WO2018008954A1 - Positive electrode and secondary battery including same positive electrode - Google Patents

Positive electrode and secondary battery including same positive electrode Download PDF

Info

Publication number
WO2018008954A1
WO2018008954A1 PCT/KR2017/007116 KR2017007116W WO2018008954A1 WO 2018008954 A1 WO2018008954 A1 WO 2018008954A1 KR 2017007116 W KR2017007116 W KR 2017007116W WO 2018008954 A1 WO2018008954 A1 WO 2018008954A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
active material
thickness
positive electrode
material particles
Prior art date
Application number
PCT/KR2017/007116
Other languages
French (fr)
Korean (ko)
Inventor
정혜리
이정필
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201780004011.9A priority Critical patent/CN108352506B/en
Priority to EP17824510.6A priority patent/EP3316358B1/en
Priority to JP2018524381A priority patent/JP6763549B2/en
Priority to US15/751,343 priority patent/US10622625B2/en
Priority to PL17824510T priority patent/PL3316358T3/en
Priority claimed from KR1020170085057A external-priority patent/KR101948848B1/en
Publication of WO2018008954A1 publication Critical patent/WO2018008954A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode and a secondary battery including the same, wherein the positive electrode may include a first active material layer, and a first pattern and a second pattern, and the thickness of the first pattern is greater than the thickness of the second pattern. Larger, the volume expansion rate of the second pattern is larger than the volume expansion rate of the first pattern.
  • a representative example of an electrochemical device using such electrochemical energy is a secondary battery, and its use area is gradually increasing.
  • a secondary battery is composed of a positive electrode, a negative electrode, an electrolyte, and a separator, and reciprocates positive and negative electrodes such that lithium ions from the positive electrode active material are inserted into a negative electrode active material such as carbon particles and are detached again when discharged. Since it plays a role of transmitting energy, charging and discharging becomes possible.
  • the amount of active material in the positive electrode is the most important factor in determining the charge / discharge capacity of the battery.
  • positive electrode active materials have been loaded at high levels on the current collector surface.
  • wetting of the electrolyte solution to the active material layer is reduced, and the charge and discharge of the battery such as rapid charging characteristics and output characteristics of the battery due to the difference in reactivity in the electrode thickness direction. Performance is degraded.
  • the impregnation of the electrolyte solution can be improved, the situation that a positive electrode capable of improving the charge and discharge performance of the battery is required.
  • One problem to be solved by the present invention is to provide a positive electrode that can improve the impregnation of the electrolyte, while improving the charge and discharge performance of the battery, while maintaining a high capacity of the battery.
  • Another problem to be solved by the present invention is to improve the stability of the battery.
  • the present invention is a current collector; A first active material layer including first active material particles and disposed on the current collector; And a first pattern and a second pattern that are alternately spaced apart from each other on the first active material layer, wherein the first pattern includes first pattern active material particles, and the second pattern includes second pattern active material particles. And a thickness of the first pattern is greater than a thickness of the second pattern, and a volume expansion rate of the second pattern is greater than a volume expansion rate of the first pattern.
  • the present invention provides a secondary battery including the positive electrode.
  • the positive electrode according to the present invention includes a first pattern and a second pattern in which a part of the high-loaded first active material layer is exposed to the electrolyte and spaced apart from each other, and thus, electrolyte impregnation can be improved, thereby improving charging with high capacity of the battery. Discharge characteristics can be secured.
  • the configuration of the first pattern and the second pattern it is possible to minimize the thickness of the electrode, and to relieve the stress of the electrode generated during charging and discharging with a pattern layer to improve the mechanical stability of the electrode.
  • FIG. 1 is a schematic cross-sectional view of a positive electrode according to an embodiment of the present invention.
  • the terms “comprise”, “comprise” or “have” are intended to indicate that there is a feature, number, step, component, or combination thereof, that is, one or more other features, It should be understood that it does not exclude in advance the possibility of the presence or addition of numbers, steps, components, or combinations thereof.
  • a positive electrode according to an embodiment of the present invention
  • a first active material layer including first active material particles and disposed on the current collector; And a first pattern and a second pattern that are alternately spaced apart from each other on the first active material layer, wherein the first pattern includes first pattern active material particles, and the second pattern includes second pattern active material particles.
  • the thickness of the first pattern may be greater than the thickness of the second pattern, and the volume expansion rate of the second pattern may be greater than the volume expansion rate of the first pattern.
  • the current collector is conductive without causing chemical change in the secondary battery, and includes, for example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon, nickel, on the surface of aluminum or stainless steel.
  • the surface-treated with titanium, silver, etc. can be used.
  • the first active material layer may be disposed on the current collector.
  • the first pattern and the second pattern may be disposed on the first active material layer, respectively.
  • the first active material layer 210 may be evenly disposed on the current collector 100 without being spaced apart.
  • the first pattern 220 and the second pattern 230 may be alternately spaced apart from each other on the first active material layer 210.
  • an uneven shape may be formed on the first active material layer by the first pattern and the second pattern.
  • the amount of the impregnated electrolyte is remarkably reduced toward the current collector surface near the electrode surface, so that insertion and desorption of lithium ions is not smooth.
  • the problem that the charge-discharge performance is lowered.
  • the contact area between the positive electrode and the electrolyte can be increased, the electrolyte impregnation property can be improved, the charge and discharge performance of the battery This can be improved.
  • the electrolyte may be easily penetrated in the direction of the current collector while the first loaded active material layer is exposed between the first pattern and the second pattern, thereby further improving the electrolyte impregnation property.
  • the thickness of the first pattern may be greater than the thickness of the second pattern.
  • the thickness of the first pattern may be 1.1 times to 2 times the thickness of the second pattern, and more specifically, may be 1.2 times to 1.5 times.
  • the volume expansion rate of the second pattern may be greater than the volume expansion rate of the first pattern.
  • the volume expansion rate may be calculated from an increase in thickness after one charge / discharge compared to the initial thickness of the first pattern or the second pattern. Specifically, the ratio of the amount of change in thickness increased after the first charge / discharge cycle with respect to the initial electrode thickness.
  • the first charge-discharge cycle proceeds with CC-CV charging to 0.1C, 4.25V to 4.4V, 0.02C cut off, and discharges to CC discharge with 0.1C, 3V cut off.
  • volume expansion ratio is calculated by Equation 1 below, where A is the thickness of the first pattern or the second pattern before charging and discharging, and B may be the thickness of the first pattern or the second pattern after charging and discharging. .
  • the thickness can be measured with a micrometer, a mouse, or through a scanning electron microscope.
  • the thickness of the second pattern is relatively small even by the large volume expansion of the second pattern whose thickness is relatively small, the thickness of the anode may not be excessively increased, and even if it is not in contact with or is adjacent to the neighboring first pattern. Excessive stress may not be applied to the first pattern. Therefore, excessive increase in battery thickness due to positive electrode expansion during charging can be prevented, and mechanical stability of the positive electrode can be secured.
  • the first active material layer may include first active material particles
  • the first pattern may include the first pattern active material particles
  • the second pattern may include the second pattern active material particles.
  • composition of at least one of the first active material particles, the first pattern active material particles, and the second pattern active material particles may be different from the remaining composition.
  • the first active material particles and the first pattern active material particles are LiCoO 2
  • the second pattern active material particles are LiNi 1 -x1- y1 Co x1 Mn y1 O 2 (0 ⁇ x1 ⁇ 1 and may be at least any one of 0 ⁇ y1 ⁇ 1) and LiNi 1 -x2- y2 Co x2 Al y2 O 2 (0 ⁇ x2 ⁇ 1 , and 0 ⁇ y2 ⁇ 1).
  • the LiNi 1 -x1- y1 Co x1 Mn y1 O 2 (0 ⁇ x1 ⁇ 1 and 0 ⁇ y1 ⁇ 1) is LiNi 0. 6 Co 0 . 2 Mn 0 . May be 2 O 2
  • LiNi 1-x2-y2 Co x2 Al y2 O 2 (0 ⁇ x2 ⁇ 1 and 0 ⁇ y2 ⁇ 1) may be LiNi 0.85 Co 0.1 Al 0.05 O 2 .
  • LiCoO 2 When LiCoO 2 is used as the first active material particles and the first pattern active material particles included in the first active material layer and the first pattern, which occupy most of the components disposed on the current collector, when driven at a high voltage based on the characteristics of LiCoO 2 High capacity of the cell can be achieved.
  • LiCoO 2 In use, since the manufacturing, coating, and rolling process is easy, there is an advantage that the manufacturing cost and time can be reduced and the electrode density can be increased.
  • the second pattern electrode active material particles including the second pattern located on the electrode LiNi 1 -x1- y1 Co x1 Mn y1 O 2 (0 ⁇ x1 ⁇ 1 and 0 ⁇ y1 ⁇ 1) and LiNi 1 -x2 - y2 Co x2 Al y2 O 2 (0 ⁇ x2 ⁇ 1 , and 0 ⁇ y2 ⁇ 1) at least by using any of the insertion of lithium, and tally the seamless LiNi 1 -x1- y1 Co x1 Mn y1 O 2 (0 ⁇ x1 ⁇ 1 and 0 ⁇ y1 ⁇ 1) and LiNi 1 -x2- y2 Co x2 Al y2 O 2 (0 ⁇ x2 ⁇ 1 , and 0, the charge and discharge characteristics of the battery gihayeo on the nature of ⁇ y2 ⁇ 1) may be improved have.
  • LiNi 1- x1- y1 Co x1 Mn y1 O 2 (0 ⁇ x1 ⁇ 1 and 0 ⁇ y1 ⁇ 1)
  • LiNi 1- x2- y2 Co x2 Al y2 O 2 (0 ⁇ x2 ⁇ 1 and 0 ⁇ y2 ⁇ 1)
  • the thickness of the second pattern during charge and discharge may be It can be prevented from becoming excessively larger than the thickness.
  • the thickness of the anode may not be excessively increased, and the first pattern may not be in contact with the neighboring first pattern, or excessive stress may not be applied to the first pattern. Therefore, the increase in the size of the battery can be prevented, and the mechanical stability of the positive electrode can be ensured. The effect may be further improved by alternately arranging the first pattern and the second pattern.
  • the first active material particles is LiNi 1 -x1- y1 Co x1 Mn y1 O 2 (1 0 ⁇ x1 ⁇ 1 and 0 ⁇ y1 ⁇ ) and LiNi 1- x2- y2 Co x2 Al y2 O 2 (0 ⁇ x2 ⁇ 1 and 0 ⁇ y2 ⁇ 1), wherein the first pattern active material particles and the second pattern active material particles are LiCoO 2 .
  • the difference in porosity of the second pattern is smaller than that of the first pattern.
  • the LiNi 1 -x1- y1 Co x1 Mn y1 O 2 (0 ⁇ x1 ⁇ 1 and 0 ⁇ y1 ⁇ 1) is LiNi 0. 6 Co 0 . 2 Mn 0 . May be 2 O 2 .
  • LiNi 1 -x2- y2 Co x2 Al y2 O 2 (0 ⁇ x2 ⁇ 1 , and 0 ⁇ y2 ⁇ 1) may be LiNi 0.85 Co 0.1 Al 0.05 O 2 .
  • a first active material particles included in the first active material layer which accounts for most of the configuration which is located on the collector LiNi 1 -x1- y1 Co x1 Mn y1 O 2 (0 ⁇ x1 ⁇ 1 and 0 ⁇ y1 ⁇ 1) and LiNi 1 -x2- y2 Co x2 Al y2 O 2 (0 ⁇ x2 ⁇ 1 , and 0 ⁇ y2 ⁇ 1) at least by the use of any one, the insertion of lithium, and tally the seamless LiNi 1 -x1- Co x1 y1 y1 Mn O 2 of (0 ⁇ x1 ⁇ 1 and 0 ⁇ y1 ⁇ 1) and LiNi 1 -x2- improved y2 Co x2 Al y2 O 2 ( 0 ⁇ x2 ⁇ 1 , and 0 ⁇ y2 ⁇ 1) charge-discharge characteristics of the battery to the characteristics of gihayeo In addition, a change in battery thickness during discharge may be minimized.
  • the first pattern active material particles and the second pattern active material particles it is possible to ensure a high capacity of the battery when driving a high voltage, the first pattern and the second pattern based on the LiCoO 2 characteristics that the manufacturing process is smooth May be smoothly formed.
  • the energy density may be improved by the second pattern, thereby improving the capacity of the battery.
  • the volume expansion rate of the second pattern may be greater than the volume expansion rate of the first pattern. Since the thickness of the second pattern is smaller than the thickness of the first pattern, even if a large volume expansion of the second pattern, the thickness of the second pattern may not exceed the thickness of the first pattern so that the thickness of the anode does not increase excessively.
  • the first pattern may not be in contact with the neighboring first pattern, or excessive stress may not be applied to the first pattern.
  • the porosity of the first pattern may be at least 5% greater than the porosity of the second pattern, more specifically, the porosity of the first pattern may be 23% to 30%, and the porosity of the second pattern is 18% to 25 May be%.
  • the porosity can be calculated by measuring the loading amount of the electrode (g / 25cm 2 ) and the electrode thickness.
  • the first active material particles are LiCoO 2
  • the first pattern active material particles are LiNi 1 -x1- y1 Co x1 Mn y1 O 2 (0 ⁇ x1 ⁇ 1 and 0 ⁇ y1 ⁇ 1) and a LiNi 1 -x2- y2 Co x2 Al y2 O 2 (0 ⁇ x2 ⁇ 1 , and 0 ⁇ y2 ⁇ least one of 1)
  • the second pattern electrode active material particles At least one of LiFePO 4 and LiMn 2 O 4 differs in that the porosity of the second pattern is smaller than that of the first pattern.
  • the LiNi 1 -x1- y1 Co x1 Mn y1 O 2 (0 ⁇ x1 ⁇ 1 and 0 ⁇ y1 ⁇ 1) is LiNi 0. 6 Co 0 . 2 Mn 0 . May be 2 O 2 .
  • LiNi 1-x2-y2 Co x2 Al y2 O 2 (0 ⁇ x2 ⁇ 1 and 0 ⁇ y2 ⁇ 1) may be LiNi 0.85 Co 0.1 Al 0.05 O 2 .
  • LiCoO 2 as the first active material particles included in the first active material layer, which occupies most of the components disposed on the current collector, a high capacity of the battery may be achieved when driven at a high voltage based on the characteristics of LiCoO 2 .
  • LiCoO 2 In use, since manufacturing, coating, and rolling processes are easy, manufacturing cost and time are reduced, and there is an advantage of increasing electrode density.
  • the first pattern active material particles included in the first pattern positioned on the electrode surface are LiNi 1- x 1- y 1 Co x 1 Mn y 1 O 2 (0 ⁇ x1 ⁇ 1 and 0 ⁇ y1 ⁇ 1) and LiNi 1- x2 - y2 Co x2 Al y2 O 2 (0 ⁇ x2 ⁇ 1 , and 0 ⁇ y2 ⁇ 1) at least by using any of the insertion of lithium, and tally the seamless LiNi 1 -x1- y1 Co x1 Mn y1 O 2 (0 ⁇ x1 ⁇ 1 and 0 ⁇ y1 ⁇ 1) and LiNi 1 -x2- y2 Co x2 Al y2 O 2 (0 ⁇ x2 ⁇ 1 , and 0, the charge and discharge characteristics of the battery gihayeo on the nature of ⁇ y2 ⁇ 1) may be improved have.
  • LiFePO 4 and LiMn 2 O 4 as the second pattern active material particles contained in the second pattern, LiFePO 4 Based on the strong binding force of the PO within, and the structural stability of the three-dimensional tunnel structure of LiMn 2 O 4 , the thermal stability of the battery can be secured.
  • the second pattern because the first electrode included in a small amount compared with the first pattern to a first pattern electrode active material particles in order to increase the charge and discharge characteristics LiNi 1 -x1- y1 Co x1 Mn y1 O 2 (0 ⁇ x1 ⁇ 1 and 0 ⁇ It is advantageous to use at least one of y1 ⁇ 1) and LiNi 1 - x2 -y2 Co x2 Al y2 O 2 (0 ⁇ x2 ⁇ 1 and 0 ⁇ y2 ⁇ 1).
  • the energy density may be improved by the second pattern, thereby improving the capacity of the battery.
  • the volume expansion rate of the second pattern may be greater than the volume expansion rate of the first pattern. Since the thickness of the second pattern is smaller than the thickness of the first pattern, the thickness of the second pattern may not exceed the thickness of the first pattern even by the large volume expansion of the second pattern so that the thickness of the electrode does not increase excessively.
  • the first pattern may not be in contact with the neighboring first pattern, or excessive stress may not be applied to the first pattern.
  • the porosity of the first pattern may be at least 5% greater than the porosity of the second pattern, more specifically, the porosity of the first pattern may be 23% to 30%, and the porosity of the second pattern is 18% to 25 May be%.
  • the porosity can be calculated by measuring the loading amount of the electrode (g / 25cm 2 ) and the electrode thickness.
  • the first active material layer, the first pattern, and the second pattern may each include a binder and a conductive material.
  • the binder may be polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride, polyacrylonitrile, polymethylmethacrylate, Polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), Various kinds of binder polymers such as sulfonated EPDM, styrene butadiene rubber (SBR), fluorine rubber, poly acrylic acid and polymers in which hydrogen thereof is replaced with Li, Na or Ca, or various copolymers can be used. Can be.
  • PVDF-co-HFP polyvinylidene fluoride-hexafluoropropylene copolymer
  • SBR styrene but
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, farnes black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the positive electrode according to the embodiments of the present invention may be prepared by applying a slurry made by mixing an electrode mixture including an active material, a conductive material, and a binder in a solvent on a current collector, followed by drying and rolling. Specifically, after the first active material layer is formed on the current collector by the above method, the first pattern and the second pattern may be formed on the first active material layer.
  • the first active material layer, the first pattern, and the second pattern may be used in combination with at least one of screen printing, inkjet, spray, gravure printing, thermal transfer, plate printing, intaglio printing, and offset printing. Can be.
  • the solvent may be a solvent generally used in the art, and may include dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone or acetone. Water, and the like, one of these alone or a mixture of two or more thereof may be used.
  • DMSO dimethyl sulfoxide
  • NMP N-methylpyrrolidone
  • acetone or acetone. Water, and the like, one of these alone or a mixture of two or more thereof may be used.
  • the slurry for forming the first active material layer may be applied and dried on the current collector to form the first active material layer.
  • the pattern mask is disposed on the first active material layer, the slurry for forming the second pattern is applied and dried, and then rolled to selectively form a second pattern having a specific thickness on a portion of the first active material layer. have.
  • the pattern mask may be removed, and another pattern mask may be disposed on a part of the first active material layer and the second pattern to form the first pattern.
  • the slurry for forming the first pattern may be applied and dried, and then rolled to form a first pattern having a specific thickness.
  • the pattern mask may be removed.
  • the first pattern and the second pattern may be formed using an etching process.
  • the first active material particles, the binder, and the conductive material of the first active material layer may be included in a weight ratio of 95 to 99: 0.7 to 2.5: 0.3 to 2.5, and the first pattern active material particles, binder, and conductive material in the first pattern may be 95 to 99. It may be included in a weight ratio of 99: 0.7 to 2.5: 0.3 to 2.5, the second pattern active material particles, the binder and the conductive material in the second pattern may be included in a weight ratio of 95 to 99: 0.7 to 2.5: 0.3 to 2.5.
  • a secondary battery according to another embodiment of the present invention may include a negative electrode, a positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, and the positive electrode may be an electrode according to an embodiment of the present invention.
  • the negative electrode may include a negative electrode current collector and a negative electrode active material layer disposed on the negative electrode current collector and including a negative electrode active material.
  • the negative electrode current collector is conductive without causing chemical change in the secondary battery, and is, for example, on the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel. Surface treated with carbon, nickel, titanium, silver or the like can be used.
  • the negative electrode active material may be a compound capable of reversible intercalation and deintercalation of lithium.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fibers, and amorphous carbon;
  • Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys;
  • a composite including the metallic compound and the carbonaceous material such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the anode active material.
  • the carbon material both low crystalline carbon and high crystalline carbon can be used. Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is amorphous, plate, scaly, spherical or fibrous natural graphite or artificial graphite, Kish graphite (Kish) graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch High-temperature calcined carbon such as derived cokes is typical.
  • the separator separates the negative electrode from the positive electrode and provides a passage for lithium ions, and can be used without particular limitation as long as the separator is used as a separator in a secondary battery. In particular, it has a low resistance to ion migration of the electrolyte and an excellent ability to hydrate the electrolyte. It is preferable.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used.
  • porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used.
  • a coated separator including a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
  • the electrolyte may include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery, but are not limited thereto.
  • the electrolyte may include a non-aqueous organic solvent and a metal salt.
  • non-aqueous organic solvent for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butylo lactone, 1,2-dime Methoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxoron, acetonitrile, nitromethane, methyl formate, Methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethers, pyrion
  • An aprotic organic solvent such as methyl acid or ethyl
  • ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents, may be preferably used as high-viscosity organic solvents because they have high dielectric constants to dissociate lithium salts well, such as dimethyl carbonate and diethyl carbonate.
  • high-viscosity organic solvents because they have high dielectric constants to dissociate lithium salts well, such as dimethyl carbonate and diethyl carbonate.
  • an electrolyte having a high electrical conductivity can be made, and thus it can be more preferably used.
  • the metal salt may be a lithium salt
  • the lithium salt is a material that is readily soluble in the non-aqueous electrolyte, for example, is in the lithium salt anion F -, Cl -, I - , NO 3 -, N (CN ) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF - , (CF 3) 6 P - , CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2 ) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc. for the purpose of improving battery life characteristics, reducing battery capacity, and improving discharge capacity of the battery.
  • haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc.
  • Ethyl phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be included.
  • a battery module including the secondary battery as a unit cell and a battery pack including the same are provided. Since the battery module and the battery pack include the secondary battery having high capacity, high rate characteristics, and cycle characteristics, a medium-large device selected from the group consisting of an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, and a power storage system It can be used as a power source.
  • a mixture was prepared by mixing LiCoO 2 having an average particle diameter (D 50 ) of 16 ⁇ m, polyvinylidene fluoride (PVdF) as a binder, and carbon black as a conductive material at a weight ratio of 97: 1.8: 1.2. 28.9 g of N-methylpyrrolidone (NMP) was added to the mixture to prepare a positive electrode slurry.
  • the positive electrode slurry was applied and dried to an aluminum current collector having a thickness of 20 ⁇ m. At this time, the temperature of the air circulated was 120 ° C. Thereafter, rolling was performed to form a first active material layer having a thickness of 60 ⁇ m.
  • LiNi 0 having an average particle diameter (D 50 ) of the second pattern active material particles is 13 ⁇ m . 6 Co 0 . 2 Mn 0 . 5 g of a mixture was prepared by mixing 2 O 2 , PVdF as a binder, and carbon black as a conductive material at a weight ratio of 97: 1.8: 1.2. 28.9 g of NMP was added to the mixture to prepare a positive electrode slurry. On the other hand, after placing a pattern mask on a part of the first active material layer, the positive electrode slurry was applied and dried. At this time, the temperature of the air circulated was 120 ° C. Thereafter, the pattern mask was removed and rolled to form a second pattern having a thickness of 20 ⁇ m and a porosity of 24%.
  • a mixture was prepared by mixing LiCoO 2 having an average particle diameter (D 50 ) of the first pattern active material particles at 12 ⁇ m, PVdF of a binder, and carbon black of a conductive material at a weight ratio of 97: 1.8: 1.2. 28.9 g of NMP was added to the mixture to prepare a positive electrode slurry.
  • the positive electrode slurry was applied onto the first active material layer and then dried. At this time, the temperature of the air circulated was 120 ° C. Thereafter, the pattern mask was removed and rolled to form a first pattern having a thickness of 30 ⁇ m and a porosity of 29%.
  • the current collector on which the first active material layer, the first pattern, and the second pattern were formed was dried in a vacuum oven at 130 ° C. for 12 hours, and then punched into a circle of 1.4875 cm 2 to prepare a positive electrode.
  • a lithium metal thin film cut into a round shape of 1.7671 cm 2 was used as a negative electrode, and a battery was manufactured using the negative electrode and the prepared positive electrode.
  • an electrode assembly was prepared by placing a separator of porous polyethylene between the anode and the cathode. Meanwhile, vinylene carbonate (VC) dissolved at 0.5% by weight was dissolved in a mixed solution of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) at a volume of 7: 3, and LiPF 6 was dissolved (1 M concentration). An electrolyte solution was prepared. The electrolyte was injected into the electrode assembly to prepare a lithium coin half cell.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • Example 2 manufacture of a battery
  • LiNi 0 having an average particle diameter (D 50 ) of 13 ⁇ m as the first active material particles . 85 Co 0 . 1 Al 0 . A 05 O 2, a, except that the average particle diameter (D 50) is 14 ⁇ m of the LiCoO 2, the average particle diameter (D 50) to a second pattern electrode active material particle 14 ⁇ m of LiCoO 2 as a first pattern electrode active material particle is carried out
  • a positive electrode and a battery were manufactured in the same manner as in Example 1.
  • the thickness of the first active material layer was 50 ⁇ m.
  • the thickness of the first pattern was 35 ⁇ m and the porosity was 29%.
  • the thickness of the second pattern was 25 ⁇ m and the porosity was 24%.
  • LiCoO 2 having an average particle diameter (D 50 ) of 15 ⁇ m as the first active material particles, and LiNi 0. Having an average particle diameter (D 50 ) of 14 ⁇ m as the first pattern active material particles . 6 Co 0 . 2 Mn 0 . 2 for O 2, and is first to prepare a positive electrode and battery in the same manner as in Example 1 except that the average particle diameter (D 50) to the second pattern of the active material particles 5 ⁇ m LiFePO 4.
  • the thickness of the first active material layer was 70 ⁇ m.
  • the thickness of the first pattern was 24 ⁇ m and the porosity was 29%.
  • the thickness of the second pattern was 16 ⁇ m and the porosity was 24%.
  • a positive electrode and a battery were manufactured in the same manner as in Example 1, except that the thickness of the first pattern was 20 ⁇ m and the thickness of the second pattern was 30 ⁇ m.
  • Comparative example 2 manufacture of a battery
  • a positive electrode and a battery were manufactured in the same manner as in Example 2, except that the thickness of the first pattern was 25 ⁇ m and the thickness of the second pattern was 35 ⁇ m.
  • a positive electrode and a battery were manufactured in the same manner as in Example 3, except that the thickness of the first pattern was 16 ⁇ m and the thickness of the second pattern was 24 ⁇ m.
  • one cycle and two cycles were charged and discharged at 0.1C, and charging and discharging were performed at 0.5C from 3 cycles to 49 cycles.
  • the 50 cycles were finished in the state of charging (with lithium in the negative electrode) and the capacity retention rate was evaluated.
  • Discharge capacity (mAh / g) and initial efficiency (%) were derived through the result at the time of single charge / discharge. Specifically, the initial efficiency (%) was derived by the following calculation.
  • the capacity retention rate and the electrode thickness change rate were derived by the following calculations, respectively.
  • Capacity retention rate (%) (49 discharge capacity / 1 discharge capacity) ⁇ 100
  • the volume expansion ratio of the first pattern or the second pattern is calculated by Equation 1 below, where A is the thickness of the first pattern or the second pattern before charge and discharge, and B is the thickness of the first pattern or the second pattern after charge and discharge. to be.
  • the thickness was confirmed by micrometer.
  • the electrode thickness change rate is relatively small, and the discharge capacity and the capacity retention rate are relatively large in the case of Examples. You can check it. This is because the thickness of the second pattern having a relatively large volume expansion ratio is smaller than the thickness of the first pattern, and thus the anode thickness may be less changed when charging and discharging is repeated, and a portion of the first active material layer contacting with the electrolyte may be sufficiently secured. I think it is.

