if the channel is idle, the data information and the control information are transmitted, otherwise the transmission is not performed. This causes the transmission to occur with certain uncertainty.
  • CCA Clear Channel Assessment
  • the UE detects whether other devices are transmitting data on the target channel. If the target channel is already occupied by other devices, it can continue to listen when the next listening period comes, or it can stop listening according to the indication; After the channel resource is idle, the UE can immediately occupy the target channel.
  • the channel occupation time is a fixed value, which is the time length of the last symbol of the uplink subframe configured by the SRS configuration information. Considering the conversion process of the UE reporting the channel detection on the SRS, the channel can be set before the next channel detection location. Set a silent time.
  • a random number L may be generated as the backoff time, and the target channel is continuously monitored during the backoff time. If the target channel is detected to be in the idle state, the backoff time ends and the UE is at the same time. The target channel can be occupied for SRS reporting. If the UE detects that the channel state is non-idle (e.g., has been occupied by other UEs), then the device cannot occupy the channel during this period, then the UE can wait until the fixed position of the next cycle to continue detecting.
  • the initial detection is triggered. If the UE initially detects that the target channel is in an idle state, the target channel can be occupied, and the channel occupancy time T is pre-configured by the base station; if the UE initially detects that the target channel state is not idle, a delay period can be generated (defer period) Time, if a target channel is detected to be busy during the deferred cycle time, then a deferred cycle time continues to be generated. The UE may occupy the target channel after detecting that the channel state is idle after the L times detection time, and occupy the target channel time as T.
  • the introduction of the LAA system has led to many new challenges.
  • at least two LBT processes must be successfully performed.
  • the downlink LBT process is successfully performed for the first time, so that the base station can send the uplink scheduling control information, and the other is the successful uplink LBT process, so that the UE can upload the uplink data. Since the two LBT processes are not necessarily satisfied at the same time, it is possible to be separated for a relatively long period of time. Therefore, it is necessary to avoid scheduling failures due to LBT failure, and further improve scheduling efficiency.
  • the terminal described in the present disclosure may be applicable to multiple base stations to communicate with one base station, or may simultaneously communicate with multiple base stations on multiple carriers.
  • one of the carriers may be determined to be a primary carrier (PCC), and the primary carrier may be applied to a primary cell (PCell) where the terminal is located, and the primary cell may be semi-static with the terminal through high layer signaling (eg, RRC).
  • the other carrier except the primary carrier may be a secondary carrier (SCC), and the secondary carrier may be applied to the secondary cell where the terminal is located.
  • the primary carrier can be configured with the first spectrum, the first spectrum It may be a licensed spectrum or an unlicensed spectrum.
  • the secondary carrier may be configured by using a second spectrum, which may be an unlicensed spectrum or an authorized spectrum.
  • the first spectrum and the second spectrum may be configured as different spectrums.
  • the uplink scheduling grant information corresponding to the uplink data transmission involved in the embodiment of the present invention is divided into two phases.
  • the first phase uplink scheduling grant information is a public, semi-static grant information, and may include a resource block (Resource Block, Referred to as RB) allocation information, MCS level information, etc.;
  • the second stage is a specific uplink data transmission scheduling information, which can trigger the PUSCH channel to be transmitted in a certain subframe, but the current uplink scheduling grant information is in the second phase.
  • the MCS level is not included, so that multiple scheduled uplink subframes are assigned the same MCS level, and the channel quality of the terminal 120 on multiple subframes may be different, so that the allocated MCS level and the subframe of the specific PUSCH transmission may occur.
  • the channel quality does not match. Specifically, if the assigned MCS level is too high, the error rate of PUSCH data transmission will increase, and the system performance will be degraded. If the allocated MCS level is too low, the system resource usage efficiency may be lowered.
  • the control information design method of the embodiment of the present invention is based on the improvement of the uplink scheduling grant information.
  • FIG. 2 is a schematic flowchart of a method for designing control information according to an embodiment of the present invention. As shown in FIG. 2, the method may include the following steps:
  • the base station determines at least one uplink subframe that is transmitted by the terminal.
  • the base station when the terminal sends a subframe in the PUSCH, different uplink scheduling grant information needs to be allocated by the base station for different subframe transmissions. Therefore, the base station first needs to determine the subframe in which the terminal performs uplink transmission, and then Uplink scheduling allows information to be designed.
  • the base station generates uplink scheduling grant information corresponding to the scheduled at least one uplink subframe, where the uplink scheduling grant information includes MCS level information, where the MCS level information includes an MCS reference level and an MCS offset.
  • the MCS level information refers to a modulation and coding policy level used when the subframe corresponding to the MCS level information is transmitted.
  • the MCS level included in the uplink scheduling grant information is Information also refers to the level of modulation and coding strategy used by the terminal to transmit uplink subframe data.
  • the MCS level information is jointly determined by the MCS reference level and the MCS offset.
  • the MCS reference level is common MCS control information
  • the MCS offset is an offset of an MCS level used by the uplink subframe with respect to the MCS reference level.
  • the MCS reference level is a common, semi-static MCS level information, which is equivalent to using the same MCS reference level for multiple uplink subframes, and the MCS offset is the MCS offset corresponding to the uplink subframe, thereby
  • the MCS level used by the uplink subframe may be determined by the MCS reference level and the MCS offset.
  • the uplink scheduling grant information is divided into a first phase uplink scheduling grant information and a second phase uplink scheduling grant information, where the MCS reference level is located in the first phase.
  • the MCS level information may also be included in the uplink scheduling grant information in other manners.
  • the MCS reference level information is located in an MCS indication field of the first stage uplink scheduling grant information in a Licensed Assisted Access (LAA) system.
  • LAA Licensed Assisted Access
  • the MCS offset is located in a shortened MCS indication field of the second stage uplink scheduling grant information, where the shortened MCS indication field has a bit length that is less than a bit length of the MCS indication field.
  • the MCS offset used to determine the MCS level used in the uplink subframe may be an offset based on the MCS reference level, so the MCS offset may be understood as the MCS reference level.
  • An adjustment amount preferably, the level value of the MCS offset may be smaller than the level value of the MCS reference level, so that the shortened MCS indication field for indicating the MCS offset in the second stage uplink scheduling grant information may be designed.
  • the bit length is less than the bit length of the MCS reference level.
  • the MCS reference level can be from ten to twenty, and the MCS offset can be only a few. This type of adjustment has proven to be beneficial.
  • the MCS offset can be dynamically varied and can be obtained from instantaneous channel quality, thus effectively reflecting changes in instantaneous channel quality.
  • the value of the MCS reference level can also be based on periodic or event-based overall updates.
  • the system may perform uplink multi-subframe scheduling, that is, the base station uses one downlink subframe to schedule multiple uplink subframes on the terminal side, here is one downlink subframe scheduling.
  • the subframes in which the terminal performs uplink transmission may be multiple, that is, the uplink scheduling grant information may be sent for multiple uplink subframes, and the first phase uplink scheduling grant information will be sent for the multiple uplink subframes.
  • the MCS reference level of the information is used to calculate the MCS level of each different uplink subframe by using the MCS offset corresponding to each uplink subframe in the second-stage uplink scheduling grant information.
  • the first stage uplink scheduling grant information may be cell level uplink scheduling grant information
  • the second phase uplink scheduling grant information may be user level uplink scheduling grant information
  • the two uplink subframes use the same first-stage uplink scheduling grant information, and the first phase uplink scheduling grant information includes one
  • the MCS level information of the reference for example, the original MCS indication field of the LTE system may be used, and the MCS reference level information is represented by 5 bits, for example, the MCS reference level may be set to 10.
  • two second-stage uplink scheduling grant information are respectively corresponding, and in the uplink scheduling grant information of the second phase, an MCS offset field is set, indicating that the MCS used in each uplink subframe is actually used.
  • the offset of the level relative to the reference MCS level For example, a field of two bits can be used to represent the offset.
  • the MCS reference level and the offset can be used to jointly determine the MCS level used by each uplink subframe.
  • the MCS reference level may also not use the original MCS indication field of the LTE system, and another field is designed to set the MCS reference level.
  • the MCS reference level and the MCS offset may be set in the first stage uplink scheduling grant information at the same time, or may be set in the second stage uplink scheduling grant information at the same time.
  • the MCS reference level and the MCS offset are finally used together to determine the MCS level used by each uplink subframe by using the MCS reference level and the MCS offset.
  • the base station sends uplink scheduling grant information to the terminal.
  • the base station sends the uplink scheduling grant information to the terminal, so that the terminal obtains, according to the MCS reference level and the MCS offset, that the terminal sends the uplink subframe on the PUSCH.
  • the MCS level used.
  • the MCS level information is the MCS level allocated by the base station when the terminal sends the uplink subframe data on the PUSCH
  • the base station needs to send the level information to the terminal by using the uplink scheduling grant information, and then the terminal will send the received base station.
  • Upstream scheduling grant information is the MCS level allocated by the base station when the terminal sends the uplink subframe data on the PUSCH.
  • the terminal sends, in the uplink scheduling grant information, the first-stage uplink scheduling grant information and the first-stage uplink scheduling grant information of the uplink scheduling grant information by using the physical downlink control channel PDCCH, for example, sending the first time at the first time.
  • the phase uplink scheduling grant information is then sent to the second phase uplink scheduling grant information immediately at the next second moment.
  • the terminal when the terminal sends the uplink scheduling grant information, the terminal may also use other timings to sequentially send the first-stage uplink scheduling grant information and the second-stage uplink scheduling grant information through the physical downlink control channel PDCCH.
  • the first stage uplink scheduling grant information is sent to the terminal by using a first spectrum
  • the second stage uplink scheduling grant information is sent to the terminal by using a second spectrum, where the first spectrum and the The second spectrum is different.
  • the first spectrum may be an unlicensed spectrum or an unlicensed spectrum.
  • the second spectrum is an unlicensed spectrum.
  • the first spectrum is the licensed spectrum.
  • the terminal obtains an MCS level used by the terminal to send at least one uplink subframe on the PUSCH according to the MCS reference level and the MCS offset.
  • the terminal is used by the terminal to send the at least one uplink subframe on a PUSCH.
  • MCS rating including:
  • the terminal obtains, according to the MCS reference level and the MCS offset, an MCS level used by the terminal to send at least one uplink subframe on a PUSCH.
  • Also includes:
  • the terminal Determining, by the terminal, the MCS level obtained after the terminal transmits the at least one uplink subframe on the PUSCH according to the number of LBT detection failures, and the MCS level obtained by superimposing the MCS offset on the MCS reference level, or MCS benchmark rating.
  • the terminal determines that the MCS level used by the terminal to send an uplink subframe on the PUSCH is The MCS level obtained by superimposing the MCS offset level, wherein N is a configurable parameter, and the value range may be a positive integer;
  • the terminal determines that the MCS level used by the terminal to transmit an uplink subframe on the PUSCH is the MCS reference level.
