WO2018012392A1 - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
WO2018012392A1
WO2018012392A1 PCT/JP2017/024784 JP2017024784W WO2018012392A1 WO 2018012392 A1 WO2018012392 A1 WO 2018012392A1 JP 2017024784 W JP2017024784 W JP 2017024784W WO 2018012392 A1 WO2018012392 A1 WO 2018012392A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
oxygen barrier
conversion element
oxygen
transmission coefficient
Prior art date
Application number
PCT/JP2017/024784
Other languages
French (fr)
Japanese (ja)
Inventor
健治 勝亦
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2018012392A1 publication Critical patent/WO2018012392A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices

Definitions

  • the present invention relates to a photoelectric conversion element.
  • photoelectric conversion elements As photoelectric conversion elements, photoelectric conversion elements using dyes are attracting attention because of low production costs and high photoelectric conversion efficiency, and various developments have been made on photoelectric conversion elements using dyes.
  • a photoelectric conversion element using a dye for example, a photoelectric conversion element described in Patent Document 1 below is known.
  • the photoelectric conversion element described in Patent Literature 1 below includes a first electrode, a second electrode facing the first electrode, an annular sealing portion that joins the first electrode and the second electrode, and an inner side of the sealing portion.
  • an ionomer, an ethylene-vinyl acetic anhydride copolymer, an ethylene-methacrylic acid copolymer, an ethylene-vinyl alcohol copolymer, or the like is used as a sealing portion. Yes.
  • Patent Document 1 has room for improvement in terms of durability in a high humidity environment.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a photoelectric conversion element having excellent durability even in a high humidity environment.
  • the present inventor has intensively studied to solve the above problems.
  • oxygen may enter the inside of the sealing portion in a high humidity environment, and as a result, the output of the photoelectric conversion element may not be reduced. I thought.
  • the present inventor has studied to provide an oxygen barrier resin outside the sealing portion in the photoelectric conversion cell. However, even in this case, the output of the photoelectric conversion element may decrease in a high humidity environment. Therefore, as a result of further earnest research, the present inventor has found that the above-described problems can be solved by the following invention.
  • the present invention provides a photoelectric conversion element having at least one photoelectric conversion cell, wherein the photoelectric conversion cell is an annular substrate that joins the electrode substrate, the counter substrate facing the electrode substrate, and the electrode substrate and the counter substrate.
  • an oxygen barrier portion having an oxygen transmission coefficient lower than that of the sealing portion is provided outside the sealing portion, and the oxygen barrier portion covers the sealing portion. is doing. Therefore, the oxygen barrier part sufficiently suppresses the amount of oxygen reaching the sealing part, and sufficiently suppresses oxygen from entering the sealing part.
  • a water shielding part having a water vapor transmission coefficient lower than that of the oxygen barrier part is provided outside the oxygen barrier part, and the water shielding part covers the oxygen barrier part.
  • the photoelectric conversion element of this invention the oxygen barrier part is provided in the outer side of the sealing part, and the electrolyte is arrange
  • the resin having a hydroxyl group preferably contains a vinyl alcohol unit.
  • the photoelectric conversion element may have better durability even in a high humidity environment. It becomes possible.
  • the content of the vinyl alcohol unit in the resin having a hydroxyl group is preferably 20 to 70 mol%.
  • the water vapor transmission coefficient ratio R 1 represented by the following formula (1) is preferably 0.001 to 0.9.
  • R 1 A / B (1)
  • A represents the water vapor transmission coefficient (g ⁇ mm / m 2 ⁇ 24 h) at 40 ° C. and 90% RH of the water shielding portion
  • B represents 40 ° C. and 90% of the oxygen barrier portion.
  • RH (g ⁇ mm / m 2 ⁇ 24h).
  • the water vapor transmission coefficient ratio R 1 exceeds 0.9, water penetration into the oxygen barrier portion can be more sufficiently suppressed, so that the photoelectric conversion element has superior durability even in a high humidity environment. It is possible to have On the other hand, as compared with the case the water vapor permeability coefficient ratio R 1 is less than 0.001, it is possible to easily move the water mixed in the photoelectric conversion cell to the outside by heating in a dry environment, sealed In addition, the moisture in the electrolyte can be reduced more sufficiently.
  • the water vapor transmission coefficient ratio R 1 represented by the formula (1) is preferably 0.001 to 0.4.
  • the photoelectric conversion element As compared with the case where the water vapor permeability coefficient ratio R 1 is greater than 0.4, the photoelectric conversion element, it is possible to have better durability under a high humidity environment.
  • oxygen permeability coefficient ratio R 2 represented by the following formula (2) is less than 1 0.0001 or more.
  • R 2 C / D (2)
  • C represents an oxygen transmission coefficient (cc ⁇ mm / m 2 ⁇ 24 h / atm) at 22 ° C. and 90% RH of the oxygen barrier portion
  • D represents 22 ° C. of the sealing portion
  • the amount of oxygen entering the inside of the sealing portion can be more sufficiently reduced, and oxygen in the sealed electrolyte can be reduced by heating in the absence of oxygen.
  • a water vapor transmission coefficient of the water shielding portion at 40 ° C. and 90% RH is 0.001 to 10 (g ⁇ mm / m 2 ⁇ 24 h).
  • the amount of oxygen entering the inside of the sealing portion can be more sufficiently reduced, and oxygen in the sealed electrolyte can be reduced by heating in the absence of oxygen.
  • the oxygen barrier portion extends from the main body portion to the surface on the opposite side of the electrode substrate from the main body portion and is bonded to the counter substrate. It is preferable to have an extending portion.
  • the surface area of the oxygen barrier portion is increased by an amount corresponding to the extending portion as compared with the case where the oxygen barrier portion is composed only of the main body. For this reason, the oxygen barrier property of the oxygen barrier portion is further improved.
  • the oxygen barrier portion has an extending portion that extends from the main body portion to the surface of the counter substrate on the side opposite to the electrode substrate and is bonded to the counter substrate.
  • the counter substrate includes the sealing portion and the oxygen barrier portion. It is sandwiched between the extension part of the. For this reason, the photoelectric conversion element is placed in a high temperature environment, and the pressure in the space between the electrode substrate, the counter substrate, and the sealing portion increases, and accordingly, the force for peeling the counter substrate from the sealing portion is increased. Even if it works, peeling of the counter substrate from the sealing portion is sufficiently suppressed. Therefore, the photoelectric conversion element can have more excellent durability.
  • the photoelectric conversion element further includes an adhesive part for bonding the oxygen barrier part and the water shielding part between the oxygen barrier part and the water shielding part, and the adhesive part includes a hydroxyl group and the water shielding part. It is preferable to have the same functional group as the functional group contained in.
  • the adhesive force between the oxygen barrier part and the water shielding part is further improved.
  • the water shielding portion is composed of at least one water shielding layer, and the at least one water shielding layer is made of only a resin.
  • the impact resistance of the water shielding portion can be further improved.
  • the water shielding portion is composed of at least one water shielding layer, and the at least one water shielding layer is made of only a resin and an inorganic substance.
  • the impact resistance of the water shielding portion can be further improved, and the water shielding property can be further improved.
  • the inorganic substance is preferably at least one selected from the group consisting of an inorganic filler and a desiccant.
  • the water-impervious portion it becomes possible for the water-impervious portion to have higher water-imperviousness, and the shape stability of the water-impervious portion becomes higher.
  • a photoelectric conversion element having excellent durability even in a high humidity environment is provided.
  • FIG. 1 is a cross-sectional end view showing an embodiment of the photoelectric conversion element of the present invention.
  • the photoelectric conversion element 100 includes one photoelectric conversion cell 90, and the photoelectric conversion cell 90 includes the electrode substrate 10, the counter substrate 20 facing the electrode substrate 10, the electrode substrate 10, and the counter substrate.
  • an adhesion part 80 for bonding the oxygen barrier part 60 or the counter substrate 20 and the water shielding part 70 to each other. Note that a dye is supported on the oxide semiconductor layer 50.
  • the counter substrate 20 is composed of a counter electrode, and includes a conductive substrate 21 serving as a substrate and an electrode, and a catalyst layer 22 provided on the conductive substrate 21.
  • the oxygen barrier part 60 includes a resin having a hydroxyl group, and the oxygen permeability coefficient of the oxygen barrier part 60 at 22 ° C. and 90% RH is lower than the oxygen permeability coefficient of the sealing part 30 at 22 ° C. and 90% RH.
  • the oxygen barrier unit 60 includes a main body 61 that covers the sealing unit 30, and an extension that extends from the main body 61 to the surface of the counter substrate 20 opposite to the electrode substrate 10 and is bonded to the counter substrate 20. 62.
  • the water vapor transmission coefficient at 40 ° C. and 90% RH of the water shielding part 70 is smaller than the water vapor transmission coefficient at 40 ° C. and 90% RH of the oxygen barrier part 60.
  • the oxygen barrier unit 60 having an oxygen transmission coefficient lower than that of the sealing unit 30 is provided outside the sealing unit 30 in the photoelectric conversion cell 90, and the oxygen barrier unit 60 is the sealing unit. 30 is covered. Therefore, the oxygen barrier unit 60 sufficiently suppresses the amount of oxygen reaching the sealing unit 30 and sufficiently suppresses oxygen from entering the sealing unit 30. Further, according to the photoelectric conversion element 100, the water shielding unit 70 having a water vapor transmission coefficient lower than that of the oxygen barrier unit 60 is provided outside the oxygen barrier unit 60, and the water shielding unit 70 covers the oxygen barrier unit 60. is doing.
  • the photoelectric conversion element 100 According to the photoelectric conversion element 100, the oxygen barrier unit 60 is provided outside the sealing unit 30, and the electrolyte 40 is disposed inside the sealing unit 30. That is, the sealing part 30 is interposed between the electrolyte 40 and the oxygen barrier part 60. For this reason, the deterioration of the oxygen barrier section 60 due to the electrolyte 40 is sufficiently suppressed. From the above, according to the photoelectric conversion element 100, it is possible to have excellent durability even in a high humidity environment.
  • the oxygen barrier unit 60 includes the main body 61 that covers the sealing unit 30, and extends from the main body 61 to the opposite surface of the counter substrate 20 to the electrode substrate 10. 20 and an extending portion 62 bonded to 20. Therefore, as compared with the case where the oxygen barrier unit 60 is composed only of the main body unit 61, the surface area of the oxygen barrier unit 60 is increased by the amount of the extending part 62. For this reason, the oxygen barrier property of the oxygen barrier unit 60 is further improved.
  • the oxygen barrier unit 60 includes an extending portion 62 that extends from the main body 61 to the surface of the counter substrate 20 on the side opposite to the electrode substrate 10 and is bonded to the counter substrate 20.
  • the photoelectric conversion element 100 is placed in a high temperature environment, and the pressure in the space between the electrode substrate 10, the counter substrate 20, and the sealing portion 30 increases, and the counter substrate 20 is peeled off from the sealing portion 30 accordingly. Even if the force to be applied works, peeling of the counter substrate 20 from the sealing portion 30 is sufficiently suppressed. Therefore, the photoelectric conversion element 100 can have more excellent durability.
  • the electrode substrate 10, the counter substrate 20, the sealing part 30, the electrolyte 40, the oxide semiconductor layer 50, the dye, the water shielding part 70, the oxygen barrier part 60, and the bonding part 80 will be described in detail.
  • the electrode substrate 10 includes a transparent substrate 11 and a transparent conductive layer 12 provided on the transparent substrate 11.
  • the material which comprises the transparent substrate 11 should just be a transparent material, for example, as such a transparent material, glass, such as borosilicate glass, soda-lime glass, white plate glass, quartz glass, for example; Polyethylene terephthalate (PET) And resins such as polyethylene naphthalate (PEN), polycarbonate (PC), and polyether sulfone (PES).
  • PET Polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • PES polyether sulfone
  • the thickness of the transparent substrate 11 is appropriately determined according to the size of the photoelectric conversion element 100 and is not particularly limited, but may be in the range of 50 to 4000 ⁇ m, for example.
  • Transparent conductive layer 12 examples include conductive metal oxides such as tin-added indium oxide (ITO), tin oxide (SnO 2 ), and fluorine-added tin oxide (FTO).
  • the transparent conductive layer 12 may be a single layer or a laminate of a plurality of layers made of different conductive metal oxides. When the transparent conductive layer 12 is composed of a single layer, the transparent conductive layer 12 is preferably composed of FTO because it has high heat resistance and chemical resistance.
  • the thickness of the transparent conductive layer 12 may be in the range of 0.01 to 2 ⁇ m, for example.
  • the counter substrate 20 includes the conductive substrate 21 serving as a substrate and an electrode, and the catalyst layer 22 provided on the electrode substrate 10 side of the conductive substrate 21 to promote the catalytic reaction.
  • the conductive substrate 21 is made of a corrosion-resistant metal material such as titanium, nickel, platinum, molybdenum, tungsten, aluminum, and stainless steel.
  • the conductive substrate 21 may be formed of a laminate in which a substrate and an electrode are separated and a conductive layer made of a conductive oxide such as ITO or FTO is formed on a resin film as an electrode.
  • a laminate in which a conductive layer made of a conductive oxide such as FTO is formed may be used.
  • the thickness of the conductive substrate 21 is appropriately determined according to the size of the photoelectric conversion element 100 and is not particularly limited, but may be, for example, 0.01 to 4 mm.
  • the catalyst layer 22 is made of a metal such as platinum, a carbon-based material, or a conductive polymer.
  • the sealing portion 30 examples include thermoplastic resins such as modified polyolefin resins and vinyl alcohol copolymers, and resins such as ultraviolet curable resins.
  • the modified polyolefin resin include maleic anhydride-modified polyethylene, ionomer, ethylene-vinyl acetic anhydride copolymer, ethylene-methacrylic acid copolymer, and ethylene-vinyl alcohol copolymer. These resins can be used alone or in combination of two or more.
  • the sealing part 30 a part having higher durability with respect to the electrolyte 40 than the oxygen barrier part 60 is preferable.
  • the sealing unit 30 is preferably a modified polyolefin resin or an ultraviolet curable resin.
  • the electrolyte 40 includes a redox couple and an organic solvent.
  • organic solvent acetonitrile, methoxyacetonitrile, 3-methoxypropionitrile, propionitrile, ethylene carbonate, propylene carbonate, diethyl carbonate, ⁇ -butyrolactone, valeronitrile, pivalonitrile, and the like can be used.
  • the redox pair examples include a redox pair containing a halogen atom such as iodide ion / polyiodide ion (for example, I ⁇ / I 3 ⁇ ), bromide ion / polybromide ion, zinc complex, iron complex, and cobalt complex. And redox pairs.
  • the iodide ion / polyiodide ion can be formed by iodine (I 2 ) and a salt (ionic liquid or solid salt) containing iodide (I ⁇ ) as an anion. When an ionic liquid having an iodide as an anion is used, only iodine may be added.
  • an anion such as LiI or tetrabutylammonium iodide is used as an anion
  • an anion such as LiI or tetrabutylammonium iodide
  • a salt containing iodide (I ⁇ ) may be added.
  • the electrolyte 40 may use an ionic liquid instead of the organic solvent.
  • the ionic liquid for example, known iodinated salts such as pyridinium salts, imidazolium salts, triazolium salts and the like are used.
  • Examples of such an iodide salt include 1-hexyl-3-methylimidazolium iodide, 1-ethyl-3-propylimidazolium iodide, 1-ethyl-3-methylimidazolium iodide, 1, -Dimethyl-3-propylimidazolium iodide, 1-butyl-3-methylimidazolium iodide, or 1-methyl-3-propylimidazolium iodide is preferably used.
  • the electrolyte 40 may be a mixture of the ionic liquid and the organic solvent instead of the organic solvent.
  • an additive can be added to the electrolyte 40.
  • the additive include benzimidazoles such as 1-methylbenzimidazole (NMB) and 1-butylbenzimidazole (NBB), 4-t-butylpyridine, and guanidinium thiocyanate. Among them, benzimidazole is preferable as an additive.
  • a nano-composite gel electrolyte which is a pseudo-solid electrolyte formed by kneading nanoparticles such as SiO 2 , TiO 2 , carbon nanotubes, etc. into the electrolyte, may be used, and polyvinylidene fluoride may be used.
  • an electrolyte gelled with an organic gelling agent such as a polyethylene oxide derivative or an amino acid derivative may be used.
  • the oxide semiconductor layer 50 is composed of oxide semiconductor particles.
  • the oxide semiconductor particles include titanium oxide (TiO 2 ), zinc oxide (ZnO), tungsten oxide (WO 3 ), niobium oxide (Nb 2 O 5 ), strontium titanate (SrTiO 3 ), and tin oxide (SnO 2 ).
  • the thickness of the oxide semiconductor layer 50 may be set to 0.1 to 100 ⁇ m, for example.
  • the dye examples include a ruthenium complex having a ligand including a bipyridine structure, a terpyridine structure, and the like, a photosensitizing dye such as an organic dye such as porphyrin, eosin, rhodanine, and merocyanine, and an organic such as a lead halide-based perovskite crystal.
  • a photosensitizing dye such as an organic dye such as porphyrin, eosin, rhodanine, and merocyanine
  • an organic such as a lead halide-based perovskite crystal.
  • a ruthenium complex having a ligand containing a bipyridine structure or a terpyridine structure is preferable.
  • the photoelectric conversion characteristics and durability of the photoelectric conversion element 100 can be further improved.
  • the photoelectric conversion element 100 turns into a dye-sensitized photoelectric conversion element.
  • the water shielding part 70 has water shielding.
  • the water-impervious portion 70 only needs to cover part or all of the outer surface of the oxygen barrier portion 60, but preferably covers the entire surface. In this case, the amount of water vapor entering the oxygen barrier unit 60 can be more sufficiently suppressed, and the durability of the photoelectric conversion element 100 can be further improved.
  • the water vapor transmission coefficient ratio R 1 represented by the following formula (1) is not particularly limited, but is preferably 0.001 to 0.9.
  • Water vapor transmission coefficient ratio R 1 A / B (1)
  • A represents the water vapor transmission coefficient (g ⁇ mm / m 2 ⁇ 24 h) at 40 ° C. and 90% RH of the water shielding portion 70
  • B represents 40 ° C. and 90% of the oxygen barrier portion 60.
  • RH g ⁇ mm / m 2 ⁇ 24h.
  • water vapor permeability coefficient ratio R 1 is as compared with the case of more than 0.9, because the water in the oxygen barrier portion 60 penetrate can be more sufficiently suppressed, the photoelectric conversion element 100 even under high-humidity environment is better It becomes possible to have durability.
  • the water vapor permeability coefficient ratio R 1 is as compared with the case is less than 0.001, the water mixed in the photoelectric conversion cell 90 by heating in a dry environment can make easily move to the outside, sealing The moisture in the electrolyte 40 thus made can be reduced more sufficiently.
  • the water vapor transmission coefficient ratio R 1 represented by the above formula (1) is preferably 0.001 to 0.4. In this case, as compared with the case where the water vapor permeability coefficient ratio R 1 is greater than 0.4, the photoelectric conversion element 100, it is possible to have better durability under a high humidity environment.
  • the water vapor transmission coefficient at 40 ° C. and 90% RH of the water shielding portion 70 is not particularly limited, but is preferably 0.001 to 10 (g ⁇ mm / m 2 ⁇ 24 h). In this case, drying by heating in a dry environment is easy and a sufficient water shielding effect is obtained.
  • the water vapor transmission coefficient of the water shielding part 70 at 40 ° C. and 90% RH is more preferably 0.001 to 0.5 (g ⁇ mm / m 2 ⁇ 24 h), preferably 0.1 to 0.4 (g Particularly preferred is mm / m 2 ⁇ 24h).
  • the water-impervious portion 70 includes at least one water-impervious layer, and the at least one water-impervious layer is made of only a resin. In this case, the impact resistance of the water shielding part 70 can be further improved.
  • the resin contained in the water shielding layer is not particularly limited, and examples of the resin include urethane resin, polyester, nylon resin, polyvinylidene chloride, butyl rubber, polyethylene, and epoxy resin. Of these, epoxy resins are preferred. In this case, the airtightness of the water-impervious portion 70 can be increased, and the permeation of water vapor can be effectively suppressed.
  • the at least one water shielding layer may be composed only of the above-described resin and inorganic substance. In this case, the impact resistance of the water shielding portion 70 can be further improved, and the water shielding property can be further improved.
  • the inorganic material is not particularly limited, but an inorganic filler, a desiccant and a mixture thereof are preferable as the inorganic material.
  • the crack by the shrink deformation of the water shielding part 70 can be more sufficiently suppressed by including the inorganic substance that the water shielding layer does not easily shrink.