Abstract

The present invention relates to a positive electrode and a secondary battery including the same and, specifically, to a positive electrode and a secondary battery including the same, comprising: a current collector; a first active material layer, which comprises a first active material particle and is disposed on the current collector; and a first pattern and a second pattern, which are alternately arranged on the first active material layer while being spaced from each other, wherein the first pattern comprises a first pattern active material particle, the second pattern comprises a second pattern active material particle, the first pattern is thicker than the second pattern, and the second pattern has a volume expansion rate larger than that of the first pattern.

Description

양극 및 상기 양극을 포함하는 이차 전지A positive electrode and a secondary battery including the positive electrode
관련출원과의 상호인용Citation with Related Applications
본 출원은 2016년 07월 04일자 출원된 한국 특허 출원 제10-2016-0083958호 및 2017년 07월 04일자 출원된 한국 특허 출원 제10-2017-0085057에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0083958, filed July 04, 2016 and Korean Patent Application No. 10-2017-0085057, filed July 04, 2017. All content disclosed in the literature of a patent application is included as part of this specification.
기술분야Technical Field
본 발명은 양극 및 이를 포함하는 이차 전지에 관한 것으로, 상기 양극은 제1 활물질 층, 및 제1 패턴과 제2 패턴을 포함할 수 있으며, 상기 제1 패턴의 두께는 상기 제2 패턴의 두께보다 크고, 상기 제2 패턴의 부피 팽창률은 상기 제1 패턴의 부피 팽창률보다 큰 것을 특징으로 한다.The present invention relates to a positive electrode and a secondary battery including the same, wherein the positive electrode may include a first active material layer, and a first pattern and a second pattern, and the thickness of the first pattern is greater than the thickness of the second pattern. Larger, the volume expansion rate of the second pattern is larger than the volume expansion rate of the first pattern.
화석연료 사용의 급격한 증가로 인하여 대체 에너지나 청정에너지의 사용에 대한 요구가 증가하고 있으며, 그 일환으로 가장 활발하게 연구되고 있는 분야가 전기화학 반응을 이용한 발전, 축전 분야이다.Due to the rapid increase in the use of fossil fuels, the demand for the use of alternative energy or clean energy is increasing, and the most actively researched fields are power generation and storage using electrochemical reactions.
현재 이러한 전기화학적 에너지를 이용하는 전기화학 소자의 대표적인 예로 이차 전지를 들 수 있으며, 점점 더 그 사용 영역이 확대되고 있는 추세이다. 최근에는 휴대용 컴퓨터, 휴대용 전화기, 카메라 등의 휴대용 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차 전지 중 높은 에너지 밀도와 작동 전위를 나타내고 사이클 수명이 길며 자기 방전율이 낮은 리튬 이차전지에 대해 많은 연구가 행해져 왔고, 또한 상용화되어 널리 사용되고 있다.A representative example of an electrochemical device using such electrochemical energy is a secondary battery, and its use area is gradually increasing. Recently, as the development and demand of portable devices such as portable computers, portable telephones, and cameras increases, the demand for secondary batteries as a source of energy is rapidly increasing, and these secondary batteries exhibit high energy density and operating potential, and have a cycle life. Many researches have been conducted on this long, low self-discharge rate lithium battery and are commercially available and widely used.
일반적으로 이차 전지는 양극, 음극, 전해질, 및 분리막으로 구성되며, 첫 번째 충전에 의해 양극 활물질로부터 나온 리튬 이온이 카본 입자와 같은 음극 활물질 내에 삽입되고 방전 시 다시 탈리되는 등의 양 전극을 왕복하면서 에너지를 전달하는 역할을 하기 때문에 충방전이 가능하게 된다.In general, a secondary battery is composed of a positive electrode, a negative electrode, an electrolyte, and a separator, and reciprocates positive and negative electrodes such that lithium ions from the positive electrode active material are inserted into a negative electrode active material such as carbon particles and are detached again when discharged. Since it plays a role of transmitting energy, charging and discharging becomes possible.
양극 내 활물질의 양은 전지의 충방전 용량을 결정하는 가장 중요한 인자이다. 따라서, 고용량(high-capacity) 전극을 제조하기 위해, 양극 활물질 이 집전체 표면에 높은 수준으로 로딩(loading)되어 왔다. 다만, 활물질이 높은 수준으로 로딩된 양극의 경우, 활물질층에 대한 전해액의 함침성(wetting)이 감소하고, 전극 두께 방향의 반응성 차이로 인해 전지의 급속 충전 특성, 출력 특성 등의 전지의 충방전 성능이 저하된다. The amount of active material in the positive electrode is the most important factor in determining the charge / discharge capacity of the battery. Thus, in order to fabricate high-capacity electrodes, positive electrode active materials have been loaded at high levels on the current collector surface. However, in the case of the positive electrode loaded at a high level of active material, wetting of the electrolyte solution to the active material layer is reduced, and the charge and discharge of the battery such as rapid charging characteristics and output characteristics of the battery due to the difference in reactivity in the electrode thickness direction. Performance is degraded.
상기 문제를 해결하기 위해 활물질층의 공극률을 높이는 방법 등이 사용되고 있으나, 공극률이 높은 활물질층으로 동일 수준의 용량을 구현하기 위해서는 전극 두께가 두꺼워진다. 이에 따라, 고에너지 밀도의 셀을 설계하는데 문제가 발생한다.In order to solve the problem, a method of increasing the porosity of the active material layer is used, but in order to realize the same level of capacity as the active material layer having a high porosity, the electrode thickness becomes thick. Accordingly, problems arise in designing cells of high energy density.
따라서, 전지의 고용량을 유지하면서, 전해액의 함침성이 개선될 수 있고, 전지의 충방전 성능이 향상될 수 있는 양극이 요구되고 있는 실정이다.Therefore, while maintaining the high capacity of the battery, the impregnation of the electrolyte solution can be improved, the situation that a positive electrode capable of improving the charge and discharge performance of the battery is required.
본 발명이 해결하고자 하는 일 과제는 전지의 고용량을 유지하면서, 전해액의 함침성이 개선될 수 있고, 전지의 충방전 성능이 향상될 수 있는 양극을 제공하는 것이다.One problem to be solved by the present invention is to provide a positive electrode that can improve the impregnation of the electrolyte, while improving the charge and discharge performance of the battery, while maintaining a high capacity of the battery.
본 발명이 해결하고자 하는 또 다른 과제는 전지의 안정성을 향상시키는 것이다.Another problem to be solved by the present invention is to improve the stability of the battery.
상기 과제를 해결하기 위하여, 본 발명은 집전체; 제1 활물질 입자를 포함하며 상기 집전체 상에 배치된 제1 활물질층; 및 상기 제1 활물질층 상에서 서로 이격되어 교대로 배치된 제1 패턴 및 제2 패턴을 포함하되, 상기 제1 패턴은 제1 패턴 활물질 입자를 포함하고, 상기 제2 패턴은 제2 패턴 활물질 입자를 포함하며, 상기 제1 패턴의 두께는 상기 제2 패턴의 두께보다 크고, 상기 제2 패턴의 부피 팽창률은 상기 제1 패턴의 부피 팽창률보다 큰 양극을 제공한다.In order to solve the above problems, the present invention is a current collector; A first active material layer including first active material particles and disposed on the current collector; And a first pattern and a second pattern that are alternately spaced apart from each other on the first active material layer, wherein the first pattern includes first pattern active material particles, and the second pattern includes second pattern active material particles. And a thickness of the first pattern is greater than a thickness of the second pattern, and a volume expansion rate of the second pattern is greater than a volume expansion rate of the first pattern.
또한, 본 발명은 상기 양극을 포함하는 이차 전지를 제공한다.In addition, the present invention provides a secondary battery including the positive electrode.
본 발명에 따른 양극은 고로딩된 제1 활물질층의 일부가 전해액에 노출되고 서로 이격된 제1 패턴 및 제2 패턴을 포함하여, 전해액 함침성이 향상될 수 있어서, 전지의 고용량과 함께 향상된 충방전 특성이 확보될 수 있다. 또한, 제1 패턴과 제2 패턴의 구성을 조절하여, 전극의 두께를 최소화하고, 충방전 시 발생하는 전극의 응력을 패턴층으로 완화하여 전극의 기계적 안정성을 향상시킬 수 있다.The positive electrode according to the present invention includes a first pattern and a second pattern in which a part of the high-loaded first active material layer is exposed to the electrolyte and spaced apart from each other, and thus, electrolyte impregnation can be improved, thereby improving charging with high capacity of the battery. Discharge characteristics can be secured. In addition, by adjusting the configuration of the first pattern and the second pattern, it is possible to minimize the thickness of the electrode, and to relieve the stress of the electrode generated during charging and discharging with a pattern layer to improve the mechanical stability of the electrode.
도 1은 본 발명의 일 실시예에 따른 양극의 단면 모식도이다.1 is a schematic cross-sectional view of a positive electrode according to an embodiment of the present invention.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail to aid in understanding the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as being limited to their ordinary or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best describe their invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. The terminology used herein is for the purpose of describing exemplary embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.As used herein, the terms "comprise", "comprise" or "have" are intended to indicate that there is a feature, number, step, component, or combination thereof, that is, one or more other features, It should be understood that it does not exclude in advance the possibility of the presence or addition of numbers, steps, components, or combinations thereof.
도 1을 참조하면, 본 발명의 일 실시예에 따른 양극은 집전체; 제1 활물질 입자를 포함하며 상기 집전체 상에 배치된 제1 활물질층; 및 상기 제1 활물질층 상에서 서로 이격되어 교대로 배치된 제1 패턴 및 제2 패턴을 포함하되, 상기 제1 패턴은 제1 패턴 활물질 입자를 포함하고, 상기 제2 패턴은 제2 패턴 활물질 입자를 포함하며, 상기 제1 패턴의 두께는 상기 제2 패턴의 두께보다 크고, 상기 제2 패턴의 부피 팽창률은 상기 제1 패턴의 부피 팽창률보다 클 수 있다.1, a positive electrode according to an embodiment of the present invention; A first active material layer including first active material particles and disposed on the current collector; And a first pattern and a second pattern that are alternately spaced apart from each other on the first active material layer, wherein the first pattern includes first pattern active material particles, and the second pattern includes second pattern active material particles. The thickness of the first pattern may be greater than the thickness of the second pattern, and the volume expansion rate of the second pattern may be greater than the volume expansion rate of the first pattern.
상기 집전체는, 이차 전지에 화학적 변화를 유발하지 않으면서 도전성을 지닌 것으로서, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.The current collector is conductive without causing chemical change in the secondary battery, and includes, for example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon, nickel, on the surface of aluminum or stainless steel. The surface-treated with titanium, silver, etc. can be used.
본 발명의 일 실시예에 따르면, 상기 제1 활물질층은 상기 집전체 상에 배치될 수 있다. 또한, 상기 제1 패턴 및 상기 제2 패턴은 각각 상기 제1 활물질층 상에 배치될 수 있다. 도 1을 참조하면, 제1 활물질층(210)은 집전체(100) 상에 이격된 부분 없이 고르게 배치될 수 있다. 제1 패턴(220) 및 제2 패턴(230)은 각각 제1 활물질층(210) 상에서 서로 이격되어 교대로 배치될 수 있다. 구체적으로, 제1 패턴 및 제2 패턴에 의해 제1 활물질층 상에 요철 형상이 형성될 수 있다.According to an embodiment of the present invention, the first active material layer may be disposed on the current collector. In addition, the first pattern and the second pattern may be disposed on the first active material layer, respectively. Referring to FIG. 1, the first active material layer 210 may be evenly disposed on the current collector 100 without being spaced apart. The first pattern 220 and the second pattern 230 may be alternately spaced apart from each other on the first active material layer 210. Specifically, an uneven shape may be formed on the first active material layer by the first pattern and the second pattern.
표면에 요철 형상이 없는 고로딩된 활물질층을 포함하는 종래 양극의 경우, 전극 표면 근처에서 집전체 표면 근처로 향할 수록, 함침된 전해액의 양이 현저히 줄어들어, 리튬 이온의 삽입 및 탈리가 원활하지 못하여 충방전 성능이 저하되는 문제가 발생하였다. 본 발명의 일 실시예에 따르면, 제1 패턴 및 제2 패턴에 의해 형성된 요철 형상에 따라, 양극과 전해액이 접하는 면적이 증가될 수 있으므로, 전해액 함침성이 개선될 수 있고, 전지의 충방전 성능이 향상될 수 있다. 나아가, 고로딩된 제1 활물질층이 제1 패턴과 제2 패턴 사이로 노출되면서 전해액이 집전체 방향으로 용이하게 침투될 수 있어서 전해액 함침성이 더욱 개선될 수 있다.In the case of a conventional positive electrode including a high-loaded active material layer having no uneven shape on the surface, the amount of the impregnated electrolyte is remarkably reduced toward the current collector surface near the electrode surface, so that insertion and desorption of lithium ions is not smooth. The problem that the charge-discharge performance is lowered. According to one embodiment of the present invention, according to the uneven shape formed by the first pattern and the second pattern, the contact area between the positive electrode and the electrolyte can be increased, the electrolyte impregnation property can be improved, the charge and discharge performance of the battery This can be improved. Furthermore, the electrolyte may be easily penetrated in the direction of the current collector while the first loaded active material layer is exposed between the first pattern and the second pattern, thereby further improving the electrolyte impregnation property.
또한, 상기 제1 패턴의 두께는 상기 제2 패턴의 두께보다 클 수 있다. 구체적으로 상기 제1 패턴의 두께는 상기 제2 패턴의 두께보다 1.1배 내지 2배 일 수 있으며, 보다 구체적으로 1.2배 내지 1.5배 일 수 있다.In addition, the thickness of the first pattern may be greater than the thickness of the second pattern. Specifically, the thickness of the first pattern may be 1.1 times to 2 times the thickness of the second pattern, and more specifically, may be 1.2 times to 1.5 times.
상기 제2 패턴의 부피 팽창률은 상기 제1 패턴의 부피 팽창률보다 클 수 있다. 상기 부피 팽창률은 상기 제1 패턴 또는 상기 제2 패턴의 초기 두께 대비 1회 충방전 후의 두께의 증가량으로부터 계산될 수 있다. 구체적으로, 초기 전극 두께에 대한 첫 충방전 사이클 후 증가된 두께의 변화량의 비율을 의미한다. 이 때, 첫 충방전 사이클은 CC-CV충전을 0.1C, 4.25V 내지 4.4V, 0.02C Cut off로 진행하며, 방전은 0.1C, 3V Cut off로 CC방전시켜서 진행한다. The volume expansion rate of the second pattern may be greater than the volume expansion rate of the first pattern. The volume expansion rate may be calculated from an increase in thickness after one charge / discharge compared to the initial thickness of the first pattern or the second pattern. Specifically, the ratio of the amount of change in thickness increased after the first charge / discharge cycle with respect to the initial electrode thickness. At this time, the first charge-discharge cycle proceeds with CC-CV charging to 0.1C, 4.25V to 4.4V, 0.02C cut off, and discharges to CC discharge with 0.1C, 3V cut off.
더욱 구체적으로, 상기 부피 팽창률은 하기 식 1으로 계산되며, 하기 A는 충방전 전의 제1 패턴 또는 제2 패턴의 두께이며, 하기 B는 충방전 후의 제1 패턴 또는 제2 패턴의 두께일 수 있다.More specifically, the volume expansion ratio is calculated by Equation 1 below, where A is the thickness of the first pattern or the second pattern before charging and discharging, and B may be the thickness of the first pattern or the second pattern after charging and discharging. .
[식 1][Equation 1]
부피 팽창률 = [(B-A)/A] × 100Volume Expansion Rate = [(B-A) / A] × 100
상기 두께는 마이크로미터, 마우저로 측정하거나, 주사 전자 현미경을 통해 측정될 수 있다.The thickness can be measured with a micrometer, a mouse, or through a scanning electron microscope.
두께가 상대적으로 작은 제2 패턴의 큰 부피 팽창에 의하더라도 제2 패턴의 두께가 상대적으로 작기 때문에, 양극의 두께가 과도하게 증가하지 않을 수 있으며, 이웃하는 제1 패턴과 접하지 않거나, 접하더라도 제1 패턴에 과도한 응력이 가해지지 않을 수 있다. 따라서, 충전 시 양극 팽창으로 인한 전지 두께의 지나친 증가가 방지되고, 양극의 기계적 안정성이 확보될 수 있다.Since the thickness of the second pattern is relatively small even by the large volume expansion of the second pattern whose thickness is relatively small, the thickness of the anode may not be excessively increased, and even if it is not in contact with or is adjacent to the neighboring first pattern. Excessive stress may not be applied to the first pattern. Therefore, excessive increase in battery thickness due to positive electrode expansion during charging can be prevented, and mechanical stability of the positive electrode can be secured.
상기 제1 활물질층은 제1 활물질 입자를 포함할 수 있으며, 상기 제1 패턴은 상기 제1 패턴 활물질 입자를 포함할 수 있고, 상기 제2 패턴은 상기 제2 패턴 활물질 입자를 포함할 수 있다. The first active material layer may include first active material particles, the first pattern may include the first pattern active material particles, and the second pattern may include the second pattern active material particles.
상기 제1 활물질 입자, 상기 제1 패턴 활물질 입자, 및 상기 제2 패턴 활물질 입자 중 적어도 어느 하나의 조성은 나머지의 조성과 다를 수 있다. The composition of at least one of the first active material particles, the first pattern active material particles, and the second pattern active material particles may be different from the remaining composition.
본 발명의 일 실시예에 따르면, 상기 제1 활물질 입자 및 상기 제1 패턴 활물질 입자는 LiCoO2이며, 상기 제2 패턴 활물질 입자는 LiNi1 -x1- y1Cox1Mny1O2 (0<x1<1 및 0<y1<1) 및 LiNi1 -x2- y2Cox2Aly2O2 (0<x2<1 및 0<y2<1) 중 적어도 어느 하나일 수 있다. 구체적으로, 상기 LiNi1 -x1- y1Cox1Mny1O2 (0<x1<1 및 0<y1<1)는 LiNi0 . 6Co0 . 2Mn0 . 2O2일 수 있다. LiNi1-x2-y2Cox2Aly2O2 (0<x2<1 및 0<y2<1)는 LiNi0.85Co0.1Al0.05O2일 수 있다.According to one embodiment of the present invention, the first active material particles and the first pattern active material particles are LiCoO 2 , the second pattern active material particles are LiNi 1 -x1- y1 Co x1 Mn y1 O 2 (0 <x1 < 1 and may be at least any one of 0 <y1 <1) and LiNi 1 -x2- y2 Co x2 Al y2 O 2 (0 <x2 <1 , and 0 <y2 <1). Specifically, the LiNi 1 -x1- y1 Co x1 Mn y1 O 2 (0 <x1 <1 and 0 <y1 <1) is LiNi 0. 6 Co 0 . 2 Mn 0 . May be 2 O 2 . LiNi 1-x2-y2 Co x2 Al y2 O 2 (0 <x2 <1 and 0 <y2 <1) may be LiNi 0.85 Co 0.1 Al 0.05 O 2 .
집전체 상에 위치하는 구성들의 대부분을 차지하는 제1 활물질층 및 제1 패턴이 포함하는 제1 활물질 입자와 제1 패턴 활물질 입자로 LiCoO2을 사용함으로써, LiCoO2의 특성에 기하여 고전압에서 구동될 시 전지의 고용량이 달성될 수 있다. 또한, LiCoO2 사용 시, 제조, 코팅, 및 압연 등의 공정이 용이하므로, 제조 비용 및 시간이 줄어들고 전극 밀도를 높일 수 있는 이점이 있다. 이와 동시에, 전극 표면에 위치하는 제2 패턴이 포함하는 제2 패턴 활물질 입자로 LiNi1 -x1- y1Cox1Mny1O2 (0<x1<1 및 0<y1<1) 및 LiNi1 -x2- y2Cox2Aly2O2 (0<x2<1 및 0<y2<1) 중 적어도 어느 하나를 사용함으로써, 리튬의 삽입, 탈리가 원활한 LiNi1 -x1- y1Cox1Mny1O2 (0<x1<1 및 0<y1<1) 및 LiNi1 -x2- y2Cox2Aly2O2 (0<x2<1 및 0<y2<1)의 특성에 기하여 전지의 충방전 특성이 개선될 수 있다. When LiCoO 2 is used as the first active material particles and the first pattern active material particles included in the first active material layer and the first pattern, which occupy most of the components disposed on the current collector, when driven at a high voltage based on the characteristics of LiCoO 2 High capacity of the cell can be achieved. In addition, LiCoO 2 In use, since the manufacturing, coating, and rolling process is easy, there is an advantage that the manufacturing cost and time can be reduced and the electrode density can be increased. At the same time, the second pattern electrode active material particles including the second pattern located on the electrode LiNi 1 -x1- y1 Co x1 Mn y1 O 2 (0 <x1 <1 and 0 <y1 <1) and LiNi 1 -x2 - y2 Co x2 Al y2 O 2 (0 <x2 <1 , and 0 <y2 <1) at least by using any of the insertion of lithium, and tally the seamless LiNi 1 -x1- y1 Co x1 Mn y1 O 2 (0 <x1 <1 and 0 <y1 <1) and LiNi 1 -x2- y2 Co x2 Al y2 O 2 (0 <x2 <1 , and 0, the charge and discharge characteristics of the battery gihayeo on the nature of <y2 <1) may be improved have.
한편, LiNi1 -x1- y1Cox1Mny1O2 (0<x1<1 및 0<y1<1) 및 LiNi1 -x2- y2Cox2Aly2O2 (0<x2<1 및 0<y2<1)는 LiCoO2에 비해 상대적으로 방전 시 부피 팽창율이 크다. 따라서, 본 발명의 일 실시예에 따른 구조에서는, 제2 패턴이 상대적으로 큰 부피 팽창률을 가지더라도, 제2 패턴의 두께가 상대적으로 작기 때문에, 충방전 시 제2 패턴의 두께가 제1 패턴의 두께보다 지나치게 커지는 것을 방지할 수 있다. 따라서, 양극의 두께가 과도하게 증가하지 않을 수 있으며, 이웃하는 제1 패턴과 접하지 않거나, 접하더라도 제1 패턴에 과도한 응력이 가해지지 않을 수 있다. 따라서, 전지의 크기 증가가 방지되고, 양극의 기계적 안정성이 확보될 수 있다. 상기 효과는 제1 패턴과 제2 패턴이 교대로 배치됨으로써 더욱 향상될 수 있다. Meanwhile, LiNi 1- x1- y1 Co x1 Mn y1 O 2 (0 <x1 <1 and 0 <y1 <1) and LiNi 1- x2- y2 Co x2 Al y2 O 2 (0 <x2 <1 and 0 <y2 <1) has a large volume expansion ratio during discharge relative to LiCoO 2 . Therefore, in the structure according to the embodiment of the present invention, even if the second pattern has a relatively large volume expansion ratio, since the thickness of the second pattern is relatively small, the thickness of the second pattern during charge and discharge may be It can be prevented from becoming excessively larger than the thickness. Therefore, the thickness of the anode may not be excessively increased, and the first pattern may not be in contact with the neighboring first pattern, or excessive stress may not be applied to the first pattern. Therefore, the increase in the size of the battery can be prevented, and the mechanical stability of the positive electrode can be ensured. The effect may be further improved by alternately arranging the first pattern and the second pattern.
본 발명의 또 다른 실시예는, 상술한 일 실시예와 유사하나, 상기 제1 활물질 입자는 LiNi1 -x1- y1Cox1Mny1O2 (0<x1<1 및 0<y1<1) 및 LiNi1 -x2- y2Cox2Aly2O2 (0<x2<1 및 0<y2<1) 중 적어도 어느 하나이며, 상기 제1 패턴 활물질 입자 및 상기 제2 패턴 활물질 입자는 LiCoO2일 수 이며, 상기 제2 패턴의 공극률이 상기 제1 패턴의 공극률 보다 작다는 점에서 차이가 있다. 구체적으로, 상기 LiNi1 -x1- y1Cox1Mny1O2 (0<x1<1 및 0<y1<1)는 LiNi0 . 6Co0 . 2Mn0 . 2O2일 수 있다. LiNi1 -x2- y2Cox2Aly2O2 (0<x2<1 및 0<y2<1)는 LiNi0.85Co0.1Al0.05O2일 수 있다.Another embodiment of the invention, one similar to the above-described example, the first active material particles is LiNi 1 -x1- y1 Co x1 Mn y1 O 2 (1 0 <x1 <1 and 0 <y1 <) and LiNi 1- x2- y2 Co x2 Al y2 O 2 (0 <x2 <1 and 0 <y2 <1), wherein the first pattern active material particles and the second pattern active material particles are LiCoO 2 . The difference in porosity of the second pattern is smaller than that of the first pattern. Specifically, the LiNi 1 -x1- y1 Co x1 Mn y1 O 2 (0 <x1 <1 and 0 <y1 <1) is LiNi 0. 6 Co 0 . 2 Mn 0 . May be 2 O 2 . LiNi 1 -x2- y2 Co x2 Al y2 O 2 (0 <x2 <1 , and 0 <y2 <1) may be LiNi 0.85 Co 0.1 Al 0.05 O 2 .
집전체 상에 위치하는 구성들의 대부분을 차지하는 제1 활물질층에 포함된 제1 활물질 입자를 LiNi1 -x1- y1Cox1Mny1O2 (0<x1<1 및 0<y1<1) 및 LiNi1 -x2- y2Cox2Aly2O2 (0<x2<1 및 0<y2<1) 중 적어도 어느 하나로 사용함으로써, 리튬의 삽입, 탈리가 원활한 LiNi1 -x1- y1Cox1Mny1O2 (0<x1<1 및 0<y1<1) 및 LiNi1 -x2- y2Cox2Aly2O2 (0<x2<1 및 0<y2<1)의 특성에 기하여 전지의 충방전 특성이 향상될 수 있으며, 방전 시 전지 두께의 변화가 최소화될 수 있다. 또한, 상기 제1 패턴 활물질 입자 및 상기 제2 패턴 활물질 입자로 LiCoO2를 사용함으로써, 고전압 구동 시 전지의 고용량을 확보할 수 있으며, 제조 공정이 원활한 LiCoO2 특성에 기해 제1 패턴 및 제2 패턴의 형성이 원활할 수 있다. A first active material particles included in the first active material layer, which accounts for most of the configuration which is located on the collector LiNi 1 -x1- y1 Co x1 Mn y1 O 2 (0 <x1 <1 and 0 <y1 <1) and LiNi 1 -x2- y2 Co x2 Al y2 O 2 (0 <x2 <1 , and 0 <y2 <1) at least by the use of any one, the insertion of lithium, and tally the seamless LiNi 1 -x1- Co x1 y1 y1 Mn O 2 of (0 <x1 <1 and 0 <y1 <1) and LiNi 1 -x2- improved y2 Co x2 Al y2 O 2 ( 0 <x2 <1 , and 0 <y2 <1) charge-discharge characteristics of the battery to the characteristics of gihayeo In addition, a change in battery thickness during discharge may be minimized. In addition, by using LiCoO 2 as the first pattern active material particles and the second pattern active material particles, it is possible to ensure a high capacity of the battery when driving a high voltage, the first pattern and the second pattern based on the LiCoO 2 characteristics that the manufacturing process is smooth May be smoothly formed.
또한, 제2 패턴의 공극률이 상기 제1 패턴의 공극률보다 작기 때문에, 제2 패턴에 의해 에너지 밀도가 향상되어 전지의 용량이 개선될 수 있다. 동시에, 제2 패턴의 공극률이 상기 제1 패턴의 공극률보다 작기 때문에, 제2 패턴의 부피 팽창률이 제1 패턴의 부피 팽창률보다 클 수 있다. 제2 패턴의 두께가 제1 패턴의 두께보다 작으므로, 제2 패턴의 큰 부피 팽창에 의하더라도 제2 패턴의 두께가 제1 패턴의 두께를 지나치게 넘어서지 않을 수 있어서 양극의 두께가 과도하게 증가하지 않을 수 있으며, 이웃하는 제1 패턴과 접하지 않거나, 접하더라도 제1 패턴에 과도한 응력이 가해지지 않을 수 있다. 따라서, 충전 시 전극 팽창으로 인한 양극 두께의 지나친 증가가 방지되고, 양극의 기계적 안정성이 확보될 수 있다. 구체적으로, 제1 패턴의 공극률은 제2 패턴의 공극률보다 5% 이상 클 수 있으며, 더욱 구체적으로 제1 패턴의 공극률은 23% 내지 30%일 수 있으며, 제2 패턴의 공극률은 18% 내지 25%일 수 있다. 상기 공극률은 전극의 로딩량(g/25cm2)과 전극 두께를 측정하여 계산될 수 있다.In addition, since the porosity of the second pattern is smaller than the porosity of the first pattern, the energy density may be improved by the second pattern, thereby improving the capacity of the battery. At the same time, since the porosity of the second pattern is smaller than the porosity of the first pattern, the volume expansion rate of the second pattern may be greater than the volume expansion rate of the first pattern. Since the thickness of the second pattern is smaller than the thickness of the first pattern, even if a large volume expansion of the second pattern, the thickness of the second pattern may not exceed the thickness of the first pattern so that the thickness of the anode does not increase excessively. The first pattern may not be in contact with the neighboring first pattern, or excessive stress may not be applied to the first pattern. Therefore, excessive increase of the anode thickness due to electrode expansion during charging can be prevented, and mechanical stability of the anode can be ensured. Specifically, the porosity of the first pattern may be at least 5% greater than the porosity of the second pattern, more specifically, the porosity of the first pattern may be 23% to 30%, and the porosity of the second pattern is 18% to 25 May be%. The porosity can be calculated by measuring the loading amount of the electrode (g / 25cm 2 ) and the electrode thickness.
본 발명의 또 다른 실시예에 따르면, 상술한 일 실시예와 유사하나, 상기 제1 활물질 입자는 LiCoO2이고, 상기 제1 패턴 활물질 입자는 LiNi1 -x1- y1Cox1Mny1O2 (0<x1<1 및 0<y1<1) 및 LiNi1 -x2- y2Cox2Aly2O2 (0<x2<1 및 0<y2<1) 중 적어도 어느 하나이며, 상기 제2 패턴 활물질 입자는 LiFePO4 및 LiMn2O4 중 적어도 어느 하나이고, 상기 제2 패턴의 공극률이 상기 제1 패턴의 공극률 보다 작다는 점에서 차이가 있다. 구체적으로, 상기 LiNi1 -x1- y1Cox1Mny1O2 (0<x1<1 및 0<y1<1)는 LiNi0 . 6Co0 . 2Mn0 . 2O2일 수 있다. LiNi1-x2-y2Cox2Aly2O2 (0<x2<1 및 0<y2<1)는 LiNi0.85Co0.1Al0.05O2일 수 있다.According to another embodiment of the present invention, similar to the above-described embodiment, the first active material particles are LiCoO 2 , the first pattern active material particles are LiNi 1 -x1- y1 Co x1 Mn y1 O 2 (0 <x1 <1 and 0 <y1 <1) and a LiNi 1 -x2- y2 Co x2 Al y2 O 2 (0 <x2 <1 , and 0 <y2 <least one of 1), the second pattern electrode active material particles At least one of LiFePO 4 and LiMn 2 O 4 differs in that the porosity of the second pattern is smaller than that of the first pattern. Specifically, the LiNi 1 -x1- y1 Co x1 Mn y1 O 2 (0 <x1 <1 and 0 <y1 <1) is LiNi 0. 6 Co 0 . 2 Mn 0 . May be 2 O 2 . LiNi 1-x2-y2 Co x2 Al y2 O 2 (0 <x2 <1 and 0 <y2 <1) may be LiNi 0.85 Co 0.1 Al 0.05 O 2 .
집전체 상에 위치하는 구성들의 대부분을 차지하는 제1 활물질층이 포함하는 제1 활물질 입자로 LiCoO2을 사용함으로써, LiCoO2의 특성에 기하여 고전압에서 구동될 시 전지의 고용량이 달성될 수 있다. 또한, LiCoO2 사용 시, 제조, 코팅, 및 압연 등의 공정이 용이하므로, 제조 비용 및 시간이 줄어들고, 전극 밀도를 높일 수 있는 이점이 있다. 이와 동시에, 전극 표면에 위치하는 제1 패턴이 포함하는 제1 패턴 활물질 입자로 LiNi1 -x1- y1Cox1Mny1O2 (0<x1<1 및 0<y1<1) 및 LiNi1 -x2- y2Cox2Aly2O2 (0<x2<1 및 0<y2<1) 중 적어도 어느 하나를 사용함으로써, 리튬의 삽입, 탈리가 원활한 LiNi1 -x1- y1Cox1Mny1O2 (0<x1<1 및 0<y1<1) 및 LiNi1 -x2- y2Cox2Aly2O2 (0<x2<1 및 0<y2<1)의 특성에 기하여 전지의 충방전 특성이 개선될 수 있다. By using LiCoO 2 as the first active material particles included in the first active material layer, which occupies most of the components disposed on the current collector, a high capacity of the battery may be achieved when driven at a high voltage based on the characteristics of LiCoO 2 . In addition, LiCoO 2 In use, since manufacturing, coating, and rolling processes are easy, manufacturing cost and time are reduced, and there is an advantage of increasing electrode density. At the same time, the first pattern active material particles included in the first pattern positioned on the electrode surface are LiNi 1- x 1- y 1 Co x 1 Mn y 1 O 2 (0 <x1 <1 and 0 <y1 <1) and LiNi 1- x2 - y2 Co x2 Al y2 O 2 (0 <x2 <1 , and 0 <y2 <1) at least by using any of the insertion of lithium, and tally the seamless LiNi 1 -x1- y1 Co x1 Mn y1 O 2 (0 <x1 <1 and 0 <y1 <1) and LiNi 1 -x2- y2 Co x2 Al y2 O 2 (0 <x2 <1 , and 0, the charge and discharge characteristics of the battery gihayeo on the nature of <y2 <1) may be improved have.
또한, 제2 패턴이 포함하는 제2 패턴 활물질 입자로 LiFePO4 및 LiMn2O4 중 적어도 어느 하나를 사용함으로써, LiFePO4 내 P-O의 강한 결합력, LiMn2O4의 3차원 터널구조의 구조적 안정성에 기하여, 전지의 열적 안정성이 확보될 수 있다. 제2 패턴이 제1 패턴에 비해 적은 양으로 전극 내에 포함되므로, 충방전 특성을 높이기 위해서는 제1 패턴 활물질 입자로 LiNi1 -x1- y1Cox1Mny1O2 (0<x1<1 및 0<y1<1) 및 LiNi1 -x2-y2Cox2Aly2O2 (0<x2<1 및 0<y2<1) 중 적어도 어느 하나가 사용되는 것이 유리하다.In addition, by using at least one of LiFePO 4 and LiMn 2 O 4 as the second pattern active material particles contained in the second pattern, LiFePO 4 Based on the strong binding force of the PO within, and the structural stability of the three-dimensional tunnel structure of LiMn 2 O 4 , the thermal stability of the battery can be secured. The second pattern, because the first electrode included in a small amount compared with the first pattern to a first pattern electrode active material particles in order to increase the charge and discharge characteristics LiNi 1 -x1- y1 Co x1 Mn y1 O 2 (0 <x1 <1 and 0 < It is advantageous to use at least one of y1 <1) and LiNi 1 - x2 -y2 Co x2 Al y2 O 2 (0 <x2 <1 and 0 <y2 <1).
또한, 제2 패턴의 공극률이 상기 제1 패턴의 공극률보다 작기 때문에, 제2 패턴에 의해 에너지 밀도가 향상되어 전지의 용량이 개선될 수 있다. 동시에, 제2 패턴의 공극률이 상기 제1 패턴의 공극률보다 작기 때문에, 제2 패턴의 부피 팽창률이 제1 패턴의 부피 팽창률보다 클 수 있다. 제2 패턴의 두께가 제1 패턴의 두께보다 작으므로, 제2 패턴의 큰 부피 팽창에 의하더라도 제2 패턴의 두께가 제1 패턴의 두께를 지나치게 넘어서지 않을 수 있어서 전극의 두께가 과도하게 증가하지 않을 수 있으며, 이웃하는 제1 패턴과 접하지 않거나, 접하더라도 제1 패턴에 과도한 응력이 가해지지 않을 수 있다. 따라서, 충전 시 전극 팽창으로 인한 전지 두께의 지나친 증가가 방지되고, 양극의 기계적 안정성이 확보될 수 있다. 구체적으로, 제1 패턴의 공극률은 제2 패턴의 공극률보다 5% 이상 클 수 있으며, 더욱 구체적으로 제1 패턴의 공극률은 23% 내지 30%일 수 있으며, 제2 패턴의 공극률은 18% 내지 25%일 수 있다. 상기 공극률은 전극의 로딩량(g/25cm2)과 전극 두께를 측정하여 계산될 수 있다.In addition, since the porosity of the second pattern is smaller than the porosity of the first pattern, the energy density may be improved by the second pattern, thereby improving the capacity of the battery. At the same time, since the porosity of the second pattern is smaller than the porosity of the first pattern, the volume expansion rate of the second pattern may be greater than the volume expansion rate of the first pattern. Since the thickness of the second pattern is smaller than the thickness of the first pattern, the thickness of the second pattern may not exceed the thickness of the first pattern even by the large volume expansion of the second pattern so that the thickness of the electrode does not increase excessively. The first pattern may not be in contact with the neighboring first pattern, or excessive stress may not be applied to the first pattern. Therefore, excessive increase in battery thickness due to electrode expansion during charging can be prevented, and mechanical stability of the positive electrode can be ensured. Specifically, the porosity of the first pattern may be at least 5% greater than the porosity of the second pattern, more specifically, the porosity of the first pattern may be 23% to 30%, and the porosity of the second pattern is 18% to 25 May be%. The porosity can be calculated by measuring the loading amount of the electrode (g / 25cm 2 ) and the electrode thickness.
본 발명의 실시예들에 있어서, 제1 활물질층, 제1 패턴, 및 제2 패턴은 각각 바인더 및 도전재를 포함할 수 있다. In embodiments of the present invention, the first active material layer, the first pattern, and the second pattern may each include a binder and a conductive material.
상기 바인더로는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 고분자, 또는 다양한 공중합체 등의 다양한 종류의 바인더 고분자가 사용될 수 있다.The binder may be polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride, polyacrylonitrile, polymethylmethacrylate, Polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), Various kinds of binder polymers such as sulfonated EPDM, styrene butadiene rubber (SBR), fluorine rubber, poly acrylic acid and polymers in which hydrogen thereof is replaced with Li, Na or Ca, or various copolymers can be used. Can be.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. The conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery. Examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, farnes black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
본 발명의 실시예들에 따른 양극은 활물질, 도전재 및 바인더를 포함하는 전극 합제를 용매에 혼합하여 만들어진 슬러리를 집전체 상에 도포한 후 건조 및 압연하여 제조될 수 있다. 구체적으로, 집전체 상에 상기 방법으로 제1 활물질층을 형성한 뒤, 제1 활물질층 상에 제1 패턴 및 제2 패턴을 형성시킬 수 있다. 상기 제1 활물질층, 제1 패턴 및 제2 패턴은 스크린 인쇄법, 잉크젯법, 스프레이법, 그라비어 인쇄법, 열전사법, 톳판 인쇄법, 요판 인쇄법 및 오프셋 인쇄법 중 적어도 1 이상을 조합해 이용할 수 있다. 상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.The positive electrode according to the embodiments of the present invention may be prepared by applying a slurry made by mixing an electrode mixture including an active material, a conductive material, and a binder in a solvent on a current collector, followed by drying and rolling. Specifically, after the first active material layer is formed on the current collector by the above method, the first pattern and the second pattern may be formed on the first active material layer. The first active material layer, the first pattern, and the second pattern may be used in combination with at least one of screen printing, inkjet, spray, gravure printing, thermal transfer, plate printing, intaglio printing, and offset printing. Can be. The solvent may be a solvent generally used in the art, and may include dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone or acetone. Water, and the like, one of these alone or a mixture of two or more thereof may be used.
보다 구체적으로, 집전체 상에 제1 활물질층 형성용 슬러리를 도포, 건조하여 제1 활물질층을 형성할 수 있다. 이 후, 패턴 마스크를 제1 활물질층 상에 배치한 뒤, 제2 패턴 형성용 슬러리를 도포 및 건조시킨 뒤, 압연하여 제1 활물질층의 일부분에 선택적으로 특정 두께의 제2 패턴을 형성할 수 있다. 이 후, 상기 패턴 마스크를 제거하고, 제1 패턴을 형성하기 위해 제1 활물질층의 일부 및 제2 패턴 상에 또 다른 패턴 마스크를 배치시킬 수 있다. 이 후, 제1 패턴 형성용 슬러리를 도포 및 건조시킨 뒤, 압연하여 특정 두께의 제1 패턴을 형성할 수 있다. 이 후, 상기 패턴 마스크를 제거할 수 있다. 그러나 반드시 이에 한정된 것은 아니다. 경우에 따라, 에칭 공정을 사용하여 제1 패턴과 제2 패턴을 형성시킬 수도 있다. More specifically, the slurry for forming the first active material layer may be applied and dried on the current collector to form the first active material layer. Thereafter, the pattern mask is disposed on the first active material layer, the slurry for forming the second pattern is applied and dried, and then rolled to selectively form a second pattern having a specific thickness on a portion of the first active material layer. have. Thereafter, the pattern mask may be removed, and another pattern mask may be disposed on a part of the first active material layer and the second pattern to form the first pattern. Thereafter, the slurry for forming the first pattern may be applied and dried, and then rolled to form a first pattern having a specific thickness. Thereafter, the pattern mask may be removed. However, it is not necessarily limited thereto. In some cases, the first pattern and the second pattern may be formed using an etching process.
상기 제1 활물질층의 제1 활물질 입자, 바인더, 및 도전재는 95 내지 99 : 0.7 내지 2.5 : 0.3 내지 2.5의 중량비로 포함될 수 있으며, 제1 패턴 내의 제1 패턴 활물질 입자, 바인더 및 도전재는 95 내지 99 : 0.7 내지 2.5 : 0.3 내지 2.5의 중량비로 포함될 수 있으며, 제2 패턴 내의 제2 패턴 활물질 입자, 바인더 및 도전재는 95 내지 99 : 0.7 내지 2.5 : 0.3 내지 2.5의 중량비로 포함될 수 있다. The first active material particles, the binder, and the conductive material of the first active material layer may be included in a weight ratio of 95 to 99: 0.7 to 2.5: 0.3 to 2.5, and the first pattern active material particles, binder, and conductive material in the first pattern may be 95 to 99. It may be included in a weight ratio of 99: 0.7 to 2.5: 0.3 to 2.5, the second pattern active material particles, the binder and the conductive material in the second pattern may be included in a weight ratio of 95 to 99: 0.7 to 2.5: 0.3 to 2.5.
본 발명의 또 다른 실시예에 따른 이차 전지는, 음극, 양극, 상기 양극 및 음극 사이에 개재된 분리막, 및 전해질을 포함할 수 있으며, 상기 양극은 본 발명의 일 실시예에 따른 전극일 수 있다.A secondary battery according to another embodiment of the present invention may include a negative electrode, a positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, and the positive electrode may be an electrode according to an embodiment of the present invention. .
상기 음극은 음극 집전체 및 상기 음극 집전체 상에 배치되며 음극 활물질을 포함하는 음극 활물질층을 포함할 수 있다.The negative electrode may include a negative electrode current collector and a negative electrode active material layer disposed on the negative electrode current collector and including a negative electrode active material.
상기 음극에 있어서, 음극 집전체는 이차 전지에 화학적 변화를 유발하지 않으면서 도전성을 지닌 것으로서, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다In the negative electrode, the negative electrode current collector is conductive without causing chemical change in the secondary battery, and is, for example, on the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel. Surface treated with carbon, nickel, titanium, silver or the like can be used.
상기 음극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOx(0 < x < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.The negative electrode active material may be a compound capable of reversible intercalation and deintercalation of lithium. Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fibers, and amorphous carbon; Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys; Metal oxides capable of doping and undoping lithium, such as SiO x (0 <x <2), SnO 2, vanadium oxide, lithium vanadium oxide; Or a composite including the metallic compound and the carbonaceous material, such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more thereof may be used. In addition, a metal lithium thin film may be used as the anode active material. As the carbon material, both low crystalline carbon and high crystalline carbon can be used. Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is amorphous, plate, scaly, spherical or fibrous natural graphite or artificial graphite, Kish graphite (Kish) graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch High-temperature calcined carbon such as derived cokes is typical.
분리막으로는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.The separator separates the negative electrode from the positive electrode and provides a passage for lithium ions, and can be used without particular limitation as long as the separator is used as a separator in a secondary battery. In particular, it has a low resistance to ion migration of the electrolyte and an excellent ability to hydrate the electrolyte. It is preferable. Specifically, a porous polymer film, for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used. In addition, conventional porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used. In addition, a coated separator including a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
상기 전해질은 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.The electrolyte may include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery, but are not limited thereto.
구체적으로, 상기 전해질은 비수계 유기용매와 금속염을 포함할 수 있다. Specifically, the electrolyte may include a non-aqueous organic solvent and a metal salt.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.As the non-aqueous organic solvent, for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butylo lactone, 1,2-dime Methoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxoron, acetonitrile, nitromethane, methyl formate, Methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethers, pyrion An aprotic organic solvent such as methyl acid or ethyl propionate can be used.
특히, 상기 카보네이트계 유기 용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기 용매로서 유전율이 높아 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸카보네이트 및 디에틸카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해질을 만들 수 있어 더욱 바람직하게 사용될 수 있다. In particular, ethylene carbonate and propylene carbonate, which are cyclic carbonates among the carbonate-based organic solvents, may be preferably used as high-viscosity organic solvents because they have high dielectric constants to dissociate lithium salts well, such as dimethyl carbonate and diethyl carbonate. When the same low viscosity, low dielectric constant linear carbonate is mixed and used in an appropriate ratio, an electrolyte having a high electrical conductivity can be made, and thus it can be more preferably used.
상기 금속염은 리튬염을 사용할 수 있고, 상기 리튬염은 상기 비수 전해액에 용해되기 좋은 물질로서, 예를 들어, 상기 리튬염의 음이온으로는 F-, Cl-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택되는 1종을 사용할 수 있다.The metal salt may be a lithium salt, the lithium salt is a material that is readily soluble in the non-aqueous electrolyte, for example, is in the lithium salt anion F -, Cl -, I - , NO 3 -, N (CN ) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF - , (CF 3) 6 P - , CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2 ) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -, SCN - may be used one selected from the group consisting of - and (CF 3 CF 2 SO 2) 2 N.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다.In addition to the electrolyte components, the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc. for the purpose of improving battery life characteristics, reducing battery capacity, and improving discharge capacity of the battery. Ethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imida One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be included.
본 발명의 다른 일 실시예에 따르면, 상기 이차 전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지 팩을 제공한다. 상기 전지 모듈 및 전지 팩은 고용량, 높은 율속 특성 및 사이틀 특성을 갖는 상기 이차 전지를 포함하므로, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 중대형 디바이스의 전원으로 이용될 수 있다.According to another embodiment of the present invention, a battery module including the secondary battery as a unit cell and a battery pack including the same are provided. Since the battery module and the battery pack include the secondary battery having high capacity, high rate characteristics, and cycle characteristics, a medium-large device selected from the group consisting of an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, and a power storage system It can be used as a power source.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 상기 실시예는 본 기재를 예시하는 것일 뿐 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.Hereinafter, preferred embodiments are provided to aid in understanding the present invention, but the above embodiments are merely illustrative of the present disclosure, and it is apparent to those skilled in the art that various changes and modifications can be made within the scope and spirit of the present disclosure. It is natural that such variations and modifications fall within the scope of the appended claims.
실시예 및 비교예Examples and Comparative Examples
실시예Example 1: 전지의 제조 1: Preparation of Battery
(1) 양극의 제조(1) manufacture of positive electrode
1) 제1 활물질층의 형성1) Formation of First Active Material Layer
평균 입경(D50)이 16㎛인 LiCoO2, 바인더인 폴리비닐리덴플루오라이드(PVdF), 도전재인 카본 블랙을 97:1.8:1.2의 중량비로 혼합하여 혼합물 5g을 제조하였다. 상기 혼합물에 N-메틸피롤리돈(NMP)를 28.9g 첨가하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 두께가 20㎛인 알루미늄 집전체에 도포 및 건조시켰다. 이 때, 순환되는 공기의 온도는 120℃였다. 이 후, 압연을 진행하여 두께가 60㎛인 제1 활물질층을 형성하였다.5 g of a mixture was prepared by mixing LiCoO 2 having an average particle diameter (D 50 ) of 16 μm, polyvinylidene fluoride (PVdF) as a binder, and carbon black as a conductive material at a weight ratio of 97: 1.8: 1.2. 28.9 g of N-methylpyrrolidone (NMP) was added to the mixture to prepare a positive electrode slurry. The positive electrode slurry was applied and dried to an aluminum current collector having a thickness of 20 μm. At this time, the temperature of the air circulated was 120 ° C. Thereafter, rolling was performed to form a first active material layer having a thickness of 60 μm.
2) 제2 패턴의 형성2) formation of the second pattern
제2 패턴 활물질 입자인 평균 입경(D50)이 13㎛인 LiNi0 . 6Co0 . 2Mn0 . 2O2, 바인더인 PVdF, 도전재인 카본 블랙을 97:1.8:1.2의 중량비로 혼합하여 혼합물 5g을 제조하였다. 상기 혼합물에 NMP를 28.9g 첨가하여 양극 슬러리를 제조하였다. 한편, 제1 활물질층의 일부 상에 패턴 마스크 배치시킨 뒤, 상기 양극 슬러리를 도포 및 건조시켰다. 이 때, 순환되는 공기의 온도는 120℃였다. 이 후, 패턴 마스크를 제거하고 압연하여 두께가 20㎛이고 공극률이 24%인 제2 패턴을 형성하였다.LiNi 0 having an average particle diameter (D 50 ) of the second pattern active material particles is 13 μm . 6 Co 0 . 2 Mn 0 . 5 g of a mixture was prepared by mixing 2 O 2 , PVdF as a binder, and carbon black as a conductive material at a weight ratio of 97: 1.8: 1.2. 28.9 g of NMP was added to the mixture to prepare a positive electrode slurry. On the other hand, after placing a pattern mask on a part of the first active material layer, the positive electrode slurry was applied and dried. At this time, the temperature of the air circulated was 120 ° C. Thereafter, the pattern mask was removed and rolled to form a second pattern having a thickness of 20 μm and a porosity of 24%.
3) 제1 패턴의 형성3) formation of the first pattern
제1 패턴 활물질 입자인 평균 입경(D50)이 12㎛인 LiCoO2, 바인더인 PVdF, 도전재인 카본 블랙을 97:1.8:1.2의 중량비로 혼합하여 혼합물 5g을 제조하였다. 상기 혼합물에 NMP를 28.9g 첨가하여 양극 슬러리를 제조하였다. 한편, 제1 활물질층 일부 상 및 제2 패턴 상에 패턴 마스크 배치시킨 뒤, 상기 양극 슬러리를 상기 제1 활물질층 상에 도포한 뒤, 건조시켰다. 이 때, 순환되는 공기의 온도는 120℃였다. 이 후, 패턴 마스크를 제거하고 압연하여 두께가 30㎛이고 공극률이 29%인 제1 패턴을 형성하였다.5 g of a mixture was prepared by mixing LiCoO 2 having an average particle diameter (D 50 ) of the first pattern active material particles at 12 μm, PVdF of a binder, and carbon black of a conductive material at a weight ratio of 97: 1.8: 1.2. 28.9 g of NMP was added to the mixture to prepare a positive electrode slurry. On the other hand, after the pattern mask was disposed on a portion of the first active material layer and the second pattern, the positive electrode slurry was applied onto the first active material layer and then dried. At this time, the temperature of the air circulated was 120 ° C. Thereafter, the pattern mask was removed and rolled to form a first pattern having a thickness of 30 μm and a porosity of 29%.
4) 건조 및 타발 공정4) drying and punching process
이 후, 제1 활물질층, 제1 패턴, 제2 패턴이 형성된 집전체를 130℃의 진공 오븐에서 12시간동안 건조시킨 뒤, 1.4875cm2의 원형으로 타발하여 양극을 제조하였다.Thereafter, the current collector on which the first active material layer, the first pattern, and the second pattern were formed was dried in a vacuum oven at 130 ° C. for 12 hours, and then punched into a circle of 1.4875 cm 2 to prepare a positive electrode.
(2) 전지의 제조(2) production of batteries
1.7671cm2의 원형으로 절단된 리튬 금속 박막을 음극으로 하고, 상기 음극과 상기 제조된 양극을 이용하여 전지를 제조하였다. 구체적으로, 상기 양극과 음극 사이에 다공성 폴리에틸렌의 분리막을 게재하여 전극 조립체를 제조하였다. 한편, 에틸렌 카보네이트(EC)와 에틸메틸 카보네이트(EMC)의 혼합 부피바 7:3인 혼합 용액에 0.5중량%로 용해된 비닐렌 카보네이트(VC)를 용해시키고, LiPF6를 용해(1M 농도)시켜 전해액을 제조하였다. 상기 전해액을 상기 전극 조립체에 주입하여 리튬 코인 하프 셀을 제조하였다.A lithium metal thin film cut into a round shape of 1.7671 cm 2 was used as a negative electrode, and a battery was manufactured using the negative electrode and the prepared positive electrode. Specifically, an electrode assembly was prepared by placing a separator of porous polyethylene between the anode and the cathode. Meanwhile, vinylene carbonate (VC) dissolved at 0.5% by weight was dissolved in a mixed solution of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) at a volume of 7: 3, and LiPF 6 was dissolved (1 M concentration). An electrolyte solution was prepared. The electrolyte was injected into the electrode assembly to prepare a lithium coin half cell.
실시예Example 2: 전지의 제조 2: manufacture of a battery
(1) 양극 및 전지의 제조(1) Preparation of Positive Electrode and Battery
제1 활물질 입자로 평균 입경(D50)이 13㎛인 LiNi0 . 85Co0 . 1Al0 . 05O2을, 제1 패턴 활물질 입자로 평균 입경(D50)이 14㎛인 LiCoO2을, 제2 패턴 활물질 입자로 평균 입경(D50)이 14㎛인 LiCoO2을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 양극 및 전지를 제조하였다. 이 때, 제1 활물질층의 두께는 50㎛이었다. 또한, 제1 패턴의 두께는 35㎛, 공극률은 29%였다. 또한, 제2 패턴의 두께는 25㎛, 공극률은 24%였다. LiNi 0 having an average particle diameter (D 50 ) of 13 μm as the first active material particles . 85 Co 0 . 1 Al 0 . A 05 O 2, a, except that the average particle diameter (D 50) is 14㎛ of the LiCoO 2, the average particle diameter (D 50) to a second pattern electrode active material particle 14㎛ of LiCoO 2 as a first pattern electrode active material particle is carried out A positive electrode and a battery were manufactured in the same manner as in Example 1. At this time, the thickness of the first active material layer was 50 μm. In addition, the thickness of the first pattern was 35 µm and the porosity was 29%. In addition, the thickness of the second pattern was 25 µm and the porosity was 24%.
실시예Example 3: 전지의 제조 3: manufacture of battery
(1) 양극 및 전지의 제조(1) Preparation of Positive Electrode and Battery
제1 활물질 입자로 평균 입경(D50)이 15㎛인 LiCoO2을, 제1 패턴 활물질 입자로 평균 입경(D50)이 14㎛인 LiNi0 . 6Co0 . 2Mn0 . 2O2을, 제2 패턴 활물질 입자로 평균 입경(D50)이 5㎛인 LiFePO4을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 양극 및 전지를 제조하였다. 이 때, 제1 활물질층의 두께는 70㎛이었다. 또한, 제1 패턴의 두께는 24㎛, 공극률은 29%였다. 또한, 제2 패턴의 두께는 16㎛, 공극률은 24%였다.LiCoO 2 having an average particle diameter (D 50 ) of 15 μm as the first active material particles, and LiNi 0. Having an average particle diameter (D 50 ) of 14 μm as the first pattern active material particles . 6 Co 0 . 2 Mn 0 . 2 for O 2, and is first to prepare a positive electrode and battery in the same manner as in Example 1 except that the average particle diameter (D 50) to the second pattern of the active material particles 5㎛ LiFePO 4. At this time, the thickness of the first active material layer was 70 μm. In addition, the thickness of the first pattern was 24 µm and the porosity was 29%. In addition, the thickness of the second pattern was 16 µm and the porosity was 24%.
비교예Comparative example 1: 전지의 제조 1: Preparation of Battery
(1) 양극 및 전지의 제조(1) Preparation of Positive Electrode and Battery
제1 패턴의 두께를 20㎛, 제2 패턴의 두께를 30㎛으로 한 것을 제외하고는 실시예 1과 동일한 방법으로 양극 및 전지를 제조하였다.A positive electrode and a battery were manufactured in the same manner as in Example 1, except that the thickness of the first pattern was 20 μm and the thickness of the second pattern was 30 μm.
비교예Comparative example 2: 전지의 제조 2: manufacture of a battery
(1) 양극 및 전지의 제조(1) Preparation of Positive Electrode and Battery
제1 패턴의 두께를 25㎛, 제2 패턴의 두께를 35㎛으로 한 것을 제외하고는 실시예 2와 동일한 방법으로 양극 및 전지를 제조하였다.A positive electrode and a battery were manufactured in the same manner as in Example 2, except that the thickness of the first pattern was 25 μm and the thickness of the second pattern was 35 μm.
비교예Comparative example 3: 전지의 제조 3: manufacture of battery
(1) 양극 및 전지의 제조(1) Preparation of Positive Electrode and Battery
제1 패턴의 두께를 16㎛, 제2 패턴의 두께를 24㎛으로 한 것을 제외하고는 실시예 3과 동일한 방법으로 양극 및 전지를 제조하였다.A positive electrode and a battery were manufactured in the same manner as in Example 3, except that the thickness of the first pattern was 16 μm and the thickness of the second pattern was 24 μm.
실험예Experimental Example 1: 제1 패턴과 제 패턴의 부피 팽창률, 전극 두께 변화율 및 사이클 특성 평가 1: Evaluate the volume expansion rate, electrode thickness change rate and cycle characteristics of the first pattern and the second pattern
실시예 1 내지 3 및 비교예 1 내지 3의 전지에 대해 충·방전을 수행하여, 부피 팽창률, 방전 용량, 초기 효율, 용량 유지율 및 전극 두께 변화율을 평가하였고, 이를 하기 표 1에 기재하였다.Charge and discharge were performed on the batteries of Examples 1 to 3 and Comparative Examples 1 to 3 to evaluate the volume expansion rate, discharge capacity, initial efficiency, capacity retention rate, and electrode thickness change rate, which are described in Table 1 below.
한편, 1회 사이클과 2회 사이클은 0.1C로 충·방전하였고, 3회 사이클부터 49회 싸이클까지는 0.5C로 충·방전을 수행하였다. 50회 사이클은 충전(리튬이 음극에 들어있는 상태)상태에서 종료하고, 용량 유지율을 평가하였다. Meanwhile, one cycle and two cycles were charged and discharged at 0.1C, and charging and discharging were performed at 0.5C from 3 cycles to 49 cycles. The 50 cycles were finished in the state of charging (with lithium in the negative electrode) and the capacity retention rate was evaluated.
충전 조건: CC(정전류)/CV(정전압)(0.02C current cut-off / 실시예 1 및 비교예 1: 4.4V, 실시예 2 및 비교예 2: 4.25V, 실시예 3 및 비교예 3: 4.30V) Charging conditions: CC (constant current) / CV (constant voltage) (0.02C current cut-off / Example 1 and Comparative Example 1: 4.4V, Example 2 and Comparative Example 2: 4.25V, Example 3 and Comparative Example 3: 4.30V)
방전 조건: CC(정전류) 조건 3VDischarge condition: CC (constant current) condition 3 V
1회 충방전 시의 결과를 통해, 방전 용량(mAh/g) 및 초기 효율(%)을 도출하였다. 구체적으로 초기 효율(%)은 다음과 같은 계산에 의해 도출되었다.Discharge capacity (mAh / g) and initial efficiency (%) were derived through the result at the time of single charge / discharge. Specifically, the initial efficiency (%) was derived by the following calculation.
초기 효율(%) = (1회 방전 후 방전 용량 / 1회 충전 용량)×100Initial efficiency (%) = (discharge capacity after 1 discharge / 1 charge capacity) x 100
용량 유지율과 전극 두께 변화율은 각각 다음과 같은 계산에 의해 도출되었다. The capacity retention rate and the electrode thickness change rate were derived by the following calculations, respectively.
용량 유지율(%) = (49회 방전 용량 / 1회 방전 용량)×100Capacity retention rate (%) = (49 discharge capacity / 1 discharge capacity) × 100
전극 두께 변화율(%) = (최종 전극 두께 변화량 / 최초 전극 두께)×100% Change in electrode thickness = (final electrode thickness change / initial electrode thickness) × 100
제1 패턴 또는 제2 패턴의 부피 팽창률은 하기 식 1로 계산되며, 하기 A는 충방전 전의 제1 패턴 또는 제2 패턴의 두께이며, 하기 B는 충방전 후의 제1 패턴 또는 제2 패턴의 두께이다.The volume expansion ratio of the first pattern or the second pattern is calculated by Equation 1 below, where A is the thickness of the first pattern or the second pattern before charge and discharge, and B is the thickness of the first pattern or the second pattern after charge and discharge. to be.
[식 1][Equation 1]
부피 팽창률 = [(B-A)/A] × 100Volume Expansion Rate = [(B-A) / A] × 100
상기 두께는 마이크로미터로 확인하였다.The thickness was confirmed by micrometer.
전지battery 제1 패턴의 부피 팽창률(%)Volume expansion rate (%) of the first pattern 제2 패턴의 부피 팽창률(%)% Volume expansion of second pattern 방전 용량(mAh/g)Discharge Capacity (mAh / g) 초기 효율(%)Initial Efficiency (%) 용량 유지율(%)Capacity retention rate (%) 전극 두께 변화율(%)% Change in electrode thickness
실시예 1Example 1 0.20.2 0.50.5 180180 98.198.1 97.297.2 0.60.6
실시예 2Example 2 0.090.09 0.20.2 175175 86.286.2 97.897.8 0.40.4
실시예 3Example 3 0.080.08 0.150.15 154154 93.193.1 97.097.0 0.20.2
비교예 1Comparative Example 1 0.20.2 0.50.5 172172 97.697.6 95.295.2 1.01.0
비교예 2Comparative Example 2 0.090.09 0.20.2 169169 85.585.5 95.595.5 0.70.7
비교예 3Comparative Example 3 0.080.08 0.150.15 149149 92.192.1 95.095.0 0.40.4
실시예 1과 비교예 1, 실시예 2와 비교예 2, 실시예 3과 비교예 3을 각각 비교하면, 실시예들의 경우 전극 두께 변화율이 상대적으로 작고, 방전 용량과 용량 유지율이 상대적으로 큰 것을 확인할 수 있다. 이는 부피 팽창률이 상대적으로 큰 제2 패턴의 두께가 제1 패턴의 두께보다 작기 때문에, 충방전을 거듭하였을 때 양극 두께 변화가 적을 수 있으며, 제1 활물질층 중 전해액과 맞닿는 부분이 충분히 확보될 수 있기 때문으로 생각된다.Comparing Example 1, Comparative Example 1, Example 2, Comparative Example 2, Example 3, and Comparative Example 3, the electrode thickness change rate is relatively small, and the discharge capacity and the capacity retention rate are relatively large in the case of Examples. You can check it. This is because the thickness of the second pattern having a relatively large volume expansion ratio is smaller than the thickness of the first pattern, and thus the anode thickness may be less changed when charging and discharging is repeated, and a portion of the first active material layer contacting with the electrolyte may be sufficiently secured. I think it is.

Claims (8)

  1. 집전체;Current collector;
    제1 활물질 입자를 포함하며 상기 집전체 상에 배치된 제1 활물질층; 및A first active material layer including first active material particles and disposed on the current collector; And
    상기 제1 활물질층 상에서 서로 이격되어 교대로 배치된 제1 패턴 및 제2 패턴을 포함하되,It includes a first pattern and a second pattern alternately spaced apart from each other on the first active material layer,
    상기 제1 패턴은 제1 패턴 활물질 입자를 포함하고,The first pattern includes the first pattern active material particles,
    상기 제2 패턴은 제2 패턴 활물질 입자를 포함하며,The second pattern includes second pattern active material particles,
    상기 제1 패턴의 두께는 상기 제2 패턴의 두께보다 크고,The thickness of the first pattern is greater than the thickness of the second pattern,
    상기 제2 패턴의 부피 팽창률은 상기 제1 패턴의 부피 팽창률보다 큰 양극.And a volume expansion rate of the second pattern is greater than a volume expansion rate of the first pattern.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 활물질 입자 및 상기 제1 패턴 활물질 입자는 LiCoO2이며,The first active material particles and the first pattern active material particles are LiCoO 2 ,
    상기 제2 패턴 활물질 입자는 LiNi1 -x1- y1Cox1Mny1O2 (0<x1<1 및 0<y1<1) 및 LiNi1-x2-y2Cox2Aly2O2 (0<x2<1 및 0<y2<1) 중 적어도 어느 하나인 양극.The second pattern electrode active material particles LiNi 1 -x1- y1 Co x1 Mn y1 O 2 (0 <x1 <1 and 0 <y1 <1) and LiNi 1-x2-y2 Co x2 Al y2 O 2 (0 <x2 < At least one of 1 and 0 <y2 <1).
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 활물질 입자는 LiNi1 -x1- y1Cox1Mny1O2 (0<x1<1 및 0<y1<1) 및 LiNi1-x2-y2Cox2Aly2O2 (0<x2<1 및 0<y2<1) 중 적어도 어느 하나이며,The first active material particles is LiNi 1 -x1- y1 Co x1 Mn y1 O 2 (0 <x1 <1 and 0 <y1 <1) and LiNi 1-x2-y2 Co x2 Al y2 O 2 (0 <x2 <1 And 0 <y2 <1),
    상기 제1 패턴 활물질 입자 및 상기 제2 패턴 활물질 입자는 LiCoO2이고,The first pattern active material particles and the second pattern active material particles are LiCoO 2 ,
    상기 제2 패턴의 공극률은 상기 제1 패턴의 공극률 보다 작은 양극.The porosity of the second pattern is smaller than the porosity of the first pattern.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 1 패턴의 공극률과 제2 패턴의 공극률 차이는 5% 이상인 양극.The difference between the porosity of the first pattern and the porosity of the second pattern is 5% or more.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 활물질 입자는 LiCoO2이고,The first active material particles are LiCoO 2 ,
    상기 제1 패턴 활물질 입자는 LiNi1 -x1- y1Cox1Mny1O2 (0<x1<1 및 0<y1<1) 및 LiNi1-x2-y2Cox2Aly2O2 (0<x2<1 및 0<y2<1) 중 적어도 어느 하나이며,The first pattern electrode active material particles LiNi 1 -x1- y1 Co x1 Mn y1 O 2 (0 <x1 <1 and 0 <y1 <1) and LiNi 1-x2-y2 Co x2 Al y2 O 2 (0 <x2 < 1 and 0 <y2 <1),
    상기 제2 패턴 활물질 입자는 LiFePO4 및 LiMn2O4 중 적어도 어느 하나이고,The second pattern active material particles are at least one of LiFePO 4 and LiMn 2 O 4 ,
    상기 제2 패턴의 공극률은 상기 제1 패턴의 공극률 보다 작은 양극.The porosity of the second pattern is smaller than the porosity of the first pattern.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 1 패턴의 공극률과 제2 패턴의 공극률 차이는 5% 이상인 양극.The difference between the porosity of the first pattern and the porosity of the second pattern is 5% or more.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 패턴의 두께는 상기 제2 패턴의 두께의 1.1배 내지 2배인 양극.The thickness of the first pattern is 1.1 to 2 times the thickness of the second pattern.
  8. 청구항 1 내지 7 중 어느 하나의 양극;The positive electrode of any one of claims 1 to 7;
    음극;cathode;
    상기 양극과 상기 음극 사이에 개재된 분리막; 및A separator interposed between the anode and the cathode; And
    전해질을 포함하는 이차 전지.Secondary battery comprising an electrolyte.
PCT/KR2017/007116 2016-07-04 2017-07-04 Positive electrode and secondary battery including same positive electrode WO2018008954A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780004011.9A CN108352506B (en) 2016-07-04 2017-07-04 Positive electrode and secondary battery comprising same
EP17824510.6A EP3316358B1 (en) 2016-07-04 2017-07-04 Positive electrode and secondary battery including same positive electrode
JP2018524381A JP6763549B2 (en) 2016-07-04 2017-07-04 A positive electrode and a secondary battery containing the positive electrode
US15/751,343 US10622625B2 (en) 2016-07-04 2017-07-04 Positive electrode and secondary battery including the same
PL17824510T PL3316358T3 (en) 2016-07-04 2017-07-04 Positive electrode and secondary battery including same positive electrode

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0083958 2016-07-04
KR20160083958 2016-07-04
KR10-2017-0085057 2017-07-04
KR1020170085057A KR101948848B1 (en) 2016-07-04 2017-07-04 Positive electrode and lithium secondarty battery comprising the positive electrode

Publications (1)

Publication Number Publication Date
WO2018008954A1 true WO2018008954A1 (en) 2018-01-11

Family

ID=60912220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007116 WO2018008954A1 (en) 2016-07-04 2017-07-04 Positive electrode and secondary battery including same positive electrode

Country Status (1)

Country Link
WO (1) WO2018008954A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019507460A (en) * 2016-07-04 2019-03-14 エルジー・ケム・リミテッド A negative electrode and a secondary battery including the negative electrode
CN113410424A (en) * 2021-06-17 2021-09-17 昆山宝创新能源科技有限公司 Lithium silicon-based negative electrode plate and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052803A1 (en) * 2005-11-07 2007-05-10 Matsushita Electric Industrial Co., Ltd. Electrode for lithium rechargeable battery, lithium rechargeable battery, and process for producing said lithium rechargeable battery
EP2498323A2 (en) * 2011-03-09 2012-09-12 Samsung SDI Co., Ltd. Positive active material, and electrode and lithium battery containing the material
JP2014191876A (en) * 2013-03-26 2014-10-06 Dainippon Screen Mfg Co Ltd Electrode for lithium ion secondary battery, lithium ion secondary battery, and apparatus and method for manufacturing electrode for battery
US9012090B2 (en) * 2012-12-27 2015-04-21 Palo Alto Research Center Incorporated Advanced, high power and energy battery electrode manufactured by co-extrusion printing
KR20160050255A (en) * 2014-10-29 2016-05-11 주식회사 엘지화학 Multilayer Electrode for Secondary Battery and Preparation Method Thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052803A1 (en) * 2005-11-07 2007-05-10 Matsushita Electric Industrial Co., Ltd. Electrode for lithium rechargeable battery, lithium rechargeable battery, and process for producing said lithium rechargeable battery
EP2498323A2 (en) * 2011-03-09 2012-09-12 Samsung SDI Co., Ltd. Positive active material, and electrode and lithium battery containing the material
US9012090B2 (en) * 2012-12-27 2015-04-21 Palo Alto Research Center Incorporated Advanced, high power and energy battery electrode manufactured by co-extrusion printing
JP2014191876A (en) * 2013-03-26 2014-10-06 Dainippon Screen Mfg Co Ltd Electrode for lithium ion secondary battery, lithium ion secondary battery, and apparatus and method for manufacturing electrode for battery
KR20160050255A (en) * 2014-10-29 2016-05-11 주식회사 엘지화학 Multilayer Electrode for Secondary Battery and Preparation Method Thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019507460A (en) * 2016-07-04 2019-03-14 エルジー・ケム・リミテッド A negative electrode and a secondary battery including the negative electrode
US11043692B2 (en) 2016-07-04 2021-06-22 Lg Chem, Ltd. Negative electrode and secondary battery including the same
CN113410424A (en) * 2021-06-17 2021-09-17 昆山宝创新能源科技有限公司 Lithium silicon-based negative electrode plate and preparation method and application thereof

Similar Documents

Publication Publication Date Title
WO2018008953A1 (en) Negative electrode for secondary battery
KR101948848B1 (en) Positive electrode and lithium secondarty battery comprising the positive electrode
WO2017171409A1 (en) Anode for secondary battery, manufacturing method therefor, and secondary battery comprising same
WO2019108039A2 (en) Anode and secondary battery comprising same
WO2019172661A1 (en) Method for manufacturing negative electrode
WO2014189329A1 (en) Lithium secondary battery comprising multilayered active material layer
WO2019088672A1 (en) Anode active material for electrochemical device, anode comprising same anode active material, and electrochemical device comprising same anode
WO2012165758A1 (en) Lithium secondary battery
WO2020149622A1 (en) Anode and secondary battery comprising said anode
WO2019078544A1 (en) Negative electrode for lithium secondary battery, and lithium secondary battery comprising same
WO2018217071A1 (en) Fabrication method of cathode for secondary battery, cathode for secondary battery fabricated thereby, and lithium secondary battery comprising same cathode
WO2018088735A1 (en) Anode and method for fabricating same
WO2016032211A1 (en) Carbon-silicon composite electrode material and method for preparing same
WO2022010121A1 (en) Anode having improved rapid-charge property, and lithium secondary battery
WO2019093830A1 (en) Negative electrode active material, negative electrode comprising same negative electrode active material, and secondary battery comprising same negative electrode
WO2019164343A1 (en) Secondary battery
WO2019045552A1 (en) Method for manufacturing flexible battery, and flexible battery manufactured thereby
WO2020149681A1 (en) Anode and secondary battery comprising anode
WO2018226070A1 (en) Negative electrode, secondary battery including same negative electrode, and method for manufacturing same negative electrode
WO2021112607A1 (en) Method for producing positive electrode material for secondary battery
WO2019050216A2 (en) Anode active material, anode comprising same anode active material, and secondary battery comprising same anode
WO2018174616A1 (en) Positive electrode active material pre-dispersion composition, positive electrode for secondary battery, and lithium secondary battery comprising same
WO2018008954A1 (en) Positive electrode and secondary battery including same positive electrode
WO2020149618A1 (en) Method for preparing negative electrode active material
WO2017142261A1 (en) Negative electrode manufacturing method and negative electrode

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017824510

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15751343

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2018524381

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE