WO2018011864A1 - Motor drive device and air conditioner - Google Patents

Motor drive device and air conditioner Download PDF

Info

Publication number
WO2018011864A1
WO2018011864A1 PCT/JP2016/070455 JP2016070455W WO2018011864A1 WO 2018011864 A1 WO2018011864 A1 WO 2018011864A1 JP 2016070455 W JP2016070455 W JP 2016070455W WO 2018011864 A1 WO2018011864 A1 WO 2018011864A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
controller
phase
master
inverter
Prior art date
Application number
PCT/JP2016/070455
Other languages
French (fr)
Japanese (ja)
Inventor
酒井 顕
有澤 浩一
啓介 植村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/070455 priority Critical patent/WO2018011864A1/en
Priority to JP2018527268A priority patent/JP6537731B2/en
Publication of WO2018011864A1 publication Critical patent/WO2018011864A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another

Definitions

  • the present invention relates to a motor driving device that drives a motor and an air conditioner.
  • a master control device transmits a synchronization counter value for synchronous operation to a slave control device, and the slave control device holds itself based on the synchronization counter value received from the master control device.
  • a technique for realizing synchronous operation by adjusting a counter value to be disclosed is disclosed.
  • the master control device and the slave control device perform synchronous control according to a reference clock of an arithmetic device such as a microcomputer (hereinafter referred to as a microcomputer).
  • the reference clock is not necessarily the same between the master control device and the slave control device. Specifically, even if the reference clock source for generating the reference clock is different between the master control device and the slave control device, or the same reference clock source is used, the oscillation frequency of the oscillator in the clock source can be reduced. If the oscillation frequency is shifted due to the variation, the frequency of the reference clock differs between the master control device and the slave control device.
  • the slave control device only adjusts the counter value held by itself based on the synchronization counter value received from the master control device.
  • the control target of the master control device and the slave control device is a motor, and even if an attempt is made to match the rotation speed of the motor between the master control device and the slave control device, the motor is controlled by the difference in the frequency of the reference clock.
  • the synchronous speed could not be stably maintained due to a shift in the rotational speed of the motor and a beat.
  • the present invention has been made in view of the above, and obtains a motor drive device that can stably maintain synchronous operation regardless of the difference in the frequency of a reference clock among a plurality of control devices. For the purpose.
  • a motor driving apparatus that drives a first motor and a second motor
  • the first motor includes a first motor driving apparatus.
  • a first inverter that outputs AC power; a second inverter that outputs second AC power to a second motor; and a first controller that outputs a first drive signal to the first inverter; And a second controller that outputs a second drive signal to the second inverter.
  • the first controller outputs a pulse signal corresponding to the rotation cycle of the first motor to the second controller.
  • the motor drive device has an effect that the synchronous operation can be stably maintained regardless of the difference in the frequency of the reference clock between the plurality of control devices.
  • FIG. 3 is a diagram illustrating a configuration example of a control circuit according to the first embodiment.
  • the figure which shows an example of the master frequency pulse signal of Embodiment 1 The figure which shows the structural example of the motor system concerning Embodiment 2.
  • FIG. The figure which shows an example of each signal and the load torque of each motor in the 1st controller of Embodiment 3.
  • FIG. 1 is a diagram illustrating a configuration example of a motor system according to a first embodiment of the present invention.
  • the motor system 101 according to the first embodiment includes a first motor 3, a second motor 4, and a motor driving device 100.
  • the motor driving device 100 drives the first motor 3 and the second motor 4 using AC power supplied from the AC power supply 9 and the AC power supply 10.
  • the motor driving device 100 includes a rectifier 11 that rectifies AC power input from the AC power supply 9 into DC power, a capacitor 13 that is connected in parallel to the rectifier 11 and smoothes the voltage of the rectified DC power, And a first inverter 5 that is connected in parallel to the rectifier 11 and converts a direct current into a three-phase alternating current to drive the first motor 3.
  • the motor driving device 100 includes a rectifier 12 that rectifies AC power input from the AC power supply 10 into DC power, and a capacitor 14 that is connected in parallel to the rectifier 12 and smoothes the voltage of the rectified DC power.
  • a second inverter 6 that is connected in parallel to the rectifier 12 and converts the direct current into a three-phase alternating current to drive the second motor 4. That is, the first inverter 5 outputs first AC power to the first motor 3, and the second inverter 6 outputs second AC power to the second motor 4.
  • the motor drive device 100 generates a PWM (Pulse Width Modulation) signal, which is a first drive signal for controlling the first inverter 5, and outputs it to the first inverter 5.
  • a second controller 8 that generates a PWM signal that is a second drive signal for controlling the second inverter 6 and outputs the PWM signal to the second inverter 6.
  • the first controller 7 and the second controller 8 are examples of a plurality of controllers.
  • the motor drive device 100 includes current detection elements 15 and 16 that measure the motor current of the first motor 3 and current detection elements 17 and 18 that measure the motor current of the second motor 4. Further, although not shown, the motor drive device 100 includes a voltage measurement unit that measures the voltage across the capacitor 13 and a voltage measurement unit that measures the voltage across the capacitor 14.
  • FIG. 1 shows an example in which two-phase motor current is measured out of three-phase motor currents, three-phase motor currents may be measured, or one-phase motor currents may be measured. May be.
  • the motor system 101 of the present embodiment causes the first motor 3 and the second motor 4 to operate synchronously.
  • the first motor 3 and the second motor 4 are individual motors each having a rotor. For example, when the first motor 3 and the second motor 4 are used as motors of a compressor in a refrigeration cycle, they are used for different compressors.
  • the first motor 3 is a three-phase motor and includes a first winding unit 1.
  • First winding section 1 includes a U-phase winding section, a V-phase winding section, and a W-phase winding section.
  • the first motor 3 includes a U-phase terminal 301 corresponding to the U-phase, a V-phase terminal 302 corresponding to the V-phase, and a W-phase terminal 303 corresponding to the W-phase.
  • the second motor 4 is a three-phase motor and includes the second winding portion 2.
  • Second winding portion 2 includes a U-phase winding portion, a V-phase winding portion, and a W-phase winding portion.
  • the second motor 4 includes a U-phase terminal 401 corresponding to the U-phase, a V-phase terminal 402 corresponding to the V-phase, and a W-phase terminal 403 corresponding to the W-phase.
  • a three-phase motor will be described as an example, but the number of phases of the motor is not limited to three.
  • the first controller 7 which is a master inverter controller has a pulse shape corresponding to the rotation cycle of the first motor 3, which will be described later, in order to synchronize the first motor 3 and the second motor 4.
  • a master frequency pulse signal which is a signal is generated and output to the second controller 8 which is a slave controller.
  • the frequency of the first motor 3 described above may be a mechanical angle frequency, that is, a frequency corresponding to a cycle in which one rotation of the first motor 3 is one cycle, or an electrical angle frequency, that is, a first frequency.
  • the frequency of AC power applied to one motor 3 may be used.
  • the second controller 8 corrects a speed command that is a command for the rotational speed of the second motor 4 using the master frequency pulse signal.
  • the first inverter 5 includes switching elements 51 and 52 that are a pair of switching elements connected in series, switching elements 53 and 54 that are a pair of switching elements connected in series, and a switching element that is a pair of switching elements connected in series. 55, 56.
  • Each switching element pair of the switching element 51 and the switching element 52, the switching element 53 and the switching element 54, the switching element 55 and the switching element 56 is referred to as an arm.
  • Each arm is connected in parallel.
  • the midpoint of each arm of the first inverter 5 is connected to the corresponding phase terminal of the first motor 3.
  • an arm composed of switching element 51 and switching element 52 is connected to U-phase terminal 301, and an arm composed of switching element 53 and switching element 54 is connected to V-phase terminal 302, and switching is performed.
  • An arm composed of element 55 and switching element 56 is connected to W-phase terminal 303.
  • the second inverter 6 includes switching elements 61 and 62 that are a pair of switching elements connected in series, switching elements 63 and 64 that are a pair of switching elements connected in series, and a switching element that is a pair of switching elements connected in series. 65, 66.
  • Each switching element pair of the switching element 61 and the switching element 62, the switching element 63 and the switching element 64, the switching element 65 and the switching element 66 is referred to as an arm. Each arm is connected in parallel. The midpoint of each arm of the second inverter 6 is connected to the corresponding phase terminal of the second motor 4.
  • an arm composed of switching element 61 and switching element 62 is connected to U-phase terminal 401, and an arm composed of switching element 63 and switching element 64 is connected to V-phase terminal 402 for switching.
  • An arm composed of element 65 and switching element 66 is connected to W-phase terminal 403.
  • the switching elements 51 to 56 and switching elements 61 to 66 are IGBT (Insulated Gate Bipolar Transistor) or MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) switching elements, and a free-wheeling diode is connected to each switching element in parallel.
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal-Oxide-Semiconductor Field Effect Transistor
  • the switching elements 51 to 56, the switching elements 61 to 66, and the free wheel diode are configured by, for example, a wide gap semiconductor, but are not limited to the wide band gap semiconductor.
  • a wide band gap semiconductor such as GaN (gallium nitride), SiC (silicon carbide: silicon carbide), diamond, or the like can be used.
  • the withstand voltage is high and the allowable current density is also high, so that the module can be miniaturized. Since the wide band gap semiconductor has high heat resistance, it is possible to reduce the size of the radiating fin of the radiating portion.
  • FIG. 1 shows an example in which two motors are controlled by two sets of controllers and inverters
  • n (n is an integer of 3 or more) motors are controlled by n sets of controllers and inverters.
  • n motors are controlled by n inverters
  • one set of n sets of controllers and inverters is set as a master, and the other set is set as a slave. That is, one of the n controllers performs the same operation as the first controller 7 of the present embodiment, and the other controller performs the same operation as the second controller 8 of the present embodiment. .
  • the switching elements 51 to 56 in the first inverter 5 are controlled to be turned on or off by the PWM signal 19 output from the first controller 7.
  • the first controller 7 causes the first motor 3 to have a sine wave or trapezoidal wave shape.
  • a PWM signal 19 is generated to rotate the rotor of the first motor 3 by applying a voltage to generate a rotating magnetic flux.
  • the speed command is a command indicating the rotational speed of the first motor 3, that is, a frequency indicating a sinusoidal or trapezoidal frequency to the first motor 3, and may be input from the outside of the motor driving device 100, or the motor driving device. 100 may be generated.
  • the switching elements 61 to 66 in the second inverter 6 are controlled to be turned on or off by the PWM signal 20 output from the second controller 8.
  • the second controller 8 corrects the speed command using the master frequency pulse signal received from the first controller 7, and based on the corrected speed command, the permanent magnet of the rotor of the first motor 3.
  • a PWM signal 20 is applied to rotate the rotor of the first motor 3 by applying a sinusoidal or trapezoidal voltage to the first motor 3 to generate a rotating magnetic flux. Is generated.
  • the speed command is the same as the speed command input to the first inverter 5.
  • FIG. 2 is a diagram illustrating a configuration example of the first controller 7 according to the first embodiment.
  • FIG. 3 is a diagram illustrating a configuration example of the second controller 8 according to the first embodiment.
  • the first controller 7 and the second controller 8 are each realized by a processing circuit, and this processing circuit is an arithmetic unit including a microcomputer (microcomputer).
  • the processing circuit includes a reference clock source or is connected to an external reference clock source and operates based on a reference clock generated by the reference clock source.
  • An oscillator is used as the reference clock source, and for example, a crystal oscillator or a ceramic oscillator can be used as the oscillator.
  • the reference clock is not necessarily shared by the first controller 7 and the second controller 8.
  • the processing circuit that implements the first controller 7 and the second controller 8 may be a processing circuit that is dedicated hardware or a control circuit that includes a processor.
  • the processing circuit is, for example, a single circuit, a composite circuit, a programmed processor, a processor programmed in parallel, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or these Is a combination. 2 and 3 may be realized by individual processing circuits, or two or more may be realized by one processing circuit.
  • the control circuit is, for example, a control circuit 200 having a configuration shown in FIG.
  • FIG. 4 is a diagram illustrating a configuration example of the control circuit according to the first embodiment.
  • the control circuit 200 includes a processor 201 and a memory 202.
  • the processor 201 is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, DSP (Digital Signal Processor)) or the like.
  • the processor 201 When the processing circuit for realizing the first controller 7 and the second controller 8 is the control circuit 200 including the processor 201, the processor 201 describes the processing of each controller stored in the memory 202. This is realized by reading and executing the program.
  • the memory 202 is also used as a temporary memory in each process executed by the processor 201.
  • the first controller 7 of the first embodiment includes a master frequency pulse signal generation unit 22, a coordinate conversion unit 23, an estimation unit 25, a speed control unit 28, a vector control calculation unit 30, and PWM generation.
  • the unit 32 is provided.
  • the coordinate conversion unit 23 rotates the motor current based on the current information indicating the measurement result of the motor current of the first motor 3 output from the current detection elements 15 and 16 and the phase ⁇ estimated by the estimation unit 25.
  • the current i ⁇ and i ⁇ in the axis coordinate system is converted into current i ⁇ and i ⁇ , and the current i ⁇ and i ⁇ are output to the estimation unit 25.
  • the estimating unit 25 determines the speed ⁇ that is the rotational speed corresponding to the frequency of the AC power applied to the first motor 3 and the phase of the AC power applied to the first motor 3.
  • the speed control unit 28 supplies current information corresponding to a control amount for controlling the speed of the first motor 3 to the vector control calculation unit 30. Output.
  • the vector control calculation unit 30 stores motor information, which is information indicating the characteristics of the first motor 3 held in advance, current information input from the speed control unit 28, speed ⁇ output from the estimation unit 25, and Based on the phase ⁇ , output voltage information indicating the output voltage of the first inverter 5 is output to the PWM generator 32. Further, the vector generation unit 30 advances the phase with respect to the phase ⁇ , and the PWM generation unit 32 calculates ⁇ ′, which is the phase advanced from the phase ⁇ by the advance angle control, and outputs it to the PWM generation unit 32. To do.
  • the PWM generator 32 sets the switching elements 51 to 56 of the first inverter 5 based on the measured value Vdc of the voltage across the capacitor 13 and the output voltage information and phase ⁇ ′ output from the vector control calculator 30.
  • a PWM signal for controlling each is generated.
  • the output voltage is a voltage value indicated by the output voltage information.
  • the master frequency pulse signal generation unit 22 generates a master frequency pulse signal 21 synchronized with a period in which the phase ⁇ changes from 0 ° to 360 ° based on the phase ⁇ output from the estimation unit 25.
  • FIG. 5 is a diagram illustrating an example of a master frequency pulse signal according to the first embodiment.
  • the first stage of FIG. 5 shows the master-side inverter output voltage, that is, the voltage of AC power output from the first inverter 5.
  • the second stage of FIG. 5 shows the phase ⁇
  • the third stage of FIG. 5 shows the master frequency pulse signal 21.
  • the master frequency pulse signal 21 shown in FIG. 5 is an example, and the master frequency pulse signal 21 is not limited to the example shown in FIG. 5.
  • the master frequency pulse signal 21 is generated based on one cycle of AC power output from the first inverter 5, that is, the electrical angular cycle DE.
  • the master frequency pulse signal 21 may be generated on the basis of a period in which the motor 3 rotates once, that is, a mechanical angle period DM. That is, the master frequency pulse signal 21 may be generated so that the value of the master frequency pulse signal 21 changes at a location where the mechanical angle is 0 °.
  • the mechanical angular period is generally equal to the electrical angular period multiplied by the number of pole pairs of the motor (for example, the number of pole pairs is 3 in the case of a 6-pole motor).
  • the master frequency pulse signal 21 is generated based on the phase ⁇ estimated by the estimation unit 25 has been described, but based on the speed ⁇ estimated by the estimation unit 25.
  • a master frequency pulse signal 21 may be generated.
  • the master frequency pulse signal generation unit 22 may generate a pulse-like signal with one period corresponding to the speed ⁇ based on the speed ⁇ .
  • the master frequency pulse signal 21 only needs to be generated so that the value of the master frequency pulse signal 21 changes at one cycle break. For example, as shown in FIG. 5, the master frequency pulse signal 21 becomes High in the first half of one cycle. It is generated as a pulse signal that becomes Low in the latter half of the cycle.
  • the second controller 8 includes a coordinate conversion unit 24, an estimation unit 26, a speed command correction unit 27, a speed control unit 29, a vector control calculation unit 31, a PWM generation unit 33, a pulse counter 34, and A master control unit 35 is provided.
  • the coordinate conversion unit 24 rotates the motor current based on the current information indicating the measurement result of the motor current of the second motor 4 output from the current detection elements 16 and 17 and the phase ⁇ estimated by the estimation unit 26.
  • the current i ⁇ and i ⁇ in the axis coordinate system is converted into current i ⁇ and i ⁇ , and the current i ⁇ and i ⁇ are output to the estimation unit 26.
  • the estimation unit 26 Based on the currents i ⁇ and i ⁇ , the estimation unit 26 has a speed ⁇ that is a rotational speed corresponding to the frequency of the AC power applied to the second motor 4 and the phase of the AC power applied to the second motor 4.
  • the estimation unit 26 may output ⁇ m input from the master control unit 35 as the phase ⁇ . That is, the second controller 8 may correct the phase of rotation of the second motor 4 using the master frequency pulse signal 21.
  • the pulse counter 34 counts the period indicated by the master frequency pulse signal 21 based on the master frequency pulse signal 21 output from the first controller 7 with the reference clock used by the second controller 8. The count result is output to the master control unit 35. Specifically, as illustrated in FIG. 5, when the phase is 0 ° by the rising edge, the interval between the rising edge timing and the next rising edge timing is measured by the reference clock. The pulse counter 34 notifies the master control unit 35 of the phase 0 ° timing indicated by the master frequency pulse signal 21.
  • the master control unit 35 Based on the count result output from the pulse counter 34, the master control unit 35 calculates the master speed ⁇ m that is the speed in the first controller 7, that is, the master controller, and sends the master speed ⁇ m to the speed command correction unit 27. Output. Further, the master control unit 35 generates the phase ⁇ m in the second controller 8 at regular intervals based on the timing of phase 0 ° notified from the pulse counter 34 and ⁇ m, and notifies the estimation unit 26 of the phase ⁇ m. . This fixed time is a cycle in which the estimation calculation in the estimation unit 26 is performed.
  • the master speed ⁇ m indicated by the master frequency pulse signal 21 is counted by the reference clock in the second controller 8 based on the master frequency pulse signal 21 generated by the second controller 8 as described above. For this reason, even if the reference clock in the first controller 7 and the clock in the second controller 8 are different, the second controller 8 can correctly grasp the master speed ⁇ m.
  • the master control unit 35 calculates ⁇ m that is the speed of the electrical angle based on the count result output from the pulse counter 34 and the number of pole pairs. To do. For example, when the number of pole pairs is 3, the master control unit 35 sets a speed that is three times the speed corresponding to the period indicated by the count result output from the pulse counter 34 to ⁇ m.
  • the speed command correction unit 27 corrects the speed command ⁇ * based on the master speed ⁇ m, and outputs the corrected speed command ⁇ * ′ to the speed control unit 29. Specifically, the speed command correction unit 27 generates a corrected speed command ⁇ * ′ so as to satisfy the following expression (1). For example, when ⁇ m> ⁇ , a value obtained by subtracting a predetermined constant value from ⁇ * may be used as a corrected speed command ⁇ * ′, or a value obtained by subtracting ⁇ m ⁇ from ⁇ * may be used as a corrected value.
  • the speed command ⁇ * ′ may be used.
  • ⁇ m ⁇ a value obtained by adding a predetermined constant value to ⁇ * may be used as a corrected speed command ⁇ * ′, or a value obtained by subtracting ⁇ m from ⁇ * is corrected.
  • Speed command ⁇ * ′ When ⁇ m> ⁇ : Speed command ⁇ * ⁇ Corrected speed command ⁇ * ' When ⁇ m ⁇ : Speed command ⁇ *> Corrected speed command ⁇ * '(1)
  • the second controller 8 changes the speed of the second motor 4 to the first motor 3. Can be synchronized with the speed.
  • the speed control unit 29 vector-controls current information corresponding to a control amount for controlling the speed of the second motor 4 based on the corrected speed command ⁇ * ′ and ⁇ estimated by the estimation unit 26. Output to the calculation unit 31.
  • the vector control calculation unit 31 stores motor information, which is information indicating the characteristics of the second motor 4 held in advance, current information input from the speed control unit 29, speed ⁇ output from the estimation unit 26, and Based on the phase ⁇ , output voltage information indicating the output voltage of the second inverter 6 is output to the PWM generator 33. Further, the vector control calculation unit 31 calculates ⁇ ′ that is a phase advanced from the phase ⁇ by the advance angle control, and outputs it to the PWM generation unit 33.
  • the PWM generator 33 sets the switching elements 61 to 66 of the second inverter 6 based on the measured value Vdc of the voltage across the capacitor 14 and the output voltage information and the phase ⁇ ′ output from the vector control calculator 31.
  • a PWM signal for controlling each is generated.
  • the output voltage is a voltage value indicated by the output voltage information.
  • the operations in the coordinate conversion unit 24, the estimation unit 26, the speed control unit 29, the vector control calculation unit 31, and the PWM generation unit 33 are the same as the operations in general motor control, and thus detailed description thereof is omitted.
  • the first controller 7 generates a PWM signal based on the speed command.
  • the contents of the process to generate and the process in which the second controller 8 generates the PWM signal based on the corrected speed command are not limited to the above-described example.
  • synchronization processing by the master frequency pulse signal generation unit 22 in the first controller 7 and the pulse counter 34, master control unit 35, and speed command correction unit 27 in the second controller 8 can be realized. If it is a structure, it is not limited to the structure and operation
  • the first controller 7 generates the master frequency pulse signal 21 that is a pulse signal indicating the speed of the first motor 3, and the second controller 8. Output to. Then, the second controller 8 calculates the speed of the first motor 3 based on the master frequency pulse signal 21 with its own reference clock, and corrects the speed command using the calculated speed of the first motor 3. I tried to do it. For this reason, synchronous operation can be stably maintained irrespective of the presence or absence of the difference in the frequency of the reference clock among the plurality of control devices.
  • the slave reference clock cycle for generating the counter value is changed to match the master reference clock cycle.
  • a method is conceivable.
  • the period of the reference clock is changed, it is necessary to change the calculation in each controller, and the processing in the controller becomes complicated.
  • the calculation in each controller does not require a change in the period of the reference clock in each controller, so that the processing can be prevented from becoming complicated and a synchronous operation can be realized.
  • FIG. FIG. 6 is a diagram illustrating a configuration example of the motor system according to the second embodiment of the present invention.
  • the motor system 101a of the second embodiment includes a motor 3a and a motor driving device 100a.
  • the motor drive device 100a drives and controls the motor 3a using AC power supplied from the AC power supply 9 and the AC power supply 10.
  • components having the same functions as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description is omitted.
  • differences from the first embodiment will be described.
  • the motor 3a of the present embodiment is a three-phase motor and includes one stator.
  • the motor 3a includes a first winding part 1a and a second winding part 2a.
  • the first winding portion 1a includes a U-phase winding portion, a V-phase winding portion, and a W-phase winding portion.
  • Second winding portion 2a includes a U-phase winding portion, a V-phase winding portion, and a W-phase winding portion.
  • the motor 3a includes a U-phase terminal 301a corresponding to the U-phase of the first winding part 1a, a V-phase terminal 302a corresponding to the V-phase of the first winding part 1a, and the first winding part 1a.
  • a W-phase terminal 303a corresponding to the W-phase is provided.
  • the motor 3a includes a U-phase terminal 401a corresponding to the U-phase of the second winding part 2a, a V-phase terminal 402a corresponding to the V-phase of the second winding part 2a, and the second winding part 2a.
  • a W-phase terminal 403a corresponding to the W-phase is provided.
  • the configuration of the motor drive device 100a is the same as that of the motor drive device 100 of the first embodiment.
  • the first inverter 5 of the motor drive device 100a outputs the first AC power to the first winding unit 1a
  • the second inverter 6 of the motor drive device 100a receives the second AC. Electric power is output to the second winding part 2a.
  • the speed command ⁇ * in the second embodiment is a speed command for the rotational speed of the motor 3a.
  • the arm constituted by the switching element 51 and the switching element 52 is connected to the U-phase terminal 301a, and the arm constituted by the switching element 53 and the switching element 54 is V-phase.
  • An arm connected to terminal 302a and composed of switching element 55 and switching element 56 is connected to W-phase terminal 303a.
  • the arm constituted by the switching element 61 and the switching element 62 is connected to the U-phase terminal 401a, and the arm constituted by the switching element 63 and the switching element 64 is connected to the V-phase terminal 402a.
  • the connected arm composed of switching element 65 and switching element 66 is connected to W-phase terminal 403a.
  • FIG. 6 illustrates an example in which a motor 3a having two winding portions is controlled by two sets of controllers and inverters, but a motor having n (n is an integer of 3 or more) winding portions. May be controlled by n sets of controllers and inverters.
  • a motor having n winding portions is controlled by n inverters
  • one set of n sets of controllers and inverters is set as a master, and the other set is set as a slave. That is, one of the n controllers performs the same operation as the first controller 7 of the present embodiment, and the other controller performs the same operation as the second controller 8 of the present embodiment.
  • a three-phase motor will be described as an example, but the number of phases of the motor is not limited to three.
  • the first controller 7 corresponds to the frequency of the AC power applied to the first winding unit 1a.
  • a master frequency pulse signal which is a pulse-like signal indicating the speed, that is, the speed of the first winding section 1 a is generated and output to the second controller 8.
  • the second controller 8 calculates the speed of the first winding part 1a based on the master frequency pulse signal with its own reference clock, and uses the calculated speed of the first winding part 1a to calculate the speed. Correct the command. For this reason, the 1st coil
  • Embodiment 3 a motor drive device according to a third embodiment of the present invention will be described. Since the configuration of the motor system of the present embodiment is the same as that of the motor system of the first embodiment or the second embodiment, description of the configuration is omitted. In the following, the operation of the present embodiment will be described taking the configuration of the first embodiment as an example, but the operation in the configuration of the second embodiment is also output from the first inverter 5 and the second inverter 6. Except that the output destination of the AC power is the first motor 3 and the second motor 4 to the first winding part 1a and the second winding part 2a and that the operation of the vector control calculation part 31 is partially different. Is the same.
  • FIG. 7 is a diagram showing an example of each signal and load torque of each motor in the first controller of the present embodiment.
  • FIG. 7 shows an example in which the first motor 3 and the second motor 4 are 6-pole motors.
  • the first stage of FIG. 7 shows the master-side inverter output voltage, that is, the voltage of AC power output from the first inverter 5.
  • the master frequency pulse signal is generated as a pulse signal corresponding to the mechanical angle period.
  • the second stage of FIG. 7 shows the phase ⁇
  • the third stage of FIG. 7 shows the mechanical angle of the first motor 3, that is, the master side motor rotor phase ⁇ Mm
  • the load torque Tm generated in the master side motor, that is, the first motor 3 is shown.
  • the fifth stage of FIG. 7 shows the mechanical angle of the second motor 4, that is, the slave-side motor rotor phase ⁇ Ms
  • the period of the master side motor rotor phase ⁇ Mm is three times the period of the phase ⁇ estimated by the estimation unit 25.
  • the load torque Tm of the master side motor as shown in FIG. 7 is generated by the cycle of the master side motor rotor phase ⁇ Mm, that is, the cycle of the master side motor rotor phase ⁇ Mm and the cycle of the load torque Tm of the master side motor.
  • the load torque Tm of the master side motor is maximized in the vicinity where the master side motor rotor phase ⁇ Mm is 90 °.
  • the load torque Tm of the master side motor becomes the minimum in the vicinity where the master side motor rotor phase ⁇ Mm becomes 270 °.
  • the load torque Ts of the slave-side motor is the same as the load torque Tm of the master-side motor.
  • the maximum is near the side motor rotor phase ⁇ Mm is 90 °
  • the minimum is near the master side motor rotor phase ⁇ Mm is 270 °.
  • the master side motor and the slave side motor may cause vibration and noise by the master side motor and the slave side motor.
  • the second controller 8 performs control so that the master side motor rotor phase ⁇ Mm and the slave side motor rotor phase ⁇ Ms are shifted by 180 °.
  • the master frequency pulse signal is generated as a pulse signal corresponding to the period of the mechanical angle
  • the master control unit 35 performs the master side motor rotor phase which is the phase of the mechanical angle.
  • ⁇ Mm is calculated and output to the estimation unit 26 as ⁇ m.
  • the estimation unit 26 outputs ⁇ m + 180 ° as ⁇ to the coordinate conversion unit 24 and the vector control calculation unit 31.
  • the vector control calculation unit 31 includes motor information that is information indicating the characteristics of the second motor 4, current information that is input from the speed control unit 29, and a phase that is a speed ⁇ and a mechanical angle output from the estimation unit 26. Based on ⁇ , output voltage information indicating the output voltage of the second inverter 6 is output to the PWM generator 33.
  • motor information that is information indicating the characteristics of the second motor 4, current information that is input from the speed control unit 29, and a phase that is a speed ⁇ and a mechanical angle output from the estimation unit 26. Based on ⁇ , output voltage information indicating the output voltage of the second inverter 6 is output to the PWM generator 33.
  • the phase difference between the master side motor rotor phase ⁇ Mm and the slave side motor rotor phase ⁇ Ms is set to 180 °.
  • the inverter output voltage may be controlled so that the phase of the rotor of each motor is shifted by (360 / n) °.
  • the vibration and noise timings of the n motors can be shifted, and the vibration and noise of the entire system using the n motors can be suppressed.
  • the mechanical angle cycle and the motor load torque cycle are not necessarily the same,
  • the case where the cycle of the load torque is 1 ⁇ 2 of the cycle of the mechanical angle is also conceivable.
  • the second controller 8 sets the phase difference between the master side motor rotor phase ⁇ Mm and the slave side motor rotor phase ⁇ Ms to 90 °, so that the load torque of the master side motor and the slave side motor rotor Make sure that the load torque cancels out.
  • the phase difference between the master side motor rotor phase ⁇ Mm and the slave side motor rotor phase ⁇ Ms may be set so that the load torque of the master side motor and the load torque of the slave side motor cancel each other. That is, the second controller 8 determines the rotation phase of the second motor 4 and the first phase based on the master frequency pulse signal so that the load torque of the master side motor and the load torque of the slave side motor cancel each other. The phase difference from the rotation phase of the motor 3 is corrected to a predetermined value.
  • FIG. 8 is a diagram illustrating a configuration example of an air conditioner according to Embodiment 4 of the present invention.
  • the air conditioner of the present embodiment includes the motor system 101a and the motor 3a described in the second embodiment.
  • FIG. 8 shows an example including the motor system 101a and the motor 3a described in the second embodiment, but the motor described in the first embodiment instead of the motor system 101a and the motor 3a described in the second embodiment.
  • the system 101, the first motor 3, and the second motor 4 or the motor system and motor described in Embodiment 3 may be provided.
  • the compressor 81, the four-way valve 82, the outdoor heat exchanger 83, the expansion valve 84, and the indoor heat exchanger 85 that incorporate the motor 3a of the second embodiment are connected via the refrigerant pipe 86. It has a refrigeration cycle attached, that is, a refrigeration cycle apparatus, and constitutes a separate air conditioner.
  • the motor 3a is controlled by the motor driving device 100a.
  • a compressor 81 for compressing refrigerant and a motor 3a for operating the compressor 81 are provided inside the compressor 81, and the refrigerant circulates between the outdoor heat exchanger 83 and the indoor heat exchanger 85 from the compressor 81 for air conditioning and the like.
  • the refrigeration cycle to perform is comprised.
  • the first motor 3 and the second motor 4 of the first embodiment there are two compressors, and each compressor is built in each compressor.
  • the structure shown in FIG. 8 is applicable not only to an air conditioner but also to a device having a refrigeration cycle such as a refrigerator or a freezer.
  • Compressors used in equipment using a refrigeration cycle such as an air conditioner have a refrigerant compression and discharge process during one rotation of the motor, and the load torque varies greatly during one rotation of the motor. For this reason, vibration or noise is likely to occur.
  • a plurality of compressors are mounted, and it is necessary to control the plurality of compressors at the same rotational frequency between the plurality of controllers and the plurality of inverters.
  • the rotation frequency of each compressor will be shifted by the error of the reference clock.
  • This shift in rotational frequency induces an irritating beat sound, but by using the motor driving device shown in the first to third embodiments, the rotation frequency of the master side motor and the slave side motor rotation can be obtained. By synchronizing the frequency, it is possible to suppress the beat sound.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Multiple Motors (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

A motor drive device (100) drives a first motor (3) and a second motor (4), said motor drive device being provided with: a first inverter (5) that outputs first alternating current power to the first motor (3); a second inverter (6) that outputs second alternating current power to the second motor (4); a first controller (7) that outputs a first drive signal to the first inverter (5); and a second controller (8) that outputs a second drive signal to the second inverter (6). The first controller (7) outputs, to the second controller (8), a pulse signal corresponding to the rotation period of the first motor (3).

Description

モーター駆動装置および空気調和機Motor drive device and air conditioner
 本発明は、モーターを駆動するモーター駆動装置および空気調和機に関する。 The present invention relates to a motor driving device that drives a motor and an air conditioner.
 従来、複数の制御装置を同期させて、被制御装置を制御する同期制御システムがある。特許文献1には、マスターの制御装置が同期運転のための同期カウンタ値をスレーブの制御装置へ送信し、スレーブの制御装置が、マスターの制御装置から受信した同期カウンタ値に基づいて自らが保持するカウンタ値を調整することにより、同期運転を実現する技術が開示されている。 Conventionally, there is a synchronous control system that controls a controlled device by synchronizing a plurality of control devices. In Patent Literature 1, a master control device transmits a synchronization counter value for synchronous operation to a slave control device, and the slave control device holds itself based on the synchronization counter value received from the master control device. A technique for realizing synchronous operation by adjusting a counter value to be disclosed is disclosed.
特開2009-153311号公報JP 2009-153311 A
 マスターの制御装置およびスレーブの制御装置は、マイクロコンピュータ(以下、マイコンという)をはじめとする演算装置の基準クロックに従って同期制御を実施する。基準クロックは、マスターの制御装置とスレーブの制御装置との間で同一とは限らない。具体的には、マスターの制御装置とスレーブの制御装置との間で、基準クロックを生成する基準クロック源が異なっていたり、同じ基準クロック源を用いても、クロック源内の発振子の発振周波数のばらつきによる発振周波数のズレが生じていたりすると、マスターの制御装置とスレーブの制御装置との間で基準クロックの周波数が異なることになる。 The master control device and the slave control device perform synchronous control according to a reference clock of an arithmetic device such as a microcomputer (hereinafter referred to as a microcomputer). The reference clock is not necessarily the same between the master control device and the slave control device. Specifically, even if the reference clock source for generating the reference clock is different between the master control device and the slave control device, or the same reference clock source is used, the oscillation frequency of the oscillator in the clock source can be reduced. If the oscillation frequency is shifted due to the variation, the frequency of the reference clock differs between the master control device and the slave control device.
 しかしながら、上記特許文献1に記載の技術によれば、スレーブの制御装置が、マスターの制御装置から受信した同期カウンタ値に基づいて自らが保持するカウンタ値を調整するだけであり、特許文献1には、基準クロックの周波数の違いによる同期誤差の低減方法については開示も示唆もない。例えば、マスターの制御装置およびスレーブの制御装置の制御対象が、モーターであり、マスターの制御装置とスレーブの制御装置とでモーターの回転数を一致させようとしても、基準クロックの周波数の違いによりモーターの回転数にズレが生じ、うなりが生じて、安定的に同期運転が維持できない可能性があるという問題があった。 However, according to the technique described in Patent Document 1, the slave control device only adjusts the counter value held by itself based on the synchronization counter value received from the master control device. Neither discloses nor suggests a method for reducing the synchronization error due to the difference in the frequency of the reference clock. For example, the control target of the master control device and the slave control device is a motor, and even if an attempt is made to match the rotation speed of the motor between the master control device and the slave control device, the motor is controlled by the difference in the frequency of the reference clock. There was a problem in that there was a possibility that the synchronous speed could not be stably maintained due to a shift in the rotational speed of the motor and a beat.
 本発明は、上記に鑑みてなされたものであって、複数の制御装置の間の基準クロックの周波数の違いの有無にかかわらず、安定的に同期運転を維持することができるモーター駆動装置を得ることを目的とする。 The present invention has been made in view of the above, and obtains a motor drive device that can stably maintain synchronous operation regardless of the difference in the frequency of a reference clock among a plurality of control devices. For the purpose.
 上述した課題を解決し、目的を達成するために、本発明にかかるモーター駆動装置は、第1のモーターおよび第2のモーターを駆動するモーター駆動装置であって、第1のモーターに第1の交流電力を出力する第1のインバーターと、第2のモーターに第2の交流電力を出力する第2のインバーターと、第1のインバーターへ第1の駆動信号を出力する第1の制御器と、第2のインバーターへ第2の駆動信号を出力する第2の制御器と、を備える。第1の制御器は、第1のモーターの回転の周期に応じたパルス信号を第2の制御器へ出力する。 In order to solve the above-described problems and achieve the object, a motor driving apparatus according to the present invention is a motor driving apparatus that drives a first motor and a second motor, and the first motor includes a first motor driving apparatus. A first inverter that outputs AC power; a second inverter that outputs second AC power to a second motor; and a first controller that outputs a first drive signal to the first inverter; And a second controller that outputs a second drive signal to the second inverter. The first controller outputs a pulse signal corresponding to the rotation cycle of the first motor to the second controller.
 本発明にかかるモーター駆動装置は、複数の制御装置の間の基準クロックの周波数の違いの有無にかかわらず、安定的に同期運転を維持することができるという効果を奏する。 The motor drive device according to the present invention has an effect that the synchronous operation can be stably maintained regardless of the difference in the frequency of the reference clock between the plurality of control devices.
実施の形態1にかかるモーターシステムの構成例を示す図The figure which shows the structural example of the motor system concerning Embodiment 1. FIG. 実施の形態1の第1の制御器の構成例を示す図The figure which shows the structural example of the 1st controller of Embodiment 1. FIG. 実施の形態1の第2の制御器の構成例を示す図The figure which shows the structural example of the 2nd controller of Embodiment 1. FIG. 実施の形態1の制御回路の構成例を示す図FIG. 3 is a diagram illustrating a configuration example of a control circuit according to the first embodiment. 実施の形態1のマスター周波数パルス信号の一例を示す図The figure which shows an example of the master frequency pulse signal of Embodiment 1 実施の形態2にかかるモーターシステムの構成例を示す図The figure which shows the structural example of the motor system concerning Embodiment 2. FIG. 実施の形態3の第1の制御器における各信号と各モーターの負荷トルクの一例を示す図The figure which shows an example of each signal and the load torque of each motor in the 1st controller of Embodiment 3. 実施の形態4の空気調和機の構成例を示す図The figure which shows the structural example of the air conditioner of Embodiment 4.
 以下に、本発明の実施の形態にかかるモーター駆動装置および空気調和機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a motor drive device and an air conditioner according to an embodiment of the present invention will be described in detail based on the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明の実施の形態1にかかるモーターシステムの構成例を示す図である。図1に示すように、実施の形態1のモーターシステム101は、第1のモーター3、第2のモーター4、およびモーター駆動装置100を備える。モーター駆動装置100は、交流電源9および交流電源10から供給される交流電力を用いて、第1のモーター3および第2のモーター4を駆動する。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration example of a motor system according to a first embodiment of the present invention. As shown in FIG. 1, the motor system 101 according to the first embodiment includes a first motor 3, a second motor 4, and a motor driving device 100. The motor driving device 100 drives the first motor 3 and the second motor 4 using AC power supplied from the AC power supply 9 and the AC power supply 10.
 モーター駆動装置100は、交流電源9から入力される交流電力を直流電力に整流する整流器11と、整流器11に並列に接続され、整流された直流電力の電圧を平滑化するためのコンデンサ13と、整流器11に並列に接続され、直流電流を3相交流電流に変換して第1のモーター3を駆動する第1のインバーター5と、を備える。また、モーター駆動装置100は、交流電源10から入力される交流電力を直流電力に整流する整流器12と、整流器12に並列に接続され、整流された直流電力の電圧を平滑化するためのコンデンサ14と、整流器12に並列に接続され、直流電流を3相交流電流に変換して第2のモーター4を駆動する第2のインバーター6と、を備える。すなわち、第1のインバーター5は、第1のモーター3に第1の交流電力を出力し、第2のインバーター6は、第2のモーター4に第2の交流電力を出力する。 The motor driving device 100 includes a rectifier 11 that rectifies AC power input from the AC power supply 9 into DC power, a capacitor 13 that is connected in parallel to the rectifier 11 and smoothes the voltage of the rectified DC power, And a first inverter 5 that is connected in parallel to the rectifier 11 and converts a direct current into a three-phase alternating current to drive the first motor 3. The motor driving device 100 includes a rectifier 12 that rectifies AC power input from the AC power supply 10 into DC power, and a capacitor 14 that is connected in parallel to the rectifier 12 and smoothes the voltage of the rectified DC power. And a second inverter 6 that is connected in parallel to the rectifier 12 and converts the direct current into a three-phase alternating current to drive the second motor 4. That is, the first inverter 5 outputs first AC power to the first motor 3, and the second inverter 6 outputs second AC power to the second motor 4.
 また、モーター駆動装置100は、第1のインバーター5を制御するための第1の駆動信号であるPWM(Pulse Width Modulation)信号を生成して第1のインバーター5へ出力する第1の制御器7と、第2のインバーター6を制御するための第2の駆動信号であるPWM信号を生成して第2のインバーター6へ出力する第2の制御器8とを備える。第1の制御器7および第2の制御器8は、複数の制御器の一例である。また、モーター駆動装置100は、第1のモーター3のモーター電流を計測する電流検出素子15,16と、第2のモーター4のモーター電流を計測する電流検出素子17,18と、を備える。さらに、図示は省略しているが、モーター駆動装置100は、コンデンサ13の両端電圧を計測する電圧計測部と、コンデンサ14の両端電圧を計測する電圧計測部と、を備える。 In addition, the motor drive device 100 generates a PWM (Pulse Width Modulation) signal, which is a first drive signal for controlling the first inverter 5, and outputs it to the first inverter 5. And a second controller 8 that generates a PWM signal that is a second drive signal for controlling the second inverter 6 and outputs the PWM signal to the second inverter 6. The first controller 7 and the second controller 8 are examples of a plurality of controllers. In addition, the motor drive device 100 includes current detection elements 15 and 16 that measure the motor current of the first motor 3 and current detection elements 17 and 18 that measure the motor current of the second motor 4. Further, although not shown, the motor drive device 100 includes a voltage measurement unit that measures the voltage across the capacitor 13 and a voltage measurement unit that measures the voltage across the capacitor 14.
 なお、図1では、3相のモーター電流のうち2相のモーター電流を計測する例を示しているが、3相のモーター電流をそれぞれ計測してもよいし、1相のモーター電流を計測してもよい。 Although FIG. 1 shows an example in which two-phase motor current is measured out of three-phase motor currents, three-phase motor currents may be measured, or one-phase motor currents may be measured. May be.
 本実施の形態のモーターシステム101は、第1のモーター3および第2のモーター4を同期運転させる。第1のモーター3および第2のモーター4は、それぞれが回転子を有する個別のモーターである。第1のモーター3および第2のモーター4は、例えば冷凍サイクルにおける圧縮機のモーターとして用いられる場合、それぞれ異なる圧縮機に用いられる。 The motor system 101 of the present embodiment causes the first motor 3 and the second motor 4 to operate synchronously. The first motor 3 and the second motor 4 are individual motors each having a rotor. For example, when the first motor 3 and the second motor 4 are used as motors of a compressor in a refrigeration cycle, they are used for different compressors.
 第1のモーター3は、3相モーターであり、第1の巻線部1を備える。第1の巻線部1は、U相巻線部、V相巻線部およびW相巻線部を備える。また、第1のモーター3は、U相に対応するU相端子301、V相に対応するV相端子302およびW相に対応するW相端子303を備える。第2のモーター4は、3相モーターであり、第2の巻線部2を備える。第2の巻線部2は、U相巻線部、V相巻線部およびW相巻線部を備える。また、第2のモーター4は、U相に対応するU相端子401、V相に対応するV相端子402およびW相に対応するW相端子403を備える。なお、以下では、3相モーターを例に説明するが、モーターの相数は3相に限定されない。 The first motor 3 is a three-phase motor and includes a first winding unit 1. First winding section 1 includes a U-phase winding section, a V-phase winding section, and a W-phase winding section. The first motor 3 includes a U-phase terminal 301 corresponding to the U-phase, a V-phase terminal 302 corresponding to the V-phase, and a W-phase terminal 303 corresponding to the W-phase. The second motor 4 is a three-phase motor and includes the second winding portion 2. Second winding portion 2 includes a U-phase winding portion, a V-phase winding portion, and a W-phase winding portion. The second motor 4 includes a U-phase terminal 401 corresponding to the U-phase, a V-phase terminal 402 corresponding to the V-phase, and a W-phase terminal 403 corresponding to the W-phase. Hereinafter, a three-phase motor will be described as an example, but the number of phases of the motor is not limited to three.
 マスターインバーター制御器である第1の制御器7は、第1のモーター3および第2のモーター4を同期運転させるために、後述する、第1のモーター3の回転の周期に応じたパルス状の信号であるマスター周波数パルス信号を生成して、スレーブ制御器である第2の制御器8へ出力する。ここで、上述した第1のモーター3の周波数は、機械角の周波数すなわち第1のモーター3の1回転を1周期とした周期に対応する周波数であってもよいし、電気角の周波数すなわち第1のモーター3に印加される交流電力の周波数であってもよい。第2の制御器8は、マスター周波数パルス信号を用いて、第2のモーター4の回転速度に対する指令である速度指令を補正する。 The first controller 7 which is a master inverter controller has a pulse shape corresponding to the rotation cycle of the first motor 3, which will be described later, in order to synchronize the first motor 3 and the second motor 4. A master frequency pulse signal which is a signal is generated and output to the second controller 8 which is a slave controller. Here, the frequency of the first motor 3 described above may be a mechanical angle frequency, that is, a frequency corresponding to a cycle in which one rotation of the first motor 3 is one cycle, or an electrical angle frequency, that is, a first frequency. The frequency of AC power applied to one motor 3 may be used. The second controller 8 corrects a speed command that is a command for the rotational speed of the second motor 4 using the master frequency pulse signal.
 第1のインバーター5は、直列接続されたスイッチング素子対であるスイッチング素子51,52と、直列接続されたスイッチング素子対であるスイッチング素子53,54と、直列接続されたスイッチング素子対であるスイッチング素子55,56とを備える。スイッチング素子51およびスイッチング素子52、スイッチング素子53およびスイッチング素子54、スイッチング素子55およびスイッチング素子56の各スイッチング素子対をそれぞれアームと呼ぶ。各アームは並列に接続される。第1のインバーター5の各アームの中点は、第1のモーター3の対応する相の端子にそれぞれ接続される。 The first inverter 5 includes switching elements 51 and 52 that are a pair of switching elements connected in series, switching elements 53 and 54 that are a pair of switching elements connected in series, and a switching element that is a pair of switching elements connected in series. 55, 56. Each switching element pair of the switching element 51 and the switching element 52, the switching element 53 and the switching element 54, the switching element 55 and the switching element 56 is referred to as an arm. Each arm is connected in parallel. The midpoint of each arm of the first inverter 5 is connected to the corresponding phase terminal of the first motor 3.
 具体的には、スイッチング素子51およびスイッチング素子52で構成されるアームは、U相端子301に接続され、スイッチング素子53およびスイッチング素子54で構成されるアームは、V相端子302に接続され、スイッチング素子55およびスイッチング素子56で構成されるアームは、W相端子303に接続される。 Specifically, an arm composed of switching element 51 and switching element 52 is connected to U-phase terminal 301, and an arm composed of switching element 53 and switching element 54 is connected to V-phase terminal 302, and switching is performed. An arm composed of element 55 and switching element 56 is connected to W-phase terminal 303.
 第2のインバーター6は、直列接続されたスイッチング素子対であるスイッチング素子61,62と、直列接続されたスイッチング素子対であるスイッチング素子63,64と、直列接続されたスイッチング素子対であるスイッチング素子65,66とを備える。スイッチング素子61およびスイッチング素子62、スイッチング素子63およびスイッチング素子64、スイッチング素子65およびスイッチング素子66の各スイッチング素子対をそれぞれアームと呼ぶ。各アームは並列に接続される。第2のインバーター6の各アームの中点は、第2のモーター4の対応する相の端子にそれぞれ接続される。 The second inverter 6 includes switching elements 61 and 62 that are a pair of switching elements connected in series, switching elements 63 and 64 that are a pair of switching elements connected in series, and a switching element that is a pair of switching elements connected in series. 65, 66. Each switching element pair of the switching element 61 and the switching element 62, the switching element 63 and the switching element 64, the switching element 65 and the switching element 66 is referred to as an arm. Each arm is connected in parallel. The midpoint of each arm of the second inverter 6 is connected to the corresponding phase terminal of the second motor 4.
 具体的には、スイッチング素子61およびスイッチング素子62で構成されるアームは、U相端子401に接続され、スイッチング素子63およびスイッチング素子64で構成されるアームは、V相端子402に接続され、スイッチング素子65およびスイッチング素子66で構成されるアームは、W相端子403に接続される。スイッチング素子51~56およびスイッチング素子61~66は、IGBT(Insulated Gate Bipolar Transistor)またはMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)のスイッチング素子であり、各スイッチング素子には並列に還流ダイオードが接続される。 Specifically, an arm composed of switching element 61 and switching element 62 is connected to U-phase terminal 401, and an arm composed of switching element 63 and switching element 64 is connected to V-phase terminal 402 for switching. An arm composed of element 65 and switching element 66 is connected to W-phase terminal 403. The switching elements 51 to 56 and switching elements 61 to 66 are IGBT (Insulated Gate Bipolar Transistor) or MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) switching elements, and a free-wheeling diode is connected to each switching element in parallel. The
 スイッチング素子51~56、スイッチング素子61~66および還流ダイオードは、例えば、ワイドギャップ半導体により構成されるが、これらはワイドバンドギャップ半導体に限定されない。ワイドバンドギャップ半導体としては、GaN(窒化ガリウム)、SiC(シリコンカーバイド:炭化珪素)、ダイヤモンドなどのワイドバンドギャップ半導体を用いることができる。ワイドバンドギャップ半導体を用いることで耐電圧性が高く、許容電流密度も高くなるため、モジュールの小型化が可能となる。ワイドバンドギャップ半導体は、耐熱性も高いため、放熱部の放熱フィンの小型化も可能になる。 The switching elements 51 to 56, the switching elements 61 to 66, and the free wheel diode are configured by, for example, a wide gap semiconductor, but are not limited to the wide band gap semiconductor. As the wide band gap semiconductor, a wide band gap semiconductor such as GaN (gallium nitride), SiC (silicon carbide: silicon carbide), diamond, or the like can be used. By using a wide band gap semiconductor, the withstand voltage is high and the allowable current density is also high, so that the module can be miniaturized. Since the wide band gap semiconductor has high heat resistance, it is possible to reduce the size of the radiating fin of the radiating portion.
 なお、図1では2個のモーターを2組の制御器およびインバーターで制御する例を図示したが、n(nは3以上の整数)個のモーターをn組の制御器およびインバーターで制御することも可能である。n個のモーターをn個のインバーターで制御する場合、n組の制御器およびインバーターのうち1組をマスターとし、他の組をスレーブとする。すなわちn個の制御器のうち1つが本実施の形態の第1の制御器7と同様の動作を行い、他の制御器が本実施の形態の第2の制御器8と同様の動作を行う。 Although FIG. 1 shows an example in which two motors are controlled by two sets of controllers and inverters, n (n is an integer of 3 or more) motors are controlled by n sets of controllers and inverters. Is also possible. When n motors are controlled by n inverters, one set of n sets of controllers and inverters is set as a master, and the other set is set as a slave. That is, one of the n controllers performs the same operation as the first controller 7 of the present embodiment, and the other controller performs the same operation as the second controller 8 of the present embodiment. .
 第1のインバーター5内のスイッチング素子51~56は、第1の制御器7から出力されるPWM信号19によりオンまたはオフとなるよう制御される。第1の制御器7は、速度指令に基づいて、第1のモーター3の回転子の永久磁石が作る磁束と同じ速度で回転する座標系において、第1のモーター3に正弦波または台形波状の電圧を印加し回転磁束を発生させて第1のモーター3の回転子を回転させるようPWM信号19を生成する。速度指令は、第1のモーター3の回転速度、すなわち第1のモーター3に正弦波または台形波状の周波数を示す指令であり、モーター駆動装置100の外部から入力されてもよいし、モーター駆動装置100内で生成されてもよい。 The switching elements 51 to 56 in the first inverter 5 are controlled to be turned on or off by the PWM signal 19 output from the first controller 7. In the coordinate system that rotates at the same speed as the magnetic flux generated by the permanent magnet of the rotor of the first motor 3 based on the speed command, the first controller 7 causes the first motor 3 to have a sine wave or trapezoidal wave shape. A PWM signal 19 is generated to rotate the rotor of the first motor 3 by applying a voltage to generate a rotating magnetic flux. The speed command is a command indicating the rotational speed of the first motor 3, that is, a frequency indicating a sinusoidal or trapezoidal frequency to the first motor 3, and may be input from the outside of the motor driving device 100, or the motor driving device. 100 may be generated.
 第2のインバーター6内のスイッチング素子61~66は、第2の制御器8から出力されるPWM信号20によりオンまたはオフとなるよう制御される。第2の制御器8は、第1の制御器7から受け取ったマスター周波数パルス信号を用いて速度指令を補正し、補正後の速度指令に基づいて、第1のモーター3の回転子の永久磁石が作る磁束と同じ速度で回転する座標系において、第1のモーター3に正弦波または台形波状の電圧を印加し回転磁束を発生させて第1のモーター3の回転子を回転させるようPWM信号20を生成する。速度指令は、第1のインバーター5に入力される速度指令と同一である。 The switching elements 61 to 66 in the second inverter 6 are controlled to be turned on or off by the PWM signal 20 output from the second controller 8. The second controller 8 corrects the speed command using the master frequency pulse signal received from the first controller 7, and based on the corrected speed command, the permanent magnet of the rotor of the first motor 3. In a coordinate system that rotates at the same speed as the magnetic flux generated by PWM, a PWM signal 20 is applied to rotate the rotor of the first motor 3 by applying a sinusoidal or trapezoidal voltage to the first motor 3 to generate a rotating magnetic flux. Is generated. The speed command is the same as the speed command input to the first inverter 5.
 図2は、実施の形態1の第1の制御器7の構成例を示す図である。図3は、実施の形態1の第2の制御器8の構成例を示す図である。第1の制御器7および第2の制御器8は、それぞれ処理回路により実現され、この処理回路は、マイコン(マイクロコンピュータ)をはじめとした演算器である。この処理回路は、基準クロック源を備えており、または外部の基準クロック源と接続されており、基準クロック源により生成された基準クロックに基づいて動作する。基準クロック源としては、発振子が用いられ、発振子には、例えば水晶発振子またはセラミック発振子を用いることができる。基準クロックは、第1の制御器7と第2の制御器8とでは共通とは限らない。 FIG. 2 is a diagram illustrating a configuration example of the first controller 7 according to the first embodiment. FIG. 3 is a diagram illustrating a configuration example of the second controller 8 according to the first embodiment. The first controller 7 and the second controller 8 are each realized by a processing circuit, and this processing circuit is an arithmetic unit including a microcomputer (microcomputer). The processing circuit includes a reference clock source or is connected to an external reference clock source and operates based on a reference clock generated by the reference clock source. An oscillator is used as the reference clock source, and for example, a crystal oscillator or a ceramic oscillator can be used as the oscillator. The reference clock is not necessarily shared by the first controller 7 and the second controller 8.
 第1の制御器7および第2の制御器8をそれぞれ実現する処理回路は、専用のハードウェアである処理回路であってもよいし、プロセッサを備える制御回路であってもよい。専用のハードウェアである場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものである。また、図2および図3に示した各部がそれぞれ個別の処理回路により実現されてもよいし、2つ以上が1つの処理回路により実現されてもよい。 The processing circuit that implements the first controller 7 and the second controller 8 may be a processing circuit that is dedicated hardware or a control circuit that includes a processor. In the case of dedicated hardware, the processing circuit is, for example, a single circuit, a composite circuit, a programmed processor, a processor programmed in parallel, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or these Is a combination. 2 and 3 may be realized by individual processing circuits, or two or more may be realized by one processing circuit.
 第1の制御器7および第2の制御器8をそれぞれ実現する処理回路がプロセッサを備える制御回路で実現される場合、この制御回路は例えば図4に示す構成の制御回路200である。図4は、実施の形態1の制御回路の構成例を示す図である。制御回路200は、プロセッサ201とメモリ202を備える。プロセッサ201は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)等である。 When the processing circuits for realizing the first controller 7 and the second controller 8 are realized by a control circuit including a processor, the control circuit is, for example, a control circuit 200 having a configuration shown in FIG. FIG. 4 is a diagram illustrating a configuration example of the control circuit according to the first embodiment. The control circuit 200 includes a processor 201 and a memory 202. The processor 201 is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, DSP (Digital Signal Processor)) or the like.
 第1の制御器7および第2の制御器8をそれぞれ実現する処理回路がプロセッサ201を備える制御回路200である場合、プロセッサ201が、メモリ202に記憶された各制御器の処理が記述されたプログラムを読み出して実行することにより実現される。また、メモリ202は、プロセッサ201が実施する各処理における一時メモリとしても使用される。 When the processing circuit for realizing the first controller 7 and the second controller 8 is the control circuit 200 including the processor 201, the processor 201 describes the processing of each controller stored in the memory 202. This is realized by reading and executing the program. The memory 202 is also used as a temporary memory in each process executed by the processor 201.
 図2に示すように、実施の形態1の第1の制御器7は、マスター周波数パルス信号生成部22、座標変換部23、推定部25、速度制御部28、ベクトル制御演算部30およびPWM生成部32を備える。 As shown in FIG. 2, the first controller 7 of the first embodiment includes a master frequency pulse signal generation unit 22, a coordinate conversion unit 23, an estimation unit 25, a speed control unit 28, a vector control calculation unit 30, and PWM generation. The unit 32 is provided.
 座標変換部23は、電流検出素子15,16から出力された第1のモーター3のモーター電流の計測結果を示す電流情報と推定部25により推定された位相θとに基づいて、モーター電流を回転軸座標系における電流iγ,iδに変換し、電流iγ,iδを推定部25へ出力する。推定部25は、電流iγ,iδに基づいて、第1のモーター3に印加される交流電力の周波数に対応する回転速度である速度ωと、第1のモーター3に印加される交流電力の位相θとを推定し、速度ωを速度制御部28およびベクトル制御演算部30へ出力し、位相θをベクトル制御演算部30および座標変換部23へ出力する。速度制御部28は、速度指令ω*と推定部25により推定されたωとに基づいて、第1のモーター3の速度を制御するための制御量に対応する電流情報をベクトル制御演算部30へ出力する。 The coordinate conversion unit 23 rotates the motor current based on the current information indicating the measurement result of the motor current of the first motor 3 output from the current detection elements 15 and 16 and the phase θ estimated by the estimation unit 25. The current i γ and i δ in the axis coordinate system is converted into current i γ and i δ, and the current i γ and i δ are output to the estimation unit 25. Based on the currents i γ and i δ, the estimating unit 25 determines the speed ω that is the rotational speed corresponding to the frequency of the AC power applied to the first motor 3 and the phase of the AC power applied to the first motor 3. θ is estimated, the speed ω is output to the speed control unit 28 and the vector control calculation unit 30, and the phase θ is output to the vector control calculation unit 30 and the coordinate conversion unit 23. Based on the speed command ω * and ω estimated by the estimation unit 25, the speed control unit 28 supplies current information corresponding to a control amount for controlling the speed of the first motor 3 to the vector control calculation unit 30. Output.
 ベクトル制御演算部30は、あらかじめ保持している第1のモーター3の特性を示す情報であるモーター情報と、速度制御部28から入力される電流情報と、推定部25から出力される速度ωおよび位相θとに基づいて、第1のインバーター5の出力電圧を示す出力電圧情報をPWM生成部32へ出力する。また、ベクトル制御演算部30は、位相θに対して位相を進めたPWM生成部32は、進角制御により位相θから位相を進めた位相であるθ´を算出し、PWM生成部32へ出力する。 The vector control calculation unit 30 stores motor information, which is information indicating the characteristics of the first motor 3 held in advance, current information input from the speed control unit 28, speed ω output from the estimation unit 25, and Based on the phase θ, output voltage information indicating the output voltage of the first inverter 5 is output to the PWM generator 32. Further, the vector generation unit 30 advances the phase with respect to the phase θ, and the PWM generation unit 32 calculates θ ′, which is the phase advanced from the phase θ by the advance angle control, and outputs it to the PWM generation unit 32. To do.
 PWM生成部32は、コンデンサ13の両端電圧の計測値Vdcと、ベクトル制御演算部30から出力される出力電圧情報および位相θ´とに基づいて、第1のインバーター5のスイッチング素子51~56をそれぞれ制御するためのPWM信号を生成する。具体的には、PWM生成部32は、出力電圧/Vdc=オンデューティとなるようPWM信号を生成する。出力電圧は、出力電圧情報により示される電圧値である。なお、座標変換部23、推定部25、速度制御部28、ベクトル制御演算部30およびPWM生成部32における動作は、一般的なモーター制御における動作と同様であるため詳細な説明は省略する。 The PWM generator 32 sets the switching elements 51 to 56 of the first inverter 5 based on the measured value Vdc of the voltage across the capacitor 13 and the output voltage information and phase θ ′ output from the vector control calculator 30. A PWM signal for controlling each is generated. Specifically, the PWM generator 32 generates a PWM signal such that the output voltage / Vdc = on duty. The output voltage is a voltage value indicated by the output voltage information. The operations in the coordinate conversion unit 23, the estimation unit 25, the speed control unit 28, the vector control calculation unit 30, and the PWM generation unit 32 are the same as the operations in general motor control, and thus detailed description thereof is omitted.
 マスター周波数パルス信号生成部22は、推定部25から出力される位相θに基づいて、位相θが0°から360°まで変化する周期であるに同期するマスター周波数パルス信号21を生成する。 The master frequency pulse signal generation unit 22 generates a master frequency pulse signal 21 synchronized with a period in which the phase θ changes from 0 ° to 360 ° based on the phase θ output from the estimation unit 25.
 図5は、実施の形態1のマスター周波数パルス信号の一例を示す図である。図5の1段目には、マスター側インバーター出力電圧、すなわち第1のインバーター5から出力される交流電力の電圧を示している。図5の2段目には、位相θを示し、図5の3段目には、マスター周波数パルス信号21を示している。 FIG. 5 is a diagram illustrating an example of a master frequency pulse signal according to the first embodiment. The first stage of FIG. 5 shows the master-side inverter output voltage, that is, the voltage of AC power output from the first inverter 5. The second stage of FIG. 5 shows the phase θ, and the third stage of FIG. 5 shows the master frequency pulse signal 21.
 図5に示した例では、マスター周波数パルス信号生成部22は、マスター周波数パルス信号21として、位相θ=0°において立ち上がり、位相θ=180°において立ち下がるパルス状の信号であるパルス信号を生成する。すなわち、位相θが0°から360°まで変化する1周期のうち、前半においてマスター周波数パルス信号21の値がHighであり、後半においてマスター周波数パルス信号21の値がLowである。なお、図5に示したマスター周波数パルス信号21は一例であり、図5に示した例に限定されず、マスター周波数パルス信号21は、位相θ=0°となる箇所で、マスター周波数パルス信号21の値が変化するように生成されればよい。例えば、マスター周波数パルス信号21は、位相θ=0°において立ち下がり、位相θ=180°において立ち上がるパルス状の信号であってもよい。また、図5では、パルス幅が180°であるが、パルス幅も図5の例に限定されず、位相θ=0°において立ち上がり、位相θ=90°において立ち下がるなどのように、パルス幅も図5の例に限定されない。 In the example illustrated in FIG. 5, the master frequency pulse signal generation unit 22 generates, as the master frequency pulse signal 21, a pulse signal that is a pulse signal that rises at the phase θ = 0 ° and falls at the phase θ = 180 °. To do. That is, in one cycle in which the phase θ changes from 0 ° to 360 °, the value of the master frequency pulse signal 21 is High in the first half and the value of the master frequency pulse signal 21 is Low in the second half. The master frequency pulse signal 21 shown in FIG. 5 is an example, and the master frequency pulse signal 21 is not limited to the example shown in FIG. 5. The master frequency pulse signal 21 is a portion where the phase θ = 0 °. It suffices if the value is generated so as to change. For example, the master frequency pulse signal 21 may be a pulse-like signal that falls at the phase θ = 0 ° and rises at the phase θ = 180 °. In FIG. 5, the pulse width is 180 °, but the pulse width is not limited to the example in FIG. 5, and the pulse width is such that it rises at the phase θ = 0 ° and falls at the phase θ = 90 °. Is not limited to the example of FIG.
 また、図5に示した例では、第1のインバーター5から出力される交流電力の1周期すなわち電気角周期DEに基づいてマスター周波数パルス信号21が生成される例を示しているが、第1のモーター3が1回転する周期すなわち機械角周期DMに基づいてマスター周波数パルス信号21が生成されてもよい。すなわち、マスター周波数パルス信号21は、機械角が0°となる箇所で、マスター周波数パルス信号21の値が変化するように生成されてもよい。機械角周期は、一般に、電気角周期×モーターの極対数(例えば、6極モーターの場合は極対数3)と等しい。図5では、局対数が3極の例を示しており、機械角周期DM=電気角周期DE×3となっている。機械角周期内では、機械角の移動により回転速度に偏りが生じることがあり、この場合、機械角周期=電気角周期×モーターの極対数とならない。機械角周期DMに基づいてマスター周波数パルス信号21を生成すると、このような回転速度の偏りによる誤差を抑制することができる。 5 shows an example in which the master frequency pulse signal 21 is generated based on one cycle of AC power output from the first inverter 5, that is, the electrical angular cycle DE. The master frequency pulse signal 21 may be generated on the basis of a period in which the motor 3 rotates once, that is, a mechanical angle period DM. That is, the master frequency pulse signal 21 may be generated so that the value of the master frequency pulse signal 21 changes at a location where the mechanical angle is 0 °. The mechanical angular period is generally equal to the electrical angular period multiplied by the number of pole pairs of the motor (for example, the number of pole pairs is 3 in the case of a 6-pole motor). FIG. 5 shows an example in which the number of station pairs is 3 poles, where mechanical angular period DM = electrical angular period DE × 3. Within the mechanical angle cycle, the rotational speed may be biased due to the movement of the mechanical angle. In this case, the mechanical angular cycle = the electrical angular cycle × the number of pole pairs of the motor. When the master frequency pulse signal 21 is generated based on the mechanical angular period DM, errors due to such a rotational speed deviation can be suppressed.
 また、図5に示した例では、推定部25により推定された位相θに基づいて、マスター周波数パルス信号21が生成される例を説明したが、推定部25により推定された速度ωに基づいてマスター周波数パルス信号21が生成されてもよい。すなわち、マスター周波数パルス信号生成部22は、速度ωに基づいて、速度ωに対応する周期を1周期とするパルス状の信号を生成してもよい。この場合、1周期の切れ目でマスター周波数パルス信号21の値が変化するようにマスター周波数パルス信号21が生成されればよく、例えば、図5に示したように1周期の前半でHighとなり、1周期の後半でLowとなるパルス状の信号として生成される。 Further, in the example illustrated in FIG. 5, the example in which the master frequency pulse signal 21 is generated based on the phase θ estimated by the estimation unit 25 has been described, but based on the speed ω estimated by the estimation unit 25. A master frequency pulse signal 21 may be generated. In other words, the master frequency pulse signal generation unit 22 may generate a pulse-like signal with one period corresponding to the speed ω based on the speed ω. In this case, the master frequency pulse signal 21 only needs to be generated so that the value of the master frequency pulse signal 21 changes at one cycle break. For example, as shown in FIG. 5, the master frequency pulse signal 21 becomes High in the first half of one cycle. It is generated as a pulse signal that becomes Low in the latter half of the cycle.
 第2の制御器8は、図3に示すように、座標変換部24、推定部26、速度指令補正部27、速度制御部29、ベクトル制御演算部31、PWM生成部33、パルスカウンタ34およびマスター制御部35を備える。 As shown in FIG. 3, the second controller 8 includes a coordinate conversion unit 24, an estimation unit 26, a speed command correction unit 27, a speed control unit 29, a vector control calculation unit 31, a PWM generation unit 33, a pulse counter 34, and A master control unit 35 is provided.
 座標変換部24は、電流検出素子16,17から出力された第2のモーター4のモーター電流の計測結果を示す電流情報と推定部26により推定された位相θとに基づいて、モーター電流を回転軸座標系における電流iγ,iδに変換し、電流iγ,iδを推定部26へ出力する。推定部26は、電流iγ,iδに基づいて、第2のモーター4に印加される交流電力の周波数に対応する回転速度である速度ωと、第2のモーター4に印加される交流電力の位相θとを推定し、速度ωを速度制御部29およびベクトル制御演算部31へ出力し、位相θをベクトル制御演算部31および座標変換部24へ出力する。なお、このとき、推定部26は、位相θとして、マスター制御部35から入力されたθmを出力してもよい。すなわち、第2の制御器8は、マスター周波数パルス信号21を用いて、第2のモーター4の回転の位相を補正してもよい。 The coordinate conversion unit 24 rotates the motor current based on the current information indicating the measurement result of the motor current of the second motor 4 output from the current detection elements 16 and 17 and the phase θ estimated by the estimation unit 26. The current i γ and i δ in the axis coordinate system is converted into current i γ and i δ, and the current i γ and i δ are output to the estimation unit 26. Based on the currents i γ and i δ, the estimation unit 26 has a speed ω that is a rotational speed corresponding to the frequency of the AC power applied to the second motor 4 and the phase of the AC power applied to the second motor 4. θ is estimated, the speed ω is output to the speed control unit 29 and the vector control calculation unit 31, and the phase θ is output to the vector control calculation unit 31 and the coordinate conversion unit 24. At this time, the estimation unit 26 may output θm input from the master control unit 35 as the phase θ. That is, the second controller 8 may correct the phase of rotation of the second motor 4 using the master frequency pulse signal 21.
 パルスカウンタ34は、第1の制御器7から出力されるマスター周波数パルス信号21に基づいて、マスター周波数パルス信号21によって示される周期を、第2の制御器8が用いている基準クロックでカウントし、カウント結果をマスター制御部35へ出力する。具体的には、図5に例示したように立ち上がりにより位相0°を示している場合、立ち上がりのタイミングと次の立ち上がりのタイミングとの間を基準クロックにより計測する。また、パルスカウンタ34は、マスター周波数パルス信号21によって示される位相0°のタイミングをマスター制御部35へ通知する。 The pulse counter 34 counts the period indicated by the master frequency pulse signal 21 based on the master frequency pulse signal 21 output from the first controller 7 with the reference clock used by the second controller 8. The count result is output to the master control unit 35. Specifically, as illustrated in FIG. 5, when the phase is 0 ° by the rising edge, the interval between the rising edge timing and the next rising edge timing is measured by the reference clock. The pulse counter 34 notifies the master control unit 35 of the phase 0 ° timing indicated by the master frequency pulse signal 21.
 マスター制御部35は、パルスカウンタ34から出力されたカウント結果に基づいて、第1の制御器7すなわちマスター制御器における速度であるマスター速度ωmを算出し、マスター速度ωmを速度指令補正部27へ出力する。また、マスター制御部35は、パルスカウンタ34から通知された位相0°のタイミングとωmとに基づいて、一定時間ごとに第2の制御器8における位相θmを生成して推定部26へ通知する。この一定時間は、推定部26における推定演算が行われる周期である。 Based on the count result output from the pulse counter 34, the master control unit 35 calculates the master speed ωm that is the speed in the first controller 7, that is, the master controller, and sends the master speed ωm to the speed command correction unit 27. Output. Further, the master control unit 35 generates the phase θm in the second controller 8 at regular intervals based on the timing of phase 0 ° notified from the pulse counter 34 and ωm, and notifies the estimation unit 26 of the phase θm. . This fixed time is a cycle in which the estimation calculation in the estimation unit 26 is performed.
 マスター周波数パルス信号21によって示されるマスター速度ωmは、上述した通り、第2の制御器8により生成されたマスター周波数パルス信号21を第2の制御器8における基準クロックでカウントされる。このため、第1の制御器7における基準クロックと第2の制御器8におけるクロックとが異なっていたとしても、第2の制御器8は、マスター速度ωmを正しく把握することができる。 The master speed ωm indicated by the master frequency pulse signal 21 is counted by the reference clock in the second controller 8 based on the master frequency pulse signal 21 generated by the second controller 8 as described above. For this reason, even if the reference clock in the first controller 7 and the clock in the second controller 8 are different, the second controller 8 can correctly grasp the master speed ωm.
 なお、マスター周波数パルス信号21が機械角周期に基づいて生成される場合、マスター制御部35は、パルスカウンタ34から出力されるカウント結果と極対数とに基づいて電気角の速度であるωmを算出する。例えば、極対数が3の場合、マスター制御部35は、パルスカウンタ34から出力されるカウント結果により示される周期に対応する速度の3倍の速度をωmとする。 When the master frequency pulse signal 21 is generated based on the mechanical angle cycle, the master control unit 35 calculates ωm that is the speed of the electrical angle based on the count result output from the pulse counter 34 and the number of pole pairs. To do. For example, when the number of pole pairs is 3, the master control unit 35 sets a speed that is three times the speed corresponding to the period indicated by the count result output from the pulse counter 34 to ωm.
 速度指令補正部27は、速度指令ω*を、マスター速度ωmに基づいて補正し、補正後の速度指令ω*’を速度制御部29へ出力する。具体的には、速度指令補正部27は、以下の式(1)を満たすように補正後の速度指令ω*’を生成する。例えば、ωm > ωの場合には、あらかじめ定めた一定値をω*から減算した値を補正後の速度指令ω*’としてもよいし、ωm-ωをω*から減算した値を補正後の速度指令ω*’としてもよい。同様に、ωm < ωの場合には、あらかじめ定めた一定値をω*に加算した値を補正後の速度指令ω*’としてもよいし、ω-ωmをω*から減算した値を補正後の速度指令ω*’としてもよい。
ωm > ωの場合:速度指令ω*< 補正後の速度指令ω*’
ωm < ωの場合:速度指令ω*> 補正後の速度指令ω*’                                                                    …(1)
The speed command correction unit 27 corrects the speed command ω * based on the master speed ωm, and outputs the corrected speed command ω * ′ to the speed control unit 29. Specifically, the speed command correction unit 27 generates a corrected speed command ω * ′ so as to satisfy the following expression (1). For example, when ωm> ω, a value obtained by subtracting a predetermined constant value from ω * may be used as a corrected speed command ω * ′, or a value obtained by subtracting ωm−ω from ω * may be used as a corrected value. The speed command ω * ′ may be used. Similarly, when ωm <ω, a value obtained by adding a predetermined constant value to ω * may be used as a corrected speed command ω * ′, or a value obtained by subtracting ω−ωm from ω * is corrected. Speed command ω * ′.
When ωm> ω: Speed command ω * <Corrected speed command ω * '
When ωm <ω: Speed command ω *> Corrected speed command ω * '(1)
 以上のように、速度指令補正部27が、速度指令ω*をマスター速度ωmに基づいて補正することで、第2の制御器8は、第2のモーター4の速度を、第1のモーター3の速度と同期させることができる。 As described above, when the speed command correction unit 27 corrects the speed command ω * based on the master speed ωm, the second controller 8 changes the speed of the second motor 4 to the first motor 3. Can be synchronized with the speed.
 速度制御部29は、補正後の速度指令ω*’と推定部26により推定されたωとに基づいて、第2のモーター4の速度を制御するための制御量に対応する電流情報をベクトル制御演算部31へ出力する。 The speed control unit 29 vector-controls current information corresponding to a control amount for controlling the speed of the second motor 4 based on the corrected speed command ω * ′ and ω estimated by the estimation unit 26. Output to the calculation unit 31.
 ベクトル制御演算部31は、あらかじめ保持している第2のモーター4の特性を示す情報であるモーター情報と、速度制御部29から入力される電流情報と、推定部26から出力される速度ωおよび位相θとに基づいて、第2のインバーター6の出力電圧を示す出力電圧情報をPWM生成部33へ出力する。また、ベクトル制御演算部31は、進角制御により位相θから位相を進めた位相であるθ´を算出し、PWM生成部33へ出力する。 The vector control calculation unit 31 stores motor information, which is information indicating the characteristics of the second motor 4 held in advance, current information input from the speed control unit 29, speed ω output from the estimation unit 26, and Based on the phase θ, output voltage information indicating the output voltage of the second inverter 6 is output to the PWM generator 33. Further, the vector control calculation unit 31 calculates θ ′ that is a phase advanced from the phase θ by the advance angle control, and outputs it to the PWM generation unit 33.
 PWM生成部33は、コンデンサ14の両端電圧の計測値Vdcと、ベクトル制御演算部31から出力される出力電圧情報および位相θ´とに基づいて、第2のインバーター6のスイッチング素子61~66をそれぞれ制御するためのPWM信号を生成する。具体的には、PWM生成部33は、出力電圧/Vdc=オンデューティとなるようPWM信号を生成する。出力電圧は、出力電圧情報により示される電圧値である。なお、座標変換部24、推定部26、速度制御部29、ベクトル制御演算部31およびPWM生成部33における動作は、一般的なモーター制御における動作と同様であるため詳細な説明は省略する。 The PWM generator 33 sets the switching elements 61 to 66 of the second inverter 6 based on the measured value Vdc of the voltage across the capacitor 14 and the output voltage information and the phase θ ′ output from the vector control calculator 31. A PWM signal for controlling each is generated. Specifically, the PWM generator 33 generates a PWM signal such that the output voltage / Vdc = on duty. The output voltage is a voltage value indicated by the output voltage information. The operations in the coordinate conversion unit 24, the estimation unit 26, the speed control unit 29, the vector control calculation unit 31, and the PWM generation unit 33 are the same as the operations in general motor control, and thus detailed description thereof is omitted.
 なお、上記の例では、第1の制御器7および第2の制御器8がベクトル制御を行う場合の構成の一例を説明したが、第1の制御器7が速度指令に基づいてPWM信号を生成する処理、および第2の制御器8が補正後の速度指令に基づいてPWM信号を生成する処理、の内容については上述した例に限定されない。例えば、推定部26による推定を行わずに、あらかじめ定められた速度と位相でモーターに電圧を印加し回転磁束を発生させるよう制御する方法もある。以上のように、第1の制御器7におけるマスター周波数パルス信号生成部22と、第2の制御器8におけるパルスカウンタ34、マスター制御部35および速度指令補正部27とによる同期処理が実現可能な構成であれば、上述した構成および動作に限定されない。 In the above example, an example of a configuration in which the first controller 7 and the second controller 8 perform vector control has been described. However, the first controller 7 generates a PWM signal based on the speed command. The contents of the process to generate and the process in which the second controller 8 generates the PWM signal based on the corrected speed command are not limited to the above-described example. For example, there is a method of controlling to generate a rotating magnetic flux by applying a voltage to a motor at a predetermined speed and phase without performing estimation by the estimation unit 26. As described above, synchronization processing by the master frequency pulse signal generation unit 22 in the first controller 7 and the pulse counter 34, master control unit 35, and speed command correction unit 27 in the second controller 8 can be realized. If it is a structure, it is not limited to the structure and operation | movement mentioned above.
 以上のように、本実施の形態では、第1の制御器7が、第1のモーター3の速度を示すパルス状の信号であるマスター周波数パルス信号21を生成して、第2の制御器8へ出力する。そして、第2の制御器8が自身の基準クロックでマスター周波数パルス信号21に基づいて、第1のモーター3の速度を算出し、算出した第1のモーター3の速度を用いて速度指令を補正するようにした。このため、複数の制御装置の間の基準クロックの周波数の違いの有無にかかわらず、安定的に同期運転を維持することができる。 As described above, in the present embodiment, the first controller 7 generates the master frequency pulse signal 21 that is a pulse signal indicating the speed of the first motor 3, and the second controller 8. Output to. Then, the second controller 8 calculates the speed of the first motor 3 based on the master frequency pulse signal 21 with its own reference clock, and corrects the speed command using the calculated speed of the first motor 3. I tried to do it. For this reason, synchronous operation can be stably maintained irrespective of the presence or absence of the difference in the frequency of the reference clock among the plurality of control devices.
 また、マスターの制御装置とスレーブの制御装置との間の基準クロックの違いを補正する方法として、カウンタ値を生成するためのスレーブの基準クロックの周期を変更し、マスターの基準クロックの周期に合わせる方法が考えられる。しかしながら、基準クロックの周期を変更すると、各制御器における演算も変更する必要があり、制御器における処理が複雑になる。これに対し、本実施の形態では、各制御器における演算は各制御器における基準クロックの周期の変更を必要としないため、処理の複雑化を防いで同期運転を実現できる。 As a method of correcting the difference in the reference clock between the master control device and the slave control device, the slave reference clock cycle for generating the counter value is changed to match the master reference clock cycle. A method is conceivable. However, if the period of the reference clock is changed, it is necessary to change the calculation in each controller, and the processing in the controller becomes complicated. On the other hand, in the present embodiment, the calculation in each controller does not require a change in the period of the reference clock in each controller, so that the processing can be prevented from becoming complicated and a synchronous operation can be realized.
実施の形態2.
 図6は、本発明の実施の形態2にかかるモーターシステムの構成例を示す図である。図6に示すように、実施の形態2のモーターシステム101aは、モーター3aおよびモーター駆動装置100aを備える。モーター駆動装置100aは、交流電源9および交流電源10から供給される交流電力を用いて、モーター3aを駆動制御する。図6では、実施の形態1と同様の機能を有する構成要素は、実施の形態1と同一の符号を付して重複する説明を省略する。以下、実施の形態1と異なる点を説明する。
Embodiment 2. FIG.
FIG. 6 is a diagram illustrating a configuration example of the motor system according to the second embodiment of the present invention. As shown in FIG. 6, the motor system 101a of the second embodiment includes a motor 3a and a motor driving device 100a. The motor drive device 100a drives and controls the motor 3a using AC power supplied from the AC power supply 9 and the AC power supply 10. In FIG. 6, components having the same functions as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description is omitted. Hereinafter, differences from the first embodiment will be described.
 本実施の形態のモーター3aは、3相モーターであり、1つの固定子を備える。また、モーター3aは、第1の巻線部1aおよび第2の巻線部2aを備える。 The motor 3a of the present embodiment is a three-phase motor and includes one stator. The motor 3a includes a first winding part 1a and a second winding part 2a.
 第1の巻線部1aは、U相巻線部、V相巻線部およびW相巻線部を備える。第2の巻線部2aは、U相巻線部、V相巻線部およびW相巻線部を備える。また、モーター3aは、第1の巻線部1aのU相に対応するU相端子301a、第1の巻線部1aのV相に対応するV相端子302aおよび第1の巻線部1aのW相に対応するW相端子303aを備える。さらに、モーター3aは、第2の巻線部2aのU相に対応するU相端子401a、第2の巻線部2aのV相に対応するV相端子402aおよび第2の巻線部2aのW相に対応するW相端子403aを備える。 The first winding portion 1a includes a U-phase winding portion, a V-phase winding portion, and a W-phase winding portion. Second winding portion 2a includes a U-phase winding portion, a V-phase winding portion, and a W-phase winding portion. The motor 3a includes a U-phase terminal 301a corresponding to the U-phase of the first winding part 1a, a V-phase terminal 302a corresponding to the V-phase of the first winding part 1a, and the first winding part 1a. A W-phase terminal 303a corresponding to the W-phase is provided. Further, the motor 3a includes a U-phase terminal 401a corresponding to the U-phase of the second winding part 2a, a V-phase terminal 402a corresponding to the V-phase of the second winding part 2a, and the second winding part 2a. A W-phase terminal 403a corresponding to the W-phase is provided.
 モーター駆動装置100aの構成は、実施の形態1のモーター駆動装置100と同一である。実施の形態2では、モーター駆動装置100aの第1のインバーター5は第1の交流電力を第1の巻線部1aに出力し、モーター駆動装置100aの第2のインバーター6は、第2の交流電力を第2の巻線部2aに出力される。実施の形態2における速度指令ω*は、モーター3aの回転速度に対する速度指令である。 The configuration of the motor drive device 100a is the same as that of the motor drive device 100 of the first embodiment. In the second embodiment, the first inverter 5 of the motor drive device 100a outputs the first AC power to the first winding unit 1a, and the second inverter 6 of the motor drive device 100a receives the second AC. Electric power is output to the second winding part 2a. The speed command ω * in the second embodiment is a speed command for the rotational speed of the motor 3a.
 具体的には、第1のインバーター5において、スイッチング素子51およびスイッチング素子52で構成されるアームは、U相端子301aに接続され、スイッチング素子53およびスイッチング素子54で構成されるアームは、V相端子302aに接続され、スイッチング素子55およびスイッチング素子56で構成されるアームは、W相端子303aに接続される。また、第2のインバーター6において、スイッチング素子61およびスイッチング素子62で構成されるアームは、U相端子401aに接続され、スイッチング素子63およびスイッチング素子64で構成されるアームは、V相端子402aに接続され、スイッチング素子65およびスイッチング素子66で構成されるアームは、W相端子403aに接続される。 Specifically, in the first inverter 5, the arm constituted by the switching element 51 and the switching element 52 is connected to the U-phase terminal 301a, and the arm constituted by the switching element 53 and the switching element 54 is V-phase. An arm connected to terminal 302a and composed of switching element 55 and switching element 56 is connected to W-phase terminal 303a. Further, in the second inverter 6, the arm constituted by the switching element 61 and the switching element 62 is connected to the U-phase terminal 401a, and the arm constituted by the switching element 63 and the switching element 64 is connected to the V-phase terminal 402a. The connected arm composed of switching element 65 and switching element 66 is connected to W-phase terminal 403a.
 また、図6では、2つの巻線部を備えるモーター3aを、2組の制御器およびインバーターで制御する例を説明するが、n(nは3以上の整数)個の巻線部を備えるモーターをn組の制御器およびインバーターで制御してもよい。n個の巻線部を備えるモーターをn個のインバーターで制御する場合、n組の制御器およびインバーターのうち1組をマスターとし、他の組をスレーブとする。すなわちn個の制御器のうち1つが本実施の形態の第1の制御器7と同様の動作を行い、他の制御器が本実施の形態の第2の制御器8と同様の動作を行う。また、以下では、3相モーターを例に説明するが、モーターの相数は3相に限定されない。 FIG. 6 illustrates an example in which a motor 3a having two winding portions is controlled by two sets of controllers and inverters, but a motor having n (n is an integer of 3 or more) winding portions. May be controlled by n sets of controllers and inverters. When a motor having n winding portions is controlled by n inverters, one set of n sets of controllers and inverters is set as a master, and the other set is set as a slave. That is, one of the n controllers performs the same operation as the first controller 7 of the present embodiment, and the other controller performs the same operation as the second controller 8 of the present embodiment. . In the following, a three-phase motor will be described as an example, but the number of phases of the motor is not limited to three.
 モーター3aのように、複数の巻線部を備えるモーターすなわち多重巻線モーターを、複数の制御器を用いて制御する場合、各制御器の基準クロックが異なっていると各巻線部に印加する交流電力の周波数が異なる可能性があり、モーターが安定に動作しない。本実施の形態のモーター駆動装置100aでは、実施の形態1のモーター駆動装置100と同様に、第1の制御器7が、第1の巻線部1aへ印加される交流電力の周波数に対応する速度すなわち第1の巻線部1aの速度を示すパルス状の信号であるマスター周波数パルス信号を生成して、第2の制御器8へ出力する。そして、第2の制御器8が自身の基準クロックでマスター周波数パルス信号に基づいて、第1の巻線部1aの速度を算出し、算出した第1の巻線部1aの速度を用いて速度指令を補正する。このため、第1の巻線部1aと第2の巻線部2aを同期させることができ、モーター3aを安定に制御することができる。 When a motor having a plurality of winding parts, that is, a multi-winding motor, is controlled using a plurality of controllers like the motor 3a, an alternating current applied to each winding part when the reference clock of each controller is different. The frequency of power may be different and the motor does not operate stably. In the motor drive device 100a of the present embodiment, as in the motor drive device 100 of the first embodiment, the first controller 7 corresponds to the frequency of the AC power applied to the first winding unit 1a. A master frequency pulse signal which is a pulse-like signal indicating the speed, that is, the speed of the first winding section 1 a is generated and output to the second controller 8. Then, the second controller 8 calculates the speed of the first winding part 1a based on the master frequency pulse signal with its own reference clock, and uses the calculated speed of the first winding part 1a to calculate the speed. Correct the command. For this reason, the 1st coil | winding part 1a and the 2nd coil | winding part 2a can be synchronized, and the motor 3a can be controlled stably.
実施の形態3.
 次に、本発明にかかる実施の形態3のモーター駆動装置について説明する。本実施の形態のモーターシステムの構成は、実施の形態1または実施の形態2のモーターシステムと同様であるため構成の説明は省略する。以下では、実施の形態1の構成を例に本実施の形態の動作を説明するが、実施の形態2の構成の場合の動作も、第1のインバーター5,第2のインバーター6から出力される交流電力の出力先が第1のモーター3,第2のモーター4から第1の巻線部1a,第2の巻線部2aとなることおよびベクトル制御演算部31の動作が一部異なること以外は、同様である。
Embodiment 3 FIG.
Next, a motor drive device according to a third embodiment of the present invention will be described. Since the configuration of the motor system of the present embodiment is the same as that of the motor system of the first embodiment or the second embodiment, description of the configuration is omitted. In the following, the operation of the present embodiment will be described taking the configuration of the first embodiment as an example, but the operation in the configuration of the second embodiment is also output from the first inverter 5 and the second inverter 6. Except that the output destination of the AC power is the first motor 3 and the second motor 4 to the first winding part 1a and the second winding part 2a and that the operation of the vector control calculation part 31 is partially different. Is the same.
 図7は、本実施の形態の第1の制御器における各信号と各モーターの負荷トルクの一例を示す図である。図7は、第1のモーター3および第2のモーター4が6極モーターである例を示している。図7の1段目は、マスター側インバーター出力電圧、すなわち第1のインバーター5から出力される交流電力の電圧を示している。なお、本実施の形態では、マスター周波数パルス信号は、機械角の周期に対応したパルス信号として生成される。図7の2段目には、位相θを示し、図7の3段目には、第1のモーター3の機械角すなわちマスター側モーター回転子位相θMmを示し、図7の4段目には、マスター側モーターすなわち第1のモーター3に発生する負荷トルクTmを示す。図7の5段目には、第2のモーター4の機械角すなわちスレーブ側モーター回転子位相θMsを示し、図7の6段目には、スレーブ側モーターすなわち第2のモーター4に発生する負荷トルクTsを示す。 FIG. 7 is a diagram showing an example of each signal and load torque of each motor in the first controller of the present embodiment. FIG. 7 shows an example in which the first motor 3 and the second motor 4 are 6-pole motors. The first stage of FIG. 7 shows the master-side inverter output voltage, that is, the voltage of AC power output from the first inverter 5. In the present embodiment, the master frequency pulse signal is generated as a pulse signal corresponding to the mechanical angle period. The second stage of FIG. 7 shows the phase θ, the third stage of FIG. 7 shows the mechanical angle of the first motor 3, that is, the master side motor rotor phase θMm, and the fourth stage of FIG. The load torque Tm generated in the master side motor, that is, the first motor 3 is shown. The fifth stage of FIG. 7 shows the mechanical angle of the second motor 4, that is, the slave-side motor rotor phase θMs, and the sixth stage of FIG. 7 shows the load generated in the slave-side motor, that is, the second motor 4. Torque Ts is shown.
 6極モーターの場合、マスター側モーター回転子位相θMmの周期は、推定部25により推定された位相θの周期の3倍となる。マスター側モーター回転子位相θMmの周期により、図7に示したようなマスター側モーターの負荷トルクTmが発生する場合、すなわちマスター側モーター回転子位相θMmの周期とマスター側モーターの負荷トルクTmの周期とが同一の場合、マスター側モーター回転子位相θMmが90°となる付近で、マスター側モーターの負荷トルクTmが最大となる。 In the case of a 6-pole motor, the period of the master side motor rotor phase θMm is three times the period of the phase θ estimated by the estimation unit 25. When the load torque Tm of the master side motor as shown in FIG. 7 is generated by the cycle of the master side motor rotor phase θMm, that is, the cycle of the master side motor rotor phase θMm and the cycle of the load torque Tm of the master side motor. Are the same, the load torque Tm of the master side motor is maximized in the vicinity where the master side motor rotor phase θMm is 90 °.
 また、マスター側モーター回転子位相θMmが270°となる付近で、マスター側モーターの負荷トルクTmが最小となる。このとき、スレーブ側モーター回転子位相θMsを、マスター側モーター回転子位相θMmと同一となるように制御すると、マスター側モーターの負荷トルクTmと同じように、スレーブ側モーターの負荷トルクTsは、マスター側モーター回転子位相θMmが90°となる付近で最大となり、マスター側モーター回転子位相θMmが270°となる付近で最小となる。この場合、マスター側モーターとスレーブ側モーターとが同じ位相すなわち同じタイミングで負荷トルクが最大となるため、マスター側モーターとスレーブ側モーターとにより振動および騒音が発生する可能性がある。 Also, the load torque Tm of the master side motor becomes the minimum in the vicinity where the master side motor rotor phase θMm becomes 270 °. At this time, if the slave-side motor rotor phase θMs is controlled to be the same as the master-side motor rotor phase θMm, the load torque Ts of the slave-side motor is the same as the load torque Tm of the master-side motor. The maximum is near the side motor rotor phase θMm is 90 °, and the minimum is near the master side motor rotor phase θMm is 270 °. In this case, since the load torque becomes maximum at the same phase, that is, at the same timing, the master side motor and the slave side motor may cause vibration and noise by the master side motor and the slave side motor.
 そこで、本実施の形態では、第2の制御器8は、図7に示すように、マスター側モーター回転子位相θMmとスレーブ側モーター回転子位相θMsとが180°ずれるように、制御する。具体的には、本実施の形態では、マスター周波数パルス信号は、機械角の周期に対応したパルス信号として生成されており、マスター制御部35は、機械角の位相であるマスター側モーター回転子位相θMmを算出して、θmとして推定部26へ出力する。推定部26は、θm+180°をθとして座標変換部24およびベクトル制御演算部31へ出力する。ベクトル制御演算部31は、第2のモーター4の特性を示す情報であるモーター情報と、速度制御部29から入力される電流情報と、推定部26から出力される速度ωおよび機械角である位相θとに基づいて、第2のインバーター6の出力電圧を示す出力電圧情報をPWM生成部33へ出力する。以上述べた以外の実施の形態の動作は実施の形態1と同様である。 Therefore, in the present embodiment, as shown in FIG. 7, the second controller 8 performs control so that the master side motor rotor phase θMm and the slave side motor rotor phase θMs are shifted by 180 °. Specifically, in the present embodiment, the master frequency pulse signal is generated as a pulse signal corresponding to the period of the mechanical angle, and the master control unit 35 performs the master side motor rotor phase which is the phase of the mechanical angle. θMm is calculated and output to the estimation unit 26 as θm. The estimation unit 26 outputs θm + 180 ° as θ to the coordinate conversion unit 24 and the vector control calculation unit 31. The vector control calculation unit 31 includes motor information that is information indicating the characteristics of the second motor 4, current information that is input from the speed control unit 29, and a phase that is a speed ω and a mechanical angle output from the estimation unit 26. Based on θ, output voltage information indicating the output voltage of the second inverter 6 is output to the PWM generator 33. The operations of the embodiments other than those described above are the same as those of the first embodiment.
 図7に示した例では、制御器の数が2個であるため、マスター側モーター回転子位相θMmとスレーブ側モーター回転子位相θMsとの位相差を180°と設定したが、制御器の数がn個の場合、(360/n)°ずつ各モーターの回転子の位相がずれるようにインバーター出力電圧を制御すればよい。これにより、n個のモーターの振動および騒音のタイミングをずらすことが可能となり、n個のモーターを使用するシステム全体の振動および騒音を抑えることができる。 In the example shown in FIG. 7, since the number of controllers is two, the phase difference between the master side motor rotor phase θMm and the slave side motor rotor phase θMs is set to 180 °. When n is n, the inverter output voltage may be controlled so that the phase of the rotor of each motor is shifted by (360 / n) °. As a result, the vibration and noise timings of the n motors can be shifted, and the vibration and noise of the entire system using the n motors can be suppressed.
 また、図7に示した例では、機械角の周期とモーターの負荷トルクの周期とが同一の例を説明したが、機械角の周期とモーターの負荷トルクの周期とは同一とは限らず、例えば、負荷トルクの周期が機械角の周期の1/2である場合なども考えられる。この場合は、第2の制御器8は、マスター側モーター回転子位相θMmとスレーブ側モーター回転子位相θMsとの位相差を90°とすることにより、マスター側モーターの負荷トルクとスレーブ側モーターの負荷トルクが打消しあうようにする。このように、マスター側モーター回転子位相θMmとスレーブ側モーター回転子位相θMsとの位相差は、マスター側モーターの負荷トルクとスレーブ側モーターの負荷トルクが打消しあうように設定すればよい。すなわち、第2の制御器8は、マスター側モーターの負荷トルクとスレーブ側モーターの負荷トルクが打消しあうように、マスター周波数パルス信号に基づいて、第2のモーター4の回転の位相と第1のモーター3の回転の位相との位相差があらかじめ定めた値となるよう補正する。 In the example shown in FIG. 7, the example in which the mechanical angle cycle and the motor load torque cycle are the same has been described. However, the mechanical angle cycle and the motor load torque cycle are not necessarily the same, For example, the case where the cycle of the load torque is ½ of the cycle of the mechanical angle is also conceivable. In this case, the second controller 8 sets the phase difference between the master side motor rotor phase θMm and the slave side motor rotor phase θMs to 90 °, so that the load torque of the master side motor and the slave side motor rotor Make sure that the load torque cancels out. As described above, the phase difference between the master side motor rotor phase θMm and the slave side motor rotor phase θMs may be set so that the load torque of the master side motor and the load torque of the slave side motor cancel each other. That is, the second controller 8 determines the rotation phase of the second motor 4 and the first phase based on the master frequency pulse signal so that the load torque of the master side motor and the load torque of the slave side motor cancel each other. The phase difference from the rotation phase of the motor 3 is corrected to a predetermined value.
実施の形態4.
 図8は、本発明の実施の形態4の空気調和機の構成例を示す図である。本実施の形態の空気調和機は、実施の形態2で述べたモーターシステム101aおよびモーター3aを備える。図8では、実施の形態2で述べたモーターシステム101aおよびモーター3aを備える例を示しているが、実施の形態2で述べたモーターシステム101aおよびモーター3aの替わりに実施の形態1で述べたモーターシステム101、第1のモーター3および第2のモーター4または実施の形態3で述べたモーターシステムおよびモーターを備えてもよい。本実施の形態の空気調和機は、実施の形態2のモーター3aを内蔵した圧縮機81、四方弁82、室外熱交換器83、膨張弁84、室内熱交換器85が冷媒配管86を介して取り付けられた冷凍サイクルすなわち冷凍サイクル装置を有して、セパレート形空気調和機を構成している。モーター3aは、モーター駆動装置100aにより制御される。
Embodiment 4 FIG.
FIG. 8 is a diagram illustrating a configuration example of an air conditioner according to Embodiment 4 of the present invention. The air conditioner of the present embodiment includes the motor system 101a and the motor 3a described in the second embodiment. FIG. 8 shows an example including the motor system 101a and the motor 3a described in the second embodiment, but the motor described in the first embodiment instead of the motor system 101a and the motor 3a described in the second embodiment. The system 101, the first motor 3, and the second motor 4 or the motor system and motor described in Embodiment 3 may be provided. In the air conditioner of the present embodiment, the compressor 81, the four-way valve 82, the outdoor heat exchanger 83, the expansion valve 84, and the indoor heat exchanger 85 that incorporate the motor 3a of the second embodiment are connected via the refrigerant pipe 86. It has a refrigeration cycle attached, that is, a refrigeration cycle apparatus, and constitutes a separate air conditioner. The motor 3a is controlled by the motor driving device 100a.
 圧縮機81内部には冷媒を圧縮する圧縮機構87とこれを動作させるモーター3aが設けられ、圧縮機81から室外熱交換器83と室内熱交換器85間を冷媒が循環することで冷暖房などを行う冷凍サイクルが構成されている。実施の形態1の第1のモーター3および第2のモーター4を用いる場合には、圧縮機が2つとなり、各圧縮機に各モーターが内蔵される。なお、図8に示した構成は、空気調和機だけでなく、冷蔵庫、冷凍庫等の冷凍サイクルを備える機器に適用可能である。 A compressor 81 for compressing refrigerant and a motor 3a for operating the compressor 81 are provided inside the compressor 81, and the refrigerant circulates between the outdoor heat exchanger 83 and the indoor heat exchanger 85 from the compressor 81 for air conditioning and the like. The refrigeration cycle to perform is comprised. When the first motor 3 and the second motor 4 of the first embodiment are used, there are two compressors, and each compressor is built in each compressor. In addition, the structure shown in FIG. 8 is applicable not only to an air conditioner but also to a device having a refrigeration cycle such as a refrigerator or a freezer.
 空気調和機をはじめとした冷凍サイクルを用いる機器に使用される圧縮機は、モーターの1回転中に冷媒の圧縮および吐出工程があり負荷トルクがモーターの1回転中に大きく変動する。このため、振動または騒音が発生しやすい。さらに大型の機器になると複数台の圧縮機を搭載することになり、複数の制御器と複数のインバーターとの間で複数の圧縮機を同じ回転周波数で制御する必要がある。この場合、各々の制御器内のマイコンの基準クロックに違いがあると、各々の圧縮機の回転周波数は基準クロックの誤差分ずれることになる。この回転周波数のずれは、耳障りなうなり音を誘発してしまうが、実施の形態1から実施の形態3で示したモーター駆動装置を用いることで、マスター側モーターの回転周波数と、スレーブ側モーター回転周波数とを同期させることでうなり音を抑制することができる。 Compressors used in equipment using a refrigeration cycle such as an air conditioner have a refrigerant compression and discharge process during one rotation of the motor, and the load torque varies greatly during one rotation of the motor. For this reason, vibration or noise is likely to occur. In the case of a larger device, a plurality of compressors are mounted, and it is necessary to control the plurality of compressors at the same rotational frequency between the plurality of controllers and the plurality of inverters. In this case, if there is a difference in the reference clock of the microcomputer in each controller, the rotation frequency of each compressor will be shifted by the error of the reference clock. This shift in rotational frequency induces an irritating beat sound, but by using the motor driving device shown in the first to third embodiments, the rotation frequency of the master side motor and the slave side motor rotation can be obtained. By synchronizing the frequency, it is possible to suppress the beat sound.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1,1a 第1の巻線部、2,2a 第2の巻線部、3 第1のモーター、3a モーター、4 第2のモーター、5 第1のインバーター、6 第2のインバーター、7 第1の制御器、8 第2の制御器、9,10 交流電源、11,12 整流器、13,14 コンデンサ、15,16,17,18 電流検出素子、22 マスター周波数パルス信号生成部、23,24 座標変換部、25,26 推定部、27 速度指令補正部、28,29 速度制御部、30,31 ベクトル制御演算部、32,33 PWM生成部、34 パルスカウンタ、35 マスター制御部、51~56,61~66 スイッチング素子、81 圧縮機、82 四方弁、83 室外熱交換器、84 膨張弁、85 室内熱交換器、86 冷媒配管、87 圧縮機構、100,100a モーター駆動装置、101,101a モーターシステム。 1, 1a 1st winding part, 2, 2a 2nd winding part, 3rd first motor, 3a motor, 4th motor, 5th 1st inverter, 6th 2nd inverter, 7th 1st Controller, 8 second controller, 9, 10 AC power supply, 11, 12 rectifier, 13, 14 capacitor, 15, 16, 17, 18 current detection element, 22 master frequency pulse signal generator, 23, 24 coordinates Conversion unit, 25, 26 estimation unit, 27 speed command correction unit, 28, 29 speed control unit, 30, 31 vector control calculation unit, 32, 33 PWM generation unit, 34 pulse counter, 35 master control unit, 51-56, 61-66 switching element, 81 compressor, 82 four-way valve, 83 outdoor heat exchanger, 84 expansion valve, 85 indoor heat exchanger, 86 refrigerant piping, 87 Compression mechanism, 100, 100a motor drives, 101 or 101a motor system.

Claims (9)

  1.  第1のモーターおよび第2のモーターを駆動するモーター駆動装置であって、
     前記第1のモーターに第1の交流電力を出力する第1のインバーターと、
     前記第2のモーターに第2の交流電力を出力する第2のインバーターと、
     前記第1のインバーターへ第1の駆動信号を出力する第1の制御器と、
     前記第2のインバーターへ第2の駆動信号を出力する第2の制御器と、
     を備え、
     前記第1の制御器は、前記第1のモーターの回転の周期に応じたパルス信号を前記第2の制御器へ出力するモーター駆動装置。
    A motor driving device for driving a first motor and a second motor,
    A first inverter that outputs a first AC power to the first motor;
    A second inverter that outputs a second AC power to the second motor;
    A first controller that outputs a first drive signal to the first inverter;
    A second controller for outputting a second drive signal to the second inverter;
    With
    The first controller outputs a pulse signal corresponding to a rotation cycle of the first motor to the second controller.
  2.  前記第2の制御器は、前記パルス信号を用いて、前記第2のモーターの回転速度に対する指令である速度指令を補正する請求項1に記載のモーター駆動装置。 The motor drive device according to claim 1, wherein the second controller corrects a speed command, which is a command for a rotation speed of the second motor, using the pulse signal.
  3.  前記第2の制御器は、前記パルス信号を用いて、前記第2のモーターの回転の位相を補正する請求項1または2に記載のモーター駆動装置。 The motor controller according to claim 1 or 2, wherein the second controller corrects a phase of rotation of the second motor using the pulse signal.
  4.  前記第2の制御器は、前記パルス信号を用いて、前記第2のモーターの回転の位相と前記第1のモーターの回転の位相との位相差があらかじめ定めた値となるよう補正する請求項3に記載のモーター駆動装置。 The second controller uses the pulse signal to correct so that a phase difference between a rotation phase of the second motor and a rotation phase of the first motor becomes a predetermined value. 3. The motor drive device according to 3.
  5.  第1の巻線部および第2の巻線部を有するモーターを駆動するモーター駆動装置であって、
     前記第1の巻線部に第1の交流電力を出力する第1のインバーターと、
     前記第2の巻線部に第2の交流電力を出力する第2のインバーターと、
     前記第1のインバーターへ第1の駆動信号を出力する第1の制御器と、
     前記第2のインバーターへ第2の駆動信号を出力する第2の制御器と、
     を備え、
     前記第1の制御器は、前記モーターの回転の周期に応じたパルス信号を前記第2の制御器へ出力するモーター駆動装置。
    A motor driving device for driving a motor having a first winding portion and a second winding portion,
    A first inverter that outputs a first AC power to the first winding section;
    A second inverter that outputs a second AC power to the second winding section;
    A first controller that outputs a first drive signal to the first inverter;
    A second controller for outputting a second drive signal to the second inverter;
    With
    The first controller outputs a pulse signal corresponding to a rotation cycle of the motor to the second controller.
  6.  前記第2の制御器は、前記パルス信号を用いて、前記モーターの回転速度に対する指令である速度指令を補正する請求項5に記載のモーター駆動装置。 6. The motor drive device according to claim 5, wherein the second controller corrects a speed command, which is a command for a rotational speed of the motor, using the pulse signal.
  7.  前記第2の制御器は、前記パルス信号を用いて、前記モーターの回転の位相を補正する請求項5または6に記載のモーター駆動装置。 The motor controller according to claim 5 or 6, wherein the second controller corrects the phase of rotation of the motor using the pulse signal.
  8.  前記第2の制御器は、前記パルス信号を用いて、前記モーターの回転の位相と前記モーターの回転の位相との位相差があらかじめ定めた値となるよう補正する請求項7に記載のモーター駆動装置。 The motor drive according to claim 7, wherein the second controller corrects the phase difference between the rotation phase of the motor and the rotation phase of the motor to a predetermined value using the pulse signal. apparatus.
  9.  請求項1から8のいずれか1つに記載のモーター駆動装置と、
     前記モーター駆動装置により駆動されるモーターを有する圧縮機と、
     を備える空気調和機。
    A motor drive device according to any one of claims 1 to 8,
    A compressor having a motor driven by the motor driving device;
    Air conditioner equipped with.
PCT/JP2016/070455 2016-07-11 2016-07-11 Motor drive device and air conditioner WO2018011864A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/070455 WO2018011864A1 (en) 2016-07-11 2016-07-11 Motor drive device and air conditioner
JP2018527268A JP6537731B2 (en) 2016-07-11 2016-07-11 Motor drive and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/070455 WO2018011864A1 (en) 2016-07-11 2016-07-11 Motor drive device and air conditioner

Publications (1)

Publication Number Publication Date
WO2018011864A1 true WO2018011864A1 (en) 2018-01-18

Family

ID=60952972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070455 WO2018011864A1 (en) 2016-07-11 2016-07-11 Motor drive device and air conditioner

Country Status (2)

Country Link
JP (1) JP6537731B2 (en)
WO (1) WO2018011864A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220190690A1 (en) * 2020-12-14 2022-06-16 Rohm Co., Ltd. Motor Driving Device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4181387A1 (en) * 2021-11-15 2023-05-17 Siemens Schweiz AG Half-step motor driver

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3718845A (en) * 1971-06-22 1973-02-27 Borg Warner Variable speed master-slave motor control system with continuous position adjustment
JP2001309681A (en) * 2000-04-26 2001-11-02 Tokyo Kikai Seisakusho Ltd Synchronizating control device
JP2007028724A (en) * 2005-07-13 2007-02-01 Matsushita Electric Ind Co Ltd Motor driving unit
CN102079311A (en) * 2010-12-28 2011-06-01 深圳华强智能技术有限公司 Four-wheel-driven control system and method of railcar and railcar

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3718845A (en) * 1971-06-22 1973-02-27 Borg Warner Variable speed master-slave motor control system with continuous position adjustment
JP2001309681A (en) * 2000-04-26 2001-11-02 Tokyo Kikai Seisakusho Ltd Synchronizating control device
JP2007028724A (en) * 2005-07-13 2007-02-01 Matsushita Electric Ind Co Ltd Motor driving unit
CN102079311A (en) * 2010-12-28 2011-06-01 深圳华强智能技术有限公司 Four-wheel-driven control system and method of railcar and railcar

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220190690A1 (en) * 2020-12-14 2022-06-16 Rohm Co., Ltd. Motor Driving Device

Also Published As

Publication number Publication date
JP6537731B2 (en) 2019-07-03
JPWO2018011864A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
US9998059B2 (en) Motor driving apparatus
JP6165470B2 (en) Motor control device, heat pump system and air conditioner
US20140035501A1 (en) Brushless motor control device and brushless motor control method
WO2017022083A1 (en) Synchronous motor control device, compressor drive device, air-conditioner, and method for controlling synchronous motor
JP2019062726A (en) Motor drive system and wire connection changeover method for open winding structure motor
WO2018011864A1 (en) Motor drive device and air conditioner
JP6463966B2 (en) Motor driving device, motor driving module and refrigeration equipment
JP2008289310A (en) Motor drive and refrigerator using the same
JPWO2017216959A1 (en) Motor system, motor drive device, refrigeration cycle device, and air conditioner
WO2020170379A1 (en) Motor driving device and refrigeration circuit application equipment
WO2017037945A1 (en) Power conversion device and heat pump device
JP2010068581A (en) Electric motor drive unit
JP2009153247A (en) Motor drive controller, motor drive control method and coordinate conversion method, and ventilation fan, liquid pump, blower, refrigerant compressor, air conditioner and refrigerator
JP2008148437A (en) Controller for permanent magnet type synchronous motor
JP2011217574A (en) Wind power generation system, and device and method for controlling rotating machine
JP2010098854A (en) Controller of motor, and refrigeration apparatus and air conditioner using the same
JP5363129B2 (en) Inverter control device
JP2014087078A (en) Motor drive unit and refrigerator using the same
WO2017009907A1 (en) Motor control device, compressor, and air conditioner
JP2004040861A (en) Driving-gear of motor
US8427090B2 (en) Magnetic-drive-pulsation motor
JP2001218493A (en) Method of controlling synchronous motor, and its device
JP2011188550A (en) Inverter drive, air conditioner mounting the same, and hand drier
WO2019087644A1 (en) Motor control device and motor control method
JP2014166082A (en) Motor control device and air conditioner using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018527268

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908768

Country of ref document: EP

Kind code of ref document: A1