  • the water-impervious part 70 it becomes possible for the water-impervious part 70 to have higher water-imperviousness, and the shape stability of the water-impervious part 70 becomes higher.
  • the inorganic filler include clay minerals.
  • the desiccant include silica gel, alumina, and zeolite.
  • the oxygen barrier unit 60 may cover a part or all of the outer surface of the sealing unit 30, but preferably covers the entire surface. In this case, the amount of oxygen that enters the inside of the sealing portion 30 can be more sufficiently reduced, and the durability of the photoelectric conversion element 100 can be further improved.
  • Oxygen permeability of the oxygen barrier section 60 is not particularly limited as lower than the oxygen permeability coefficient of the sealing portion 30, the oxygen permeability coefficient ratio R 2 represented by the following formula (2) is 0.0001 It is preferable that it is less than 1.
  • R 2 C / D (2)
  • C represents the oxygen transmission coefficient (cc ⁇ mm / m 2 ⁇ 24 h / atm) at 22 ° C. and 90% RH of the oxygen barrier portion 60
  • D represents 22 ° C. of the sealing portion 30, Oxygen transmission coefficient at 90% RH (cc ⁇ mm / m 2 ⁇ 24h / atm).
  • the amount of oxygen entering the inside of the sealing portion 30 can be more sufficiently reduced, and the oxygen in the sealed electrolyte 40 can be reduced by heating in the absence of oxygen.
  • the oxygen transmission coefficient ratio R 2 represented by the above formula (2) is more preferably 0.0001 to 0.01, and particularly preferably 0.0002 to 0.001.
  • the oxygen permeability coefficient of the oxygen barrier part 60 is not particularly limited as long as it is lower than the oxygen permeability coefficient of the sealing part 30, but is 0.001 to 10 (cc ⁇ mm / mm) under the conditions of 22 ° C. and 90% RH. m 2 ⁇ 24 h / atm). In this case, the amount of oxygen entering the inside of the sealing portion 30 can be more sufficiently reduced, and the oxygen in the sealed electrolyte 40 can be reduced by heating in the absence of oxygen.
  • the oxygen permeability coefficient of the oxygen barrier section 60 is more preferably 0.01 to 2 (cc ⁇ mm / m 2 ⁇ 24 h / atm) under the conditions of 22 ° C. and 90% RH, and more preferably 0.03 to 0.00. 1 (cc ⁇ mm / m 2 ⁇ 24 h / atm) is particularly preferable.
  • the material constituting the oxygen barrier section 60 only needs to contain a resin having a hydroxyl group.
  • the resin having a hydroxyl group is not particularly limited as long as it has a hydroxyl group, but is preferably a resin containing a vinyl alcohol unit.
  • the oxygen barrier property of the oxygen barrier unit 60 is further improved as compared with the case where no vinyl alcohol unit is included. For this reason, the photoelectric conversion element 100 can have more excellent durability even in a high humidity environment.
  • Examples of such a resin include butenediol-vinyl alcohol copolymer, polyvinyl alcohol polymer, and ethylene-vinyl alcohol copolymer. These can be used alone or in combination of two or more.
  • the content of the vinyl alcohol unit in the resin is not particularly limited, but is preferably 20 to 70 mol%. In this case, since the resin is excellent in moldability, a more stable oxygen barrier structure can be formed.
  • the thickness of the oxygen barrier portion 60 is not particularly limited, but is preferably 5 to 50 ⁇ m. In this case, the moldability is better and the strength of the oxygen barrier portion 60 is sufficiently increased, so that a more stable oxygen barrier structure can be formed.
  • the bonding portion 80 is not particularly limited as long as it can bond the water shielding portion 70 and the oxygen barrier portion 60, but the bonding portion 80 is the same as the hydroxyl group and the functional group included in the water shielding portion 70. It is preferable to include a material having a functional group of In this case, the adhesive force between the oxygen barrier part 60 and the water shielding part 70 is further improved.
  • an adhesive which comprises such an adhesion part 80 bisphenol A type epoxy resin, its modified resin, etc. are mentioned, for example.
  • an electrode substrate 10 having a transparent conductive layer 12 formed on one transparent substrate 11 is prepared.
  • a sputtering method, a vapor deposition method, a spray pyrolysis method, a CVD method, or the like is used as a method for forming the transparent conductive layer 12.
  • a sputtering method, a vapor deposition method, a spray pyrolysis method, a CVD method, or the like is used as a method for forming the transparent conductive layer 12.
  • the spray pyrolysis method is preferable from the viewpoint of apparatus cost.
  • the oxide semiconductor layer 50 is formed on the transparent conductive layer 12 of the electrode substrate 10.
  • the oxide semiconductor layer 50 can be formed by printing a porous oxide semiconductor layer forming paste containing oxide semiconductor particles, followed by firing.
  • the oxide semiconductor layer forming paste contains a resin such as polyethylene glycol and a solvent such as terpineol in addition to the oxide semiconductor particles described above.
  • a printing method of the oxide semiconductor layer forming paste for example, a screen printing method, a doctor blade method, a bar coating method, or the like can be used.
  • the firing temperature varies depending on the material of the oxide semiconductor particles, but is usually 350 ° C. to 600 ° C.
  • the firing time also varies depending on the material of the oxide semiconductor particles, but is usually 0.5 to 5 hours.
  • a dye is supported on the oxide semiconductor layer 50 of the electrode substrate 10.
  • the electrode substrate 10 is immersed in a solution containing a dye, the dye is adsorbed on the oxide semiconductor layer 50, and then the excess dye is washed away with the solvent component of the solution and dried.
  • the dye may be adsorbed on the oxide semiconductor layer 50.
  • the dye can be supported on the oxide semiconductor layer 50 even when the dye is adsorbed to the oxide semiconductor layer 50 by applying a solution containing the dye to the oxide semiconductor layer 50 and then drying the solution. .
  • the sealing part forming body can be obtained, for example, by preparing a sealing resin film and forming one rectangular opening in the sealing resin film.
  • this sealing part formation body is arrange
  • adhesion of the sealing portion forming body to the electrode substrate 10 can be performed, for example, by heating and melting the sealing portion forming body.
  • an electrolyte 40 is prepared. And the electrolyte 40 is arrange
  • the counter substrate 20 is prepared.
  • the counter substrate 20 includes the conductive substrate 21 and the conductive catalyst layer 22 that is provided on the electrode substrate 10 side of the conductive substrate 21 and promotes the reduction reaction on the surface of the counter substrate 20. Is.
  • the sealing portion 30 is formed between the electrode substrate 10 and the counter substrate 20.
  • Lamination of the counter substrate 20 to the sealing portion forming body may be performed under atmospheric pressure or under reduced pressure, but is preferably performed under reduced pressure.
  • the oxygen barrier part forming body can be obtained, for example, by preparing a resin film having a hydroxyl group and forming one rectangular opening in the resin film.
  • this oxygen barrier part formation body is extended from the main body part 61 covering the exposed surface of the sealing part 30 to the opposite side of the electrode substrate 10 from the main body part 61 to the counter substrate 20.
  • the extension part 62 to be bonded is bonded to form.
  • adhesion of the oxygen barrier portion forming body to the sealing portion 30 and the counter substrate 20 can be performed, for example, by heating and melting the oxygen barrier portion forming body.
  • the oxygen barrier part 60 is formed outside the sealing part 30.
  • an adhesive portion 80 is formed so as to cover the exposed portion of the oxygen barrier portion 60 and the surface of the counter substrate 20 opposite to the electrode substrate 10.
  • the adhesive part 80 can be formed, for example, by applying an adhesive to the exposed part of the oxygen barrier part 60 and the surface of the counter substrate 20 opposite to the electrode substrate 10 and then drying the adhesive.
  • the water shielding part 70 is formed on the adhesive part 80 so as to cover the exposed part of the adhesive part 80.
  • the water shielding part 70 can be formed by applying a water shielding part forming body containing a resin such as an epoxy resin on the adhesive part 80 and curing it by heating.
  • the photoelectric conversion element 100 including one photoelectric conversion cell 90 is obtained.
  • the present invention is not limited to the above embodiment.
  • the oxide semiconductor layer 50 is provided on the surface of the electrode substrate 10 on the counter substrate 20 side.
  • the oxide semiconductor layer 50 may be provided on the counter substrate 20.
  • the catalyst layer 22 of the counter substrate 20 is provided on the electrode substrate 10.
  • the photoelectric conversion element 100 is configured by one photoelectric conversion cell 90, but the photoelectric conversion element 100 may include a plurality of photoelectric conversion cells 90.
  • the photoelectric conversion element 100 has the adhesion part 80 between the oxygen barrier part 60 and the water-impervious part 70, the adhesion part 80 may be abbreviate
  • the oxygen barrier part 60 has the main-body part 61 and the extension part 62 in the photoelectric conversion cell 90, the sealing part 30 should just be covered with the oxygen barrier part 60 at least. Therefore, the oxygen barrier part 60 does not necessarily have the extending part 62.
  • the water shielding part 70 has covered the surface on the opposite side to the electrode substrate 10 among the oxygen barrier part 60 and the opposing board
  • the surface outside the oxygen barrier part 60 is water shielding. Since the water shielding portion 70 may be covered with the portion 70, the water shielding portion 70 may not cover the surface of the counter substrate 20 opposite to the electrode substrate 10.
  • substrate 21 and the catalyst layer 22 comprise the opposing board
  • an insulating substrate 220 may be used.
  • the structure 202 is disposed in the space between the insulating substrate 220, the sealing portion 30, and the electrode substrate 10.
  • the structure 202 is provided on the surface of the electrode substrate 10 on the insulating substrate 220 side.
  • the structure 202 includes an oxide semiconductor layer 50, a porous insulating layer 203, and a counter electrode 201 in order from the electrode substrate 10 side.
  • An electrolyte 40 is disposed in the space.
  • the electrolyte 40 is impregnated into the oxide semiconductor layer 50 and the porous insulating layer 203.
  • the insulating substrate 220 for example, a glass substrate or a resin film can be used.
  • the counter electrode 201 the same electrode as the counter substrate 20 can be used.
  • the counter electrode 201 may be composed of a porous single layer including, for example, carbon.
  • the porous insulating layer 203 is mainly for preventing physical contact between the oxide semiconductor layer 50 and the counter substrate 220 and impregnating the electrolyte 40 therein.
  • a porous insulating layer 203 for example, a fired body of an oxide can be used. Note that in the photoelectric conversion element 200 illustrated in FIG.
  • only one structure 202 is provided in the space between the sealing unit 30, the electrode substrate 10, and the insulating substrate 220. It may be provided.
  • the porous insulating layer 203 is provided between the oxide semiconductor layer 50 and the counter electrode 201, but may be provided between the electrode substrate 10 and the counter electrode 201 so as to surround the oxide semiconductor layer 50. Good. Even in this configuration, physical contact between the oxide semiconductor layer 50 and the counter electrode 201 can be prevented.
  • Example 1 First, a laminate was prepared by forming a transparent conductive layer made of FTO having a thickness of 0.6 ⁇ m on a transparent substrate made of glass having a thickness of 2.2 mm. And after printing glass paste so that the thickness after sintering may become 10 micrometers in the edge part except the part used as a terminal among the surfaces in which the transparent conductive layer of the laminated body was formed, it baked at 500 degreeC for 0.5 hour. As a result, a short-circuit prevention layer for preventing contact between the electrode substrate and the counter substrate was produced. Thus, an electrode substrate was obtained.
  • an oxide semiconductor layer forming paste containing titania was applied onto the transparent conductive layer of the electrode substrate and dried, followed by baking at 500 ° C. for 0.5 hour. Thus, an oxide semiconductor layer was formed over the electrode substrate.
  • the electrode substrate is converted into cis-di (thiocyanate)-(2,2′-bipyridyl-4,4′-dicarboxylic acid) (4,4′-dinonyl-2,2′-bipyridyl) -ruthenium (II). It was immersed in a dye solution containing 0.2 mM of a photosensitizing dye consisting of (Z907) and mixed with acetonitrile and t-butanol mixed at a volume ratio of 1: 1 as a solvent, and then taken out and dried. The photosensitizing dye was supported on the oxide semiconductor layer.
  • a 55 mm ⁇ 55 mm ⁇ 50 ⁇ m sealing resin film (trade name “Binell 4164”, manufactured by DuPont) made of the composition is prepared, and an opening of 50 mm ⁇ 50 mm ⁇ 50 ⁇ m is formed on the sealing resin film.
  • the sealing part formation body was prepared by forming one.
  • the sealing part forming body was placed on the electrode substrate, the sealing part forming body was bonded to the electrode substrate by heating and melting.
  • the counter substrate was prepared by forming a catalyst layer made of platinum having a thickness of 5 nm on a titanium foil having a thickness of 40 ⁇ m by sputtering.
  • the sealing portion forming body was heated at 190 ° C. while being pressurized at 0.1 MPa, and the sealing portion forming body was heated and melted. Thus, a sealing portion was formed between the electrode substrate and the counter substrate.
  • the oxygen barrier portion forming body is a resin film having a thickness of 30 ⁇ m (ethylene-vinyl alcohol copolymer, vinyl alcohol unit content: 56 mol%, water vapor transmission coefficient: 0.81 g ⁇ mm / m 2 ⁇ 24 h (40 ° C., 90 % RH))) to form one opening of 45 mm ⁇ 45 mm ⁇ 30 ⁇ m.
  • the oxygen barrier portion forming body is disposed so as to cover the entire exposed outer surface of the sealing portion, and then heated at 210 ° C. to heat and melt the oxygen barrier portion forming body to the sealing portion. I wore it. Thus, an oxygen barrier layer was formed.
  • an adhesive (trade name “Hi-Touch Verde”, manufactured by Daido Paint Co., Ltd.) covers the outer surface of the oxygen barrier that is exposed to the atmosphere and the entire surface of the counter substrate opposite to the electrode substrate. was applied so that the thickness after drying was 20 ⁇ m and dried to form an adhesive portion.
  • the water shielding portion forming body is applied so as to cover the entire adhesive portion and have a thickness after curing of 100 ⁇ m, and in an oven (product name “HISPEC horizontal type HT210S”, manufactured by ETAC) at room temperature. The temperature was raised from 10 to 80 ° C. at 10 ° C./h and held at 80 ° C. for 1 hour to form a water shielding portion.
  • an epoxy resin trade name “Maxive”, manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • a clay mineral trade name “Esven NZ”, manufactured by Hojun Co.
  • the content rate of the clay mineral in a water-impervious part formation body was made to be 2 mass%.
  • a film for measuring a water vapor transmission coefficient having a thickness of 50 ⁇ m was prepared.
  • the water vapor transmission coefficient at 40 ° C. and 90% RH (relative humidity) was measured using a moisture permeable cup (product name “moisture permeable cup (screw tightening type) JIS Z 0208”, manufactured by Imoto Seisakusho).
  • the water vapor transmission coefficient ratio R 1 represented by the following formula (1) was determined. The results are shown in Table 1.
  • the unit of the water vapor transmission coefficient in Table 1 is “g ⁇ mm / m 2 ⁇ 24h”.
  • R 1 A / B (1) (In the above formula (1), A represents the water vapor transmission coefficient (g ⁇ mm / m 2 ⁇ 24h) at 40 ° C. and 90% RH of the water shielding portion, and B represents 40 ° C. and 90% RH of the oxygen barrier portion. Water vapor transmission coefficient (g ⁇ mm / m 2 ⁇ 24 h)
  • an oxygen permeability coefficient measurement film having a thickness of 50 ⁇ m is prepared,
  • the oxygen permeation coefficient at 22 ° C. and 90% relative humidity was measured according to JIS K7126-2 using an oxygen permeation measuring device (product name “OXTRAN”, manufactured by MOCON), and represented by the following formula (2). It was determined coefficient ratio R 2.
  • the results are shown in Table 1.
  • the unit of the oxygen transmission coefficient in Table 1 is “cc ⁇ mm / m 2 ⁇ 24 h / atm”.
  • R 2 C / D (2)
  • C represents an oxygen transmission coefficient (cc ⁇ mm / m 2 ⁇ 24 h / atm) at 22 ° C. and 90% RH of the oxygen barrier portion
  • D represents 22 ° C. and 90% of the sealing portion.
  • Oxygen permeability coefficient in RH (cc ⁇ mm / m 2 ⁇ 24 h / atm).
  • Example 2 Instead of clay mineral, zeolite as a desiccant is used as the inorganic substance in the water-impervious part forming body, and the water vapor transmission coefficient of the oxygen barrier part, the water vapor transmission coefficient of the water-impervious part, the water vapor transmission coefficient ratio R 1 , the sealing part oxygen permeability, an oxygen permeability coefficient of oxygen barrier section, as well as to prepare a photoelectric conversion element oxygen permeability coefficient ratio R 2 in the same manner as in example 1 except that were as shown in Table 1.
  • Example 3 Clay mineral is not included in the water-impervious part forming body, the water vapor transmission coefficient of the oxygen barrier part, the water vapor transmission coefficient of the water shielding part, the water vapor transmission coefficient ratio R 1 , the oxygen transmission coefficient of the sealing part, the oxygen transmission coefficient of the oxygen barrier part , as well as to prepare a photoelectric conversion element oxygen permeability coefficient ratio R 2 in the same manner as in example 1 except that it was as shown in Table 1.
  • Example 4 Without forming an adhesive part, the water vapor transmission coefficient of the oxygen barrier part, the water vapor transmission coefficient of the water shielding part, the water vapor transmission coefficient ratio R 1 , the oxygen transmission coefficient of the sealing part, the oxygen transmission coefficient of the oxygen barrier part, and the oxygen transmission coefficient to prepare a photoelectric conversion element the ratio R 2 in the same manner as in example 1 except that it was as shown in Table 1.
  • Example 5 No adhesion part is formed, no clay mineral is included in the water shielding part forming body, the water vapor transmission coefficient of the oxygen barrier part, the water vapor transmission coefficient of the water shielding part, the water vapor transmission coefficient ratio R 1 , the oxygen transmission coefficient of the sealing part, oxygen permeability coefficient of oxygen barrier section, as well as to prepare a photoelectric conversion element oxygen permeability coefficient ratio R 2 in the same manner as in example 1 except that were as shown in Table 1.
  • Table 1 shows the water vapor transmission coefficient of the oxygen barrier part, the water vapor transmission coefficient of the impermeable part, the water vapor transmission coefficient ratio R 1 , the oxygen transmission coefficient of the sealing part, the oxygen transmission coefficient of the oxygen barrier part, and the oxygen transmission coefficient ratio R 2.
  • a photoelectric conversion element was produced in the same manner as in Example 1 except that it was as shown.
  • Example 6 An adhesive portion is not formed, but a water-blocking portion is formed by using butyl rubber instead of epoxy resin and clay mineral as a water-blocking portion forming body and heat-sealing the water-blocking portion forming body at 200 ° C.
  • Table 2 shows the water vapor transmission coefficient of the part, the water vapor transmission coefficient of the impermeable part, the water vapor transmission coefficient ratio R 1 , the oxygen transmission coefficient of the sealing part, the oxygen transmission coefficient of the oxygen barrier part, and the oxygen transmission coefficient ratio R 2.
  • a photoelectric conversion element was produced in the same manner as in Example 1 except that.
  • Example 7 Without forming an adhesive part, using a low density polyethylene instead of an epoxy resin and clay mineral as a water shielding part forming body, forming a water shielding part by heat-sealing the water shielding part forming body at 200 ° C., Table 2 shows the water vapor transmission coefficient of the oxygen barrier part, the water vapor transmission coefficient of the impermeable part, the water vapor transmission coefficient ratio R 1 , the oxygen transmission coefficient of the sealing part, the oxygen transmission coefficient of the oxygen barrier part, and the oxygen transmission coefficient ratio R 2 A photoelectric conversion element was produced in the same manner as in Example 1 except that it was as shown.
  • Nylon 6 is used instead of epoxy resin and clay mineral as a water shielding part forming body without forming an adhesive part, and a nylon 6 solution using hexafluoro-2-propanol as a solvent is applied and dried.
  • a water vapor transmission coefficient of the oxygen barrier part, a water vapor transmission coefficient of the water shielding part, a water vapor transmission coefficient ratio R 1 , an oxygen transmission coefficient of the sealing part, an oxygen transmission coefficient of the oxygen barrier part, and an oxygen transmission coefficient ratio R A photoelectric conversion element was produced in the same manner as in Example 1 except that 2 was set as shown in Table 2.
  • Light source White LED (product name “LEL-SL5N-F”, manufactured by Toshiba Lighting & Technology Corp.)
  • Illuminance meter Product name “Digital Illuminance Meter 51013”, Yokogawa Meter & Instruments Power Supply: Voltage / Current Generator (Product name “R6246I”, ADVANTEST)
  • the photoelectric conversion element is placed in a constant temperature and humidity chamber (product name “PL-3KPH-E”, manufactured by ESPEC) at 85 ° C. and a relative humidity of 85% for 200 hours, and then 1 sun pseudo-sunlight in the atmosphere.
  • the IV curve was measured after being irradiated for 300 hours under irradiation and again irradiated with the above-described white light of 200 lux, and the maximum output operating power PW ( ⁇ W) calculated from this IV curve was calculated as “output 3”.
  • the output maintenance factor high humidity conditions
  • the photoelectric conversion element of the present invention has excellent durability even in a high humidity environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

