WO2018012138A1 - Resin composition for laser welding, molded product, composite molded product and method for producing same, and method for improving laser light transmissivity - Google Patents

Resin composition for laser welding, molded product, composite molded product and method for producing same, and method for improving laser light transmissivity Download PDF

Info

Publication number
WO2018012138A1
WO2018012138A1 PCT/JP2017/020642 JP2017020642W WO2018012138A1 WO 2018012138 A1 WO2018012138 A1 WO 2018012138A1 JP 2017020642 W JP2017020642 W JP 2017020642W WO 2018012138 A1 WO2018012138 A1 WO 2018012138A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
polybutylene terephthalate
molded product
terephthalate resin
laser light
Prior art date
Application number
PCT/JP2017/020642
Other languages
French (fr)
Japanese (ja)
Inventor
耕一 坂田
Original Assignee
ウィンテックポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウィンテックポリマー株式会社 filed Critical ウィンテックポリマー株式会社
Priority to JP2018527433A priority Critical patent/JP6993971B2/en
Publication of WO2018012138A1 publication Critical patent/WO2018012138A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a laser-welded polybutylene terephthalate resin composition and molded article, a composite molded article and a method for producing the same, and a method for improving the laser light transmittance of a polybutylene terephthalate resin composition.
  • FIG. 1 is an explanatory diagram of a general laser welding method. As shown in FIG. 1, in laser welding, a so-called transmission-side molded product 3 formed of a resin composition that transmits laser light 2 emitted from a light source 1 and a resin composition that absorbs laser light 2 are formed.
  • the so-called absorption-side molded product 4 is overlapped so that the surfaces to be joined face each other, and the laser beam 2 is irradiated from the transmission-side molded product 3 side toward the absorption-side molded product 4 side.
  • the overlapped interface generates heat and melts and joins. Therefore, the resin composition used for the transmission-side molded product 3 is preferably as the laser beam transmittance is higher (lower absorption rate), and the resin composition used for the absorption-side molded product 4 is laser beam absorption rate. Is higher (lower transmittance).
  • Polybutylene terephthalate resins are excellent in various properties such as heat resistance, chemical resistance, electrical properties, mechanical properties, and moldability, and are therefore used in many applications.
  • the polybutylene terephthalate-based resin itself is an opaque crystalline resin and can be easily colored with a colorant such as carbon black. Therefore, the polybutylene terephthalate resin can be easily used as the absorption-side molded product 4.
  • a polybutylene terephthalate resin is used for the transmission-side molded product 3, it is necessary to increase the laser beam transmittance of the resin.
  • a resin having a low crystallinity and a high transparency such as a polycarbonate resin or a polyethylene terephthalate resin is added as an alloy material to the polybutylene terephthalate resin.
  • Patent Document 1 a resin having a low crystallinity and a high transparency such as a polycarbonate resin or a polyethylene terephthalate resin is added as an alloy material to the polybutylene terephthalate resin.
  • an inorganic filler may be contained in the resin composition for the purpose of increasing the mechanical strength of the obtained molded product. However, when an inorganic filler is contained, laser light is scattered and the transmittance is lowered.
  • Patent Document 2 JP 2004-315805 A JP 2005-1350 A
  • An object of the present invention is to provide a laser-welded polybutylene terephthalate-based resin composition and a molded article having high laser beam permeability. It is another object of the present invention to provide a composite molded article, a method for producing the same, and a method for improving the laser light transmittance of a polybutylene terephthalate resin composition.
  • the polybutylene terephthalate resin itself is opaque and has low laser light transmittance, so even if the refractive index of the inorganic filler is devised, it is not possible to further increase the laser light transmittance. difficult.
  • the present inventor has found that a polybutylene terephthalate-based resin is used without using an alloy material when a layered silicate mineral usually used as an inorganic filler has a predetermined particle size. As a result, it was found that the transmittance of the laser beam can be improved, and the present invention has been completed.
  • a laser-welded polybutylene terephthalate resin composition according to the present invention comprises a polybutylene terephthalate resin and a layered silicate mineral having an average primary particle size of 1.0 ⁇ m to 5.0 ⁇ m. It is characterized by containing.
  • the content of the laser light transmittance improver is preferably 0.01 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the polybutylene terephthalate resin.
  • the layered silicate mineral preferably contains talc.
  • an inorganic filler can be further contained.
  • the present invention can be a resin composition for a laser light transmission side molded article.
  • the molded article for laser welding according to the present invention includes any one of the above polybutylene terephthalate resin compositions.
  • This molded product has a laser light transmittance of a wavelength of 800 nm to 1000 nm (especially 900 nm to 1000 nm) at an optical path length of 1.5 mm, compared with a molded product using a polybutylene terephthalate resin composition that does not contain a laser light transmission improver Can be configured to be higher.
  • the first molded product including the polybutylene terephthalate resin composition described above and the second molded product including the thermoplastic resin composition are laser-welded. It is a composite molded product.
  • the thermoplastic resin composition is preferably a polybutylene terephthalate resin composition that does not contain a laser light transmission improver.
  • the method for producing a composite molded product according to the present invention includes a second molded product including at least a part of a first molded product including the polybutylene terephthalate resin composition according to any one of the above and a thermoplastic resin composition. And at least a part of the first molded product and at least a part of the second molded product are welded by irradiating a laser beam from the first molded product side. .
  • the method for improving the laser light transmittance of the polybutylene terephthalate resin composition according to the present invention comprises blending a polybutylene terephthalate resin composition with a layered silicate mineral having an average primary particle size of 1.0 ⁇ m or more and 5.0 ⁇ m or less. It is characterized by doing.
  • the present invention it is possible to provide a polybutylene terephthalate-based resin composition and a molded product with laser welding having high laser beam transmissivity. Moreover, the composite molded article, its manufacturing method, and the laser beam transmittance improving method of a polybutylene terephthalate resin composition can be provided.
  • the polybutylene terephthalate resin composition (hereinafter, also referred to as “resin composition”) of the present embodiment is a laser-welded polybutylene terephthalate resin composition, and is a polybutylene terephthalate resin (hereinafter referred to as “PBT system”). Resin ”) and a laser light transmission improver containing a layered silicate mineral having a predetermined particle size.
  • PBT system polybutylene terephthalate resin
  • Resin a laser light transmission improver containing a layered silicate mineral having a predetermined particle size.
  • the polybutylene terephthalate-based resin is a homopolyester containing butylene terephthalate as a main component (for example, about 50% by mass to 100% by mass, preferably 60% by mass to 100% by mass, more preferably about 75% by mass to 100% by mass).
  • (Polybutylene terephthalate) or copolyester butylene terephthalate copolymer or polybutylene terephthalate copolyester.
  • copolymerizable monomer in a copolyester (butylene terephthalate copolymer or modified PBT resin), dicarboxylic acid excluding terephthalic acid, 1,4-butanediol is used. Excluded diol, oxycarboxylic acid, lactone and the like.
  • the copolymerizable monomers can be used alone or in combination of two or more.
  • dicarboxylic acid examples include aliphatic dicarboxylic acids (for example, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, hexadecanedicarboxylic acid, dimer acid, etc.
  • aliphatic dicarboxylic acids for example, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, hexadecanedicarboxylic acid, dimer acid, etc.
  • C 4-40 dicarboxylic acids preferably C 4-14 dicarboxylic acids
  • cycloaliphatic dicarboxylic acids eg, C 8-12 dicarboxylic acids such as hexahydrophthalic acid, hexahydroisophthalic acid, hexahydroterephthalic acid, and hymic acid
  • Acid aromatic dicarboxylic acids excluding terephthalic acid (eg, phthalic acid, isophthalic acid; naphthalenedicarboxylic acid such as 2,6-naphthalenedicarboxylic acid; 4,4′-diphenyldicarboxylic acid, 4,4′-diphenylether dicarboxylic acid) , 4,4'-Diphenylmethane dicar Phosphate, 4,4'-diphenyl ketone C 8-16 diphenyl dicarboxylic acid such as dicarboxylic acids), or reactive derivatives thereof [for example, lower alkyl esters of phthalic
  • diol examples include linear or branched aliphatic alkylene glycols other than 1,4-butanediol (for example, ethylene glycol, trimethylene glycol, propylene glycol, neopentyl glycol, hexanediol, octanediol, decanediol).
  • linear or branched aliphatic alkylene glycols other than 1,4-butanediol for example, ethylene glycol, trimethylene glycol, propylene glycol, neopentyl glycol, hexanediol, octanediol, decanediol.
  • Linear C 2-12 aliphatic glycols preferably linear or branched C 2-10 aliphatic glycols
  • (poly) oxyalkylene glycols glycols having a plurality of oxy C 2-4 alkylene units, for example Diethylene glycol, dipropylene glycol, ditetramethylene glycol, triethylene glycol, tripropylene glycol, polytetramethylene glycol, etc.
  • alicyclic diols eg, 1,4-cyclohexanediol, 1,4-cyclohexane
  • aromatic diol e.g., hydroquinone, resorcinol, C 6-14 aromatic diols such as naphthalene diol; biphenol; bisphenols; xylylene glycol and the like
  • polyols such as glycerol, a trimethylol propane, a
  • bisphenols examples include bis (4-hydroxyphenyl) methane (bisphenol F), 1,1-bis (4-hydroxyphenyl) ethane (bisphenol AD), 1,1-bis (4-hydroxyphenyl) propane, , 2-bis (4-hydroxyphenyl) propane (bisphenol A), 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2- Bis (hydroxyaryl) C 1 such as bis (4-hydroxyphenyl) -3-methylbutane, 2,2-bis (4-hydroxyphenyl) hexane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane -6 alkane; 1,1-bis (4-hydroxyphenyl) cyclopentane, 1,1-bis (4-hydride) Bis (hydroxyaryl) C 4-10 cycloalkanes such as loxyphenyl) cyclohexane; 4,4′-dihydroxydiphenyl ether; 4,4′-dihydroxydiphenyl
  • alkylene oxide adduct examples include C 2-3 alkylene oxide adducts of bisphenols (eg, bisphenol A, bisphenol AD, bisphenol F, etc.), such as 2,2-bis- [4- (2-hydroxyethoxy) phenyl. Propane, diethoxylated bisphenol A (EBPA), 2,2-bis- [4- (2-hydroxypropoxy) phenyl] propane, dipropoxylated bisphenol A and the like.
  • the number of added moles of alkylene oxide C2-3 alkylene oxide such as ethylene oxide and propylene oxide
  • oxycarboxylic acid examples include oxybenzoic acid, oxynaphthoic acid, hydroxyphenylacetic acid, glycolic acid, oxycaproic acid and other oxycarboxylic acids or derivatives thereof.
  • Lactones include C 3-12 lactones such as propiolactone, butyrolactone, valerolactone, caprolactone (eg, ⁇ -caprolactone, etc.), and the like.
  • Preferable copolymerizable monomers include diols or dicarboxylic acids.
  • the diol include C 2-6 alkylene glycol (linear or branched alkylene glycol such as ethylene glycol, trimethylene glycol, propylene glycol, hexanediol, etc.), and an oxyalkylene unit having a repeating number of about 2 to 4.
  • polyoxy C 2-4 alkylene glycol diethylene glycol, etc.
  • bisphenols bisphenols or alkylene oxide adducts thereof
  • Dicarboxylic acids include C 6-12 aliphatic dicarboxylic acids (adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, etc.), asymmetric aromatic dicarboxylic acids in which the carboxyl group is substituted at the asymmetric position of the arene ring, 1, 4-cyclohexanedimethanol and the like can be mentioned.
  • aromatic compounds such as alkylene oxide adducts of bisphenols (particularly bisphenol A), and asymmetric aromatic dicarboxylic acids [phthalic acid, isophthalic acid, and reactive derivatives thereof (dimethylisophthalic acid (DMI)) Etc.) are preferred.
  • the polybutylene terephthalate resin is preferably a homopolyester (polybutylene terephthalate) and / or a copolymer (polybutylene terephthalate copolyester), and the proportion (modification amount) of the copolymerizable monomer is usually 45 mol% or less ( For example, it may be about 0 to 40 mol%), preferably 35 mol% or less (for example, about 0 to 35 mol%), or 30 mol% or less (about 0 to 30 mol%).
  • the proportion of the copolymerizable monomer in the copolymer can be selected, for example, from the range of about 0.01 to 30 mol%, and is usually 1 to 30 mol%, preferably 3 to 25 mol%. More preferably, it is about 5 to 20 mol% (for example, 5 to 15 mol%).
  • the proportion of the copolymerizable monomer in the copolymer can be selected from the range of, for example, about 0.1 to 45 mol%, and is usually 1 to 40 mol% (eg, 5 to 40 mol%) %), Preferably about 10 to 35 mol%.
  • the ratio of the homopolyester and the copolyester is such that the ratio of the copolymerizable monomer is 0.1 to
  • the range is about 30 mol% (preferably 1 to 25 mol%, more preferably 5 to 25 mol%), and the mass ratio of homopolyester / copolyester is usually 99/1 to 1/99, preferably It can be selected from the range of about 95/5 to 5/95, more preferably about 90/10 to 10/90.
  • the polybutylene terephthalate resin is obtained by copolymerizing terephthalic acid or a reactive derivative thereof and 1,4-butanediol with a monomer that can be copolymerized as necessary by a conventional method such as transesterification or direct esterification. Can be manufactured.
  • the content of the polybutylene terephthalate resin can be 50% by mass or more and less than 100% by mass in the total resin composition, preferably 60% by mass or more and less than 100% by mass, and more preferably 65% by mass. It can be set to mass% or more and 99.9 mass% or less.
  • the laser light transmission improving agent is an inorganic material having an action of improving the laser light transmission of the polybutylene terephthalate resin composition which is an opaque resin. Since the transmittance of the laser light of the resin composition is increased, a molded product manufactured using the resin composition can be used as a transmission-side molded product for laser welding.
  • the laser light transmission improver contains a layered silicate mineral.
  • the laser light transmission improver can also be configured to be a layered silicate mineral.
  • Layered silicate minerals are usually often used as inorganic fillers to improve the mechanical properties of the resulting molded body. Resins containing inorganic fillers are light transmissive due to light scattering. Is known to decrease.
  • the present inventors' research has newly revealed that a layered silicate mineral having a predetermined particle size has an effect of improving the laser light transmittance of a polybutylene terephthalate resin. Therefore, in this embodiment, a layered silicate mineral having a predetermined particle size is used as a laser light transmission improver.
  • the layered silicate mineral is a layered mineral composed of at least a metal oxide component and a SiO 2 component.
  • layered silicate minerals include talc, mica, kaolin, pyrophyllite, sericite, vermiculite, smectite, bentonite, stevensite, montmorillonite, beidellite, saponite, hectorite, nontronite and the like. , One or more selected from these can be used. Of these, talc is preferable.
  • the layered silicate mineral may be treated or untreated.
  • an artificial synthetic product corresponding to a natural product can also be used.
  • silicate minerals obtained from various synthetic methods using conventionally known various methods such as solid reaction, hydrothermal reaction, and ultrahigh pressure reaction can be used.
  • the average primary particle diameter of the layered silicate mineral is 1.0 ⁇ m or more and 5.0 ⁇ m or less.
  • the average primary particle diameter is preferably 1.5 ⁇ m or more and less than 5.0 ⁇ m, more preferably 2.0 ⁇ m or more or more than 2.0 ⁇ m, or less than 4.0 ⁇ m or less than 4.0 ⁇ m.
  • the “average primary particle size” is a value calculated by weighted average of the layered silicate mineral before blended with the resin composition by analyzing an image taken with a CCD camera. For example, it can be calculated using a dynamic image analysis method / particle (state) analyzer PITA-3 manufactured by Seishin Corporation.
  • the aspect ratio of the layered silicate mineral is not particularly limited, and can be, for example, 1 or more and 10 or less.
  • the content of the laser light transmission improver is preferably 0.01 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the polybutylene terephthalate resin. More preferably, they are 0.5 mass part or more and 15 mass parts or less, More preferably, they are 1.0 mass part or more and less than 15 mass parts. A lower limit can also be 5.0 mass parts or more.
  • the content of the layered silicate mineral is in the range of 0.01 parts by mass or more and 20 parts by mass or less, the laser light transmittance of the polybutylene terephthalate resin can be further improved.
  • a molded article using a polybutylene terephthalate resin composition having a layered silicate mineral content of 0.01 parts by mass or more can reduce variations in laser light transmittance in the molded article.
  • the resin composition of the present embodiment may contain an inorganic filler for the purpose of improving the mechanical properties of the obtained molded product.
  • an inorganic filler a fibrous filler, a plate-like filler, or a granular filler can be mentioned.
  • fibrous filler examples include glass fiber, asbestos fiber, carbon fiber, silica fiber, alumina fiber, silica-alumina fiber, aluminum silicate fiber, zirconia fiber, potassium titanate fiber, silicon carbide fiber, whisker (silicon carbide, Inorganic fibers such as whiskers such as alumina and silicon nitride); organic fibers such as aliphatic or aromatic polyamides, aromatic polyesters, acrylic resins such as fluororesin and polyacrylonitrile, fibers formed of rayon, etc.
  • whisker silicon carbide, Inorganic fibers such as whiskers such as alumina and silicon nitride
  • organic fibers such as aliphatic or aromatic polyamides, aromatic polyesters, acrylic resins such as fluororesin and polyacrylonitrile, fibers formed of rayon, etc.
  • the plate-like filler examples include talc, mica, glass flake, and graphite.
  • particulate filler examples include glass beads, glass powder, milled fiber (for example, milled glass fiber), wollastonite (wollastonite), and the like.
  • the wollastonite may be in the form of a plate, column, fiber, or the like.
  • glass fiber is preferable because it is inexpensive and easily available.
  • the average diameter of the fibrous filler is, for example, about 1 ⁇ m to 30 ⁇ m (preferably 3 ⁇ m to 20 ⁇ m), and the average length is, for example, about 100 ⁇ m to 5 mm (preferably 300 ⁇ m to 4 mm, more preferably 500 ⁇ m to 3.5 mm). There may be. Further, the average primary particle diameter of the plate-like or granular filler can be, for example, about 10 ⁇ m to 500 ⁇ m, preferably about 15 ⁇ m to 100 ⁇ m. These inorganic fillers can be used alone or in combination of two or more.
  • the average diameter and average length of the fibrous filler and the average primary particle diameter of the plate-like or powdery filler are the fibrous filler, plate-like or powdery filler before being mixed in the resin composition. Is a value calculated by analyzing an image photographed with a CCD camera and calculating a weighted average, and can be calculated using a device similar to the device used in the measurement of the average primary particle diameter of the layered silicate mineral.
  • the content of the inorganic filler is 5 parts by mass or more and 100 parts by mass or less, preferably 10 parts by mass or more and 80 parts by mass or less, more preferably 15 parts by mass or more and 60 parts by mass with respect to 100 parts by mass of the polybutylene terephthalate resin. It can be as follows. By setting it within this numerical range, it is possible to improve the mechanical properties and dimensional accuracy of the obtained molded product while maintaining the action of the above-described laser light transmission improving agent.
  • additives Various additives such as stabilizers (antioxidants, ultraviolet absorbers, heat stabilizers, etc.), flame retardants, lubricants, mold release agents, antistatic agents, coloring agents such as dyes and pigments, You may add a dispersing agent, a plasticizer, a nucleating agent, etc.
  • the content of the additive can be, for example, more than 0 parts by mass and 20 parts by mass or less with respect to 100 parts by mass of the polybutylene terephthalate resin.
  • the colorant if it is necessary to color the same color as the laser light absorption side molded product, in particular, black, due to the requirement of the design surface, a dye-based colorant so as not to impair the laser light transmittance. Or a pigment that does not impair the laser light transmittance (for example, BASF Lummogen Black) is desirable.
  • the resin composition can also contain other resins (thermoplastic resin, thermosetting resin, etc.) as necessary.
  • other resins include olefin elastomers, styrene elastomers, polyester elastomers, and core-shell polymers.
  • the polybutylene terephthalate resin composition of the present embodiment contains a laser light transmission improver, it has a laser light transmission property without adding a highly transparent resin as an alloy material. Therefore, the resin composition can be configured not to contain an alloy material. On the other hand, an alloy material can also be added in order to further enhance the laser light transmittance of the resin composition.
  • the alloy material include a polycarbonate resin, a polyethylene terephthalate resin, and a styrene resin.
  • the content thereof can be made lower than the amount added to the conventional PBT resin composition. For example, the content exceeds 0 part by mass with respect to 100 parts by mass of the polybutylene terephthalate resin. It can be below mass parts (for example, 20 mass parts).
  • the resin composition of the present embodiment may be a powder mixture or a molten mixture (pellets or the like).
  • a molded article formed using this resin composition has a higher laser beam transmittance than a molded article formed using a polybutylene terephthalate-based resin composition that does not contain a laser beam transmission improver. Therefore, the resin composition is suitable for producing a molded product for laser welding. In particular, it is suitable for manufacturing a laser light transmission side molded product.
  • the molded product can be formed using the above-described resin composition, and includes the above-described resin composition.
  • This molded product has a higher laser light transmittance at a wavelength of 800 nm to 1000 nm at an optical path length of 1.5 mm than a molded product formed using a polybutylene terephthalate resin composition that does not contain a laser light transmission improver.
  • the laser light transmittance is, for example, 20% of the laser light transmittance at a wavelength of 800 nm to 1000 nm in a molded product of 80 mm long ⁇ 80 mm wide ⁇ 1.5 mm thick (side gate, gate width 2 mm) formed by injection molding. For example, it is 23% or more.
  • the laser light transmittance is a value measured using a spectrophotometer.
  • the molded product can be obtained by molding the resin composition by a conventional method. For example, (1) A method in which each component is mixed, kneaded by a single or twin screw extruder and extruded to prepare pellets, and then molded. (2) A pellet (master batch) having a different composition is once prepared. The pellets can be mixed (diluted) in a predetermined amount and subjected to molding to obtain a molded product having a predetermined composition, or (3) a method in which one or more of each component is directly charged into a molding machine.
  • the pellets may be prepared by, for example, melting and mixing components excluding brittle components (such as glass-based reinforcing materials) and then mixing brittle components (such as glass-based reinforcing materials).
  • molding method conventional methods such as extrusion molding, injection molding, compression molding, blow molding, vacuum molding, rotational molding, gas injection molding, etc. can be used, but usually molding is performed by injection molding.
  • the shape of the molded product is not particularly limited, but since the molded product is used by joining with a mating material (other resin molded product) by laser welding, it usually has a shape having at least a contact surface (such as a flat surface) (for example, a plate shape) ).
  • the molded article of the present invention has high permeability to the laser beam, the thickness of the molded article (the thickness in the direction in which the laser beam is transmitted) at the site where the laser beam is transmitted can be selected from a wide range. It may be about 3 mm to 5 mm, preferably about 0.5 mm to 3 mm (for example, 1 mm to 2 mm).
  • the molded product is excellent in laser weldability, it is usually preferable to weld the resin molded product of the counterpart material by laser welding, but if necessary, other thermal welding methods, for example, vibration welding method, It can also be welded to other resin molded products by ultrasonic welding, hot plate welding, or the like.
  • the composite molded article includes a first molded article formed using a polybutylene terephthalate resin composition and including the resin composition, and a second molded article formed using the thermoplastic resin composition and including the thermoplastic resin composition.
  • the molded article is a laser-welded composite molded article.
  • the first molded product and the second molded product are joined and integrated by laser welding.
  • the composite molded article is formed by superimposing at least a part of the first molded article containing the polybutylene terephthalate resin composition and at least a part of the second molded article containing the thermoplastic resin composition.
  • the interface between the first molded product and the second molded product is at least partially melted to bring the joining surface into close contact, and then the two molded products are joined by cooling. It can be integrated into one composite molded body.
  • the thermoplastic resin composition constituting the second molded product is not particularly limited as long as it is a resin composition compatible with the polybutylene terephthalate resin, and examples thereof include olefin resins, vinyl resins, and styrene resins.
  • the resin composition include a resin, an acrylic resin, a polyester resin, a polyamide resin, and a polycarbonate resin.
  • the same type or the same type of resins as those constituting the polybutylene terephthalate resin aromatic polyester resins such as PBT resins and PET resins
  • polycarbonate resins or compositions thereof You may comprise material.
  • the first molded body may be formed of the polybutylene terephthalate resin composition of the present embodiment
  • the second molded body may be formed of a polybutylene terephthalate resin that does not contain a laser light transmission improver. .
  • the second molded product may contain an absorber or a colorant for laser light.
  • the colorant can be selected according to the wavelength of the laser beam, and an inorganic pigment or an organic pigment can be used.
  • Inorganic pigments include black pigments such as carbon black (for example, acetylene black, lamp black, thermal black, furnace black, channel black, ketjen black), red pigments such as iron oxide red, and orange pigments such as molybdate orange. And white pigments such as titanium oxide.
  • the organic pigment include a yellow pigment, an orange pigment, a red pigment, a blue pigment, and a green pigment.
  • These absorbents can be used alone or in combination of two or more.
  • black pigments or dyes, particularly carbon black can be used.
  • the average particle size of carbon black may be usually about 1 nm to 1000 nm, preferably about 10 nm to 100 nm.
  • the ratio of the colorant is 0.1% by mass to 10% by mass, preferably 0.5% by mass to 5% by mass (for example, 0.5% by mass to 3% by mass) with respect to the entire composition constituting the second molded article. Mass%).
  • Irradiation with laser light is usually performed from the first molded body side toward the second molded body, and heat is generated at the interface of the second molded body having light absorption, thereby the first molded body. And the second molded body are fused. If necessary, a lens system may be used to focus the laser beam on the interface between the first molded product and the second molded product and fuse the contact interface.
  • the laser light source is not particularly limited, and for example, a dye laser, a gas laser (excimer laser, argon laser, krypton laser, helium-neon laser, etc.), a solid laser (YAG laser, etc.), a semiconductor laser, and the like can be used. As the laser light, a pulse laser is usually used.
  • the composite molded product obtained in the present embodiment has high welding strength and little damage to the PBT resin due to laser light irradiation. Therefore, various applications such as electrical / electronic parts, office automate (OA) equipment parts, etc. It can be applied to home appliance parts, machine mechanism parts, automobile mechanism parts and the like. In particular, it can be suitably used for automobile electrical parts (various control units, ignition coil parts, etc.), motor parts, various sensor parts, connector parts, switch parts, relay parts, coil parts, transformer parts, lamp parts, and the like.
  • OA office automate
  • the method for improving the laser light transmittance of a polybutylene terephthalate resin composition is that a layered silicate mineral having an average primary particle diameter of 1.0 ⁇ m or more and 5.0 ⁇ m or less is blended with a polybutylene terephthalate resin composition. is there. Thereby, the laser beam transmittance of the polybutylene terephthalate resin composition can be improved, and the polybutylene terephthalate resin composition can be used for the production of a transmission side molded product used for laser welding.
  • the polybutylene terephthalate-based resin composition containing a layered silicate mineral having a predetermined particle size does not contain a layered silicate mineral, as shown in Examples described later.
  • the laser light transmittance was improved as compared with the case where a layered silicate mineral having a particle size outside the predetermined range was contained.
  • the type and content of the layered silicate mineral and the preferable range of the particle diameter are as described above, and are not described here.
  • Examples 1 to 4 Comparative Examples 1 to 4
  • pellets were produced by kneading at 250 ° C. with a twin-screw extruder (manufactured by Nippon Steel Works, 30 mm ⁇ ) at the content ratios shown in Tables 1 and 2.
  • the average primary particle diameter of talc was measured using a dynamic image analysis method / particle (state) analyzer PITA-3 manufactured by Seishin Enterprise Co., Ltd.
  • Polybutylene terephthalate resin PBT having an intrinsic viscosity of 0.95 dl / g, manufactured by Wintech Polymer Co., Ltd.
  • Talc 1 Talc with an average primary particle size of 2.6 ⁇ m
  • Talc 2 Talc with an average primary particle size of 3.4 ⁇ m
  • Talc 3 Talc with an average primary particle size of 6.2 ⁇ m
  • Talc 4 Talc glass fibers with an average primary particle size of 0.6 ⁇ m (GF): manufactured by Nippon Electric Glass Co., Ltd., trade name “ECS03T-187”, average diameter 13 ⁇ m, average length 3 mm
  • the molded articles formed using the resin compositions of Examples 1 to 4 were those of Comparative Example 1 formed using a resin composition containing no layered silicate mineral.
  • the laser light transmittance was improved as compared with the molded products of Comparative Examples 2 to 4 formed using a molded product and a resin composition containing a layered silicate mineral having a particle size outside the predetermined range.
  • This molded article has a laser light transmittance of a wavelength of 800 nm to 1000 nm as high as 23% or more, and is useful for producing a transmission side molded article at the time of laser welding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

[Problem] To provide a polybutylene therephthalate resin composition for laser welding, and a molded product. [Solution] To provide a polybutylene terephthalate resin composition for laser welding, containing: a polybutylene terephthalate resin; and a laser light transmissivity improving agent including a layered silicate mineral having an average primary particle size of 1.0 µm to 5.0 µm. The amount of laser light transmissivity improving agent contained is preferably 0.01 parts by mass to 20 parts by mass with respect to 100 parts by mass of polybutylene terephthalate resin.

Description

レーザー溶着用樹脂組成物及び成形品、複合成形品及びその製造方法、並びにレーザー光透過性向上方法LASER WELDING RESIN COMPOSITION AND MOLDED ARTICLE, COMPOSITE MOLDED ARTICLE, PROCESS FOR PRODUCING THE SAME, AND LASER LIGHT TRANSMISSION IMPROVEMENT METHOD
 本発明は、レーザー溶着用ポリブチレンテレフタレート系樹脂組成物及び成形品、複合成形品及びその製造方法、並びにポリブチレンテレフタレート系樹脂組成物のレーザー光透過性向上方法に関する。 The present invention relates to a laser-welded polybutylene terephthalate resin composition and molded article, a composite molded article and a method for producing the same, and a method for improving the laser light transmittance of a polybutylene terephthalate resin composition.
 樹脂製の成形品同士を接合する技術として、熱溶着が知られている。熱溶着は、接合させる成形品の表面を加熱して溶融させ、溶融した面同士を密着させて接合させる技術である。熱溶着のうち、熱源としてレーザー光を用いるものが、レーザー溶着である。図1は、一般的なレーザー溶着方法についての説明図である。図1に示すように、レーザー溶着では、光源1から発せられるレーザー光2を透過する樹脂組成物で形成されたいわゆる透過側成形品3と、レーザー光2を吸収する樹脂組成物で形成されたいわゆる吸収側成形品4とを、接合させたい面同士が対向するように重ね合せ、透過側成形品3側から吸収側成形品4側に向けてレーザー光2を照射する。レーザー光2の照射により、重ね合せた界面が発熱して溶融し接合される。そのため、透過側成形品3に用いられる樹脂組成物は、レーザー光の透過率が高いほど(吸収率が低いほど)好ましく、吸収側成形品4に用いられる樹脂組成物は、レーザー光の吸収率が高いほど(透過率が低いほど)好ましい。 Thermal welding is known as a technique for joining resin molded products together. Thermal welding is a technique in which the surfaces of molded articles to be joined are heated and melted, and the melted surfaces are brought into close contact with each other to be joined. Among thermal welding, laser welding uses laser light as a heat source. FIG. 1 is an explanatory diagram of a general laser welding method. As shown in FIG. 1, in laser welding, a so-called transmission-side molded product 3 formed of a resin composition that transmits laser light 2 emitted from a light source 1 and a resin composition that absorbs laser light 2 are formed. The so-called absorption-side molded product 4 is overlapped so that the surfaces to be joined face each other, and the laser beam 2 is irradiated from the transmission-side molded product 3 side toward the absorption-side molded product 4 side. By irradiating the laser beam 2, the overlapped interface generates heat and melts and joins. Therefore, the resin composition used for the transmission-side molded product 3 is preferably as the laser beam transmittance is higher (lower absorption rate), and the resin composition used for the absorption-side molded product 4 is laser beam absorption rate. Is higher (lower transmittance).
 ポリブチレンテレフタレート系樹脂は、耐熱性、耐薬品性、電気的特性、機械的特性、及び成形加工性等の種々の特性に優れるため、多くの用途に用いられている。ポリブチレンテレフタレート系樹脂は、それ自体が不透明な結晶性樹脂であり、カーボンブラック等の着色剤で容易に着色することもできるため、吸収側成形品4としては容易に用いることができる。反対に、ポリブチレンテレフタレート系樹脂を透過側成形品3に用いる場合は、樹脂のレーザー光の透過性を高める必要がある。ポリブチレンテレフタレート系樹脂のレーザー光の透過性を高める方法としては、例えば、ポリブチレンテレフタレート系樹脂に、ポリカーボネート樹脂やポリエチレンテレフタレート樹脂等の結晶化度が低く透明性の高い樹脂をアロイ材として添加する方法がある(特許文献1)。
 また、得られる成形品の機械的強度を高める等の目的で、樹脂組成物中に無機充填剤を含有させる場合がある。しかし、無機充填剤を含有させると、レーザー光が散乱して透過率が下がってしまう。そこで、ポリプロピレン樹脂のレーザー光透過性を損なわせないために、当該樹脂と同程度の屈折率を有する無機充填剤を用いる技術がある(特許文献2)。
特開2004-315805号公報 特開2005-1350号公報
Polybutylene terephthalate resins are excellent in various properties such as heat resistance, chemical resistance, electrical properties, mechanical properties, and moldability, and are therefore used in many applications. The polybutylene terephthalate-based resin itself is an opaque crystalline resin and can be easily colored with a colorant such as carbon black. Therefore, the polybutylene terephthalate resin can be easily used as the absorption-side molded product 4. On the other hand, when a polybutylene terephthalate resin is used for the transmission-side molded product 3, it is necessary to increase the laser beam transmittance of the resin. As a method for increasing the laser light transmittance of the polybutylene terephthalate resin, for example, a resin having a low crystallinity and a high transparency such as a polycarbonate resin or a polyethylene terephthalate resin is added as an alloy material to the polybutylene terephthalate resin. There is a method (Patent Document 1).
Moreover, an inorganic filler may be contained in the resin composition for the purpose of increasing the mechanical strength of the obtained molded product. However, when an inorganic filler is contained, laser light is scattered and the transmittance is lowered. Therefore, there is a technique using an inorganic filler having a refractive index comparable to that of the resin so as not to impair the laser light transmittance of the polypropylene resin (Patent Document 2).
JP 2004-315805 A JP 2005-1350 A
 本発明は、レーザー光の透過性が高いレーザー溶着用ポリブチレンテレフタレート系樹脂組成物及び成形品を提供することを課題とする。また、複合成形品及びその製造方法、並びにポリブチレンテレフタレート系樹脂組成物のレーザー光透過性向上方法を提供することを課題とする。 An object of the present invention is to provide a laser-welded polybutylene terephthalate-based resin composition and a molded article having high laser beam permeability. It is another object of the present invention to provide a composite molded article, a method for producing the same, and a method for improving the laser light transmittance of a polybutylene terephthalate resin composition.
 上述のように、ポリブチレンテレフタレート系樹脂は、それ自体が不透明でレーザー光の透過性が低いため、たとえ無機充填剤の屈折率を工夫したとしても、レーザー光の透過性をそれ以上高めることは難しい。しかしながら、驚くべきことに、本発明者は、通常は無機充填剤として用いられる層状ケイ酸塩鉱物のうち所定の粒径のものを含有した場合に、アロイ材を用いずともポリブチレンテレフタレート系樹脂のレーザー光の透過性を高めることができることを見出し、本発明を完成させるに至った。 As mentioned above, the polybutylene terephthalate resin itself is opaque and has low laser light transmittance, so even if the refractive index of the inorganic filler is devised, it is not possible to further increase the laser light transmittance. difficult. Surprisingly, however, the present inventor has found that a polybutylene terephthalate-based resin is used without using an alloy material when a layered silicate mineral usually used as an inorganic filler has a predetermined particle size. As a result, it was found that the transmittance of the laser beam can be improved, and the present invention has been completed.
 本発明に係るレーザー溶着用ポリブチレンテレフタレート系樹脂組成物は、ポリブチレンテレフタレート系樹脂と、平均一次粒子径が1.0μm以上5.0μm以下の層状ケイ酸塩鉱物を含むレーザー光透過性向上剤とを含有することを特徴とする。 A laser-welded polybutylene terephthalate resin composition according to the present invention comprises a polybutylene terephthalate resin and a layered silicate mineral having an average primary particle size of 1.0 μm to 5.0 μm. It is characterized by containing.
 本発明において、レーザー光透過性向上剤の含有量が、ポリブチレンテレフタレート系樹脂100質量部に対して0.01質量部以上20質量部以下であることが好ましい。層状ケイ酸塩鉱物が、タルクを含むことが好ましい。 In the present invention, the content of the laser light transmittance improver is preferably 0.01 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the polybutylene terephthalate resin. The layered silicate mineral preferably contains talc.
 本発明において、さらに無機充填剤を含有することができる。本発明は、レーザー光透過側成形品用の樹脂組成物とすることができる。 In the present invention, an inorganic filler can be further contained. The present invention can be a resin composition for a laser light transmission side molded article.
 本発明に係るレーザー溶着用成形品は、上記いずれかに記載のポリブチレンテレフタレート系樹脂組成物を含むことを特徴とする。この成形品は、光路長1.5mmにおける波長800nm~1000nm(特に900nm~1000nm)のレーザー光透過率が、レーザー光透過性向上剤を含有しないポリブチレンテレフタレート系樹脂組成物を用いた成形品よりも高くなるように構成することができる。 The molded article for laser welding according to the present invention includes any one of the above polybutylene terephthalate resin compositions. This molded product has a laser light transmittance of a wavelength of 800 nm to 1000 nm (especially 900 nm to 1000 nm) at an optical path length of 1.5 mm, compared with a molded product using a polybutylene terephthalate resin composition that does not contain a laser light transmission improver Can be configured to be higher.
 本発明に係る複合成形品は、上記いずれかに記載のポリブチレンテレフタレート系樹脂組成物を含む第1の成形品と、熱可塑性樹脂組成物を含む第2の成形品とが、レーザー溶着された複合成形品である。本発明において、熱可塑性樹脂組成物が、レーザー光透過性向上剤を含有しないポリブチレンテレフタレート系樹脂組成物であることが好ましい。 In the composite molded product according to the present invention, the first molded product including the polybutylene terephthalate resin composition described above and the second molded product including the thermoplastic resin composition are laser-welded. It is a composite molded product. In the present invention, the thermoplastic resin composition is preferably a polybutylene terephthalate resin composition that does not contain a laser light transmission improver.
 本発明に係る複合成形品の製造方法は、上記いずれかに記載のポリブチレンテレフタレート系樹脂組成物を含む第1の成形品の少なくとも一部と、熱可塑性樹脂組成物を含む第2の成形品の少なくとも一部とを重ね合せ、第1の成形品側からレーザー光を照射して第1の成形品の少なくとも一部と第2の成形品の少なくとも一部とを溶着することを特徴とする。 The method for producing a composite molded product according to the present invention includes a second molded product including at least a part of a first molded product including the polybutylene terephthalate resin composition according to any one of the above and a thermoplastic resin composition. And at least a part of the first molded product and at least a part of the second molded product are welded by irradiating a laser beam from the first molded product side. .
 本発明に係るポリブチレンテレフタレート系樹脂組成物のレーザー光透過性向上方法は、ポリブチレンテレフタレート系樹脂組成物に、平均一次粒子径が1.0μm以上5.0μm以下の層状ケイ酸塩鉱物を配合することを特徴とする。 The method for improving the laser light transmittance of the polybutylene terephthalate resin composition according to the present invention comprises blending a polybutylene terephthalate resin composition with a layered silicate mineral having an average primary particle size of 1.0 μm or more and 5.0 μm or less. It is characterized by doing.
 本発明によれば、レーザー光の透過性が高いレーザー溶着用ポリブチレンテレフタレート系樹脂組成物及び成形品を提供することができる。また、複合成形品及びその製造方法、並びにポリブチレンテレフタレート系樹脂組成物のレーザー光透過性向上方法を提供することができる。 According to the present invention, it is possible to provide a polybutylene terephthalate-based resin composition and a molded product with laser welding having high laser beam transmissivity. Moreover, the composite molded article, its manufacturing method, and the laser beam transmittance improving method of a polybutylene terephthalate resin composition can be provided.
レーザー溶着についての説明図である。It is explanatory drawing about laser welding.
 以下、本発明の一実施形態について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。 Hereinafter, an embodiment of the present invention will be described in detail. The present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within a range that does not impair the effects of the present invention.
[樹脂組成物]
 本実施形態のポリブチレンテレフタレート系樹脂組成物(以下、「樹脂組成物」ともいう。)は、レーザー溶着用のポリブチレンテレフタレート系樹脂組成物であり、ポリブチレンテレフタレート系樹脂(以下、「PBT系樹脂」ともいう。)と、所定の粒径を有する層状ケイ酸塩鉱物を含むレーザー光透過性向上剤とを含有する。以下、PBT樹脂、レーザー光透過性向上剤の順に説明する。
[Resin composition]
The polybutylene terephthalate resin composition (hereinafter, also referred to as “resin composition”) of the present embodiment is a laser-welded polybutylene terephthalate resin composition, and is a polybutylene terephthalate resin (hereinafter referred to as “PBT system”). Resin ") and a laser light transmission improver containing a layered silicate mineral having a predetermined particle size. Hereinafter, the PBT resin and the laser light transmission improver will be described in this order.
(ポリブチレンテレフタレート系樹脂)
 ポリブチレンテレフタレート系樹脂としては、ブチレンテレフタレートを主成分(例えば、50質量%~100質量%、好ましくは60質量%~100質量%、さらに好ましくは75質量%~100質量%程度)とするホモポリエステル(ポリブチレンテレフタレート)又はコポリエステル(ブチレンテレフタレート系共重合体又はポリブチレンテレフタレートコポリエステル)等が挙げられる。
(Polybutylene terephthalate resin)
The polybutylene terephthalate-based resin is a homopolyester containing butylene terephthalate as a main component (for example, about 50% by mass to 100% by mass, preferably 60% by mass to 100% by mass, more preferably about 75% by mass to 100% by mass). (Polybutylene terephthalate) or copolyester (butylene terephthalate copolymer or polybutylene terephthalate copolyester).
 コポリエステル(ブチレンテレフタレート系共重合体又は変性PBT樹脂)における共重合可能なモノマー(以下、「共重合性モノマー」ともいう。)としては、テレフタル酸を除くジカルボン酸、1,4-ブタンジオールを除くジオール、オキシカルボン酸、ラクトン等が挙げられる。共重合性モノマーは一種で又は二種以上組み合わせて使用できる。 As a copolymerizable monomer (hereinafter, also referred to as “copolymerizable monomer”) in a copolyester (butylene terephthalate copolymer or modified PBT resin), dicarboxylic acid excluding terephthalic acid, 1,4-butanediol is used. Excluded diol, oxycarboxylic acid, lactone and the like. The copolymerizable monomers can be used alone or in combination of two or more.
 ジカルボン酸としては、例えば、脂肪族ジカルボン酸(例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸、ヘキサデカンジカルボン酸、ダイマー酸等のC4-40ジカルボン酸、好ましくはC4-14ジカルボン酸)、脂環式ジカルボン酸(例えば、ヘキサヒドロフタル酸、ヘキサヒドロイソフタル酸、ヘキサヒドロテレフタル酸、ハイミック酸等のC8-12ジカルボン酸)、テレフタル酸を除く芳香族ジカルボン酸(例えば、フタル酸、イソフタル酸;2,6-ナフタレンジカルボン酸等のナフタレンジカルボン酸;4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ジフェニルメタンジカルボン酸、4,4’-ジフェニルケトンジカルボン酸等のC8-16ジフェニルジカルボン酸)、又はこれらの反応性誘導体[例えば、低級アルキルエステル(ジメチルフタル酸、ジメチルイソフタル酸(DMI)等のフタル酸又はイソフタル酸のC1-4アルキルエステル等)、酸クロライド、酸無水物等のエステル形成可能な誘導体]等が挙げられる。さらに、必要に応じて、トリメリット酸、ピロメリット酸等の多価カルボン酸等を併用してもよい。 Examples of the dicarboxylic acid include aliphatic dicarboxylic acids (for example, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, hexadecanedicarboxylic acid, dimer acid, etc. C 4-40 dicarboxylic acids, preferably C 4-14 dicarboxylic acids), cycloaliphatic dicarboxylic acids (eg, C 8-12 dicarboxylic acids such as hexahydrophthalic acid, hexahydroisophthalic acid, hexahydroterephthalic acid, and hymic acid) Acid), aromatic dicarboxylic acids excluding terephthalic acid (eg, phthalic acid, isophthalic acid; naphthalenedicarboxylic acid such as 2,6-naphthalenedicarboxylic acid; 4,4′-diphenyldicarboxylic acid, 4,4′-diphenylether dicarboxylic acid) , 4,4'-Diphenylmethane dicar Phosphate, 4,4'-diphenyl ketone C 8-16 diphenyl dicarboxylic acid such as dicarboxylic acids), or reactive derivatives thereof [for example, lower alkyl esters of phthalic acid such as (dimethyl phthalate, dimethyl isophthalate (DMI) Or C 1-4 alkyl ester of isophthalic acid, etc.), derivatives capable of forming an ester such as acid chloride, acid anhydride, etc.]. Furthermore, you may use together polyvalent carboxylic acids, such as trimellitic acid and a pyromellitic acid, as needed.
 ジオールには、例えば、1,4-ブタンジオールを除く脂肪族アルキレングリコール(例えば、エチレングリコール、トリメチレングリコール、プロピレングリコール、ネオペンチルグリコール、ヘキサンジオール、オクタンジオール、デカンジオール等の直鎖状又は分岐鎖状C2-12脂肪族グリコール、好ましくは直鎖状又は分岐鎖状C2-10脂肪族グリコール)、(ポリ)オキシアルキレングリコール(複数のオキシC2-4アルキレン単位を有するグリコール、例えば、ジエチレングリコール、ジプロピレングリコール、ジテトラメチレングリコール、トリエチレングリコール、トリプロピレングリコール、ポリテトラメチレングリコール等)、脂環族ジオール(例えば、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、水素化ビスフェノールA等)、芳香族ジオール(例えば、ハイドロキノン、レゾルシノール、ナフタレンジオール等のC6-14芳香族ジオール;ビフェノール;ビスフェノール類;キシリレングリコール等)等が挙げられる。さらに、必要に応じて、グリセリン、トリメチロールプロパン、トリメチロールエタン、ペンタエリスリトール等のポリオールを併用してもよい。 Examples of the diol include linear or branched aliphatic alkylene glycols other than 1,4-butanediol (for example, ethylene glycol, trimethylene glycol, propylene glycol, neopentyl glycol, hexanediol, octanediol, decanediol). Linear C 2-12 aliphatic glycols, preferably linear or branched C 2-10 aliphatic glycols), (poly) oxyalkylene glycols (glycols having a plurality of oxy C 2-4 alkylene units, for example Diethylene glycol, dipropylene glycol, ditetramethylene glycol, triethylene glycol, tripropylene glycol, polytetramethylene glycol, etc.), alicyclic diols (eg, 1,4-cyclohexanediol, 1,4-cyclohexane) Nji methanol, hydrogenated bisphenol A, etc.), aromatic diol (e.g., hydroquinone, resorcinol, C 6-14 aromatic diols such as naphthalene diol; biphenol; bisphenols; xylylene glycol and the like) and the like. Furthermore, you may use together polyols, such as glycerol, a trimethylol propane, a trimethylol ethane, a pentaerythritol, as needed.
 前記ビスフェノール類としては、ビス(4-ヒドロキシフェニル)メタン(ビスフェノールF)、1,1-ビス(4-ヒドロキシフェニル)エタン(ビスフェノールAD)、1,1-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)-3-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン等のビス(ヒドロキシアリール)C1-6アルカン;1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン等のビス(ヒドロキシアリール)C4-10シクロアルカン;4,4’-ジヒドロキシジフェニルエーテル;4,4’-ジヒドロキシジフェニルスルホン;4,4’-ジヒドロキシジフェニルスルフィド;4,4’-ジヒドロキシジフェニルケトン、及びこれらのアルキレンオキサイド付加体が例示できる。アルキレンオキサイド付加体としては、ビスフェノール類(例えば、ビスフェノールA、ビスフェノールAD、ビスフェノールF等)のC2-3アルキレンオキサイド付加体、例えば、2,2-ビス-[4-(2-ヒドロキシエトキシ)フェニル]プロパン、ジエトキシ化ビスフェノールA(EBPA)、2,2-ビス-[4-(2-ヒドロキシプロポキシ)フェニル]プロパン、ジプロポキシ化ビスフェノールA等が挙げられる。アルキレンオキサイド付加体において、アルキレンオキサイド(エチレンオキサイド、プロピレンオキサイド等のC2-3アルキレンオキサイド)の付加モル数は、各ヒドロキシル基に対して1~10モル、好ましくは1~5モル程度である。 Examples of the bisphenols include bis (4-hydroxyphenyl) methane (bisphenol F), 1,1-bis (4-hydroxyphenyl) ethane (bisphenol AD), 1,1-bis (4-hydroxyphenyl) propane, , 2-bis (4-hydroxyphenyl) propane (bisphenol A), 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2- Bis (hydroxyaryl) C 1 such as bis (4-hydroxyphenyl) -3-methylbutane, 2,2-bis (4-hydroxyphenyl) hexane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane -6 alkane; 1,1-bis (4-hydroxyphenyl) cyclopentane, 1,1-bis (4-hydride) Bis (hydroxyaryl) C 4-10 cycloalkanes such as loxyphenyl) cyclohexane; 4,4′-dihydroxydiphenyl ether; 4,4′-dihydroxydiphenylsulfone; 4,4′-dihydroxydiphenyl sulfide; 4,4′-dihydroxy Examples thereof include diphenyl ketone and these alkylene oxide adducts. Examples of the alkylene oxide adduct include C 2-3 alkylene oxide adducts of bisphenols (eg, bisphenol A, bisphenol AD, bisphenol F, etc.), such as 2,2-bis- [4- (2-hydroxyethoxy) phenyl. Propane, diethoxylated bisphenol A (EBPA), 2,2-bis- [4- (2-hydroxypropoxy) phenyl] propane, dipropoxylated bisphenol A and the like. In the alkylene oxide adduct, the number of added moles of alkylene oxide ( C2-3 alkylene oxide such as ethylene oxide and propylene oxide) is about 1 to 10 moles, preferably about 1 to 5 moles relative to each hydroxyl group.
 オキシカルボン酸には、例えば、オキシ安息香酸、オキシナフトエ酸、ヒドロキシフェニル酢酸、グリコール酸、オキシカプロン酸等のオキシカルボン酸又はこれらの誘導体等が含まれる。ラクトンには、プロピオラクトン、ブチロラクトン、バレロラクトン、カプロラクトン(例えば、ε-カプロラクトン等)等のC3-12ラクトン等が含まれる。 Examples of the oxycarboxylic acid include oxybenzoic acid, oxynaphthoic acid, hydroxyphenylacetic acid, glycolic acid, oxycaproic acid and other oxycarboxylic acids or derivatives thereof. Lactones include C 3-12 lactones such as propiolactone, butyrolactone, valerolactone, caprolactone (eg, ε-caprolactone, etc.), and the like.
 好ましい共重合性モノマーとしては、ジオール類、又はジカルボン酸類が挙げられる。ジオール類としては、C2-6アルキレングリコール(エチレングリコール、トリメチレングリコール、プロピレングリコール、ヘキサンジオール等の直鎖状又は分岐鎖状アルキレングリコール等)、繰返し数が2~4程度のオキシアルキレン単位を有するポリオキシC2-4アルキレングリコール(ジエチレングリコール等)、ビスフェノール類(ビスフェノール類又はそのアルキレンオキサイド付加体等)等が挙げられる。ジカルボン酸類としては、C6-12脂肪族ジカルボン酸(アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等)、カルボキシル基がアレーン環の非対称位置に置換した非対称芳香族ジカルボン酸、1,4-シクロヘキサンジメタノール等が挙げられる。これらの化合物のうち、芳香族化合物、例えば、ビスフェノール類(特にビスフェノールA)のアルキレンオキサイド付加体、及び非対称芳香族ジカルボン酸[フタル酸、イソフタル酸、及びその反応性誘導体(ジメチルイソフタル酸(DMI)等の低級アルキルエステル等)]等が好ましい。 Preferable copolymerizable monomers include diols or dicarboxylic acids. Examples of the diol include C 2-6 alkylene glycol (linear or branched alkylene glycol such as ethylene glycol, trimethylene glycol, propylene glycol, hexanediol, etc.), and an oxyalkylene unit having a repeating number of about 2 to 4. And polyoxy C 2-4 alkylene glycol (diethylene glycol, etc.), bisphenols (bisphenols or alkylene oxide adducts thereof), etc. Dicarboxylic acids include C 6-12 aliphatic dicarboxylic acids (adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, etc.), asymmetric aromatic dicarboxylic acids in which the carboxyl group is substituted at the asymmetric position of the arene ring, 1, 4-cyclohexanedimethanol and the like can be mentioned. Among these compounds, aromatic compounds such as alkylene oxide adducts of bisphenols (particularly bisphenol A), and asymmetric aromatic dicarboxylic acids [phthalic acid, isophthalic acid, and reactive derivatives thereof (dimethylisophthalic acid (DMI)) Etc.) are preferred.
 ポリブチレンテレフタレート系樹脂としては、ホモポリエステル(ポリブチレンテレフタレート)及び/又は共重合体(ポリブチレンテレフタレートコポリエステル)が好ましく、共重合性モノマーの割合(変性量)は、通常、45モル%以下(例えば、0~40モル%程度)、好ましくは35モル%以下(例えば、0~35モル%程度)であってもよく、30モル%以下(0~30モル%程度)であってもよい。単独で使用する場合、共重合体において、共重合性モノマーの割合は、例えば、0.01~30モル%程度の範囲から選択でき、通常、1~30モル%、好ましくは3~25モル%、さらに好ましくは5~20モル%(例えば、5~15モル%)程度である。ホモポリエステルと併用する場合、共重合体において、共重合性モノマーの割合は、例えば、0.1~45モル%程度の範囲から選択でき、通常、1~40モル%(例えば、5~40モル%)、好ましくは10~35モル%程度であってもよい。 The polybutylene terephthalate resin is preferably a homopolyester (polybutylene terephthalate) and / or a copolymer (polybutylene terephthalate copolyester), and the proportion (modification amount) of the copolymerizable monomer is usually 45 mol% or less ( For example, it may be about 0 to 40 mol%), preferably 35 mol% or less (for example, about 0 to 35 mol%), or 30 mol% or less (about 0 to 30 mol%). When used alone, the proportion of the copolymerizable monomer in the copolymer can be selected, for example, from the range of about 0.01 to 30 mol%, and is usually 1 to 30 mol%, preferably 3 to 25 mol%. More preferably, it is about 5 to 20 mol% (for example, 5 to 15 mol%). When used in combination with a homopolyester, the proportion of the copolymerizable monomer in the copolymer can be selected from the range of, for example, about 0.1 to 45 mol%, and is usually 1 to 40 mol% (eg, 5 to 40 mol%) %), Preferably about 10 to 35 mol%.
 なお、ホモポリエステル(ポリブチレンテレフタレート)と共重合体とを組み合わせて使用する場合、ホモポリエステルとコポリエステルとの割合は、共重合性モノマーの割合が、全単量体に対して0.1~30モル%(好ましくは1~25モル%、さらに好ましくは5~25モル%)程度となる範囲であり、通常、ホモポリエステル/コポリエステルの質量比は、99/1~1/99、好ましくは95/5~5/95、さらに好ましくは90/10~10/90程度の範囲から選択できる。 When a homopolyester (polybutylene terephthalate) and a copolymer are used in combination, the ratio of the homopolyester and the copolyester is such that the ratio of the copolymerizable monomer is 0.1 to The range is about 30 mol% (preferably 1 to 25 mol%, more preferably 5 to 25 mol%), and the mass ratio of homopolyester / copolyester is usually 99/1 to 1/99, preferably It can be selected from the range of about 95/5 to 5/95, more preferably about 90/10 to 10/90.
 ポリブチレンテレフタレート系樹脂は、テレフタル酸又はその反応性誘導体と1,4-ブタンジオールと必要により共重合可能なモノマーとを、慣用の方法、例えば、エステル交換、直接エステル化法等により共重合することにより製造できる。 The polybutylene terephthalate resin is obtained by copolymerizing terephthalic acid or a reactive derivative thereof and 1,4-butanediol with a monomer that can be copolymerized as necessary by a conventional method such as transesterification or direct esterification. Can be manufactured.
 ポリブチレンテレフタレート系樹脂の含有量は、全樹脂組成物中50質量%以上100質量%未満とすることができ、好ましくは、60質量%以上100質量%未満とすることができ、より好ましくは65質量%以上99.9質量%以下とすることができる。 The content of the polybutylene terephthalate resin can be 50% by mass or more and less than 100% by mass in the total resin composition, preferably 60% by mass or more and less than 100% by mass, and more preferably 65% by mass. It can be set to mass% or more and 99.9 mass% or less.
(レーザー光透過性向上剤)
 レーザー光透過性向上剤は、不透明な樹脂であるポリブチレンテレフタレート系樹脂組成物のレーザー光透過性を向上させる作用を有する無機材料である。樹脂組成物のレーザー光の透過性が高まるので、樹脂組成物を用いて製造された成形品をレーザー溶着の透過側成形品として用いることができる。
(Laser light transmission improver)
The laser light transmission improving agent is an inorganic material having an action of improving the laser light transmission of the polybutylene terephthalate resin composition which is an opaque resin. Since the transmittance of the laser light of the resin composition is increased, a molded product manufactured using the resin composition can be used as a transmission-side molded product for laser welding.
 レーザー光透過性向上剤は、層状ケイ酸塩鉱物を含む。レーザー光透過性向上剤は、層状ケイ酸塩鉱物であるように構成することもできる。層状ケイ酸塩鉱物は、通常は、得られる成形体の機械的物性を向上させるための無機充填剤として用いられる場合が多く、無機充填剤を含有する樹脂は、光が散乱されて光透過性が低下することが知られている。しかしながら、本発明者の研究により、所定の粒径を有する層状ケイ酸塩鉱物は、ポリブチレンテレフタレート系樹脂のレーザー光透過性を向上させる作用を有することが新たに分かった。よって、本実施形態では、所定の粒径の層状ケイ酸塩鉱物をレーザー光透過性向上剤として用いる。 The laser light transmission improver contains a layered silicate mineral. The laser light transmission improver can also be configured to be a layered silicate mineral. Layered silicate minerals are usually often used as inorganic fillers to improve the mechanical properties of the resulting molded body. Resins containing inorganic fillers are light transmissive due to light scattering. Is known to decrease. However, the present inventors' research has newly revealed that a layered silicate mineral having a predetermined particle size has an effect of improving the laser light transmittance of a polybutylene terephthalate resin. Therefore, in this embodiment, a layered silicate mineral having a predetermined particle size is used as a laser light transmission improver.
 層状ケイ酸塩鉱物は、少なくとも金属酸化物成分とSiO成分とからなる層状の鉱物である。層状ケイ酸塩鉱物としては、例えば、タルク、マイカ、カオリン、パイロフィライト、セリサイト、バーミキュライト、スメクタイト、ベントナイト、スチーブンサイト、モンモリロナイト、バイデライト、サポナイト、ヘクトライト、ノントロナイト等を挙げることができ、これらから選ばれる1種又は2種以上を用いることができる。中でも、タルクが好ましい。層状ケイ酸塩鉱物は、表面が処理されたものでもよく無処理のものであってもよい。また、天然物に対応する人工合成物を使用することもできる。人工合成物としては、従来公知の各種の方法、例えば固体反応、水熱反応、および超高圧反応などを利用した各種の合成法から得られたケイ酸塩鉱物が利用できる。 The layered silicate mineral is a layered mineral composed of at least a metal oxide component and a SiO 2 component. Examples of layered silicate minerals include talc, mica, kaolin, pyrophyllite, sericite, vermiculite, smectite, bentonite, stevensite, montmorillonite, beidellite, saponite, hectorite, nontronite and the like. , One or more selected from these can be used. Of these, talc is preferable. The layered silicate mineral may be treated or untreated. In addition, an artificial synthetic product corresponding to a natural product can also be used. As the artificial synthetic material, silicate minerals obtained from various synthetic methods using conventionally known various methods such as solid reaction, hydrothermal reaction, and ultrahigh pressure reaction can be used.
 層状ケイ酸塩鉱物の平均一次粒子径は、1.0μm以上5.0μm以下である。平均一次粒子径が1.0μm以上5.0μm以下である場合に、ポリブチレンテレフタレート系樹脂のレーザー光透過性を向上させることができる。平均一次粒子径は、好ましくは、1.5μm以上5.0μm未満であり、より好ましくは、2.0μm以上又は2.0μmを超え、4.0μm以下又は4.0μm未満である。なお、「平均一次粒子径」とは、樹脂組成物に配合される前の層状ケイ酸塩鉱物について、CCDカメラで撮影した画像を解析し、加重平均により算出した値である。例えば、株式会社セイシン企業製、動的画像解析法/粒子(状態)分析計PITA-3等を用いて算出することができる。層状ケイ酸塩鉱物のアスペクト比は、特に限定されず、例えば、1以上10以下とすることができる。 The average primary particle diameter of the layered silicate mineral is 1.0 μm or more and 5.0 μm or less. When the average primary particle diameter is 1.0 μm or more and 5.0 μm or less, the laser light transmittance of the polybutylene terephthalate resin can be improved. The average primary particle diameter is preferably 1.5 μm or more and less than 5.0 μm, more preferably 2.0 μm or more or more than 2.0 μm, or less than 4.0 μm or less than 4.0 μm. The “average primary particle size” is a value calculated by weighted average of the layered silicate mineral before blended with the resin composition by analyzing an image taken with a CCD camera. For example, it can be calculated using a dynamic image analysis method / particle (state) analyzer PITA-3 manufactured by Seishin Corporation. The aspect ratio of the layered silicate mineral is not particularly limited, and can be, for example, 1 or more and 10 or less.
 レーザー光透過性向上剤の含有量は、ポリブチレンテレフタレート系樹脂100質量部に対して、0.01質量部以上20質量部以下とすることが好ましい。より好ましくは、0.5質量部以上15質量部以下であり、さらに好ましくは、1.0質量部以上15質量部未満である。下限値は、5.0質量部以上とすることもできる。層状ケイ酸塩鉱物の含有量が0.01質量部以上20質量部以下の範囲内の場合に、ポリブチレンテレフタレート系樹脂のレーザー光透過性をより向上させることができる。また、層状ケイ酸塩鉱物の含有量が0.01質量部以上のポリブチレンテレフタレート系樹脂組成物を用いた成形品は、成形品内におけるレーザー光透過率のバラつきを小さくすることができる。 The content of the laser light transmission improver is preferably 0.01 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the polybutylene terephthalate resin. More preferably, they are 0.5 mass part or more and 15 mass parts or less, More preferably, they are 1.0 mass part or more and less than 15 mass parts. A lower limit can also be 5.0 mass parts or more. When the content of the layered silicate mineral is in the range of 0.01 parts by mass or more and 20 parts by mass or less, the laser light transmittance of the polybutylene terephthalate resin can be further improved. In addition, a molded article using a polybutylene terephthalate resin composition having a layered silicate mineral content of 0.01 parts by mass or more can reduce variations in laser light transmittance in the molded article.
(無機充填剤)
 本実施形態の樹脂組成物は、得られる成形品の機械的物性を向上させる目的で、無機充填剤を含んでいてもよい。無機充填剤としては、繊維状充填剤、板状充填剤、又は粉粒状充填剤を挙げることができる。繊維状充填剤としては、例えば、ガラス繊維、アスベスト繊維、カーボン繊維、シリカ繊維、アルミナ繊維、シリカ-アルミナ繊維、アルミニウムシリケート繊維、ジルコニア繊維、チタン酸カリウム繊維、炭化ケイ素繊維、ウィスカー(炭化ケイ素、アルミナ、窒化珪素等のウィスカー)等の無機質繊維;脂肪族又は芳香族ポリアミド、芳香族ポリエステル、フッ素樹脂、ポリアクリロニトリル等のアクリル樹脂、レーヨン等で形成された繊維等の有機質繊維を挙げることができる。板状充填剤としては、例えば、タルク、マイカ、ガラスフレーク、グラファイト等を挙げることができる。粉粒状充填剤としては、例えば、ガラスビーズ、ガラス粉、ミルドファイバー(例えば、ミルドガラスファイバー等)、ウォラストナイト(珪灰石)等を挙げることができる。なお、ウォラストナイトは、板状、柱状、繊維状等の形態であってもよい。これらの無機充填剤のうち、安価であり入手しやすいこと等から、ガラス繊維が好ましい。
(Inorganic filler)
The resin composition of the present embodiment may contain an inorganic filler for the purpose of improving the mechanical properties of the obtained molded product. As an inorganic filler, a fibrous filler, a plate-like filler, or a granular filler can be mentioned. Examples of the fibrous filler include glass fiber, asbestos fiber, carbon fiber, silica fiber, alumina fiber, silica-alumina fiber, aluminum silicate fiber, zirconia fiber, potassium titanate fiber, silicon carbide fiber, whisker (silicon carbide, Inorganic fibers such as whiskers such as alumina and silicon nitride); organic fibers such as aliphatic or aromatic polyamides, aromatic polyesters, acrylic resins such as fluororesin and polyacrylonitrile, fibers formed of rayon, etc. . Examples of the plate-like filler include talc, mica, glass flake, and graphite. Examples of the particulate filler include glass beads, glass powder, milled fiber (for example, milled glass fiber), wollastonite (wollastonite), and the like. The wollastonite may be in the form of a plate, column, fiber, or the like. Of these inorganic fillers, glass fiber is preferable because it is inexpensive and easily available.
 繊維状充填剤の平均径は、例えば、1μm~30μm(好ましくは3μm~20μm)程度、平均長は、例えば、100μm~5mm(好ましくは300μm~4mm、さらに好ましくは500μm~3.5mm)程度であってもよい。また、板状又は粉粒状充填剤の平均一次粒子径は、例えば、10μm~500μm、好ましくは15μm~100μm程度とすることができる。これらの無機充填剤は、単独で又は二種以上組み合わせて使用することができる。なお、繊維状充填剤の平均径及び平均長、並びに板状又は粉状充填剤の平均一次粒子径は、樹脂組成物中に配合される前の繊維状充填剤、板状又は粉状充填剤について、CCDカメラで撮影した画像を解析し、加重平均により算出した値であり、上記層状ケイ酸塩鉱物の平均一次粒子径の測定で用いる装置と同様の装置を用いて算出することができる。 The average diameter of the fibrous filler is, for example, about 1 μm to 30 μm (preferably 3 μm to 20 μm), and the average length is, for example, about 100 μm to 5 mm (preferably 300 μm to 4 mm, more preferably 500 μm to 3.5 mm). There may be. Further, the average primary particle diameter of the plate-like or granular filler can be, for example, about 10 μm to 500 μm, preferably about 15 μm to 100 μm. These inorganic fillers can be used alone or in combination of two or more. The average diameter and average length of the fibrous filler and the average primary particle diameter of the plate-like or powdery filler are the fibrous filler, plate-like or powdery filler before being mixed in the resin composition. Is a value calculated by analyzing an image photographed with a CCD camera and calculating a weighted average, and can be calculated using a device similar to the device used in the measurement of the average primary particle diameter of the layered silicate mineral.
 無機充填剤の含有割合は、ポリブチレンテレフタレート系樹脂100質量部に対して、5質量部以上100質量部以下、好ましくは10質量部以上80質量部以下、より好ましくは15質量部以上60質量部以下とすることができる。この数値範囲内とすることで、上記したレーザー光透過性向上剤の作用を維持しつつ、得られる成形体の機械的物性や寸法精度を向上させることができる。 The content of the inorganic filler is 5 parts by mass or more and 100 parts by mass or less, preferably 10 parts by mass or more and 80 parts by mass or less, more preferably 15 parts by mass or more and 60 parts by mass with respect to 100 parts by mass of the polybutylene terephthalate resin. It can be as follows. By setting it within this numerical range, it is possible to improve the mechanical properties and dimensional accuracy of the obtained molded product while maintaining the action of the above-described laser light transmission improving agent.
(他の添加物)
 樹脂組成物には、種々の添加剤、例えば、安定剤(酸化防止剤、紫外線吸収剤、熱安定剤等)、難燃剤、滑剤、離型剤、帯電防止剤、染顔料等の着色剤、分散剤、可塑剤、核剤等を添加してもよい。この場合の添加物の含有量は、例えば、ポリブチレンテレフタレート系樹脂100質量部に対して、0質量部を超え20質量部以下とすることができる。なお、着色剤については、意匠面の要求から、レーザー光吸収側成形品と同様の色目、特に黒色系への着色が必要となる場合、レーザー光透過性を損なわないよう、染料系の着色剤を用いるか、あるいはレーザー光透過率を損なわない顔料(例えばBASF社のルモゲンブラックなど)を用いることが望ましい。
(Other additives)
Various additives such as stabilizers (antioxidants, ultraviolet absorbers, heat stabilizers, etc.), flame retardants, lubricants, mold release agents, antistatic agents, coloring agents such as dyes and pigments, You may add a dispersing agent, a plasticizer, a nucleating agent, etc. In this case, the content of the additive can be, for example, more than 0 parts by mass and 20 parts by mass or less with respect to 100 parts by mass of the polybutylene terephthalate resin. As for the colorant, if it is necessary to color the same color as the laser light absorption side molded product, in particular, black, due to the requirement of the design surface, a dye-based colorant so as not to impair the laser light transmittance. Or a pigment that does not impair the laser light transmittance (for example, BASF Lummogen Black) is desirable.
 また、樹脂組成物には、必要に応じて、他の樹脂(熱可塑性樹脂、熱硬化性樹脂等)を含有することもできる。他の樹脂としては、オレフィン系エラストマー、スチレン系エラストマー、ポリエステル系エラストマー、コアシェルポリマー等を挙げることができる。 The resin composition can also contain other resins (thermoplastic resin, thermosetting resin, etc.) as necessary. Examples of other resins include olefin elastomers, styrene elastomers, polyester elastomers, and core-shell polymers.
 本実施形態のポリブチレンテレフタレート系樹脂組成物は、レーザー光透過性向上剤を含有するので、透明性の高い樹脂をアロイ材として添加しなくても、レーザー光透過性を有している。そのため、樹脂組成物は、アロイ材を含有しないように構成することもできる。一方、樹脂組成物のレーザー光透過性をより一層高めるために、アロイ材を添加することもできる。アロイ材としては、ポリカーボネート系樹脂、ポリエチレンテレフタレート系樹脂、スチレン系樹脂等を挙げることができる。アロイ材を添加する場合、その含有量は、従来のPBT系樹脂組成物に対する添加量よりも低くすることができ、例えば、ポリブチレンテレフタレート系樹脂100質量部に対して、0質量部を超え40質量部以下(例えば20質量部)とすることができる。 Since the polybutylene terephthalate resin composition of the present embodiment contains a laser light transmission improver, it has a laser light transmission property without adding a highly transparent resin as an alloy material. Therefore, the resin composition can be configured not to contain an alloy material. On the other hand, an alloy material can also be added in order to further enhance the laser light transmittance of the resin composition. Examples of the alloy material include a polycarbonate resin, a polyethylene terephthalate resin, and a styrene resin. When the alloy material is added, the content thereof can be made lower than the amount added to the conventional PBT resin composition. For example, the content exceeds 0 part by mass with respect to 100 parts by mass of the polybutylene terephthalate resin. It can be below mass parts (for example, 20 mass parts).
(樹脂組成物)
 本実施形態の樹脂組成物は、粉粒体混合物や溶融混合物(ペレット等)であってもよい。この樹脂組成物を用いて形成された成形品は、レーザー光透過性向上剤を含有しないポリブチレンテレフタレート系樹脂組成物を用いて形成された成形品よりも、レーザー光の透過率が高い。そのため、樹脂組成物は、レーザー溶着するための成形品を製造するのに適している。特に、レーザー光透過側成形品を製造するのに適している。
(Resin composition)
The resin composition of the present embodiment may be a powder mixture or a molten mixture (pellets or the like). A molded article formed using this resin composition has a higher laser beam transmittance than a molded article formed using a polybutylene terephthalate-based resin composition that does not contain a laser beam transmission improver. Therefore, the resin composition is suitable for producing a molded product for laser welding. In particular, it is suitable for manufacturing a laser light transmission side molded product.
[成形品]
 成形品は、上記した樹脂組成物を用いて形成することができ、上記樹脂組成物を含む。この成形品は、光路長1.5mmにおける波長800nm~1000nmのレーザー光透過率が、レーザー光透過性向上剤を含有しないポリブチレンテレフタレート系樹脂組成物を用いて形成された成形品よりも高い。レーザー光透過性は、例えば、射出成形により形成された縦80mm×横80mm×厚み1.5mm(サイドゲート、ゲート幅2mm)の成形品において、800nm~1000nmの波長のレーザー光透過率が20%以上、例えば23%以上である。なお、レーザー光透過率は、分光光度計を用いて測定した値である。
[Molding]
The molded product can be formed using the above-described resin composition, and includes the above-described resin composition. This molded product has a higher laser light transmittance at a wavelength of 800 nm to 1000 nm at an optical path length of 1.5 mm than a molded product formed using a polybutylene terephthalate resin composition that does not contain a laser light transmission improver. The laser light transmittance is, for example, 20% of the laser light transmittance at a wavelength of 800 nm to 1000 nm in a molded product of 80 mm long × 80 mm wide × 1.5 mm thick (side gate, gate width 2 mm) formed by injection molding. For example, it is 23% or more. The laser light transmittance is a value measured using a spectrophotometer.
 成形品は、樹脂組成物を慣用の方法で成形して得ることができる。例えば、(1)各成分を混合して、一軸又は二軸の押出機により混練し押出してペレットを調製した後、成形する方法、(2)一旦、組成の異なるペレット(マスターバッチ)を調製し、そのペレットを所定量混合(希釈)して成形に供し、所定の組成の成形品を得る方法、(3)成形機に各成分の1又は2以上を直接仕込む方法、等で製造できる。なお、ペレットは、例えば、脆性成分(ガラス系補強材等)を除く成分を溶融混合した後に、脆性成分(ガラス系補強材等)を混合することにより調製してもよい。 The molded product can be obtained by molding the resin composition by a conventional method. For example, (1) A method in which each component is mixed, kneaded by a single or twin screw extruder and extruded to prepare pellets, and then molded. (2) A pellet (master batch) having a different composition is once prepared. The pellets can be mixed (diluted) in a predetermined amount and subjected to molding to obtain a molded product having a predetermined composition, or (3) a method in which one or more of each component is directly charged into a molding machine. The pellets may be prepared by, for example, melting and mixing components excluding brittle components (such as glass-based reinforcing materials) and then mixing brittle components (such as glass-based reinforcing materials).
 成形方法は、押出成形、射出成形、圧縮成形、ブロー成形、真空成形、回転成形、ガスインジェクションモールディング等の慣用の方法を用いることができるが、通常、射出成形により成形される。 As the molding method, conventional methods such as extrusion molding, injection molding, compression molding, blow molding, vacuum molding, rotational molding, gas injection molding, etc. can be used, but usually molding is performed by injection molding.
 成形品の形状は、特に制限されないが、成形品をレーザー溶着により相手材(他の樹脂成形品)と接合して用いるため、通常、少なくとも接触面(平面等)を有する形状(例えば、板状)である。また、本発明の成形体はレーザー光に対する透過性が高いので、レーザー光が透過する部位の成形品の厚み(レーザー光が透過する方向の厚み)は、広い範囲から選択でき、例えば、0.3mm~5mm、好ましくは0.5mm~3mm(例えば、1mm~2mm)程度であってもよい。 The shape of the molded product is not particularly limited, but since the molded product is used by joining with a mating material (other resin molded product) by laser welding, it usually has a shape having at least a contact surface (such as a flat surface) (for example, a plate shape) ). In addition, since the molded article of the present invention has high permeability to the laser beam, the thickness of the molded article (the thickness in the direction in which the laser beam is transmitted) at the site where the laser beam is transmitted can be selected from a wide range. It may be about 3 mm to 5 mm, preferably about 0.5 mm to 3 mm (for example, 1 mm to 2 mm).
 前記成形品は、レーザー溶着性に優れているため、通常、レーザー溶着により相手材の樹脂成形品と溶着させるのが好ましいが、必要であれば、他の熱溶着法、例えば、振動溶着法、超音波溶着法、熱板溶着法等により他の樹脂成形品と溶着させることもできる。 Since the molded product is excellent in laser weldability, it is usually preferable to weld the resin molded product of the counterpart material by laser welding, but if necessary, other thermal welding methods, for example, vibration welding method, It can also be welded to other resin molded products by ultrasonic welding, hot plate welding, or the like.
[複合成形品]
 複合成形品は、ポリブチレンテレフタレート系樹脂組成物を用いて形成され該樹脂組成物を含む第1の成形品と、熱可塑性樹脂組成物を用いて形成され該熱可塑性樹脂組成物を含む第2の成形品とが、レーザー溶着された複合成形品である。第1の成形品と、第2の成形品とは、レーザー溶着により接合され一体化されている。複合成形品は、ポリブチレンテレフタレート系樹脂組成物を含む第1の成形品の少なくとも一部と、熱可塑性樹脂組成物を含む第2の成形品の少なくとも一部とを重ね合せ、第1の成形品側からレーザー光を照射して第1の成形品の少なくとも一部と第2の成形品の少なくとも一部とを溶着して得ることができる。レーザー光を照射することにより、第1の成形品と第2の成形品との界面が少なくとも部分的に溶融して接合面が密着され、その後、冷却することにより二種の成形品を接合、一体化して1つの複合成形体とすることができる。
[Composite molded product]
The composite molded article includes a first molded article formed using a polybutylene terephthalate resin composition and including the resin composition, and a second molded article formed using the thermoplastic resin composition and including the thermoplastic resin composition. The molded article is a laser-welded composite molded article. The first molded product and the second molded product are joined and integrated by laser welding. The composite molded article is formed by superimposing at least a part of the first molded article containing the polybutylene terephthalate resin composition and at least a part of the second molded article containing the thermoplastic resin composition. It can be obtained by irradiating laser light from the product side and welding at least a part of the first molded product and at least a part of the second molded product. By irradiating with laser light, the interface between the first molded product and the second molded product is at least partially melted to bring the joining surface into close contact, and then the two molded products are joined by cooling. It can be integrated into one composite molded body.
 第2の成形品を構成する熱可塑性樹脂組成物としては、前記ポリブチレンテレフタレート系樹脂と相溶性のある樹脂組成物であれば特に制限されず、例えば、オレフィン系樹脂、ビニル系樹脂、スチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂等を含む樹脂組成物を挙げることができる。これらの樹脂のうち、前記ポリブチレンテレフタレート系樹脂を構成する樹脂と同種類又は同系統の樹脂(PBT系樹脂、PET系樹脂等の芳香族ポリエステル系樹脂)、ポリカーボネート系樹脂又はその組成物で相手材を構成してもよい。例えば、第1の成形体を本実施形態のポリブチレンテレフタレート系樹脂組成物で形成し、第2の成形体を、レーザー光透過性向上剤を含有しないポリブチレンテレフタレート系樹脂で形成してもよい。 The thermoplastic resin composition constituting the second molded product is not particularly limited as long as it is a resin composition compatible with the polybutylene terephthalate resin, and examples thereof include olefin resins, vinyl resins, and styrene resins. Examples of the resin composition include a resin, an acrylic resin, a polyester resin, a polyamide resin, and a polycarbonate resin. Among these resins, the same type or the same type of resins as those constituting the polybutylene terephthalate resin (aromatic polyester resins such as PBT resins and PET resins), polycarbonate resins or compositions thereof You may comprise material. For example, the first molded body may be formed of the polybutylene terephthalate resin composition of the present embodiment, and the second molded body may be formed of a polybutylene terephthalate resin that does not contain a laser light transmission improver. .
 第2の成形品は、レーザー光に対する吸収剤又は着色剤を含んでいてもよい。前記着色剤は、レーザー光の波長に応じて選択でき、無機顔料又は有機顔料を用いることができる。無機顔料としては、カーボンブラック(例えば、アセチレンブラック、ランプブラック、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラック等)等の黒色顔料、酸化鉄赤等の赤色顔料、モリブデートオレンジ等の橙色顔料、酸化チタン等の白色顔料等を挙げることができる。有機顔料としては、黄色顔料、橙色顔料、赤色顔料、青色顔料、緑色顔料等を挙げることができる。これらの吸収剤は単独で又は二種以上組み合わせて使用できる。吸収剤としては、通常、黒色顔料又は染料、特にカーボンブラックが使用できる。カーボンブラックの平均粒子径は、通常、1nm~1000nm、好ましくは10nm~100nm程度であってもよい。着色剤の割合は、第2の成形品構成する組成物全体に対して0.1質量%~10質量%、好ましくは0.5質量%~5質量%(例えば、0.5質量%~3質量%)程度である。 The second molded product may contain an absorber or a colorant for laser light. The colorant can be selected according to the wavelength of the laser beam, and an inorganic pigment or an organic pigment can be used. Inorganic pigments include black pigments such as carbon black (for example, acetylene black, lamp black, thermal black, furnace black, channel black, ketjen black), red pigments such as iron oxide red, and orange pigments such as molybdate orange. And white pigments such as titanium oxide. Examples of the organic pigment include a yellow pigment, an orange pigment, a red pigment, a blue pigment, and a green pigment. These absorbents can be used alone or in combination of two or more. As the absorbent, usually black pigments or dyes, particularly carbon black can be used. The average particle size of carbon black may be usually about 1 nm to 1000 nm, preferably about 10 nm to 100 nm. The ratio of the colorant is 0.1% by mass to 10% by mass, preferably 0.5% by mass to 5% by mass (for example, 0.5% by mass to 3% by mass) with respect to the entire composition constituting the second molded article. Mass%).
 レーザー光の照射は、通常、第1の成形体側から第2の成形体の方向に向けて行われ、光吸収性を有する第2の成形体の界面で発熱させることにより、第1の成形体と第2の成形体とを融着させる。なお、必要によりレンズ系を利用して、第1の成形品と第2の成形品との界面にレーザー光を集光させ接触界面を融着してもよい。レーザー光源としては、特に制限されず、例えば、色素レーザ、気体レーザ(エキシマレーザ、アルゴンレーザ、クリプトンレーザ、ヘリウム-ネオンレーザ等)、固体レーザ(YAGレーザ等)、半導体レーザ等が利用できる。レーザー光としては、通常、パルスレーザが利用される。 Irradiation with laser light is usually performed from the first molded body side toward the second molded body, and heat is generated at the interface of the second molded body having light absorption, thereby the first molded body. And the second molded body are fused. If necessary, a lens system may be used to focus the laser beam on the interface between the first molded product and the second molded product and fuse the contact interface. The laser light source is not particularly limited, and for example, a dye laser, a gas laser (excimer laser, argon laser, krypton laser, helium-neon laser, etc.), a solid laser (YAG laser, etc.), a semiconductor laser, and the like can be used. As the laser light, a pulse laser is usually used.
(用途)
 本実施形態で得られる複合成形品は、高い溶着強度を有し、レーザー光照射によるPBT系樹脂の損傷も少ないため、種々の用途、例えば、電気・電子部品、オフィスオートメート(OA)機器部品、家電機器部品、機械機構部品、自動車機構部品等に適用できる。特に、自動車電装部品(各種コントロールユニット、イグニッションコイル部品等)、モーター部品、各種センサー部品、コネクター部品、スイッチ部品、リレー部品、コイル部品、トランス部品、ランプ部品等に好適に用いることができる。
(Use)
The composite molded product obtained in the present embodiment has high welding strength and little damage to the PBT resin due to laser light irradiation. Therefore, various applications such as electrical / electronic parts, office automate (OA) equipment parts, etc. It can be applied to home appliance parts, machine mechanism parts, automobile mechanism parts and the like. In particular, it can be suitably used for automobile electrical parts (various control units, ignition coil parts, etc.), motor parts, various sensor parts, connector parts, switch parts, relay parts, coil parts, transformer parts, lamp parts, and the like.
[PBT系樹脂組成物のレーザー光透過性向上方法]
 ポリブチレンテレフタレート系樹脂組成物のレーザー光透過性向上方法は、ポリブチレンテレフタレート系樹脂組成物に、平均一次粒子径が1.0μm以上5.0μm以下の層状ケイ酸塩鉱物を配合するというものである。これにより、ポリブチレンテレフタレート系樹脂組成物のレーザー光透過性を向上することができ、ポリブチレンテレフタレート系樹脂組成物を、レーザー溶着に用いる透過側成形品の製造に用いることができる。このメカニズムは現段階では明らかではないが、後述する実施例に示すように、所定の粒径を有する層状ケイ酸塩鉱物を含むポリブチレンテレフタレート系樹脂組成物は、層状ケイ酸塩鉱物を含まない場合や、粒径が所定の範囲外の層状ケイ酸塩鉱物を含有する場合よりも、レーザー光透過性が向上した。層状ケイ酸塩鉱物の種類や含有量及び好ましい粒子径の範囲については、上述のとおりであるのでここでは記載を省略する。
[Method for Improving Laser Light Transmittance of PBT Resin Composition]
The method for improving the laser light transmittance of a polybutylene terephthalate resin composition is that a layered silicate mineral having an average primary particle diameter of 1.0 μm or more and 5.0 μm or less is blended with a polybutylene terephthalate resin composition. is there. Thereby, the laser beam transmittance of the polybutylene terephthalate resin composition can be improved, and the polybutylene terephthalate resin composition can be used for the production of a transmission side molded product used for laser welding. Although this mechanism is not clear at this stage, the polybutylene terephthalate-based resin composition containing a layered silicate mineral having a predetermined particle size does not contain a layered silicate mineral, as shown in Examples described later. In some cases, the laser light transmittance was improved as compared with the case where a layered silicate mineral having a particle size outside the predetermined range was contained. The type and content of the layered silicate mineral and the preferable range of the particle diameter are as described above, and are not described here.
 以下に実施例を示して本発明を更に具体的に説明するが、これらの実施例により本発明の解釈が限定されるものではない。 EXAMPLES The present invention will be described more specifically with reference to the following examples. However, the interpretation of the present invention is not limited by these examples.
[実施例1~4、比較例1~4]
 以下に示す材料を用い、表1,2に示す含有割合で2軸押出機(日本製鋼所株式会社製、30mmφ)により250℃にて混錬しペレットを作製した。なお、タルクの平均一次粒子径は、株式会社セイシン企業製、動的画像解析法/粒子(状態)分析計PITA-3を用いて測定した。
[Examples 1 to 4, Comparative Examples 1 to 4]
Using the materials shown below, pellets were produced by kneading at 250 ° C. with a twin-screw extruder (manufactured by Nippon Steel Works, 30 mmφ) at the content ratios shown in Tables 1 and 2. The average primary particle diameter of talc was measured using a dynamic image analysis method / particle (state) analyzer PITA-3 manufactured by Seishin Enterprise Co., Ltd.
 ポリブチレンテレフタレート系樹脂(PBT):ウィンテックポリマー社製、固有粘度0.95dl/gのPBT
 タルク1:平均一次粒子径2.6μmのタルク
 タルク2:平均一次粒子径3.4μmのタルク
 タルク3:平均一次粒子径6.2μmのタルク
 タルク4:平均一次粒子径0.6μmのタルク
 ガラス繊維(GF):日本電気硝子社製、商品名「ECS03T-187」、平均径13μm、平均長3mm
Polybutylene terephthalate resin (PBT): PBT having an intrinsic viscosity of 0.95 dl / g, manufactured by Wintech Polymer Co., Ltd.
Talc 1: Talc with an average primary particle size of 2.6 μm Talc 2: Talc with an average primary particle size of 3.4 μm Talc 3: Talc with an average primary particle size of 6.2 μm Talc 4: Talc glass fibers with an average primary particle size of 0.6 μm (GF): manufactured by Nippon Electric Glass Co., Ltd., trade name “ECS03T-187”, average diameter 13 μm, average length 3 mm
[評価]
 実施例及び比較例で得られたペレットを用いて、射出成形機(ファナック株式会社製)により、シリンダー温度260℃及び金型温度80℃の条件で成形品(縦8cm×横8cm×厚さ1.5mm、サイドゲート)を成形した。
[Evaluation]
Using the pellets obtained in the examples and comparative examples, a molded product (length 8 cm × width 8 cm × thickness 1) on an injection molding machine (manufactured by FANUC CORPORATION) under the conditions of a cylinder temperature of 260 ° C. and a mold temperature of 80 ° C. .5 mm, side gate).
(レーザー光透過率)
 得られた成形品のゲート側部から2cm×2cmを切り出して試験片とし、積分球を使用した分光光度計(日本分光社製、型式:V570)を用いて、波長940nmでの試験片のレーザー光透過率を測定した。結果を表1,2に示した。
(Laser light transmittance)
2 cm × 2 cm was cut out from the gate side portion of the obtained molded product to make a test piece, and a test piece laser at a wavelength of 940 nm was used using a spectrophotometer (manufactured by JASCO Corporation, model: V570) using an integrating sphere. The light transmittance was measured. The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1,2から明らかなように、実施例1~4の樹脂組成物を用いて形成された成形品は、層状ケイ酸塩鉱物を含有しない樹脂組成物を用いて形成された比較例1の成形品、及び、粒径が所定の範囲外である層状ケイ酸塩鉱物を含有する樹脂組成物を用いて形成された比較例2~4の成形品よりも、レーザー光透過率が向上した。この成形品は、波長800nm~1000nmのレーザー光透過率が、23%以上と高く、レーザー溶着の際の透過側成形品の製造に有用である。 As is apparent from Tables 1 and 2, the molded articles formed using the resin compositions of Examples 1 to 4 were those of Comparative Example 1 formed using a resin composition containing no layered silicate mineral. The laser light transmittance was improved as compared with the molded products of Comparative Examples 2 to 4 formed using a molded product and a resin composition containing a layered silicate mineral having a particle size outside the predetermined range. This molded article has a laser light transmittance of a wavelength of 800 nm to 1000 nm as high as 23% or more, and is useful for producing a transmission side molded article at the time of laser welding.
1  光源
2  レーザー光
3  透過側成形品
4  吸収側成形品
1 Light source 2 Laser light 3 Transmission side molded product 4 Absorption side molded product

Claims (11)

  1.  ポリブチレンテレフタレート系樹脂と、平均一次粒子径が1.0μm以上5.0μm以下の層状ケイ酸塩鉱物を含むレーザー光透過性向上剤とを含有する、レーザー溶着用ポリブチレンテレフタレート系樹脂組成物。 A polybutylene terephthalate resin composition for laser welding, comprising: a polybutylene terephthalate resin; and a laser light transmission improver containing a layered silicate mineral having an average primary particle size of 1.0 μm to 5.0 μm.
  2.  レーザー光透過性向上剤の含有量が、ポリブチレンテレフタレート系樹脂100質量部に対して0.01質量部以上20質量部以下である、請求項1に記載のレーザー溶着用ポリブチレンテレフタレート系樹脂組成物。 The polybutylene terephthalate resin composition for laser welding according to claim 1, wherein the content of the laser light transmission improver is 0.01 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the polybutylene terephthalate resin. object.
  3.  層状ケイ酸塩鉱物が、タルクを含む、請求項1又は2に記載のレーザー溶着用ポリブチレンテレフタレート系樹脂組成物。 The polybutylene terephthalate resin composition for laser welding according to claim 1 or 2, wherein the layered silicate mineral contains talc.
  4.  さらに無機充填剤を含有する、請求項1から3のいずれか一項に記載のレーザー溶着用ポリブチレンテレフタレート系樹脂組成物。 The polybutylene terephthalate resin composition for laser welding according to any one of claims 1 to 3, further comprising an inorganic filler.
  5.  レーザー光透過側成形品用の樹脂組成物である、請求項1から4のいずれか一項に記載のレーザー溶着用ポリブチレンテレフタレート系樹脂組成物。 The laser-welded polybutylene terephthalate resin composition according to any one of claims 1 to 4, which is a resin composition for a laser light transmission side molded article.
  6.  請求項1から5のいずれか一項に記載のポリブチレンテレフタレート系樹脂組成物を含む、レーザー溶着用成形品。 A laser welded molded article comprising the polybutylene terephthalate resin composition according to any one of claims 1 to 5.
  7.  光路長1.5mmにおける波長800nm~1000nmのレーザー光透過率が、レーザー光透過性向上剤を含有しないポリブチレンテレフタレート系樹脂組成物を用いた成形品よりも高い、請求項6に記載の成形品。 The molded article according to claim 6, wherein the laser light transmittance at a wavelength of 800 nm to 1000 nm at an optical path length of 1.5 mm is higher than that of a molded article using a polybutylene terephthalate resin composition not containing a laser light transmission improver. .
  8.  請求項1から5のいずれか一項に記載のポリブチレンテレフタレート系樹脂組成物を含む第1の成形品と、熱可塑性樹脂組成物を含む第2の成形品とが、レーザー溶着された複合成形品。 A composite molding in which a first molded product containing the polybutylene terephthalate resin composition according to any one of claims 1 to 5 and a second molded product containing a thermoplastic resin composition are laser-welded. Goods.
  9.  熱可塑性樹脂組成物が、レーザー光透過性向上剤を含有しないポリブチレンテレフタレート系樹脂組成物である、請求項8に記載の複合成形品。 The composite molded article according to claim 8, wherein the thermoplastic resin composition is a polybutylene terephthalate resin composition that does not contain a laser light transmission improver.
  10.  請求項1から5のいずれか一項に記載のポリブチレンテレフタレート系樹脂組成物を含む第1の成形品の少なくとも一部と、熱可塑性樹脂組成物を含む第2の成形品の少なくとも一部とを重ね合せ、第1の成形品側からレーザー光を照射して第1の成形品の少なくとも一部と第2の成形品の少なくとも一部とを溶着する、複合成形品の製造方法。 At least a part of a first molded article containing the polybutylene terephthalate resin composition according to any one of claims 1 to 5, and at least a part of a second molded article containing a thermoplastic resin composition; And at least a part of the first molded product and at least a part of the second molded product are welded by irradiating a laser beam from the first molded product side.
  11.  ポリブチレンテレフタレート系樹脂組成物に、平均一次粒子径が1.0μm以上5.0μm以下の層状ケイ酸塩鉱物を配合する、ポリブチレンテレフタレート系樹脂組成物のレーザー光透過性向上方法。 A method for improving the laser light transmittance of a polybutylene terephthalate resin composition, comprising blending a polybutylene terephthalate resin composition with a layered silicate mineral having an average primary particle size of 1.0 μm or more and 5.0 μm or less.
PCT/JP2017/020642 2016-07-15 2017-06-02 Resin composition for laser welding, molded product, composite molded product and method for producing same, and method for improving laser light transmissivity WO2018012138A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018527433A JP6993971B2 (en) 2016-07-15 2017-06-02 Laser welding resin composition and molded product, composite molded product and its manufacturing method, and laser light transmission improving method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-140333 2016-07-15
JP2016140333 2016-07-15

Publications (1)

Publication Number Publication Date
WO2018012138A1 true WO2018012138A1 (en) 2018-01-18

Family

ID=60952515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020642 WO2018012138A1 (en) 2016-07-15 2017-06-02 Resin composition for laser welding, molded product, composite molded product and method for producing same, and method for improving laser light transmissivity

Country Status (2)

Country Link
JP (1) JP6993971B2 (en)
WO (1) WO2018012138A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218149A1 (en) * 2019-04-25 2020-10-29 ポリプラスチックス株式会社 Polybutylene terephthalate resin composition for laser welding
WO2023145756A1 (en) * 2022-01-31 2023-08-03 ポリプラスチックス株式会社 Resin composition for laser welding, composite molded article, and method for improving laser beam transmittance of resin composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001790A1 (en) * 2006-06-30 2008-01-03 Toray Industries, Inc. Thermoplastic resin composition and molded article thereof
JP2009132851A (en) * 2007-10-31 2009-06-18 Toray Ind Inc Thermoplastic resin composition as well as molded article and composite molded body therefrom
JP2010001363A (en) * 2008-06-19 2010-01-07 Du Pont Toray Co Ltd Thermoplastic elastomer resin composition and molded article
JP2010222553A (en) * 2009-02-26 2010-10-07 Toray Ind Inc Thermoplastic resin composition and molded product made therewith
JP2014507540A (en) * 2011-03-08 2014-03-27 ビーエーエスエフ ソシエタス・ヨーロピア Laser transmissive polyester with inorganic salt

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106834A (en) * 1999-07-30 2001-04-17 Sumitomo Chem Co Ltd Olefin resin composition and molded product using the same
JP5256644B2 (en) * 2007-05-15 2013-08-07 三菱エンジニアリングプラスチックス株式会社 Flame retardant aromatic polycarbonate resin composition and molded article
JP5210068B2 (en) 2008-07-23 2013-06-12 パナソニック株式会社 Laser welding thermoplastic resin composition, method for producing resin molded product, and resin molded product
JP2010202682A (en) * 2009-02-27 2010-09-16 Hayashi Kasei Kk Olefinic polymer composition and resin molded article obtained by using the same
JP6097189B2 (en) * 2012-09-28 2017-03-15 株式会社クラレ Polyamide resin composition
JP2014206099A (en) 2013-04-12 2014-10-30 華芝ジャパン株式会社 Fan

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001790A1 (en) * 2006-06-30 2008-01-03 Toray Industries, Inc. Thermoplastic resin composition and molded article thereof
JP2009132851A (en) * 2007-10-31 2009-06-18 Toray Ind Inc Thermoplastic resin composition as well as molded article and composite molded body therefrom
JP2010001363A (en) * 2008-06-19 2010-01-07 Du Pont Toray Co Ltd Thermoplastic elastomer resin composition and molded article
JP2010222553A (en) * 2009-02-26 2010-10-07 Toray Ind Inc Thermoplastic resin composition and molded product made therewith
JP2014507540A (en) * 2011-03-08 2014-03-27 ビーエーエスエフ ソシエタス・ヨーロピア Laser transmissive polyester with inorganic salt

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218149A1 (en) * 2019-04-25 2020-10-29 ポリプラスチックス株式会社 Polybutylene terephthalate resin composition for laser welding
JP2020180202A (en) * 2019-04-25 2020-11-05 ポリプラスチックス株式会社 Polybutylene terephthalate resin composition for laser welding
JP7291528B2 (en) 2019-04-25 2023-06-15 ポリプラスチックス株式会社 Polybutylene terephthalate resin composition for laser welding
WO2023145756A1 (en) * 2022-01-31 2023-08-03 ポリプラスチックス株式会社 Resin composition for laser welding, composite molded article, and method for improving laser beam transmittance of resin composition
JP7340725B1 (en) 2022-01-31 2023-09-07 ポリプラスチックス株式会社 Laser welding resin composition, composite molded article, and method for improving laser light transmittance of resin composition

Also Published As

Publication number Publication date
JPWO2018012138A1 (en) 2019-04-25
JP6993971B2 (en) 2022-01-14

Similar Documents

Publication Publication Date Title
JP5085928B2 (en) Laser welding resin composition and molded article
JP4589234B2 (en) Laser welding resin composition and molded product
JP5254971B2 (en) Laser transmissive resin molded product and composite molded product thereof
JP4456392B2 (en) Laser welding resin composition and molded article
JP4641377B2 (en) Laser welded polybutylene terephthalate resin composition and molded article
JP4565958B2 (en) Laser welding resin composition and molded product
ES2380238T3 (en) Use of a flame retardant resin composition for lateral member of laser welding transmission
JP5302683B2 (en) Laser welding resin composition and molded article
JP2007169358A (en) Polyester resin composition for laser welding and molded article using the same
WO2017110372A1 (en) Polyamide resin composition, kit, process for producing molded article, and molded article
JP2007186584A (en) Polyester resin composition for laser welding and molded article produced by using the same
WO2018012138A1 (en) Resin composition for laser welding, molded product, composite molded product and method for producing same, and method for improving laser light transmissivity
JP7265979B2 (en) Molded products for laser welding, agents for suppressing variations in laser transmittance of molded products for laser welding
WO2019117074A1 (en) Molded article which is able to be laser welded and is able to be marked with laser beam
JP2010070626A (en) Polyester resin composition and composite molded article
JP6983777B2 (en) Laser welding resin composition and molded product
JP2007246716A (en) Polyester resin composition for laser beam welding and molded article using the same
JP7291528B2 (en) Polybutylene terephthalate resin composition for laser welding
JP7354480B1 (en) Resin composition for molded product on laser light transmission side and molded product thereof
WO2023223775A1 (en) Laser light-transmitting resin composition, molded article, and composite molded article
CN115427515B (en) Resin composition for galvanometer type laser welding, molded article, set for galvanometer type laser welding, in-vehicle camera component, in-vehicle camera module, ultraviolet exposure body, and method for producing molded article
WO2022249980A1 (en) Laser transmissive resin composition and molded article thereof
KR20140013009A (en) Laser-transparent polyesters

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018527433

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827271

Country of ref document: EP

Kind code of ref document: A1