  • the reference MCS level may be semi-static, ie the MCS level obtained from a longer term statistical average channel quality, while the MCS offset may be dynamic, obtained from instantaneous channel quality. If the number of failures of the user LBT reaches a preset value (for example, the preset value is large), the time interval between the transmission of the uplink PUSCH data and the MCS offset control information by the user is relatively long, and the obtained channel quality is obtained by the instantaneous channel quality. The MCS level has not been able to effectively reflect the instantaneous channel quality. At this time, it is more beneficial to obtain the reference MCS level from the long-term statistical average as the MCS level used by the user.
  • the MCS offset may be a positive offset or a negative offset.
  • the MCS level used by the terminal to transmit the uplink subframe on the PUSCH is an MCS level obtained by superimposing the MCS offset on the MCS reference level.
  • the MCS level used by the terminal to transmit the uplink subframe on the PUSCH is an MCS level obtained by negatively superimposing the MCS offset on the MCS reference level.
  • the base station sets the MCS offset value according to the MCS level that is actually used in each uplink subframe, and the MCS offset is a positive offset or a negative offset; The level is positively superimposed or negatively superimposed.
  • the first stage uplink scheduling grant information of the uplink scheduling grant information uses the original MCS indication field of the LTE system, and uses 5 bits to represent the MCS.
  • the reference level information for example, the MCS reference level may be set to 10, for two uplink subframes, for example, the uplink subframe A and the uplink subframe B, respectively corresponding to two second-stage uplink scheduling grant information, and the scheduling information may be scheduled in the uplink.
  • the second stage uplink scheduling grant information setting sets the value of the MCS offset to 2 (corresponding to the uplink subframe A) and 4 (corresponding to the uplink subframe B), and finally the MCS level actually used by the uplink subframe A is at the reference MCS level.
  • the MCS offset is accumulated on the basis of the forward MCS level, and the MCS level used by the terminal to transmit the uplink subframe A is 12 levels.
  • the MCS level actually used by the uplink subframe B is based on the reference MCS level.
  • the MCS offset is accumulated in the forward direction, that is, the level 10 is accumulated by 4 levels, and the MCS level used by the terminal to finally transmit the uplink subframe B is 14 levels.
  • the base station after determining, by the base station, the uplink subframe of the uplink transmission, the base station generates uplink scheduling grant information corresponding to the scheduled uplink subframe, where the uplink scheduling grant information includes MCS level information, and the MCS
  • the level information includes the MCS reference level and the MCS offset, and then the base station sends the uplink scheduling grant information to the terminal, and after receiving the uplink scheduling grant information, the terminal obtains the terminal to send on the PUSCH according to the MCS reference level and the MCS offset.
  • the MCS level used when uplink subframes.
  • the embodiment of the present invention determines the MCS level used by the terminal to send each uplink subframe by designing the MCS reference level and the MCS offset, so that the MCS level matches the channel quality of the uplink subframe transmitted by the terminal on the PUSCH, and the system is improved. Performance and efficiency of use.
  • the embodiment of the invention further provides a base station, including:
  • a determining unit configured to determine at least one uplink subframe that is transmitted by the terminal
  • a generating unit configured to generate uplink scheduling grant information corresponding to at least one uplink subframe scheduled in the at least one uplink subframe, where the uplink scheduling grant information includes MCS level information, where the MCS level information includes an MCS reference level And the MCS offset;
  • a sending unit configured to send the uplink scheduling grant information to the terminal, so that the terminal obtains the terminal on the PUSCH according to the MCS reference level and the MCS offset The MCS level used when transmitting the scheduled at least one uplink subframe.
  • FIG. 3 is a schematic block diagram of a base station according to an embodiment of the present invention.
  • a base station 300 according to an embodiment of the present invention may include:
  • the determining unit 310 determines whether the generating unit 320 or the transmitting unit 330.
  • the determining unit 310 is configured to determine at least one uplink subframe that is transmitted by the terminal.
  • the base station when the terminal sends a subframe in the PUSCH, different uplink scheduling grant information needs to be allocated by the base station for different subframe transmissions. Therefore, the base station first needs to determine the subframe in which the terminal performs uplink transmission, and then Uplink scheduling allows information to be designed.
  • the generating unit 320 is configured to generate uplink scheduling grant information corresponding to the scheduled at least one uplink subframe in the at least one uplink subframe, where the uplink scheduling grant information includes MCS level information, where the MCS level information includes an MCS reference Level and MCS offset.
  • the MCS level information refers to a modulation and coding policy level used when the subframe corresponding to the MCS level information is transmitted.
  • the MCS level information included in the uplink scheduling grant information also refers to the terminal transmitting uplink subframe data.
  • the MCS level information is jointly determined by the MCS reference level and the MCS offset.
  • the MCS reference level is common MCS control information
  • the MCS offset is an offset of an MCS level used by the uplink subframe with respect to the MCS reference level.
  • the MCS reference level is a common, semi-static MCS level information, which is equivalent to using the same MCS reference level for multiple uplink subframes, and the MCS offset is the MCS offset corresponding to the uplink subframe, thereby
  • the MCS level used by the uplink subframe may be determined by the MCS reference level and the MCS offset.
  • the uplink scheduling grant information is divided into a first phase uplink scheduling grant information and a second phase uplink scheduling grant information, where the MCS reference level is located in the first phase.
  • the MCS level information may also be included in the uplink scheduling grant information in other manners.
  • the MCS reference level information is located in an MCS indication field of the first stage uplink scheduling grant information in a Licensed Assisted Access (LAA) system.
  • LAA Licensed Assisted Access
  • the MCS offset is located in a shortened MCS indication field of the second stage uplink scheduling grant information, where the shortened MCS indication field has a bit length that is less than a bit length of the MCS indication field.
  • the system may perform uplink multi-subframe scheduling, that is, the base station uses one downlink subframe to schedule multiple uplink subframes on the terminal side, here is one downlink subframe scheduling.
  • the subframes in which the terminal performs uplink transmission may be multiple, that is, the uplink scheduling grant information may be sent for multiple uplink subframes, and the first phase uplink scheduling grant information will be sent for the multiple uplink subframes.
  • the MCS reference level of the information is used to calculate the MCS level of each different uplink subframe by using the MCS offset corresponding to each uplink subframe in the second-stage uplink scheduling grant information.
  • the first stage uplink scheduling grant information may be cell level uplink scheduling grant information
  • the second phase uplink scheduling grant information may be user level uplink scheduling grant information
  • the MCS reference level may also not use the original MCS indication field of the LTE system, and another field is designed to set the MCS reference level.
  • the MCS reference level and the MCS offset may be set in the first stage uplink scheduling grant information at the same time, or may be set in the second stage uplink scheduling grant information at the same time.
  • the MCS reference level and the MCS offset are finally used together to determine the MCS level used by each uplink subframe by using the MCS reference level and the MCS offset.
  • the sending unit 330 is configured to send the uplink scheduling grant information to the terminal, so that the terminal obtains, according to the MCS reference level and the MCS offset, the terminal sends the scheduled on the PUSCH.
  • the MCS level used when at least one uplink subframe.
  • the sending unit 330 is specifically configured to:
  • the first stage uplink scheduling grant information and the second phase uplink scheduling grant information are sequentially sent to the terminal through a physical downlink control channel PDCCH.
  • the first stage uplink scheduling grant information is sent to the terminal by using a first spectrum
  • the second stage uplink scheduling grant information is sent to the terminal by using a second spectrum, where the first spectrum and the The second spectrum is different.
  • the first spectrum may be an unlicensed spectrum or an unlicensed spectrum.
  • the second spectrum is an unlicensed spectrum.
  • the first spectrum is the licensed spectrum.
  • the MCS offset may be a positive offset or a negative offset.
  • the MCS level used by the terminal to transmit the uplink subframe on the PUSCH is an MCS level obtained by superimposing the MCS offset on the MCS reference level.
  • the MCS level used by the terminal to transmit the uplink subframe on the PUSCH is an MCS level obtained by negatively superimposing the MCS offset on the MCS reference level.
  • the base station sets the MCS offset value according to the MCS level that is actually used by each uplink subframe, and the MCS offset is a positive offset or a negative offset; To the overlay or to the negative overlay.
  • the base station 300 determines, after the terminal performs at least one uplink subframe of the uplink transmission, the uplink scheduling grant information corresponding to the scheduled at least one uplink subframe, where the uplink scheduling grant information includes the MCS.
  • Level information, the MCS level information includes an MCS reference level and an MCS offset, and then the base station sends the uplink scheduling grant information to the terminal, and after receiving the uplink scheduling grant information, the terminal according to the MCS reference level and the MCS offset Obtaining the MCS level used by the terminal when the PUSCH transmits at least one uplink subframe.
  • the embodiment of the present invention determines the MCS level used by the terminal to transmit each uplink subframe by designing the MCS reference level and the MCS offset, so that the MCS level and the uplink of the terminal are sent on the PUSCH.
  • Channel quality matching of sub-frames improves system performance and efficiency.
  • the base station 300 is presented in the form of a unit.
  • a "unit” herein may refer to an application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that provide the functionality described above. .
  • ASIC application-specific integrated circuit
  • FIG. 4 is a schematic block diagram of another base station according to an embodiment of the present invention.
  • the base station in this embodiment as shown may include one or more processors 401; one or more input devices 402, one or more output devices 403, and memory 404.
  • the above processor 401, input device 402, output device 403, and memory 404 are connected by a bus 405.
  • the memory 402 is for storing instructions
  • the processor 401 is for executing instructions stored by the memory 402.
  • the processor 401 is configured to: determine, by the base station, at least one uplink subframe that is transmitted by the terminal, where the base station generates uplink scheduling grant information corresponding to the at least one uplink subframe that is scheduled in the at least one uplink subframe, where
  • the uplink scheduling grant information includes MCS level information
  • the MCS level information includes an MCS reference level and an MCS offset
  • the uplink scheduling grant information is sent to the terminal, so that the terminal according to the MCS reference level and the The MCS offset is used to obtain the MCS level used by the terminal to transmit the scheduled at least one uplink subframe on the PUSCH.
  • the uplink scheduling grant information is divided into a first phase uplink scheduling grant information and a second phase uplink scheduling grant information, where the MCS reference level is located in the first phase.
  • the MCS reference level is a common MCS control information, where the MCS offset is an MCS level used by the at least one uplink subframe relative to the MCS reference. The offset of the level.
  • the MCS reference level information bit The MCS indication domain of the first phase uplink scheduling grant information in the granting auxiliary access LAA system.
  • the MCS offset is located in a shortened MCS indication field of the second stage uplink scheduling grant information, where the shortened MCS indication field has a bit length that is less than a bit length of the MCS indication field.