Disclosed is a photoelectric conversion element which comprises at least one photoelectric conversion cell. The photoelectric conversion cell is provided with: an electrode substrate; a counter substrate which faces the electrode substrate; a ring-shaped sealing part which joins the electrode substrate and the counter substrate; an electrolyte which is provided inside the sealing part; an oxygen barrier part which is provided outside the sealing part so as to cover the sealing part; and a water blocking part which is provided outside the oxygen barrier part so as to cover the oxygen barrier part. The oxygen barrier part contains a resin having a hydroxyl group; the oxygen permeability coefficient of the oxygen barrier part at 22°C and 90% RH is lower than the oxygen permeability coefficient of the sealing part at 22°C and 90% RH; and the water vapor permeability coefficient of the water blocking part at 40°C and 90% RH is lower than the water vapor permeability coefficient of the oxygen barrier part at 40°C and 90% RH.

Description

光電変換素子Photoelectric conversion element
 本発明は、光電変換素子に関する。 The present invention relates to a photoelectric conversion element.
 光電変換素子として、製造コストが低く、高い光電変換効率が得られることから色素を用いた光電変換素子が注目されており、色素を用いた光電変換素子に関して種々の開発が行われている。 As photoelectric conversion elements, photoelectric conversion elements using dyes are attracting attention because of low production costs and high photoelectric conversion efficiency, and various developments have been made on photoelectric conversion elements using dyes.
 色素を用いた光電変換素子としては、例えば下記特許文献1記載の光電変換素子が知られている。下記特許文献1に記載の光電変換素子は、第1電極と、第1電極に対向する第2電極と、第1電極及び第2電極を接合させる環状の封止部と、封止部の内側に配置される電解質とを備えており、封止部として、例えばアイオノマー、エチレン-ビニル酢酸無水物共重合体、エチレン-メタクリル酸共重合体、エチレン-ビニルアルコール共重合体などの樹脂を用いている。 As a photoelectric conversion element using a dye, for example, a photoelectric conversion element described in Patent Document 1 below is known. The photoelectric conversion element described in Patent Literature 1 below includes a first electrode, a second electrode facing the first electrode, an annular sealing portion that joins the first electrode and the second electrode, and an inner side of the sealing portion. For example, an ionomer, an ethylene-vinyl acetic anhydride copolymer, an ethylene-methacrylic acid copolymer, an ethylene-vinyl alcohol copolymer, or the like is used as a sealing portion. Yes.
国際公開第2012/118028号(請求項1及び段落[0084])International Publication No. 2012/118028 (Claim 1 and paragraph [0084])
 しかし、上記特許文献1に記載の光電変換素子は、高湿環境下における耐久性の点で改善の余地を有していた。 However, the photoelectric conversion element described in Patent Document 1 has room for improvement in terms of durability in a high humidity environment.
 本発明は上記事情に鑑みてなされたものであり、高湿環境下でも優れた耐久性を有する光電変換素子を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a photoelectric conversion element having excellent durability even in a high humidity environment.
 本発明者は上記課題を解決するため鋭意検討を重ねた。まず上記特許文献1に記載の光電変換素子においては、高湿環境下では封止部の内側に酸素が侵入するおそれがあり、その結果、光電変換素子の出力が低下するおそれがあるのではないかと考えた。そこで、本発明者は、上記光電変換セルにおいて封止部の外側に酸素バリア性の樹脂を設けることを検討した。しかし、この場合でも、光電変換素子は、高湿環境下では、出力が低下する場合があった。そこで、本発明者はさらに鋭意研究を重ねた結果、以下の発明により上記課題を解決し得ることを見出した。 The present inventor has intensively studied to solve the above problems. First, in the photoelectric conversion element described in Patent Document 1, oxygen may enter the inside of the sealing portion in a high humidity environment, and as a result, the output of the photoelectric conversion element may not be reduced. I thought. In view of this, the present inventor has studied to provide an oxygen barrier resin outside the sealing portion in the photoelectric conversion cell. However, even in this case, the output of the photoelectric conversion element may decrease in a high humidity environment. Therefore, as a result of further earnest research, the present inventor has found that the above-described problems can be solved by the following invention.
 すなわち本発明は、少なくとも1つの光電変換セルを有する光電変換素子において、前記光電変換セルが、電極基板と、前記電極基板に対向する対向基板と、前記電極基板及び前記対向基板を接合させる環状の封止部と、前記封止部の内側に配置される電解質と、前記封止部の外側に設けられ、前記封止部を被覆する酸素バリア部と、前記酸素バリア部の外側に設けられ、前記酸素バリア部を被覆する遮水部とを備えており、前記酸素バリア部が、水酸基を有する樹脂を含み、前記酸素バリア部の22℃、90%RHにおける酸素透過係数が前記封止部の22℃、90%RHにおける酸素透過係数よりも低く、前記遮水部の40℃、90%RHにおける水蒸気透過係数が前記酸素バリア部の40℃、90%RHにおける水蒸気透過係数よりも小さい、光電変換素子である。 That is, the present invention provides a photoelectric conversion element having at least one photoelectric conversion cell, wherein the photoelectric conversion cell is an annular substrate that joins the electrode substrate, the counter substrate facing the electrode substrate, and the electrode substrate and the counter substrate. A sealing part, an electrolyte disposed inside the sealing part, an oxygen barrier part provided outside the sealing part, covering the sealing part, and provided outside the oxygen barrier part, A water shielding portion that covers the oxygen barrier portion, the oxygen barrier portion including a resin having a hydroxyl group, and an oxygen permeability coefficient of the oxygen barrier portion at 22 ° C. and 90% RH of the sealing portion. It is lower than the oxygen transmission coefficient at 22 ° C. and 90% RH, and the water vapor transmission coefficient at 40 ° C. and 90% RH of the water shielding part is higher than the water vapor transmission coefficient at 40 ° C. and 90% RH of the oxygen barrier part. Small, a photoelectric conversion element.
 本発明の光電変換素子によれば、光電変換セルにおいて、封止部の外側に、封止部よりも低い酸素透過係数を有する酸素バリア部が設けられ、この酸素バリア部が封止部を被覆している。そのため、酸素バリア部によって、封止部に到達する酸素の量が十分に抑制され、封止部の内側に酸素が侵入することが十分に抑制される。また、本発明の光電変換素子によれば、酸素バリア部の外側に、酸素バリア部よりも低い水蒸気透過係数を有する遮水部が設けられ、この遮水部が酸素バリア部を被覆している。そのため、高湿環境下でも、酸素バリア部に侵入する水蒸気の量が遮水部によって十分に抑制され、大気中の水分が酸素バリア部で捕捉されることによる酸素バリア性の低下が十分に抑制される。従って、酸素が封止部の内側に侵入することによる光電変換素子の出力の低下が十分に抑制される。また、本発明の光電変換素子によれば、封止部の外側に酸素バリア部が設けられ、封止部の内側に電解質が配置されている。すなわち、電解質と酸素バリア部との間に封止部が介在している。このため、電解質による酸素バリア部の劣化が十分に抑制される。以上のことから、本発明の光電変換素子によれば、高湿環境下でも優れた耐久性を有することが可能となる。 According to the photoelectric conversion element of the present invention, in the photoelectric conversion cell, an oxygen barrier portion having an oxygen transmission coefficient lower than that of the sealing portion is provided outside the sealing portion, and the oxygen barrier portion covers the sealing portion. is doing. Therefore, the oxygen barrier part sufficiently suppresses the amount of oxygen reaching the sealing part, and sufficiently suppresses oxygen from entering the sealing part. Moreover, according to the photoelectric conversion element of the present invention, a water shielding part having a water vapor transmission coefficient lower than that of the oxygen barrier part is provided outside the oxygen barrier part, and the water shielding part covers the oxygen barrier part. . Therefore, even in a high humidity environment, the amount of water vapor entering the oxygen barrier part is sufficiently suppressed by the water shielding part, and the deterioration of oxygen barrier properties due to trapping of moisture in the atmosphere is sufficiently suppressed. Is done. Therefore, a decrease in the output of the photoelectric conversion element due to oxygen entering the inside of the sealing portion is sufficiently suppressed. Moreover, according to the photoelectric conversion element of this invention, the oxygen barrier part is provided in the outer side of the sealing part, and the electrolyte is arrange | positioned inside the sealing part. That is, the sealing part is interposed between the electrolyte and the oxygen barrier part. For this reason, deterioration of the oxygen barrier part due to the electrolyte is sufficiently suppressed. From the above, according to the photoelectric conversion element of the present invention, it is possible to have excellent durability even in a high humidity environment.
 上記光電変換素子においては、前記水酸基を有する樹脂がビニルアルコール単位を含むことが好ましい。 In the photoelectric conversion element, the resin having a hydroxyl group preferably contains a vinyl alcohol unit.
 この場合、水酸基を有する樹脂がビニルアルコール単位を含まない場合と比べて、酸素バリア部の酸素バリア性がより向上するため、高湿環境下でも光電変換素子がより優れた耐久性を有することが可能となる。 In this case, since the oxygen barrier property of the oxygen barrier portion is further improved as compared with the case where the resin having a hydroxyl group does not contain a vinyl alcohol unit, the photoelectric conversion element may have better durability even in a high humidity environment. It becomes possible.
 上記光電変換素子においては、前記水酸基を有する樹脂中の前記ビニルアルコール単位の含有量が20~70mol%であることが好ましい。 In the photoelectric conversion element, the content of the vinyl alcohol unit in the resin having a hydroxyl group is preferably 20 to 70 mol%.
 この場合、上記樹脂が成形性に優れるため、より安定した酸素バリア性構造体の形成が可能になる。 In this case, since the resin is excellent in moldability, a more stable oxygen barrier structure can be formed.
 上記光電変換素子においては、下記式(1)で表される水蒸気透過係数比Rが0.001~0.9であることが好ましい。
 
=A/B   (1)
 
(上記式(1)中、Aは前記遮水部の40℃、90%RHにおける水蒸気透過係数(g・mm/m・24h)を表し、Bは前記酸素バリア部の40℃、90%RHにおける水蒸気透過係数(g・mm/m・24h)を表す。)
In the photoelectric conversion element, the water vapor transmission coefficient ratio R 1 represented by the following formula (1) is preferably 0.001 to 0.9.

R 1 = A / B (1)

(In the above formula (1), A represents the water vapor transmission coefficient (g · mm / m 2 · 24 h) at 40 ° C. and 90% RH of the water shielding portion, and B represents 40 ° C. and 90% of the oxygen barrier portion. Represents the water vapor transmission coefficient in RH (g · mm / m 2 · 24h).
 この場合、上記水蒸気透過係数比Rが0.9を超える場合と比べて、酸素バリア部への水の侵入をより十分抑制できるため、高湿環境下でも光電変換素子がより優れた耐久性を有することが可能となる。一方、上記水蒸気透過係数比Rが0.001未満である場合と比べて、乾燥環境下で加熱することにより光電変換セルに混入した水分を外部に移動させやすくすることができ、封止された電解質内の水分をより十分に低減することができる。 In this case, compared with the case where the water vapor transmission coefficient ratio R 1 exceeds 0.9, water penetration into the oxygen barrier portion can be more sufficiently suppressed, so that the photoelectric conversion element has superior durability even in a high humidity environment. It is possible to have On the other hand, as compared with the case the water vapor permeability coefficient ratio R 1 is less than 0.001, it is possible to easily move the water mixed in the photoelectric conversion cell to the outside by heating in a dry environment, sealed In addition, the moisture in the electrolyte can be reduced more sufficiently.
 上記光電変換素子においては、前記式(1)で表される水蒸気透過係数比Rが0.001~0.4であることが好ましい。 In the photoelectric conversion element, the water vapor transmission coefficient ratio R 1 represented by the formula (1) is preferably 0.001 to 0.4.
 この場合、水蒸気透過係数比Rが0.4を超える場合に比べて、光電変換素子が、高湿環境下においてより優れた耐久性を有することが可能となる。 In this case, as compared with the case where the water vapor permeability coefficient ratio R 1 is greater than 0.4, the photoelectric conversion element, it is possible to have better durability under a high humidity environment.
 上記光電変換素子においては、下記式(2)で表される酸素透過係数比Rが0.0001以上1未満であることが好ましい。
 
=C/D   (2)
 
(上記式(2)中、Cは前記酸素バリア部の22℃、90%RHにおける酸素透過係数(cc・mm/m・24h/atm)を表し、Dは前記封止部の22℃、90%RHにおける酸素透過係数(cc・mm/m・24h/atm)を表す。)
In the above photoelectric conversion element, it is preferable oxygen permeability coefficient ratio R 2 represented by the following formula (2) is less than 1 0.0001 or more.

R 2 = C / D (2)

(In the above formula (2), C represents an oxygen transmission coefficient (cc · mm / m 2 · 24 h / atm) at 22 ° C. and 90% RH of the oxygen barrier portion, and D represents 22 ° C. of the sealing portion, Oxygen transmission coefficient at 90% RH (cc · mm / m 2 · 24h / atm).
 この場合、封止部の内側に侵入する酸素の量をより十分に低減でき、かつ、無酸素下で加熱することにより、封止された電解質内の酸素を低減することができる。 In this case, the amount of oxygen entering the inside of the sealing portion can be more sufficiently reduced, and oxygen in the sealed electrolyte can be reduced by heating in the absence of oxygen.
 上記光電変換素子においては、前記遮水部の40℃、90%RHにおける水蒸気透過係数が0.001~10(g・mm/m・24h)であることが好ましい。 In the photoelectric conversion element, it is preferable that a water vapor transmission coefficient of the water shielding portion at 40 ° C. and 90% RH is 0.001 to 10 (g · mm / m 2 · 24 h).
 この場合、封止部の内側に侵入する酸素の量をより十分に低減でき、かつ、無酸素下で加熱することにより、封止された電解質内の酸素を低減することができる。 In this case, the amount of oxygen entering the inside of the sealing portion can be more sufficiently reduced, and oxygen in the sealed electrolyte can be reduced by heating in the absence of oxygen.
 上記光電変換素子においては、前記酸素バリア部が、前記封止部を被覆する本体部と、前記本体部から前記対向基板のうち前記電極基板の反対側の面まで延びて前記対向基板に接着される延在部とを有することが好ましい。 In the photoelectric conversion element, the oxygen barrier portion extends from the main body portion to the surface on the opposite side of the electrode substrate from the main body portion and is bonded to the counter substrate. It is preferable to have an extending portion.
 この場合、酸素バリア部が本体部のみからなる場合と比べて、酸素バリア部の表面積が延在部を有している分だけ増加する。このため、酸素バリア部の酸素バリア性がより向上する。また、酸素バリア部が、本体部から対向基板のうち電極基板の反対側の面まで延びて対向基板に接着される延在部を有しており、対向基板は、封止部と酸素バリア部の延在部とによって挟まれている。このため、光電変換素子が高温環境下に置かれ、電極基板と対向基板と封止部との間の空間の圧力が高まり、それに伴って封止部から対向基板を剥離させようとする力が働いても、封止部からの対向基板の剥離が十分に抑制される。従って、光電変換素子がより優れた耐久性を有することが可能となる。 In this case, the surface area of the oxygen barrier portion is increased by an amount corresponding to the extending portion as compared with the case where the oxygen barrier portion is composed only of the main body. For this reason, the oxygen barrier property of the oxygen barrier portion is further improved. Further, the oxygen barrier portion has an extending portion that extends from the main body portion to the surface of the counter substrate on the side opposite to the electrode substrate and is bonded to the counter substrate. The counter substrate includes the sealing portion and the oxygen barrier portion. It is sandwiched between the extension part of the. For this reason, the photoelectric conversion element is placed in a high temperature environment, and the pressure in the space between the electrode substrate, the counter substrate, and the sealing portion increases, and accordingly, the force for peeling the counter substrate from the sealing portion is increased. Even if it works, peeling of the counter substrate from the sealing portion is sufficiently suppressed. Therefore, the photoelectric conversion element can have more excellent durability.
 上記光電変換素子は、前記酸素バリア部と前記遮水部との間に前記酸素バリア部及び前記遮水部を接着させる接着部を更に有し、前記接着部が、水酸基と、前記遮水部に含まれる官能基と同一の官能基とを有することが好ましい。 The photoelectric conversion element further includes an adhesive part for bonding the oxygen barrier part and the water shielding part between the oxygen barrier part and the water shielding part, and the adhesive part includes a hydroxyl group and the water shielding part. It is preferable to have the same functional group as the functional group contained in.
 この場合、酸素バリア部と遮水部との間の接着力がより向上する。 In this case, the adhesive force between the oxygen barrier part and the water shielding part is further improved.
 上記光電変換素子においては、前記遮水部が、少なくとも1つの遮水層で構成され、前記少なくとも1つの遮水層が、樹脂のみからなることが好ましい。 In the above photoelectric conversion element, it is preferable that the water shielding portion is composed of at least one water shielding layer, and the at least one water shielding layer is made of only a resin.
 この場合、遮水部の耐衝撃性をより向上させることができる。 In this case, the impact resistance of the water shielding portion can be further improved.
 上記光電変換素子においては、前記遮水部が、少なくとも1つの遮水層で構成され、前記少なくとも1つの遮水層が、樹脂及び無機物のみからなることが好ましい。 In the above photoelectric conversion element, it is preferable that the water shielding portion is composed of at least one water shielding layer, and the at least one water shielding layer is made of only a resin and an inorganic substance.
 この場合、遮水部の耐衝撃性をより向上させることができ、かつ、遮水性もより向上させることができる。 In this case, the impact resistance of the water shielding portion can be further improved, and the water shielding property can be further improved.
 上記光電変換素子においては、前記無機物が、無機フィラー及び乾燥剤からなる群より選ばれる少なくとも一種であることが好ましい。 In the photoelectric conversion element, the inorganic substance is preferably at least one selected from the group consisting of an inorganic filler and a desiccant.
 この場合、遮水部がより高い遮水性を有することが可能となり、かつ、遮水部の形状安定性がより高くなる。 In this case, it becomes possible for the water-impervious portion to have higher water-imperviousness, and the shape stability of the water-impervious portion becomes higher.
 本発明によれば、高湿環境下でも優れた耐久性を有する光電変換素子が提供される。 According to the present invention, a photoelectric conversion element having excellent durability even in a high humidity environment is provided.
本発明の光電変換素子の一実施形態を示す切断面端面図である。It is a cut surface end view showing one embodiment of a photoelectric conversion element of the present invention. 本発明の光電変換素子の別の実施形態を示す切断面端面図である。It is a cut surface end view which shows another embodiment of the photoelectric conversion element of this invention.
 以下、本発明の実施形態について図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本発明の光電変換素子の一実施形態を示す切断面端面図である。 FIG. 1 is a cross-sectional end view showing an embodiment of the photoelectric conversion element of the present invention.
 図1に示すように、光電変換素子100は、1つの光電変換セル90を有し、光電変換セル90は、電極基板10と、電極基板10に対向する対向基板20と、電極基板10及び対向基板20を接合させる環状の封止部30と、封止部30の内側に配置される電解質40と、電極基板10のうち対向基板20側に設けられる酸化物半導体層50と、封止部30の外側に設けられ、封止部30を被覆する酸素バリア部60と、酸素バリア部60の外側に設けられ、酸素バリア部60を被覆する遮水部70と、酸素バリア部60又は対向基板20と遮水部70との間に設けられ、酸素バリア部60又は対向基板20と遮水部70とを接着させる接着部80とを備えている。なお、酸化物半導体層50には色素が担持されている。 As illustrated in FIG. 1, the photoelectric conversion element 100 includes one photoelectric conversion cell 90, and the photoelectric conversion cell 90 includes the electrode substrate 10, the counter substrate 20 facing the electrode substrate 10, the electrode substrate 10, and the counter substrate. An annular sealing portion 30 to which the substrate 20 is bonded, an electrolyte 40 disposed inside the sealing portion 30, an oxide semiconductor layer 50 provided on the counter substrate 20 side of the electrode substrate 10, and the sealing portion 30. The oxygen barrier part 60 that covers the sealing part 30, the water shielding part 70 that covers the oxygen barrier part 60 and covers the oxygen barrier part 60, and the oxygen barrier part 60 or the counter substrate 20. And an adhesion part 80 for bonding the oxygen barrier part 60 or the counter substrate 20 and the water shielding part 70 to each other. Note that a dye is supported on the oxide semiconductor layer 50.
 対向基板20は対極で構成され、基板と電極を兼ねる導電性基板21と、導電性基板21上に設けられる触媒層22とを有している。 The counter substrate 20 is composed of a counter electrode, and includes a conductive substrate 21 serving as a substrate and an electrode, and a catalyst layer 22 provided on the conductive substrate 21.
 酸素バリア部60は、水酸基を有する樹脂を含み、酸素バリア部60の22℃、90%RHにおける酸素透過係数が、封止部30の22℃、90%RHにおける酸素透過係数よりも低い。 The oxygen barrier part 60 includes a resin having a hydroxyl group, and the oxygen permeability coefficient of the oxygen barrier part 60 at 22 ° C. and 90% RH is lower than the oxygen permeability coefficient of the sealing part 30 at 22 ° C. and 90% RH.
 また、酸素バリア部60は、封止部30を被覆する本体部61と、本体部61から対向基板20のうち電極基板10の反対側の面まで延びて対向基板20に接着される延在部62とを有している。 The oxygen barrier unit 60 includes a main body 61 that covers the sealing unit 30, and an extension that extends from the main body 61 to the surface of the counter substrate 20 opposite to the electrode substrate 10 and is bonded to the counter substrate 20. 62.
 さらに、遮水部70の40℃、90%RHにおける水蒸気透過係数は酸素バリア部60の40℃、90%RHにおける水蒸気透過係数よりも小さくなっている。 Furthermore, the water vapor transmission coefficient at 40 ° C. and 90% RH of the water shielding part 70 is smaller than the water vapor transmission coefficient at 40 ° C. and 90% RH of the oxygen barrier part 60.
 光電変換素子100によれば、光電変換セル90において封止部30の外側に、封止部30よりも低い酸素透過係数を有する酸素バリア部60が設けられ、この酸素バリア部60が封止部30を被覆している。そのため、酸素バリア部60によって、封止部30に到達する酸素の量が十分に抑制され、封止部30の内側に酸素が侵入することが十分に抑制される。また、光電変換素子100によれば、酸素バリア部60の外側に、酸素バリア部60よりも低い水蒸気透過係数を有する遮水部70が設けられ、この遮水部70が酸素バリア部60を被覆している。そのため、高湿環境下でも、酸素バリア部60に侵入する水蒸気の量が遮水部70によって十分に抑制され、大気中の水分が酸素バリア部60で捕捉されることによる酸素バリア性の低下が十分に抑制される。従って、酸素が封止部30の内側に侵入することによる光電変換素子100の出力の低下が十分に抑制される。また、光電変換素子100によれば、封止部30の外側に酸素バリア部60が設けられ、封止部30の内側に電解質40が配置されている。すなわち、電解質40と酸素バリア部60との間に封止部30が介在している。このため、電解質40による酸素バリア部60の劣化が十分に抑制される。以上のことから、光電変換素子100によれば、高湿環境下でも優れた耐久性を有することが可能となる。 According to the photoelectric conversion element 100, the oxygen barrier unit 60 having an oxygen transmission coefficient lower than that of the sealing unit 30 is provided outside the sealing unit 30 in the photoelectric conversion cell 90, and the oxygen barrier unit 60 is the sealing unit. 30 is covered. Therefore, the oxygen barrier unit 60 sufficiently suppresses the amount of oxygen reaching the sealing unit 30 and sufficiently suppresses oxygen from entering the sealing unit 30. Further, according to the photoelectric conversion element 100, the water shielding unit 70 having a water vapor transmission coefficient lower than that of the oxygen barrier unit 60 is provided outside the oxygen barrier unit 60, and the water shielding unit 70 covers the oxygen barrier unit 60. is doing. For this reason, even in a high humidity environment, the amount of water vapor entering the oxygen barrier unit 60 is sufficiently suppressed by the water shielding unit 70, and the oxygen barrier property is reduced due to the moisture in the atmosphere being captured by the oxygen barrier unit 60. Sufficiently suppressed. Therefore, a decrease in the output of the photoelectric conversion element 100 due to oxygen entering the inside of the sealing portion 30 is sufficiently suppressed. Moreover, according to the photoelectric conversion element 100, the oxygen barrier unit 60 is provided outside the sealing unit 30, and the electrolyte 40 is disposed inside the sealing unit 30. That is, the sealing part 30 is interposed between the electrolyte 40 and the oxygen barrier part 60. For this reason, the deterioration of the oxygen barrier section 60 due to the electrolyte 40 is sufficiently suppressed. From the above, according to the photoelectric conversion element 100, it is possible to have excellent durability even in a high humidity environment.
 また、光電変換素子100によれば、酸素バリア部60は、封止部30を被覆する本体部61と、本体部61から対向基板20のうち電極基板10の反対側の面まで延びて対向基板20に接着される延在部62とを有している。そのため、酸素バリア部60が本体部61のみからなる場合と比べて、酸素バリア部60の表面積が延在部62を有している分だけ増加する。このため、酸素バリア部60の酸素バリア性がより向上する。また、酸素バリア部60が、本体部61から対向基板20のうち電極基板10の反対側の面まで延びて対向基板20に接着される延在部62を有しており、対向基板20は、封止部30と酸素バリア部60の延在部62とによって挟まれている。このため、光電変換素子100が高温環境下に置かれ、電極基板10と対向基板20と封止部30との間の空間の圧力が高まり、それに伴って封止部30から対向基板20を剥離させようとする力が働いても、封止部30からの対向基板20の剥離が十分に抑制される。従って、光電変換素子100がより優れた耐久性を有することが可能となる。 Further, according to the photoelectric conversion element 100, the oxygen barrier unit 60 includes the main body 61 that covers the sealing unit 30, and extends from the main body 61 to the opposite surface of the counter substrate 20 to the electrode substrate 10. 20 and an extending portion 62 bonded to 20. Therefore, as compared with the case where the oxygen barrier unit 60 is composed only of the main body unit 61, the surface area of the oxygen barrier unit 60 is increased by the amount of the extending part 62. For this reason, the oxygen barrier property of the oxygen barrier unit 60 is further improved. In addition, the oxygen barrier unit 60 includes an extending portion 62 that extends from the main body 61 to the surface of the counter substrate 20 on the side opposite to the electrode substrate 10 and is bonded to the counter substrate 20. It is sandwiched between the sealing part 30 and the extension part 62 of the oxygen barrier part 60. For this reason, the photoelectric conversion element 100 is placed in a high temperature environment, and the pressure in the space between the electrode substrate 10, the counter substrate 20, and the sealing portion 30 increases, and the counter substrate 20 is peeled off from the sealing portion 30 accordingly. Even if the force to be applied works, peeling of the counter substrate 20 from the sealing portion 30 is sufficiently suppressed. Therefore, the photoelectric conversion element 100 can have more excellent durability.
 次に、電極基板10、対向基板20、封止部30、電解質40、酸化物半導体層50、色素、遮水部70、酸素バリア部60及び接着部80について詳細に説明する。 Next, the electrode substrate 10, the counter substrate 20, the sealing part 30, the electrolyte 40, the oxide semiconductor layer 50, the dye, the water shielding part 70, the oxygen barrier part 60, and the bonding part 80 will be described in detail.
 ≪電極基板≫
 電極基板10は、透明基板11と、透明基板11の上に設けられる透明導電層12とを有する。
≪Electrode substrate≫
The electrode substrate 10 includes a transparent substrate 11 and a transparent conductive layer 12 provided on the transparent substrate 11.
 <透明基板>
 透明基板11を構成する材料は、例えば透明な材料であればよく、このような透明な材料としては、例えばホウケイ酸ガラス、ソーダライムガラス、白板ガラス、石英ガラスなどのガラス;ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリエーテルスルフォン(PES)などの樹脂が挙げられる。透明基板11の厚さは、光電変換素子100のサイズに応じて適宜決定され、特に限定されるものではないが、例えば50~4000μmの範囲にすればよい。
<Transparent substrate>
The material which comprises the transparent substrate 11 should just be a transparent material, for example, As such a transparent material, glass, such as borosilicate glass, soda-lime glass, white plate glass, quartz glass, for example; Polyethylene terephthalate (PET) And resins such as polyethylene naphthalate (PEN), polycarbonate (PC), and polyether sulfone (PES). The thickness of the transparent substrate 11 is appropriately determined according to the size of the photoelectric conversion element 100 and is not particularly limited, but may be in the range of 50 to 4000 μm, for example.
 <透明導電層>
 透明導電層12を構成する材料としては、例えばスズ添加酸化インジウム(ITO)、酸化スズ(SnO)、及び、フッ素添加酸化スズ(FTO)などの導電性金属酸化物が挙げられる。透明導電層12は、単層でも、異なる導電性金属酸化物で構成される複数の層の積層体で構成されてもよい。透明導電層12が単層で構成される場合、透明導電層12は、高い耐熱性及び耐薬品性を有することから、FTOで構成されることが好ましい。透明導電層12の厚さは例えば0.01~2μmの範囲にすればよい。
<Transparent conductive layer>
Examples of the material constituting the transparent conductive layer 12 include conductive metal oxides such as tin-added indium oxide (ITO), tin oxide (SnO 2 ), and fluorine-added tin oxide (FTO). The transparent conductive layer 12 may be a single layer or a laminate of a plurality of layers made of different conductive metal oxides. When the transparent conductive layer 12 is composed of a single layer, the transparent conductive layer 12 is preferably composed of FTO because it has high heat resistance and chemical resistance. The thickness of the transparent conductive layer 12 may be in the range of 0.01 to 2 μm, for example.
 ≪対向基板≫
 対向基板20は、上述したように、基板と電極を兼ねる導電性基板21と、導電性基板21の電極基板10側に設けられて触媒反応を促進する触媒層22とを備えている。
≪Counter substrate≫
As described above, the counter substrate 20 includes the conductive substrate 21 serving as a substrate and an electrode, and the catalyst layer 22 provided on the electrode substrate 10 side of the conductive substrate 21 to promote the catalytic reaction.
 <導電性基板>
 導電性基板21は、例えばチタン、ニッケル、白金、モリブデン、タングステン、アルミニウム、ステンレス等の耐食性の金属材料で構成される。また、導電性基板21は、基板と電極を分けて、樹脂フィルム上にITO、FTO等の導電性酸化物からなる導電層を電極として形成した積層体で構成されてもよく、ガラス上にITO、FTO等の導電性酸化物からなる導電層を形成した積層体でもよい。導電性基板21の厚さは、光電変換素子100のサイズに応じて適宜決定され、特に限定されるものではないが、例えば0.01~4mmとすればよい。
<Conductive substrate>
The conductive substrate 21 is made of a corrosion-resistant metal material such as titanium, nickel, platinum, molybdenum, tungsten, aluminum, and stainless steel. The conductive substrate 21 may be formed of a laminate in which a substrate and an electrode are separated and a conductive layer made of a conductive oxide such as ITO or FTO is formed on a resin film as an electrode. A laminate in which a conductive layer made of a conductive oxide such as FTO is formed may be used. The thickness of the conductive substrate 21 is appropriately determined according to the size of the photoelectric conversion element 100 and is not particularly limited, but may be, for example, 0.01 to 4 mm.
 <触媒層>
 触媒層22は、白金などの金属、炭素系材料又は導電性高分子などから構成される。
<Catalyst layer>
The catalyst layer 22 is made of a metal such as platinum, a carbon-based material, or a conductive polymer.
 ≪封止部≫
 封止部30としては、例えば変性ポリオレフィン樹脂、ビニルアルコール共重合体などの熱可塑性樹脂、及び、紫外線硬化樹脂などの樹脂が挙げられる。変性ポリオレフィン樹脂としては、例えば無水マレイン酸変性ポリエチレン、アイオノマー、エチレン-ビニル酢酸無水物共重合体、エチレン-メタクリル酸共重合体およびエチレン-ビニルアルコール共重合体が挙げられる。これらの樹脂は単独で又は2種以上を組み合せて用いることができる。封止部30としては、酸素バリア部60よりも電解質40に対して高い耐久性を有するものが好ましい。例えば酸素バリア部60がビニルアルコール単位を含む樹脂を含む場合には、封止部30としては、変性ポリオレフィン樹脂又は紫外線硬化樹脂が好ましい。
≪Sealing part≫
Examples of the sealing portion 30 include thermoplastic resins such as modified polyolefin resins and vinyl alcohol copolymers, and resins such as ultraviolet curable resins. Examples of the modified polyolefin resin include maleic anhydride-modified polyethylene, ionomer, ethylene-vinyl acetic anhydride copolymer, ethylene-methacrylic acid copolymer, and ethylene-vinyl alcohol copolymer. These resins can be used alone or in combination of two or more. As the sealing part 30, a part having higher durability with respect to the electrolyte 40 than the oxygen barrier part 60 is preferable. For example, when the oxygen barrier unit 60 includes a resin containing a vinyl alcohol unit, the sealing unit 30 is preferably a modified polyolefin resin or an ultraviolet curable resin.
 ≪電解質≫
 電解質40は、酸化還元対と有機溶媒とを含んでいる。有機溶媒としては、アセトニトリル、メトキシアセトニトリル、3-メトキシプロピオニトリル、プロピオニトリル、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、γ-ブチロラクトン、バレロニトリル、ピバロニトリル、などを用いることができる。酸化還元対としては、例えばヨウ化物イオン/ポリヨウ化物イオン(例えばI/I )、臭化物イオン/ポリ臭化物イオンなどのハロゲン原子を含む酸化還元対のほか、亜鉛錯体、鉄錯体、コバルト錯体などのレドックス対が挙げられる。なお、ヨウ化物イオン/ポリヨウ化物イオンは、ヨウ素(I)と、アニオンとしてのアイオダイド(I)を含む塩(イオン性液体や固体塩)とによって形成することができる。アニオンとしてアイオダイドを有するイオン性液体を用いる場合には、ヨウ素のみ添加すればよく、有機溶媒や、アニオンとしてアイオダイド以外のイオン性液体を用いる場合には、LiIやテトラブチルアンモニウムアイオダイドなどの、アニオンとしてアイオダイド(I)を含む塩を添加すればよい。また電解質40は、有機溶媒に代えて、イオン液体を用いてもよい。イオン液体としては、例えばピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等の既知のヨウ素化物塩などが用いられる。このようなヨウ素化物塩としては、例えば、1-ヘキシル-3-メチルイミダゾリウムアイオダイド、1-エチル-3-プロピルイミダゾリウムアイオダイド、1-エチル-3-メチルイミダゾリウムアイオダイド、1,2-ジメチル-3-プロピルイミダゾリウムアイオダイド、1-ブチル-3-メチルイミダゾリウムアイオダイド、又は、1-メチル-3-プロピルイミダゾリウムアイオダイドが好適に用いられる。
≪Electrolyte≫
The electrolyte 40 includes a redox couple and an organic solvent. As the organic solvent, acetonitrile, methoxyacetonitrile, 3-methoxypropionitrile, propionitrile, ethylene carbonate, propylene carbonate, diethyl carbonate, γ-butyrolactone, valeronitrile, pivalonitrile, and the like can be used. Examples of the redox pair include a redox pair containing a halogen atom such as iodide ion / polyiodide ion (for example, I / I 3 ), bromide ion / polybromide ion, zinc complex, iron complex, and cobalt complex. And redox pairs. The iodide ion / polyiodide ion can be formed by iodine (I 2 ) and a salt (ionic liquid or solid salt) containing iodide (I ) as an anion. When an ionic liquid having an iodide as an anion is used, only iodine may be added. When an ionic liquid other than an organic solvent or an iodide is used as an anion, an anion such as LiI or tetrabutylammonium iodide is used. And a salt containing iodide (I ) may be added. The electrolyte 40 may use an ionic liquid instead of the organic solvent. As the ionic liquid, for example, known iodinated salts such as pyridinium salts, imidazolium salts, triazolium salts and the like are used. Examples of such an iodide salt include 1-hexyl-3-methylimidazolium iodide, 1-ethyl-3-propylimidazolium iodide, 1-ethyl-3-methylimidazolium iodide, 1, -Dimethyl-3-propylimidazolium iodide, 1-butyl-3-methylimidazolium iodide, or 1-methyl-3-propylimidazolium iodide is preferably used.
 また、電解質40は、上記有機溶媒に代えて、上記イオン液体と上記有機溶媒との混合物を用いてもよい。 The electrolyte 40 may be a mixture of the ionic liquid and the organic solvent instead of the organic solvent.
 また電解質40には添加剤を加えることができる。添加剤としては、1-メチルベンゾイミダゾール(NMB)、1-ブチルベンゾイミダゾール(NBB)などのベンゾイミダゾール、4-t-ブチルピリジン、グアニジウムチオシアネートなどが挙げられる。中でも、ベンゾイミダゾールが添加剤として好ましい。 In addition, an additive can be added to the electrolyte 40. Examples of the additive include benzimidazoles such as 1-methylbenzimidazole (NMB) and 1-butylbenzimidazole (NBB), 4-t-butylpyridine, and guanidinium thiocyanate. Among them, benzimidazole is preferable as an additive.
 さらに電解質40としては、上記電解質にSiO、TiO、カーボンナノチューブなどのナノ粒子を混練してゲル様となった擬固体電解質であるナノコンポジットゲル電解質を用いてもよく、また、ポリフッ化ビニリデン、ポリエチレンオキサイド誘導体、アミノ酸誘導体などの有機系ゲル化剤を用いてゲル化した電解質を用いてもよい。 Further, as the electrolyte 40, a nano-composite gel electrolyte, which is a pseudo-solid electrolyte formed by kneading nanoparticles such as SiO 2 , TiO 2 , carbon nanotubes, etc. into the electrolyte, may be used, and polyvinylidene fluoride may be used. Alternatively, an electrolyte gelled with an organic gelling agent such as a polyethylene oxide derivative or an amino acid derivative may be used.
 ≪酸化物半導体層≫
 酸化物半導体層50は酸化物半導体粒子で構成されている。酸化物半導体粒子は、例えば酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化タングステン(WO)、酸化ニオブ(Nb)、チタン酸ストロンチウム(SrTiO)、酸化スズ(SnO)、酸化インジウム(In)、酸化ジルコニウム(ZrO)、酸化タリウム(Ta)、酸化ランタン(La)、酸化イットリウム(Y)、酸化ホルミウム(Ho)、酸化ビスマス(Bi)、酸化セリウム(CeO)、酸化アルミニウム(Al)又はこれらの2種以上で構成される。酸化物半導体層50の厚さは、例えば0.1~100μmとすればよい。
≪Oxide semiconductor layer≫
The oxide semiconductor layer 50 is composed of oxide semiconductor particles. Examples of the oxide semiconductor particles include titanium oxide (TiO 2 ), zinc oxide (ZnO), tungsten oxide (WO 3 ), niobium oxide (Nb 2 O 5 ), strontium titanate (SrTiO 3 ), and tin oxide (SnO 2 ). , Indium oxide (In 3 O 3 ), zirconium oxide (ZrO 2 ), thallium oxide (Ta 2 O 5 ), lanthanum oxide (La 2 O 3 ), yttrium oxide (Y 2 O 3 ), holmium oxide (Ho 2 O) 3 ), bismuth oxide (Bi 2 O 3 ), cerium oxide (CeO 2 ), aluminum oxide (Al 2 O 3 ), or two or more thereof. The thickness of the oxide semiconductor layer 50 may be set to 0.1 to 100 μm, for example.
 ≪色素≫
 色素としては、例えばビピリジン構造、ターピリジン構造などを含む配位子を有するルテニウム錯体や、ポルフィリン、エオシン、ローダニン、メロシアニンなどの有機色素などの光増感色素や、ハロゲン化鉛系ペロブスカイト結晶などの有機-無機複合色素などが挙げられる。ハロゲン化鉛系ペロブスカイトとしては、例えばCHNHPbX(X=Cl、Br、I)が用いられる。上記色素の中でも、ビピリジン構造又はターピリジン構造を含む配位子を有するルテニウム錯体が好ましい。この場合、光電変換素子100の光電変換特性および耐久性をより向上させることができる。なお、色素として、光増感色素を用いる場合には、光電変換素子100は色素増感光電変換素子となる。
≪Dye≫
Examples of the dye include a ruthenium complex having a ligand including a bipyridine structure, a terpyridine structure, and the like, a photosensitizing dye such as an organic dye such as porphyrin, eosin, rhodanine, and merocyanine, and an organic such as a lead halide-based perovskite crystal. -Inorganic composite dyes. For example, CH 3 NH 3 PbX 3 (X = Cl, Br, I) is used as the lead halide perovskite. Among the above dyes, a ruthenium complex having a ligand containing a bipyridine structure or a terpyridine structure is preferable. In this case, the photoelectric conversion characteristics and durability of the photoelectric conversion element 100 can be further improved. In addition, when using a photosensitizing dye as a pigment | dye, the photoelectric conversion element 100 turns into a dye-sensitized photoelectric conversion element.
 ≪遮水部≫
 遮水部70は遮水性を有するものである。遮水部70は、酸素バリア部60の外側の面の一部又は全部を覆っていればよいが、全部を覆っていることが好ましい。この場合、酸素バリア部60に侵入する水蒸気の量をより十分に抑制でき、光電変換素子100の耐久性をより向上させることができる。
≪Water shielding part≫
The water shielding part 70 has water shielding. The water-impervious portion 70 only needs to cover part or all of the outer surface of the oxygen barrier portion 60, but preferably covers the entire surface. In this case, the amount of water vapor entering the oxygen barrier unit 60 can be more sufficiently suppressed, and the durability of the photoelectric conversion element 100 can be further improved.
 遮水部70において、下記式(1)で表される水蒸気透過係数比Rは特に制限されるものではないが、0.001~0.9であることが好ましい。
 
