WO2018011958A1 - Gear and gear production method - Google Patents

Gear and gear production method Download PDF

Info

Publication number
WO2018011958A1
WO2018011958A1 PCT/JP2016/070911 JP2016070911W WO2018011958A1 WO 2018011958 A1 WO2018011958 A1 WO 2018011958A1 JP 2016070911 W JP2016070911 W JP 2016070911W WO 2018011958 A1 WO2018011958 A1 WO 2018011958A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
mass
tooth
teeth
thickness
Prior art date
Application number
PCT/JP2016/070911
Other languages
French (fr)
Japanese (ja)
Inventor
昭平 岡部
Original Assignee
住友電工ファインポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ファインポリマー株式会社 filed Critical 住友電工ファインポリマー株式会社
Priority to JP2017502277A priority Critical patent/JPWO2018011958A1/en
Priority to KR1020187033857A priority patent/KR20190031200A/en
Priority to PCT/JP2016/070911 priority patent/WO2018011958A1/en
Publication of WO2018011958A1 publication Critical patent/WO2018011958A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/06Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/04After-treatment of articles without altering their shape; Apparatus therefor by wave energy or particle radiation, e.g. for curing or vulcanising preformed articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material

Definitions

  • the present invention relates to a gear and a manufacturing method of the gear.
  • Polyamide 66 is widely used for sliding members in the industrial machinery field because of its excellent mechanical properties, friction and wear resistance, chemical resistance, and the like.
  • gears, cams, washers, bearings, and the like obtained by molding polyamide 66 are widely used for automobile parts, machine parts, electrical and electronic parts, and the like.
  • a resin composition containing polyamide 66 and a sliding agent has been proposed as a resin composition used for molding a molded body (for example, Japanese Patent Laid-Open No. 5-93129, Japanese Patent Laid-Open No. 5-93129) 2013-64420).
  • a gear obtained from a conventional resin composition containing polyamide 66 and a sliding agent has a relatively small dynamic friction coefficient.
  • it is necessary to prevent the gear during sliding from becoming high temperature. It becomes a high temperature of 80 ° C. or higher, and it cannot be said that the physical deterioration during sliding is not sufficiently suppressed.
  • the present invention has been made on the basis of the circumstances as described above, and includes a polyamide 66, and a gear excellent in an effect of suppressing physical deterioration during sliding by suppressing a temperature rise during sliding, and such a gear. It aims at providing the manufacturing method of.
  • a gear according to one embodiment of the present invention made to solve the above-described problem is a gear formed by crosslinking a resin composition containing polyamide 66 and a crosslinking aid, and represented by the following formula (1):
  • the specified mass reduction rate is 0.5% or less.
  • Mass reduction rate [%] (XY) / X ⁇ 100 (1)
  • X initial gear mass [g]
  • Y Mass of gear after fatigue test in which gears are rotated for 100 hours under conditions of tooth surface load 4.5 N / mm and rotation speed 616 rpm [g]
  • a gear according to another embodiment of the present invention made to solve the above-described problem is a gear formed by crosslinking a resin composition containing polyamide 66 and a crosslinking aid, and is represented by the following formula (1). ) Is a mass reduction rate specified by 0.5) or less.
  • Mass reduction rate [%] (XY) / X ⁇ 100 (1)
  • X initial mass [g] of spur gear A having a tooth width of 5 mm, module 1, number of teeth of 30, and a thickness of 10.7 mm of contiguous teeth of 10.7 mm formed under the same conditions as the gear Y: The spur gear B and spur gear A having a tooth width of 5 mm, module 1, number of teeth 31 and a continuous tooth thickness of 10.7 mm, which are formed under the same conditions as the gear, mesh with each other, and the tooth load 4 Mass of the spur gear A after a fatigue test in which the gears are rotated for 100 hours under conditions of 5 N / mm and a rotation speed of 616 rpm [g]
  • a gear according to another embodiment of the present invention which has been made to solve the above problems, is a gear formed by crosslinking a resin composition containing polyamide 66 and a crosslinking aid, and has the following formula (The reduction rate of the tooth thickness defined in 2) is 0.3% or less.
  • a gear manufacturing method made to solve the above-described problems is obtained by an injection molding step of injection molding a resin composition containing polyamide 66 and a crosslinking aid, and the injection molding step.
  • a method of manufacturing a gear including an ionizing radiation irradiation step of irradiating the molded body with ionizing radiation, wherein the mass reduction rate defined by the following formula (1) of the obtained gear is 0.5% or less.
  • Mass reduction rate [%] (XY) / X ⁇ 100 (1)
  • Y Mass of gear after fatigue test in which gears are rotated for 100 hours under conditions of tooth surface load 4.5 N / mm and rotation speed 616 rpm [g]
  • Another aspect of the present invention which is a gear manufacturing method for solving the above-described problems, is an injection molding step of injection molding a resin composition containing polyamide 66 and a crosslinking aid, and the injection molding step.
  • Mass reduction rate [%] (XY) / X ⁇ 100 (1)
  • X Initial mass [g] of spur gear A having a tooth width of 5 mm, module 1, number of teeth 30 and a continuous tooth thickness of 10.7 mm formed under the same conditions as the obtained gear
  • Y meshing spur gear B and spur gear A having a tooth width of 5 mm, module 1, number of teeth of 31 and a thickness of 10.7 mm, which is a continuous gear tooth, formed under the same conditions as the obtained gear, and tooth load Mass [g] of spur gear A after a fatigue test in which gears are rotated for 100 hours under conditions of 4.5 N / mm and a rotational speed of 616 rpm
  • Another aspect of the gear manufacturing method according to the present invention made to solve the above problems is an injection molding step of injection molding a resin composition containing polyamide 66 and a crosslinking aid, and the injection molding step.
  • a method of manufacturing a gear including an ionizing radiation irradiation step of irradiating an ionizing radiation to the molded body obtained in the step, wherein the reduction rate of the tooth thickness defined by the following formula (2) of the gear is 0.3. % Or less.
  • the gear of the present invention contains polyamide 66 and is excellent in the effect of suppressing physical deterioration during sliding by suppressing the temperature rise during sliding.
  • the gear manufacturing method of the present invention includes polyamide 66, and can easily manufacture a gear excellent in the effect of suppressing physical deterioration during sliding by suppressing temperature rise during sliding.
  • a gear according to one embodiment of the present invention is a gear formed by crosslinking a resin composition containing polyamide 66 and a crosslinking aid, and has a mass reduction rate of 0.00 specified by the following formula (1). 5% or less.
  • Mass reduction rate [%] (XY) / X ⁇ 100 (1)
  • X initial gear mass [g]
  • Y Mass of gear after fatigue test in which gears are rotated for 100 hours under conditions of tooth surface load 4.5 N / mm and rotation speed 616 rpm [g]
  • a gear according to another aspect of the present invention is a gear formed by crosslinking a resin composition containing polyamide 66 and a crosslinking aid, and has a mass reduction rate of 0 defined by the following formula (1). .5% or less.
  • Mass reduction rate [%] (XY) / X ⁇ 100 (1)
  • X initial mass [g] of spur gear A having a tooth width of 5 mm, module 1, number of teeth of 30, and a thickness of 10.7 mm of contiguous teeth of 10.7 mm formed under the same conditions as the gear
  • Y The spur gear B and spur gear A having a tooth width of 5 mm, module 1, number of teeth 31 and a continuous tooth thickness of 10.7 mm, which are formed under the same conditions as the gear, mesh with each other, and the tooth load 4 Mass of the spur gear A after a fatigue test in which the gears are rotated for 100 hours under conditions of 5 N / mm and a rotation speed of 616 rpm [g]
  • the gear is excellent in the effect of suppressing physical deterioration during sliding because the mass reduction rate defined by the formula (1) is not more than a specific value. This is because when the mass reduction rate defined by the expression (1) is a specific value or less, the gear is difficult to deform, and a good meshing state is maintained in the sliding gear. It is estimated that the temperature rise is suppressed.
  • a gear according to still another aspect of the present invention is a gear formed by cross-linking a resin composition containing polyamide 66 and a cross-linking aid, and having a thickness of a toothpick defined by the following formula (2).
  • the reduction rate is 0.3% or less.
  • the gear is excellent in the effect of suppressing physical deterioration during sliding because the reduction rate of the tooth thickness defined by the formula (2) is not more than a specific value. This is because if the toothpick thickness reduction rate defined by the formula (2) is below a specific value, the gear is difficult to deform and the sliding gear maintains a good meshing state. It is estimated that the temperature rise inside is suppressed.
  • the thickness of the straddle teeth defined by the equation (2) is evaluated by the amount of gear tooth reduction, as well as the mass reduction rate defined by the equation (1). Therefore, it can be considered that making the thickness of the toothpick below a certain value is synonymous with making the mass reduction rate defined by the equation (1) below a certain value.
  • the dynamic viscoelasticity at 260 ° C. is preferably 1 MPa or more.
  • the “dynamic viscoelastic modulus” is a value measured according to JIS-K-7244-1 (1998).
  • the cross-linking aid preferably contains triallyl isocyanurate.
  • triallyl isocyanurate as a crosslinking aid in this way, the crosslinking density of the gear can be further increased, so that the effect of suppressing physical deterioration during sliding can be further promoted.
  • the content of the crosslinking aid is preferably 1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of polyamide 66.
  • the gear manufacturing method includes an injection molding step of injection-molding a resin composition containing polyamide 66 and a crosslinking aid, and irradiating ionized radiation to a molded body obtained in the injection molding step.
  • regulated by following formula (1) of the gear which is provided with the ionizing radiation irradiation process to perform, Comprising: 0.5% or less is obtained.
  • Mass reduction rate [%] (XY) / X ⁇ 100 (1)
  • Y Mass of gear after fatigue test in which gears are rotated for 100 hours under conditions of tooth surface load 4.5 N / mm and rotation speed 616 rpm [g]
  • a gear manufacturing method includes an injection molding step of injection molding a resin composition containing polyamide 66 and a crosslinking aid, and ionizing radiation on a molded body obtained by the injection molding step.
  • a method of manufacturing a gear including an ionizing radiation irradiation step of irradiating, wherein a mass reduction rate defined by the following formula (1) of the obtained gear is 0.5% or less.
  • Mass reduction rate [%] (XY) / X ⁇ 100 (1)
  • X Initial mass [g] of spur gear A having a tooth width of 5 mm, module 1, number of teeth 30 and a continuous tooth thickness of 10.7 mm formed under the same conditions as the obtained gear
  • Y meshing spur gear B and spur gear A having a tooth width of 5 mm, module 1, number of teeth of 31 and a thickness of 10.7 mm, which is a continuous gear tooth, formed under the same conditions as the obtained gear, and tooth load Mass [g] of spur gear A after a fatigue test in which gears are rotated for 100 hours under conditions of 4.5 N / mm and a rotational speed of 616 rpm
  • the gear manufacturing method can manufacture a gear having a mass reduction rate of 0.5% or less as defined by the formula (1), it is possible to suppress physical deterioration during sliding by suppressing temperature rise during sliding.
  • the gear which is excellent in can be obtained easily.
  • the gear manufacturing method includes an injection molding step of injection-molding a resin composition containing polyamide 66 and a crosslinking aid, and ionizing radiation to a molded body obtained in the injection molding step.
  • the gear manufacturing method can manufacture a gear having a thickness reduction rate of 0.3% or less as defined by Equation (2), physical deterioration during sliding can be achieved by suppressing temperature rise during sliding. A gear excellent in the suppression effect can be easily obtained.
  • the gear according to the first embodiment is formed by crosslinking a resin composition containing polyamide 66 and a crosslinking aid, and the mass reduction rate defined by the following formula (1) is 0.5% or less.
  • Mass reduction rate [%] (XY) / X ⁇ 100 (1)
  • X initial gear mass [g]
  • Y Mass of gear after fatigue test in which gears are rotated for 100 hours under conditions of tooth surface load 4.5 N / mm and rotation speed 616 rpm [g]
  • the gear Since the gear has a mass reduction rate defined by the equation (1) that is not more than a specific value, it is excellent in the effect of suppressing physical deterioration during sliding due to suppression of temperature rise during sliding.
  • the gear is formed by crosslinking a polyamide 66 and a resin composition containing the crosslinking aid.
  • the resin composition contains polyamide 66 and a crosslinking aid.
  • the resin composition preferably contains polyamide 66 as a main component.
  • the resin composition can improve the mechanical characteristics, friction wear resistance, chemical resistance, and the like of the gear.
  • the “main component” means a component that is contained most, for example, a component that is contained by 50% by mass or more.
  • the content of polyamide 66 in the resin composition is preferably 70% by mass or more, and more preferably 80% by mass or more.
  • the resin composition may contain a resin other than polyamide 66 (other resins).
  • other resins include polyamides other than polyamide 66 and resins other than polyamide.
  • other resin can be used individually or in combination of 2 or more types.
  • polyamides other than polyamide 66 include polyamide 6, polyamide 46, polyamide 11, polyamide 12, polyamide 610, polyamide 612, polyamide 66 / 6I, polyamide 66 / 6T, polyamide 6T / 66, polyamide 6T / 6I, polyamide 6T / 6I / 66, polyamide 6T-5MT, polyamide 6T / 6, polyamide MXD-6, polyamide 9T, wholly aromatic polyamide, and the like.
  • the resin other than the polyamide examples include polyolefin, polyurethane, acrylic resin, methacrylic resin, polyester, epoxy resin, fluororesin, natural or synthetic rubber, silicone resin, ABS (styrene-acrylonitrile-butadiene copolymer) resin, and polycarbonate. , Polylactic acid, polyacetal and the like.
  • the upper limit of the proportion of the other resin in the total resin components of the resin composition is preferably 20% by mass, and 10% by mass. Is more preferable, and 5 mass% is further more preferable.
  • the resin composition preferably contains only polyamide 66 as a resin component.
  • the resin composition contains a crosslinking aid.
  • the said resin composition can raise the bridge
  • crosslinking aid examples include oxime compounds, acrylate or methacrylate compounds, vinyl compounds, allyl compounds, maleimide compounds, and the like.
  • a crosslinking adjuvant can be used individually or in combination of 2 or more types.
  • oxime compound examples include p-quinone dioxime, p, p'-dibenzoylquinone dioxime, and the like.
  • Examples of the acrylate or methacrylate compound include diethylene glycol diacrylate, diethylene glycol dimethacrylate, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, and acrylic acid / zinc oxide.
  • a mixture, allyl acrylate, allyl methacrylate, trimethacryl isocyanurate, etc. are mentioned.
  • vinyl compound examples include divinylbenzene, vinyltoluene, and vinylpyridine.
  • allyl compound examples include hexamethylene diallyl nadiimide, diallyl itaconate, diallyl phthalate, diallyl isophthalate, diallyl monoglycidyl isocyanurate, triallyl cyanurate, triallyl isocyanurate and the like.
  • maleimide compound examples include N, N′-m-phenylenebismaleimide, N, N ′-(4,4′-methylenediphenylene) dimaleimide, and the like.
  • crosslinking aid an allyl compound is preferable and triallyl isocyanurate is more preferable because the crosslinking density of the gear can be increased.
  • the lower limit of the content of the crosslinking aid in the resin composition is preferably 1 part by weight, more preferably 1.5 parts by weight, and even more preferably 2 parts by weight with respect to 100 parts by weight of polyamide 66.
  • the upper limit of the content is preferably 10 parts by mass, more preferably 9 parts by mass, and still more preferably 8 parts by mass with respect to 100 parts by mass of the polyamide.
  • the resin composition preferably contains a sliding agent.
  • the dynamic friction coefficient of the gear can be reduced, so that the effect of suppressing physical deterioration during sliding can be further increased.
  • sliding agent examples include polyethylene such as ultra high molecular weight polyethylene, and polyolefin such as polypropylene; Fluororesin such as polytetrafluoroethylene, polytetrafluoroethylene / perfluoroalkoxyethylene copolymer, polytetrafluoroethylene / polyhexafluoropropylene; Silicones such as polydimethylsiloxane, polymethylphenylsiloxane, amino-modified polydimethylsiloxane, epoxy-modified polydimethylsiloxane, alcohol-modified polydimethylsiloxane, carboxy-modified polydimethylsiloxane, fluorine-modified polydimethylsiloxane; Layered inorganic compounds such as graphite; Inorganic fibers such as glass fiber, potassium titanate whisker, zinc oxide whisker, boronic acid whisker; Organic fibers such as LCP fiber, aramid fiber, carbon fiber; Inorganic particles such as such as
  • polyolefin is preferable and polyethylene is more preferable because the wear resistance of the gear can be further improved.
  • the lower limit of the content of the sliding agent in the resin composition is preferably 1 part by weight, more preferably 1.5 parts by weight, and even more preferably 2 parts by weight with respect to 100 parts by weight of polyamide 66.
  • the upper limit of the content is preferably 10 parts by mass, more preferably 9.5 parts by mass, and still more preferably 9 parts by mass with respect to 100 parts by mass of the polyamide.
  • the resin composition may contain an additive as necessary.
  • the additive include a polymerization inhibitor, a filler (excluding the sliding agent), a plasticizer, a pigment, a stabilizer, a lubricant, a softening agent, a sensitizer, an antioxidant, a flame retardant, Examples include release agents, weathering agents, antistatic agents, and silane coupling agents.
  • an additive can be used individually or in combination of 2 or more types.
  • the resin composition can be obtained by mixing each constituent component. Specifically, the resin composition can be obtained, for example, by mixing polyamide 66 and the crosslinking aid. In the mixing, a mixer such as a single screw mixer or a twin screw mixer can be used. Moreover, you may heat in the case of mixing.
  • the upper limit of the mass reduction rate (first mass reduction rate) defined by the following formula (1) of the gear is 0.5%, more preferably 0.3%, and even more preferably 0.1%. .
  • the mass reduction rate is equal to or less than the upper limit, the effect of suppressing physical deterioration during sliding can be promoted. This is because when the mass reduction rate defined by the expression (1) is a specific value or less, the gear is difficult to deform, and a good meshing state is maintained in the sliding gear. It is estimated that the temperature rise is suppressed.
  • Mass reduction rate [%] (XY) / X ⁇ 100 (1)
  • X initial gear mass [g]
  • Y Mass of gear after fatigue test in which gears are rotated for 100 hours under conditions of tooth surface load 4.5 N / mm and rotation speed 616 rpm [g]
  • the upper limit of the mass reduction rate (second mass reduction rate) defined by the above formula (1) when the gear is a spur gear A having a fixed shape is preferably 0.5%, 0.3 % Is more preferable, and 0.1% is more preferable.
  • X and Y are as follows in the above formula (1). Note that “the gear is changed to the spur gear A” means that the spur gear A is formed under the same conditions as the gear formation method. “Forming under the same conditions as the gear” means that the same resin composition as the resin composition used for forming the gear is used, and the spur gear A and the spur gear are manufactured in the same process (manufacturing method) as the gear. This means that B is formed.
  • spur gear A initial mass [g] of spur gear A having a tooth width of 5 mm, module 1, number of teeth of 30, and a thickness of 10.7 mm of contiguous teeth of 10.7 mm formed under the same conditions as the gear Y: The spur gear B and spur gear A having a tooth width of 5 mm, module 1, number of teeth 31 and a continuous tooth thickness of 10.7 mm, which are formed under the same conditions as the gear, mesh with each other, and the tooth load 4 Mass of the spur gear A after a fatigue test in which the gears are rotated for 100 hours under conditions of 5 N / mm and a rotation speed of 616 rpm [g]
  • the upper limit of the toothpick thickness reduction rate defined by the following formula (2) of the gear is preferably 0.3%, more preferably 0.2%, and 0 More preferably, 1%. If the reduction rate of the toothpick thickness is less than or equal to the above upper limit, the strength, durability, heat resistance, etc. of the gear can be increased and the effect of suppressing physical deterioration during sliding can be promoted.
  • the straddle tooth thickness is a value measured according to JIS-B-0102-1 (2013).
  • the upper limit of the maximum temperature during the following sliding test of the gear is preferably 75 ° C, more preferably 70 ° C, and further preferably 50 ° C. When the maximum temperature is not more than the upper limit, the effect of suppressing physical deterioration during sliding can be promoted.
  • the above sliding test is performed under the same conditions as the gear, with a tooth width of 5 mm, module 1, number of teeth 30, spur gear A having a continuous tooth thickness of 10.7 mm and a tooth width of 5 mm, module 1, tooth A spur gear B having a thickness of 10.7 mm consisting of eight continuous teeth is manufactured, and the spur gear A and the spur gear B are meshed with each other, and the tooth surface load is 4.5 N / mm in a 25 ° C. atmosphere. This is performed by rotating the gears for 100 hours under the condition of a rotation speed of 616 rpm.
  • the lower limit of the dynamic viscoelastic modulus at 260 ° C. of the gear is preferably 1 MPa, more preferably 1.5 MPa, and further preferably 2 MPa. If the dynamic viscoelastic modulus is less than the lower limit, the gear cannot obtain a sufficient crosslinking density, and there is a possibility that the effect of suppressing physical deterioration during sliding cannot be obtained sufficiently.
  • gears examples include a spur gear, a cylindrical gear, a helical gear, a helical gear, a bevel gear, a crown gear, a screw gear, a worm gear, and the like.
  • the tooth width of the gear is, for example, 1 mm or more and 20 mm or less.
  • the gear module is, for example, 0.3 or more and 1.5 or less.
  • the number of teeth of the gear is, for example, 5 or more and 100 or less, and the thickness of the contiguous eight teeth is 1 mm or more and 20 mm or less.
  • the gear according to the second embodiment is formed by crosslinking a resin composition containing polyamide 66 and a crosslinking aid, and the mass reduction rate defined by the following formula (1) is 0.5% or less.
  • Mass reduction rate [%] (XY) / X ⁇ 100 (1)
  • X initial mass [g] of spur gear A having a tooth width of 5 mm, module 1, number of teeth of 30, and a thickness of 10.7 mm of contiguous teeth of 10.7 mm formed under the same conditions as the gear
  • Y The spur gear B and spur gear A having a tooth width of 5 mm, module 1, number of teeth 31 and a continuous tooth thickness of 10.7 mm, which are formed under the same conditions as the gear, mesh with each other, and the tooth load 4 Mass of the spur gear A after a fatigue test in which the gears are rotated for 100 hours under conditions of 5 N / mm and a rotation speed of 616 rpm [g]
  • the upper limit of the mass reduction rate defined by the above formula (1) is preferably 0.3%, more preferably 0.1%.
  • the mass reduction rate defined by the formula (1) is not more than a specific value, so that the physical deterioration during sliding is suppressed by suppressing the temperature rise during sliding. Excellent effect.
  • the gear material, properties (decrease ratio of the tooth thickness, maximum temperature during sliding and dynamic viscoelasticity), shape, manufacturing method, and the like can be the same as those in the first embodiment.
  • the gear of the third embodiment is formed by cross-linking a resin composition containing polyamide 66 and a cross-linking aid, and the reduction rate of the tooth thickness defined by the following formula (2) is 0.3% or less. It is.
  • the upper limit of the reduction ratio of the toothpick thickness defined by the above formula (2) is preferably 0.2%, and more preferably 0.1%.
  • the gear has an excellent effect of suppressing physical deterioration during sliding due to the suppression of the temperature rise during sliding because the reduction rate of the thickness of the toothpick defined by the formula (2) is not more than a specific value.
  • the gear material, properties (mass reduction rate, maximum temperature during sliding and dynamic viscoelasticity), shape, manufacturing method, and the like can be the same as in the first embodiment.
  • the gear manufacturing method according to the first embodiment, the second embodiment, and the third embodiment includes an injection molding step of injection molding the resin composition containing polyamide 66 and the crosslinking aid, and the injection molding step. And an ionizing radiation irradiating step for irradiating the molded body obtained in the above with ionizing radiation. According to the gear manufacturing method, the gear can be easily obtained.
  • injection molding process In the injection molding step, the resin composition is injection molded to obtain a molded body having a desired gear shape.
  • the temperature of the above-mentioned resin composition of an injection molding process 150 ° C is preferred and 200 ° C is more preferred.
  • the upper limit of the temperature is preferably 320 ° C, more preferably 300 ° C.
  • the lower limit of the injection pressure of the injection molding process preferably 70kg / cm 2, 80kg / cm 2 is more preferable.
  • the upper limit of the injection pressure preferably 130kg / cm 2, 120kg / cm 2 is more preferable.
  • the lower limit of the mold temperature in the injection molding process is preferably 40 ° C, more preferably 50 ° C.
  • the upper limit of the mold temperature is preferably 120 ° C, more preferably 100 ° C.
  • the molded body obtained in the injection molding step is irradiated with ionizing radiation to crosslink the molded body.
  • the ionizing radiation examples include ⁇ rays, ⁇ rays, ⁇ rays, electron rays, and X rays.
  • the ionizing radiation is preferably an electron beam from the viewpoints of ease of control and safety.
  • the irradiation amount of the ionizing radiation is not particularly limited, but is preferably 1 kGy or more and 1000 kGy or less from the viewpoint of suppressing deterioration of the resin due to irradiation while obtaining a sufficient crosslinking density.
  • the lower limit of the irradiation amount is preferably 5 kGy, more preferably 10 kGy.
  • the upper limit of the irradiation dose is preferably 960 kGy, more preferably 480 kGy.
  • the irradiation with the ionizing radiation can be performed at room temperature.
  • the ionizing radiation is preferably irradiated in a low oxygen or oxygen-free atmosphere.
  • the resin composition may be molded into a desired shape using a molding method other than the injection molding method such as an extrusion molding method, a press molding method, a blow molding method, or a vacuum molding method. Good.
  • the resin composition may be crosslinked by a chemical crosslinking method.
  • the gear may incorporate a metal part such as a shaft.
  • the method for manufacturing the gear may include steps other than the step of injection molding the resin composition and the step of irradiating the molded body with ionizing radiation.
  • steps other than the step of injection molding the resin composition and the step of irradiating the molded body with ionizing radiation For example, a drying process for drying the molded body after the injection molding process may be provided, or a heat treatment process may be provided after the ionizing radiation irradiation process.
  • Polyamide 66 “Leona 1402S” from Asahi Kasei Corporation
  • Sliding agent “Miperon XM220” (ultra high molecular weight polyethylene particles) from Mitsui Chemicals, Inc.
  • Crosslinking aid “TAICROS” (triallyl isocyanurate) from Evonik Degussa
  • the gear-shaped molded body was irradiated with an electron beam so that the irradiation amount was 120 kGy, and the gear of Test Example 1 was obtained.
  • Test Example 2 the same electron beam irradiation as in Test Example 1 was performed to obtain the gear of the test example.
  • Test Examples 3 and 4 electron beam irradiation as in Test Example 1 was not performed, and the gear-shaped molded body was used as the gear of the test example.
  • the spur gear A of each test example was used as the gear of the above test examples 1 to 4. Further, gears similar to those in Test Examples 1 to 4 except that the spur gear shape was 31 were prepared, and these gears were used as the spur gear B of each test example as a counterpart material. Next, the spur gear A and the spur gear B were meshed, and a sliding test was performed for 100 hours in a 25 ° C. atmosphere in which gears were rotated under the conditions of a tooth surface load of 4.5 N / mm and a rotational speed of 616 rpm. The change in temperature of the spur gear A during the sliding test was measured, and the highest temperature reached was defined as the “maximum temperature during the sliding test”. This maximum temperature is shown in the “maximum temperature” column of Table 1. A non-contact thermometer was used for measuring the temperature of the sliding portion of the spur gear.
  • Mass reduction rate [%] (XY) / X ⁇ 100 (1)
  • X initial mass of spur gear A [g]
  • Y Mass [g] of spur gear A after meshing spur gear A and spur gear B, and performing a fatigue test in which gears are rotated for 100 hours under conditions of a tooth surface load of 4.5 N / mm and a rotational speed of 616 rpm.
  • Test Examples 1 and 2 As shown in Table 1, in Test Examples 1 and 2, the mass reduction rate and the reduction rate of the tooth thickness were 0. For this reason, in Test Examples 1 and 2, the maximum temperature during the sliding test was lower than in Test Examples 3 and 4. That is, it can be evaluated that Test Examples 1 and 2 are excellent in the effect of suppressing physical deterioration during sliding due to suppression of temperature rise during sliding.
  • Test Examples 3 and 4 the temperature increase during sliding is not suppressed as compared with Test Examples 1 and 2, and it can be evaluated that physical deterioration during sliding occurs from Test Examples 1 and 2. The reason for this is presumed that, for Test Examples 3 and 4, the mass reduction rate exceeded 0.5% or the reduction rate of the toothpick thickness exceeded 0.3%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Gears, Cams (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