  • the sending, by the processor 401, the uplink scheduling grant information to the terminal includes:
  • the first stage uplink scheduling grant information and the second phase uplink scheduling grant information are sequentially sent to the terminal through a physical downlink control channel PDCCH.
  • the first stage uplink scheduling grant information is sent to the terminal by using a first spectrum
  • the second stage uplink scheduling grant information is sent to the terminal by using a second spectrum, where the first spectrum and the The second spectrum is different.
  • the first spectrum may be an unlicensed spectrum or an unlicensed spectrum.
  • the second spectrum is an unlicensed spectrum.
  • the first spectrum is the licensed spectrum.
  • the processor 401 may be a central processing unit (CPU), and the processor may also be another general-purpose processor, a digital signal processor (DSP). , Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the input device 402 can include a touchpad, a fingerprint sensor (for collecting fingerprint information of the user and direction information of the fingerprint), a microphone, etc.
  • the output device 403 can include a display (LCD or the like), a speaker, and the like.
  • the memory 404 can include read only memory and random access memory and provides instructions and data to the processor 401.
  • a portion of memory 404 may also include non-volatile random access memory.
  • the memory 404 can also store information of the device type.
  • the processor 401, the input device 402, and the output are described in the embodiment of the present invention.
  • the device 403 can be implemented in the first embodiment of the method for designing the control information provided by the embodiment of the present invention, and the implementation manner of the base station described in the embodiment of the present invention is also implemented, and details are not described herein again.
  • the base station 400 determines, after the terminal performs at least one uplink subframe of the uplink transmission, the uplink scheduling grant information corresponding to the scheduled at least one uplink subframe, where the uplink scheduling grant information includes the MCS.
  • Level information, the MCS level information includes an MCS reference level and an MCS offset, and then the base station sends the uplink scheduling grant information to the terminal, and after receiving the uplink scheduling grant information, the terminal according to the MCS reference level and the MCS offset Obtaining the MCS level used by the terminal when the PUSCH transmits at least one uplink subframe.
  • the embodiment of the present invention determines the MCS level used by the terminal to send each uplink subframe by designing the MCS reference level and the MCS offset, so that the MCS level matches the channel quality of the uplink subframe transmitted by the terminal on the PUSCH, and the system is improved. Performance and efficiency of use.
  • the base station 400 is presented in the form of a unit.
  • a "unit” herein may refer to an application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that provide the functionality described above. .
  • ASIC application-specific integrated circuit
  • the embodiment of the invention further provides a terminal, including:
  • a receiving unit configured to receive uplink scheduling grant information sent by the base station, where the uplink scheduling grant information includes MCS level information, where the MCS level information includes an MCS reference level and an MCS offset;
  • a determining unit configured by the terminal, according to the MCS reference level and the MCS offset, an MCS level used by the terminal to send at least one uplink subframe on the PUSCH.
  • FIG. 5 is a schematic block diagram of a terminal according to an embodiment of the present invention.
  • a terminal 500 provided by an embodiment of the present invention may include:
  • the receiving unit 510 and the determining unit 520 are identical to each other.
  • the receiving unit 510 is configured to receive uplink scheduling grant information sent by the base station, where the uplink scheduling grant information includes MCS level information, where the MCS level information includes an MCS reference level and an MCS offset.
  • the determining unit 520 is configured to obtain, according to the MCS reference level and the MCS offset, the MCS level used by the terminal to send at least one uplink subframe on the PUSCH.
  • the determining unit 520 is specifically configured to:
  • an MCS level used when transmitting at least one uplink subframe on the PUSCH is an MCS level obtained by superimposing the MCS offset on the MCS reference level.
  • the determining unit 520 is specifically configured to:
  • the terminal Determining, by the terminal, the MCS level obtained after the terminal transmits the at least one uplink subframe on the PUSCH according to the number of LBT detection failures, and the MCS level obtained by superimposing the MCS offset on the MCS reference level, or MCS benchmark rating.
  • the terminal determines that the MCS level used by the terminal to send an uplink subframe on the PUSCH is The MCS level obtained by superimposing the MCS offset on the MCS reference level, where N is a configurable parameter;
  • the terminal determines that the MCS level used by the terminal to transmit an uplink subframe on the PUSCH is the MCS reference level.
  • the uplink scheduling grant information is divided into a first phase uplink scheduling grant information and a second phase uplink scheduling grant information, where the MCS reference level is located in the first phase.
  • the MCS reference level is a common MCS control information, where the MCS offset is an MCS level used by the at least one uplink subframe relative to the MCS reference. The offset of the level.
  • the MCS reference level information is located in an MCS indication field of the first stage uplink scheduling grant information in the authorized auxiliary access LAA system.
  • the MCS offset is located in a shortened MCS indication field of the second stage uplink scheduling grant information, where the shortened MCS indication field has a bit length that is less than a bit length of the MCS indication field.
  • the base station determines, after the at least one uplink subframe of the uplink transmission by the terminal 500, the uplink scheduling grant information corresponding to the scheduled at least one uplink subframe, where the uplink scheduling grant information includes the MCS.
  • Level information, the MCS level information includes an MCS reference level and an MCS offset, and then the base station sends the uplink scheduling grant information to the terminal 500.
  • the terminal 500 After receiving the uplink scheduling grant information, the terminal 500 according to the MCS reference level and the MCS bias.
  • the shifting obtains the MCS level used by the terminal when the PUSCH transmits at least one uplink subframe.
  • the embodiment of the present invention determines the MCS level used by the terminal to send each uplink subframe by designing the MCS reference level and the MCS offset, so that the MCS level matches the channel quality of the uplink subframe transmitted by the terminal on the PUSCH, and the system is improved. Performance and efficiency of use.
  • the terminal 500 is presented in the form of a unit.
  • a "unit” herein may refer to an application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that provide the functionality described above. .
  • ASIC application-specific integrated circuit
  • FIG. 6 is a schematic block diagram of another terminal according to an embodiment of the present invention.
  • the terminal in this embodiment as shown may include one or more processors 601; one or more input devices 602, one or more output devices 603, and memory 604.
  • the above processor 601, input device 802, output device 803, and memory 604 are connected by a bus 805.
  • the memory 802 is for storing instructions
  • the processor 801 is for executing instructions stored by the memory 602.
  • the processor 601 is configured to: receive, by the terminal, uplink scheduling grant information sent by the base station, where the uplink scheduling grant information includes MCS level information, where the MCS level information includes an MCS reference level and an MCS offset; The MCS reference level and the MCS offset are used to obtain an MCS level used by the terminal to transmit at least one uplink subframe on the PUSCH.
  • the processor 601 is used by the terminal to send at least one uplink subframe on the PUSCH.
  • MCS rating including:
  • the determining, by the terminal, the MCS level used by the terminal to transmit at least one uplink subframe on the PUSCH is an MCS level obtained by superimposing the MCS offset on the MCS reference level.
  • the processor 601 is used by the terminal to send at least one uplink subframe on the PUSCH.
  • MCS rating including:
  • the terminal Determining, by the terminal, the MCS level obtained after the terminal transmits the at least one uplink subframe on the PUSCH according to the number of LBT detection failures, and the MCS level obtained by superimposing the MCS offset on the MCS reference level, or MCS benchmark rating.
  • the uplink scheduling grant information is divided into a first phase uplink scheduling grant information and a second phase uplink scheduling grant information, where the MCS reference level is located in the first phase.
  • the MCS reference level is common MCS control information, where the MCS offset is an MCS level used by the uplink subframe relative to the MCS reference level. Offset.
  • the MCS reference level information is located in an MCS indication field of the first stage uplink scheduling grant information in the authorized auxiliary access LAA system.
  • the MCS offset is located in a shortened MCS indication field of the second stage uplink scheduling grant information, where the shortened MCS indication field has a bit length that is less than a bit length of the MCS indication field.
  • the processor 601 may be a central processing unit (CPU), and the processor may also be another general-purpose processor, a digital signal processor (DSP).
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the input device 602 may include a touch panel, a fingerprint sensor (for collecting fingerprint information of the user and direction information of the fingerprint), a microphone, and the like, and the output device 603 may include a display (LCD or the like), a speaker, and the like.
  • a fingerprint sensor for collecting fingerprint information of the user and direction information of the fingerprint
  • a microphone for collecting fingerprint information of the user and direction information of the fingerprint
  • the output device 603 may include a display (LCD or the like), a speaker, and the like.
  • the memory 604 can include read only memory and random access memory and provides instructions and data to the processor 801. A portion of the memory 604 may also include a non-volatile random access memory. For example, the memory 604 can also store information of the device type.
  • the processor 601, the input device 602, and the output device 603, which are described in the embodiment of the present invention, may be implemented in the first embodiment of the control information design method provided by the embodiment of the present invention, and may also be implemented.
  • the implementation manners of the terminal described in this embodiment of the present invention are not described herein again.
  • the base station after determining, by the base station, the terminal 600 performs at least one uplink subframe for uplink transmission, the base station generates uplink scheduling grant information corresponding to the scheduled at least one uplink subframe, where the uplink scheduling grant information includes the MCS.
  • Level information the MCS level information includes an MCS reference level and an MCS offset, and then the base station sends the uplink scheduling grant information to the terminal 600.
  • the terminal 600 After receiving the uplink scheduling grant information, the terminal 600 according to the MCS reference level and the MCS bias. The shifting obtains the MCS level used by the terminal when the PUSCH transmits at least one uplink subframe.
  • the embodiment of the present invention determines the MCS level used by the terminal to send each uplink subframe by designing the MCS reference level and the MCS offset, so that the MCS level matches the channel quality of the uplink subframe transmitted by the terminal on the PUSCH, and the system is improved. Performance and efficiency of use.
  • the terminal 600 is presented in the form of a unit.
  • a "unit” herein may refer to an application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that provide the functionality described above. .
  • ASIC application-specific integrated circuit
  • the disclosed terminal and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold as a standalone product Or when used, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种控制信息设计方法、基站、终端及***,其中方法包括:基站确定终端进行传输的至少一个上行子帧;所述基站生成与所述至少一个上行子帧中被调度的至少一个上行子帧对应的上行调度准许信息;将所述上行调度准许信息发送至所述终端,以使所述终端根据所述MCS基准等级以及所述MCS偏移量得到所述终端在PUSCH上发送所述被调度的至少一个上行子帧时所使用的MCS等级。本发明实施例通过设计MCS基准等级以及MCS偏移量来确定终端发送各个上行子帧时所使用的MCS等级,从而使得该MCS等级与终端在PUSCH发送的上行子帧的信道质量匹配,提高***性能与使用效率。

Description

一种控制信息设计方法、基站、终端及*** 技术领域
本发明涉及通信技术领域,尤其涉及一种控制信息设计方法、基站、终端及***。
背景技术
随着通信业务量的急剧增加,授权频段显得越来越不足以提供更高的网络容量,为了进一步提高频谱资源的利用,第三代合作伙伴计划(3rd Generation Partnership Project,简称3GPP)正讨论如何在授权频段的帮助下使用未授权频段。
在目前的长期演进(Long Term Evolution,简称LTE)***中,上行数据传输是通过下行控制信道PDCCH上传输的上行调度准许信息进行控制的,而目前的3GPP也倾向于使用该方式去进行上行调度,但是在该方式中,控制上行数据传输的上行调度准许信息中未精确确定终端在物理上行共享信道(Physical Uplink Shared Channel,简称PUSCH)上传输上行数据所使用的调制与编码策略(Modulation and Coding Scheme,简称MCS)等级,使得PUSCH数据发送的误码率高、***性能低或***资源的使用效率低。
发明内容
本发明实施例提供一种控制信息设计方法、基站、终端及***,以期可以使终端发送PUSCH数据时所使用的MCS等级与该PUSCH上子帧的信道质量更为匹配,提高***性能与使用效率。
第一方面,本发明实施例提供了一种控制信息设计方法,该方法包括:
基站确定终端进行传输的至少一个上行子帧;
所述基站生成与所述至少一个上行子帧中被调度的至少一个上行子帧对应的上行调度准许信息,所述上行调度准许信息包括MCS等级信息,所述 MCS等级信息包括MCS基准等级以及MCS偏移量;
将所述上行调度准许信息发送至所述终端,以使所述终端根据所述MCS基准等级以及所述MCS偏移量得到所述终端在PUSCH上发送所述被调度的至少一个上行子帧时所使用的MCS等级。
第二方面,本发明实施例提供了一种控制信息设计方法,该方法包括:
终端接收基站发送的上行调度准许信息,所述上行调度准许信息包括MCS等级信息,所述MCS等级信息包括MCS基准等级以及MCS偏移量;
所述终端根据所述MCS基准等级以及所述MCS偏移量得到所述终端在PUSCH上发送至少一个上行子帧时所使用的MCS等级。
第三方面,本发明实施例提供了一种基站,该基站包括:
确定单元,用于确定终端进行传输的至少一个上行子帧;
生成单元,用于生成与所述至少一个上行子帧中被调度的至少一个上行子帧对应的上行调度准许信息,所述上行调度准许信息包括MCS等级信息,所述MCS等级信息包括MCS基准等级以及MCS偏移量;
发送单元,用于将所述上行调度准许信息发送至所述终端,以使所述终端根据所述MCS基准等级以及所述MCS偏移量得到所述终端在PUSCH上发送所述被调度的至少一个上行子帧时所使用的MCS等级。
第四方面,本发明实施例提供了一种终端,该终端包括:
接收单元,用于接收基站发送的上行调度准许信息,所述上行调度准许信息包括MCS等级信息,所述MCS等级信息包括MCS基准等级以及MCS偏移量;
确定单元,用于所述终端根据所述MCS基准等级以及所述MCS偏移量得到所述终端在PUSCH上发送至少一个上行子帧时所使用的MCS等级。
第五方面,本发明实施例提供了一种控制信息设计***,该控制信息设计***包括第三方面所述的基站以及第四方面所述的终端。
可以看出,本发明实施例所提供的技术方案中,基站确定终端进行上行传输的至少一个上行子帧后,生成与所调度的至少一个上行子帧对应的上行调度准许信息,该上行调度准许信息包括MCS等级信息,该MCS等级信息 包括MCS基准等级以及MCS偏移量,然后基站再将该上行调度准许信息发送至终端,终端在接收到该上行调度准许信息后,根据MCS基准等级以及MCS偏移量得到终端在PUSCH发送至少一个上行子帧时所使用的MCS等级。本发明实施例通过设计MCS基准等级以及MCS偏移量来确定终端发送各个上行子帧时所使用的MCS等级,从而使得该MCS等级与终端在PUSCH发送的上行子帧的信道质量匹配,提高***性能与使用效率。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种数据传输***的结构示意图;
图2是本发明实施例提供一种控制信息设计方法的示意流程图;
图3是本发明实施例提供的一种基站的示意框图;
图4是本发明实施例提供的另一种基站的示意框图;
图5是本发明实施例提供的一种终端的示意框图;
图6是本发明实施例提供的另一种终端示意框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”和“包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在此本发明说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本发明。如在本发明说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本发明说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。
具体实现中,本发明实施例中描述的终端包括但不限于诸如具有触摸敏感表面(例如,触摸屏显示器和/或触摸板)的移动电话、膝上型计算机或平板计算机之类的其它便携式设备。还应当理解的是,在某些实施例中,所述设备并非便携式通信设备,而是具有触摸敏感表面(例如,触摸屏显示器和/或触摸板)的台式计算机。
在接下来的讨论中,描述了包括显示器和触摸敏感表面的终端。然而,应当理解的是,终端可以包括诸如物理键盘、鼠标和/或控制杆的一个或多个其它物理用户接口设备。
终端支持各种应用程序,例如以下中的一个或多个:绘图应用程序、演示应用程序、文字处理应用程序、网站创建应用程序、盘刻录应用程序、电子表格应用程序、游戏应用程序、电话应用程序、视频会议应用程序、电子邮件应用程序、即时消息收发应用程序、锻炼支持应用程序、照片管理应用程序、数码相机应用程序、数字摄影机应用程序、web浏览应用程序、数字音乐播放器应用程序和/或数字视频播放器应用程序。
可以在终端上执行的各种应用程序可以使用诸如触摸敏感表面的至少一个公共物理用户接口设备。可以在应用程序之间和/或相应应用程序内调整和/ 或改变触摸敏感表面的一个或多个功能以及终端上显示的相应信息。这样,终端的公共物理架构(例如,触摸敏感表面)可以支持具有对用户而言直观且透明的用户界面的各种应用程序。
首先参见图1,图1是本发明实施例提供的一种数据传输***的结构示意图,由图1所示,该数据传输***包括基站110和终端120,基站110和终端120之间可以建立数据通信连接,实现数据传输,在目前的LTE***,上行数据传输是通过下行控制信道上传输的上行调度准许信息进行控制的。即基站110在某下行子帧的下行控制信道上发送上行调度准许信息,之后终端120在后续的某上行子帧上进行上行数据发送。需要说明的是,上述说明只是示例性的,本发明方案并不限定于LTE***。还可以应用于其他***,例如下一代无线通信***。
为引入更多的频谱资源以满足不断提升的网络性能要求,从3GPP Release 13开始,引入了LAA(Licensed-Assisted Access to Unlicensed Spectrum)***,实现了在授权频谱(例如:LTE***的频谱)的辅助下使用非授权的频谱资源(如5GHz的频谱)。在LAA***中,由于引入了非授权频谱资源,因此LAA***需在LTE***的基础上遵循非授权频谱已有的机制。目前各国对于非授权频谱的使用分别进行了规定,其中一些国家和地区规定了在非授权频段上需使用LBT(listen before talk)机制,即先听后说机制,在进行数据发送之前,要先监听信道的状态是否空闲,如果信道空闲则进行数据信息和控制信息的发送,否则不进行传输。这会导致传输是否发生具有一定的不确定性,这使得LAA***中实际的上下行子帧分布不同于LTE***中的上下行子帧分布,即LAA***中上下行子帧的分布位置不再固定。
信道监听的过程也称之为空闲信道评估(ClearChannelAssessment,简称为CCA)。示例性的,假设一个基站测量到信道的功率不低于-62dBm,则该站点认为信道是繁忙的;低于-62dBm则该站点认为信道是空闲的。
作为监听信道的状态是否空闲的一种示例性的方式,具体的,UE检测周围是否有其它设备正在目标信道发送数据。如果该目标某信道已被其它设备占用,可以在下一监听周期到来时继续监听,也可以根据指示不再监听;若 监听到信道资源空闲,该UE可以立即占用该目标信道。信道占用时间是一个固定值,该固定值即为SRS配置信息配置的上行子帧的最后一个符号的时间长度,考虑到UE在SRS上报到信道检测的转换过程,可以在下一信道检测位置前设定一个静默时间。优选的,若监听到信道资源空闲,可以生成一个随机数L作为退避时间,在这个退避时间内,继续监听目标信道,若检测到L次目标信道处于空闲状态,则退避时间结束,同时该UE就可以占用该目标信道进行SRS上报。如果UE检测到信道状态为非空闲(例如已被其它UE占用),则在这个周期内设备不能占用信道,则该UE可以等到下一个周期的固定位置继续检测。
作为监听信道的状态是否空闲的另一种示例性的方式,具体的,当UE需要上报SRS的时候,触发初始检测。若UE初始检测到目标信道处于空闲状态,即可占用该目标信道,并由基站预先配置一个信道占用时间T;若UE初始检测到目标信道状态为非空闲,则可生成一个推迟周期(defer period)时间,如果在推迟周期时间还是检测到目标信道忙,则继续生成一个推迟周期时间。UE在L次检测时间检测到信道状态为空闲之后可以占用目标信道,占用目标信道时间为T。
上面已经提到,LAA***的引入引出了很多新的挑战。还例如,由于LBT过程的存在,要进行上行数据的发送,至少要成功进行两次LBT过程。第一次为成功进行下行LBT过程,使得基站可以下发上行调度的控制信息,另一次为成功进行上行LBT过程,使得UE可以上传上行数据。由于两次LBT过程不一定会同时满足,且有可能相隔相对较长的一段时间。因此有必要尽量避免因LBT失败而调度失败情况,另外还需要进一步提高调度效率。
需要说明的是,本文通篇所述的终端可以适用多个载波与一个基站进行通信,也可以同时与多个基站在多个载波上进行通信。在上述多个载波中,其中一个载波可以被确定为是主载波(PCC),主载波可以应用于终端所在的主小区(PCell),主小区可以与终端通过高层信令(例如RRC)半静态的配置。除主载波以外其他载波可以是辅载波(SCC),辅载波可以被应用于终端所在的辅小区。示例性的,主载波可以采用第一频谱来进行配置,第一频谱 可以是授权频谱或者非授权频谱,相应的,辅载波可以采用第二频谱来进行配置,第二频谱可以是非授权频谱或者授权频谱。所述第一频谱和第二频谱可以配置为不相同的频谱。
本发明实施例所涉及的上行数据传输对应的上行调度准许信息的发送分为两个阶段,第一阶段上行调度准许信息为一个公共的、半静态的准许信息,可包括资源块(Resource Block,简称RB)分配信息,MCS等级信息等;第二阶段为一个具体的上行数据传输的调度信息,可触发PUSCH信道在某个子帧上进行发送,但目前的上行调度准许信息的第二阶段中并未包含MCS等级,从而多个被调度的上行子帧均分配相同的MCS等级,而多个子帧上的终端120的信道质量可能不同,因此可能出现分配的MCS等级与具体PUSCH发送的子帧的信道质量不匹配的情况。具体的说,如果分配的MCS等级过高,会造成PUSCH数据发送的误码率升高,降低***性能,如果分配的MCS等级过低,可能会降低***资源的使用效率。
本发明实施例的控制信息设计方法为基于上述上行调度准许信息基础上所进行的改进。
参见图2,图2是本发明实施例提供一种控制信息设计方法的示意流程图,如图2所示,该方法可包括以下步骤:
S201、基站确定终端进行传输的至少一个上行子帧。
在本发明实施例中,终端在PUSCH发送子帧时,对于不同的子帧传输,均需要由基站分配不同的上行调度准许信息,所以基站首先需要确定终端进行上行传输的子帧,然后再对上行调度准许信息进行设计。
S202、基站生成与被调度的至少一个上行子帧对应的上行调度准许信息,所述上行调度准许信息包括MCS等级信息,该MCS等级信息包括MCS基准等级以及MCS偏移量。
其中,MCS等级信息是指与该MCS等级信息对应的子帧传输数据时所使用的调制与编码策略等级。
在本发明实施例中,由于该上行调度准许信息是用于对上行子帧的数据传输进行控制的一个调度信息,所以该上行调度准许信息中包含的MCS等级 信息也是指终端传输上行子帧数据时所使用的调制与编码策略等级。该MCS等级信息通过MCS基准等级以及MCS偏移量来共同进行确定。
在本发明实施例中,所述MCS基准等级为公共MCS控制信息,所述MCS偏移量为所述上行子帧所使用的MCS等级相对所述MCS基准等级的偏移量。
其中,MCS基准等级为公共的、半静态的MCS等级信息,相当于多个上行子帧均使用同一个MCS基准等级,而MCS偏移量为与该上行子帧对应的MCS偏移量,从而该上行子帧所使用的MCS等级可由MCS基准等级和MCS偏移量共同确定。
可选地,在本发明的一些可能的实施方式中,所述上行调度准许信息分为第一阶段上行调度准许信息以及第二阶段上行调度准许信息,所述MCS基准等级位于所述第一阶段上行调度准许信息,所述MCS偏移量位于所述第二阶段上行调度准许信息。
可选地,在本发明的另一些可能的实施方式中,该MCS等级信息也可以使用其它方式包含在上行调度准许信息中。
可选地,在本发明的一个实施例中,所述MCS基准等级信息位于授权辅助接入(Licensed Assisted Access,简称LAA)***中所述第一阶段上行调度准许信息的MCS指示域中。
更进一步地,可选地,所述MCS偏移量位于所述第二阶段上行调度准许信息的缩短MCS指示域中,所述缩短MCS指示域的比特位长度少于MCS指示域的比特位长度。
需要说明,在本发明实施例中,用于确定上行子帧所使用的MCS等级的MCS偏移量可以为基于MCS基准等级上的一个偏移,所以MCS偏移量可以理解为对MCS基准等级的一个调整量,优选的,MCS偏移量的等级数值可以小于MCS基准等级的等级数值,从而可设计在第二阶段上行调度准许信息中用于指示该MCS偏移量的缩短MCS指示域的比特位长度小于该MCS基准等级的比特位长度。例如,MCS基准等级可以为十几级至二十几级,而MCS偏移量可以只为几级。此种调整方式被证明是有益的,MCS偏移量可以动态的变化,可以由瞬时信道质量获得,因此有效的反应了瞬时信道质量的变化。 另外,MCS基准等级的值也可以基于周期性的或者基于事件性的整体更新。
可选地,在本发明的一些可能的实施方式中,由于***可能进行的是上行多子帧调度,即基站使用一个下行子帧调度终端侧多个上行子帧,因此这里一个下行子帧调度的终端进行上行传输的子帧可能为多个,也即上行调度准许信息可能是针对的是多个上行子帧发送的,此时第一阶段上行调度准许信息将针对该多个上行子帧发送,而该第一阶段上行调度准许信息将对应多个第二阶段上行调度准许信息,分别对应于多个上行子帧,具体地,该多个上行子帧将同时使用位于第一阶段上行调度准许信息的MCS基准等级,再使用位于第二阶段上行调度准许信息中与各个上行子帧分别对应的MCS偏移量共同计算各不同上行子帧的MCS等级。
具体地,该第一阶段上行调度准许信息可以为小区级别上行调度准许信息,而第二阶段上行调度准许信息可以为用户级别上行调度准许信息。
具体地,作为本发明的一个示例,若终端调度2个上行子帧,这两个上行子帧均使用同一个第一阶段上行调度准许信息,在该第一阶段上行调度准许信息中,包含一个基准的MCS等级信息,例如可采用LTE***原有的MCS指示域,使用5个bit表示MCS基准等级信息,如MCS基准等级可设置为10。
针对这2个上行子帧,将分别对应两个第二阶段上行调度准许信息,在第二阶段的上行调度准许信息中,设置一个MCS偏移量字段,表示实际每个上行子帧使用的MCS等级相对于基准MCS等级的偏移量。举例来说,可采用两个bit的字段来表示该偏移量。从而可通过该MCS基准等级和该偏移量来共同确定各个上行子帧所使用的MCS等级。
可选地,MCS基准等级也可以不采用LTE***原有的MCS指示域,而另外设计一个字段来用于设置MCS基准等级。
可选地,在本发明的另一些可能的实施方式中,也可以同时在第一阶段上行调度准许信息中设置MCS基准等级和MCS偏移量,或同时在第二阶段上行调度准许信息中设置MCS基准等级和MCS偏移量,最后同样利用该MCS基准等级和MCS偏移量共同确定各个上行子帧所使用的MCS等级。
S203、基站将上行调度准许信息发送至所述终端。
在本发明实施例中,基站将上行调度准许信息发送至终端,以使所述终端根据所述MCS基准等级以及所述MCS偏移量得到所述终端在PUSCH上发送所述上行子帧时所使用的MCS等级。
可以理解,由于该MCS等级信息是基站为终端在PUSCH上发送上行子帧数据时所分配的MCS等级,所以基站需要将该等级信息通过上行调度准许信息发送至终端,然后终端将接收到基站发送的上行调度准许信息。
具体地,终端在发送上行调度准许信息中,依次通过物理下行控制信道PDCCH发送上行调度准许信息的第一阶段上行调度准许信息和第一阶段上行调度准许信息,例如,在第一时刻发送第一阶段上行调度准许信息,然后在接下来的第二时刻立刻发送第二阶段上行调度准许信息。
具体地,终端在发送上行调度准许信息时,也可以采用其它的时序来依次通过物理下行控制信道PDCCH发送第一阶段上行调度准许信息和第二阶段上行调度准许信息。
具体地,所述第一阶段上行调度准许信息通过第一频谱发送至所述终端,所述第二阶段上行调度准许信息通过第二频谱发送至所述终端,其中,所述第一频谱和所述第二频谱不同。
其中,该第一频谱可以为授权频谱或非授权频谱,该第二频谱可以是非授权频谱或授权频谱,例如,当第一频谱为授权频谱时,该第二频谱为非授权频谱,当第二频谱为非授权频谱时,该第一频谱为授权频谱。
S204、终端根据MCS基准等级以及MCS偏移量得到终端在PUSCH上发送至少一个上行子帧时所使用的MCS等级。
可选地,在本发明的一些可能的实施方式中,所述终端根据所述MCS基准等级以及所述MCS偏移量得到所述终端在PUSCH上发送所述至少一个上行子帧时所使用的MCS等级,包括:
所述终端确定所述终端在PUSCH上发送所述至少一个上行子帧时所使用的MCS等级为所述MCS基准等级叠加所述MCS偏移量后所得到的MCS等级。
可选地,在本发明的一些可能的实施方式中,所述终端根据所述MCS基准等级以及所述MCS偏移量得到所述终端在PUSCH上发送至少一个上行子帧时所使用的MCS等级,还包括:
所述终端根据先听后说LBT检测失败次数确定终端在PUSCH上发送所述至少一个上行子帧时所使用的MCS等级为MCS基准等级叠加所述MCS偏移量后所得到的MCS等级,或者MCS基准等级。
具体地,当所述终端在上行PUSCH发送上行子帧时,若检测到LBT检测失败次数小于等于N次时,所述终端确定所述终端在PUSCH上发送上行子帧时所使用的MCS等级为所述MCS基准等级叠加所述MCS偏移量后所得到的MCS等级,其中,N为一个可配置的参数,取值范围可以是正整数;
当检测到LBT检测失败次数大于N次时,所述终端确定所述终端在PUSCH上发送上行子帧时所使用的MCS等级为所述MCS基准等级。
需要特别说明的是,基准MCS等级可以为半静态的,即由一个较长期的统计平均信道质量获得的MCS等级,而MCS偏移量可以为动态的,由瞬时信道质量获得。如果用户LBT失败次数达到预设值(例如:该预设值较大),则用户进行上行PUSCH数据发送时与MCS偏移量控制信息的发送时间间隔已经比较长,则由瞬时信道质量获得的MCS等级已经无法有效的反应出瞬时信道质量,此时仍然改为由长期统计平均获得基准MCS等级作为用户使用的MCS等级则更为有益。
具体地,该MCS偏移量可以为正偏移量,也可以为负偏移量。
可选地,在本发明的一个实施例中,终端在PUSCH上发送该上行子帧时所使用的MCS等级为MCS基准等级正向叠加该MCS偏移量后得到的MCS等级。
可选地,在本发明的另一个实施例中,终端在PUSCH上发送该上行子帧时所使用的MCS等级为MCS基准等级负向叠加该MCS偏移量后得到的MCS等级。
在本发明实施例中,基站根据实际各个上行子帧所需要使用的MCS等级来设定MCS偏移量值,MCS偏移量为正偏移量或负偏移量;是由MCS基准 等级正向叠加还是负向叠加。
具体地,在本发明的一个示例中,若终端调度2个上行子帧,可上行调度准许信息的第一阶段上行调度准许信息中采用LTE***原有的MCS指示域,使用5个bit表示MCS基准等级信息,如MCS基准等级可设置为10,针对两个上行子帧,例如为上行子帧A和上行子帧B,分别对应两个第二阶段上行调度准许信息,可在上行调度准许信息的第二阶段上行调度准许信息设置分别设置MCS偏移量的值为2(对应上行子帧A)和4(对应上行子帧B),最后上行子帧A实际使用的MCS等级在基准MCS等级基础上正向累加MCS偏移量,也即10等级累加2等级得到终端最终发送上行子帧A时所使用的MCS等级为12等级,最后上行子帧B实际使用的MCS等级在基准MCS等级基础上正向累加MCS偏移量,也即10等级累加4等级得到终端最终发送上行子帧B时所使用的MCS等级为14等级。
可以看出,本实施例的方案中,基站确定终端进行上行传输的上行子帧后,生成与所调度的上行子帧对应的上行调度准许信息,该上行调度准许信息包括MCS等级信息,该MCS等级信息包括MCS基准等级以及MCS偏移量,然后基站再将该上行调度准许信息发送至终端,终端在接收到该上行调度准许信息后,根据MCS基准等级以及MCS偏移量得到终端在PUSCH发送上行子帧时所使用的MCS等级。本发明实施例通过设计MCS基准等级以及MCS偏移量来确定终端发送各个上行子帧时所使用的MCS等级,从而使得该MCS等级与终端在PUSCH发送的上行子帧的信道质量匹配,提高***性能与使用效率。
本发明实施例还提供了一种基站,包括:
确定单元,用于确定终端进行传输的至少一个上行子帧;
生成单元,用于生成与所述至少一个上行子帧中被调度的至少一个上行子帧对应的上行调度准许信息,所述上行调度准许信息包括MCS等级信息,所述MCS等级信息包括MCS基准等级以及MCS偏移量;
发送单元,用于将所述上行调度准许信息发送至所述终端,以使所述终端根据所述MCS基准等级以及所述MCS偏移量得到所述终端在PUSCH上 发送所述被调度的至少一个上行子帧时所使用的MCS等级。
参见图3,图3是本发明实施例提供的一种基站的示意框图。用于实现本发明实施例公开的控制信息设计方法。其中,如图3所示,本发明实施例提供的一种基站300可以包括:
确定单元310、生成单元320和发送单元330。
其中,确定单元310,用于确定终端进行传输的至少一个上行子帧。
在本发明实施例中,终端在PUSCH发送子帧时,对于不同的子帧传输,均需要由基站分配不同的上行调度准许信息,所以基站首先需要确定终端进行上行传输的子帧,然后再对上行调度准许信息进行设计。
生成单元320,用于生成与所述至少一个上行子帧中被调度的至少一个上行子帧对应的上行调度准许信息,所述上行调度准许信息包括MCS等级信息,所述MCS等级信息包括MCS基准等级以及MCS偏移量。
其中,MCS等级信息是指与该MCS等级信息对应的子帧传输数据时所使用的调制与编码策略等级。
在本发明实施例中,由于该上行调度准许信息是用于对上行子帧的数据传输进行控制的一个调度信息,所以该上行调度准许信息中包含的MCS等级信息也是指终端传输上行子帧数据时所使用的调制与编码策略等级。该MCS等级信息通过MCS基准等级以及MCS偏移量来共同进行确定。
在本发明实施例中,所述MCS基准等级为公共MCS控制信息,所述MCS偏移量为所述上行子帧所使用的MCS等级相对所述MCS基准等级的偏移量。
其中,MCS基准等级为公共的、半静态的MCS等级信息,相当于多个上行子帧均使用同一个MCS基准等级,而MCS偏移量为与该上行子帧对应的MCS偏移量,从而该上行子帧所使用的MCS等级可由MCS基准等级和MCS偏移量共同确定。
可选地,在本发明的一些可能的实施方式中,所述上行调度准许信息分为第一阶段上行调度准许信息以及第二阶段上行调度准许信息,所述MCS基准等级位于所述第一阶段上行调度准许信息,所述MCS偏移量位于所述第二阶段上行调度准许信息。
可选地,在本发明的另一些可能的实施方式中,该MCS等级信息也可以使用其它方式包含在上行调度准许信息中。
可选地,在本发明的一个实施例中,所述MCS基准等级信息位于授权辅助接入(Licensed Assisted Access,简称LAA)***中所述第一阶段上行调度准许信息的MCS指示域。
更进一步地,可选地,所述MCS偏移量位于所述第二阶段上行调度准许信息的缩短MCS指示域中,所述缩短MCS指示域的比特位长度少于MCS指示域的比特位长度。
可选地,在本发明的一些可能的实施方式中,由于***可能进行的是上行多子帧调度,即基站使用一个下行子帧调度终端侧多个上行子帧,因此这里一个下行子帧调度的终端进行上行传输的子帧可能为多个,也即上行调度准许信息可能是针对的是多个上行子帧发送的,此时第一阶段上行调度准许信息将针对该多个上行子帧发送,而该第一阶段上行调度准许信息将对应多个第二阶段上行调度准许信息,分别对应于多个上行子帧,具体地,该多个上行子帧将同时使用位于第一阶段上行调度准许信息的MCS基准等级,再使用位于第二阶段上行调度准许信息中与各个上行子帧分别对应的MCS偏移量共同计算各不同上行子帧的MCS等级。
具体地,该第一阶段上行调度准许信息可以为小区级别上行调度准许信息,而第二阶段上行调度准许信息可以为用户级别上行调度准许信息。
可选地,MCS基准等级也可以不采用LTE***原有的MCS指示域,而另外设计一个字段来用于设置MCS基准等级。
可选地,在本发明的另一些可能的实施方式中,也可以同时在第一阶段上行调度准许信息中设置MCS基准等级和MCS偏移量,或同时在第二阶段上行调度准许信息中设置MCS基准等级和MCS偏移量,最后同样利用该MCS基准等级和MCS偏移量共同确定各个上行子帧所使用的MCS等级。
发送单元330,用于将所述上行调度准许信息发送至所述终端,以使所述终端根据所述MCS基准等级以及所述MCS偏移量得到所述终端在PUSCH上发送所述被调度的至少一个上行子帧时所使用的MCS等级。
可选地,在本发明的一些可能的实施方式中,所述发送单元330具体用于:
将所述第一阶段上行调度准许信息与所述第二阶段上行调度准许信息依次通过物理下行控制信道PDCCH发送至所述终端。
具体地,所述第一阶段上行调度准许信息通过第一频谱发送至所述终端,所述第二阶段上行调度准许信息通过第二频谱发送至所述终端,其中,所述第一频谱和所述第二频谱不同。
其中,该第一频谱可以为授权频谱或非授权频谱,该第二频谱可以是非授权频谱或授权频谱,例如,当第一频谱为授权频谱时,该第二频谱为非授权频谱,当第二频谱为非授权频谱时,该第一频谱为授权频谱。
具体地,该MCS偏移量可以为正偏移量,也可以为负偏移量。
可选地,在本发明的一个实施例中,终端在PUSCH上发送该上行子帧时所使用的MCS等级为MCS基准等级正向叠加该MCS偏移量后得到的MCS等级。
可选地,在本发明的另一个实施例中,终端在PUSCH上发送该上行子帧时所使用的MCS等级为MCS基准等级负向叠加该MCS偏移量后得到的MCS等级。
在本发明实施例中,基站根据实际各个上行子帧所需要使用的MCS等级来设定MCS偏移量值,MCS偏移量为正偏移量或负偏移量;是由MCS基准等级正向叠加还是负向叠加。
可以看出,本实施例的方案中,基站300确定终端进行上行传输的至少一个上行子帧后,生成与所调度的至少一个上行子帧对应的上行调度准许信息,该上行调度准许信息包括MCS等级信息,该MCS等级信息包括MCS基准等级以及MCS偏移量,然后基站再将该上行调度准许信息发送至终端,终端在接收到该上行调度准许信息后,根据MCS基准等级以及MCS偏移量得到终端在PUSCH发送至少一个上行子帧时所使用的MCS等级。本发明实施例通过设计MCS基准等级以及MCS偏移量来确定终端发送各个上行子帧时所使用的MCS等级,从而使得该MCS等级与终端在PUSCH发送的上行 子帧的信道质量匹配,提高***性能与使用效率。
在本实施例中,基站300是以单元的形式来呈现。这里的“单元”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
可以理解的是,本实施例的基站300的各功能单元的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
参见图4,图4是本发明实施例提供的另一种基站示意框图。如图所示的本实施例中的基站可以包括:一个或多个处理器401;一个或多个输入设备402,一个或多个输出设备403和存储器404。上述处理器401、输入设备402、输出设备403和存储器404通过总线405连接。存储器402用于存储指令,处理器401用于执行存储器402存储的指令。
其中,处理器401用于:基站确定终端进行传输的至少一个上行子帧;所述基站生成与所述至少一个上行子帧中被调度的至少一个上行子帧对应的上行调度准许信息,所述上行调度准许信息包括MCS等级信息,所述MCS等级信息包括MCS基准等级以及MCS偏移量;将所述上行调度准许信息发送至所述终端,以使所述终端根据所述MCS基准等级以及所述MCS偏移量得到所述终端在PUSCH上发送所述被调度的至少一个上行子帧时所使用的MCS等级。
可选地,在本发明的一些可能的实施方式中,所述上行调度准许信息分为第一阶段上行调度准许信息以及第二阶段上行调度准许信息,所述MCS基准等级位于所述第一阶段上行调度准许信息,所述MCS偏移量位于所述第二阶段上行调度准许信息。
可选地,在本发明的一些可能的实施方式中,所述MCS基准等级为公共MCS控制信息,所述MCS偏移量为所述至少一个上行子帧所使用的MCS等级相对所述MCS基准等级的偏移量。
可选地,在本发明的一些可能的实施方式中,所述MCS基准等级信息位 于授权辅助接入LAA***中所述第一阶段上行调度准许信息的MCS指示域。
更进一步地,可选地,所述MCS偏移量位于所述第二阶段上行调度准许信息的缩短MCS指示域中,所述缩短MCS指示域的比特位长度少于MCS指示域的比特位长度。
可选地,在本发明的一些可能的实施方式中,所述处理器401将所述上行调度准许信息发送至所述终端,包括:
将所述第一阶段上行调度准许信息与所述第二阶段上行调度准许信息依次通过物理下行控制信道PDCCH发送至所述终端。
具体地,所述第一阶段上行调度准许信息通过第一频谱发送至所述终端,所述第二阶段上行调度准许信息通过第二频谱发送至所述终端,其中,所述第一频谱和所述第二频谱不同。
其中,该第一频谱可以为授权频谱或非授权频谱,该第二频谱可以是非授权频谱或授权频谱,例如,当第一频谱为授权频谱时,该第二频谱为非授权频谱,当第二频谱为非授权频谱时,该第一频谱为授权频谱。
应当理解,在本发明实施例中,所称处理器401可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
输入设备402可以包括触控板、指纹采传感器(用于采集用户的指纹信息和指纹的方向信息)、麦克风等,输出设备403可以包括显示器(LCD等)、扬声器等。
该存储器404可以包括只读存储器和随机存取存储器,并向处理器401提供指令和数据。存储器404的一部分还可以包括非易失性随机存取存储器。例如,存储器404还可以存储设备类型的信息。
具体实现中,本发明实施例中所描述的处理器401、输入设备402、输出 设备403可执行本发明实施例提供的控制信息设计的方法的第一实施例中所描述的实现方式,也可执行本发明实施例所描述的基站的实现方式,在此不再赘述。
可以看出,本实施例的方案中,基站400确定终端进行上行传输的至少一个上行子帧后,生成与所调度的至少一个上行子帧对应的上行调度准许信息,该上行调度准许信息包括MCS等级信息,该MCS等级信息包括MCS基准等级以及MCS偏移量,然后基站再将该上行调度准许信息发送至终端,终端在接收到该上行调度准许信息后,根据MCS基准等级以及MCS偏移量得到终端在PUSCH发送至少一个上行子帧时所使用的MCS等级。本发明实施例通过设计MCS基准等级以及MCS偏移量来确定终端发送各个上行子帧时所使用的MCS等级,从而使得该MCS等级与终端在PUSCH发送的上行子帧的信道质量匹配,提高***性能与使用效率。
在本实施例中,基站400是以单元的形式来呈现。这里的“单元”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
可以理解的是,本实施例的基站400的各功能单元的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
本发明实施例还提供一种终端,包括:
接收单元,用于接收基站发送的上行调度准许信息,所述上行调度准许信息包括MCS等级信息,所述MCS等级信息包括MCS基准等级以及MCS偏移量;
确定单元,用于所述终端根据所述MCS基准等级以及所述MCS偏移量得到所述终端在PUSCH上发送至少一个上行子帧时所使用的MCS等级。
参见图5,图5是本发明实施例提供的一种终端的示意框图。用于实现本发明实施例公开的控制信息设计方法。其中,如图5所示,本发明实施例提供的一种终端500可以包括:
接收单元510和确定单元520。
其中,接收单元510,用于接收基站发送的上行调度准许信息,所述上行调度准许信息包括MCS等级信息,所述MCS等级信息包括MCS基准等级以及MCS偏移量。
确定单元520,用于所述终端根据所述MCS基准等级以及所述MCS偏移量得到所述终端在PUSCH上发送至少一个上行子帧时所使用的MCS等级。
可选地,在本发明的一些可能的实施方式中,所述确定单元520,具体用于:
确定所述终端在PUSCH上发送至少一个上行子帧时所使用的MCS等级为所述MCS基准等级叠加所述MCS偏移量后所得到的MCS等级。
可选地,在本发明的一些可能的实施方式中,所述确定单元520,具体用于:
所述终端根据先听后说LBT检测失败次数确定终端在PUSCH上发送所述至少一个上行子帧时所使用的MCS等级为MCS基准等级叠加所述MCS偏移量后所得到的MCS等级,或者MCS基准等级。
具体地,当所述终端在上行PUSCH发送上行子帧时,若检测到LBT检测失败次数小于等于N次时,所述终端确定所述终端在PUSCH上发送上行子帧时所使用的MCS等级为所述MCS基准等级叠加所述MCS偏移量后所得到的MCS等级,其中,N为一个可配置的参数;
当检测到LBT检测失败次数大于N次时,所述终端确定所述终端在PUSCH上发送上行子帧时所使用的MCS等级为所述MCS基准等级。
可选地,在本发明的一些可能的实施方式中,所述上行调度准许信息分为第一阶段上行调度准许信息以及第二阶段上行调度准许信息,所述MCS基准等级位于所述第一阶段上行调度准许信息,所述MCS偏移量位于所述第二阶段上行调度准许信息。
可选地,在本发明的一些可能的实施方式中,所述MCS基准等级为公共MCS控制信息,所述MCS偏移量为所述至少一个上行子帧所使用的MCS等级相对所述MCS基准等级的偏移量。
可选地,在本发明的一些可能的实施方式中,所述MCS基准等级信息位于授权辅助接入LAA***中所述第一阶段上行调度准许信息的MCS指示域。
更进一步地,可选地,所述MCS偏移量位于所述第二阶段上行调度准许信息的缩短MCS指示域中,所述缩短MCS指示域的比特位长度少于MCS指示域的比特位长度。
可以看出,本实施例的方案中,基站确定终端500进行上行传输的至少一个上行子帧后,生成与所调度的至少一个上行子帧对应的上行调度准许信息,该上行调度准许信息包括MCS等级信息,该MCS等级信息包括MCS基准等级以及MCS偏移量,然后基站再将该上行调度准许信息发送至终端500,终端500在接收到该上行调度准许信息后,根据MCS基准等级以及MCS偏移量得到终端在PUSCH发送至少一个上行子帧时所使用的MCS等级。本发明实施例通过设计MCS基准等级以及MCS偏移量来确定终端发送各个上行子帧时所使用的MCS等级,从而使得该MCS等级与终端在PUSCH发送的上行子帧的信道质量匹配,提高***性能与使用效率。
在本实施例中,终端500是以单元的形式来呈现。这里的“单元”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
可以理解的是,本实施例的终端500的各功能单元的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
参见图6,图6是本发明实施例提供的另一种终端示意框图。如图所示的本实施例中的终端可以包括:一个或多个处理器601;一个或多个输入设备602,一个或多个输出设备603和存储器604。上述处理器601、输入设备802、输出设备803和存储器604通过总线805连接。存储器802用于存储指令,处理器801用于执行存储器602存储的指令。其中,处理器601用于:终端接收基站发送的上行调度准许信息,所述上行调度准许信息包括MCS等级信息,所述MCS等级信息包括MCS基准等级以及MCS偏移量;所述终端根据 所述MCS基准等级以及所述MCS偏移量得到所述终端在PUSCH上发送至少一个上行子帧时所使用的MCS等级。
可选地,在本发明的一些可能的实施方式中,所述处理器601根据所述MCS基准等级以及所述MCS偏移量得到所述终端在PUSCH上发送至少一个上行子帧时所使用的MCS等级,包括:
所述终端确定所述终端在PUSCH上发送至少一个上行子帧时所使用的MCS等级为所述MCS基准等级叠加所述MCS偏移量后所得到的MCS等级。
可选地,在本发明的一些可能的实施方式中,所述处理器601根据所述MCS基准等级以及所述MCS偏移量得到所述终端在PUSCH上发送至少一个上行子帧时所使用的MCS等级,包括:
所述终端根据先听后说LBT检测失败次数确定终端在PUSCH上发送所述至少一个上行子帧时所使用的MCS等级为MCS基准等级叠加所述MCS偏移量后所得到的MCS等级,或者MCS基准等级。
可选地,在本发明的一些可能的实施方式中,所述上行调度准许信息分为第一阶段上行调度准许信息以及第二阶段上行调度准许信息,所述MCS基准等级位于所述第一阶段上行调度准许信息,所述MCS偏移量位于所述第二阶段上行调度准许信息。
可选地,在本发明的一些可能的实施方式中,所述MCS基准等级为公共MCS控制信息,所述MCS偏移量为所述上行子帧所使用的MCS等级相对所述MCS基准等级的偏移量。
可选地,在本发明的一些可能的实施方式中,所述MCS基准等级信息位于授权辅助接入LAA***中所述第一阶段上行调度准许信息的MCS指示域。
更进一步地,可选地,所述MCS偏移量位于所述第二阶段上行调度准许信息的缩短MCS指示域中,所述缩短MCS指示域的比特位长度少于MCS指示域的比特位长度。
应当理解,在本发明实施例中,所称处理器601可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific  Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
输入设备602可以包括触控板、指纹采传感器(用于采集用户的指纹信息和指纹的方向信息)、麦克风等,输出设备603可以包括显示器(LCD等)、扬声器等。
该存储器604可以包括只读存储器和随机存取存储器,并向处理器801提供指令和数据。存储器604的一部分还可以包括非易失性随机存取存储器。例如,存储器604还可以存储设备类型的信息。
具体实现中,本发明实施例中所描述的处理器601、输入设备602、输出设备603可执行本发明实施例提供的控制信息设计方法的第一实施例中所描述的实现方式,也可执行本发明实施例所描述的终端的实现方式,在此不再赘述。
可以看出,本实施例的方案中,基站确定终端600进行上行传输的至少一个上行子帧后,生成与所调度的至少一个上行子帧对应的上行调度准许信息,该上行调度准许信息包括MCS等级信息,该MCS等级信息包括MCS基准等级以及MCS偏移量,然后基站再将该上行调度准许信息发送至终端600,终端600在接收到该上行调度准许信息后,根据MCS基准等级以及MCS偏移量得到终端在PUSCH发送至少一个上行子帧时所使用的MCS等级。本发明实施例通过设计MCS基准等级以及MCS偏移量来确定终端发送各个上行子帧时所使用的MCS等级,从而使得该MCS等级与终端在PUSCH发送的上行子帧的信道质量匹配,提高***性能与使用效率。
在本实施例中,终端600是以单元的形式来呈现。这里的“单元”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
可以理解的是,本实施例的终端600的各功能单元的功能可根据上述方 法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的终端和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的终端和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售 或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (29)

  1. 一种控制信息设计方法,其特征在于,所述方法包括:
    基站确定终端进行传输的至少一个上行子帧;
    所述基站生成与所述至少一个上行子帧中被调度的至少一个上行子帧对应的上行调度准许信息,所述上行调度准许信息包括MCS等级信息,所述MCS等级信息包括MCS基准等级以及MCS偏移量;
    将所述上行调度准许信息发送至所述终端,以使所述终端根据所述MCS基准等级以及所述MCS偏移量得到所述终端在PUSCH上发送所述被调度的至少一个上行子帧时所使用的MCS等级。
  2. 根据权利要求1所述的方法,其特征在于,所述上行调度准许信息分为第一阶段上行调度准许信息以及第二阶段上行调度准许信息,所述MCS基准等级位于所述第一阶段上行调度准许信息,所述MCS偏移量位于所述第二阶段上行调度准许信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述MCS基准等级为公共MCS控制信息,所述MCS偏移量为所述上行子帧所使用的MCS等级相对所述MCS基准等级的偏移量。
  4. 根据权利要求2所述的方法,其特征在于,所述MCS基准等级信息位于授权辅助接入LAA***中所述第一阶段上行调度准许信息的MCS指示域中。
  5. 根据权利要求4所述的方法,其特征在于,所述MCS偏移量位于所述第二阶段上行调度准许信息的缩短MCS指示域中,所述缩短MCS指示域的长度少于MCS指示域的长度。
  6. 根据权利要求2、4或5所述的方法,其特征在于,所述将所述上行 调度准许信息发送至所述终端,包括:
    将所述第一阶段上行调度准许信息与所述第二阶段上行调度准许信息依次通过物理下行控制信道PDCCH发送至所述终端。
  7. 根据权利要求2所述的方法,其特征在于,所述第一阶段上行调度准许信息通过第一频谱发送至所述终端,所述第二阶段上行调度准许信息通过第二频谱发送至所述终端,其中,所述第一频谱和所述第二频谱不同。
  8. 一种控制信息设计方法,其特征在于,所述方法包括:
    终端接收基站发送的上行调度准许信息,所述上行调度准许信息包括MCS等级信息,所述MCS等级信息包括MCS基准等级以及MCS偏移量;
    所述终端根据所述MCS基准等级以及所述MCS偏移量得到所述终端在PUSCH上发送至少一个上行子帧时所使用的MCS等级。
  9. 根据权利要求8所述的方法,其特征在于,所述终端根据所述MCS基准等级以及所述MCS偏移量得到所述终端在PUSCH上发送至少一个上行子帧时所使用的MCS等级,包括:
    所述终端确定所述终端在PUSCH上发送所述至少一个上行子帧时所使用的MCS等级为所述MCS基准等级叠加所述MCS偏移量后所得到的MCS等级。
  10. 根据权利要求9所述的方法,其特征在于,所述终端根据所述MCS基准等级以及所述MCS偏移量得到所述终端在PUSCH上发送至少一个上行子帧时所使用的MCS等级,还包括:
    所述终端根据先听后说LBT检测失败次数确定终端在PUSCH上发送所述至少一个上行子帧时所使用的MCS等级为MCS基准等级叠加所述MCS偏移量后所得到的MCS等级,或者MCS基准等级。
  11. 根据权利要求8至10任一项所述的方法,其特征在于,所述上行调度准许信息分为第一阶段上行调度准许信息以及第二阶段上行调度准许信息,所述MCS基准等级位于所述第一阶段上行调度准许信息,所述MCS偏移量位于所述第二阶段上行调度准许信息。
  12. 根据权利要求11所述的方法,其特征在于,所述MCS基准等级为公共MCS控制信息,所述MCS偏移量为所述上行子帧所使用的MCS等级相对所述MCS基准等级的偏移量。
  13. 根据权利要求11所述的方法,其特征在于,所述MCS基准等级信息位于授权辅助接入LAA***中所述第一阶段上行调度准许信息的MCS指示域中。
  14. 根据权利要求13所述的方法,其特征在于,所述MCS偏移量位于所述第二阶段上行调度准许信息的缩短MCS指示域中,所述缩短MCS指示域的长度少于MCS指示域的长度。
  15. 一种基站,其特征在于,所述基站包括:
    确定单元,用于确定终端进行传输的至少一个上行子帧;
    生成单元,用于生成与所述至少一个上行子帧中被调度的至少一个上行子帧对应的上行调度准许信息,所述上行调度准许信息包括MCS等级信息,所述MCS等级信息包括MCS基准等级以及MCS偏移量;
    发送单元,用于将所述上行调度准许信息发送至所述终端,以使所述终端根据所述MCS基准等级以及所述MCS偏移量得到所述终端在PUSCH上发送所述被调度的至少一个上行子帧时所使用的MCS等级。
  16. 根据权利要求15所述的基站,其特征在于,所述上行调度准许信息分为第一阶段上行调度准许信息以及第二阶段上行调度准许信息,所述MCS 基准等级位于所述第一阶段上行调度准许信息,所述MCS偏移量位于所述第二阶段上行调度准许信息。
  17. 根据权利要求15或16所述的基站,其特征在于,所述MCS基准等级为公共MCS控制信息,所述MCS偏移量为所述上行子帧所使用的MCS等级相对所述MCS基准等级的偏移量。
  18. 根据权利要求15所述的基站,其特征在于,所述MCS基准等级信息位于授权辅助接入LAA***中所述第一阶段上行调度准许信息的MCS指示域中。
  19. 根据权利要求18所述的方法,其特征在于,所述MCS偏移量位于所述第二阶段上行调度准许信息的缩短MCS指示域中,所述缩短MCS指示域的长度少于MCS指示域的长度。
  20. 根据权利要求16、18或19所述的基站,其特征在于,所述发送单元,具体用于:
    将所述第一阶段上行调度准许信息与所述第二阶段上行调度准许信息依次通过物理下行控制信道PDCCH发送至所述终端。
  21. 根据权利要求16所述的方法,其特征在于,所述第一阶段上行调度准许信息通过第一频谱发送至所述终端,所述第二阶段上行调度准许信息通过第二频谱发送至所述终端,其中,所述第一频谱和所述第二频谱不同。
  22. 一种终端,其特征在于,所述终端包括:
    接收单元,用于接收基站发送的上行调度准许信息,所述上行调度准许信息包括MCS等级信息,所述MCS等级信息包括MCS基准等级以及MCS偏移量;
    确定单元,用于所述终端根据所述MCS基准等级以及所述MCS偏移量得到所述终端在PUSCH上发送至少一个上行子帧时所使用的MCS等级。
  23. 根据权利要求22所述的终端,其特征在于,所述确定单元,具体用于:
    确定所述终端在PUSCH上发送所述至少一个上行子帧时所使用的MCS等级为所述MCS基准等级叠加所述MCS偏移量后所得到的MCS等级。
  24. 根据权利要求23所述的终端,其特征在于,所述确定单元,具体用于:
    所述终端根据先听后说LBT检测失败次数确定终端在PUSCH上发送所述至少一个上行子帧时所使用的MCS等级为MCS基准等级叠加所述MCS偏移量后所得到的MCS等级,或者MCS基准等级。
  25. 根据权利要求22至24任一项所述的终端,其特征在于,所述上行调度准许信息分为第一阶段上行调度准许信息以及第二阶段上行调度准许信息,所述MCS基准等级位于所述第一阶段上行调度准许信息,所述MCS偏移量位于所述第二阶段上行调度准许信息。
  26. 根据权利要求25所述的终端,其特征在于,所述MCS基准等级为公共MCS控制信息,所述MCS偏移量为所述上行子帧所使用的MCS等级相对所述MCS基准等级的偏移量。
  27. 根据权利要求25所述的终端,其特征在于,所述MCS基准等级信息位于授权辅助接入LAA***中所述第一阶段上行调度准许信息的MCS指示域中。
  28. 根据权利要求27所述的方法,其特征在于,所述MCS偏移量位于 所述第二阶段上行调度准许信息的缩短MCS指示域中,所述缩短MCS指示域的长度少于MCS指示域的长度。
  29. 一种控制信息设计***,其特征在于,所述***包括:
    权利要求15至权利要求21所述的基站;以及,
    权利要求22至权利要求28所述的终端。
PCT/CN2017/085926 2016-07-21 2017-05-25 一种控制信息设计方法、基站、终端及*** WO2018014656A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610578293.0A CN106231680A (zh) 2016-07-21 2016-07-21 一种控制信息设计方法、基站、终端及***
CN201610578293.0 2016-07-21

Publications (1)

Publication Number Publication Date
WO2018014656A1 true WO2018014656A1 (zh) 2018-01-25

Family

ID=57531198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085926 WO2018014656A1 (zh) 2016-07-21 2017-05-25 一种控制信息设计方法、基站、终端及***

Country Status (2)

Country Link
CN (1) CN106231680A (zh)
WO (1) WO2018014656A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106231680A (zh) * 2016-07-21 2016-12-14 深圳市金立通信设备有限公司 一种控制信息设计方法、基站、终端及***
CN111342942B (zh) * 2018-12-19 2021-09-21 北京紫光展锐通信技术有限公司 上行控制信息的上报方法及装置、存储介质、用户终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101674149A (zh) * 2008-09-08 2010-03-17 中兴通讯股份有限公司 一种自适应编码调制方法
CN102783072A (zh) * 2010-01-06 2012-11-14 阿尔卡特朗讯公司 改善采用可变速率声码器的用户设备的基于ip性能语音的方法
US20130028307A1 (en) * 2009-09-15 2013-01-31 Research In Motion Limited Adaptive modulation and coding scheme adjustment in wireless networks
CN104065446A (zh) * 2013-03-21 2014-09-24 上海贝尔股份有限公司 用于信令发送和接收mcs的方法
CN106231680A (zh) * 2016-07-21 2016-12-14 深圳市金立通信设备有限公司 一种控制信息设计方法、基站、终端及***

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036398B (zh) * 2009-09-29 2015-06-03 中兴通讯股份有限公司 一种中继节点及其传输数据的方法
WO2014078981A1 (zh) * 2012-11-20 2014-05-30 华为技术有限公司 调度无线资源的方法、网络设备和用户设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101674149A (zh) * 2008-09-08 2010-03-17 中兴通讯股份有限公司 一种自适应编码调制方法
US20130028307A1 (en) * 2009-09-15 2013-01-31 Research In Motion Limited Adaptive modulation and coding scheme adjustment in wireless networks
CN102783072A (zh) * 2010-01-06 2012-11-14 阿尔卡特朗讯公司 改善采用可变速率声码器的用户设备的基于ip性能语音的方法
CN104065446A (zh) * 2013-03-21 2014-09-24 上海贝尔股份有限公司 用于信令发送和接收mcs的方法
CN106231680A (zh) * 2016-07-21 2016-12-14 深圳市金立通信设备有限公司 一种控制信息设计方法、基站、终端及***

Also Published As

Publication number Publication date
CN106231680A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
WO2019154333A1 (zh) 资源选择的方法和终端设备
CN102368871B (zh) 一种pdcch资源的配置应用方法及装置
WO2019174486A1 (zh) 资源指示、确定方法及装置
WO2017166839A1 (zh) 一种前导码的配置方法、发送方法和相关设备
US10080198B2 (en) Method and apparatus for determining that an almost-contiguous resource allocation A-MPR applies to an uplink transmission
CN113412650A (zh) 用于选择性地应用发射功率控制命令的功率调整的方法和装置
WO2018152985A1 (zh) 数据发送方法和用户设备
TWI703888B (zh) 一種確定dci中資訊域取值的方法及裝置
WO2015113202A1 (zh) 物理随机接入信道增强传输的方法、网络设备,和终端
EP3618513B1 (en) Service transmission method, device and system
JP2024503873A (ja) Msg3伝送方法、装置、機器及び記憶媒体
WO2017197949A1 (zh) 一种数据传输的控制方法及相关设备
US10645725B2 (en) Method, apparatus, and system for sending and receiving information
WO2021087786A1 (zh) 波束失败请求资源分配方法、装置及存储介质
WO2015164315A1 (en) Methods and devices for calculation of uplink transmission power
US20240172254A1 (en) Sidelink resource determining method and apparatus, terminal, and storage medium
WO2018027997A1 (zh) 上行信号传输方法、终端设备和网络设备
WO2018014656A1 (zh) 一种控制信息设计方法、基站、终端及***
TWI655852B (zh) Uplink transmission method, user equipment, base station and system
WO2019205022A1 (zh) 信息指示、解读方法及装置、基站和用户设备
US20200359332A1 (en) Power control method, related apparatus, and product
TW201735711A (zh) 基於設備到設備的通訊方法和終端
WO2019047757A1 (zh) 一种资源指示、确定方法及装置
WO2022156801A1 (zh) 参考信号传输时机有效性的确定方法和用户设备
WO2018157865A1 (zh) 调度信息获取方法、终端和基带芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17830293

Country of ref document: EP

Kind code of ref document: A1