水蒸気透過係数比R=A/B   (1)
(上記式(1)中、Aは遮水部70の40℃、90%RHにおける水蒸気透過係数(g・mm/m・24h)を表し、Bは酸素バリア部60の40℃、90%RHにおける水蒸気透過係数(g・mm/m・24h)を表す。)
 
In the water shielding part 70, the water vapor transmission coefficient ratio R 1 represented by the following formula (1) is not particularly limited, but is preferably 0.001 to 0.9.

Water vapor transmission coefficient ratio R 1 = A / B (1)
(In the above formula (1), A represents the water vapor transmission coefficient (g · mm / m 2 · 24 h) at 40 ° C. and 90% RH of the water shielding portion 70, and B represents 40 ° C. and 90% of the oxygen barrier portion 60. Represents the water vapor transmission coefficient in RH (g · mm / m 2 · 24h).
 この場合、水蒸気透過係数比Rが0.9を超える場合と比べて、酸素バリア部60への水の侵入をより十分に抑制できるため、高湿環境下でも光電変換素子100がより優れた耐久性を有することが可能となる。一方、上記水蒸気透過係数比Rが0.001未満である場合と比べて、乾燥環境下で加熱することにより光電変換セル90に混入した水分を外部に移動させやすくすることができ、封止された電解質40内の水分をより十分に低減することができる。 In this case, water vapor permeability coefficient ratio R 1 is as compared with the case of more than 0.9, because the water in the oxygen barrier portion 60 penetrate can be more sufficiently suppressed, the photoelectric conversion element 100 even under high-humidity environment is better It becomes possible to have durability. On the other hand, the water vapor permeability coefficient ratio R 1 is as compared with the case is less than 0.001, the water mixed in the photoelectric conversion cell 90 by heating in a dry environment can make easily move to the outside, sealing The moisture in the electrolyte 40 thus made can be reduced more sufficiently.
 遮水部70において、上記式(1)で表される水蒸気透過係数比Rは0.001~0.4であることが好ましい。この場合、水蒸気透過係数比Rが0.4を超える場合に比べて、光電変換素子100が、高湿環境下においてより優れた耐久性を有することが可能となる。 In the water shielding portion 70, the water vapor transmission coefficient ratio R 1 represented by the above formula (1) is preferably 0.001 to 0.4. In this case, as compared with the case where the water vapor permeability coefficient ratio R 1 is greater than 0.4, the photoelectric conversion element 100, it is possible to have better durability under a high humidity environment.
 遮水部70の40℃、90%RHにおける水蒸気透過係数は、特に制限されるものではないが、0.001~10(g・mm/m・24h)であることが好ましい。この場合、乾燥環境下で加熱することによる乾燥が容易で、かつ、十分な遮水効果が得られる。 The water vapor transmission coefficient at 40 ° C. and 90% RH of the water shielding portion 70 is not particularly limited, but is preferably 0.001 to 10 (g · mm / m 2 · 24 h). In this case, drying by heating in a dry environment is easy and a sufficient water shielding effect is obtained.
 遮水部70の40℃、90%RHにおける水蒸気透過係数は、0.001~0.5(g・mm/m・24h)であることがより好ましく、0.1~0.4(g・mm/m・24h)であることが特に好ましい。 The water vapor transmission coefficient of the water shielding part 70 at 40 ° C. and 90% RH is more preferably 0.001 to 0.5 (g · mm / m 2 · 24 h), preferably 0.1 to 0.4 (g Particularly preferred is mm / m 2 · 24h).
 遮水部70は少なくとも1つの遮水層で構成され、少なくとも1つの遮水層が樹脂のみからなることが好ましい。この場合、遮水部70の耐衝撃性をより向上させることができる。 It is preferable that the water-impervious portion 70 includes at least one water-impervious layer, and the at least one water-impervious layer is made of only a resin. In this case, the impact resistance of the water shielding part 70 can be further improved.
 遮水層に含まれる樹脂は、特に制限されるものではないが、樹脂としては、例えばウレタン樹脂、ポリエステル、ナイロン樹脂、ポリ塩化ビニリデン、ブチルゴム、ポリエチレン、エポキシ樹脂などが挙げられる。中でもエポキシ樹脂が好ましい。この場合、遮水部70の気密性を高くすることができ、水蒸気の透過を効果的に抑制できる。 The resin contained in the water shielding layer is not particularly limited, and examples of the resin include urethane resin, polyester, nylon resin, polyvinylidene chloride, butyl rubber, polyethylene, and epoxy resin. Of these, epoxy resins are preferred. In this case, the airtightness of the water-impervious portion 70 can be increased, and the permeation of water vapor can be effectively suppressed.
 上記少なくとも1つの遮水層は、上述した樹脂及び無機物のみからなっていてもよい。この場合、遮水部70の耐衝撃性をより向上させることができ、かつ、遮水性もより向上させることができる。 The at least one water shielding layer may be composed only of the above-described resin and inorganic substance. In this case, the impact resistance of the water shielding portion 70 can be further improved, and the water shielding property can be further improved.
 上記無機物は、特に制限されるものではないが、無機物としては、無機フィラー、乾燥剤及びこれらの混合物が好ましい。この場合、遮水層が収縮しにくい無機物を含むことで、遮水部70の収縮変形による割れをより十分に抑制できる。また、遮水部70がより高い遮水性を有することが可能となり、かつ、遮水部70の形状安定性がより高くなる。無機フィラーとしては、例えば粘土鉱物などが挙げられる。また、乾燥剤としては、例えばシリカゲル、アルミナ、ゼオライトなどが挙げられる。 The inorganic material is not particularly limited, but an inorganic filler, a desiccant and a mixture thereof are preferable as the inorganic material. In this case, the crack by the shrink deformation of the water shielding part 70 can be more sufficiently suppressed by including the inorganic substance that the water shielding layer does not easily shrink. Moreover, it becomes possible for the water-impervious part 70 to have higher water-imperviousness, and the shape stability of the water-impervious part 70 becomes higher. Examples of the inorganic filler include clay minerals. Examples of the desiccant include silica gel, alumina, and zeolite.
 ≪酸素バリア部≫
 酸素バリア部60は、封止部30の外側の面の一部又は全部を覆っていればよいが、全部を覆っていることが好ましい。この場合、封止部30の内側に侵入する酸素の量をより十分に低減でき、光電変換素子100の耐久性をより向上させることができる。
≪Oxygen barrier part≫
The oxygen barrier unit 60 may cover a part or all of the outer surface of the sealing unit 30, but preferably covers the entire surface. In this case, the amount of oxygen that enters the inside of the sealing portion 30 can be more sufficiently reduced, and the durability of the photoelectric conversion element 100 can be further improved.
 酸素バリア部60の酸素透過係数は、封止部30の酸素透過係数よりも低ければ特に限定されるものではないが、下記式(2)で表される酸素透過係数比Rが0.0001以上1未満であることが好ましい。
 
=C/D   (2)
(上記式(2)中、Cは酸素バリア部60の22℃、90%RHにおける酸素透過係数(cc・mm/m・24h/atm)を表し、Dは封止部30の22℃、90%RHにおける酸素透過係数(cc・mm/m・24h/atm)を表す。)
 
Oxygen permeability of the oxygen barrier section 60 is not particularly limited as lower than the oxygen permeability coefficient of the sealing portion 30, the oxygen permeability coefficient ratio R 2 represented by the following formula (2) is 0.0001 It is preferable that it is less than 1.