The gear of an embodiment of the present invention is formed by cross-linking a resin composition containing polyamide 66 and a cross-linking assistant and the mass reduction rate prescribed by equation (1) is 0.5% or less. Mass reduction rate [%] = (X-Y)/X×100 (1) X = initial gear mass [g] Y = gear mass [g] after fatigue test in which gears are rotated with each other for 100 hours under conditions of 4.5 N/mm tooth flank load and 616 rpm rotation speed

Description

ギア、及びギアの製造方法Gear and manufacturing method of gear
 本発明は、ギア、及びギアの製造方法に関する。 The present invention relates to a gear and a manufacturing method of the gear.
 ポリアミド66は、機械的特性、耐摩擦摩耗性、耐薬品性等に優れることから、産業機械分野の摺動部材に幅広く用いられている。例えばポリアミド66を成形することにより得られるギア、カム、ワッシャー、軸受け等は、自動車部品、機械部品、電気電子部品等に広く利用される。 Polyamide 66 is widely used for sliding members in the industrial machinery field because of its excellent mechanical properties, friction and wear resistance, chemical resistance, and the like. For example, gears, cams, washers, bearings, and the like obtained by molding polyamide 66 are widely used for automobile parts, machine parts, electrical and electronic parts, and the like.
 さらに、摺動効果の向上の点より、成形体の成形に用いられる樹脂組成物としてポリアミド66及び摺動剤を含む樹脂組成物が提案されている(例えば特開平5-93129号公報、特開2013-64420号公報参照)。 Furthermore, from the viewpoint of improving the sliding effect, a resin composition containing polyamide 66 and a sliding agent has been proposed as a resin composition used for molding a molded body (for example, Japanese Patent Laid-Open No. 5-93129, Japanese Patent Laid-Open No. 5-93129) 2013-64420).
特開平5-93129号公報Japanese Patent Laid-Open No. 5-93129 特開2013-64420号公報JP 2013-64420 A
 従来のポリアミド66及び摺動剤を含む樹脂組成物により得られるギアは、動摩擦係数が比較的小さい。しかし、ギアにおいて摺動中の物理的劣化を抑制するためには、摺動中のギアが高温となることを防ぐ必要があるところ、上記従来の樹脂組成物により得られるギアは摺動中に80℃以上の高温となり、摺動中における物理的劣化の抑制が十分とはいえない。 A gear obtained from a conventional resin composition containing polyamide 66 and a sliding agent has a relatively small dynamic friction coefficient. However, in order to suppress physical deterioration during sliding in the gear, it is necessary to prevent the gear during sliding from becoming high temperature. It becomes a high temperature of 80 ° C. or higher, and it cannot be said that the physical deterioration during sliding is not sufficiently suppressed.
 本発明は、上述のような事情に基づいてなされたものであり、ポリアミド66を含み、摺動中の温度上昇の抑制により摺動中における物理的劣化抑制効果に優れるギア、及びこのようなギアの製造方法を提供することを目的とする。 The present invention has been made on the basis of the circumstances as described above, and includes a polyamide 66, and a gear excellent in an effect of suppressing physical deterioration during sliding by suppressing a temperature rise during sliding, and such a gear. It aims at providing the manufacturing method of.
 上記課題を解決するためになされた本発明の一態様に係るギアは、ポリアミド66及び架橋助剤を含有する樹脂組成物を架橋することで形成されるギアであって、下記式(1)で規定される質量減少率が0.5%以下である。
 質量減少率[%]=(X-Y)/X×100 ・・・(1)
 X:ギアの初期質量[g]
 Y:歯面荷重4.5N/mm、回転数616rpmの条件で100時間ギア同士を回転させる疲労試験後のギアの質量[g]
A gear according to one embodiment of the present invention made to solve the above-described problem is a gear formed by crosslinking a resin composition containing polyamide 66 and a crosslinking aid, and represented by the following formula (1): The specified mass reduction rate is 0.5% or less.
Mass reduction rate [%] = (XY) / X × 100 (1)
X: initial gear mass [g]
Y: Mass of gear after fatigue test in which gears are rotated for 100 hours under conditions of tooth surface load 4.5 N / mm and rotation speed 616 rpm [g]
 上記課題を解決するためになされた別の本発明の一態様に係るギアは、ポリアミド66及び架橋助剤を含有する樹脂組成物を架橋することで形成されるギアであって、下記式(1)で規定される質量減少率が0.5%以下である。
 質量減少率[%]=(X-Y)/X×100 ・・・(1)
 X:当該ギアと同じ条件で形成した歯幅5mm、モジュール1、歯数30、連続する8枚の歯のまたぎ歯厚10.7mmの平歯車Aの初期質量[g]
 Y:当該ギアと同じ条件で形成した歯幅5mm、モジュール1、歯数31、連続する8枚の歯のまたぎ歯厚10.7mmの平歯車Bと平歯車Aとをかみ合わせ、歯面荷重4.5N/mm、回転数616rpmの条件で100時間ギア同士を回転させる疲労試験後の平歯車Aの質量[g]
A gear according to another embodiment of the present invention made to solve the above-described problem is a gear formed by crosslinking a resin composition containing polyamide 66 and a crosslinking aid, and is represented by the following formula (1). ) Is a mass reduction rate specified by 0.5) or less.
Mass reduction rate [%] = (XY) / X × 100 (1)
X: initial mass [g] of spur gear A having a tooth width of 5 mm, module 1, number of teeth of 30, and a thickness of 10.7 mm of contiguous teeth of 10.7 mm formed under the same conditions as the gear
Y: The spur gear B and spur gear A having a tooth width of 5 mm, module 1, number of teeth 31 and a continuous tooth thickness of 10.7 mm, which are formed under the same conditions as the gear, mesh with each other, and the tooth load 4 Mass of the spur gear A after a fatigue test in which the gears are rotated for 100 hours under conditions of 5 N / mm and a rotation speed of 616 rpm [g]
 上記課題を解決するためになされたさらに別の本発明の一態様に係るギアは、ポリアミド66及び架橋助剤を含有する樹脂組成物を架橋することで形成されるギアであって、下記式(2)で規定されるまたぎ歯厚の減少率が0.3%以下である。
 またぎ歯厚の減少率[%]=(P-Q)/P×100 ・・・(2)
 P:当該ギアと同じ条件で形成した歯幅5mm、モジュール1、歯数30の平歯車Aの連続する8枚の歯のまたぎ歯厚[mm]
 Q:当該ギアと同じ条件で形成した歯幅5mm、モジュール1、歯数31であり、連続する8枚の歯のまたぎ歯厚が平歯車Aと等しい平歯車Bと平歯車Aとをかみ合わせ、歯面荷重4.5N/mm、回転数616rpmの条件で100時間ギア同士を回転させる疲労試験後の平歯車Aの連続する8枚の歯のまたぎ歯厚[mm]
A gear according to another embodiment of the present invention, which has been made to solve the above problems, is a gear formed by crosslinking a resin composition containing polyamide 66 and a crosslinking aid, and has the following formula ( The reduction rate of the tooth thickness defined in 2) is 0.3% or less.
Decrease rate of tooth thickness [%] = (PQ) / P × 100 (2)
P: Thickness [mm] of 8 consecutive teeth of a spur gear A having a tooth width of 5 mm, a module 1, and 30 teeth formed under the same conditions as the gear
Q: A spur gear B and a spur gear A, which have a tooth width of 5 mm, a module 1, and a number of teeth 31 formed under the same conditions as the gear, and the thickness of the continuous eight teeth is equal to the spur gear A, Thickness [mm] of 8 consecutive teeth of spur gear A after a fatigue test in which gears are rotated for 100 hours under conditions of a tooth surface load of 4.5 N / mm and a rotational speed of 616 rpm [mm]
 上記課題を解決するためになされた本発明の一態様に係るギアの製造方法は、ポリアミド66及び架橋助剤を含有する樹脂組成物を射出成形する射出成形工程と、上記射出成形工程で得られた成形体に電離放射線を照射する電離放射線照射工程とを備えるギアの製造方法であって、得られるギアの下記式(1)で規定される質量減少率が0.5%以下である。
 質量減少率[%]=(X-Y)/X×100 ・・・(1)
 X:ギアの初期質量[g]
 Y:歯面荷重4.5N/mm、回転数616rpmの条件で100時間ギア同士を回転させる疲労試験後のギアの質量[g]
A gear manufacturing method according to one aspect of the present invention made to solve the above-described problems is obtained by an injection molding step of injection molding a resin composition containing polyamide 66 and a crosslinking aid, and the injection molding step. A method of manufacturing a gear including an ionizing radiation irradiation step of irradiating the molded body with ionizing radiation, wherein the mass reduction rate defined by the following formula (1) of the obtained gear is 0.5% or less.
Mass reduction rate [%] = (XY) / X × 100 (1)
X: initial gear mass [g]
Y: Mass of gear after fatigue test in which gears are rotated for 100 hours under conditions of tooth surface load 4.5 N / mm and rotation speed 616 rpm [g]
 上記課題を解決するためになされた別の本発明の一態様に係るギアの製造方法は、ポリアミド66及び架橋助剤を含有する樹脂組成物を射出成形する射出成形工程と、上記射出成形工程で得られた成形体に電離放射線を照射する電離放射線照射工程とを備えるギアの製造方法であって、得られるギアの下記式(1)で規定される質量減少率が、0.5%以下である。
 質量減少率[%]=(X-Y)/X×100 ・・・(1)
 X:得られるギアと同じ条件で形成した歯幅5mm、モジュール1、歯数30、連続する8枚の歯のまたぎ歯厚10.7mmの平歯車Aの初期質量[g]
 Y:得られるギアと同じ条件で形成した歯幅5mm、モジュール1、歯数31、連続する8枚の歯のまたぎ歯厚10.7mmの平歯車Bと平歯車Aとをかみ合わせ、歯面荷重4.5N/mm、回転数616rpmの条件で100時間ギア同士を回転させる疲労試験後の平歯車Aの質量[g]
Another aspect of the present invention, which is a gear manufacturing method for solving the above-described problems, is an injection molding step of injection molding a resin composition containing polyamide 66 and a crosslinking aid, and the injection molding step. An ionizing radiation irradiating step for irradiating an ionizing radiation to the obtained molded body, wherein the mass reduction rate defined by the following formula (1) of the obtained gear is 0.5% or less. is there.
Mass reduction rate [%] = (XY) / X × 100 (1)
X: Initial mass [g] of spur gear A having a tooth width of 5 mm, module 1, number of teeth 30 and a continuous tooth thickness of 10.7 mm formed under the same conditions as the obtained gear
Y: meshing spur gear B and spur gear A having a tooth width of 5 mm, module 1, number of teeth of 31 and a thickness of 10.7 mm, which is a continuous gear tooth, formed under the same conditions as the obtained gear, and tooth load Mass [g] of spur gear A after a fatigue test in which gears are rotated for 100 hours under conditions of 4.5 N / mm and a rotational speed of 616 rpm
 上記課題を解決するためになされたさらに別の本発明の一態様に係るギアの製造方法は、ポリアミド66及び架橋助剤を含有する樹脂組成物を射出成形する射出成形工程と、上記射出成形工程で得られた成形体に電離放射線を照射する電離放射線照射工程とを備えるギアの製造方法であって、得られるギアの下記式(2)で規定されるまたぎ歯厚の減少率が0.3%以下である。
 またぎ歯厚の減少率[%]=(P-Q)/P×100 ・・・(2)
 P:得られるギアと同じ条件で形成した歯幅5mm、モジュール1、歯数30の平歯車Aの連続する8枚の歯のまたぎ歯厚[mm]
 Q:得られるギアと同じ条件で形成した歯幅5mm、モジュール1、歯数31であり、連続する8枚の歯のまたぎ歯厚が平歯車Aと等しい平歯車Bと平歯車Aとをかみ合わせ、歯面荷重4.5N/mm、回転数616rpmの条件で100時間ギア同士を回転させる疲労試験後の平歯車Aの連続する8枚の歯のまたぎ歯厚[mm]
Another aspect of the gear manufacturing method according to the present invention made to solve the above problems is an injection molding step of injection molding a resin composition containing polyamide 66 and a crosslinking aid, and the injection molding step. A method of manufacturing a gear including an ionizing radiation irradiation step of irradiating an ionizing radiation to the molded body obtained in the step, wherein the reduction rate of the tooth thickness defined by the following formula (2) of the gear is 0.3. % Or less.
Decrease rate of tooth thickness [%] = (PQ) / P × 100 (2)
P: Thickness [mm] of 8 consecutive teeth of a spur gear A having a tooth width of 5 mm, a module 1, and 30 teeth formed under the same conditions as the obtained gear
Q: meshing spur gear B and spur gear A with a tooth width of 5 mm, module 1 and number of teeth 31 formed under the same conditions as the gear to be obtained, and the thickness of the continuous eight teeth is equal to spur gear A , The tooth thickness [mm] of the continuous eight teeth of the spur gear A after the fatigue test in which the gears are rotated for 100 hours under the conditions of a tooth surface load of 4.5 N / mm and a rotation speed of 616 rpm
 本発明のギアは、ポリアミド66を含み、摺動中の温度上昇の抑制により摺動中における物理的劣化抑制効果に優れる。本発明のギアの製造方法は、ポリアミド66を含み、摺動中の温度上昇の抑制により摺動中における物理的劣化抑制効果に優れるギアを容易に製造できる。 The gear of the present invention contains polyamide 66 and is excellent in the effect of suppressing physical deterioration during sliding by suppressing the temperature rise during sliding. The gear manufacturing method of the present invention includes polyamide 66, and can easily manufacture a gear excellent in the effect of suppressing physical deterioration during sliding by suppressing temperature rise during sliding.
[本発明の実施形態の説明]
 本発明の一態様に係るギアは、ポリアミド66及び架橋助剤を含有する樹脂組成物を架橋することで形成されるギアであって、下記式(1)で規定される質量減少率が0.5%以下である。
 質量減少率[%]=(X-Y)/X×100 ・・・(1)
 X:ギアの初期質量[g]
 Y:歯面荷重4.5N/mm、回転数616rpmの条件で100時間ギア同士を回転させる疲労試験後のギアの質量[g]
[Description of Embodiment of the Present Invention]
A gear according to one embodiment of the present invention is a gear formed by crosslinking a resin composition containing polyamide 66 and a crosslinking aid, and has a mass reduction rate of 0.00 specified by the following formula (1). 5% or less.
Mass reduction rate [%] = (XY) / X × 100 (1)
X: initial gear mass [g]
Y: Mass of gear after fatigue test in which gears are rotated for 100 hours under conditions of tooth surface load 4.5 N / mm and rotation speed 616 rpm [g]
 本発明の別の態様に係るギアは、ポリアミド66及び架橋助剤を含有する樹脂組成物を架橋することで形成されるギアであって、下記式(1)で規定される質量減少率が0.5%以下である。
 質量減少率[%]=(X-Y)/X×100 ・・・(1)
 X:当該ギアと同じ条件で形成した歯幅5mm、モジュール1、歯数30、連続する8枚の歯のまたぎ歯厚10.7mmの平歯車Aの初期質量[g]
 Y:当該ギアと同じ条件で形成した歯幅5mm、モジュール1、歯数31、連続する8枚の歯のまたぎ歯厚10.7mmの平歯車Bと平歯車Aとをかみ合わせ、歯面荷重4.5N/mm、回転数616rpmの条件で100時間ギア同士を回転させる疲労試験後の平歯車Aの質量[g]
A gear according to another aspect of the present invention is a gear formed by crosslinking a resin composition containing polyamide 66 and a crosslinking aid, and has a mass reduction rate of 0 defined by the following formula (1). .5% or less.
Mass reduction rate [%] = (XY) / X × 100 (1)
X: initial mass [g] of spur gear A having a tooth width of 5 mm, module 1, number of teeth of 30, and a thickness of 10.7 mm of contiguous teeth of 10.7 mm formed under the same conditions as the gear
Y: The spur gear B and spur gear A having a tooth width of 5 mm, module 1, number of teeth 31 and a continuous tooth thickness of 10.7 mm, which are formed under the same conditions as the gear, mesh with each other, and the tooth load 4 Mass of the spur gear A after a fatigue test in which the gears are rotated for 100 hours under conditions of 5 N / mm and a rotation speed of 616 rpm [g]
 当該ギアは、式(1)で規定される質量減少率が特定の値以下であるので、摺動中における物理的劣化抑制効果に優れる。これは、式(1)で規定される質量減少率が特定の値以下であると、ギアが変形しにくく、摺動中のギアにおいてかみ合わせの良好な状態が維持されることにより摺動中の温度上昇が抑制されるためと推測される。 The gear is excellent in the effect of suppressing physical deterioration during sliding because the mass reduction rate defined by the formula (1) is not more than a specific value. This is because when the mass reduction rate defined by the expression (1) is a specific value or less, the gear is difficult to deform, and a good meshing state is maintained in the sliding gear. It is estimated that the temperature rise is suppressed.
 本発明のさらに別の態様に係るギアは、ポリアミド66及び架橋助剤を含有する樹脂組成物を架橋することで形成されるギアであって、下記式(2)で規定されるまたぎ歯厚の減少率が0.3%以下である。
 またぎ歯厚の減少率[%]=(P-Q)/P×100 ・・・(2)
 P:当該ギアと同じ条件で形成した歯幅5mm、モジュール1、歯数30の平歯車Aの連続する8枚の歯のまたぎ歯厚[mm]
 Q:当該ギアと同じ条件で形成した歯幅5mm、モジュール1、歯数31であり、連続する8枚の歯のまたぎ歯厚が平歯車Aと等しい平歯車Bと平歯車Aとをかみ合わせ、歯面荷重4.5N/mm、回転数616rpmの条件で100時間ギア同士を回転させる疲労試験後の平歯車Aの連続する8枚の歯のまたぎ歯厚[mm]
A gear according to still another aspect of the present invention is a gear formed by cross-linking a resin composition containing polyamide 66 and a cross-linking aid, and having a thickness of a toothpick defined by the following formula (2). The reduction rate is 0.3% or less.
Decrease rate of tooth thickness [%] = (PQ) / P × 100 (2)
P: Thickness [mm] of 8 consecutive teeth of a spur gear A having a tooth width of 5 mm, a module 1, and 30 teeth formed under the same conditions as the gear
Q: A spur gear B and a spur gear A, which have a tooth width of 5 mm, a module 1, and a number of teeth 31 formed under the same conditions as the gear, and the thickness of the continuous eight teeth is equal to the spur gear A, Thickness [mm] of 8 consecutive teeth of spur gear A after a fatigue test in which gears are rotated for 100 hours under conditions of a tooth surface load of 4.5 N / mm and a rotational speed of 616 rpm [mm]
 当該ギアは、式(2)で規定されるまたぎ歯厚の減少率が特定の値以下であるので、摺動中における物理的劣化抑制効果に優れる。これは、式(2)で規定されるまたぎ歯厚減少率が特定の値以下であると、ギアが変形しにくく、摺動中のギアにおいてかみ合わせの良好な状態が維持されることにより摺動中の温度上昇が抑制されるためと推測される。なお、このように式(2)で規定されるまたぎ歯厚は、式(1)で規定される質量減少率と同様に、ギアの歯の減少量により摺動中におけるギアの変形性を評価するものであるから、このまたぎ歯厚を一定値以下とすることは、式(1)で規定される質量減少率を一定値以下とすることと同義と考えることができる。 The gear is excellent in the effect of suppressing physical deterioration during sliding because the reduction rate of the tooth thickness defined by the formula (2) is not more than a specific value. This is because if the toothpick thickness reduction rate defined by the formula (2) is below a specific value, the gear is difficult to deform and the sliding gear maintains a good meshing state. It is estimated that the temperature rise inside is suppressed. In addition, the thickness of the straddle teeth defined by the equation (2) is evaluated by the amount of gear tooth reduction, as well as the mass reduction rate defined by the equation (1). Therefore, it can be considered that making the thickness of the toothpick below a certain value is synonymous with making the mass reduction rate defined by the equation (1) below a certain value.
 260℃における動的粘弾性率としては、1MPa以上が好ましい。このように260℃における動的粘弾性率を上記値以上とすることで、摺動中における物理的劣化抑制効果をさらに促進できる。なお、上記「動的粘弾性率」とは、JIS-K-7244-1(1998年)に準拠して測定される値である。 The dynamic viscoelasticity at 260 ° C. is preferably 1 MPa or more. Thus, the physical deterioration inhibitory effect in sliding can further be accelerated | stimulated by making the dynamic viscoelastic modulus in 260 degreeC more than the said value. The “dynamic viscoelastic modulus” is a value measured according to JIS-K-7244-1 (1998).
 上記架橋助剤は、トリアリルイソシアヌレートを含むことが好ましい。このように架橋助剤としてトリアリルイソシアヌレートを含むことで、ギアの架橋密度をより高められるので、摺動中における物理的劣化抑制効果をさらに促進できる。 The cross-linking aid preferably contains triallyl isocyanurate. By including triallyl isocyanurate as a crosslinking aid in this way, the crosslinking density of the gear can be further increased, so that the effect of suppressing physical deterioration during sliding can be further promoted.
 上記架橋助剤の含有量としては、ポリアミド66の100質量部に対し、1質量部以上10質量部以下が好ましい。このように架橋助剤の含有量を上記範囲内とすることで、摺動中における物理的劣化抑制効果をさらに促進できる。 The content of the crosslinking aid is preferably 1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of polyamide 66. Thus, by making content of a crosslinking adjuvant into the said range, the physical deterioration inhibitory effect during sliding can further be accelerated | stimulated.
 本発明の別の態様に係るギアの製造方法は、ポリアミド66及び架橋助剤を含有する樹脂組成物を射出成形する射出成形工程と、上記射出成形工程で得られた成形体に電離放射線を照射する電離放射線照射工程とを備えるギアの製造方法であって、得られるギアの下記式(1)で規定される質量減少率が0.5%以下である。
 質量減少率[%]=(X-Y)/X×100 ・・・(1)
 X:ギアの初期質量[g]
 Y:歯面荷重4.5N/mm、回転数616rpmの条件で100時間ギア同士を回転させる疲労試験後のギアの質量[g]
The gear manufacturing method according to another aspect of the present invention includes an injection molding step of injection-molding a resin composition containing polyamide 66 and a crosslinking aid, and irradiating ionized radiation to a molded body obtained in the injection molding step. The mass reduction rate prescribed | regulated by following formula (1) of the gear which is provided with the ionizing radiation irradiation process to perform, Comprising: 0.5% or less is obtained.
Mass reduction rate [%] = (XY) / X × 100 (1)
X: initial gear mass [g]
Y: Mass of gear after fatigue test in which gears are rotated for 100 hours under conditions of tooth surface load 4.5 N / mm and rotation speed 616 rpm [g]
 本発明のさらに別の態様に係るギアの製造方法は、ポリアミド66及び架橋助剤を含有する樹脂組成物を射出成形する射出成形工程と、上記射出成形工程で得られた成形体に電離放射線を照射する電離放射線照射工程とを備えるギアの製造方法であって、得られるギアの下記式(1)で規定される質量減少率が0.5%以下である。
 質量減少率[%]=(X-Y)/X×100 ・・・(1)
 X:得られるギアと同じ条件で形成した歯幅5mm、モジュール1、歯数30、連続する8枚の歯のまたぎ歯厚10.7mmの平歯車Aの初期質量[g]
 Y:得られるギアと同じ条件で形成した歯幅5mm、モジュール1、歯数31、連続する8枚の歯のまたぎ歯厚10.7mmの平歯車Bと平歯車Aとをかみ合わせ、歯面荷重4.5N/mm、回転数616rpmの条件で100時間ギア同士を回転させる疲労試験後の平歯車Aの質量[g]
A gear manufacturing method according to still another aspect of the present invention includes an injection molding step of injection molding a resin composition containing polyamide 66 and a crosslinking aid, and ionizing radiation on a molded body obtained by the injection molding step. A method of manufacturing a gear including an ionizing radiation irradiation step of irradiating, wherein a mass reduction rate defined by the following formula (1) of the obtained gear is 0.5% or less.
Mass reduction rate [%] = (XY) / X × 100 (1)
X: Initial mass [g] of spur gear A having a tooth width of 5 mm, module 1, number of teeth 30 and a continuous tooth thickness of 10.7 mm formed under the same conditions as the obtained gear
Y: meshing spur gear B and spur gear A having a tooth width of 5 mm, module 1, number of teeth of 31 and a thickness of 10.7 mm, which is a continuous gear tooth, formed under the same conditions as the obtained gear, and tooth load Mass [g] of spur gear A after a fatigue test in which gears are rotated for 100 hours under conditions of 4.5 N / mm and a rotational speed of 616 rpm
 当該ギアの製造方法は、式(1)で規定される質量減少率が0.5%以下であるギアを製造できるので、摺動中の温度上昇の抑制により摺動中における物理的劣化抑制効果に優れるギアを容易に得ることができる。 Since the gear manufacturing method can manufacture a gear having a mass reduction rate of 0.5% or less as defined by the formula (1), it is possible to suppress physical deterioration during sliding by suppressing temperature rise during sliding. The gear which is excellent in can be obtained easily.
 本発明のまた別の態様に係るギアの製造方法は、ポリアミド66及び架橋助剤を含有する樹脂組成物を射出成形する射出成形工程と、上記射出成形工程で得られた成形体に電離放射線を照射する電離放射線照射工程とを備えるギアの製造方法であって、得られるギアの下記式(2)で規定されるまたぎ歯厚の減少率が0.3%以下である。
 またぎ歯厚の減少率[%]=(P-Q)/P×100 ・・・(2)
 P:得られるギアと同じ条件で形成した歯幅5mm、モジュール1、歯数30の平歯車Aの連続する8枚の歯のまたぎ歯厚[mm]
 Q:得られるギアと同じ条件で形成した歯幅5mm、モジュール1、歯数31であり、連続する8枚の歯のまたぎ歯厚が平歯車Aと等しい平歯車Bと平歯車Aとをかみ合わせ、歯面荷重4.5N/mm、回転数616rpmの条件で100時間ギア同士を回転させる疲労試験後の平歯車Aの連続する8枚の歯のまたぎ歯厚[mm]
The gear manufacturing method according to still another aspect of the present invention includes an injection molding step of injection-molding a resin composition containing polyamide 66 and a crosslinking aid, and ionizing radiation to a molded body obtained in the injection molding step. A method of manufacturing a gear including an ionizing radiation irradiation step of irradiating, wherein a reduction rate of the tooth thickness defined by the following formula (2) of the obtained gear is 0.3% or less.
Decrease rate of tooth thickness [%] = (PQ) / P × 100 (2)
P: Thickness [mm] of 8 consecutive teeth of a spur gear A having a tooth width of 5 mm, a module 1, and 30 teeth formed under the same conditions as the obtained gear
Q: meshing spur gear B and spur gear A with a tooth width of 5 mm, module 1 and number of teeth 31 formed under the same conditions as the gear to be obtained, and the thickness of the continuous eight teeth is equal to spur gear A , The tooth thickness [mm] of the continuous eight teeth of the spur gear A after the fatigue test in which the gears are rotated for 100 hours under the conditions of a tooth surface load of 4.5 N / mm and a rotation speed of 616 rpm
 当該ギアの製造方法は、式(2)で規定されるまたぎ歯厚減少率が0.3%以下であるギアを製造できるので、摺動中の温度上昇の抑制により摺動中における物理的劣化抑制効果に優れるギアを容易に得ることができる。 Since the gear manufacturing method can manufacture a gear having a thickness reduction rate of 0.3% or less as defined by Equation (2), physical deterioration during sliding can be achieved by suppressing temperature rise during sliding. A gear excellent in the suppression effect can be easily obtained.
[本発明の実施形態の詳細]
 以下、本発明に係るギア、及びギアの製造方法について説明する。
[Details of the embodiment of the present invention]
Hereinafter, the gear and the manufacturing method of the gear according to the present invention will be described.
<第一実施形態のギア>
 第一実施形態の当該ギアは、ポリアミド66及び架橋助剤を含有する樹脂組成物を架橋することで形成され、下記式(1)で規定される質量減少率が0.5%以下である。
 質量減少率[%]=(X-Y)/X×100 ・・・(1)
 X:ギアの初期質量[g]
 Y:歯面荷重4.5N/mm、回転数616rpmの条件で100時間ギア同士を回転させる疲労試験後のギアの質量[g]
<Gear of the first embodiment>
The gear according to the first embodiment is formed by crosslinking a resin composition containing polyamide 66 and a crosslinking aid, and the mass reduction rate defined by the following formula (1) is 0.5% or less.
Mass reduction rate [%] = (XY) / X × 100 (1)
X: initial gear mass [g]
Y: Mass of gear after fatigue test in which gears are rotated for 100 hours under conditions of tooth surface load 4.5 N / mm and rotation speed 616 rpm [g]
 当該ギアは、式(1)で規定される質量減少率が特定の値以下であるので、摺動中の温度上昇の抑制により摺動中における物理的劣化抑制効果に優れる。 Since the gear has a mass reduction rate defined by the equation (1) that is not more than a specific value, it is excellent in the effect of suppressing physical deterioration during sliding due to suppression of temperature rise during sliding.
(樹脂組成物)
 当該ギアは、ポリアミド66及び上記架橋助剤を含有する樹脂組成物を架橋することで形成される。
(Resin composition)
The gear is formed by crosslinking a polyamide 66 and a resin composition containing the crosslinking aid.
 上記樹脂組成物は、ポリアミド66及び架橋助剤を含有する。上記樹脂組成物は、ポリアミド66を主成分として含有することが好ましい。上記樹脂組成物はポリアミド66を主成分として含有することで、当該ギアの機械的特性、耐摩擦摩耗特性、耐薬品性等を高めることができる。なお、「主成分」とは、最も多く含まれる成分を意味し、例えば50質量%以上含まれる成分を意味する。 The resin composition contains polyamide 66 and a crosslinking aid. The resin composition preferably contains polyamide 66 as a main component. By containing the polyamide 66 as a main component, the resin composition can improve the mechanical characteristics, friction wear resistance, chemical resistance, and the like of the gear. The “main component” means a component that is contained most, for example, a component that is contained by 50% by mass or more.
 上記樹脂組成物中のポリアミド66の含有量は、70質量%以上が好ましく、80質量%以上がより好ましい。 The content of polyamide 66 in the resin composition is preferably 70% by mass or more, and more preferably 80% by mass or more.
 上記樹脂組成物は、ポリアミド66以外の樹脂(その他の樹脂)を含んでもよい。その他の樹脂としては、例えばポリアミド66以外のポリアミド、ポリアミド以外の樹脂が挙げられる。なお、その他の樹脂は単独で又は2種以上組み合わせて用いることができる。 The resin composition may contain a resin other than polyamide 66 (other resins). Examples of other resins include polyamides other than polyamide 66 and resins other than polyamide. In addition, other resin can be used individually or in combination of 2 or more types.
 ポリアミド66以外のポリアミドとしては、例えばポリアミド6、ポリアミド46、ポリアミド11、ポリアミド12、ポリアミド610、ポリアミド612、ポリアミド66/6I、ポリアミド66/6T、ポリアミド6T/66、ポリアミド6T/6I、ポリアミド6T/6I/66、ポリアミド6T-5MT、ポリアミド6T/6、ポリアミドMXD-6、ポリアミド9T、全芳香族ポリアミド等が挙げられる。 Examples of polyamides other than polyamide 66 include polyamide 6, polyamide 46, polyamide 11, polyamide 12, polyamide 610, polyamide 612, polyamide 66 / 6I, polyamide 66 / 6T, polyamide 6T / 66, polyamide 6T / 6I, polyamide 6T / 6I / 66, polyamide 6T-5MT, polyamide 6T / 6, polyamide MXD-6, polyamide 9T, wholly aromatic polyamide, and the like.
 また、上記ポリアミド以外の樹脂としては、例えばポリオレフィン、ポリウレタン、アクリル樹脂、メタクリル樹脂、ポリエステル、エポキシ樹脂、フッ素樹脂、天然又は合成ゴム、シリコーン樹脂、ABS(スチレン-アクリロニトリル-ブタジエン共重合)樹脂、ポリカーボネート、ポリ乳酸、ポリアセタール等が挙げられる。 Examples of the resin other than the polyamide include polyolefin, polyurethane, acrylic resin, methacrylic resin, polyester, epoxy resin, fluororesin, natural or synthetic rubber, silicone resin, ABS (styrene-acrylonitrile-butadiene copolymer) resin, and polycarbonate. , Polylactic acid, polyacetal and the like.
 上記樹脂組成物が樹脂成分としてポリアミド66及び上記その他の樹脂を含有する場合、上記樹脂組成物の全樹脂成分中の上記その他の樹脂の割合の上限としては、20質量%が好ましく、10質量%がより好ましく、5質量%がさらに好ましい。 When the resin composition contains polyamide 66 and the other resin as resin components, the upper limit of the proportion of the other resin in the total resin components of the resin composition is preferably 20% by mass, and 10% by mass. Is more preferable, and 5 mass% is further more preferable.
 上記樹脂組成物は、樹脂成分として、ポリアミド66のみを含むことが好ましい。 The resin composition preferably contains only polyamide 66 as a resin component.
 さらに、上記樹脂組成物は、架橋助剤を含有する。このため、上記樹脂組成物は、当該ギアの架橋密度を高めることができ、摺動中における物理的劣化抑制効果に優れるギアを形成できる。 Furthermore, the resin composition contains a crosslinking aid. For this reason, the said resin composition can raise the bridge | crosslinking density of the said gear, and can form the gear excellent in the physical deterioration suppression effect in sliding.
 上記架橋助剤としては、例えばオキシム化合物、アクリレート又はメタクリレート化合物、ビニル化合物、アリル化合物、マレイミド化合物等が挙げられる。なお、架橋助剤は単独で又は2種以上組み合わせて用いることができる。 Examples of the crosslinking aid include oxime compounds, acrylate or methacrylate compounds, vinyl compounds, allyl compounds, maleimide compounds, and the like. In addition, a crosslinking adjuvant can be used individually or in combination of 2 or more types.
 上記オキシム化合物としては、例えばp-キノンジオキシム、p,p’-ジベンゾイルキノンジオキシム等が挙げられる。 Examples of the oxime compound include p-quinone dioxime, p, p'-dibenzoylquinone dioxime, and the like.
 上記アクリレート又はメタクリレート化合物としては、例えばジエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、ポリエチレングリコールジアクリレート、ポリエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、シクロヘキシルアクリレート、シクロヘキシルメタクリレート、アクリル酸/酸化亜鉛混合物、アリルアクリレート、アリルメタクリレート、トリメタクリルイソシアヌレート等が挙げられる。 Examples of the acrylate or methacrylate compound include diethylene glycol diacrylate, diethylene glycol dimethacrylate, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, and acrylic acid / zinc oxide. A mixture, allyl acrylate, allyl methacrylate, trimethacryl isocyanurate, etc. are mentioned.
 上記ビニル化合物としては、例えばジビニルベンゼン、ビニルトルエン、ビニルピリジン等が挙げられる。 Examples of the vinyl compound include divinylbenzene, vinyltoluene, and vinylpyridine.
 上記アリル化合物としては、例えばヘキサメチレンジアリルナジイミド、ジアリルイタコネート、ジアリルフタレート、ジアリルイソフタレート、ジアリルモノグリシジルイソシアヌレート、トリアリルシアヌレート、トリアリルイソシアヌレート等が挙げられる。 Examples of the allyl compound include hexamethylene diallyl nadiimide, diallyl itaconate, diallyl phthalate, diallyl isophthalate, diallyl monoglycidyl isocyanurate, triallyl cyanurate, triallyl isocyanurate and the like.
 上記マレイミド化合物としては、例えばN,N’-m-フェニレンビスマレイミド、N,N’-(4,4’-メチレンジフェニレン)ジマレイミド等が挙げられる。 Examples of the maleimide compound include N, N′-m-phenylenebismaleimide, N, N ′-(4,4′-methylenediphenylene) dimaleimide, and the like.
 中でも、上記架橋助剤としては、当該ギアの架橋密度をより大きくできることから、アリル化合物が好ましく、トリアリルイソシアヌレートがより好ましい。 Among them, as the crosslinking aid, an allyl compound is preferable and triallyl isocyanurate is more preferable because the crosslinking density of the gear can be increased.
 上記樹脂組成物中の上記架橋助剤の含有量の下限としては、ポリアミド66の100質量部に対し、1質量部が好ましく、1.5質量部がより好ましく、2質量部がさらに好ましい。一方、上記含有量の上限としては、上記ポリアミド100質量部に対し、10質量部が好ましく、9質量部がより好ましく、8質量部がさらに好ましい。上記含有量が上記下限未満である場合、当該ギアの架橋密度を十分に大きくすることができず、摺動中における物理的劣化抑制効果が不十分となるおそれがある。また、上記含有量が上記上限を超える場合、上記樹脂組成物の成形性が低下するおそれがある。 The lower limit of the content of the crosslinking aid in the resin composition is preferably 1 part by weight, more preferably 1.5 parts by weight, and even more preferably 2 parts by weight with respect to 100 parts by weight of polyamide 66. On the other hand, the upper limit of the content is preferably 10 parts by mass, more preferably 9 parts by mass, and still more preferably 8 parts by mass with respect to 100 parts by mass of the polyamide. When the said content is less than the said minimum, the bridge | crosslinking density of the said gear cannot be made large enough, and there exists a possibility that the physical degradation inhibitory effect in sliding may become inadequate. Moreover, when the said content exceeds the said upper limit, there exists a possibility that the moldability of the said resin composition may fall.
 また、上記樹脂組成物は、摺動剤を含有することが好ましい。上記樹脂組成物が摺動剤を含有すると、当該ギアの動摩擦係数を小さくすることができるので、摺動中における物理的劣化抑制効果をより高めることができる。 In addition, the resin composition preferably contains a sliding agent. When the resin composition contains a sliding agent, the dynamic friction coefficient of the gear can be reduced, so that the effect of suppressing physical deterioration during sliding can be further increased.
 上記摺動剤としては、例えば超高分子量ポリエチレンなどのポリエチレン、ポリプロピレン等のポリオレフィン;
ポリテトラフルオロエチレン、ポリテトラフルオロエチレン・パーフルオロアルコキシエチレン共重合体、ポリテトラフルオロエチレン・ポリヘキサフルオロプロピレンなどのフッ素樹脂;
ポリジメチルシロキサン、ポリメチルフェニルシロキサン、アミノ変性ポリジメチルシロキサン、エポキシ変性ポリジメチルシロキサン、アルコール変性ポリジメチルシロキサン、カルボキシ変性ポリジメチルシロキサン、フッ素変性ポリジメチルシロキサン等のシリコーン;
グラファイト等の層状無機化合物;
ガラス繊維、チタン酸カリウムウィスカ、酸化亜鉛ウィスカ、ボロン酸ウィスカ等の無機繊維;
LCP繊維、アラミド繊維、カーボン繊維等の有機繊維;
アルミナ、シリカ、タルク等の無機粒子;
メタリン酸塩、ピロリン酸塩、リン酸水素カルシウム、リン酸水素カリウム、リン酸バリウム、リン酸リチウム、メタリン酸カルシウム、ピロリン酸亜鉛等のリン酸塩;
スピンドル油、タービン油、マシン油、ダイナモ油等の鉱物油;
モンタン酸カルシウム等のモンタン酸塩;
二酸化モリブテンなどが挙げられる。なお、上記摺動剤は、単独で又は2種以上組み合わせて用いることができる。
Examples of the sliding agent include polyethylene such as ultra high molecular weight polyethylene, and polyolefin such as polypropylene;
Fluororesin such as polytetrafluoroethylene, polytetrafluoroethylene / perfluoroalkoxyethylene copolymer, polytetrafluoroethylene / polyhexafluoropropylene;
Silicones such as polydimethylsiloxane, polymethylphenylsiloxane, amino-modified polydimethylsiloxane, epoxy-modified polydimethylsiloxane, alcohol-modified polydimethylsiloxane, carboxy-modified polydimethylsiloxane, fluorine-modified polydimethylsiloxane;
Layered inorganic compounds such as graphite;
Inorganic fibers such as glass fiber, potassium titanate whisker, zinc oxide whisker, boronic acid whisker;
Organic fibers such as LCP fiber, aramid fiber, carbon fiber;
Inorganic particles such as alumina, silica, talc;
Phosphates such as metaphosphate, pyrophosphate, calcium hydrogen phosphate, potassium hydrogen phosphate, barium phosphate, lithium phosphate, calcium metaphosphate, zinc pyrophosphate;
Mineral oils such as spindle oil, turbine oil, machine oil, dynamo oil;
Montanates such as calcium montanate;
Examples thereof include molybdenum dioxide. In addition, the said sliding agent can be used individually or in combination of 2 or more types.
 中でも、上記摺動剤としては、当該ギアの耐摩耗性をより高められる点より、ポリオレフィンが好ましく、ポリエチレンがより好ましい。 Among these, as the above-mentioned sliding agent, polyolefin is preferable and polyethylene is more preferable because the wear resistance of the gear can be further improved.
 上記樹脂組成物中の上記摺動剤の含有量の下限としては、ポリアミド66の100質量部に対し、1質量部が好ましく、1.5質量部がより好ましく、2質量部がさらに好ましい。一方、上記含有量の上限としては、上記ポリアミド100質量部に対し、10質量部が好ましく、9.5質量部がより好ましく、9質量部がさらに好ましい。上記含有量が上記下限未満である場合、当該ギアの耐摩耗性を十分に大きくすることができず、摺動中における物理的劣化抑制効果が不十分となるおそれがある。また、上記含有量が上記上限を超える場合、上記樹脂組成物の成形性が低下するおそれがある。 The lower limit of the content of the sliding agent in the resin composition is preferably 1 part by weight, more preferably 1.5 parts by weight, and even more preferably 2 parts by weight with respect to 100 parts by weight of polyamide 66. On the other hand, the upper limit of the content is preferably 10 parts by mass, more preferably 9.5 parts by mass, and still more preferably 9 parts by mass with respect to 100 parts by mass of the polyamide. When the content is less than the lower limit, the wear resistance of the gear cannot be sufficiently increased, and the effect of suppressing physical deterioration during sliding may be insufficient. Moreover, when the said content exceeds the said upper limit, there exists a possibility that the moldability of the said resin composition may fall.
 上記樹脂組成物は、必要に応じて添加剤を含んでもよい。上記添加剤としては、例えば重合禁止剤、充填剤(但し、上記摺動剤は除く。)、可塑剤、顔料、安定剤、滑材、軟化剤、増感剤、酸化防止剤、難燃剤、離型剤、耐候剤、帯電防止剤、シランカップリング剤等が挙げられる。なお、添加剤は単独で又は2種以上組み合わせて用いることができる。 The resin composition may contain an additive as necessary. Examples of the additive include a polymerization inhibitor, a filler (excluding the sliding agent), a plasticizer, a pigment, a stabilizer, a lubricant, a softening agent, a sensitizer, an antioxidant, a flame retardant, Examples include release agents, weathering agents, antistatic agents, and silane coupling agents. In addition, an additive can be used individually or in combination of 2 or more types.
 上記樹脂組成物は、各構成成分を混合することにより得ることができる。具体的には、上記樹脂組成物は、例えばポリアミド66及び上記架橋助剤を混合することにより得ることができる。上記混合の際には、単軸混合機、2軸混合機等の混合機を用いることができる。また、混合の際には加熱してもよい。 The resin composition can be obtained by mixing each constituent component. Specifically, the resin composition can be obtained, for example, by mixing polyamide 66 and the crosslinking aid. In the mixing, a mixer such as a single screw mixer or a twin screw mixer can be used. Moreover, you may heat in the case of mixing.
(第1の質量減少率)
 当該ギアの下記式(1)で規定される質量減少率(第1の質量減少率)の上限としては、0.5%であり、0.3%がより好ましく、0.1%がさらに好ましい。上記質量減少率が上記上限以下であることで、摺動中における物理的劣化抑制効果を促進できる。これは、式(1)で規定される質量減少率が特定の値以下であると、ギアが変形しにくく、摺動中のギアにおいてかみ合わせの良好な状態が維持されることにより摺動中の温度上昇が抑制されるためと推測される。
 質量減少率[%]=(X-Y)/X×100 ・・・(1)
 X:ギアの初期質量[g]
 Y:歯面荷重4.5N/mm、回転数616rpmの条件で100時間ギア同士を回転させる疲労試験後のギアの質量[g]
(First mass reduction rate)
The upper limit of the mass reduction rate (first mass reduction rate) defined by the following formula (1) of the gear is 0.5%, more preferably 0.3%, and even more preferably 0.1%. . When the mass reduction rate is equal to or less than the upper limit, the effect of suppressing physical deterioration during sliding can be promoted. This is because when the mass reduction rate defined by the expression (1) is a specific value or less, the gear is difficult to deform, and a good meshing state is maintained in the sliding gear. It is estimated that the temperature rise is suppressed.
Mass reduction rate [%] = (XY) / X × 100 (1)
X: initial gear mass [g]
Y: Mass of gear after fatigue test in which gears are rotated for 100 hours under conditions of tooth surface load 4.5 N / mm and rotation speed 616 rpm [g]
(第2の質量減少率)
 また、当該ギアを一定形状の平歯車Aにした際の上記式(1)で規定される質量減少率(第2の質量減少率)の上限としては、0.5%が好ましく、0.3%がより好ましく、0.1%がさらに好ましい。ただし、第2の質量減少率では、上記式(1)において、X、Yは以下とする。なお、「当該ギアを平歯車Aにする」とは、当該ギアの形成方法と同じ条件で平歯車Aを形成することを意味する。また、「当該ギアと同じ条件で形成する」とは、当該ギアの形成に用いた樹脂組成物と同じ樹脂組成物を用い、かつ当該ギアと同じ工程(製造方法)で平歯車A及び平歯車Bを形成することを意味する。
 X:当該ギアと同じ条件で形成した歯幅5mm、モジュール1、歯数30、連続する8枚の歯のまたぎ歯厚10.7mmの平歯車Aの初期質量[g]
 Y:当該ギアと同じ条件で形成した歯幅5mm、モジュール1、歯数31、連続する8枚の歯のまたぎ歯厚10.7mmの平歯車Bと平歯車Aとをかみ合わせ、歯面荷重4.5N/mm、回転数616rpmの条件で100時間ギア同士を回転させる疲労試験後の平歯車Aの質量[g]
(Second mass reduction rate)
The upper limit of the mass reduction rate (second mass reduction rate) defined by the above formula (1) when the gear is a spur gear A having a fixed shape is preferably 0.5%, 0.3 % Is more preferable, and 0.1% is more preferable. However, in the second mass reduction rate, X and Y are as follows in the above formula (1). Note that “the gear is changed to the spur gear A” means that the spur gear A is formed under the same conditions as the gear formation method. “Forming under the same conditions as the gear” means that the same resin composition as the resin composition used for forming the gear is used, and the spur gear A and the spur gear are manufactured in the same process (manufacturing method) as the gear. This means that B is formed.
X: initial mass [g] of spur gear A having a tooth width of 5 mm, module 1, number of teeth of 30, and a thickness of 10.7 mm of contiguous teeth of 10.7 mm formed under the same conditions as the gear
Y: The spur gear B and spur gear A having a tooth width of 5 mm, module 1, number of teeth 31 and a continuous tooth thickness of 10.7 mm, which are formed under the same conditions as the gear, mesh with each other, and the tooth load 4 Mass of the spur gear A after a fatigue test in which the gears are rotated for 100 hours under conditions of 5 N / mm and a rotation speed of 616 rpm [g]
(第1のまたぎ歯厚の減少率)
 当該ギアの下記式(2)で規定されるまたぎ歯厚の減少率(第1のまたぎ歯厚の減少率)の上限としては、0.3%が好ましく、0.2%がより好ましく、0.1%がさらに好ましい。上記またぎ歯厚の減少率が上記上限以下であると、ギアの強度、耐久性、耐熱性等を高め、摺動中における物理的劣化抑制効果を促進できる。
 またぎ歯厚の減少率[%]=(P-Q)/P×100 ・・・(2)
 P:ギアのまたぎ歯厚[mm]
 Q:歯面荷重4.5N/mm、回転数616rpmの条件で100時間ギア同士を回転させる疲労試験を行った後のギアのまたぎ歯厚[mm]
(Decrease rate of first straddle thickness)
The upper limit of the toothpick thickness reduction rate defined by the following formula (2) of the gear (the first toothpick thickness reduction rate) is preferably 0.3%, more preferably 0.2%, and 0 More preferably, 1%. If the reduction rate of the toothpick thickness is less than or equal to the above upper limit, the strength, durability, heat resistance, etc. of the gear can be increased and the effect of suppressing physical deterioration during sliding can be promoted.
Decrease rate of tooth thickness [%] = (PQ) / P × 100 (2)
P: Thickness of gear tooth [mm]
Q: Gear thickness [mm] after a fatigue test in which gears are rotated for 100 hours under conditions of a tooth surface load of 4.5 N / mm and a rotation speed of 616 rpm
(第2のまたぎ歯厚の減少率)
 また、当該ギアを一定形状の平歯車Aにした際の上記式(2)で規定されるまたぎ歯厚の減少率(第2のまたぎ歯厚の減少率)の上限としては、0.3%が好ましく、0.2%がより好ましく、0.1%がさらに好ましい。ただし、第2のまたぎ歯厚の減少率では、上記式(2)において、P、Qは以下とする。
 P:当該ギアと同じ条件で形成した歯幅5mm、モジュール1、歯数30の平歯車Aの連続する8枚の歯のまたぎ歯厚[mm]
 Q:当該ギアと同じ条件で形成した歯幅5mm、モジュール1、歯数31であり、連続する8枚の歯のまたぎ歯厚が平歯車Aと等しい平歯車Bと平歯車Aとをかみ合わせ、歯面荷重4.5N/mm、回転数616rpmの条件で100時間ギア同士を回転させる疲労試験後の平歯車Aの連続する8枚の歯のまたぎ歯厚[mm]
(Decrease rate of second straddle thickness)
Moreover, as an upper limit of the reduction rate of the toothpick thickness (the reduction rate of the second toothpick thickness) defined by the above formula (2) when the gear is a spur gear A having a fixed shape, 0.3% Is preferable, 0.2% is more preferable, and 0.1% is more preferable. However, in the reduction rate of the second straddle tooth thickness, P and Q are as follows in the above formula (2).
P: Thickness [mm] of 8 consecutive teeth of a spur gear A having a tooth width of 5 mm, a module 1, and 30 teeth formed under the same conditions as the gear
Q: A spur gear B and a spur gear A, which have a tooth width of 5 mm, a module 1, and a number of teeth 31 formed under the same conditions as the gear, and the thickness of the continuous eight teeth is equal to the spur gear A, Thickness [mm] of 8 consecutive teeth of spur gear A after a fatigue test in which gears are rotated for 100 hours under conditions of a tooth surface load of 4.5 N / mm and a rotational speed of 616 rpm [mm]
 なお、上記またぎ歯厚は、JIS-B-0102-1(2013年)に準拠して測定される値である。 The straddle tooth thickness is a value measured according to JIS-B-0102-1 (2013).
(最大温度)
 当該ギアの下記の摺動試験中の最大温度の上限としては、75℃が好ましく、70℃がより好ましく、50℃がさらに好ましい。上記最大温度が上記上限以下であると、摺動中における物理的劣化抑制効果を促進できる。上記摺動試験は、当該ギアと同じ条件で、歯幅5mm、モジュール1、歯数30、連続する8枚の歯のまたぎ歯厚10.7mmの平歯車Aと歯幅5mm、モジュール1、歯数31、連続する8枚の歯のまたぎ歯厚10.7mmの平歯車Bとを作製し、平歯車Aと平歯車Bとをかみ合わせ、25℃雰囲気下、歯面荷重4.5N/mm、回転数616rpmの条件でギア同士を100時間回転させて行う。
(Maximum temperature)
The upper limit of the maximum temperature during the following sliding test of the gear is preferably 75 ° C, more preferably 70 ° C, and further preferably 50 ° C. When the maximum temperature is not more than the upper limit, the effect of suppressing physical deterioration during sliding can be promoted. The above sliding test is performed under the same conditions as the gear, with a tooth width of 5 mm, module 1, number of teeth 30, spur gear A having a continuous tooth thickness of 10.7 mm and a tooth width of 5 mm, module 1, tooth A spur gear B having a thickness of 10.7 mm consisting of eight continuous teeth is manufactured, and the spur gear A and the spur gear B are meshed with each other, and the tooth surface load is 4.5 N / mm in a 25 ° C. atmosphere. This is performed by rotating the gears for 100 hours under the condition of a rotation speed of 616 rpm.
(260℃における動的粘弾性率)
 当該ギアの260℃における動的粘弾性率の下限としては、1MPaが好ましく、1.5MPaがより好ましく、2MPaがさらに好ましい。上記動的粘弾性率が上記下限未満である場合、ギアが十分な架橋密度を得ることができず、摺動中における物理的劣化抑制効果を十分に得られないおそれがある。
(Dynamic viscoelastic modulus at 260 ° C.)
The lower limit of the dynamic viscoelastic modulus at 260 ° C. of the gear is preferably 1 MPa, more preferably 1.5 MPa, and further preferably 2 MPa. If the dynamic viscoelastic modulus is less than the lower limit, the gear cannot obtain a sufficient crosslinking density, and there is a possibility that the effect of suppressing physical deterioration during sliding cannot be obtained sufficiently.
 当該ギアの形態としては、例えば平歯車、円筒歯車、はすば歯車、やまば歯車、かさ歯車、冠歯車、ねじ歯車、ウォームギア等が挙げられる。 Examples of the form of the gear include a spur gear, a cylindrical gear, a helical gear, a helical gear, a bevel gear, a crown gear, a screw gear, a worm gear, and the like.
 当該ギアの歯幅としては、例えば1mm以上20mm以下である。また、当該ギアのモジュールとしては、例えば0.3以上1.5以下である。さらに、当該ギアの歯数としては、例えば5以上100以下であり、連続する8枚の歯のまたぎ歯厚は、1mm以上20mm以下である。 The tooth width of the gear is, for example, 1 mm or more and 20 mm or less. The gear module is, for example, 0.3 or more and 1.5 or less. Furthermore, the number of teeth of the gear is, for example, 5 or more and 100 or less, and the thickness of the contiguous eight teeth is 1 mm or more and 20 mm or less.
<第二実施形態のギア>
 第二実施形態の当該ギアは、ポリアミド66及び架橋助剤を含有する樹脂組成物を架橋することで形成され、下記式(1)で規定される質量減少率が0.5%以下である。
 質量減少率[%]=(X-Y)/X×100 ・・・(1)
 X:当該ギアと同じ条件で形成した歯幅5mm、モジュール1、歯数30、連続する8枚の歯のまたぎ歯厚10.7mmの平歯車Aの初期質量[g]
 Y:当該ギアと同じ条件で形成した歯幅5mm、モジュール1、歯数31、連続する8枚の歯のまたぎ歯厚10.7mmの平歯車Bと平歯車Aとをかみ合わせ、歯面荷重4.5N/mm、回転数616rpmの条件で100時間ギア同士を回転させる疲労試験後の平歯車Aの質量[g]
<Gear of the second embodiment>
The gear according to the second embodiment is formed by crosslinking a resin composition containing polyamide 66 and a crosslinking aid, and the mass reduction rate defined by the following formula (1) is 0.5% or less.
Mass reduction rate [%] = (XY) / X × 100 (1)
X: initial mass [g] of spur gear A having a tooth width of 5 mm, module 1, number of teeth of 30, and a thickness of 10.7 mm of contiguous teeth of 10.7 mm formed under the same conditions as the gear
Y: The spur gear B and spur gear A having a tooth width of 5 mm, module 1, number of teeth 31 and a continuous tooth thickness of 10.7 mm, which are formed under the same conditions as the gear, mesh with each other, and the tooth load 4 Mass of the spur gear A after a fatigue test in which the gears are rotated for 100 hours under conditions of 5 N / mm and a rotation speed of 616 rpm [g]
 上記式(1)で規定される質量減少率の上限としては、0.3%が好ましく、0.1%がより好ましい。 The upper limit of the mass reduction rate defined by the above formula (1) is preferably 0.3%, more preferably 0.1%.
 当該ギアは、上記平歯車Aにした際に、式(1)で規定される質量減少率が特定の値以下であるので、摺動中の温度上昇の抑制により摺動中における物理的劣化抑制効果に優れる。 When the spur gear A is the spur gear A, the mass reduction rate defined by the formula (1) is not more than a specific value, so that the physical deterioration during sliding is suppressed by suppressing the temperature rise during sliding. Excellent effect.
 当該ギアの材料、性状(またぎ歯厚の減少率、摺動中の最大温度及び動的粘弾性率)、形状、製造方法等は、上記第一実施形態と同様とすることができる。 The gear material, properties (decrease ratio of the tooth thickness, maximum temperature during sliding and dynamic viscoelasticity), shape, manufacturing method, and the like can be the same as those in the first embodiment.
<第三実施形態のギア>
 第三実施形態の当該ギアは、ポリアミド66及び架橋助剤を含有する樹脂組成物を架橋することで形成され、下記式(2)で規定されるまたぎ歯厚の減少率が0.3%以下である。
 またぎ歯厚の減少率[%]=(P-Q)/P×100 ・・・(2)
 P:当該ギアと同じ条件で形成した歯幅5mm、モジュール1、歯数30の平歯車Aの連続する8枚の歯のまたぎ歯厚[mm]
 Q:当該ギアと同じ条件で形成した歯幅5mm、モジュール1、歯数31であり、連続する8枚の歯のまたぎ歯厚が平歯車Aと等しい平歯車Bと平歯車Aとをかみ合わせ、歯面荷重4.5N/mm、回転数616rpmの条件で100時間ギア同士を回転させる疲労試験後の平歯車Aの連続する8枚の歯のまたぎ歯厚[mm]
<Gear of the third embodiment>
The gear of the third embodiment is formed by cross-linking a resin composition containing polyamide 66 and a cross-linking aid, and the reduction rate of the tooth thickness defined by the following formula (2) is 0.3% or less. It is.
Decrease rate of tooth thickness [%] = (PQ) / P × 100 (2)
P: Thickness [mm] of 8 consecutive teeth of a spur gear A having a tooth width of 5 mm, a module 1, and 30 teeth formed under the same conditions as the gear
Q: A spur gear B and a spur gear A, which have a tooth width of 5 mm, a module 1, and a number of teeth 31 formed under the same conditions as the gear, and the thickness of the continuous eight teeth is equal to the spur gear A, Thickness [mm] of 8 consecutive teeth of spur gear A after a fatigue test in which gears are rotated for 100 hours under conditions of a tooth surface load of 4.5 N / mm and a rotational speed of 616 rpm [mm]
 上記式(2)で規定されるまたぎ歯厚の減少率の上限としては、0.2%が好ましく、0.1%がより好ましい。 The upper limit of the reduction ratio of the toothpick thickness defined by the above formula (2) is preferably 0.2%, and more preferably 0.1%.
 当該ギアは、式(2)で規定されるまたぎ歯厚の減少率が特定の値以下であるので、摺動中の温度上昇の抑制により摺動中における物理的劣化抑制効果に優れる。 The gear has an excellent effect of suppressing physical deterioration during sliding due to the suppression of the temperature rise during sliding because the reduction rate of the thickness of the toothpick defined by the formula (2) is not more than a specific value.
 当該ギアの材料、性状(質量減少率、摺動中の最大温度及び動的粘弾性率)、形状、製造方法等は、上記第一実施形態と同様とすることができる。 The gear material, properties (mass reduction rate, maximum temperature during sliding and dynamic viscoelasticity), shape, manufacturing method, and the like can be the same as in the first embodiment.
<ギアの製造方法>
 上記第一実施形態、第二実施形態及び第三実施形態の当該ギアの製造方法は、ポリアミド66及び上記架橋助剤を含有する上記樹脂組成物を射出成形する射出成形工程と、上記射出成形工程で得られた成形体に電離放射線を照射する電離放射線照射工程とを備える。当該ギアの製造方法によれば、当該ギアを容易に得ることができる。
<Gear manufacturing method>
The gear manufacturing method according to the first embodiment, the second embodiment, and the third embodiment includes an injection molding step of injection molding the resin composition containing polyamide 66 and the crosslinking aid, and the injection molding step. And an ionizing radiation irradiating step for irradiating the molded body obtained in the above with ionizing radiation. According to the gear manufacturing method, the gear can be easily obtained.
(射出成形工程)
 射出成形工程では、上記樹脂組成物を射出成形し、所望のギア形状を有する成形体を得る。
(Injection molding process)
In the injection molding step, the resin composition is injection molded to obtain a molded body having a desired gear shape.
 射出成形工程の上記樹脂組成物の温度の下限としては、150℃が好ましく、200℃がより好ましい。一方、上記温度の上限としては、320℃が好ましく、300℃がより好ましい。上記温度が上記下限未満である場合、上記樹脂組成物の流動性が不十分となり、十分な射出成形速度が得られないおそれがある。また、上記温度が上記上限を超える場合、ポリアミド66の熱分解を生じるおそれがある。 As a minimum of the temperature of the above-mentioned resin composition of an injection molding process, 150 ° C is preferred and 200 ° C is more preferred. On the other hand, the upper limit of the temperature is preferably 320 ° C, more preferably 300 ° C. When the said temperature is less than the said minimum, the fluidity | liquidity of the said resin composition becomes inadequate, and there exists a possibility that sufficient injection molding speed may not be obtained. Moreover, when the said temperature exceeds the said upper limit, there exists a possibility of producing the thermal decomposition of the polyamide 66. FIG.
 射出成形工程の射出圧の下限としては、70kg/cmが好ましく、80kg/cmがより好ましい。一方、上記射出圧の上限としては、130kg/cmが好ましく、120kg/cmがより好ましい。上記射出圧が上記下限未満である場合、充填不良が生じて所望の形状やサイズを有する成形体を得ることができないおそれがある。また、上記射出圧が上記上限を超える場合、成形体の周囲にバリを生じるおそれや生産性の低下を招くおそれがある。 The lower limit of the injection pressure of the injection molding process, preferably 70kg / cm 2, 80kg / cm 2 is more preferable. On the other hand, the upper limit of the injection pressure, preferably 130kg / cm 2, 120kg / cm 2 is more preferable. When the said injection pressure is less than the said minimum, there exists a possibility that a filling defect may arise and the molded object which has a desired shape and size cannot be obtained. Moreover, when the said injection pressure exceeds the said upper limit, there exists a possibility of producing a burr | flash around a molded object, or causing the fall of productivity.
 射出成形工程における金型温度の下限としては、40℃が好ましく、50℃がより好ましい。一方、上記金型温度の上限としては、120℃が好ましく、100℃がより好ましい。上記金型温度が上記下限未満である場合、急激な冷却により結晶化が生じ、成形体の表面平滑性や寸法精度に悪影響を与えるおそれがある。また、上記金型温度が上記上限を超える場合、成形体の周囲にバリを生じるおそれや寸法精度に悪影響を与えるおそれがある。 The lower limit of the mold temperature in the injection molding process is preferably 40 ° C, more preferably 50 ° C. On the other hand, the upper limit of the mold temperature is preferably 120 ° C, more preferably 100 ° C. When the mold temperature is less than the lower limit, crystallization occurs due to rapid cooling, which may adversely affect the surface smoothness and dimensional accuracy of the molded body. Moreover, when the said mold temperature exceeds the said upper limit, there exists a possibility of producing a burr | flash around a molded object and having a bad influence on dimensional accuracy.
(電離放射線照射工程)
 電離放射線照射工程では、上記射出成形工程で得られた成形体に電離放射線を照射し、成形体を架橋する。
(Ionizing radiation irradiation process)
In the ionizing radiation irradiation step, the molded body obtained in the injection molding step is irradiated with ionizing radiation to crosslink the molded body.
 上記電離放射線としては、例えばα線、β線、γ線、電子線、X線等が挙げられる。中でも、上記電離放射線としては、制御の容易さ、安全性等の点より電子線が好ましい。 Examples of the ionizing radiation include α rays, β rays, γ rays, electron rays, and X rays. Among these, the ionizing radiation is preferably an electron beam from the viewpoints of ease of control and safety.
 上記電離放射線の照射量は、特に限定されないが、十分な架橋密度を得つつ照射による樹脂の劣化を抑制する点より1kGy以上1000kGy以下が好ましい。 The irradiation amount of the ionizing radiation is not particularly limited, but is preferably 1 kGy or more and 1000 kGy or less from the viewpoint of suppressing deterioration of the resin due to irradiation while obtaining a sufficient crosslinking density.
 例えば上記電離放射線として電子線を照射する場合、その照射量の下限としては、5kGyが好ましく、10kGyがより好ましい。一方、上記照射量の上限としては、960kGyが好ましく、480kGyがより好ましい。電子線の照射量が上記下限未満である場合、電子線照射後の成形体において十分な架橋密度が得られないおそれがある。また、上記照射量が上記上限を超える場合、電子線の照射による成形体の分解や劣化を生じるおそれがある。 For example, when an electron beam is irradiated as the ionizing radiation, the lower limit of the irradiation amount is preferably 5 kGy, more preferably 10 kGy. On the other hand, the upper limit of the irradiation dose is preferably 960 kGy, more preferably 480 kGy. When the irradiation amount of an electron beam is less than the said minimum, there exists a possibility that sufficient crosslinking density may not be obtained in the molded object after electron beam irradiation. Moreover, when the said irradiation amount exceeds the said upper limit, there exists a possibility of producing the decomposition | disassembly and deterioration of a molded object by irradiation of an electron beam.
 上記電離放射線の照射は、常温で行うことができる。また、上記電離放射線の照射は、低酸素又は無酸素の雰囲気下において行うことが好ましい。 The irradiation with the ionizing radiation can be performed at room temperature. The ionizing radiation is preferably irradiated in a low oxygen or oxygen-free atmosphere.
[その他の実施形態]
 上記開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
[Other Embodiments]
The disclosed embodiments are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is not limited to the configuration of the embodiment described above, but is defined by the scope of the claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims. The
 当該ギアを製造するに際しては、例えば押出成形法、プレス成形法、ブロー成形法、真空成型法等の上記射出成形法以外の成形法を用いて上記樹脂組成物を所望の形状に成形してもよい。 In manufacturing the gear, the resin composition may be molded into a desired shape using a molding method other than the injection molding method such as an extrusion molding method, a press molding method, a blow molding method, or a vacuum molding method. Good.
 また当該ギアを製造するに際しては、化学架橋法により上記樹脂組成物を架橋してもよい。 In manufacturing the gear, the resin composition may be crosslinked by a chemical crosslinking method.
 さらに当該ギアは、シャフト等の金属部品が組み込まれてもよい。 Furthermore, the gear may incorporate a metal part such as a shaft.
 当該ギアの製造方法は、樹脂組成物を射出成形する工程及び成形体に電離放射線を照射する工程以外の工程を備えてもよい。例えば射出成形工程の後に成形体を乾燥する乾燥工程を設けてもよいし、電離放射線照射工程の後に熱処理工程を設けてもよい。 The method for manufacturing the gear may include steps other than the step of injection molding the resin composition and the step of irradiating the molded body with ionizing radiation. For example, a drying process for drying the molded body after the injection molding process may be provided, or a heat treatment process may be provided after the ionizing radiation irradiation process.
 以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
 試験例で用いた各成分の詳細は以下の通りである。
 ポリアミド66:旭化成せんい社の「レオナ 1402S」
 摺動剤:三井化学社の「ミペロン XM220」(超高分子量ポリエチレン粒子)
 架橋助剤:エボニックデグサ社の「TAICROS」(トリアリルイソシアヌレート)
The details of each component used in the test examples are as follows.
Polyamide 66: “Leona 1402S” from Asahi Kasei Corporation
Sliding agent: “Miperon XM220” (ultra high molecular weight polyethylene particles) from Mitsui Chemicals, Inc.
Crosslinking aid: “TAICROS” (triallyl isocyanurate) from Evonik Degussa
[試験例1]
 まず、100質量部のポリアミド66及び5質量部の架橋助剤を混合し、樹脂組成物を得た。次に、この樹脂組成物を2軸混合機に投入し、240℃で溶融混合した。溶融混合後、2軸混合機から樹脂組成物を吐出し、その吐出物を水冷し細断して、ペレット状の樹脂組成物を得た。次に、ペレット状の樹脂組成物を射出成形機に投入し、射出成形機による射出成形を行い、ギア状成形体(歯幅5mm、モジュール1、歯数30、またぎ歯厚(連続する8枚の歯のまたぎ歯厚)10.7mmの平歯車形状)を得た。なお、射出成形の条件は、射出温度240℃、金型温度80℃、射出圧100kg/cm、保圧時間10秒とした。
[Test Example 1]
First, 100 parts by mass of polyamide 66 and 5 parts by mass of a crosslinking aid were mixed to obtain a resin composition. Next, this resin composition was put into a twin-screw mixer and melt-mixed at 240 ° C. After melt mixing, the resin composition was discharged from a twin-screw mixer, and the discharged material was cooled with water and chopped to obtain a pellet-shaped resin composition. Next, the pellet-shaped resin composition is put into an injection molding machine, and injection molding is performed by an injection molding machine. A gear-shaped molded body (tooth width 5 mm, module 1, number of teeth 30, straddle thickness (eight continuous sheets) The thickness of the tooth of the tooth of the spur gear of 10.7 mm). The injection molding conditions were an injection temperature of 240 ° C., a mold temperature of 80 ° C., an injection pressure of 100 kg / cm 2 , and a pressure holding time of 10 seconds.
 次に、上記ギア状成形体に照射量が120kGyとなるよう電子線を照射して、試験例1のギアを得た。 Next, the gear-shaped molded body was irradiated with an electron beam so that the irradiation amount was 120 kGy, and the gear of Test Example 1 was obtained.
[試験例2~4]
 樹脂組成物の組成を下記表1に示す組成としたこと以外は上記試験例1と同様にして、ギア状成形体(歯幅5mm、モジュール1、歯数30、またぎ歯厚(連続する8枚の歯のまたぎ歯厚)10.7mmの平歯車形状)を得た。
[Test Examples 2 to 4]
A gear-shaped molded product (tooth width 5 mm, module 1, number of teeth 30, tooth thickness (continuous 8 sheets), except that the resin composition was changed to the composition shown in Table 1 below. The thickness of the tooth of the tooth of the spur gear of 10.7 mm).
 次に、試験例2については、上記試験例1と同様の電子線照射を行い、試験例のギアを得た。また、試験例3及び4については、上記試験例1のような電子線照射を行わず、上記ギア状成形体を試験例のギアとした。 Next, for Test Example 2, the same electron beam irradiation as in Test Example 1 was performed to obtain the gear of the test example. In Test Examples 3 and 4, electron beam irradiation as in Test Example 1 was not performed, and the gear-shaped molded body was used as the gear of the test example.
[評価]
 得られた試験例1~4のギアについて、下記項目の評価を行った。
[Evaluation]
The obtained gears of Test Examples 1 to 4 were evaluated for the following items.
(摺動試験中の最大温度)
 上記試験例1~4のギアを各試験例の平歯車Aとした。さらに歯数31の平歯車形状としたこと以外は上記試験例1~4と同様のギアをそれぞれ作製し、これらのギアを相手材としての各試験例の平歯車Bとした。次に、平歯車Aと平歯車Bとをかみ合わせ、25℃雰囲気下、歯面荷重4.5N/mm、回転数616rpmの条件でギア同士を回転させる摺動試験を100時間行った。摺動試験中の平歯車Aの温度変化を測定し、到達した最高温度を「摺動試験中の最大温度」とした。この最大温度を表1の「最大温度」の欄に示す。なお、平歯車の摺動部の温度測定には、非接触温度計を用いた。
(Maximum temperature during sliding test)
The spur gear A of each test example was used as the gear of the above test examples 1 to 4. Further, gears similar to those in Test Examples 1 to 4 except that the spur gear shape was 31 were prepared, and these gears were used as the spur gear B of each test example as a counterpart material. Next, the spur gear A and the spur gear B were meshed, and a sliding test was performed for 100 hours in a 25 ° C. atmosphere in which gears were rotated under the conditions of a tooth surface load of 4.5 N / mm and a rotational speed of 616 rpm. The change in temperature of the spur gear A during the sliding test was measured, and the highest temperature reached was defined as the “maximum temperature during the sliding test”. This maximum temperature is shown in the “maximum temperature” column of Table 1. A non-contact thermometer was used for measuring the temperature of the sliding portion of the spur gear.
(質量減少率)
 上記試験例1~4のギアを各試験例の平歯車Aとした。さらに歯数31の平歯車形状としたこと以外は上記試験例1~4と同様のギアをそれぞれ作製し、これらのギアを相手材としての各試験例の平歯車Bとした。次に、下記式(1)に基づき質量減少率を求めた。その結果を表1の「質量減少率」の欄に示す。
 質量減少率[%]=(X-Y)/X×100 ・・・(1)
 X:平歯車Aの初期質量[g]
 Y:平歯車Aと平歯車Bとをかみ合わせ、歯面荷重4.5N/mm、回転数616rpmの条件で100時間ギア同士を回転させる疲労試験を行った後の平歯車Aの質量[g]
(Mass reduction rate)
The spur gear A of each test example was used as the gear of the above test examples 1 to 4. Further, gears similar to those in Test Examples 1 to 4 except that the spur gear shape was 31 were prepared, and these gears were used as the spur gear B of each test example as a counterpart material. Next, the mass reduction rate was calculated based on the following formula (1). The results are shown in the column of “mass reduction rate” in Table 1.
Mass reduction rate [%] = (XY) / X × 100 (1)
X: initial mass of spur gear A [g]
Y: Mass [g] of spur gear A after meshing spur gear A and spur gear B, and performing a fatigue test in which gears are rotated for 100 hours under conditions of a tooth surface load of 4.5 N / mm and a rotational speed of 616 rpm.
(またぎ歯厚の減少率)
 上記試験例1~4のギアを各試験例の平歯車Aとした。さらに歯数31の平歯車形状としたこと以外は上記試験例1~4と同様のギアをそれぞれ作製し、これらのギアを相手材としての各試験例の平歯車Bとした。次に、下記式(2)に基づきまたぎ歯厚の減少率を求めた。その結果を表1の「またぎ歯厚の減少率」の欄に示す。
 またぎ歯厚の減少率[%]=(P-Q)/P×100 ・・・(2)
 P:平歯車Aのまたぎ歯厚(連続する8枚の歯のまたぎ歯厚)[mm]
 Q:平歯車Aと平歯車Bとをかみ合わせ、歯面荷重4.5N/mm、回転数616rpmの条件で100時間ギア同士を回転させる疲労試験を行った後の平歯車Aのまたぎ歯厚(連続する8枚の歯のまたぎ歯厚)[mm]
(Decrease rate of straddle thickness)
The spur gear A of each test example was used as the gear of the above test examples 1 to 4. Further, gears similar to those in Test Examples 1 to 4 except that the spur gear shape was 31 were prepared, and these gears were used as the spur gear B of each test example as a counterpart material. Next, the reduction rate of the tooth thickness was determined based on the following formula (2). The results are shown in the column “Decrease rate of straddle thickness” in Table 1.
Decrease rate of tooth thickness [%] = (PQ) / P × 100 (2)
P: Spur gear thickness of spur gear A (spacing tooth thickness of 8 consecutive teeth) [mm]
Q: Spur gear thickness of spur gear A after meshing spur gear A and spur gear B, and performing a fatigue test in which gears rotate for 100 hours under conditions of a tooth surface load of 4.5 N / mm and a rotational speed of 616 rpm ( (Thickness of the teeth of 8 consecutive teeth) [mm]
(260℃における動的粘弾性率)
 JIS-K-7244-1(1998年)に準拠し、動的粘弾性測定装置(アイティー計測制御社製の「DVA-200」)を用いて、260℃における動的粘弾性率を測定した。その結果を表1の「動的粘弾性率」の欄に示す。
(Dynamic viscoelastic modulus at 260 ° C.)
In accordance with JIS-K-7244-1 (1998), the dynamic viscoelasticity at 260 ° C. was measured using a dynamic viscoelasticity measuring device (“DVA-200” manufactured by IT Measurement & Control Co., Ltd.). . The results are shown in the “dynamic viscoelastic modulus” column of Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1中の「-」の記載は、測定できなかったことを示す。 “-” In Table 1 above indicates that measurement was not possible.
 表1に示すように、試験例1及び2では質量減少率及びまたぎ歯厚の減少率が0であった。このため、試験例1及び2では、試験例3及び4と比べて摺動試験中の最大温度が低くなった。すなわち、試験例1及び2は、摺動中の温度上昇の抑制により摺動中における物理的劣化抑制効果に優れると評価できる。 As shown in Table 1, in Test Examples 1 and 2, the mass reduction rate and the reduction rate of the tooth thickness were 0. For this reason, in Test Examples 1 and 2, the maximum temperature during the sliding test was lower than in Test Examples 3 and 4. That is, it can be evaluated that Test Examples 1 and 2 are excellent in the effect of suppressing physical deterioration during sliding due to suppression of temperature rise during sliding.
 一方、試験例3及び4では、試験例1及び2と比べて摺動中の温度上昇が抑制されず、摺動中における物理的な劣化が試験例1及び2より生じていると評価できる。この理由は、試験例3及び4に関しては、質量減少率が0.5%を超えたため、又はまたぎ歯厚の減少率が0.3%を超えたためと推測される。

 
On the other hand, in Test Examples 3 and 4, the temperature increase during sliding is not suppressed as compared with Test Examples 1 and 2, and it can be evaluated that physical deterioration during sliding occurs from Test Examples 1 and 2. The reason for this is presumed that, for Test Examples 3 and 4, the mass reduction rate exceeded 0.5% or the reduction rate of the toothpick thickness exceeded 0.3%.

Claims (9)

  1.  ポリアミド66及び架橋助剤を含有する樹脂組成物を架橋することで形成されるギアであって、
     下記式(1)で規定される質量減少率が0.5%以下であるギア。
     質量減少率[%]=(X-Y)/X×100 ・・・(1)
     X:ギアの初期質量[g]
     Y:歯面荷重4.5N/mm、回転数616rpmの条件で100時間ギア同士を回転させる疲労試験後のギアの質量[g]
    A gear formed by crosslinking a resin composition containing polyamide 66 and a crosslinking aid,
    A gear whose mass reduction rate defined by the following formula (1) is 0.5% or less.
    Mass reduction rate [%] = (XY) / X × 100 (1)
    X: initial gear mass [g]
    Y: Mass of gear after fatigue test in which gears are rotated for 100 hours under conditions of tooth surface load 4.5 N / mm and rotation speed 616 rpm [g]
  2.  ポリアミド66及び架橋助剤を含有する樹脂組成物を架橋することで形成されるギアであって、
     下記式(1)で規定される質量減少率が0.5%以下であるギア。
     質量減少率[%]=(X-Y)/X×100 ・・・(1)
     X:当該ギアと同じ条件で形成した歯幅5mm、モジュール1、歯数30、連続する8枚の歯のまたぎ歯厚10.7mmの平歯車Aの初期質量[g]
     Y:当該ギアと同じ条件で形成した歯幅5mm、モジュール1、歯数31、連続する8枚の歯のまたぎ歯厚10.7mmの平歯車Bと平歯車Aとをかみ合わせ、歯面荷重4.5N/mm、回転数616rpmの条件で100時間ギア同士を回転させる疲労試験後の平歯車Aの質量[g]
    A gear formed by crosslinking a resin composition containing polyamide 66 and a crosslinking aid,
    A gear whose mass reduction rate defined by the following formula (1) is 0.5% or less.
    Mass reduction rate [%] = (XY) / X × 100 (1)
    X: initial mass [g] of spur gear A having a tooth width of 5 mm, module 1, number of teeth of 30, and a thickness of 10.7 mm of contiguous teeth of 10.7 mm formed under the same conditions as the gear
    Y: The spur gear B and spur gear A having a tooth width of 5 mm, module 1, number of teeth 31 and a continuous tooth thickness of 10.7 mm, which are formed under the same conditions as the gear, mesh with each other, and the tooth load 4 Mass of the spur gear A after a fatigue test in which the gears are rotated for 100 hours under conditions of 5 N / mm and a rotation speed of 616 rpm [g]
  3.  ポリアミド66及び架橋助剤を含有する樹脂組成物を架橋することで形成されるギアであって、
     下記式(2)で規定されるまたぎ歯厚の減少率が0.3%以下であるギア。
     またぎ歯厚の減少率[%]=(P-Q)/P×100 ・・・(2)
     P:当該ギアと同じ条件で形成した歯幅5mm、モジュール1、歯数30の平歯車Aの連続する8枚の歯のまたぎ歯厚[mm]
     Q:当該ギアと同じ条件で形成した歯幅5mm、モジュール1、歯数31であり、連続する8枚の歯のまたぎ歯厚が平歯車Aと等しい平歯車Bと平歯車Aとをかみ合わせ、歯面荷重4.5N/mm、回転数616rpmの条件で100時間ギア同士を回転させる疲労試験後の平歯車Aの連続する8枚の歯のまたぎ歯厚[mm]
    A gear formed by crosslinking a resin composition containing polyamide 66 and a crosslinking aid,
    A gear in which the reduction rate of the thickness of the toothpick defined by the following formula (2) is 0.3% or less.
    Decrease rate of tooth thickness [%] = (PQ) / P × 100 (2)
    P: Thickness [mm] of 8 consecutive teeth of a spur gear A having a tooth width of 5 mm, a module 1, and 30 teeth formed under the same conditions as the gear
    Q: A spur gear B and a spur gear A, which have a tooth width of 5 mm, a module 1, and a number of teeth 31 formed under the same conditions as the gear, and the thickness of the continuous eight teeth is equal to the spur gear A, Thickness [mm] of 8 consecutive teeth of spur gear A after a fatigue test in which gears are rotated for 100 hours under conditions of a tooth surface load of 4.5 N / mm and a rotational speed of 616 rpm [mm]
  4.  260℃における動的粘弾性率が1MPa以上である請求項1、請求項2又は請求項3に記載のギア。 The gear according to claim 1, 2 or 3, wherein the dynamic viscoelasticity at 260 ° C is 1 MPa or more.
  5.  上記架橋助剤が、トリアリルイソシアヌレートを含む請求項1から請求項4のいずれか1項に記載のギア。 The gear according to any one of claims 1 to 4, wherein the crosslinking assistant contains triallyl isocyanurate.
  6.  上記架橋助剤の含有量が、ポリアミド66の100質量部に対し、1質量部以上10質量部以下である請求項1から請求項5のいずれか1項に記載のギア。 The gear according to any one of claims 1 to 5, wherein a content of the crosslinking aid is 1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the polyamide 66.
  7.  ポリアミド66及び架橋助剤を含有する樹脂組成物を射出成形する射出成形工程と、
     上記射出成形工程で得られた成形体に電離放射線を照射する電離放射線照射工程と
     を備えるギアの製造方法であって、
     得られるギアの下記式(1)で規定される質量減少率が0.5%以下であるギアの製造方法。
     質量減少率[%]=(X-Y)/X×100 ・・・(1)
     X:ギアの初期質量[g]
     Y:歯面荷重4.5N/mm、回転数616rpmの条件で100時間ギア同士を回転させる疲労試験後のギアの質量[g]
    An injection molding step of injection molding a resin composition containing polyamide 66 and a crosslinking aid;
    An ionizing radiation irradiating step for irradiating the molded body obtained in the injection molding step with ionizing radiation,
    A gear manufacturing method in which the mass reduction rate defined by the following formula (1) of the obtained gear is 0.5% or less.
    Mass reduction rate [%] = (XY) / X × 100 (1)
    X: initial gear mass [g]
    Y: Mass of gear after fatigue test in which gears are rotated for 100 hours under conditions of tooth surface load 4.5 N / mm and rotation speed 616 rpm [g]
  8.  ポリアミド66及び架橋助剤を含有する樹脂組成物を射出成形する射出成形工程と、
     上記射出成形工程で得られた成形体に電離放射線を照射する電離放射線照射工程と
     を備えるギアの製造方法であって、
     得られるギアの下記式(1)で規定される質量減少率が0.5%以下であるギアの製造方法。
     質量減少率[%]=(X-Y)/X×100 ・・・(1)
     X:得られるギアと同じ条件で形成した歯幅5mm、モジュール1、歯数30、連続する8枚の歯のまたぎ歯厚10.7mmの平歯車Aの初期質量[g]
     Y:得られるギアと同じ条件で形成した歯幅5mm、モジュール1、歯数31、連続する8枚の歯のまたぎ歯厚10.7mmの平歯車Bと平歯車Aとをかみ合わせ、歯面荷重4.5N/mm、回転数616rpmの条件で100時間ギア同士を回転させる疲労試験後の平歯車Aの質量[g]
    An injection molding step of injection molding a resin composition containing polyamide 66 and a crosslinking aid;
    An ionizing radiation irradiating step for irradiating the molded body obtained in the injection molding step with ionizing radiation,
    A gear manufacturing method in which the mass reduction rate defined by the following formula (1) of the obtained gear is 0.5% or less.
    Mass reduction rate [%] = (XY) / X × 100 (1)
    X: Initial mass [g] of spur gear A having a tooth width of 5 mm, module 1, number of teeth 30 and a continuous tooth thickness of 10.7 mm formed under the same conditions as the obtained gear
    Y: meshing spur gear B and spur gear A having a tooth width of 5 mm, module 1, number of teeth of 31 and a thickness of 10.7 mm, which is a continuous gear tooth, formed under the same conditions as the obtained gear, and tooth load Mass [g] of spur gear A after a fatigue test in which gears are rotated for 100 hours under conditions of 4.5 N / mm and a rotational speed of 616 rpm
  9.  ポリアミド66及び架橋助剤を含有する樹脂組成物を射出成形する射出成形工程と、
     上記射出成形工程で得られた成形体に電離放射線を照射する電離放射線照射工程と
     を備えるギアの製造方法であって、
     得られるギアの下記式(2)で規定されるまたぎ歯厚の減少率が0.3%以下であるギアの製造方法。
     またぎ歯厚の減少率[%]=(P-Q)/P×100 ・・・(2)
     P:得られるギアと同じ条件で形成した歯幅5mm、モジュール1、歯数30の平歯車Aの連続する8枚の歯のまたぎ歯厚[mm]
     Q:得られるギアと同じ条件で形成した歯幅5mm、モジュール1、歯数31であり、連続する8枚の歯のまたぎ歯厚が平歯車Aと等しい平歯車Bと平歯車Aとをかみ合わせ、歯面荷重4.5N/mm、回転数616rpmの条件で100時間ギア同士を回転させる疲労試験後の平歯車Aの連続する8枚の歯のまたぎ歯厚[mm]

     
    An injection molding step of injection molding a resin composition containing polyamide 66 and a crosslinking aid;
    An ionizing radiation irradiating step for irradiating the molded body obtained in the injection molding step with ionizing radiation,
    A gear manufacturing method in which the reduction rate of the tooth thickness defined by the following formula (2) of the obtained gear is 0.3% or less.
    Decrease rate of tooth thickness [%] = (PQ) / P × 100 (2)
    P: Thickness [mm] of 8 consecutive teeth of a spur gear A having a tooth width of 5 mm, a module 1, and 30 teeth formed under the same conditions as the obtained gear
    Q: meshing spur gear B and spur gear A with a tooth width of 5 mm, module 1 and number of teeth 31 formed under the same conditions as the gear to be obtained, and the thickness of the continuous eight teeth is equal to spur gear A , The tooth thickness [mm] of the continuous eight teeth of the spur gear A after the fatigue test in which the gears are rotated for 100 hours under the conditions of a tooth surface load of 4.5 N / mm and a rotation speed of 616 rpm

PCT/JP2016/070911 2016-07-14 2016-07-14 Gear and gear production method WO2018011958A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017502277A JPWO2018011958A1 (en) 2016-07-14 2016-07-14 Gear and gear manufacturing method
KR1020187033857A KR20190031200A (en) 2016-07-14 2016-07-14 Method for manufacturing gears and gears
PCT/JP2016/070911 WO2018011958A1 (en) 2016-07-14 2016-07-14 Gear and gear production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/070911 WO2018011958A1 (en) 2016-07-14 2016-07-14 Gear and gear production method

Publications (1)

Publication Number Publication Date
WO2018011958A1 true WO2018011958A1 (en) 2018-01-18

Family

ID=60952448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070911 WO2018011958A1 (en) 2016-07-14 2016-07-14 Gear and gear production method

Country Status (3)

Country Link
JP (1) JPWO2018011958A1 (en)
KR (1) KR20190031200A (en)
WO (1) WO2018011958A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102642113B1 (en) * 2019-04-25 2024-03-04 에이치엘만도 주식회사 Worm wheel for power steering system and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004019820A (en) * 2002-06-18 2004-01-22 Nsk Ltd Reduction gear for motor-driven power steering device
JP2004092893A (en) * 2002-09-04 2004-03-25 Nsk Ltd Reduction gear for electric power steering device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3099396B2 (en) 1990-03-08 2000-10-16 日本油脂株式会社 Sliding property improving agent and sliding property improving method
JP5837377B2 (en) 2011-09-15 2015-12-24 ユニチカ株式会社 Sliding member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004019820A (en) * 2002-06-18 2004-01-22 Nsk Ltd Reduction gear for motor-driven power steering device
JP2004092893A (en) * 2002-09-04 2004-03-25 Nsk Ltd Reduction gear for electric power steering device

Also Published As

Publication number Publication date
KR20190031200A (en) 2019-03-25
JPWO2018011958A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
JP5688409B2 (en) Heat dissipating resin composition for LED lighting case and heat dissipating case for LED lighting case
EP2921525B1 (en) Polyester resin composition, manufacturing method therefor, and camera module containing said polyester resin composition
US20130052453A1 (en) Thermoplastic powder composition and three-dimensional objects manufactured by sintering such a composition
JP6249711B2 (en) Semi-aromatic polyamide resin composition, molded body formed by molding the same, and sliding member
JP5731312B2 (en) Thermoplastic resin for reflector and reflector
KR20100079952A (en) Poly(phenylene sulfide)/poly(ethylene terephthalate) blend resin composition having high strength and method for preparing the same
JP2016211598A (en) Gear, and method of manufacturing gear
WO2019009188A1 (en) Fluororubber composition, production method therefor, and molded crosslinked fluororubber article
JP2015105379A (en) Thermoplastic resin composition
WO2015056765A1 (en) Semi-aromatic polyamide resin composition, and molded product formed by molding same
KR101584849B1 (en) PPS resin composition and method for preparing PPS fibers
JP6283453B1 (en) Cross-linked resin molded body, sliding member, gear and bearing
JP2021038410A (en) Thermoplastic molding compounds
WO2018011958A1 (en) Gear and gear production method
JPWO2016002192A1 (en) RESIN COMPOSITION FOR REFLECTOR AND REFLECTOR CONTAINING THE SAME
KR20140005493A (en) Polyarylene sulfide resin composition and formed article
JP2018017268A (en) Slide member and process of manufacture of slide member
JP2016199665A (en) Resin composition for sliding member, sliding member, and method for producing sliding member
JP2018021097A (en) Sliding member, and method for producing sliding member
JP2016199666A (en) Resin composition for sliding member, sliding member, and method for producing sliding member
JP2016166335A (en) Polyamide resin composition and molded article obtained by molding the same
JP2007246561A (en) Polyamide resin molded article
JP2018035242A (en) Slide member and method for producing slide member
KR20160063537A (en) Expanded graphite, method for preparing the same and thermal conductive resin composition comprising the same
JP2017210496A (en) Production method of compound for crosslinking and manufacturing method of sliding member

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017502277

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187033857

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908859

Country of ref document: EP

Kind code of ref document: A1