R 2 = C / D (2)
(In the above formula (2), C represents the oxygen transmission coefficient (cc · mm / m 2 · 24 h / atm) at 22 ° C. and 90% RH of the oxygen barrier portion 60, D represents 22 ° C. of the sealing portion 30, Oxygen transmission coefficient at 90% RH (cc · mm / m 2 · 24h / atm).
 この場合、封止部30の内側に侵入する酸素の量をより十分に低減でき、かつ、無酸素下で加熱することにより、封止された電解質40内の酸素を低減することができる。 In this case, the amount of oxygen entering the inside of the sealing portion 30 can be more sufficiently reduced, and the oxygen in the sealed electrolyte 40 can be reduced by heating in the absence of oxygen.
 上記式(2)で表される酸素透過係数比Rは0.0001~0.01であることがより好ましく、0.0002~0.001であることが特に好ましい。 The oxygen transmission coefficient ratio R 2 represented by the above formula (2) is more preferably 0.0001 to 0.01, and particularly preferably 0.0002 to 0.001.
 酸素バリア部60の酸素透過係数は、封止部30の酸素透過係数より低ければ特に制限されるものではないが、22℃、90%RHの条件下において0.001~10(cc・mm/m・24h/atm)であることが好ましい。この場合、封止部30の内側に侵入する酸素の量をより十分に低減でき、かつ、無酸素下で加熱することにより、封止された電解質40内の酸素を低減することができる。 The oxygen permeability coefficient of the oxygen barrier part 60 is not particularly limited as long as it is lower than the oxygen permeability coefficient of the sealing part 30, but is 0.001 to 10 (cc · mm / mm) under the conditions of 22 ° C. and 90% RH. m 2 · 24 h / atm). In this case, the amount of oxygen entering the inside of the sealing portion 30 can be more sufficiently reduced, and the oxygen in the sealed electrolyte 40 can be reduced by heating in the absence of oxygen.
 酸素バリア部60の酸素透過係数は、22℃、90%RHの条件下において0.01~2(cc・mm/m・24h/atm)であることがより好ましく、0.03~0.1(cc・mm/m・24h/atm)であることが特に好ましい。 The oxygen permeability coefficient of the oxygen barrier section 60 is more preferably 0.01 to 2 (cc · mm / m 2 · 24 h / atm) under the conditions of 22 ° C. and 90% RH, and more preferably 0.03 to 0.00. 1 (cc · mm / m 2 · 24 h / atm) is particularly preferable.
 酸素バリア部60を構成する材料は、水酸基を有する樹脂を含んでいればよい。水酸基を有する樹脂は、水酸基を有していれば特に制限されるものではないが、ビニルアルコール単位を含む樹脂であることが好ましい。この場合、ビニルアルコール単位を含まない場合と比べて、酸素バリア部60の酸素バリア性がより向上する。このため、高湿環境下でも光電変換素子100がより優れた耐久性を有することが可能となる。このような樹脂としては、例えばブテンジオール-ビニルアルコール共重合体、ポリビニルアルコール重合体及びエチレン-ビニルアルコール共重合体などが挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。 The material constituting the oxygen barrier section 60 only needs to contain a resin having a hydroxyl group. The resin having a hydroxyl group is not particularly limited as long as it has a hydroxyl group, but is preferably a resin containing a vinyl alcohol unit. In this case, the oxygen barrier property of the oxygen barrier unit 60 is further improved as compared with the case where no vinyl alcohol unit is included. For this reason, the photoelectric conversion element 100 can have more excellent durability even in a high humidity environment. Examples of such a resin include butenediol-vinyl alcohol copolymer, polyvinyl alcohol polymer, and ethylene-vinyl alcohol copolymer. These can be used alone or in combination of two or more.
 上記樹脂中のビニルアルコール単位の含有量は、特に限定されるものではないが、20~70mol%であることが好ましい。この場合、上記樹脂が成形性に優れるため、より安定した酸素バリア性構造体の形成が可能になる。 The content of the vinyl alcohol unit in the resin is not particularly limited, but is preferably 20 to 70 mol%. In this case, since the resin is excellent in moldability, a more stable oxygen barrier structure can be formed.
 酸素バリア部60の厚さは特に限定されるものではないが、5~50μmであることが好ましい。この場合、成形性がより良く、かつ、酸素バリア部60の強度が十分大きくなるため、より一層安定した酸素バリア性構造体の形成が可能になる。 The thickness of the oxygen barrier portion 60 is not particularly limited, but is preferably 5 to 50 μm. In this case, the moldability is better and the strength of the oxygen barrier portion 60 is sufficiently increased, so that a more stable oxygen barrier structure can be formed.
 ≪接着部≫
 接着部80は、遮水部70と酸素バリア部60とを接着できるものであれば特に限定されるものではないが、接着部80は、水酸基と、遮水部70に含まれる官能基と同一の官能基とを有する材料を含むことが好ましい。この場合、酸素バリア部60と遮水部70との間の接着力がより向上する。このような接着部80を構成する接着剤としては、例えば、ビスフェノールA型エポキシ樹脂及びその変性樹脂などが挙げられる。
≪Adhesive part≫
The bonding portion 80 is not particularly limited as long as it can bond the water shielding portion 70 and the oxygen barrier portion 60, but the bonding portion 80 is the same as the hydroxyl group and the functional group included in the water shielding portion 70. It is preferable to include a material having a functional group of In this case, the adhesive force between the oxygen barrier part 60 and the water shielding part 70 is further improved. As an adhesive which comprises such an adhesion part 80, bisphenol A type epoxy resin, its modified resin, etc. are mentioned, for example.
 次に、上述した光電変換素子100の製造方法について説明する。 Next, a method for manufacturing the above-described photoelectric conversion element 100 will be described.
 まず1つの透明基板11の上に、透明導電層12を形成してなる電極基板10を用意する。 First, an electrode substrate 10 having a transparent conductive layer 12 formed on one transparent substrate 11 is prepared.
 透明導電層12の形成方法としては、スパッタ法、蒸着法、スプレー熱分解法及びCVD法などが用いられる。これらのうちスプレー熱分解法が装置コストの点から好ましい。 As a method for forming the transparent conductive layer 12, a sputtering method, a vapor deposition method, a spray pyrolysis method, a CVD method, or the like is used. Of these, the spray pyrolysis method is preferable from the viewpoint of apparatus cost.
 次に、電極基板10の透明導電層12上に酸化物半導体層50を形成する。酸化物半導体層50は、酸化物半導体粒子を含む多孔質酸化物半導体層形成用ペーストを印刷した後、焼成することによって形成することができる。 Next, the oxide semiconductor layer 50 is formed on the transparent conductive layer 12 of the electrode substrate 10. The oxide semiconductor layer 50 can be formed by printing a porous oxide semiconductor layer forming paste containing oxide semiconductor particles, followed by firing.
 酸化物半導体層形成用ペーストは、上述した酸化物半導体粒子のほか、ポリエチレングリコールなどの樹脂及び、テルピネオールなどの溶媒を含む。 The oxide semiconductor layer forming paste contains a resin such as polyethylene glycol and a solvent such as terpineol in addition to the oxide semiconductor particles described above.
 酸化物半導体層形成用ペーストの印刷方法としては、例えばスクリーン印刷法、ドクターブレード法、バーコート法などを用いることができる。 As a printing method of the oxide semiconductor layer forming paste, for example, a screen printing method, a doctor blade method, a bar coating method, or the like can be used.
 焼成温度は酸化物半導体粒子の材質により異なるが、通常は350℃~600℃であり、焼成時間も、酸化物半導体粒子の材質により異なるが、通常は0.5~5時間である。 The firing temperature varies depending on the material of the oxide semiconductor particles, but is usually 350 ° C. to 600 ° C., and the firing time also varies depending on the material of the oxide semiconductor particles, but is usually 0.5 to 5 hours.
 次に、電極基板10の酸化物半導体層50に色素を担持させる。このためには、電極基板10を、色素を含有する溶液の中に浸漬させ、その色素を酸化物半導体層50に吸着させた後に上記溶液の溶媒成分で余分な色素を洗い流し、乾燥させることで、色素を酸化物半導体層50に吸着させればよい。但し、色素を含有する溶液を酸化物半導体層50に塗布した後、乾燥させることによって色素を酸化物半導体層50に吸着させても、色素を酸化物半導体層50に担持させることが可能である。 Next, a dye is supported on the oxide semiconductor layer 50 of the electrode substrate 10. For this purpose, the electrode substrate 10 is immersed in a solution containing a dye, the dye is adsorbed on the oxide semiconductor layer 50, and then the excess dye is washed away with the solvent component of the solution and dried. The dye may be adsorbed on the oxide semiconductor layer 50. However, the dye can be supported on the oxide semiconductor layer 50 even when the dye is adsorbed to the oxide semiconductor layer 50 by applying a solution containing the dye to the oxide semiconductor layer 50 and then drying the solution. .
 次に、環状の封止部形成体を準備する。封止部形成体は、例えば封止用樹脂フィルムを用意し、その封止用樹脂フィルムに1つの四角形状の開口を形成することによって得ることができる。 Next, an annular sealing part forming body is prepared. The sealing part forming body can be obtained, for example, by preparing a sealing resin film and forming one rectangular opening in the sealing resin film.
 そして、この封止部形成体を、電極基板10上に、酸化物半導体層50を包囲するように配置して電極基板10上に接着させる。このとき、封止部形成体の電極基板10への接着は、例えば封止部形成体を加熱溶融させることによって行うことができる。 And this sealing part formation body is arrange | positioned on the electrode substrate 10 so that the oxide semiconductor layer 50 may be surrounded, and it adhere | attaches on the electrode substrate 10. FIG. At this time, adhesion of the sealing portion forming body to the electrode substrate 10 can be performed, for example, by heating and melting the sealing portion forming body.
 次に、電解質40を用意する。そして、電解質40を電極基板10上に固定した環状の封止部形成体の内側に配置する。 Next, an electrolyte 40 is prepared. And the electrolyte 40 is arrange | positioned inside the cyclic | annular sealing part formation body fixed on the electrode substrate 10. FIG.
 次に、対向基板20を用意する。 Next, the counter substrate 20 is prepared.
 対向基板20は、上述したように、導電性基板21と、導電性基板21のうち電極基板10側に設けられて対向基板20の表面における還元反応を促進する導電性の触媒層22とを備えるものである。 As described above, the counter substrate 20 includes the conductive substrate 21 and the conductive catalyst layer 22 that is provided on the electrode substrate 10 side of the conductive substrate 21 and promotes the reduction reaction on the surface of the counter substrate 20. Is.
 そして、用意した対向基板20を、封止部形成体の開口を塞ぐように配置した後、封止部形成体と貼り合わせる。こうして、電極基板10と対向基板20との間に封止部30が形成される。対向基板20の封止部形成体への貼合せは、大気圧下で行っても減圧下で行ってもよいが、減圧下で行うことが好ましい。 And after arrange | positioning the prepared opposing board | substrate 20 so that the opening of a sealing part formation body may be plugged up, it bonds together with a sealing part formation body. Thus, the sealing portion 30 is formed between the electrode substrate 10 and the counter substrate 20. Lamination of the counter substrate 20 to the sealing portion forming body may be performed under atmospheric pressure or under reduced pressure, but is preferably performed under reduced pressure.
 次に、酸素バリア部形成体を用意する。酸素バリア部形成体は、例えば水酸基を有する樹脂フィルムを用意し、その樹脂フィルムに1つの四角形状の開口を形成することによって得ることができる。 Next, an oxygen barrier part forming body is prepared. The oxygen barrier part forming body can be obtained, for example, by preparing a resin film having a hydroxyl group and forming one rectangular opening in the resin film.
 そして、この酸素バリア部形成体を、封止部30の露出した面を被覆する本体部61と、本体部61から対向基板20のうち電極基板10の反対側の面まで延びて対向基板20に接着される延在部62とを形成するように接着させる。このとき、酸素バリア部形成体の封止部30及び対向基板20への接着は、例えば酸素バリア部形成体を加熱溶融させることによって行うことができる。こうして、封止部30の外側に酸素バリア部60が形成される。 And this oxygen barrier part formation body is extended from the main body part 61 covering the exposed surface of the sealing part 30 to the opposite side of the electrode substrate 10 from the main body part 61 to the counter substrate 20. The extension part 62 to be bonded is bonded to form. At this time, adhesion of the oxygen barrier portion forming body to the sealing portion 30 and the counter substrate 20 can be performed, for example, by heating and melting the oxygen barrier portion forming body. Thus, the oxygen barrier part 60 is formed outside the sealing part 30.
 次に、酸素バリア部60の露出部及び対向基板20のうち電極基板10と反対側の面を覆うように接着部80を形成する。接着部80は、例えば、酸素バリア部60の露出部及び対向基板20のうち電極基板10と反対側の面に接着剤を塗布した後、乾燥させることによって形成することができる。 Next, an adhesive portion 80 is formed so as to cover the exposed portion of the oxygen barrier portion 60 and the surface of the counter substrate 20 opposite to the electrode substrate 10. The adhesive part 80 can be formed, for example, by applying an adhesive to the exposed part of the oxygen barrier part 60 and the surface of the counter substrate 20 opposite to the electrode substrate 10 and then drying the adhesive.
 次に、接着部80の露出部を覆うように接着部80の上に遮水部70を形成する。遮水部70は、例えばエポキシ樹脂などの樹脂を含む遮水部形成体を接着部80の上に塗布し、加熱して硬化させることによって形成することができる。 Next, the water shielding part 70 is formed on the adhesive part 80 so as to cover the exposed part of the adhesive part 80. The water shielding part 70 can be formed by applying a water shielding part forming body containing a resin such as an epoxy resin on the adhesive part 80 and curing it by heating.
 以上のようにして1つの光電変換セル90からなる光電変換素子100が得られる。 Thus, the photoelectric conversion element 100 including one photoelectric conversion cell 90 is obtained.
 本発明は、上記実施形態に限定されるものではない。例えば上記実施形態では、酸化物半導体層50が電極基板10のうち対向基板20側の面上に設けられているが、酸化物半導体層50は、対向基板20上に設けられていてもよい。但し、この場合、対向基板20の触媒層22は、電極基板10の上に設けられることになる。 The present invention is not limited to the above embodiment. For example, in the above embodiment, the oxide semiconductor layer 50 is provided on the surface of the electrode substrate 10 on the counter substrate 20 side. However, the oxide semiconductor layer 50 may be provided on the counter substrate 20. However, in this case, the catalyst layer 22 of the counter substrate 20 is provided on the electrode substrate 10.
 また上記実施形態では、光電変換素子100が1つの光電変換セル90で構成されているが、光電変換素子100は、光電変換セル90を複数備えていてもよい。 In the above embodiment, the photoelectric conversion element 100 is configured by one photoelectric conversion cell 90, but the photoelectric conversion element 100 may include a plurality of photoelectric conversion cells 90.
 さらに、上記実施形態では、光電変換素子100が酸素バリア部60と遮水部70との間に接着部80を有しているが、接着部80は省略しても構わない。 Furthermore, in the said embodiment, although the photoelectric conversion element 100 has the adhesion part 80 between the oxygen barrier part 60 and the water-impervious part 70, the adhesion part 80 may be abbreviate | omitted.
 また、上記実施形態では、光電変換セル90において酸素バリア部60が本体部61と延在部62とを有しているが、少なくとも封止部30が酸素バリア部60で覆われていればよいため、酸素バリア部60は必ずしも延在部62を有していなくてもよい。 Moreover, in the said embodiment, although the oxygen barrier part 60 has the main-body part 61 and the extension part 62 in the photoelectric conversion cell 90, the sealing part 30 should just be covered with the oxygen barrier part 60 at least. Therefore, the oxygen barrier part 60 does not necessarily have the extending part 62.
 さらに、上記実施形態では、遮水部70は、酸素バリア部60、及び、対向基板20のうち電極基板10と反対側の面を覆っているが、酸素バリア部60の外側の面が遮水部70で覆われていればよいため、遮水部70は、対向基板20のうち電極基板10と反対側の面を覆っていなくてもよい。 Furthermore, in the said embodiment, although the water shielding part 70 has covered the surface on the opposite side to the electrode substrate 10 among the oxygen barrier part 60 and the opposing board | substrate 20, the surface outside the oxygen barrier part 60 is water shielding. Since the water shielding portion 70 may be covered with the portion 70, the water shielding portion 70 may not cover the surface of the counter substrate 20 opposite to the electrode substrate 10.
 また上記実施形態では、導電性基板21と触媒層22とが対向基板20を構成しているが、図2に示す光電変換素子200の光電変換セル290のように、対向基板として、対向基板20に代えて、絶縁性基板220を用いてもよい。この場合、絶縁性基板220と封止部30と電極基板10との間の空間には構造体202が配置される。構造体202は、電極基板10のうち絶縁性基板220側の面上に設けられている。構造体202は、電極基板10側から順に、酸化物半導体層50、多孔質絶縁層203及び対極201で構成される。また上記空間には電解質40が配置されている。電解質40は、酸化物半導体層50及び多孔質絶縁層203の内部にまで含浸されている。ここで、絶縁性基板220としては、例えばガラス基板又は樹脂フィルムなどを用いることができる。また対極201としては、対向基板20と同様のものを用いることができる。あるいは、対極201は、例えばカーボン等を含む多孔質の単一の層で構成されてもよい。多孔質絶縁層203は、主として、酸化物半導体層50と対向基板220との物理的接触を防ぎ、電解質40を内部に含浸させるためのものである。このような多孔質絶縁層203としては、例えば酸化物の焼成体を用いることができる。なお、図2に示す光電変換素子200においては、封止部30と電極基板10と絶縁性基板220との間の空間に構造体202が1つのみ設けられているが、構造体202は複数設けられていてもよい。また、多孔質絶縁層203は、酸化物半導体層50と対極201との間に設けられているが、酸化物半導体層50を囲むように、電極基板10と対極201との間に設けてもよい。この構成でも、酸化物半導体層50と対極201との物理的接触を防ぐことができる。 Moreover, in the said embodiment, although the electroconductive board | substrate 21 and the catalyst layer 22 comprise the opposing board | substrate 20, like the photoelectric conversion cell 290 of the photoelectric conversion element 200 shown in FIG. Instead of this, an insulating substrate 220 may be used. In this case, the structure 202 is disposed in the space between the insulating substrate 220, the sealing portion 30, and the electrode substrate 10. The structure 202 is provided on the surface of the electrode substrate 10 on the insulating substrate 220 side. The structure 202 includes an oxide semiconductor layer 50, a porous insulating layer 203, and a counter electrode 201 in order from the electrode substrate 10 side. An electrolyte 40 is disposed in the space. The electrolyte 40 is impregnated into the oxide semiconductor layer 50 and the porous insulating layer 203. Here, as the insulating substrate 220, for example, a glass substrate or a resin film can be used. As the counter electrode 201, the same electrode as the counter substrate 20 can be used. Alternatively, the counter electrode 201 may be composed of a porous single layer including, for example, carbon. The porous insulating layer 203 is mainly for preventing physical contact between the oxide semiconductor layer 50 and the counter substrate 220 and impregnating the electrolyte 40 therein. As such a porous insulating layer 203, for example, a fired body of an oxide can be used. Note that in the photoelectric conversion element 200 illustrated in FIG. 2, only one structure 202 is provided in the space between the sealing unit 30, the electrode substrate 10, and the insulating substrate 220. It may be provided. The porous insulating layer 203 is provided between the oxide semiconductor layer 50 and the counter electrode 201, but may be provided between the electrode substrate 10 and the counter electrode 201 so as to surround the oxide semiconductor layer 50. Good. Even in this configuration, physical contact between the oxide semiconductor layer 50 and the counter electrode 201 can be prevented.
 以下、本発明の内容を、実施例を挙げてより具体的に説明するが、本発明は下記の実施例に限定されるものではない。 Hereinafter, the content of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
 (実施例1)
 まずガラスからなる厚さ2.2mmの透明基板の上に、厚さ0.6μmのFTOからなる透明導電層を形成してなる積層体を準備した。そして、積層体の透明導電層を形成した面のうち端子となる部分を除く端部に、焼結後の厚さが10μmとなるようにガラスペーストを印刷後、500℃で0.5時間焼結することで、電極基板と対向基板との接触を防止する為の短絡防止層を作製した。こうして電極基板を得た。
Example 1
First, a laminate was prepared by forming a transparent conductive layer made of FTO having a thickness of 0.6 μm on a transparent substrate made of glass having a thickness of 2.2 mm. And after printing glass paste so that the thickness after sintering may become 10 micrometers in the edge part except the part used as a terminal among the surfaces in which the transparent conductive layer of the laminated body was formed, it baked at 500 degreeC for 0.5 hour. As a result, a short-circuit prevention layer for preventing contact between the electrode substrate and the counter substrate was produced. Thus, an electrode substrate was obtained.
 次に、電極基板の透明導電層の上に、チタニアを含む酸化物半導体層形成用ペーストを塗布し乾燥した後、500℃で0.5時間焼成した。こうして電極基板上に酸化物半導体層を形成した。 Next, an oxide semiconductor layer forming paste containing titania was applied onto the transparent conductive layer of the electrode substrate and dried, followed by baking at 500 ° C. for 0.5 hour. Thus, an oxide semiconductor layer was formed over the electrode substrate.
 次に、電極基板を、シス-ジ(チオシアナート)-(2,2'-ビピリジル-4,4'-ジカルボン酸)(4,4'-ジノニル-2,2'-ビピリジル)-ルテニウム(II)(Z907)からなる光増感色素を0.2mM含み、溶媒として体積比1:1で混合したアセトニトリルとt-ブタノールの混合溶媒を用いた色素溶液中に一晩浸漬させた後、取り出して乾燥させ、酸化物半導体層に光増感色素を担持させた。 Next, the electrode substrate is converted into cis-di (thiocyanate)-(2,2′-bipyridyl-4,4′-dicarboxylic acid) (4,4′-dinonyl-2,2′-bipyridyl) -ruthenium (II). It was immersed in a dye solution containing 0.2 mM of a photosensitizing dye consisting of (Z907) and mixed with acetonitrile and t-butanol mixed at a volume ratio of 1: 1 as a solvent, and then taken out and dried. The photosensitizing dye was supported on the oxide semiconductor layer.
 次に、組成物からなる55mm×55mm×50μmの封止用樹脂フィルム(商品名「バイネル4164」、デュポン社製)を用意し、その封止用樹脂フィルムに50mm×50mm×50μmの開口を1つ形成することによって封止部形成体を用意した。 Next, a 55 mm × 55 mm × 50 μm sealing resin film (trade name “Binell 4164”, manufactured by DuPont) made of the composition is prepared, and an opening of 50 mm × 50 mm × 50 μm is formed on the sealing resin film. The sealing part formation body was prepared by forming one.
 そして、この封止部形成体を、電極基板の上に載せた後、封止部形成体を加熱溶融させることによって電極基板に接着させた。 Then, after this sealing part forming body was placed on the electrode substrate, the sealing part forming body was bonded to the electrode substrate by heating and melting.
 次に、電解質として、3-メトキシプロピオニトリルからなる溶媒中に、ヨウ素を0.002M、1,2-ジメチル-3-プロピルイミダゾリウムアイオダイドを0.6Mとなるように溶解させたものを用意し、この電解質を封止部の内側に配置した。 Next, an electrolyte in which iodine is dissolved to 0.002M and 1,2-dimethyl-3-propylimidazolium iodide to 0.6M in a solvent composed of 3-methoxypropionitrile is used. This electrolyte was prepared and placed inside the sealing part.
 次に、対向基板を用意した。対向基板は、厚さ40μmのチタン箔の上にスパッタリングによって、厚さ5nmの白金からなる触媒層を形成することによって用意した。 Next, a counter substrate was prepared. The counter substrate was prepared by forming a catalyst layer made of platinum having a thickness of 5 nm on a titanium foil having a thickness of 40 μm by sputtering.
 そして、対向基板を、封止部形成体の開口を塞ぐように配置した後、封止部形成体と貼り合せた。そして、この状態で封止部形成体を0.1MPaで加圧しながら190℃で加熱し、封止部形成体を加熱溶融させた。こうして電極基板と対向基板との間に封止部を形成した。 And after arrange | positioning a counter substrate so that the opening of a sealing part formation body may be plugged up, it bonded together with the sealing part formation body. In this state, the sealing portion forming body was heated at 190 ° C. while being pressurized at 0.1 MPa, and the sealing portion forming body was heated and melted. Thus, a sealing portion was formed between the electrode substrate and the counter substrate.
 次に、酸素バリア部を形成するための組成物からなる酸素バリア部形成体を用意した。酸素バリア部形成体は、厚さ30μmの樹脂フィルム(エチレン-ビニルアルコール共重合体、ビニルアルコール単位の含有率56mol%、水蒸気透過係数:0.81g・mm/m・24h(40℃、90%RH条件下))に45mm×45mm×30μmの開口を1つ形成することによって用意した。 Next, an oxygen barrier part forming body made of a composition for forming the oxygen barrier part was prepared. The oxygen barrier portion forming body is a resin film having a thickness of 30 μm (ethylene-vinyl alcohol copolymer, vinyl alcohol unit content: 56 mol%, water vapor transmission coefficient: 0.81 g · mm / m 2 · 24 h (40 ° C., 90 % RH))) to form one opening of 45 mm × 45 mm × 30 μm.
 そして、この酸素バリア部形成体を、封止部のうち露出している外側の面全体を覆うように配置した後、210℃で加熱することで酸素バリア部形成体を封止部に加熱融着させた。こうして、酸素バリア層を形成した。 The oxygen barrier portion forming body is disposed so as to cover the entire exposed outer surface of the sealing portion, and then heated at 210 ° C. to heat and melt the oxygen barrier portion forming body to the sealing portion. I wore it. Thus, an oxygen barrier layer was formed.
 次に、酸素バリア部のうち大気に露出している外側の面と、対向基板のうち電極基板と反対側の面全体を覆うように接着剤(商品名「ハイタッチベルデ」、大同塗料社製)を、乾燥後の厚さが20μmとなるように塗布し、乾燥させることで接着部を形成した。 Next, an adhesive (trade name “Hi-Touch Verde”, manufactured by Daido Paint Co., Ltd.) covers the outer surface of the oxygen barrier that is exposed to the atmosphere and the entire surface of the counter substrate opposite to the electrode substrate. Was applied so that the thickness after drying was 20 μm and dried to form an adhesive portion.
 最後に、遮水部形成体を、接着部全体を覆うように且つ硬化後の厚さが100μmとなるように塗布し、オーブン(製品名「HISPEC横型 HT210S」、ETAC社製)にて、室温から80℃まで10℃/hで昇温し、80℃で1時間保持することで、遮水部を形成した。このとき、遮水部形成体としては、エポキシ樹脂(商品名「マクシーブ」、三菱瓦斯化学社製)に、無機物としての粘土鉱物(商品名「エスベンNZ」、ホージュン社製)を添加した組成物を使用した。また、遮水部形成体中の粘土鉱物の含有率は2質量%となるようにした。 Finally, the water shielding portion forming body is applied so as to cover the entire adhesive portion and have a thickness after curing of 100 μm, and in an oven (product name “HISPEC horizontal type HT210S”, manufactured by ETAC) at room temperature. The temperature was raised from 10 to 80 ° C. at 10 ° C./h and held at 80 ° C. for 1 hour to form a water shielding portion. At this time, as the water shielding part forming body, an epoxy resin (trade name “Maxive”, manufactured by Mitsubishi Gas Chemical Co., Ltd.) and a clay mineral (trade name “Esven NZ”, manufactured by Hojun Co.) as an inorganic substance are added. It was used. Moreover, the content rate of the clay mineral in a water-impervious part formation body was made to be 2 mass%.
 こうして1つの光電変換セルからなる光電変換素子を得た。 Thus, a photoelectric conversion element composed of one photoelectric conversion cell was obtained.
 上記のようにして得られた光電変換素子の遮水部及び酸素バリア部の形成に用いた組成物と同様の組成物を用いて、厚さ50μmの水蒸気透過係数測定用フィルムを用意し、この水蒸気透過係数測定用フィルムについて、40℃、90%RH(相対湿度)における水蒸気透過係数を透湿カップ(製品名「透湿カップ(ねじ締付式) JIS Z 0208」、井本製作所社製)を用いて測定し、下記式(1)で表される水蒸気透過係数比Rを求めた。結果を表1に示す。なお、表1における水蒸気透過係数の単位は「g・mm/m・24h」である。
 
=A/B   (1)
(上記式(1)中、Aは遮水部の40℃、90%RHにおける水蒸気透過係数(g・mm/m・24h)を表し、Bは酸素バリア部の40℃、90%RHにおける水蒸気透過係数(g・mm/m・24h)を表す。)
 
Using a composition similar to the composition used for forming the water shielding part and oxygen barrier part of the photoelectric conversion element obtained as described above, a film for measuring a water vapor transmission coefficient having a thickness of 50 μm was prepared. For the film for measuring the water vapor transmission coefficient, the water vapor transmission coefficient at 40 ° C. and 90% RH (relative humidity) was measured using a moisture permeable cup (product name “moisture permeable cup (screw tightening type) JIS Z 0208”, manufactured by Imoto Seisakusho). The water vapor transmission coefficient ratio R 1 represented by the following formula (1) was determined. The results are shown in Table 1. The unit of the water vapor transmission coefficient in Table 1 is “g · mm / m 2 · 24h”.

R 1 = A / B (1)
(In the above formula (1), A represents the water vapor transmission coefficient (g · mm / m 2 · 24h) at 40 ° C. and 90% RH of the water shielding portion, and B represents 40 ° C. and 90% RH of the oxygen barrier portion. Water vapor transmission coefficient (g · mm / m 2 · 24 h)
 また、上記のようにして得られた光電変換素子の酸素バリア部及び封止部の形成に用いた組成物と同様の組成物を用いて厚さ50μmの酸素透過係数測定用フィルムを用意し、22℃、相対湿度90%における酸素透過係数を酸素透過度測定装置(製品名「OXTRAN」、MOCON社製)を用い、JIS K7126-2に従って測定し、下記式(2)で表される酸素透過係数比Rを求めた。結果を表1に示す。なお、表1における酸素透過係数の単位は「cc・mm/m・24h/atm」である。
 
=C/D   (2)
(上記式(2)中、Cは酸素バリア部の22℃、90%RHにおける酸素透過係数(cc・mm/m・24h/atm)を表し、Dは封止部の22℃、90%RHにおける酸素透過係数(cc・mm/m・24h/atm)を表す。)
 
In addition, using a composition similar to the composition used for forming the oxygen barrier part and the sealing part of the photoelectric conversion element obtained as described above, an oxygen permeability coefficient measurement film having a thickness of 50 μm is prepared, The oxygen permeation coefficient at 22 ° C. and 90% relative humidity was measured according to JIS K7126-2 using an oxygen permeation measuring device (product name “OXTRAN”, manufactured by MOCON), and represented by the following formula (2). It was determined coefficient ratio R 2. The results are shown in Table 1. The unit of the oxygen transmission coefficient in Table 1 is “cc · mm / m 2 · 24 h / atm”.

R 2 = C / D (2)
(In the above formula (2), C represents an oxygen transmission coefficient (cc · mm / m 2 · 24 h / atm) at 22 ° C. and 90% RH of the oxygen barrier portion, and D represents 22 ° C. and 90% of the sealing portion. Oxygen permeability coefficient in RH (cc · mm / m 2 · 24 h / atm).
 (実施例2)
 遮水部形成体中の無機物として、粘土鉱物の代わりに、乾燥剤としてのゼオライトを用い、酸素バリア部の水蒸気透過係数、遮水部の水蒸気透過係数、水蒸気透過係数比R、封止部の酸素透過係数、酸素バリア部の酸素透過係数、並びに酸素透過係数比Rを表1に示す通りとしたこと以外は実施例1と同様にして光電変換素子を作製した。
(Example 2)
Instead of clay mineral, zeolite as a desiccant is used as the inorganic substance in the water-impervious part forming body, and the water vapor transmission coefficient of the oxygen barrier part, the water vapor transmission coefficient of the water-impervious part, the water vapor transmission coefficient ratio R 1 , the sealing part oxygen permeability, an oxygen permeability coefficient of oxygen barrier section, as well as to prepare a photoelectric conversion element oxygen permeability coefficient ratio R 2 in the same manner as in example 1 except that were as shown in Table 1.
 (実施例3)
 遮水部形成体において粘土鉱物を含めず、酸素バリア部の水蒸気透過係数、遮水部の水蒸気透過係数、水蒸気透過係数比R、封止部の酸素透過係数、酸素バリア部の酸素透過係数、並びに酸素透過係数比Rを表1に示す通りとしたこと以外は実施例1と同様にして光電変換素子を作製した。
Example 3
Clay mineral is not included in the water-impervious part forming body, the water vapor transmission coefficient of the oxygen barrier part, the water vapor transmission coefficient of the water shielding part, the water vapor transmission coefficient ratio R 1 , the oxygen transmission coefficient of the sealing part, the oxygen transmission coefficient of the oxygen barrier part , as well as to prepare a photoelectric conversion element oxygen permeability coefficient ratio R 2 in the same manner as in example 1 except that it was as shown in Table 1.
 (実施例4)
 接着部を形成せず、酸素バリア部の水蒸気透過係数、遮水部の水蒸気透過係数、水蒸気透過係数比R、封止部の酸素透過係数、酸素バリア部の酸素透過係数、並びに酸素透過係数比Rを表1に示す通りとしたこと以外は実施例1と同様にして光電変換素子を作製した。
Example 4
Without forming an adhesive part, the water vapor transmission coefficient of the oxygen barrier part, the water vapor transmission coefficient of the water shielding part, the water vapor transmission coefficient ratio R 1 , the oxygen transmission coefficient of the sealing part, the oxygen transmission coefficient of the oxygen barrier part, and the oxygen transmission coefficient to prepare a photoelectric conversion element the ratio R 2 in the same manner as in example 1 except that it was as shown in Table 1.
 (実施例5)
 接着部を形成せず、遮水部形成体において粘土鉱物を含めず、酸素バリア部の水蒸気透過係数、遮水部の水蒸気透過係数、水蒸気透過係数比R、封止部の酸素透過係数、酸素バリア部の酸素透過係数、並びに酸素透過係数比Rを表1に示す通りとしたこと以外は実施例1と同様にして光電変換素子を作製した。
(Example 5)
No adhesion part is formed, no clay mineral is included in the water shielding part forming body, the water vapor transmission coefficient of the oxygen barrier part, the water vapor transmission coefficient of the water shielding part, the water vapor transmission coefficient ratio R 1 , the oxygen transmission coefficient of the sealing part, oxygen permeability coefficient of oxygen barrier section, as well as to prepare a photoelectric conversion element oxygen permeability coefficient ratio R 2 in the same manner as in example 1 except that were as shown in Table 1.
 (比較例1)
 遮水部及び接着部を形成せず、酸素バリア部の水蒸気透過係数、遮水部の水蒸気透過係数、水蒸気透過係数比R、封止部の酸素透過係数、酸素バリア部の酸素透過係数、並びに酸素透過係数比Rを表1に示す通りとしたこと以外は実施例1と同様にして光電変換素子を作製した。
(Comparative Example 1)
Without forming a water shielding part and an adhesive part, the water vapor transmission coefficient of the oxygen barrier part, the water vapor transmission coefficient of the water shielding part, the water vapor transmission coefficient ratio R 1 , the oxygen transmission coefficient of the sealing part, the oxygen transmission coefficient of the oxygen barrier part, as well as to prepare a photoelectric conversion element oxygen permeability coefficient ratio R 2 in the same manner as in example 1 except that were as shown in Table 1.
 (比較例2)
 酸素バリア部、接着部及び遮水部を形成せず、酸素バリア部の水蒸気透過係数、遮水部の水蒸気透過係数、水蒸気透過係数比R、封止部の酸素透過係数、酸素バリア部の酸素透過係数、並びに酸素透過係数比Rを表1に示す通りとしたこと以外は実施例1と同様にして光電変換素子を作製した。
(Comparative Example 2)
Without forming the oxygen barrier part, the bonding part and the water shielding part, the water vapor transmission coefficient of the oxygen barrier part, the water vapor transmission coefficient of the water shielding part, the water vapor transmission coefficient ratio R 1 , the oxygen transmission coefficient of the sealing part, oxygen permeability, as well as to prepare a photoelectric conversion element oxygen permeability coefficient ratio R 2 in the same manner as in example 1 except that were as shown in Table 1.
 (比較例3)
 封止部を形成した後、遮水部、接着部及び酸素バリア部を順次形成し、酸素バリア部の水蒸気透過係数、遮水部の水蒸気透過係数、水蒸気透過係数比R、封止部の酸素透過係数、酸素バリア部の酸素透過係数、並びに酸素透過係数比Rを表1に示す通りとしたこと以外は実施例1と同様にして光電変換素子を作製した。
(Comparative Example 3)
After forming the sealing portion, a water shielding portion, an adhesion portion, and an oxygen barrier portion are sequentially formed, and the water vapor transmission coefficient of the oxygen barrier portion, the water vapor transmission coefficient of the water shielding portion, the water vapor transmission coefficient ratio R 1 , A photoelectric conversion element was produced in the same manner as in Example 1 except that the oxygen transmission coefficient, the oxygen transmission coefficient of the oxygen barrier portion, and the oxygen transmission coefficient ratio R 2 were as shown in Table 1.
 (比較例4)
 封止部を形成した後、遮水部及び酸素バリア部を順次形成し、酸素バリア部の水蒸気透過係数、遮水部の水蒸気透過係数、水蒸気透過係数比R、封止部の酸素透過係数、酸素バリア部の酸素透過係数、並びに酸素透過係数比Rを表1に示す通りとしたこと以外は実施例1と同様にして光電変換素子を作製した。
(Comparative Example 4)
After forming the sealing portion, the water shielding portion and the oxygen barrier portion are sequentially formed, and the water vapor transmission coefficient of the oxygen barrier portion, the water vapor transmission coefficient of the water shielding portion, the water vapor transmission coefficient ratio R 1 , and the oxygen transmission coefficient of the sealing portion , the oxygen permeability coefficient of oxygen barrier section, as well as to prepare a photoelectric conversion element oxygen permeability coefficient ratio R 2 in the same manner as in example 1 except that were as shown in Table 1.
 (比較例5)
 接着部を形成せず、酸素バリア部、封止部、遮水部を順次形成し、酸素バリア部の水蒸気透過係数、遮水部の水蒸気透過係数、水蒸気透過係数比R、封止部の酸素透過係数、酸素バリア部の酸素透過係数、並びに酸素透過係数比Rを表1に示す通りとしたこと以外は実施例1と同様にして光電変換素子を作製した。
(Comparative Example 5)
Without forming an adhesive part, an oxygen barrier part, a sealing part, and a water shielding part are sequentially formed, and a water vapor transmission coefficient of the oxygen barrier part, a water vapor transmission coefficient of the water shielding part, a water vapor transmission coefficient ratio R 1 , A photoelectric conversion element was produced in the same manner as in Example 1 except that the oxygen transmission coefficient, the oxygen transmission coefficient of the oxygen barrier portion, and the oxygen transmission coefficient ratio R 2 were as shown in Table 1.
 (比較例6)
 酸素バリア部の水蒸気透過係数、遮水部の水蒸気透過係数、水蒸気透過係数比R、封止部の酸素透過係数、酸素バリア部の酸素透過係数、並びに酸素透過係数比Rを表1に示す通りとしたこと以外は実施例1と同様にして光電変換素子を作製した。
(Comparative Example 6)
Table 1 shows the water vapor transmission coefficient of the oxygen barrier part, the water vapor transmission coefficient of the impermeable part, the water vapor transmission coefficient ratio R 1 , the oxygen transmission coefficient of the sealing part, the oxygen transmission coefficient of the oxygen barrier part, and the oxygen transmission coefficient ratio R 2. A photoelectric conversion element was produced in the same manner as in Example 1 except that it was as shown.
 (実施例6)
 接着部を形成せず、遮水部形成体として、エポキシ樹脂及び粘土鉱物の代わりにブチルゴムを用い、遮水部形成体を200℃で加熱融着させることによって遮水部を形成し、酸素バリア部の水蒸気透過係数、遮水部の水蒸気透過係数、水蒸気透過係数比R、封止部の酸素透過係数、酸素バリア部の酸素透過係数、並びに酸素透過係数比Rを表2に示す通りとしたこと以外は実施例1と同様にして光電変換素子を作製した。
(Example 6)
An adhesive portion is not formed, but a water-blocking portion is formed by using butyl rubber instead of epoxy resin and clay mineral as a water-blocking portion forming body and heat-sealing the water-blocking portion forming body at 200 ° C. Table 2 shows the water vapor transmission coefficient of the part, the water vapor transmission coefficient of the impermeable part, the water vapor transmission coefficient ratio R 1 , the oxygen transmission coefficient of the sealing part, the oxygen transmission coefficient of the oxygen barrier part, and the oxygen transmission coefficient ratio R 2. A photoelectric conversion element was produced in the same manner as in Example 1 except that.
 (実施例7)
 接着部を形成せず、遮水部形成体として、エポキシ樹脂及び粘土鉱物の代わりに低密度ポリエチレンを用い、遮水部形成体を200℃で加熱融着させることによって遮水部を形成し、酸素バリア部の水蒸気透過係数、遮水部の水蒸気透過係数、水蒸気透過係数比R、封止部の酸素透過係数、酸素バリア部の酸素透過係数、並びに酸素透過係数比Rを表2に示す通りとしたこと以外は実施例1と同様にして光電変換素子を作製した。
(Example 7)
Without forming an adhesive part, using a low density polyethylene instead of an epoxy resin and clay mineral as a water shielding part forming body, forming a water shielding part by heat-sealing the water shielding part forming body at 200 ° C., Table 2 shows the water vapor transmission coefficient of the oxygen barrier part, the water vapor transmission coefficient of the impermeable part, the water vapor transmission coefficient ratio R 1 , the oxygen transmission coefficient of the sealing part, the oxygen transmission coefficient of the oxygen barrier part, and the oxygen transmission coefficient ratio R 2 A photoelectric conversion element was produced in the same manner as in Example 1 except that it was as shown.
 (比較例7)
 接着部を形成せず、遮水部形成体として、エポキシ樹脂及び粘土鉱物の代わりにポリビニルアルコールを用い、ポリビニルアルコールを含む水溶液を塗布し乾燥させることによって遮水部を形成し、酸素バリア部の水蒸気透過係数、遮水部の水蒸気透過係数、水蒸気透過係数比R、封止部の酸素透過係数、酸素バリア部の酸素透過係数、並びに酸素透過係数比Rを表2に示す通りとしたこと以外は実施例1と同様にして光電変換素子を作製した。
(Comparative Example 7)
Without forming an adhesive part, as a water shielding part forming body, polyvinyl alcohol is used instead of epoxy resin and clay mineral, and a water shielding part is formed by applying and drying an aqueous solution containing polyvinyl alcohol. Table 2 shows the water vapor transmission coefficient, the water vapor transmission coefficient of the impermeable part, the water vapor transmission coefficient ratio R 1 , the oxygen transmission coefficient of the sealing part, the oxygen transmission coefficient of the oxygen barrier part, and the oxygen transmission coefficient ratio R 2 . A photoelectric conversion element was produced in the same manner as in Example 1 except that.
 (比較例8)
 接着部を形成せず、遮水部形成体として、エポキシ樹脂及び粘土鉱物の代わりにナイロン6を用い、ヘキサフルオロ-2-プロパノールを溶媒とするナイロン6溶液を塗布して乾燥させることによって遮水部を形成し、酸素バリア部の水蒸気透過係数、遮水部の水蒸気透過係数、水蒸気透過係数比R、封止部の酸素透過係数、酸素バリア部の酸素透過係数、並びに酸素透過係数比Rを表2に示す通りとしたこと以外は実施例1と同様にして光電変換素子を作製した。
(Comparative Example 8)
Nylon 6 is used instead of epoxy resin and clay mineral as a water shielding part forming body without forming an adhesive part, and a nylon 6 solution using hexafluoro-2-propanol as a solvent is applied and dried. A water vapor transmission coefficient of the oxygen barrier part, a water vapor transmission coefficient of the water shielding part, a water vapor transmission coefficient ratio R 1 , an oxygen transmission coefficient of the sealing part, an oxygen transmission coefficient of the oxygen barrier part, and an oxygen transmission coefficient ratio R A photoelectric conversion element was produced in the same manner as in Example 1 except that 2 was set as shown in Table 2.
 <耐久性の評価>
 (1)乾燥条件下における耐久性の評価
 上記のようにして得られた実施例1~7及び比較例1~8の光電変換素子について、作製直後に200ルクスの白色光を照射した状態でIV曲線を測定し、このIV曲線から算出される最大出力動作電力Pm(μW)を「出力1」として算出した。なお、IV曲線の測定に用いた光源、照度計および電源は以下の通りである。
 
光源:白色LED(製品名「LEL-SL5N-F」、東芝ライテック社製)
照度計:製品名「デジタル照度計51013」、横河メータ&インスツルメンツ社製
電源:電圧/電流 発生器(製品名「R6246I」、ADVANTEST製)
 
<Durability evaluation>
(1) Evaluation of durability under dry conditions The photoelectric conversion elements of Examples 1 to 7 and Comparative Examples 1 to 8 obtained as described above were subjected to IV irradiation with 200 lux of white light immediately after production. The curve was measured, and the maximum output operating power Pm 0 (μW) calculated from the IV curve was calculated as “output 1”. The light source, illuminance meter, and power source used for measuring the IV curve are as follows.

Light source: White LED (product name “LEL-SL5N-F”, manufactured by Toshiba Lighting & Technology Corp.)
Illuminance meter: Product name “Digital Illuminance Meter 51013”, Yokogawa Meter & Instruments Power Supply: Voltage / Current Generator (Product name “R6246I”, ADVANTEST)
 そして、上記光電変換素子を、相対湿度0%の環境に置いた85℃のオーブン(製品名「DRK633DB」、ADVANTEC社製)中に200時間置いた後、大気下で1sunの疑似太陽光照射下で300時間置き再度200ルクスの上記の白色光を照射した状態でIV曲線を測定し、このIV曲線から算出される最大出力動作電力PW(μW)を「出力2」として算出した。そして、下記式に基づいて出力維持率(乾燥条件)を算出した。結果を表1及び2に示す。
 
出力維持率=出力2/出力1
 
The photoelectric conversion element was placed in an 85 ° C. oven (product name “DRK633DB”, manufactured by ADVANTEC) for 200 hours in an environment with a relative humidity of 0%, and then exposed to 1 sun of simulated sunlight in the atmosphere. Then, the IV curve was measured in the state where the above-mentioned white light of 200 lux was irradiated again for 300 hours, and the maximum output operating power PW (μW) calculated from this IV curve was calculated as “output 2”. And the output maintenance factor (drying conditions) was computed based on the following formula. The results are shown in Tables 1 and 2.

Output maintenance rate = Output 2 / Output 1
 (2)高湿度条件下における耐久性の評価
 上記のようにして得られた上記実施例1~7及び比較例1~8の光電変換素子について、上記と同様にして、作製直後に200ルクスの白色光を照射した状態でIV曲線を測定し、このIV曲線から算出される最大出力動作電力Pm(μW)を「出力1」として算出した。
(2) Evaluation of durability under high-humidity conditions The photoelectric conversion elements of Examples 1 to 7 and Comparative Examples 1 to 8 obtained as described above were subjected to 200 lux immediately after production in the same manner as described above. The IV curve was measured in a state where white light was irradiated, and the maximum output operating power Pm 0 (μW) calculated from the IV curve was calculated as “output 1”.
 そして、上記光電変換素子を85℃で相対湿度85%の恒温恒湿槽(製品名「PL-3KPH-E」、ESPEC社製)中に200時間置いた後、大気下で1sunの疑似太陽光照射下に300時間置き、再度200ルクスの上記の白色光を照射した状態でIV曲線を測定し、このIV曲線から算出される最大出力動作電力PW(μW)を「出力3」として算出した。そして、下記式に基づいて出力維持率(高湿度条件)を算出した。結果を表1及び2に示す。
 
出力維持率=出力3/出力1
 
The photoelectric conversion element is placed in a constant temperature and humidity chamber (product name “PL-3KPH-E”, manufactured by ESPEC) at 85 ° C. and a relative humidity of 85% for 200 hours, and then 1 sun pseudo-sunlight in the atmosphere. The IV curve was measured after being irradiated for 300 hours under irradiation and again irradiated with the above-described white light of 200 lux, and the maximum output operating power PW (μW) calculated from this IV curve was calculated as “output 3”. And the output maintenance factor (high humidity conditions) was computed based on the following formula. The results are shown in Tables 1 and 2.

Output maintenance rate = Output 3 / Output 1
 (3)合格基準
 耐久性の合格基準は以下の通りとした。
 
(合格基準)
高湿度条件下における出力維持率が0.95以上であること
 
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(3) Acceptance criteria The acceptance criteria for durability were as follows.

(passing grade)
Output maintenance rate under high humidity condition is 0.95 or more
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び2に示すように、実施例1~7で得られた光電変換素子は、高湿度条件下における耐久性の点で合格基準を満たすことが分かった。これに対し、比較例1~8で得られた光電変換素子は、高湿度条件下における耐久性の点で合格基準を満たさないことが分かった。 As shown in Tables 1 and 2, it was found that the photoelectric conversion elements obtained in Examples 1 to 7 satisfied the acceptance criteria in terms of durability under high humidity conditions. In contrast, it was found that the photoelectric conversion elements obtained in Comparative Examples 1 to 8 did not satisfy the acceptance criteria in terms of durability under high humidity conditions.
 以上より、本発明の光電変換素子によれば、高湿環境下でも優れた耐久性を有することが確認された。 From the above, it was confirmed that the photoelectric conversion element of the present invention has excellent durability even in a high humidity environment.
 10…電極基板
 20…対向基板
 30…封止部
 40…電解質
 60…酸素バリア部
 61…本体部
 62…延在部
 70…遮水部
 80…接着部
 90,290…光電変換セル
 100,200…光電変換素子
 201…対極
 202…構造体
 220…絶縁性基板(対向基板)
DESCRIPTION OF SYMBOLS 10 ... Electrode substrate 20 ... Opposite substrate 30 ... Sealing part 40 ... Electrolyte 60 ... Oxygen barrier part 61 ... Main-body part 62 ... Extension part 70 ... Water shielding part 80 ... Adhesion part 90,290 ... Photoelectric conversion cell 100,200 ... Photoelectric conversion element 201 ... Counter electrode 202 ... Structure 220 ... Insulating substrate (counter substrate)

Claims (13)

  1.  少なくとも1つの光電変換セルを有する光電変換素子において、
     前記光電変換セルが、
     電極基板と、
     前記電極基板に対向する対向基板と、
     前記電極基板及び前記対向基板を接合させる環状の封止部と、
     前記封止部の内側に配置される電解質と、
     前記封止部の外側に設けられ、前記封止部を被覆する酸素バリア部と、
     前記酸素バリア部の外側に設けられ、前記酸素バリア部を被覆する遮水部とを備えており、
     前記酸素バリア部が、水酸基を有する樹脂を含み、
     前記酸素バリア部の22℃、90%RHにおける酸素透過係数が前記封止部の22℃、90%RHにおける酸素透過係数よりも低く、
     前記遮水部の40℃、90%RHにおける水蒸気透過係数が前記酸素バリア部の40℃、90%RHにおける水蒸気透過係数よりも小さい、光電変換素子。
    In a photoelectric conversion element having at least one photoelectric conversion cell,
    The photoelectric conversion cell is
    An electrode substrate;
    A counter substrate facing the electrode substrate;
    An annular sealing portion for joining the electrode substrate and the counter substrate;
    An electrolyte disposed inside the sealing portion;
    An oxygen barrier portion provided outside the sealing portion and covering the sealing portion;
    A water shielding part that is provided outside the oxygen barrier part and covers the oxygen barrier part,
    The oxygen barrier portion includes a resin having a hydroxyl group,
    The oxygen permeability coefficient at 22 ° C. and 90% RH of the oxygen barrier part is lower than the oxygen permeability coefficient at 22 ° C. and 90% RH of the sealing part,
    The photoelectric conversion element in which the water vapor transmission coefficient at 40 ° C. and 90% RH of the water shielding part is smaller than the water vapor transmission coefficient at 40 ° C. and 90% RH of the oxygen barrier part.
  2.  前記水酸基を有する樹脂がビニルアルコール単位を含む、請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein the resin having a hydroxyl group contains a vinyl alcohol unit.
  3.  前記水酸基を有する樹脂中の前記ビニルアルコール単位の含有量が20~70mol%である、請求項2に記載の光電変換素子。 The photoelectric conversion device according to claim 2, wherein the content of the vinyl alcohol unit in the resin having a hydroxyl group is 20 to 70 mol%.
  4.  下記式(1)で表される水蒸気透過係数比Rが0.001~0.9である、請求項1~3のいずれか一項に記載の光電変換素子。
     
    =A/B   (1)
     
    (上記式(1)中、Aは前記遮水部の40℃、90%RHにおける水蒸気透過係数(g・mm/m・24h)を表し、Bは前記酸素バリア部の40℃、90%RHにおける水蒸気透過係数(g・mm/m・24h)を表す。)
    The photoelectric conversion element according to any one of claims 1 to 3, wherein a water vapor transmission coefficient ratio R 1 represented by the following formula (1) is 0.001 to 0.9.

    R 1 = A / B (1)

    (In the above formula (1), A represents the water vapor transmission coefficient (g · mm / m 2 · 24 h) at 40 ° C. and 90% RH of the water shielding portion, and B represents 40 ° C. and 90% of the oxygen barrier portion. Represents the water vapor transmission coefficient in RH (g · mm / m 2 · 24h).
  5.  前記式(1)で表される水蒸気透過係数比Rが0.001~0.4である、請求項4に記載の光電変換素子。 The photoelectric conversion element according to claim 4, wherein the water vapor transmission coefficient ratio R 1 represented by the formula (1) is 0.001 to 0.4.
  6.  下記式(2)で表される酸素透過係数比Rが0.0001以上1未満である、請求項1~5のいずれか一項に記載の光電変換素子。
     
    =C/D   (2)
     
    (上記式(2)中、Cは前記酸素バリア部の22℃、90%RHにおける酸素透過係数(cc・mm/m・24h/atm)を表し、Dは前記封止部の22℃、90%RHにおける酸素透過係数(cc・mm/m・24h/atm)を表す。)
    6. The photoelectric conversion element according to claim 1, wherein an oxygen transmission coefficient ratio R 2 represented by the following formula (2) is 0.0001 or more and less than 1.

    R 2 = C / D (2)

    (In the above formula (2), C represents an oxygen transmission coefficient (cc · mm / m 2 · 24 h / atm) at 22 ° C. and 90% RH of the oxygen barrier portion, and D represents 22 ° C. of the sealing portion, Oxygen transmission coefficient at 90% RH (cc · mm / m 2 · 24h / atm).
  7.  前記遮水部の40℃、90%RHにおける水蒸気透過係数が0.001~10(g・mm/m・24h)である、請求項1~6のいずれか一項に記載の光電変換素子。 The photoelectric conversion element according to any one of claims 1 to 6, wherein a water vapor transmission coefficient at 40 ° C and 90% RH of the water shielding portion is 0.001 to 10 (g · mm / m 2 · 24h). .
  8.  前記酸素バリア部の22℃、90%RHにおける酸素透過係数が0.001~10(cc・mm/m・24h/atm)である、請求項1~7のいずれか一項に記載の光電変換素子。 The photoelectric device according to any one of claims 1 to 7, wherein an oxygen permeability coefficient of the oxygen barrier portion at 22 ° C and 90% RH is 0.001 to 10 (cc · mm / m 2 · 24h / atm). Conversion element.
  9.  前記酸素バリア部が、
     前記封止部を被覆する本体部と、
     前記本体部から前記対向基板のうち前記電極基板の反対側の面まで延びて前記対向基板に接着される延在部とを有する、請求項1~8のいずれか一項に記載の光電変換素子。
    The oxygen barrier portion is
    A main body portion covering the sealing portion;
    The photoelectric conversion element according to any one of claims 1 to 8, further comprising: an extension portion that extends from the main body portion to a surface of the counter substrate opposite to the electrode substrate and is bonded to the counter substrate. .
  10.  前記酸素バリア部と前記遮水部との間に前記酸素バリア部及び前記遮水部を接着させる接着部を更に有し、
     前記接着部が、水酸基と、前記遮水部に含まれる官能基と同一の官能基とを有する、請求項1~9のいずれか一項に記載の光電変換素子。
    An adhesive part that adheres the oxygen barrier part and the water shielding part between the oxygen barrier part and the water shielding part;
    The photoelectric conversion element according to any one of claims 1 to 9, wherein the adhesive portion has a hydroxyl group and a functional group identical to the functional group contained in the water shielding portion.
  11.  前記遮水部が、少なくとも1つの遮水層で構成され、
     前記少なくとも1つの遮水層が樹脂のみからなる、請求項1~10のいずれか一項に記載の光電変換素子。
    The water shielding portion is composed of at least one water shielding layer;
    The photoelectric conversion element according to any one of claims 1 to 10, wherein the at least one water shielding layer is made of only a resin.
  12.  前記遮水部が、少なくとも1つの遮水層で構成され、
     前記少なくとも1つの遮水層が、樹脂及び無機物のみからなる、請求項1~10のいずれか一項に記載の光電変換素子。
    The water shielding portion is composed of at least one water shielding layer;
    The photoelectric conversion element according to any one of claims 1 to 10, wherein the at least one water shielding layer is composed of only a resin and an inorganic substance.
  13.  前記無機物が、無機フィラー及び乾燥剤からなる群より選ばれる少なくとも一種である、請求項12に記載の光電変換素子。 The photoelectric conversion element according to claim 12, wherein the inorganic substance is at least one selected from the group consisting of an inorganic filler and a desiccant.
PCT/JP2017/024784 2016-07-12 2017-07-06 Photoelectric conversion element WO2018012392A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016138042 2016-07-12
JP2016-138042 2016-07-12

Publications (1)

Publication Number Publication Date
WO2018012392A1 true WO2018012392A1 (en) 2018-01-18

Family

ID=60952066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024784 WO2018012392A1 (en) 2016-07-12 2017-07-06 Photoelectric conversion element

Country Status (1)

Country Link
WO (1) WO2018012392A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019169628A (en) * 2018-03-23 2019-10-03 株式会社フジクラ Photoelectric conversion element
WO2023132136A1 (en) * 2022-01-07 2023-07-13 パナソニックホールディングス株式会社 Photoelectric conversion module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07251871A (en) * 1994-01-26 1995-10-03 Sumitomo Chem Co Ltd Laminated film
JP2006100069A (en) * 2004-09-29 2006-04-13 Kyocera Corp Photoelectric conversion device and photovoltaic power generator
JP2006236788A (en) * 2005-02-25 2006-09-07 Sony Corp Photoelectric conversion device
JP2011026012A (en) * 1997-11-12 2011-02-10 B Braun Medical Inc Method for filling flexible container and flexible container
JP2012099449A (en) * 2010-10-06 2012-05-24 Fujikura Ltd Dye-sensitized solar cell
JP2013203987A (en) * 2012-03-29 2013-10-07 Sekisui Plastics Co Ltd Polylactic acid resin foam molded product and method for producing the same
JP2013227073A (en) * 2012-03-30 2013-11-07 Kuraray Co Ltd Film roll package

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07251871A (en) * 1994-01-26 1995-10-03 Sumitomo Chem Co Ltd Laminated film
JP2011026012A (en) * 1997-11-12 2011-02-10 B Braun Medical Inc Method for filling flexible container and flexible container
JP2006100069A (en) * 2004-09-29 2006-04-13 Kyocera Corp Photoelectric conversion device and photovoltaic power generator
JP2006236788A (en) * 2005-02-25 2006-09-07 Sony Corp Photoelectric conversion device
JP2012099449A (en) * 2010-10-06 2012-05-24 Fujikura Ltd Dye-sensitized solar cell
JP2013203987A (en) * 2012-03-29 2013-10-07 Sekisui Plastics Co Ltd Polylactic acid resin foam molded product and method for producing the same
JP2013227073A (en) * 2012-03-30 2013-11-07 Kuraray Co Ltd Film roll package

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019169628A (en) * 2018-03-23 2019-10-03 株式会社フジクラ Photoelectric conversion element
JP7014656B2 (en) 2018-03-23 2022-02-01 株式会社フジクラ Photoelectric conversion element
WO2023132136A1 (en) * 2022-01-07 2023-07-13 パナソニックホールディングス株式会社 Photoelectric conversion module

Similar Documents

Publication Publication Date Title
JP5320405B2 (en) Photoelectric conversion device
EP2683020B1 (en) Dye-sensitized solar cell module
WO2018012392A1 (en) Photoelectric conversion element
WO2018092741A1 (en) Photoelectric conversion element
WO2012046796A1 (en) Dye-sensitized solar cell
JP2012099449A (en) Dye-sensitized solar cell
JP6263242B1 (en) Photoelectric conversion element
US10395847B2 (en) Photoelectric conversion element
JP6863858B2 (en) Photoelectric conversion element
US10008336B2 (en) Dye-sensitized solar cell element
JP6598710B2 (en) Input device
JP2016143822A (en) Photoelectric conversion element
US10580586B2 (en) Dye-sensitized photoelectric conversion element
JP2019192839A (en) Photoelectric conversion element
JP6694341B2 (en) Photoelectric conversion element
JP7014656B2 (en) Photoelectric conversion element
WO2017022817A1 (en) Photoelectric conversion element
JP6539081B2 (en) Photoelectric conversion element
JP2018032807A (en) Photoelectric conversion element
JP6718322B2 (en) Photoelectric conversion element
JP6694371B2 (en) Photoelectric conversion element
JP6598757B2 (en) Photoelectric conversion element
JP6697348B2 (en) Photoelectric conversion element
JP6576784B2 (en) Electrolyte for photoelectric conversion element and photoelectric conversion element using the same
JP2021072430A (en) Photoelectric conversion element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP