WO2018008740A1 - Method for judging onset possibility of large bowel cancer - Google Patents

Method for judging onset possibility of large bowel cancer Download PDF

Info

Publication number
WO2018008740A1
WO2018008740A1 PCT/JP2017/024956 JP2017024956W WO2018008740A1 WO 2018008740 A1 WO2018008740 A1 WO 2018008740A1 JP 2017024956 W JP2017024956 W JP 2017024956W WO 2018008740 A1 WO2018008740 A1 WO 2018008740A1
Authority
WO
WIPO (PCT)
Prior art keywords
methylation
cpg sites
colorectal cancer
methylation rate
ulcerative colitis
Prior art date
Application number
PCT/JP2017/024956
Other languages
French (fr)
Japanese (ja)
Inventor
楠 正人
裕二 問山
光司 田中
荒木 俊光
彰 三井
竹鼻 健司
努 梅澤
Original Assignee
有限会社ハヌマット
Eaファーマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2016/070330 external-priority patent/WO2018008153A1/en
Application filed by 有限会社ハヌマット, Eaファーマ株式会社 filed Critical 有限会社ハヌマット
Priority to EP21152410.3A priority Critical patent/EP3845669A1/en
Priority to CN201780041963.8A priority patent/CN109415771A/en
Priority to EP17824343.2A priority patent/EP3483282A4/en
Priority to EP21211939.0A priority patent/EP4023162A2/en
Priority to US16/315,961 priority patent/US20190241970A1/en
Priority to KR1020197000171A priority patent/KR20190045146A/en
Priority to JP2018526453A priority patent/JP7094881B2/en
Publication of WO2018008740A1 publication Critical patent/WO2018008740A1/en
Priority to US17/500,346 priority patent/US20220022851A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/303Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the vagina, i.e. vaginoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/31Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the rectum, e.g. proctoscopes, sigmoidoscopes, colonoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/32Devices for opening or enlarging the visual field, e.g. of a tube of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/06Biopsy forceps, e.g. with cup-shaped jaws
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/26Inoculator or sampler
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B2010/0216Sampling brushes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2523/00Reactions characterised by treatment of reaction samples
    • C12Q2523/10Characterised by chemical treatment
    • C12Q2523/125Bisulfite(s)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2537/00Reactions characterised by the reaction format or use of a specific feature
    • C12Q2537/10Reactions characterised by the reaction format or use of a specific feature the purpose or use of
    • C12Q2537/165Mathematical modelling, e.g. logarithm, ratio
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/154Methylation markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention relates to a method for determining the possibility of developing colorectal cancer in a patient with human ulcerative colitis, and a kit for collecting a rectal mucosa specimen used in the method.
  • This application claims priority based on PCT / JP2016 / 70330 filed on July 8, 2016 and Japanese Patent Application No. 2017-007725 filed in Japan on January 19, 2017, the contents of which are incorporated herein by reference. Incorporate.
  • Ulcerative colitis is an inflammatory bowel disease whose cause is unknown, which mainly causes ulcers and erosions in the colonic mucosa. Complete cure is very difficult, and remission and relapse are repeated. Symptoms include local symptoms of the large intestine such as diarrhea, abdominal pain and mucous stool, and systemic symptoms such as fever, vomiting, tachycardia and anemia. Patients with ulcerative colitis are more likely to develop colorectal cancer. Therefore, early detection and treatment of colorectal cancer is important in patients with ulcerative colitis.
  • Patent Document 1 discloses methylation of five miRNA genes miR-1, miR-9, miR-124, miR-137, and miR-34b / c in neoplastic tissues in patients with ulcerative colitis.
  • the methylation rate is significantly higher than that of the non-neoplastic ulcerative colitis tissue. Therefore, the methylation rate of the five miRNA genes in the biological sample collected from the colonic mucosa, which is a non-cancerous part, is It can be used as a marker for the development of colorectal cancer in patients with ulcerative colitis.
  • the present invention relates to a method for determining the possibility of developing colorectal cancer in a patient with human ulcerative colitis by a method that is less invasive than endoscopy and less burdensome on the patient, and a rectum provided for the method
  • An object is to provide a kit for collecting a mucosal specimen.
  • CpG sites cytosine-phosphodiester bond-guanine
  • DMR 112 differently methylated regions
  • the present invention provides the following methods [1] to [34] for determining the possibility of developing colon cancer, a DNA methylation rate analysis marker, and a colonic mucosa collection kit.
  • a method for determining the possibility of developing colorectal cancer in a patient with human ulcerative colitis One DNA present in each methylation variable region represented by methylation variable region numbers 1-112 shown in Tables 1 to 4 in DNA collected from a biological sample collected from a patient with human ulcerative colitis
  • a determination step of determining the likelihood of developing colon cancer in a patient with colitis The average methylation rate of the methylation variable region is an average value of the methylation rates of all CpG sites whose methylation rates were measured in the measurement
  • the multivariate discriminant measures the methylation rate of one or more CpG sites present in the methylation variable region including the average methylation rate as a variable
  • a discriminant value that is a value of the multivariate discriminant based on the average methylation rate of the methylation variable region calculated based on the methylation rate measured in the measurement step and the multivariate discriminant
  • the discriminant value is greater than or equal to a preset reference discriminant value, it is determined that the human ulcerative colitis patient is likely to develop colorectal cancer.
  • the multivariate discriminant includes, as a variable, an average methylation rate of two or more methylation variable regions selected from the methylation variable regions represented by methylation variable region numbers 1-112. [3] The method for determining the likelihood of developing colon cancer. [5] The multivariate discriminant includes, as a variable, an average methylation rate of three or more methylation variable regions selected from the methylation variable regions represented by methylation variable region numbers 1-112. [3] The method for determining the likelihood of developing colon cancer. [6] The multivariate discriminant is defined by using an average methylation rate of one or more methylation variable regions selected from the group consisting of methylation variable regions represented by methylation variable region numbers 1 to 58 as a variable.
  • the multivariate discriminant is defined by using an average methylation rate of one or more methylation variable regions selected from the group consisting of methylation variable regions represented by methylation variable region numbers 1 to 11 as a variable.
  • a method for determining the likelihood of developing colorectal cancer in a patient with human ulcerative colitis One or more CpG sites selected from the group consisting of CpG sites in the base sequences represented by SEQ ID NOs: 1 to 80 in DNA collected from biological samples collected from human ulcerative colitis patients
  • a measurement process for measuring the methylation rate Determination step of determining the possibility of developing colon cancer in the human ulcerative colitis patient based on the methylation rate measured in the measurement step and a preset reference value or a preset multivariate discriminant
  • the reference value is a value for discriminating between a carcinogenic ulcerative colitis patient and a non-cancer ulcerative colitis patient, each set for the methylation rate of each CpG site
  • the multivariate discriminant includes, as a variable, the methylation rate of at least one CpG site among the CpG sites in the base sequences represented by SEQ ID NOs: 1 to 80.
  • a method for determining the likelihood of developing colorectal cancer [9] The method for determining the likelihood of developing colon cancer according to the above [8], wherein in the measurement step, the methylation rate of 2 to 10 CpG sites is measured. [10] In the determination step, represented by SEQ ID NOs: 1, 2, 11, 12, 14 to 18, 21 to 24, 26, 27, 29, 31, 45, 64, 65, 67, 77, 79, and 80 One or more of the CpG sites in the nucleotide sequence to be methylated has a methylation rate equal to or lower than a preset reference value, or SEQ ID NOs: 3 to 10, 13, 19, 20, 25, 28, 30, When one or more of the CpG sites in the base sequences represented by 32-44, 46-63, 66, 68-76, and 78 have a methylation rate equal to or higher than a preset reference value, The method for determining the likelihood of developing colon cancer according to [8] or [9] above, wherein it is determined that the human ulcerative colitis patient is likely
  • the methylation rate of the CpG site in the base sequence represented by SEQ ID NOs: 1 to 32 is measured
  • the determination step one or more of the CpG sites in the base sequence represented by SEQ ID NOs: 1, 2, 11, 12, 14 to 18, 21 to 24, 26, 27, 29, and 31 are methyl Of the CpG site in the base sequence represented by SEQ ID NOs: 3 to 10, 13, 19, 20, 25, 28, 30, and 32
  • the above [8] to [10] wherein when the methylation rate is equal to or higher than a preset reference value, it is determined that the human ulcerative colitis patient is likely to develop colorectal cancer.
  • a method for determining the likelihood of developing colorectal cancer is determining the likelihood of developing colorectal cancer.
  • methylation rate among CpG sites in the base sequences represented by SEQ ID NOs: 1, 2, 11, 12, 14-18, 21-24, 26, 27, 29, and 31 Is the number of CpG sites whose pre-set reference value is less than or equal to a preset reference value, and methylation among CpG sites in the base sequences represented by SEQ ID NOs: 3 to 10, 13, 19, 20, 25, 28, 30, and 32
  • the sum of the number of CpG sites with a rate equal to or higher than a preset reference value is 3 or more, it is determined that the human ulcerative colitis patient is likely to develop colorectal cancer.
  • the methylation rate of the CpG site in the base sequences represented by SEQ ID NOs: 1 to 16 is measured,
  • the determination step at least one of the CpG sites in the base sequence represented by SEQ ID NOs: 1, 2, 11, 12, 14 to 16 has a methylation rate equal to or lower than a preset reference value.
  • the human ulcerative colitis patient when one or more of the CpG sites in the base sequences represented by SEQ ID NOs: 3 to 10 and 13 have a methylation rate equal to or higher than a preset reference value, the human ulcerative colitis patient
  • the methylation rate of the CpG site in the base sequences represented by SEQ ID NOs: 1 to 9 is measured
  • the determination step one or more of the CpG sites in the base sequences represented by SEQ ID NOs: 1 and 2 have a methylation rate equal to or lower than a preset reference value, or SEQ ID NOs: 3 to 9
  • the method for determining the likelihood of developing colorectal cancer according to any one of the above [8] to [10], wherein the determination is high.
  • the human ulcerative colitis patient is colon cancer
  • the method for determining the likelihood of developing colorectal cancer according to any one of [8] to [10] and [15], wherein it is determined that there is a high possibility of having developed.
  • the methylation rate of one or more CpG sites selected from the group consisting of CpG sites in the base sequences represented by SEQ ID NOs: 33 to 66 is measured
  • the determination step one or more of the CpG sites in the base sequences represented by SEQ ID NOs: 45, 64, and 65 have a methylation rate equal to or lower than a preset reference value, or SEQ ID NO: 33
  • the method for determining the likelihood of developing colorectal cancer according to any one of the above [8] to [10], wherein it is determined that there is a high possibility that the patient has colorectal cancer.
  • the methylation rate of one or more CpG sites selected from the group consisting of CpG sites in the base sequences represented by SEQ ID NOs: 33, 35, 36, 43, and 67-80 is determined.
  • at least one of the CpG sites in the base sequences represented by SEQ ID NOs: 67, 77, 79, and 80 has a methylation rate equal to or lower than a preset reference value, or a sequence
  • one or more of the CpG sites in the base sequences represented by the numbers 33, 35, 36, 43, 68 to 76, and 78 have a methylation rate that is equal to or higher than a preset reference value.
  • the multivariate discriminant includes, as a variable, the methylation rate of one or more CpG sites selected from the group consisting of CpG sites in the base sequences represented by SEQ ID NOs: 33 to 66,
  • the methylation rate of the CpG site in which the multivariate discriminant includes the methylation rate as a variable is measured
  • a discriminant value that is a value of the multivariate discriminant is calculated based on the methylation rate measured in the measurement step and the multivariate discriminant, and the discriminant value is set in advance as a reference discriminant value.
  • the method for determining the likelihood of developing colon cancer according to [8] or [9] above, wherein it is determined that the human ulcerative colitis patient is likely to develop colon cancer.
  • the multivariate discriminant is Including rate as a variable
  • the multivariate discriminant measures the methylation rate of the CpG site including the methylation rate as a variable
  • a discriminant value that is a value of the multivariate discriminant is calculated based on the methylation rate measured in the measurement step and the multivariate discriminant, and the discriminant value is set in advance as a reference discriminant value.
  • the multivariate discriminant is a logistic regression equation, a linear discriminant, an equation created by a naive Bayes classifier, or an equation created by a support vector machine A method for determining the likelihood of developing colorectal cancer.
  • the rectal mucosa tissue is A collection tool and a collection aid;
  • the sampling tool is A plate-like first clamping piece in which a first clamping surface for clamping the colonic mucosa is formed at one end;
  • a plate-like second clamping piece in which a second clamping surface for clamping the colonic mucosa is formed at one end;
  • a connecting portion that connects the first clamping piece and the second clamping piece in a state of being opposed to each other at an end portion where the first clamping surface and the second clamping surface are not formed;
  • Have At least one of the first clamping surface and the second clamping surface is cup-shaped
  • the collection aid is A frustoconical sampling tool introduction part having a slit on the side wall;
  • a rod-shaped gripping part Have One end of the gripping part is connected to the vicinity of the edge part of the larger outer diameter of the sampling tool introduction part, The slit is provided from the edge of the smaller outer diameter of the sampling tool introduction part toward the edge of the larger outer
  • a method for determining the likelihood of developing cancer [28]
  • the sampling tool is Having a first bent portion on the end side where the first clamping surface is formed with respect to the center of the first clamping piece;
  • the method for determining the likelihood of developing colorectal cancer according to [27] further including a second bent portion on an end side where the second clamping surface is formed with respect to a center portion of the second clamping piece.
  • a colonic mucosa collection kit comprising a collection tool and a collection aid.
  • the sampling tool is A plate-like first clamping piece in which a first clamping surface for clamping the colonic mucosa is formed at one end; A plate-like second clamping piece in which a second clamping surface for clamping the colonic mucosa is formed at one end; A connecting portion that connects the first clamping piece and the second clamping piece in a state of being opposed to each other at an end portion where the first clamping surface and the second clamping surface are not formed; Have At least one of the first clamping surface and the second clamping surface is cup-shaped,
  • the collection aid is A frustoconical sampling tool introduction part having a slit on the side wall; A rod-shaped gripping part; Have One end of the gripping part is connected to the vicinity of the edge part of the larger outer diameter of the sampling tool introduction part, The slit is provided from the edge of the smaller outer diameter of the sampling tool introduction part toward the edge of the larger outer diameter, The width of the slit is wider than the width of one end of the first clamping piece and the one
  • the sampling tool is Having a first bent portion on the end side where the first clamping surface is formed with respect to the center of the first clamping piece;
  • the collection aid has a through hole in the rotation axis direction, the outer diameter of the larger one of the collection tool introduction part is 30 to 70 mm, and the length in the rotation axis direction is 50 to 150 mm,
  • a DNA fragment comprising a DNA fragment having a partial base sequence containing one or more CpG sites selected from the group consisting of CpG sites in the base sequences represented by SEQ ID NOs: 1 to 80, and comprising a patient with ulcerative colitis
  • a marker for DNA methylation rate analysis used for determining the possibility of developing colorectal cancer.
  • the methylation rate of a specific CpG site or the average methylation rate of a specific DMR in a genomic DNA is examined for a biological sample collected from a patient with ulcerative colitis.
  • the rectal mucosa collection kit according to the present invention enables the rectal mucosa to be collected relatively safely and simply from the patient's anus.
  • FIG. 1 is an explanatory diagram of a sampling tool 2A which is an embodiment of the sampling tool and a sampling tool 2B which is a modified example thereof.
  • FIG. 2 is an explanatory diagram of a sampling tool 2C which is a modification of the sampling tool 2A.
  • FIG. 3 is an explanatory diagram of a collection assisting tool 11 ⁇ / b> A that is one embodiment of the collection assisting tool 11.
  • FIG. 4 is an explanatory diagram of a collection assistance tool 11B that is a modification of the collection assistance tool 11A.
  • FIG. 5 is an explanatory diagram of a usage mode of the rectal mucosa collection kit.
  • FIG. 1 is an explanatory diagram of a sampling tool 2A which is an embodiment of the sampling tool and a sampling tool 2B which is a modified example thereof.
  • FIG. 2 is an explanatory diagram of a sampling tool 2C which is a modification of the sampling tool 2A.
  • FIG. 3 is an explanatory diagram of a collection assisting tool
  • FIG. 6A shows the result of cluster analysis based on the methylation level of CpG sites in the 32CpG set selected as a result of comprehensive DNA methylation analysis in Example 1.
  • FIG. 6B shows the result of principal component analysis based on the methylation level of CpG sites in the 32 CpG set selected as a result of comprehensive DNA methylation analysis in Example 1.
  • FIG. 6C shows the result of cluster analysis based on the methylation level of CpG sites in the 16 CpG set selected as a result of comprehensive DNA methylation analysis in Example 1.
  • FIG. 6D shows the result of principal component analysis based on the methylation level of CpG sites in the 16 CpG set selected as a result of comprehensive DNA methylation analysis in Example 1.
  • FIG. 6A shows the result of cluster analysis based on the methylation level of CpG sites in the 32CpG set selected as a result of comprehensive DNA methylation analysis in Example 1.
  • FIG. 6C shows the result of cluster analysis based on the methylation
  • FIG. 6E shows the result of cluster analysis based on the methylation level of CpG sites in the 9CpG set selected as a result of comprehensive DNA methylation analysis in Example 1.
  • FIG. 6F is the result of principal component analysis based on the methylation level of CpG sites in the 9CpG set selected as a result of comprehensive DNA methylation analysis in Example 1.
  • FIG. 7A shows that in Example 1, among the CpG sites in the five miRNA genes miR-1, miR-9, miR-124, miR-137, and miR-34b / c, the absolute value of DiffScore is 30. It is the result of the cluster analysis based on the methylation level of 27 CpG sites which were super.
  • FIG. 7A shows that in Example 1, among the CpG sites in the five miRNA genes miR-1, miR-9, miR-124, miR-137, and miR-34b / c, the absolute value of DiffScore is 30. It is the result of the cluster analysis
  • Example 7B shows that in Example 1, among the CpG sites in the five miRNA genes miR-1, miR-9, miR-124, miR-137, and miR-34b / c, the absolute value of DiffScore is 30. It is the result of the principal component analysis based on the methylation level of 27 CpG sites which were super.
  • FIG. 8A is the result of cluster analysis based on the methylation level of CpG sites in the 34 CpG set selected as a result of comprehensive DNA methylation analysis in Example 2.
  • FIG. 8B shows the result of principal component analysis based on the methylation level of CpG sites in the 34 CpG set selected as a result of comprehensive DNA methylation analysis in Example 2.
  • FIG. 8A is the result of cluster analysis based on the methylation level of CpG sites in the 34 CpG set selected as a result of comprehensive DNA methylation analysis in Example 2.
  • FIG. 8B shows the result of principal component analysis based on the methylation level of CpG
  • FIG. 9 shows the CpG site (cg10931190) in the base sequence represented by SEQ ID NO: 34, the CpG site (cg136767149) in the base sequence represented by SEQ ID NO: 37, and SEQ ID NO: 56 in Example 2.
  • FIG. 3 is an ROC curve of a test for the presence or absence of colon cancer in a patient with ulcerative colitis, using as a marker the methylation rate of three CpG sites in the CpG site (cg14516100) in the base sequence.
  • FIG. 10A shows the result of cluster analysis based on the methylation level of CpG sites in the 18 CpG set selected as a result of comprehensive DNA methylation analysis in Example 3.
  • FIG. 10A shows the result of cluster analysis based on the methylation level of CpG sites in the 18 CpG set selected as a result of comprehensive DNA methylation analysis in Example 3.
  • FIG. 10B shows the result of principal component analysis based on the methylation level of CpG sites in the 18 CpG set selected as a result of comprehensive DNA methylation analysis in Example 3.
  • FIG. 11 shows the results of cluster analysis based on the methylation rates at DMR 112 sites (112 DMR sets) selected as a result of comprehensive DNA methylation analysis in Example 4.
  • FIG. 12 shows the result of principal component analysis based on the methylation rate of the 112DMR set selected as a result of comprehensive DNA methylation analysis in Example 4.
  • FIG. 13 shows, in Example 4, the average methylation rate of three DMRs, DMR represented by DMR number 2, DMR represented by DMR number 10, and DMR represented by DMR number 55, as a marker. It is a ROC curve of the test
  • the cytosine base of the CpG site in genomic DNA can undergo methylation modification at the 5th carbon.
  • the methylation rate of a CpG site refers to the amount of methylated cytosine base (methylated cytosine) and the methylation among CpG sites in a biological sample collected from an individual organism.
  • the amount of untreated cytosine base (unmethylated cytosine) is measured, and means the ratio (%) of the amount of methylated cytosine to the sum of both.
  • the average methylation rate of DMR is an arithmetic average value (arithmetic average value) or geometric average value (geometric average value) of methylation rates of a plurality of CpG sites present in DMR.
  • an average value other than this may be used.
  • the method for determining the likelihood of developing colorectal cancer according to the present invention is a method for determining the likelihood of developing colorectal cancer in human ulcerative colitis patients.
  • the methylation rate of ulcerative colitis patients who have not developed colorectal cancer (non-cancer ulcerative colitis patients) group and ulcerative colitis patients who have developed colorectal cancer (Carcinogenic ulcerative colitis patient) What is different from the group is used as a marker.
  • methylation rate of CpG sites or the average methylation rate of DMR serving as these markers is determined whether or not a human ulcerative colitis patient has developed colorectal cancer.
  • Visual discrimination is very difficult by using the methylation rate of a specific CpG site or the average methylation rate of a specific DMR as a marker used to determine the likelihood of developing colorectal cancer in patients with ulcerative colitis.
  • Early colorectal cancer in patients with ulcerative colitis can be detected more objectively and sensitively, and early detection can be expected.
  • the determination of the possibility of developing colon cancer in a patient with human ulcerative colitis based on the methylation rate of the CpG site as a marker may be performed based on the measured value of the methylation rate of the CpG site itself. You may perform based on the discriminant value calculated
  • the determination of the possibility of developing colon cancer in human ulcerative colitis patients based on the average methylation rate of DMR as a marker is based on the average methylation rate of DMR calculated from the methylation rate of two or more CpG sites in DMR. It may be performed based on the value itself, or may be performed based on a discriminant value obtained from this multivariate discriminant using a multivariate discriminant including the average methylation rate of DMR as a marker as a variable.
  • the CpG site and DMR used as markers in the present invention those having a methylation rate greatly different between the non-cancer ulcerative colitis patient group and the carcinogenic ulcerative colitis patient group are preferable.
  • the larger the difference between the two groups the more reliably the presence or absence of colorectal cancer can be detected.
  • the CpG site and DMR, which are markers in the present invention have a significantly higher methylation rate in patients with carcinogenic ulcerative colitis than in non-cancer ulcerative colitis patients, that is, the methylation rate becomes higher due to the onset of colon cancer.
  • the methylation rate of patients with carcinogenic ulcerative colitis may be significantly lower than that of non-cancer ulcerative colitis patients, that is, the methylation rate may be lowered due to the onset of colorectal cancer. .
  • CpG site and DMR used as markers in the present invention those having a small difference in methylation rate between a non-cancerous part and a cancerous part of the large intestine in the same carcinogenic ulcerative colitis patient are more preferable.
  • a methylation rate of CpG sites or an average methylation rate of DMR as an index, even when a biological sample collected from a non-cancerous site of a carcinogenic ulcerative colitis patient is used, cancer As in the case of using a biological sample collected from a site, it is possible to determine whether or not colon cancer has developed with high sensitivity.
  • the mucous membrane in the deep part of the large intestine must be collected using an endoscope or the like, and the burden on the patient is large, but the rectal mucosa near the anus can be collected relatively easily.
  • the rectal mucosa near the anus is used as a biological sample regardless of the position where the cancerous site is formed. Can be detected without omission.
  • the method of determining based on the measured value of the methylation rate of the CpG site itself specifically determines the possibility of developing colorectal cancer in human ulcerative colitis patients.
  • the CpG site used as a marker in the present invention is specifically one or more CpG sites selected from the group consisting of CpG sites in the base sequences represented by SEQ ID NOs: 1 to 80. Each base sequence is shown in Tables 5-12. In the base sequences in the table, CG in parentheses is a CpG site detected by the comprehensive DNA methylation analysis shown in Examples 1 to 3. A DNA fragment having a base sequence containing these CpG sites can be used as a DNA methylation rate analysis marker for determining the possibility of developing colon cancer in patients with ulcerative colitis.
  • the 32 CpG sites in parentheses in the base sequences represented by SEQ ID NOs: 1 to 32 were used in the comprehensive DNA methylation analysis in Example 1 described later.
  • the methylation rate is greatly different between the non-cancer ulcerative colitis patient group and the carcinogenic ulcerative colitis patient group.
  • those with carcinogenic ulcerative colitis patients whose methylation rate is considerably lower than those of non-cancer ulcerative colitis are SEQ ID NOs: 1, 2, 11, 12, 14-18, 21-24, 26, 27, CpG sites in the base sequences represented by 29 and 31 (in the table, “ ⁇ ”), and the methylation rate of carcinogenic ulcerative colitis patients is significantly higher than that of non-cancer ulcerative colitis patients,
  • the CpG site used as a marker is not limited to these 32 CpG sites, and includes other CpG sites in the nucleotide sequences represented by SEQ ID NOs: 1-32.
  • 34 CpG sites in parentheses in the base sequences represented by SEQ ID NOs: 33 to 66 were used in the comprehensive DNA methylation analysis in Example 2 described later.
  • the methylation rate is greatly different between the non-cancer ulcerative colitis patient group and the carcinogenic ulcerative colitis patient group.
  • the CpG sites in the nucleotide sequences represented by SEQ ID NOs: 45, 64, and 65 are those in which the methylation rate of carcinogenic ulcerative colitis patients is considerably lower than that of non-cancer ulcerative colitis patients (Table Among the nucleotide sequences represented by SEQ ID NOs: 33 to 44, 46 to 63, and 66, the methylation rate of carcinogenic ulcerative colitis patients is considerably higher than that of non-cancer ulcerative colitis patients. It is a CpG site in the middle ("+" in the table).
  • the CpG sites used as markers are not limited to these 34 CpG sites, and other CpG sites in the base sequences represented by SEQ ID NOs: 33 to 66 are also included.
  • a reference value for distinguishing between a carcinogenic ulcerative colitis patient and a non-cancer ulcerative colitis patient is set in advance. Measured in the case of CpG sites marked as “+” in Tables 5-7 and CpG sites marked as “+” in Tables 8-12 out of 34 CpG sets and 18 CpG sets in 32 CpG sets. When the methylation rate is equal to or higher than a preset reference value, it is determined that the human ulcerative colitis patient is likely to develop colorectal cancer.
  • the reference value of each CpG site is experimentally determined as a threshold value that can measure the methylation rate of the CpG site in the carcinogenic ulcerative colitis patient group and the non-cancer ulcerative colitis patient group, and distinguish both groups. be able to.
  • the standard value for methylation of an arbitrary CpG site is obtained by a general statistical method. Examples thereof are shown below, but the method of determining the reference value in the present invention is not limited to these.
  • the reference value for example, for any CpG site, patients who have not been diagnosed with colon cancer by pathological examination using biopsy tissue in endoscopic examination among patients with ulcerative colitis (non- DNA methylation of rectal mucosa of patients with cancer ulcerative colitis is measured. After measuring about several patients, the numerical value which represents the methylation of these patient groups by the average value or the median value, etc. can be calculated, and this can be made into a reference value.
  • DNA methylation of the rectal mucosa was measured respectively, and the mean or median etc.
  • a threshold value that distinguishes both values in consideration of the variation can be obtained and used as a reference value.
  • the CpG site used as a marker in the present invention only the CpG site in the base sequence represented by SEQ ID NOs: 1 to 16 may be used. These 16 CpG sites (hereinafter, collectively referred to as “16CpG set”) are, in the 32CpG set, the methylation rate between the non-cancerous site and the cancerous site of the colon of carcinogenic ulcerative colitis patients. The difference is small.
  • the CpG site used as a marker in the present invention it is also preferable to use only the CpG site in the nucleotide sequence represented by SEQ ID NOs: 1 to 9.
  • 9CpG set These nine CpG sites (hereinafter, collectively referred to as “9CpG set”) are, of the 16CpG set, the methylation rate between the non-cancerous site and the cancerous site of the colon of carcinogenic ulcerative colitis patients. The difference is smaller.
  • the determination step it is represented by SEQ ID NOs: 1, 2, 11, 12, 14 to 18, 21 to 24, 26, 27, 29, 31, 45, 64, 65, 67, 77, 79, and 80.
  • One or more of the CpG sites in the base sequence have a methylation rate not higher than a preset reference value, or SEQ ID NOs: 3 to 10, 13, 19, 20, 25, 28, 30, 32 to
  • the sum of the number of CpG sites with a methylation rate equal to or higher than a preset reference value among CpG sites in the base sequences represented by ⁇ 44, 46-63, 66, 68-76 and 78 is 2 or more In the case of preferably 3 or more, more preferably 5 or more, it is possible to make a more accurate determination by determining that the human ulcerative colitis patient has a high possibility of developing colon cancer. .
  • the 32CpG set is used as a marker in the present invention, that is, when the methylation rate of the 32CpG set is measured in the measurement step, in the determination step, SEQ ID NOs: 1, 2, 11, 12, 14 to One or more of the CpG sites in the base sequences represented by 18, 21 to 24, 26, 27, 29, and 31 have a methylation rate equal to or lower than a preset reference value, or SEQ ID NO: When one or more CpG sites in the base sequence represented by 3 to 10, 13, 19, 20, 25, 28, 30, and 32 have a methylation rate equal to or higher than a preset reference value Furthermore, it is determined that the human ulcerative colitis patient has a high possibility of developing colorectal cancer.
  • methylation is performed among CpG sites in the base sequences represented by SEQ ID NOs: 1, 2, 11, 12, 14 to 18, 21 to 24, 26, 27, 29, and 31.
  • the number of CpG sites whose rate is less than or equal to a preset reference value, and methyl of the CpG sites in the base sequences represented by SEQ ID NOs: 3 to 10, 13, 19, 20, 25, 28, 30, and 32 When the sum of the number of CpG sites with a conversion rate equal to or higher than a preset reference value is 3 or more, preferably 5 or more, the human ulcerative colitis patient may develop colon cancer By determining that the value is high, the determination can be performed with higher accuracy.
  • one or more of the CpG sites in the base sequences represented by SEQ ID NOs: 45, 64, and 65 have a methylation rate.
  • the methylation rate is preset for at least one of the CpG sites in the base sequence represented by SEQ ID NOs: 33-44, 46-63, and 66, which are below the preset reference value. If it is equal to or higher than the reference value, it is determined that the human ulcerative colitis patient is likely to develop colorectal cancer.
  • the number of CpG sites having a methylation rate equal to or lower than a preset reference value among the CpG sites in the base sequences represented by SEQ ID NOs: 45, 64, and 65, the number of CpG sites having a methylation rate equal to or lower than a preset reference value, and the sequence Among the CpG sites in the base sequences represented by the numbers 33 to 44, 46 to 63, and 66, the sum with the number of CpG sites whose methylation rate is not less than a preset reference value is preferably 2 or more, preferably 3 As described above, when it is more preferably 5 or more, it can be determined with higher accuracy by determining that the human ulcerative colitis patient has a high possibility of developing colorectal cancer.
  • one or more CpG sites in the base sequence represented by SEQ ID NOs: 67, 77, 79, and 80 are methylated.
  • the rate is below a preset reference value, or one or more of the CpG sites in the base sequence represented by SEQ ID NOs: 33, 35, 36, 43, 68 to 76, and 78 are methylated.
  • the rate is equal to or higher than a preset reference value, it is determined that the human ulcerative colitis patient is likely to develop colorectal cancer.
  • the determination method according to the present invention among the CpG sites in the base sequences represented by SEQ ID NOs: 67, 77, 79, and 80, the number of CpG sites having a methylation rate equal to or lower than a preset reference value And the sum of the number of CpG sites having a methylation rate equal to or higher than a preset reference value among the CpG sites in the base sequences represented by SEQ ID NOs: 33, 35, 36, 43, 68 to 76, and 78.
  • it is 2 or more, preferably 3 or more, more preferably 5 or more, it is determined that the human ulcerative colitis patient has a high possibility of developing colorectal cancer, thereby making a more accurate determination Can do.
  • one or more CpG sites selected from the group consisting of CpG sites in the base sequences represented by SEQ ID NOs: 1 to 80 can be used as markers.
  • the CpG sites used as markers in the present invention are all 80 CpG sites in parentheses in the base sequences represented by SEQ ID NOs: 1 to 80 (hereinafter sometimes collectively referred to as “80 CpG set”). May be the 32CpG set, the 16CpG set, the 9CpG set, the 34CpG set, or the 18CpG set.
  • the non-cancer ulcerative colitis patient group and the carcinogenic ulcerative colitis patient group have small dispersion of the methylation rate.
  • the non-cancer ulcerative colitis patient group and the carcinogenic ulcerative colitis patient group are excellent in that they have a high discrimination ability.
  • the 34CpG set and the 18CpG set are slightly less specific than the CpG site of the 32CpG set, the 16CpG set, and the CpG site of the 9CpG set, the sensitivity is very high. It is very suitable for primary screening test for ulcerative colitis.
  • the method of determining based on the value of the average methylation rate of a specific DMR is specifically a method of determining the likelihood of developing colorectal cancer in a human ulcerative colitis patient
  • the methylation rate of one or more CpG sites present in a specific DMR used as a marker in the present invention in DNA collected from a biological sample collected from a patient with human ulcerative colitis is measured.
  • the average methylation rate of the DMR calculated based on the methylation rate measured in the measurement step, and a reference value set in advance for the average methylation rate of each DMR.
  • a determination step of determining the possibility of developing colorectal cancer in a patient with human ulcerative colitis is calculated as the average value of the methylation rates of all CpG sites whose methylation rates were measured in the measurement step among the CpG sites in the DMR.
  • the DMR used as a marker in the present invention is specifically one or more DMRs selected from the group consisting of DMRs represented by DMR numbers 1-112.
  • the position of each DMR on the chromosome and the corresponding gene are shown in Tables 13-16.
  • the base positions of the start point and end point of DMR in the table are based on the human genome sequence data set “GRCh37 / hg19”.
  • DMRs represented by DMR numbers 1-112 have a plurality of CpG site methylation rates in patients with non-cancer ulcerative colitis.
  • Group and carcinogenic ulcerative colitis patient group are greatly different.
  • the average methylation rate of DMR average value of methylation rates of a plurality of CpG sites present in DMR
  • carcinogenic ulcerative colitis patients is considerably lower than that of non-cancer ulcerative colitis patients.
  • DMR numbers 1, 3 to 20, 23 to 28, 31 to 46, 49 to 60, 62, 65 to 69, 71, 73, 74, 79, 81, 82, 84, 86, 87, 90 to 92, 95 , 101, 103, 109, 110, and 112 ("-" in the table)
  • the fairly high ones are DMR numbers 2, 21, 22, 29, 30, 47, 48, 61, 63, 64, 70, 72, 75-78, 80, 83, 85, 88, 89, 93, 94, 96 ⁇ 100, 102, 104-108, and 11
  • the average methylation rate of DMR when used as a marker, one of the DMRs represented by DMR numbers 1-112 may be used as a marker, and the DMR represented by DMR numbers 1-112 Any two or more locations selected from the group consisting of may be used as markers, and all of the DMRs represented by DMR numbers 1-112 may be used as markers.
  • the number of DMRs used as markers in the group consisting of DMRs represented by DMR numbers 1-112 is preferably 2 or more, and more than 3 More preferably, it is more preferably 4 or more, and still more preferably 5 or more.
  • the DMR whose methylation rate is used as a marker in the present invention is a DMR represented by DMR numbers 1 to 58 (hereinafter sometimes referred to as “58 DMR set”). 1 or more selected from the group consisting of, more preferably 2 or more selected from the 58 DMR set, more preferably 3 or more selected from the 58 DMR set. 4 or more selected from the 58 DMR set, and more preferably 5 or more selected from the 58 DMR set.
  • the number is one or more selected from the group consisting of DMRs represented by DMR numbers 1 to 11 (hereinafter sometimes collectively referred to as “11 DMR sets”), and selected from 11 DMR sets. 2 or more, more preferably 3 or more selected from the 11 DMR set, even more preferably 4 or more selected from the 11 DMR set, from the 11 DMR set. It is particularly preferable that the number is 5 or more selected.
  • the average methylation rate of each DMR may be an average value of the methylation rates of all CpG sites included in each DMR, and at least one CpG site is selected from all CpG sites included in each DMR. It is good also as selecting arbitrarily and making it the average value of the methylation rate of this selected CpG site.
  • the methylation rate of each CpG site can be measured in the same manner as the measurement of the methylation rate of the CpG site in the base sequence represented by SEQ ID NO: 1 or the like.
  • a reference value for distinguishing between a carcinogenic ulcerative colitis patient and a non-cancer ulcerative colitis patient is set in advance.
  • the average methylation rate of the measured DMR is equal to or higher than a preset reference value, It is determined that the patient with inflammation is likely to develop colorectal cancer.
  • human ulcerative colitis when the average methylation rate of the measured DMR is not more than a preset reference value It is determined that the patient is likely to have colorectal cancer.
  • the standard value of the average methylation rate of each DMR is a threshold value that can be used to measure the average methylation rate of the DMR of the carcinogenic ulcerative colitis patient group and the non-cancer ulcerative colitis patient group, and to distinguish the two groups. It can be determined experimentally. Specifically, the standard value of the average methylation rate of DMR is obtained by a general statistical method.
  • the determination method includes the determination step including a methylation rate measured in the measurement step and a preset multivariate. Based on the discriminant, the possibility of developing colorectal cancer in the human ulcerative colitis patient can be determined.
  • the multivariate discriminant includes, as a variable, the methylation rate of one or more CpG sites among the CpG sites in the base sequences represented by SEQ ID NOs: 1 to 80.
  • the determination method includes the determination step including the methylation measured in the measurement step. Based on the average methylation rate of DMR calculated based on the conversion rate and a multivariate discriminant set in advance, the possibility of the onset of colon cancer in the human ulcerative colitis patient can be determined.
  • the multivariate discriminant includes, as a variable, the methylation rate of one or more CpG sites among the CpG sites in the 112DMR set.
  • the multivariate discriminant used in the present invention can be obtained by a general method used to discriminate between the two groups.
  • Examples of the multivariate discriminant include, but are not limited to, a logistic regression equation, a linear discriminant, a formula created with a naive Bayes classifier, or a formula created with a support vector machine. .
  • These multivariate discriminants include, for example, one of the CpG sites in the base sequences represented by SEQ ID NOs: 1 to 80 for the carcinogenic ulcerative colitis patient group and the non-cancer ulcerative colitis patient group or The methylation rate of two or more CpG sites can be measured, and the resulting methylation rate can be used as a variable to prepare a standard method.
  • the average methylation rate of one or more DMRs among the DMRs in the 112 DMR set was measured and obtained.
  • the methylation rate can be used as a variable, and can be prepared by a conventional method.
  • a reference discriminating value for discriminating between a carcinogenic ulcerative colitis patient and a non-cancer ulcerative colitis patient is set in advance.
  • the discriminant value which is the value of the multivariate discriminant used for the carcinogenic ulcerative colitis patient group and the non-cancer ulcerative colitis patient group, is obtained. It can be experimentally determined as a threshold value for distinguishing both groups by comparing the discriminant values of the cancer ulcerative colitis patient group.
  • the methylation rate of the CpG site or the average methylation rate of the DMR in which the multivariate discriminant used includes the methylation rate as a variable.
  • a discriminant value which is a value of the multivariate discriminant is calculated based on the methylation rate measured in the measurement step and the multivariate discriminant, and the discriminant value is set in advance.
  • the reference discriminant value it is determined whether a human ulcerative colitis patient whose CpG site methylation rate or DMR average methylation rate has been measured has developed colorectal cancer.
  • the discriminant value is greater than or equal to a preset reference discriminant value, it is determined that the human ulcerative colitis patient is likely to develop colorectal cancer.
  • the multivariate discriminant used in the present invention is preferably a formula containing as a variable the methylation rate of one or more CpG sites selected from the group consisting of the 34 CpG sites, and selected from the group consisting of the 34 CpG sites. More preferably, the formula includes only the methylation rate of one or more CpG sites as a variable, and only the methylation rate of 2 to 10 CpG sites arbitrarily selected from the group consisting of the 34 CpG sites is used as a variable. More preferably, the formula includes only the methylation rate of 2 to 5 CpG sites arbitrarily selected from the group consisting of the 34 CpG sites as a variable.
  • the multivariate discriminant used in the present invention is preferably a formula containing as a variable the methylation rate of one or more CpG sites selected from the group consisting of the 18CpG sites, and selected from the group consisting of the 18CpG sites. More preferably, the formula includes only the methylation rate of one or more CpG sites as a variable, and only the methylation rate of 2 to 10 CpG sites arbitrarily selected from the group consisting of the 18 CpG sites is used as a variable. More preferably, the formula includes only the methylation rate of 2 to 5 CpG sites arbitrarily selected from the group consisting of the 18 CpG sites as a variable.
  • the CpG sites constituting the 34 CpG set and the 18 CpG set are arbitrarily selected from 2 to 10, preferably 2 to 5 CpG sites from these sets, and even when only the selected CpG sites are used. With sufficient sensitivity and specificity, it is possible to determine the possibility of developing colon cancer in human ulcerative colitis patients.
  • the CpG site in the base sequence represented by SEQ ID NO: 34 the CpG site in the base sequence represented by SEQ ID NO: 37, and the sequence represented by SEQ ID NO: 56
  • the likelihood of developing colon cancer can be determined with a sensitivity of about 96% and a specificity of about 92%.
  • labor and cost may be excessive.
  • CpG site As a marker from the CpG sites constituting the 34CpG set and the 18CpG set, it is an appropriate number of CpG sites that can be measured in clinical examinations, and is accurate to human ulcerative colon. The possibility of developing colorectal cancer in patients with inflammation can be determined.
  • the multivariate discriminant used in the present invention is preferably an expression including, as a variable, an average methylation rate of one or more DMRs selected from the group consisting of the 112 DMR set, and selected from the group consisting of the 112 DMR set. More preferably, the formula includes only the average methylation rate of two or more DMRs as a variable, and includes only the average methylation rate of three or more DMRs arbitrarily selected from the group consisting of the 112 DMR sets as a variable.
  • the formula includes only the average methylation rate of four or more DMRs arbitrarily selected from the group consisting of the 112 DMR set as a variable, and more preferably the formula is arbitrarily selected from the group consisting of the 112 DMR set.
  • a formula including only the average methylation rate of 5 or more DMRs as a variable is particularly preferable.
  • a formula including an average methylation rate of one or more DMRs selected from the group consisting of the 58 DMR sets as a variable is preferable, and an average methyl of two or more DMRs selected from the group consisting of the 58 DMR sets is preferable.
  • the formula includes only the conversion rate as a variable, and more preferably includes only the average methylation rate of 2 to 10 DMRs arbitrarily selected from the group consisting of the 58 DMR set as a variable. More preferably, the formula includes only the average methylation rate of 3 to 10 DMRs arbitrarily selected from the group consisting of the variables, and 5 to 10 DMRs arbitrarily selected from the group consisting of the 58 DMR sets. Particularly preferred is a formula containing only the average methylation rate of as a variable.
  • a formula including, as a variable, an average methylation rate of one or more DMRs selected from the group consisting of the 11 DMR sets is preferable, and two or more DMRs selected from the group consisting of the 11 DMR sets are used.
  • a formula including only the average methylation rate as a variable is more preferable, and a formula including only the average methylation rate of 2 to 10 DMRs arbitrarily selected from the group consisting of the 11 DMR sets as a variable is more preferable.
  • the formula includes only the average methylation rate of 3 to 10 DMRs arbitrarily selected from the group consisting of the set as a variable, and 5 to 10 sites arbitrarily selected from the group consisting of the 11 DMR sets. Particularly preferred is a formula containing only the average methylation rate of DMR as a variable.
  • the biological sample used in the determination method according to the present invention is a biological sample collected from a patient with human ulcerative colitis and is not particularly limited as long as it contains the genomic DNA of the patient.
  • blood, plasma, serum, tears, saliva, or the like may be used, or tissue pieces collected from other tissues such as the digestive tract mucosa or the liver may be used.
  • the biological sample used in the determination method according to the present invention is preferably the large intestine mucosa because it more strongly reflects the state of the large intestine, and can be collected in the rectal mucosa because it can be collected with relatively low invasiveness. More preferably.
  • the rectal mucosa of the large intestine can be easily collected using, for example, a kit for collecting large intestine mucosa described later.
  • the biological sample may be in a state where DNA can be extracted, and may be subjected to various pretreatments.
  • it may be a formalin fixed paraffin embedded (FFPE) tissue.
  • FFPE formalin fixed paraffin embedded
  • Extraction of DNA from a biological sample can be performed by a conventional method, and various commercially available DNA extraction / purification kits can also be used.
  • the method for measuring the methylation rate of a CpG site is not particularly limited as long as it is a method capable of distinguishing and quantifying a methylated cytosine base and an unmethylated cytosine base for a specific CpG site.
  • the methylation rate of the CpG site can be measured by appropriately modifying methods known in the art as they are or as necessary. Examples of methods for measuring the methylation rate of CpG sites include bisulfite sequencing, COBRA (Combined Bisulfite Restoration Analysis), and qAMP (quantitative analysis of DNA methylation using real-time PCR). In addition, you may perform using the MIAM (Microarray-based Integrated Analysis of Methylation by Isoschizomers) method.
  • the kit for collecting large intestine mucosa comprises a collection tool for collecting with the rectal mucosa sandwiched therein, and a collection aid for expanding the anus and allowing the collection tool to reach the surface of the large intestine mucosa from the anus.
  • the colonic mucosa collection kit according to the present invention will be described below with reference to FIGS.
  • FIG. 1 (A) to FIG. 1 (C) are explanatory views of a sampling tool 2A, which is an embodiment of the sampling tool 2 of the colonic mucosa sampling kit 1.
  • FIG. FIG. 1 (A) is a perspective view of a state in which the first holding piece 3a and the second holding piece 3b of the sampling tool 2A are not applied
  • FIG. 1 (B) is a perspective view of the applied state.
  • FIG. 1C is a partially enlarged view of the distal end portion having the clamping surface of the sampling tool 2A.
  • the sampling tool 2A includes a first clamping piece 3a, a second clamping piece 3b, a connecting portion 4, a first clamping surface 5a, and a second clamping surface 5b. And having.
  • the first clamping piece 3a is a plate-like member in which a first clamping surface 5a for clamping the colonic mucosa is formed at one end, and the second clamping piece 3b is a large intestine at one end. It is a plate-like member on which a second clamping surface 5b that clamps the mucous membrane is formed.
  • the first sandwiching piece 3a and the second sandwiching piece 3b are connected to each other at the end where the first sandwiching surface 5a and the second sandwiching surface 5b are not formed in the connecting portion 4 in a state of facing each other. Yes.
  • the shape of the first sandwiching piece 3a and the second sandwiching piece 3b may be plate-like or rod-like, and may be formed to have a certain length for collecting the rectal mucosa. Don't stick to the shape.
  • the length of the first clamping piece 3a and the second clamping piece 3b is preferably 50 to 250 mm, more preferably 100 to 200 mm, still more preferably 70 to 200 mm, and even more preferably 70 to 150 mm. Since the first clamping piece 3a and the second clamping piece 3b have a length within the above range, the colonic mucosa is easily clamped and collected from the anus.
  • At least one of the first clamping surface 5a and the second clamping surface 5b is preferably cup-shaped. Since at least one of them is a cup shape, when the edge 6a of the first clamping surface 5a and the edge 6b of the second clamping surface 5b are in contact with each other, a space is formed inside. Of the large intestine mucosa sandwiched between the first sandwiching surface 5a and the second sandwiching surface 5b, the portion accommodated in the space does not take much load when the large intestine mucosa is torn, thus destroying the tissue. Can be suppressed. As shown in FIG. 1, since both are cup-shaped, it is easier to collect the mucosa of the large intestine, and tissue destruction can be suppressed.
  • the inner diameters of the marginal portion 6a and the marginal portion 6b may be set to such a size that a necessary amount of large intestine mucosa can be collected.
  • the large intestine mucosa used in the determination method according to the present invention it is sufficient if a small amount of mucosa can be collected.
  • the inner diameters of the edge portion 6a and the edge portion 6b to 1 to 5 mm, preferably 2 to 3 mm, a sufficient amount of the large intestine mucosa can be collected without excessively damaging the large intestine mucosa.
  • the edge portion 6a and the edge portion 6b may be flat as long as they can be brought into close contact with each other, but are preferably serrated as shown in FIG.
  • the large intestine mucosa can be cut and collected with a relatively weak force by being sandwiched between the edge 6a 'and the edge 6b'.
  • the protruding portion 8a may be formed on the inner side of one of the first holding piece 3a and the second holding piece 3b, and the cylindrical portion 9a may be formed on the other side so as to face each other.
  • the tip of the protrusion 8a fits into the tube 9a. Since the tip of the protrusion 8a is fitted into the tube portion 9a, it is possible to stably collect the large intestine mucosa without the edge 6a and the edge 6b being displaced when the collection tool 2 is separated from the large intestine mucosa. it can.
  • FIG. 1D is an explanatory diagram of a sampling tool 2B which is a modification of the sampling tool 2A. More specifically, the first clamping piece 3a and the second clamping piece 3b of the sampling tool 2B are applied with force.
  • the 1st clamping piece 3a may have the 1st bending part 7a in the edge part side in which the 1st clamping surface 5a is formed rather than the center part.
  • the 2nd clamping piece 3b may have the 2nd bending part 7b in the edge part side in which the 2nd clamping surface 5b is formed rather than the center part.
  • the first sandwiching piece 3a and the second sandwiching piece 3b are inclined while maintaining a state in which they are opposed to each other on the distal end side where the sandwiching surface is formed with respect to the center portion, thereby assisting collection. It becomes easy to penetrate the slit 13 of the tool 11 and contact the colonic mucosa.
  • the bending angle ⁇ 1 is preferably 10 to 50 °, more preferably 20 to 40 °, and even more preferably 25 to 35 °.
  • the length from the first bent portion 7a to the tip portion of the first clamping surface 5a and the length from the second bent portion 7b to the tip portion of the second holding surface 5b are 20 to 60 mm. 30 to 50 mm is more preferable.
  • the length from the bent portion to the distal end portion of the clamping surface is within the above range, it is easier to collect the mucous membrane in a state where it passes through the slit 13 of the collection assisting tool 11.
  • FIG. 2 (A) to 2 (E) are explanatory views of a sampling tool 2C, which is another modification of the sampling tool 2A.
  • FIG. 2 (A) is a front view showing a state in which the first clamping piece 3a and the second clamping piece 3b of the sampling tool 2 are not pressed
  • FIG. 2 (B) is a plan view of the sampling tool 2C.
  • FIG. 2C is an enlarged view of the protruding portion 8b of the sampling tool 2C
  • FIG. 2D is an opening edge of the cylindrical portion 9b where the locking claw of the protruding portion 8b is at the tip of the sampling tool 2C.
  • FIG. 2E is a plan view showing a state in which the first clamping surface 5a and the second clamping surface 5b are bonded to each other at the distal end portion of the sampling tool 2C.
  • the collection tool 2 When collecting mucosal tissue from the rectum of the subject, the collection tool 2 is more in a closed state than in a state in which the distance between the first holding piece 3a and the second holding piece 3b is open. It is easy to penetrate the slit 13. Therefore, as shown by the protrusion 8b in FIG. 2, the protrusion of the collection tool 2 may be a locking claw. There may be one or more locking claws of the protruding portion 8b, and any number may be used as long as it can be locked to the overhanging portion of the opening edge of the cylindrical portion 9b.
  • the cylindrical portion 9b for mating the protruding portion 8b is provided with a protruding portion on the opening edge radially inward, and the locking claw of the protruding portion 8b protrudes from the opening edge of the cylindrical portion 9b.
  • the height of the locking claw of the protrusion 8b is such that the tip of the first clamping surface 5a and the second clamping surface 5b are close to each other when locked to the overhanging portion of the tube portion 9b.
  • the first sandwiching surface 5a and the second sandwiching surface 5b are not bonded to each other, and the first sandwiching piece 3a and the second sandwiching piece 3b are further applied, whereby the tip of the protruding portion 8b.
  • first clamping surface 5a and the second clamping surface 5b can be bonded without penetrating through the bottom of the cylindrical portion 9b. This stabilizes the front end portions of the first clamping surface 5a and the second clamping surface 5b close to each other without applying force to the first clamping piece 3a and the second clamping piece 3b of the sampling tool 2. be able to.
  • the collection tool 2 penetrates the slit 13 of the collection assisting tool 11 in the state of FIG. 2D and the tip part contacts the rectal mucosa tissue, the first clamping piece 3a and the second clamping piece 3b are applied with force. Then, a part of the mucosal tissue is sandwiched and the state shown in FIG. 2E is obtained, and the mucosal tissue is collected.
  • the sampling tool 2 may be provided with a buffering portion 10a corresponding to a portion between the connecting portion and the bent portion in the first holding piece 3a and the second holding piece 3b, respectively.
  • the buffer portion 10a is provided with an elastic portion 10b at the tip thereof, and is bonded to each other by the elastic portion 10b in a state where the locking claw of the projection portion 8b is locked to the protruding portion of the opening edge portion of the cylindrical portion 9b ( FIG. 2 (D)).
  • the sampling tool 2 can maintain the state which the latching claw of the projection part 8b latched to the overhang
  • FIG. 3 (A) and 3 (B) are explanatory views of a collection assisting tool 11A which is an embodiment of the collection assisting tool 11.
  • FIG. FIG. 3A is a perspective view seen from the lower side of the collection assisting tool 11A
  • FIG. 3B is a bottom view seen from the slit side of the collection assisting tool 11A.
  • the collection assisting tool 11A has a collection tool introducing part 12, a slit 13, and a gripping part 14.
  • the sampling tool introduction part 12 is a truncated cone-shaped member having a slit 13 on the side wall.
  • the sampling tool introduction unit 12 is inserted into the anus from the distal edge 15 having a small outer diameter, and the sampling tool 2 is inserted from the proximal edge 16 having a large outer diameter.
  • the collection tool introduction part 12 may have a through hole in the rotation axis direction. From the viewpoint of ease of insertion into the anus, the outer diameter of the hand edge 16 is preferably 30 to 70 mm, and more preferably 40 to 50 mm.
  • the outer diameter of the distal edge portion 15 is preferably 10 to 30 mm, and more preferably 15 to 25 mm.
  • the length of the collection tool introduction part 12 in the rotation axis direction is preferably 50 to 150 mm, more preferably 70 to 130 mm, and even more preferably 80 to 120 mm.
  • the slit 13 is provided from the front edge portion 15 of the sampling tool introduction portion 12 toward the hand edge portion 16.
  • the presence of the slit 13 reaching the distal edge 15 in a part of the side wall of the collection tool introducing portion 12 increases the freedom of movement of the distal end portion of the collection tool 2 in the intestine, and in the rectum having a complicated internal structure, Large intestine mucosa can be collected more easily.
  • the slit 13 may be set at any position of the collection tool introduction unit 12.
  • the slit 13 is preferably on the side close to the gripping portion 14 as shown in FIG.
  • the number of the slits 13 provided in the collection tool introduction part 12 may be one, or two or more.
  • the width of the slit 13 is the same as that of the first clamping surface 5a of the collection tool 2 in a state where the edge 6a and the edge 6b are in contact with each other. It is designed wider than the width of the second clamping surface 5b. Further, the width of the slit 13 may be constant, but as shown in FIG. 3B, it is preferable that the slit 13 becomes wider from the front edge portion 15 toward the hand edge portion 16 side. For example, the width L 1 (see FIG.
  • the width L 2 (see FIG. 3B) of the slit 13 on the front edge portion 15 side is preferably 7 to 15 mm
  • the width L 3 of the slit 13 on the hand edge portion 16 side is preferably 10 to 20 mm. Note that two or more slits 13 may be formed on the wall surface of the collection tool introduction portion 12.
  • the length of the gripping portion 14 is preferably 50 to 150 mm, more preferably 70 to 130 mm, from the viewpoint of ease of gripping with a hand.
  • the shape of the gripping portion 14 may be any shape as long as it is easy to grip, and may be, for example, a plate shape, a rod shape, or other shapes.
  • FIG. 4 is an explanatory diagram of a collection assisting tool 11B which is a modification of the collection assisting tool 11A.
  • 4A is a perspective view seen from the upper side of the collection assisting tool 11B
  • FIG. 4B is a perspective view seen from the lower side.
  • 4 (C) to 4 (G) are a front view, a plan view, a bottom view, a left side view, and a right side view of the collection assisting tool 11B, respectively.
  • the gripping part of the collection assisting tool may be a hollow rod having an opening at the bottom and reinforced with a rib.
  • FIG. 5 is an explanatory diagram showing a mode of use of the colonic mucosa collection kit 1 according to the present invention.
  • the collection assisting tool 11 is inserted from the distal edge portion 15 into the anus of the subject from whom the colonic mucosa is collected.
  • the sampling tool 2 is introduced from the opening on the side of the hand edge 16 in a state where the grip 14 is held and stabilized with one hand.
  • the introduced collection tool 2 penetrates the slit 13 from the tip and reaches the surface of the large intestine mucosa.
  • the colonic mucosa can be collected by pulling out the sampling tool 2 from the slit 13 while the colonic mucosa is sandwiched between the clamping surface 5a and the clamping surface 5b of the sampling tool 2 (the clamping surface 5).
  • Example 1 Among the patients with ulcerative colitis, 8 patients (7 men, 1 woman) who were diagnosed with colon cancer by pathological diagnosis by biopsy tissue in endoscopy and who underwent surgery (7 men, 1 woman) , DNA in colonic mucosa collected from 8 patients (7 men, 1 woman) who have undergone surgery other than cancer (non-cancer UC patients) who are refractory to medical treatment ulcerative colitis In contrast, the methylation rate of the CpG site was comprehensively analyzed.
  • the average age of 8 UC cancer patients was 47.1 ⁇ 12.4 years, and the average disease duration was 11.4 ⁇ 7.3 years.
  • the average age of the 8 non-cancer UC patients was 44.3 ⁇ 16.4 years, and the average disease duration was 6.5 ⁇ 5.2 years.
  • Hybridization Hybridization buffer was added to the precipitated DNA, and the mixture was reacted with Hybridization Oven (manufactured by Illumina) at 48 ° C. for 1 hour to dissolve the DNA.
  • the dissolved DNA was incubated with a 95 ° C.
  • Microsample Incubator manufactured by SciGene
  • the reaction was carried out for 16 hours or more in Hybridization Oven at 48 ° C., and the probe on the BeadChip and the single-stranded DNA were hybridized.
  • [ ⁇ value] [Methylated fluorescence intensity] ⁇ ([Methylated fluorescence intensity] + [Unmethylated fluorescence intensity] +100)
  • GenomeStudio and software Methylation Module (Version: 1.9.0) were used for DNA methylation quantification and DNA methylation level comparison analysis.
  • the setting conditions of GenomeStudio are as follows.
  • the cancer patient samples were narrowed down to those with little fluctuation in DNA methylation level. That is, the unbiased variance var of the ⁇ value of 24 samples of UC cancer patients (3 sites ⁇ 8 samples of each site) was obtained, and 16 CpG sites having an unbiased variance var value smaller than 0.05 were selected.
  • the 16 CpG sites are collectively referred to as a “16 CpG set”.
  • Nine CpG sites with an unbiased variance var value smaller than 0.03 were further narrowed down from the 16 CpG set.
  • these nine CpG sites are collectively referred to as a “9CpG set”.
  • Table 17 shows the results of each CpG site of the 32CpG set.
  • CpG sites with # in the “16CpG” column indicate those included in the 16CpG set
  • CpG sites with # in the “9CpG” column indicate those included in the 9CpG set.
  • Example 2 In addition to the patients with ulcerative colitis of Example 1, 24 patients (UC cancer patients) who were diagnosed with colorectal cancer by pathological diagnosis with biopsy tissue by endoscopy and who underwent surgery, and medical treatment Comprehensive CpG site methylation rate for DNA in colon mucosa collected from 24 patients with refractory ulcerative colitis who have undergone surgery other than cancer (non-cancer UC patients) was analyzed.
  • the DNA used for the analysis of the methylation rate of the CpG site was extracted from the FFPE sample collected from the rectal mucosal tissue of a patient with ulcerative colitis in the same manner as in Example 1, and the whole genome was amplified. Quantification and comparative analysis of DNA methylation levels were performed, and DiffScore calculation, cluster analysis, and principal component analysis were performed using the results.
  • CpG biomarker candidates were extracted from comprehensive DNA methylation analysis data. Specifically, first, 324 CpG sites having an absolute value of ⁇ value exceeding 0.2 were extracted from 485,577 CpG sites.
  • FIG. 9 shows a ROC (Receiver-Operating-Characteristic) curve.
  • the AUC area under the ROC curve
  • Example 3 The DNA methylation level ( ⁇ value) of each CpG site of the specimen collected from the rectum of the ulcerative colitis patient obtained in Example 1 and the DNA methylation of each CpG site of the ulcerative colitis patient obtained in Example 2 CpG biomarker candidates were extracted from the conversion level ( ⁇ value).
  • Example 4 The average methylation rate of each DMR (average ⁇ value; methylation level of CpG sites present in each DMR) of specimens collected from the rectums of 24 UC cancer patients and 24 non-cancer UC patients obtained in Example 2 ( DMR biomarker candidates were extracted from the arithmetic average value of ⁇ value).
  • a logistic regression model was obtained using the numerical values ( ⁇ values) of the three DMR methylation levels of specimens collected from the rectums of 24 UC cancer patients and 24 non-cancer UC patients. Based on the discriminant, a UC cancer patient and a non-cancer UC patient were discriminated. As a result, the sensitivity (the ratio of patients evaluated as positive among UC cancer patients) was 95.8%, and the specificity (the ratio of patients evaluated as negative among non-cancer UC patients) was 95.8%. The positive predictive value (the proportion of UC cancer patients out of those evaluated as positive) is 95.8%, and the negative predictive value (the proportion of non-cancer UC patients out of patients evaluated as negative) is 95%.
  • FIG. 13 shows the ROC curve.
  • AUC area under the ROC curve

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)

Abstract

The present invention provides a method for judging the onset possibility of large bowel cancer in a human ulcerative colitis patient, etc. The method comprises a measurement step for measuring methylation ratios at one or more CpG sites existing in specific differentially methylated regions in DNA collected from a biological sample that is obtained from the human ulcerative colitis patient, and a judgment step for judging the onset possibility of large bowel cancer in the human ulcerative colitis patient on the basis of the average methylation ratio of the differentially methylated regions, said average methylation ratio being calculated from the measured methylation ratios, and preset standard values or a preset multivariable discriminant, wherein: the standard values are values having been set for the methylation ratios in the respective differentially methylated regions for discriminating a cancerous ulcerative colitis patient from a non-cancerous ulcerative colitis patient; and the multivariable discriminant contains, as variables, the average methylation ratios at one or more differentially methylated regions among the specific differentially methylated regions.

Description

大腸癌発症可能性の判定方法How to determine the likelihood of developing colorectal cancer
 本発明は、ヒト潰瘍性大腸炎患者の大腸癌発症の可能性を判定する方法、及び当該方法に供される直腸粘膜検体を採取するためのキットに関する。
 本願は、2016年7月8日に出願されたPCT/JP2016/70330および2017年1月19日に日本に出願された特願2017-007725号に基づく優先権を主張し、その内容をここに援用する。
The present invention relates to a method for determining the possibility of developing colorectal cancer in a patient with human ulcerative colitis, and a kit for collecting a rectal mucosa specimen used in the method.
This application claims priority based on PCT / JP2016 / 70330 filed on July 8, 2016 and Japanese Patent Application No. 2017-007725 filed in Japan on January 19, 2017, the contents of which are incorporated herein by reference. Incorporate.
 潰瘍性大腸炎は、主に大腸粘膜に潰瘍やびらんができる、原因不明の炎症性腸疾患である。完治は非常に困難であり、緩解・再燃を繰り返す。症状としては、下痢や腹痛、粘血便等の大腸の局所症状や、発熱、嘔吐、頻脈、貧血などの全身症状がある。潰瘍性大腸炎患者では大腸癌を発症しやすい。このため、潰瘍性大腸炎患者では、大腸癌の早期発見及び治療が重要である。 Ulcerative colitis is an inflammatory bowel disease whose cause is unknown, which mainly causes ulcers and erosions in the colonic mucosa. Complete cure is very difficult, and remission and relapse are repeated. Symptoms include local symptoms of the large intestine such as diarrhea, abdominal pain and mucous stool, and systemic symptoms such as fever, vomiting, tachycardia and anemia. Patients with ulcerative colitis are more likely to develop colorectal cancer. Therefore, early detection and treatment of colorectal cancer is important in patients with ulcerative colitis.
 一般的に大腸癌の早期発見のための検査は、通常、内視鏡検査により行われる。しかしながら、早期の大腸癌を視認により検出することは、手技者の技量によるところが大きく、一般的に困難である。特に潰瘍性大腸炎患者では、元々腸粘膜の炎症が酷いため、早期大腸癌の検出は非常に難しい。また、内視鏡検査は侵襲性が高く、患者の負担も大きいという問題もある。 Generally, examination for early detection of colorectal cancer is usually performed by endoscopy. However, it is generally difficult to visually detect early colorectal cancer because it depends largely on the skill of the operator. In particular, in patients with ulcerative colitis, detection of early colon cancer is very difficult because inflammation of the intestinal mucosa is originally severe. In addition, endoscopy has a problem that it is highly invasive and burdens the patient.
 一方で、特許文献1には、潰瘍性大腸炎患者において、腫瘍性組織におけるmiR-1、miR-9、miR-124、miR-137、及びmiR-34b/cの5種のmiRNA遺伝子のメチル化率は、非腫瘍性潰瘍性大腸炎組織に比べて有意に高いこと、よって、非癌部である結腸粘膜から採取された生体試料中の前記5種のmiRNA遺伝子のメチル化率は、潰瘍性大腸炎患者の大腸癌発症のマーカーとし得ることが報告されている。 On the other hand, Patent Document 1 discloses methylation of five miRNA genes miR-1, miR-9, miR-124, miR-137, and miR-34b / c in neoplastic tissues in patients with ulcerative colitis. The methylation rate is significantly higher than that of the non-neoplastic ulcerative colitis tissue. Therefore, the methylation rate of the five miRNA genes in the biological sample collected from the colonic mucosa, which is a non-cancerous part, is It can be used as a marker for the development of colorectal cancer in patients with ulcerative colitis.
国際公開第2014/151551号International Publication No. 2014/151551
 本発明は、ヒト潰瘍性大腸炎患者の大腸癌発症の可能性を、内視鏡検査よりも侵襲性が低く、より患者の負担が小さい方法で判定する方法、及び当該方法に供される直腸粘膜検体を採取するためのキットを提供することを目的とする。 The present invention relates to a method for determining the possibility of developing colorectal cancer in a patient with human ulcerative colitis by a method that is less invasive than endoscopy and less burdensome on the patient, and a rectum provided for the method An object is to provide a kit for collecting a mucosal specimen.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、潰瘍性大腸炎患者のゲノムDNA中のCpGサイト(シトシン-ホスホジエステル結合-グアニン)のメチル化率を網羅的に調べたところ、大腸癌を発症した患者と大腸癌を発症していない患者においてメチル化率に顕著な差がある、80種のCpGサイトを見出し、また、別に112のメチル化可変領域(differentially methylated region、「DMR」ということがある。)を見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have comprehensively investigated the methylation rate of CpG sites (cytosine-phosphodiester bond-guanine) in the genomic DNA of ulcerative colitis patients. We found 80 CpG sites with significant differences in the methylation rate between patients who developed colorectal cancer and those who did not develop colorectal cancer, and 112 differently methylated regions ("DMR"). ”) And the present invention was completed.
 すなわち、本発明は、以下の[1]~[34]の大腸癌発症可能性の判定方法、DNAメチル化率分析用マーカー、及び大腸粘膜採取用キットを提供する。
[1]ヒト潰瘍性大腸炎患者の大腸癌発症可能性を判定する方法であって、
 ヒト潰瘍性大腸炎患者から採取された生体試料から回収されたDNA中の、表1~4に記載のメチル化可変領域番号1~112で表される各メチル化可変領域中に存在する1個以上のCpGサイトのメチル化率を測定する測定工程と、
 前記測定工程において測定されたメチル化率に基づいて算出されたメチル化可変領域の平均メチル化率と、予め設定された基準値又は予め設定された多変量判別式に基づいて、前記ヒト潰瘍性大腸炎患者の大腸癌発症の可能性を判定する判定工程
を有し、
 前記メチル化可変領域の平均メチル化率が、当該メチル化可変領域中のCpGサイトのうち、前記測定工程においてメチル化率が測定された全てのCpGサイトのメチル化率の平均値であり、
 前記基準値が、各メチル化可変領域の平均メチル化率に対してそれぞれ設定された、発癌潰瘍性大腸炎患者と非癌潰瘍性大腸炎患者を識別するための値であり、
 前記多変量判別式が、前記メチル化可変領域番号1~112で表されるメチル化可変領域のうちの1か所以上のメチル化可変領域の平均メチル化率を変数として含む、
大腸癌発症可能性の判定方法。
That is, the present invention provides the following methods [1] to [34] for determining the possibility of developing colon cancer, a DNA methylation rate analysis marker, and a colonic mucosa collection kit.
[1] A method for determining the possibility of developing colorectal cancer in a patient with human ulcerative colitis,
One DNA present in each methylation variable region represented by methylation variable region numbers 1-112 shown in Tables 1 to 4 in DNA collected from a biological sample collected from a patient with human ulcerative colitis A measuring step for measuring the methylation rate of the above CpG site;
Based on the average methylation rate of the methylation variable region calculated based on the methylation rate measured in the measurement step, and a preset reference value or a preset multivariate discriminant, the human ulcerative property A determination step of determining the likelihood of developing colon cancer in a patient with colitis,
The average methylation rate of the methylation variable region is an average value of the methylation rates of all CpG sites whose methylation rates were measured in the measurement step among the CpG sites in the methylation variable region,
The reference value is a value for discriminating between a carcinogenic ulcerative colitis patient and a non-cancer ulcerative colitis patient, each set for the average methylation rate of each methylation variable region,
The multivariate discriminant includes, as a variable, an average methylation rate of one or more methylation variable regions among the methylation variable regions represented by the methylation variable region numbers 1-112.
A method for determining the likelihood of developing colorectal cancer.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
[2] 前記判定工程において、メチル化可変領域番号1、3~20、23~28、31~46、49~60、62、65~69、71、73、74、79、81、82、84、86、87、90~92、95、101、103、109、110、及び112で表されるメチル化可変領域のうち1か所以上が、平均メチル化率が予め設定された基準値以下である、又は、メチル化可変領域番号2、21、22、29、30、47、48、61,63、64、70、72、75~78、80、83、85、88、89、93、94、96~100、102、104~108、及び111で表されるメチル化可変領域のうち1か所以上が、平均メチル化率が予め設定された基準値以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、前記[1]の大腸癌発症可能性の判定方法。
[3] 前記測定工程において、前記多変量判別式がその平均メチル化率を変数として含むメチル化可変領域中に存在する1個以上のCpGサイトのメチル化率を測定し、
 前記判定工程において、前記測定工程において測定されたメチル化率に基づいて算出されたメチル化可変領域の平均メチル化率と前記多変量判別式に基づいて当該多変量判別式の値である判別値を算出し、当該判別値が予め設定された基準判別値以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、前記[1]の大腸癌発症可能性の判定方法。
[4] 前記多変量判別式が、メチル化可変領域番号1~112で表されるメチル化可変領域から選択される2か所以上のメチル化可変領域の平均メチル化率を変数として含む、前記[3]の大腸癌発症可能性の判定方法。
[5] 前記多変量判別式が、メチル化可変領域番号1~112で表されるメチル化可変領域から選択される3か所以上のメチル化可変領域の平均メチル化率を変数として含む、前記[3]の大腸癌発症可能性の判定方法。
[6] 前記多変量判別式が、メチル化可変領域番号1~58で表されるメチル化可変領域からなる群より選択される1か所以上のメチル化可変領域の平均メチル化率を変数として含む、前記[3]の大腸癌発症可能性の判定方法。
[7] 前記多変量判別式が、メチル化可変領域番号1~11で表されるメチル化可変領域からなる群より選択される1か所以上のメチル化可変領域の平均メチル化率を変数として含む、前記[3]の大腸癌発症可能性の判定方法。
[2] In the determination step, methylation variable region numbers 1, 3 to 20, 23 to 28, 31 to 46, 49 to 60, 62, 65 to 69, 71, 73, 74, 79, 81, 82, 84 , 86, 87, 90 to 92, 95, 101, 103, 109, 110, and 112, at least one of the methylation variable regions has an average methylation rate that is equal to or lower than a preset reference value. Yes or methylation variable region number 2, 21, 22, 29, 30, 47, 48, 61, 63, 64, 70, 72, 75 to 78, 80, 83, 85, 88, 89, 93, 94 , 96 to 100, 102, 104 to 108, and 111, when at least one of the methylation variable regions has an average methylation rate equal to or higher than a preset reference value, the human ulcerative property A patient with colitis has developed colorectal cancer [1] The method for determining the likelihood of developing colorectal cancer according to [1].
[3] In the measurement step, the multivariate discriminant measures the methylation rate of one or more CpG sites present in the methylation variable region including the average methylation rate as a variable,
In the determination step, a discriminant value that is a value of the multivariate discriminant based on the average methylation rate of the methylation variable region calculated based on the methylation rate measured in the measurement step and the multivariate discriminant When the discriminant value is greater than or equal to a preset reference discriminant value, it is determined that the human ulcerative colitis patient is likely to develop colorectal cancer. A method for determining the likelihood of developing cancer.
[4] The multivariate discriminant includes, as a variable, an average methylation rate of two or more methylation variable regions selected from the methylation variable regions represented by methylation variable region numbers 1-112. [3] The method for determining the likelihood of developing colon cancer.
[5] The multivariate discriminant includes, as a variable, an average methylation rate of three or more methylation variable regions selected from the methylation variable regions represented by methylation variable region numbers 1-112. [3] The method for determining the likelihood of developing colon cancer.
[6] The multivariate discriminant is defined by using an average methylation rate of one or more methylation variable regions selected from the group consisting of methylation variable regions represented by methylation variable region numbers 1 to 58 as a variable. [3] The method for determining the possibility of developing colorectal cancer according to [3].
[7] The multivariate discriminant is defined by using an average methylation rate of one or more methylation variable regions selected from the group consisting of methylation variable regions represented by methylation variable region numbers 1 to 11 as a variable. [3] The method for determining the possibility of developing colorectal cancer according to [3].
[8] ヒト潰瘍性大腸炎患者の大腸癌発症可能性を判定する方法であって、
 ヒト潰瘍性大腸炎患者から採取された生体試料から回収されたDNA中の、配列番号1~80で表される塩基配列中のCpGサイトからなる群より選択される1か所以上のCpGサイトのメチル化率を測定する測定工程と、
 前記測定工程において測定されたメチル化率と、予め設定された基準値又は予め設定された多変量判別式に基づいて、前記ヒト潰瘍性大腸炎患者の大腸癌発症の可能性を判定する判定工程
を有し、
 前記基準値が、各CpGサイトのメチル化率に対してそれぞれ設定された、発癌潰瘍性大腸炎患者と非癌潰瘍性大腸炎患者を識別するための値であり、
 前記多変量判別式が、前記配列番号1~80で表される塩基配列中のCpGサイトのうち少なくとも1か所のCpGサイトのメチル化率を変数として含む、
大腸癌発症可能性の判定方法。
[9]前記測定工程において、2~10個のCpGサイトのメチル化率を測定する、前記[8]の大腸癌発症可能性の判定方法。
[10] 前記判定工程において、配列番号1、2、11、12、14~18、21~24、26、27、29、31、45、64、65、67、77、79、及び80で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号3~10、13、19、20、25、28、30、32~44、46~63、66、68~76、及び78で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、前記[8]又は[9]の大腸癌発症可能性の判定方法。
[11] 前記測定工程において、配列番号1~32で表される塩基配列中のCpGサイトのメチル化率を測定し、
 前記判定工程において、配列番号1、2、11、12、14~18、21~24、26、27、29、及び31で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号3~10、13、19、20、25、28、30、及び32で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、前記[8]~[10]のいずれかの大腸癌発症可能性の判定方法。
[12] 前記判定工程において、配列番号1、2、11、12、14~18、21~24、26、27、29、及び31で表される塩基配列中のCpGサイトのうち、メチル化率が予め設定された基準値以下であるCpGサイトの数と、配列番号3~10、13、19、20、25、28、30、及び32で表される塩基配列中のCpGサイトのうちメチル化率が予め設定された基準値以上であるCpGサイトの数との和が3以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、前記[8]~[11]のいずれかの大腸癌発症可能性の判定方法。
[13] 前記測定工程において、配列番号1~16で表される塩基配列中のCpGサイトのメチル化率を測定し、
 前記判定工程において、配列番号1、2、11、12、14~16で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号3~10、13で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、前記[8]~[10]のいずれかの大腸癌発症可能性の判定方法。
[14] 前記判定工程において、配列番号1、2、11、12、14~16で表される塩基配列中のCpGサイトのうち、メチル化率が予め設定された基準値以下であるCpGサイトの数と、配列番号3~10、13で表される塩基配列中のCpGサイトのうちメチル化率が予め設定された基準値以上であるCpGサイトの数との和が3以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、前記[8]~[10]及び[13]のいずれかの大腸癌発症可能性の判定方法。
[15] 前記測定工程において、配列番号1~9で表される塩基配列中のCpGサイトのメチル化率を測定し、
 前記判定工程において、配列番号1及び2で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号3~9で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、前記[8]~[10]のいずれかの大腸癌発症可能性の判定方法。
[16] 前記判定工程において、配列番号1及び2で表される塩基配列中のCpGサイトのうち、メチル化率が予め設定された基準値以下であるCpGサイトの数と、配列番号3~9で表される塩基配列中のCpGサイトのうちメチル化率が予め設定された基準値以上であるCpGサイトの数との和が3以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、前記[8]~[10]及び[15]のいずれかの大腸癌発症可能性の判定方法。
[17] 前記測定工程において、配列番号33~66で表される塩基配列中のCpGサイトからなる群より選択される1か所以上のCpGサイトのメチル化率を測定し、
 前記判定工程において、配列番号45、64、及び65で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号33~44、46~63、及び66で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、前記[8]~[10]のいずれかの大腸癌発症可能性の判定方法。
[18] 前記判定工程において、配列番号45、64、及び65で表される塩基配列中のCpGサイトのうち、メチル化率が予め設定された基準値以下であるCpGサイトの数と、配列番号33~44、46~63、及び66で表される塩基配列中のCpGサイトのうちメチル化率が予め設定された基準値以上であるCpGサイトの数との和が2以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、前記[8]~[10]及び[17]のいずれかの大腸癌発症可能性の判定方法。
[19] 前記測定工程において、配列番号33、35、36、43、67~80で表される塩基配列中のCpGサイトからなる群より選択される1か所以上のCpGサイトのメチル化率を測定し、
 前記判定工程において、配列番号67、77、79、及び80で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号33、35、36、43、68~76、及び78で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、前記[8]~[10]のいずれかの大腸癌発症可能性の判定方法。
[20] 前記判定工程において、配列番号67、77、79、及び80で表される塩基配列中のCpGサイトのうち、メチル化率が予め設定された基準値以下であるCpGサイトの数と、配列番号33、35、36、43、68~76、及び78で表される塩基配列中のCpGサイトのうちメチル化率が予め設定された基準値以上であるCpGサイトの数との和が2以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、前記[8]~[10]及び[19]のいずれかの大腸癌発症可能性の判定方法。
[21] 前記和が5以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、前記[12]、[14]、[16]、[18]、又は[20]の大腸癌発症可能性の判定方法。
[22] 前記多変量判別式が、配列番号33~66で表される塩基配列中のCpGサイトからなる群より選択される1か所以上のCpGサイトのメチル化率を変数として含み、 前記測定工程において、前記多変量判別式がそのメチル化率を変数として含むCpGサイトのメチル化率を測定し、
 前記判定工程において、前記測定工程において測定されたメチル化率と前記多変量判別式に基づいて当該多変量判別式の値である判別値を算出し、当該判別値が予め設定された基準判別値以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、前記[8]又は[9]の大腸癌発症可能性の判定方法。
[23] 前記多変量判別式が、配列番号33、35、36、43、67~80で表される塩基配列中のCpGサイトからなる群より選択される1か所以上のCpGサイトのメチル化率を変数として含み、
 前記測定工程において、前記多変量判別式がそのメチル化率を変数として含むCpGサイトのメチル化率を測定し、
 前記判定工程において、前記測定工程において測定されたメチル化率と前記多変量判別式に基づいて当該多変量判別式の値である判別値を算出し、当該判別値が予め設定された基準判別値以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、前記[8]又は[9]の大腸癌発症可能性の判定方法。
[24] 前記多変量判別式が、ロジスティック回帰式、線形判別式、ナイーブベイズ分類器で作成された式、又はサポートベクターマシンで作成された式である、前記[1]~[23]のいずれかの大腸癌発症可能性の判定方法。
[25] 前記生体試料が、腸管組織である、前記[1]~[24]のいずれかの大腸癌発症可能性の判定方法。
[26] 前記生体試料が、直腸粘膜組織である、前記[1]~[25]のいずれかの大腸癌発症可能性の判定方法。
[8] A method for determining the likelihood of developing colorectal cancer in a patient with human ulcerative colitis,
One or more CpG sites selected from the group consisting of CpG sites in the base sequences represented by SEQ ID NOs: 1 to 80 in DNA collected from biological samples collected from human ulcerative colitis patients A measurement process for measuring the methylation rate;
Determination step of determining the possibility of developing colon cancer in the human ulcerative colitis patient based on the methylation rate measured in the measurement step and a preset reference value or a preset multivariate discriminant Have
The reference value is a value for discriminating between a carcinogenic ulcerative colitis patient and a non-cancer ulcerative colitis patient, each set for the methylation rate of each CpG site,
The multivariate discriminant includes, as a variable, the methylation rate of at least one CpG site among the CpG sites in the base sequences represented by SEQ ID NOs: 1 to 80.
A method for determining the likelihood of developing colorectal cancer.
[9] The method for determining the likelihood of developing colon cancer according to the above [8], wherein in the measurement step, the methylation rate of 2 to 10 CpG sites is measured.
[10] In the determination step, represented by SEQ ID NOs: 1, 2, 11, 12, 14 to 18, 21 to 24, 26, 27, 29, 31, 45, 64, 65, 67, 77, 79, and 80 One or more of the CpG sites in the nucleotide sequence to be methylated has a methylation rate equal to or lower than a preset reference value, or SEQ ID NOs: 3 to 10, 13, 19, 20, 25, 28, 30, When one or more of the CpG sites in the base sequences represented by 32-44, 46-63, 66, 68-76, and 78 have a methylation rate equal to or higher than a preset reference value, The method for determining the likelihood of developing colon cancer according to [8] or [9] above, wherein it is determined that the human ulcerative colitis patient is likely to develop colorectal cancer.
[11] In the measurement step, the methylation rate of the CpG site in the base sequence represented by SEQ ID NOs: 1 to 32 is measured,
In the determination step, one or more of the CpG sites in the base sequence represented by SEQ ID NOs: 1, 2, 11, 12, 14 to 18, 21 to 24, 26, 27, 29, and 31 are methyl Of the CpG site in the base sequence represented by SEQ ID NOs: 3 to 10, 13, 19, 20, 25, 28, 30, and 32 The above [8] to [10], wherein when the methylation rate is equal to or higher than a preset reference value, it is determined that the human ulcerative colitis patient is likely to develop colorectal cancer. A method for determining the likelihood of developing colorectal cancer.
[12] In the determination step, methylation rate among CpG sites in the base sequences represented by SEQ ID NOs: 1, 2, 11, 12, 14-18, 21-24, 26, 27, 29, and 31 Is the number of CpG sites whose pre-set reference value is less than or equal to a preset reference value, and methylation among CpG sites in the base sequences represented by SEQ ID NOs: 3 to 10, 13, 19, 20, 25, 28, 30, and 32 When the sum of the number of CpG sites with a rate equal to or higher than a preset reference value is 3 or more, it is determined that the human ulcerative colitis patient is likely to develop colorectal cancer, [8] The method for determining the likelihood of developing colorectal cancer according to any one of [11].
[13] In the measurement step, the methylation rate of the CpG site in the base sequences represented by SEQ ID NOs: 1 to 16 is measured,
In the determination step, at least one of the CpG sites in the base sequence represented by SEQ ID NOs: 1, 2, 11, 12, 14 to 16 has a methylation rate equal to or lower than a preset reference value. Alternatively, when one or more of the CpG sites in the base sequences represented by SEQ ID NOs: 3 to 10 and 13 have a methylation rate equal to or higher than a preset reference value, the human ulcerative colitis patient The method for determining the likelihood of developing colorectal cancer according to any one of the above [8] to [10], wherein it is determined that there is a high possibility that the patient has colorectal cancer.
[14] Among the CpG sites in the base sequences represented by SEQ ID NOs: 1, 2, 11, 12, 14 to 16 in the determination step, CpG sites having a methylation rate equal to or lower than a preset reference value When the sum of the number and the number of CpG sites having a methylation rate equal to or higher than a preset reference value among the CpG sites in the base sequences represented by SEQ ID NOs: 3 to 10 and 13 is 3 or more, The method for determining the likelihood of developing colorectal cancer according to any one of [8] to [10] and [13] above, wherein it is determined that the human ulcerative colitis patient is likely to develop colorectal cancer.
[15] In the measurement step, the methylation rate of the CpG site in the base sequences represented by SEQ ID NOs: 1 to 9 is measured,
In the determination step, one or more of the CpG sites in the base sequences represented by SEQ ID NOs: 1 and 2 have a methylation rate equal to or lower than a preset reference value, or SEQ ID NOs: 3 to 9 Possibility that the human ulcerative colitis patient develops colorectal cancer when one or more of the CpG sites in the represented base sequence has a methylation rate that is equal to or higher than a preset reference value The method for determining the likelihood of developing colorectal cancer according to any one of the above [8] to [10], wherein the determination is high.
[16] In the determination step, among the CpG sites in the base sequences represented by SEQ ID NOS: 1 and 2, the number of CpG sites having a methylation rate equal to or lower than a preset reference value, and SEQ ID NOS: 3 to 9 When the sum of the CpG sites in the base sequence represented by the number of CpG sites having a methylation rate equal to or higher than a preset reference value is 3 or more, the human ulcerative colitis patient is colon cancer The method for determining the likelihood of developing colorectal cancer according to any one of [8] to [10] and [15], wherein it is determined that there is a high possibility of having developed.
[17] In the measurement step, the methylation rate of one or more CpG sites selected from the group consisting of CpG sites in the base sequences represented by SEQ ID NOs: 33 to 66 is measured,
In the determination step, one or more of the CpG sites in the base sequences represented by SEQ ID NOs: 45, 64, and 65 have a methylation rate equal to or lower than a preset reference value, or SEQ ID NO: 33 A patient with human ulcerative colitis when one or more of the CpG sites in the base sequences represented by -44, 46-63, and 66 have a methylation rate equal to or higher than a preset reference value The method for determining the likelihood of developing colorectal cancer according to any one of the above [8] to [10], wherein it is determined that there is a high possibility that the patient has colorectal cancer.
[18] In the determination step, among the CpG sites in the base sequences represented by SEQ ID NOs: 45, 64, and 65, the number of CpG sites having a methylation rate equal to or lower than a preset reference value, and the SEQ ID NO: When the sum of the CpG sites in the base sequences represented by 33 to 44, 46 to 63 and 66 and the number of CpG sites having a methylation rate equal to or higher than a preset reference value is 2 or more, The method for determining the likelihood of developing colorectal cancer according to any one of [8] to [10] and [17], wherein the human ulcerative colitis patient is determined to have a high probability of developing colorectal cancer.
[19] In the measurement step, the methylation rate of one or more CpG sites selected from the group consisting of CpG sites in the base sequences represented by SEQ ID NOs: 33, 35, 36, 43, and 67-80 is determined. Measure and
In the determination step, at least one of the CpG sites in the base sequences represented by SEQ ID NOs: 67, 77, 79, and 80 has a methylation rate equal to or lower than a preset reference value, or a sequence When one or more of the CpG sites in the base sequences represented by the numbers 33, 35, 36, 43, 68 to 76, and 78 have a methylation rate that is equal to or higher than a preset reference value, The method for determining the possibility of developing colorectal cancer according to any one of the above [8] to [10], wherein it is determined that a human ulcerative colitis patient is likely to develop colorectal cancer.
[20] In the determination step, among the CpG sites in the base sequences represented by SEQ ID NOs: 67, 77, 79, and 80, the number of CpG sites having a methylation rate equal to or lower than a preset reference value; The sum of the CpG sites in the base sequences represented by SEQ ID NOs: 33, 35, 36, 43, 68 to 76, and 78 with a methylation rate equal to or higher than a preset reference value is 2 When the above is true, it is determined that the human ulcerative colitis patient is likely to develop colorectal cancer, and the possibility of developing colorectal cancer according to any of [8] to [10] and [19] Judgment method.
[21] When the sum is 5 or more, it is determined that the human ulcerative colitis patient is likely to develop colorectal cancer, [12], [14], [16], [16] 18] or [20] The method for determining the likelihood of developing colorectal cancer.
[22] The multivariate discriminant includes, as a variable, the methylation rate of one or more CpG sites selected from the group consisting of CpG sites in the base sequences represented by SEQ ID NOs: 33 to 66, In the process, the methylation rate of the CpG site in which the multivariate discriminant includes the methylation rate as a variable is measured,
In the determination step, a discriminant value that is a value of the multivariate discriminant is calculated based on the methylation rate measured in the measurement step and the multivariate discriminant, and the discriminant value is set in advance as a reference discriminant value. In the case described above, the method for determining the likelihood of developing colon cancer according to [8] or [9] above, wherein it is determined that the human ulcerative colitis patient is likely to develop colon cancer.
[23] Methylation of one or more CpG sites selected from the group consisting of CpG sites in the base sequence represented by SEQ ID NOs: 33, 35, 36, 43, 67-80, wherein the multivariate discriminant is Including rate as a variable,
In the measurement step, the multivariate discriminant measures the methylation rate of the CpG site including the methylation rate as a variable,
In the determination step, a discriminant value that is a value of the multivariate discriminant is calculated based on the methylation rate measured in the measurement step and the multivariate discriminant, and the discriminant value is set in advance as a reference discriminant value. In the case described above, the method for determining the likelihood of developing colon cancer according to [8] or [9] above, wherein it is determined that the human ulcerative colitis patient is likely to develop colon cancer.
[24] Any of the above [1] to [23], wherein the multivariate discriminant is a logistic regression equation, a linear discriminant, an equation created by a naive Bayes classifier, or an equation created by a support vector machine A method for determining the likelihood of developing colorectal cancer.
[25] The method for determining the likelihood of developing colorectal cancer according to any one of [1] to [24], wherein the biological sample is intestinal tissue.
[26] The method for determining the likelihood of developing colorectal cancer according to any one of [1] to [25], wherein the biological sample is rectal mucosal tissue.
[27] 前記直腸粘膜組織が、
 採取具と、採取補助具とを備え、
 前記採取具は、
 一方の端部に大腸粘膜を挟持する第1の挟持面が形成されている板状の第1の挟持片と、
 一方の端部に大腸粘膜を挟持する第2の挟持面が形成されている板状の第2の挟持片と、
 前記第1の挟持片と前記第2の挟持片を、互いに対向した状態で、前記第1の挟持面及び前記第2の挟持面が形成されていない端部において連結する連結部と、
を有し、
 前記第1の挟持面及び前記第2の挟持面の少なくとも一方がカップ形状であり、
 前記採取補助具は、
 側壁にスリットを有する円錐台形状の採取具導入部と、
 棒状の把持部と、
を有し、
 前記把持部の一端が、前記採取具導入部の外径が大きい方の辺縁部近傍に連結しており、
 前記スリットは、前記採取具導入部の外径が小さい方の辺縁部から外径が大きい方の辺縁部に向かって設けられており、
 前記スリットの幅が、前記第1の挟持片の一方の端部と前記第2の挟持片の一方の端部の幅よりも広く、
前記採取具導入部の大きい方の外径が30~70mmであり、回転軸方向の長さが50~150mmである、大腸粘膜採取用キットによって採取されたものである、前記[26]の大腸癌発症可能性の判定方法。
[28] 前記採取具が、
 前記第1の挟持片の中心部よりも前記第1の挟持面が形成されている端部側に、第1の屈曲部を有し、
 前記第2の挟持片の中心部よりも前記第2の挟持面が形成されている端部側に、第2の屈曲部を有する、前記[27]の大腸癌発症可能性の判定方法。
[29] 採取具と、採取補助具とを備える大腸粘膜採取用キットであり、
 前記採取具は、
 一方の端部に大腸粘膜を挟持する第1の挟持面が形成されている板状の第1の挟持片と、
 一方の端部に大腸粘膜を挟持する第2の挟持面が形成されている板状の第2の挟持片と、
 前記第1の挟持片と前記第2の挟持片を、互いに対向した状態で、前記第1の挟持面及び前記第2の挟持面が形成されていない端部において連結する連結部と、
を有し、
 前記第1の挟持面及び前記第2の挟持面の少なくとも一方がカップ形状であり、
 前記採取補助具は、
 側壁にスリットを有する円錐台形状の採取具導入部と、
 棒状の把持部と、
を有し、
 前記把持部の一端が、前記採取具導入部の外径が大きい方の辺縁部近傍に連結しており、
 前記スリットは、前記採取具導入部の外径が小さい方の辺縁部から外径が大きい方の辺縁部に向かって設けられており、
 前記スリットの幅が、前記第1の挟持片の一方の端部と前記第2の挟持片の一方の端部の幅よりも広く、
 前記採取具導入部の大きい方の外径が30~70mmであり、回転軸方向の長さが50~150mmである、大腸粘膜採取用キット。
[30] 前記採取具が、
 前記第1の挟持片の中心部よりも前記第1の挟持面が形成されている端部側に、第1の屈曲部を有し、
 前記第2の挟持片の中心部よりも前記第2の挟持面が形成されている端部側に、第2の屈曲部を有する、前記[29]の大腸粘膜採取用キット。
[31] 前記第1の挟持面と前記第2の挟持面の両方がカップ形状である、前記[29]又は[30]の大腸粘膜採取用キット。
[32] 前記採取補助具が、回転軸方向に貫通孔を有し、前記採取具導入部の大きい方の外径が30~70mm、回転軸方向の長さが50~150mmであり、
 前記カップ形状の辺縁部の内径が2~3mmである、前記[29]~[31]のいずれかの大腸粘膜採取用キット。
[33] 前記第1の挟持面と前記第2の挟持面の辺縁部が鋸歯状である、前記[29]~[32]のいずれかの大腸粘膜採取用キット。
[34] 配列番号1~80で表される塩基配列中のCpGサイトからなる群より選択される1か所以上のCpGサイトを含む部分塩基配列を有するDNA断片からなり、潰瘍性大腸炎患者の大腸癌発症可能性を判定するために用いられる、DNAメチル化率分析用マーカー。
[27] The rectal mucosa tissue is
A collection tool and a collection aid;
The sampling tool is
A plate-like first clamping piece in which a first clamping surface for clamping the colonic mucosa is formed at one end;
A plate-like second clamping piece in which a second clamping surface for clamping the colonic mucosa is formed at one end;
A connecting portion that connects the first clamping piece and the second clamping piece in a state of being opposed to each other at an end portion where the first clamping surface and the second clamping surface are not formed;
Have
At least one of the first clamping surface and the second clamping surface is cup-shaped,
The collection aid is
A frustoconical sampling tool introduction part having a slit on the side wall;
A rod-shaped gripping part;
Have
One end of the gripping part is connected to the vicinity of the edge part of the larger outer diameter of the sampling tool introduction part,
The slit is provided from the edge of the smaller outer diameter of the sampling tool introduction part toward the edge of the larger outer diameter,
The width of the slit is wider than the width of one end of the first clamping piece and the one end of the second clamping piece,
The large intestine of the above [26], which is collected by a large intestine mucosa collection kit having a larger outer diameter of the collection tool introduction part of 30 to 70 mm and a length in the rotation axis direction of 50 to 150 mm. A method for determining the likelihood of developing cancer.
[28] The sampling tool is
Having a first bent portion on the end side where the first clamping surface is formed with respect to the center of the first clamping piece;
[27] The method for determining the likelihood of developing colorectal cancer according to [27], further including a second bent portion on an end side where the second clamping surface is formed with respect to a center portion of the second clamping piece.
[29] A colonic mucosa collection kit comprising a collection tool and a collection aid.
The sampling tool is
A plate-like first clamping piece in which a first clamping surface for clamping the colonic mucosa is formed at one end;
A plate-like second clamping piece in which a second clamping surface for clamping the colonic mucosa is formed at one end;
A connecting portion that connects the first clamping piece and the second clamping piece in a state of being opposed to each other at an end portion where the first clamping surface and the second clamping surface are not formed;
Have
At least one of the first clamping surface and the second clamping surface is cup-shaped,
The collection aid is
A frustoconical sampling tool introduction part having a slit on the side wall;
A rod-shaped gripping part;
Have
One end of the gripping part is connected to the vicinity of the edge part of the larger outer diameter of the sampling tool introduction part,
The slit is provided from the edge of the smaller outer diameter of the sampling tool introduction part toward the edge of the larger outer diameter,
The width of the slit is wider than the width of one end of the first clamping piece and the one end of the second clamping piece,
A large intestine mucosa collection kit having a larger outer diameter of the collection tool introduction part of 30 to 70 mm and a length in the rotation axis direction of 50 to 150 mm.
[30] The sampling tool is
Having a first bent portion on the end side where the first clamping surface is formed with respect to the center of the first clamping piece;
[29] The colonic mucosa collection kit according to [29], further including a second bent portion on an end portion side where the second clamping surface is formed with respect to a center portion of the second clamping piece.
[31] The kit for collecting large intestine mucosa according to [29] or [30], wherein both the first clamping surface and the second clamping surface are cup-shaped.
[32] The collection aid has a through hole in the rotation axis direction, the outer diameter of the larger one of the collection tool introduction part is 30 to 70 mm, and the length in the rotation axis direction is 50 to 150 mm,
The kit for collecting mucosa of large intestine according to any one of the above [29] to [31], wherein an inner diameter of the cup-shaped edge is 2 to 3 mm.
[33] The colonic mucosa collection kit according to any one of [29] to [32], wherein the edges of the first clamping surface and the second clamping surface are serrated.
[34] A DNA fragment comprising a DNA fragment having a partial base sequence containing one or more CpG sites selected from the group consisting of CpG sites in the base sequences represented by SEQ ID NOs: 1 to 80, and comprising a patient with ulcerative colitis A marker for DNA methylation rate analysis used for determining the possibility of developing colorectal cancer.
 本発明に係る大腸癌発症可能性の判定方法により、潰瘍性大腸炎患者から採取された生体試料について、ゲノムDNA中の特定のCpGサイトのメチル化率又は特定のDMRの平均メチル化率を調べることによって、大腸癌発症の可能性を判定することができる。 また、本発明に係る直腸粘膜採取用キットにより、患者の肛門から比較的安全かつ簡便に直腸粘膜を採取することができる。 According to the method for determining the likelihood of developing colon cancer according to the present invention, the methylation rate of a specific CpG site or the average methylation rate of a specific DMR in a genomic DNA is examined for a biological sample collected from a patient with ulcerative colitis. Thus, the possibility of developing colorectal cancer can be determined. Also, the rectal mucosa collection kit according to the present invention enables the rectal mucosa to be collected relatively safely and simply from the patient's anus.
図1は、採取具の一実施態様である採取具2A及びその変形例である採取具2Bの説明図である。FIG. 1 is an explanatory diagram of a sampling tool 2A which is an embodiment of the sampling tool and a sampling tool 2B which is a modified example thereof. 図2は、採取具2Aの変形例である採取具2Cの説明図である。FIG. 2 is an explanatory diagram of a sampling tool 2C which is a modification of the sampling tool 2A. 図3は、採取補助具11の一実施態様である採取補助具11Aの説明図である。FIG. 3 is an explanatory diagram of a collection assisting tool 11 </ b> A that is one embodiment of the collection assisting tool 11. 図4は、採取補助具11Aの変形例である採取補助具11Bの説明図である。FIG. 4 is an explanatory diagram of a collection assistance tool 11B that is a modification of the collection assistance tool 11A. 図5は直腸粘膜採取用キットの使用態様の説明図である。FIG. 5 is an explanatory diagram of a usage mode of the rectal mucosa collection kit. 図6Aは、実施例1において、網羅的DNAメチル化解析の結果選抜された32CpGセットのCpGサイトのメチル化レベルに基づくクラスター解析の結果である。FIG. 6A shows the result of cluster analysis based on the methylation level of CpG sites in the 32CpG set selected as a result of comprehensive DNA methylation analysis in Example 1. 図6Bは、実施例1において、網羅的DNAメチル化解析の結果選抜された32CpGセットのCpGサイトのメチル化レベルに基づく主成分分析の結果である。FIG. 6B shows the result of principal component analysis based on the methylation level of CpG sites in the 32 CpG set selected as a result of comprehensive DNA methylation analysis in Example 1. 図6Cは、実施例1において、網羅的DNAメチル化解析の結果選抜された16CpGセットのCpGサイトのメチル化レベルに基づくクラスター解析の結果である。FIG. 6C shows the result of cluster analysis based on the methylation level of CpG sites in the 16 CpG set selected as a result of comprehensive DNA methylation analysis in Example 1. 図6Dは、実施例1において、網羅的DNAメチル化解析の結果選抜された16CpGセットのCpGサイトのメチル化レベルに基づく主成分分析の結果である。FIG. 6D shows the result of principal component analysis based on the methylation level of CpG sites in the 16 CpG set selected as a result of comprehensive DNA methylation analysis in Example 1. 図6Eは、実施例1において、網羅的DNAメチル化解析の結果選抜された9CpGセットのCpGサイトのメチル化レベルに基づくクラスター解析の結果である。FIG. 6E shows the result of cluster analysis based on the methylation level of CpG sites in the 9CpG set selected as a result of comprehensive DNA methylation analysis in Example 1. 図6Fは、実施例1において、網羅的DNAメチル化解析の結果選抜された9CpGセットのCpGサイトのメチル化レベルに基づく主成分分析の結果である。FIG. 6F is the result of principal component analysis based on the methylation level of CpG sites in the 9CpG set selected as a result of comprehensive DNA methylation analysis in Example 1. 図7Aは、実施例1において、miR-1、miR-9、miR-124、miR-137、及びmiR-34b/cの5種のmiRNA遺伝子にあるCpGサイトのうち、DiffScoreの絶対値が30超であった27個のCpGサイトのメチル化レベルに基づくクラスター解析の結果である。FIG. 7A shows that in Example 1, among the CpG sites in the five miRNA genes miR-1, miR-9, miR-124, miR-137, and miR-34b / c, the absolute value of DiffScore is 30. It is the result of the cluster analysis based on the methylation level of 27 CpG sites which were super. 図7Bは、実施例1において、miR-1、miR-9、miR-124、miR-137、及びmiR-34b/cの5種のmiRNA遺伝子にあるCpGサイトのうち、DiffScoreの絶対値が30超であった27個のCpGサイトのメチル化レベルに基づく主成分分析の結果である。FIG. 7B shows that in Example 1, among the CpG sites in the five miRNA genes miR-1, miR-9, miR-124, miR-137, and miR-34b / c, the absolute value of DiffScore is 30. It is the result of the principal component analysis based on the methylation level of 27 CpG sites which were super. 図8Aは、実施例2において、網羅的DNAメチル化解析の結果選抜された34CpGセットのCpGサイトのメチル化レベルに基づくクラスター解析の結果である。FIG. 8A is the result of cluster analysis based on the methylation level of CpG sites in the 34 CpG set selected as a result of comprehensive DNA methylation analysis in Example 2. 図8Bは、実施例2において、網羅的DNAメチル化解析の結果選抜された34CpGセットのCpGサイトのメチル化レベルに基づく主成分分析の結果である。FIG. 8B shows the result of principal component analysis based on the methylation level of CpG sites in the 34 CpG set selected as a result of comprehensive DNA methylation analysis in Example 2. 図9は、実施例2において、配列番号34で表される塩基配列中のCpGサイト(cg10931190)、配列番号37で表される塩基配列中のCpGサイト(cg13677149)、及び配列番号56で表される塩基配列中のCpGサイト(cg14516100)の3個のCpGサイトのメチル化率をマーカーとした場合の、潰瘍性大腸炎患者の大腸癌発症の有無の検査のROC曲線である。FIG. 9 shows the CpG site (cg10931190) in the base sequence represented by SEQ ID NO: 34, the CpG site (cg136767149) in the base sequence represented by SEQ ID NO: 37, and SEQ ID NO: 56 in Example 2. FIG. 3 is an ROC curve of a test for the presence or absence of colon cancer in a patient with ulcerative colitis, using as a marker the methylation rate of three CpG sites in the CpG site (cg14516100) in the base sequence. 図10Aは、実施例3において、網羅的DNAメチル化解析の結果選抜された18CpGセットのCpGサイトのメチル化レベルに基づくクラスター解析の結果である。FIG. 10A shows the result of cluster analysis based on the methylation level of CpG sites in the 18 CpG set selected as a result of comprehensive DNA methylation analysis in Example 3. 図10Bは、実施例3において、網羅的DNAメチル化解析の結果選抜された18CpGセットのCpGサイトのメチル化レベルに基づく主成分分析の結果である。FIG. 10B shows the result of principal component analysis based on the methylation level of CpG sites in the 18 CpG set selected as a result of comprehensive DNA methylation analysis in Example 3. 図11は、実施例4において、網羅的DNAメチル化解析の結果選抜されたDMR112か所(112DMRセット)のメチル化率に基づくクラスター解析の結果である。FIG. 11 shows the results of cluster analysis based on the methylation rates at DMR 112 sites (112 DMR sets) selected as a result of comprehensive DNA methylation analysis in Example 4. 図12は、実施例4において、網羅的DNAメチル化解析の結果選抜された112DMRセットのメチル化率に基づく主成分分析の結果である。FIG. 12 shows the result of principal component analysis based on the methylation rate of the 112DMR set selected as a result of comprehensive DNA methylation analysis in Example 4. 図13は、実施例4において、DMR番号2で表されるDMR、DMR番号10で表されるDMR、及びDMR番号55で表されるDMRの3個のDMRの平均メチル化率をマーカーとした場合の、潰瘍性大腸炎患者の大腸癌発症の有無の検査のROC曲線である。FIG. 13 shows, in Example 4, the average methylation rate of three DMRs, DMR represented by DMR number 2, DMR represented by DMR number 10, and DMR represented by DMR number 55, as a marker. It is a ROC curve of the test | inspection of the presence or absence of colon cancer onset in the patient of ulcerative colitis.
<大腸癌発症可能性の判定方法>
 ゲノムDNA中のCpGサイトのシトシン塩基は、5位の炭素がメチル化修飾を受け得る。本発明及び本願明細書において、CpGサイトのメチル化率とは、一の生物個体から採取された生体試料中のCpGサイトのうち、メチル化されているシトシン塩基(メチル化シトシン)量とメチル化されていないシトシン塩基(非メチル化シトシン)量とを測定し、両者の和に対するメチル化シトシン量の割合(%)を意味する。また、本発明及び本願明細書において、DMRの平均メチル化率とは、DMRに存在する複数のCpGサイトのメチル化率の相加平均値(算術平均値)又は相乗平均値(幾何平均値)を意味するが、これ以外の平均値でもよい。
<Method for determining the likelihood of developing colorectal cancer>
The cytosine base of the CpG site in genomic DNA can undergo methylation modification at the 5th carbon. In the present invention and the present specification, the methylation rate of a CpG site refers to the amount of methylated cytosine base (methylated cytosine) and the methylation among CpG sites in a biological sample collected from an individual organism. The amount of untreated cytosine base (unmethylated cytosine) is measured, and means the ratio (%) of the amount of methylated cytosine to the sum of both. In the present invention and the present specification, the average methylation rate of DMR is an arithmetic average value (arithmetic average value) or geometric average value (geometric average value) of methylation rates of a plurality of CpG sites present in DMR. However, an average value other than this may be used.
 本発明に係る大腸癌発症可能性の判定方法(以下、「本発明に係る判定方法」ということがある。)は、ヒト潰瘍性大腸炎患者の大腸癌発症可能性を判定する方法であって、ゲノムDNA中のCpGサイト又はDMRのうち、メチル化率が、大腸癌を発症していない潰瘍性大腸炎患者(非癌潰瘍性大腸炎患者)群と大腸癌を発症した潰瘍性大腸炎患者(発癌潰瘍性大腸炎患者)群とで差があるものをマーカーとすることを特徴とする。これらのマーカーとなるCpGサイトのメチル化率又はDMRの平均メチル化率を指標として、ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性の高低を判定する。特定のCpGサイトのメチル化率又は特定のDMRの平均メチル化率を潰瘍性大腸炎患者の大腸癌発症可能性を判定するために用いられるマーカーとすることにより、視認判別が非常に困難である潰瘍性大腸炎患者における早期大腸癌をより客観的かつ感度よく検出することができ、早期発見が期待できる。 The method for determining the likelihood of developing colorectal cancer according to the present invention (hereinafter sometimes referred to as the “method of determining the present invention”) is a method for determining the likelihood of developing colorectal cancer in human ulcerative colitis patients. Among the CpG sites or DMRs in genomic DNA, the methylation rate of ulcerative colitis patients who have not developed colorectal cancer (non-cancer ulcerative colitis patients) group and ulcerative colitis patients who have developed colorectal cancer (Carcinogenic ulcerative colitis patient) What is different from the group is used as a marker. Using the methylation rate of CpG sites or the average methylation rate of DMR serving as these markers as an index, it is determined whether or not a human ulcerative colitis patient has developed colorectal cancer. Visual discrimination is very difficult by using the methylation rate of a specific CpG site or the average methylation rate of a specific DMR as a marker used to determine the likelihood of developing colorectal cancer in patients with ulcerative colitis. Early colorectal cancer in patients with ulcerative colitis can be detected more objectively and sensitively, and early detection can be expected.
 マーカーとするCpGサイトのメチル化率に基づくヒト潰瘍性大腸炎患者の大腸癌発症可能性の判定は、測定されたCpGサイトのメチル化率の値自体に基づいて行ってもよく、マーカーとするCpGサイトのメチル化率を変数として含む多変量判別式を用い、この多変量判別式から求められる判別値に基づいて行ってもよい。 The determination of the possibility of developing colon cancer in a patient with human ulcerative colitis based on the methylation rate of the CpG site as a marker may be performed based on the measured value of the methylation rate of the CpG site itself. You may perform based on the discriminant value calculated | required from this multivariate discriminant using the multivariate discriminant containing the methylation rate of a CpG site as a variable.
 マーカーとするDMRの平均メチル化率に基づくヒト潰瘍性大腸炎患者の大腸癌発症可能性の判定は、DMR中の2以上のCpGサイトのメチル化率から算出されたDMRの平均メチル化率の値自体に基づいて行ってもよく、マーカーとするDMRの平均メチル化率を変数として含む多変量判別式を用い、この多変量判別式から求められる判別値に基づいて行ってもよい。 The determination of the possibility of developing colon cancer in human ulcerative colitis patients based on the average methylation rate of DMR as a marker is based on the average methylation rate of DMR calculated from the methylation rate of two or more CpG sites in DMR. It may be performed based on the value itself, or may be performed based on a discriminant value obtained from this multivariate discriminant using a multivariate discriminant including the average methylation rate of DMR as a marker as a variable.
 本発明においてマーカーとされるCpGサイト及びDMRとしては、メチル化率が非癌潰瘍性大腸炎患者群と発癌潰瘍性大腸炎患者群とで大きく相違するものが好ましい。両群の差が大きいほど、大腸癌の発症の有無をより確実に検出することができる。本発明においてマーカーとされるCpGサイト及びDMRは、発癌潰瘍性大腸炎患者のメチル化率が非癌潰瘍性大腸炎患者よりも有意に高い、すなわち、大腸癌の発症によりメチル化率が高くなるものであってもよく、発癌潰瘍性大腸炎患者のメチル化率が非癌潰瘍性大腸炎患者よりも有意に低い、すなわち、大腸癌の発症によりメチル化率が低くなるものであってもよい。 As the CpG site and DMR used as markers in the present invention, those having a methylation rate greatly different between the non-cancer ulcerative colitis patient group and the carcinogenic ulcerative colitis patient group are preferable. The larger the difference between the two groups, the more reliably the presence or absence of colorectal cancer can be detected. The CpG site and DMR, which are markers in the present invention, have a significantly higher methylation rate in patients with carcinogenic ulcerative colitis than in non-cancer ulcerative colitis patients, that is, the methylation rate becomes higher due to the onset of colon cancer. The methylation rate of patients with carcinogenic ulcerative colitis may be significantly lower than that of non-cancer ulcerative colitis patients, that is, the methylation rate may be lowered due to the onset of colorectal cancer. .
 本発明においてマーカーとされるCpGサイト及びDMRとしては、同一の発癌潰瘍性大腸炎患者において、大腸の非癌部位と癌部位とのメチル化率の差が小さいものがより好ましい。このようなCpGサイトのメチル化率又はDMRの平均メチル化率を指標とすることにより、発癌潰瘍性大腸炎患者の非癌部位から採取された生体試料が用いられた場合であっても、癌部位から採取された生体試料を用いた場合と同様に、高感度に大腸癌の発症の有無を判定することができる。例えば、大腸深部の粘膜は内視鏡等を用いて採取する必要があり、患者の負担が大きいが、肛門付近の直腸粘膜は比較的容易に採取できる。大腸の非癌部位と癌部位とのメチル化率の差が小さいCpGサイト又はDMRをマーカーとすることにより、癌部位が形成される位置にかかわらず、肛門付近の直腸粘膜を生体試料として大腸癌を発症した患者を漏れなく検出することができる。 As the CpG site and DMR used as markers in the present invention, those having a small difference in methylation rate between a non-cancerous part and a cancerous part of the large intestine in the same carcinogenic ulcerative colitis patient are more preferable. By using such a methylation rate of CpG sites or an average methylation rate of DMR as an index, even when a biological sample collected from a non-cancerous site of a carcinogenic ulcerative colitis patient is used, cancer As in the case of using a biological sample collected from a site, it is possible to determine whether or not colon cancer has developed with high sensitivity. For example, the mucous membrane in the deep part of the large intestine must be collected using an endoscope or the like, and the burden on the patient is large, but the rectal mucosa near the anus can be collected relatively easily. By using a CpG site or DMR with a small difference in methylation rate between a non-cancerous site and a cancerous site in the large intestine as a marker, the rectal mucosa near the anus is used as a biological sample regardless of the position where the cancerous site is formed. Can be detected without omission.
 本発明に係る判定方法のうち、測定されたCpGサイトのメチル化率の値自体に基づいて判定を行う方法は、具体的には、ヒト潰瘍性大腸炎患者の大腸癌発症可能性を判定する方法であって、ヒト潰瘍性大腸炎患者から採取された生体試料から回収されたDNA中の、本発明においてマーカーとする特定の複数のCpGサイトのメチル化率を測定する測定工程と、前記測定工程において測定されたメチル化率と、各CpGサイトに対して予めそれぞれ設定された基準値に基づいて、前記ヒト潰瘍性大腸炎患者の大腸癌発症の可能性を判定する判定工程を有する。 Among the determination methods according to the present invention, the method of determining based on the measured value of the methylation rate of the CpG site itself specifically determines the possibility of developing colorectal cancer in human ulcerative colitis patients. A method for measuring methylation rates of a plurality of specific CpG sites as markers in the present invention in DNA collected from a biological sample collected from a patient with human ulcerative colitis, and the measurement And a determination step of determining the possibility of developing colon cancer in the human ulcerative colitis patient based on the methylation rate measured in the step and a reference value set in advance for each CpG site.
 本発明においてマーカーとされるCpGサイトは、具体的には、配列番号1~80で表される塩基配列中のCpGサイトからなる群より選択される1か所以上のCpGサイトである。各塩基配列を表5~12に示す。表の塩基配列中、括弧内のCGは、実施例1~3で示す網羅的DNAメチル化解析で検出されるCpGサイトである。これらのCpGサイトを含む塩基配列を有するDNA断片は、潰瘍性大腸炎患者の大腸癌発症可能性を判定するためのDNAメチル化率分析用マーカーとして用いることができる。 The CpG site used as a marker in the present invention is specifically one or more CpG sites selected from the group consisting of CpG sites in the base sequences represented by SEQ ID NOs: 1 to 80. Each base sequence is shown in Tables 5-12. In the base sequences in the table, CG in parentheses is a CpG site detected by the comprehensive DNA methylation analysis shown in Examples 1 to 3. A DNA fragment having a base sequence containing these CpG sites can be used as a DNA methylation rate analysis marker for determining the possibility of developing colon cancer in patients with ulcerative colitis.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 配列番号1~32で表される塩基配列中の括弧内の32個のCpGサイト(以下、まとめて「32CpGセット」ということがある。)は、後記実施例1における網羅的DNAメチル化解析において、メチル化率が非癌潰瘍性大腸炎患者群と発癌潰瘍性大腸炎患者群とで大きく相違するものである。このうち、発癌潰瘍性大腸炎患者のメチル化率が非癌潰瘍性大腸炎患者よりもかなり低いものが、配列番号1、2、11、12、14~18、21~24、26、27、29、及び31で表される塩基配列中のCpGサイトであり(表中、「-」)、発癌潰瘍性大腸炎患者のメチル化率が非癌潰瘍性大腸炎患者よりもかなり高いものが、配列番号3~10、13、19、20、25、28、30、及び32で表される塩基配列中のCpGサイトである(表中、「+」)。マーカーとされるCpGサイトは、これら32個のCpGサイトに限定されるものではなく、配列番号1~32で表される塩基配列中の他のCpGサイトも含まれる。 The 32 CpG sites in parentheses in the base sequences represented by SEQ ID NOs: 1 to 32 (hereinafter sometimes collectively referred to as “32CpG sets”) were used in the comprehensive DNA methylation analysis in Example 1 described later. The methylation rate is greatly different between the non-cancer ulcerative colitis patient group and the carcinogenic ulcerative colitis patient group. Among them, those with carcinogenic ulcerative colitis patients whose methylation rate is considerably lower than those of non-cancer ulcerative colitis are SEQ ID NOs: 1, 2, 11, 12, 14-18, 21-24, 26, 27, CpG sites in the base sequences represented by 29 and 31 (in the table, “−”), and the methylation rate of carcinogenic ulcerative colitis patients is significantly higher than that of non-cancer ulcerative colitis patients, This is a CpG site in the base sequence represented by SEQ ID NOs: 3 to 10, 13, 19, 20, 25, 28, 30, and 32 (“+” in the table). The CpG site used as a marker is not limited to these 32 CpG sites, and includes other CpG sites in the nucleotide sequences represented by SEQ ID NOs: 1-32.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 配列番号33~66で表される塩基配列中の括弧内の34個のCpGサイト(以下、まとめて「34CpGセット」ということがある。)は、後記実施例2における網羅的DNAメチル化解析において、メチル化率が非癌潰瘍性大腸炎患者群と発癌潰瘍性大腸炎患者群とで大きく相違するものである。このうち、発癌潰瘍性大腸炎患者のメチル化率が非癌潰瘍性大腸炎患者よりもかなり低いものが、配列番号45、64、及び65で表される塩基配列中のCpGサイトであり(表中、「-」)、発癌潰瘍性大腸炎患者のメチル化率が非癌潰瘍性大腸炎患者よりもかなり高いものが、配列番号33~44、46~63、及び66で表される塩基配列中のCpGサイトである(表中、「+」)。マーカーとされるCpGサイトは、これら34個のCpGサイトに限定されるものではなく、配列番号33~66で表される塩基配列中の他のCpGサイトも含まれる。 34 CpG sites in parentheses in the base sequences represented by SEQ ID NOs: 33 to 66 (hereinafter, sometimes collectively referred to as “34 CpG set”) were used in the comprehensive DNA methylation analysis in Example 2 described later. The methylation rate is greatly different between the non-cancer ulcerative colitis patient group and the carcinogenic ulcerative colitis patient group. Among them, the CpG sites in the nucleotide sequences represented by SEQ ID NOs: 45, 64, and 65 are those in which the methylation rate of carcinogenic ulcerative colitis patients is considerably lower than that of non-cancer ulcerative colitis patients (Table Among the nucleotide sequences represented by SEQ ID NOs: 33 to 44, 46 to 63, and 66, the methylation rate of carcinogenic ulcerative colitis patients is considerably higher than that of non-cancer ulcerative colitis patients. It is a CpG site in the middle ("+" in the table). The CpG sites used as markers are not limited to these 34 CpG sites, and other CpG sites in the base sequences represented by SEQ ID NOs: 33 to 66 are also included.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 配列番号33、35、36、43、67~80で表される塩基配列中の括弧内の18個のCpGサイト(以下、まとめて「18CpGセット」ということがある。)は、後記実施例3における網羅的DNAメチル化解析において、メチル化率が非癌潰瘍性大腸炎患者群と発癌潰瘍性大腸炎患者群とで大きく相違するものである。このうち、発癌潰瘍性大腸炎患者のメチル化率が非癌潰瘍性大腸炎患者よりもかなり低いものが、配列番号67、77、79、及び80で表される塩基配列中のCpGサイトであり(表中、「-」)、発癌潰瘍性大腸炎患者のメチル化率が非癌潰瘍性大腸炎患者よりもかなり高いものが、配列番号33、35、36、43、68~76、及び78で表される塩基配列中のCpGサイトである(表中、「+」)。マーカーとされるCpGサイトは、これら18個のCpGサイトに限定されるものではなく、配列番号33、35、36、43、67~80で表される塩基配列中の他のCpGサイトも含まれる。 Eighteen CpG sites in parentheses in the base sequences represented by SEQ ID NOs: 33, 35, 36, 43, and 67 to 80 (hereinafter sometimes collectively referred to as “18 CpG set”) are described in Example 3 below. In the comprehensive DNA methylation analysis, the methylation rate is greatly different between the non-cancer ulcerative colitis patient group and the carcinogenic ulcerative colitis patient group. Among them, the CpG site in the base sequence represented by SEQ ID NOs: 67, 77, 79, and 80 has a methylation rate significantly lower in patients with carcinogenic ulcerative colitis than in non-cancer ulcerative colitis patients. ("-" In the table), those with carcinogenic ulcerative colitis patients whose methylation rate is considerably higher than those with non-cancer ulcerative colitis are SEQ ID NOs: 33, 35, 36, 43, 68-76, and 78. The CpG site in the base sequence represented by ("+" in the table). The CpG site used as a marker is not limited to these 18 CpG sites, and includes other CpG sites in the base sequences represented by SEQ ID NOs: 33, 35, 36, 43, and 67-80. .
 各CpGサイトについては、予め、発癌潰瘍性大腸炎患者と非癌潰瘍性大腸炎患者を識別するための基準値を設定しておく。32CpGセットのうち表5~7で「+」と記されているCpGサイトと34CpGセット及び18CpGセットのうち表8~12で「+」と記されているCpGサイトとの場合には、測定されたメチル化率が予め設定された基準値以上である場合に、ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高い、と判定する。32CpGセットのうち表5~7で「-」と記されているCpGサイトと34CpGセット及び18CpGセットのうち表8~12で「-」と記されているCpGサイトとの場合には、測定されたメチル化率が予め設定された基準値以下である場合に、ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高い、と判定する。 For each CpG site, a reference value for distinguishing between a carcinogenic ulcerative colitis patient and a non-cancer ulcerative colitis patient is set in advance. Measured in the case of CpG sites marked as “+” in Tables 5-7 and CpG sites marked as “+” in Tables 8-12 out of 34 CpG sets and 18 CpG sets in 32 CpG sets When the methylation rate is equal to or higher than a preset reference value, it is determined that the human ulcerative colitis patient is likely to develop colorectal cancer. Measured in the case of CpG sites marked as “−” in Tables 5-7 and CpG sites marked as “−” in Tables 8-12 out of 34 CpG sets and 18 CpG sets in 32 CpG sets When the methylation rate is equal to or lower than a preset reference value, it is determined that a human ulcerative colitis patient is likely to develop colorectal cancer.
 各CpGサイトの基準値は、発癌潰瘍性大腸炎患者群と非癌潰瘍性大腸炎患者群の当該CpGサイトのメチル化率を測定し、両群を区別することができる閾値として実験的に求めることができる。具体的には、任意のCpGサイトのメチル化の基準値は、一般的な統計学的手法によって求められる。下記にその例を示すが、本発明における基準値の決め方はこれらに限定されるものではない。 The reference value of each CpG site is experimentally determined as a threshold value that can measure the methylation rate of the CpG site in the carcinogenic ulcerative colitis patient group and the non-cancer ulcerative colitis patient group, and distinguish both groups. be able to. Specifically, the standard value for methylation of an arbitrary CpG site is obtained by a general statistical method. Examples thereof are shown below, but the method of determining the reference value in the present invention is not limited to these.
 基準値の求め方の一例としては、例えば、まず、任意のCpGサイトについて、潰瘍性大腸炎患者のうち内視鏡検査での生検組織による病理検査により大腸癌と診断されなかった患者(非癌潰瘍性大腸炎患者)の直腸粘膜のDNAメチル化を測定する。複数の患者について測定した後に、その平均値又は中央値などによりこれらの患者群のメチル化を代表する数値を算出し、これを基準値とすることができる。 As an example of how to obtain the reference value, for example, for any CpG site, patients who have not been diagnosed with colon cancer by pathological examination using biopsy tissue in endoscopic examination among patients with ulcerative colitis (non- DNA methylation of rectal mucosa of patients with cancer ulcerative colitis is measured. After measuring about several patients, the numerical value which represents the methylation of these patient groups by the average value or the median value, etc. can be calculated, and this can be made into a reference value.
 その他、複数の非癌潰瘍性大腸炎患者と複数の発癌潰瘍性大腸炎患者に対して、それぞれ直腸粘膜のDNAメチル化を測定し、平均値又は中央値などにより発癌潰瘍性大腸炎患者群と非癌潰瘍性大腸炎患者群のメチル化を代表する数値とばらつきをそれぞれ算出した後、ばらつきも考慮して両数値が区別されるような閾値を求め、これを基準値とすることができる。 In addition, for multiple non-cancer ulcerative colitis patients and multiple carcinogenic ulcerative colitis patients, DNA methylation of the rectal mucosa was measured respectively, and the mean or median etc. After calculating a numerical value representative of methylation and variation of the non-cancer ulcerative colitis patient group, a threshold value that distinguishes both values in consideration of the variation can be obtained and used as a reference value.
 本発明においてマーカーとされるCpGサイトとしては、配列番号1~16で表される塩基配列中のCpGサイトのみを用いてもよい。これらの16個のCpGサイト(以下、まとめて「16CpGセット」ということがある。)は、32CpGセットのうち、発癌潰瘍性大腸炎患者の大腸の非癌部位と癌部位とのメチル化率の差が小さいものである。本発明においてマーカーとされるCpGサイトとしては、配列番号1~9で表される塩基配列中のCpGサイトのみを用いることも好ましい。これらの9個のCpGサイト(以下、まとめて「9CpGセット」ということがある。)は、16CpGセットのうち、発癌潰瘍性大腸炎患者の大腸の非癌部位と癌部位とのメチル化率の差がより小さいものである。 As the CpG site used as a marker in the present invention, only the CpG site in the base sequence represented by SEQ ID NOs: 1 to 16 may be used. These 16 CpG sites (hereinafter, collectively referred to as “16CpG set”) are, in the 32CpG set, the methylation rate between the non-cancerous site and the cancerous site of the colon of carcinogenic ulcerative colitis patients. The difference is small. As the CpG site used as a marker in the present invention, it is also preferable to use only the CpG site in the nucleotide sequence represented by SEQ ID NOs: 1 to 9. These nine CpG sites (hereinafter, collectively referred to as “9CpG set”) are, of the 16CpG set, the methylation rate between the non-cancerous site and the cancerous site of the colon of carcinogenic ulcerative colitis patients. The difference is smaller.
 前記判定工程においては、配列番号1、2、11、12、14~18、21~24、26、27、29、31、45、64、65、67、77、79、及び80で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号3~10、13、19、20、25、28、30、32~44、46~63、66、68~76、及び78で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する。本発明に係る判定方法においては、配列番号1、2、11、12、14~18、21~24、26、27、29、31、45、64、65、67、77、79、及び80で表される塩基配列中のCpGサイトのうち、メチル化率が予め設定された基準値以下であるCpGサイトの数と、配列番号3~10、13、19、20、25、28、30、32~44、46~63、66、68~76、及び78で表される塩基配列中のCpGサイトのうちメチル化率が予め設定された基準値以上であるCpGサイトの数との和が2以上、好ましくは3以上、より好ましくは5以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定することにより、より精度よく判定を行うことができる。 In the determination step, it is represented by SEQ ID NOs: 1, 2, 11, 12, 14 to 18, 21 to 24, 26, 27, 29, 31, 45, 64, 65, 67, 77, 79, and 80. One or more of the CpG sites in the base sequence have a methylation rate not higher than a preset reference value, or SEQ ID NOs: 3 to 10, 13, 19, 20, 25, 28, 30, 32 to When one or more of the CpG sites in the base sequences represented by 44, 46 to 63, 66, 68 to 76, and 78 have a methylation rate equal to or higher than a preset reference value, the human Determine that patients with ulcerative colitis are more likely to develop colorectal cancer. In the determination method according to the present invention, SEQ ID NOs: 1, 2, 11, 12, 14 to 18, 21 to 24, 26, 27, 29, 31, 45, 64, 65, 67, 77, 79, and 80 Among the CpG sites in the represented nucleotide sequence, the number of CpG sites having a methylation rate equal to or lower than a preset reference value, and SEQ ID NOs: 3 to 10, 13, 19, 20, 25, 28, 30, 32 The sum of the number of CpG sites with a methylation rate equal to or higher than a preset reference value among CpG sites in the base sequences represented by ~ 44, 46-63, 66, 68-76 and 78 is 2 or more In the case of preferably 3 or more, more preferably 5 or more, it is possible to make a more accurate determination by determining that the human ulcerative colitis patient has a high possibility of developing colon cancer. .
 前記32CpGセットを本発明においてマーカーとする場合、すなわち、前記測定工程において前記32CpGセットのメチル化率を測定する場合には、前記判定工程においては、配列番号1、2、11、12、14~18、21~24、26、27、29、及び31で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号3~10、13、19、20、25、28、30、及び32で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する。本発明に係る判定方法においては、配列番号1、2、11、12、14~18、21~24、26、27、29、及び31で表される塩基配列中のCpGサイトのうち、メチル化率が予め設定された基準値以下であるCpGサイトの数と、配列番号3~10、13、19、20、25、28、30、及び32で表される塩基配列中のCpGサイトのうちメチル化率が予め設定された基準値以上であるCpGサイトの数との和が3以上、好ましくは5以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定することにより、より精度よく判定を行うことができる。 When the 32CpG set is used as a marker in the present invention, that is, when the methylation rate of the 32CpG set is measured in the measurement step, in the determination step, SEQ ID NOs: 1, 2, 11, 12, 14 to One or more of the CpG sites in the base sequences represented by 18, 21 to 24, 26, 27, 29, and 31 have a methylation rate equal to or lower than a preset reference value, or SEQ ID NO: When one or more CpG sites in the base sequence represented by 3 to 10, 13, 19, 20, 25, 28, 30, and 32 have a methylation rate equal to or higher than a preset reference value Furthermore, it is determined that the human ulcerative colitis patient has a high possibility of developing colorectal cancer. In the determination method according to the present invention, methylation is performed among CpG sites in the base sequences represented by SEQ ID NOs: 1, 2, 11, 12, 14 to 18, 21 to 24, 26, 27, 29, and 31. The number of CpG sites whose rate is less than or equal to a preset reference value, and methyl of the CpG sites in the base sequences represented by SEQ ID NOs: 3 to 10, 13, 19, 20, 25, 28, 30, and 32 When the sum of the number of CpG sites with a conversion rate equal to or higher than a preset reference value is 3 or more, preferably 5 or more, the human ulcerative colitis patient may develop colon cancer By determining that the value is high, the determination can be performed with higher accuracy.
 前記34CpGセットを本発明においてマーカーとする場合には、前記判定工程においては、配列番号45、64、及び65で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号33~44、46~63、及び66で表される塩基配列中のCpGサイトのうち少1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する。本発明に係る判定方法においては、配列番号45、64、及び65で表される塩基配列中のCpGサイトのうち、メチル化率が予め設定された基準値以下であるCpGサイトの数と、配列番号33~44、46~63、及び66で表される塩基配列中のCpGサイトのうちメチル化率が予め設定された基準値以上であるCpGサイトの数との和が2以上、好ましくは3以上、より好ましくは5以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定することにより、より精度よく判定を行うことができる。 When the 34CpG set is used as a marker in the present invention, in the determination step, one or more of the CpG sites in the base sequences represented by SEQ ID NOs: 45, 64, and 65 have a methylation rate. The methylation rate is preset for at least one of the CpG sites in the base sequence represented by SEQ ID NOs: 33-44, 46-63, and 66, which are below the preset reference value. If it is equal to or higher than the reference value, it is determined that the human ulcerative colitis patient is likely to develop colorectal cancer. In the determination method according to the present invention, among the CpG sites in the base sequences represented by SEQ ID NOs: 45, 64, and 65, the number of CpG sites having a methylation rate equal to or lower than a preset reference value, and the sequence Among the CpG sites in the base sequences represented by the numbers 33 to 44, 46 to 63, and 66, the sum with the number of CpG sites whose methylation rate is not less than a preset reference value is preferably 2 or more, preferably 3 As described above, when it is more preferably 5 or more, it can be determined with higher accuracy by determining that the human ulcerative colitis patient has a high possibility of developing colorectal cancer.
 前記18CpGセットを本発明においてマーカーとする場合には、前記判定工程においては、配列番号67、77、79、及び80で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号33、35、36、43、68~76、及び78で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する。本発明に係る判定方法においては、配列番号67、77、79、及び80で表される塩基配列中のCpGサイトのうち、メチル化率が予め設定された基準値以下であるCpGサイトの数と、配列番号33、35、36、43、68~76、及び78で表される塩基配列中のCpGサイトのうちメチル化率が予め設定された基準値以上であるCpGサイトの数との和が2以上、好ましくは3以上、より好ましくは5以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定することにより、より精度よく判定を行うことができる。 When the 18CpG set is used as a marker in the present invention, in the determination step, one or more CpG sites in the base sequence represented by SEQ ID NOs: 67, 77, 79, and 80 are methylated. The rate is below a preset reference value, or one or more of the CpG sites in the base sequence represented by SEQ ID NOs: 33, 35, 36, 43, 68 to 76, and 78 are methylated When the rate is equal to or higher than a preset reference value, it is determined that the human ulcerative colitis patient is likely to develop colorectal cancer. In the determination method according to the present invention, among the CpG sites in the base sequences represented by SEQ ID NOs: 67, 77, 79, and 80, the number of CpG sites having a methylation rate equal to or lower than a preset reference value And the sum of the number of CpG sites having a methylation rate equal to or higher than a preset reference value among the CpG sites in the base sequences represented by SEQ ID NOs: 33, 35, 36, 43, 68 to 76, and 78. When it is 2 or more, preferably 3 or more, more preferably 5 or more, it is determined that the human ulcerative colitis patient has a high possibility of developing colorectal cancer, thereby making a more accurate determination Can do.
 本発明においては、配列番号1~80で表される塩基配列中のCpGサイトからなる群より選択される1か所以上のCpGサイトをマーカーとして用いることができる。本発明においてマーカーとするCpGサイトとしては、配列番号1~80で表される塩基配列中の括弧内の80個のCpGサイトの全て(以下、まとめて「80CpGセット」ということがある。)であってもよく、前記32CpGセットであってもよく、前記16CpGセットであってもよく、前記9CpGセットであってもよく、前記34CpGセットであってもよく、前記18CpGセットであってもよい。前記32CpGセットのCpGサイト、前記16CpGセットのCpGサイト、及び前記9CpGセットのCpGサイトは、いずれも、非癌潰瘍性大腸炎患者群と発癌潰瘍性大腸炎患者群のメチル化率の分散が小さく、非癌潰瘍性大腸炎患者群と発癌潰瘍性大腸炎患者群の識別能が高い点で優れている。一方で、前記34CpGセット及び前記18CpGセットは、前記32CpGセット、前記16CpGセットのCpGサイト、及び前記9CpGセットのCpGサイトに比べて特異度はやや低くなるものの、感度が非常に高く、例えば、発癌潰瘍性大腸炎の一次スクリーニング検査には非常に好適である。 In the present invention, one or more CpG sites selected from the group consisting of CpG sites in the base sequences represented by SEQ ID NOs: 1 to 80 can be used as markers. The CpG sites used as markers in the present invention are all 80 CpG sites in parentheses in the base sequences represented by SEQ ID NOs: 1 to 80 (hereinafter sometimes collectively referred to as “80 CpG set”). May be the 32CpG set, the 16CpG set, the 9CpG set, the 34CpG set, or the 18CpG set. In the CpG site of the 32CpG set, the CpG site of the 16CpG set, and the CpG site of the 9CpG set, all of the non-cancer ulcerative colitis patient group and the carcinogenic ulcerative colitis patient group have small dispersion of the methylation rate. The non-cancer ulcerative colitis patient group and the carcinogenic ulcerative colitis patient group are excellent in that they have a high discrimination ability. On the other hand, although the 34CpG set and the 18CpG set are slightly less specific than the CpG site of the 32CpG set, the 16CpG set, and the CpG site of the 9CpG set, the sensitivity is very high. It is very suitable for primary screening test for ulcerative colitis.
 本発明に係る判定方法のうち、特定のDMRの平均メチル化率の値自体に基づいて判定を行う方法は、具体的には、ヒト潰瘍性大腸炎患者の大腸癌発症可能性を判定する方法であって、ヒト潰瘍性大腸炎患者から採取された生体試料から回収されたDNA中の、本発明においてマーカーとする特定のDMR中に存在する1個以上のCpGサイトのメチル化率を測定する測定工程と、前記測定工程において測定されたメチル化率に基づいて算出されたDMRの平均メチル化率と、各DMRの平均メチル化率に対して予めそれぞれ設定された基準値に基づいて、前記ヒト潰瘍性大腸炎患者の大腸癌発症の可能性を判定する判定工程を有する。なお、各DMRの平均メチル化率は、当該DMR中のCpGサイトのうち、前記測定工程においてメチル化率が測定された全てのCpGサイトのメチル化率の平均値として算出する。 Among the determination methods according to the present invention, the method of determining based on the value of the average methylation rate of a specific DMR is specifically a method of determining the likelihood of developing colorectal cancer in a human ulcerative colitis patient The methylation rate of one or more CpG sites present in a specific DMR used as a marker in the present invention in DNA collected from a biological sample collected from a patient with human ulcerative colitis is measured. Based on the measurement step, the average methylation rate of the DMR calculated based on the methylation rate measured in the measurement step, and a reference value set in advance for the average methylation rate of each DMR, A determination step of determining the possibility of developing colorectal cancer in a patient with human ulcerative colitis. The average methylation rate of each DMR is calculated as the average value of the methylation rates of all CpG sites whose methylation rates were measured in the measurement step among the CpG sites in the DMR.
 本発明においてマーカーとされるDMRは、具体的には、DMR番号1~112で表されるDMRからなる群より選択される1か所以上のDMRである。各DMRの染色体上の位置及び対応する遺伝子を表13~16に示す。表中のDMRの開始点と終点の塩基位置は、ヒトゲノム配列のデータセット「GRCh37/hg19」に基づく。これらのDMR中に存在するCpGサイトを含む塩基配列を有するDNA断片は、潰瘍性大腸炎患者の大腸癌発症可能性を判定するためのDNAメチル化率分析用マーカーとして用いることができる。 The DMR used as a marker in the present invention is specifically one or more DMRs selected from the group consisting of DMRs represented by DMR numbers 1-112. The position of each DMR on the chromosome and the corresponding gene are shown in Tables 13-16. The base positions of the start point and end point of DMR in the table are based on the human genome sequence data set “GRCh37 / hg19”. These DNA fragments having a base sequence containing a CpG site present in DMR can be used as a DNA methylation rate analysis marker for determining the possibility of developing colon cancer in patients with ulcerative colitis.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 DMR番号1~112で表されるDMR(以下、まとめて「112DMRセット」ということがある。)は、各領域中に含まれる複数のCpGサイトのメチル化率が、非癌潰瘍性大腸炎患者群と発癌潰瘍性大腸炎患者群とで大きく相違するものである。このうち、発癌潰瘍性大腸炎患者のDMRの平均メチル化率(DMR中に存在している複数のCpGサイトのメチル化率の平均値)が非癌潰瘍性大腸炎患者よりもかなり低いものが、DMR番号1、3~20、23~28、31~46、49~60、62、65~69、71、73、74、79、81、82、84、86、87、90~92、95、101、103、109、110、及び112で表されるDMRであり(表中、「-」)、発癌潰瘍性大腸炎患者のDMRの平均メチル化率が非癌潰瘍性大腸炎患者よりもかなり高いものが、DMR番号2、21、22、29、30、47、48、61,63、64、70、72、75~78、80、83、85、88、89、93、94、96~100、102、104~108、及び111で表されるDMRである(表中、「+」)。 DMRs represented by DMR numbers 1-112 (hereinafter sometimes referred to collectively as “112 DMR sets”) have a plurality of CpG site methylation rates in patients with non-cancer ulcerative colitis. Group and carcinogenic ulcerative colitis patient group are greatly different. Among them, the average methylation rate of DMR (average value of methylation rates of a plurality of CpG sites present in DMR) of carcinogenic ulcerative colitis patients is considerably lower than that of non-cancer ulcerative colitis patients. , DMR numbers 1, 3 to 20, 23 to 28, 31 to 46, 49 to 60, 62, 65 to 69, 71, 73, 74, 79, 81, 82, 84, 86, 87, 90 to 92, 95 , 101, 103, 109, 110, and 112 ("-" in the table), and the average methylation rate of DMR in patients with carcinogenic ulcerative colitis is higher than that in patients with non-cancer ulcerative colitis The fairly high ones are DMR numbers 2, 21, 22, 29, 30, 47, 48, 61, 63, 64, 70, 72, 75-78, 80, 83, 85, 88, 89, 93, 94, 96 ~ 100, 102, 104-108, and 11 In a DMR represented (in the table, "+").
 本発明において、DMRの平均メチル化率をマーカーとする場合には、DMR番号1~112で表されるDMRのうちの1か所をマーカーとしてもよく、DMR番号1~112で表されるDMRからなる群より選択される任意の2か所以上をマーカーとしてもよく、DMR番号1~112で表されるDMRの全てをマーカーとしてもよい。本発明においては、判定精度をより高められることから、DMR番号1~112で表されるDMRからなる群のうちマーカーとして用いるDMRは、2か所以上であることが好ましく、3か所以上であることがより好ましく、4か所以上であることがさらに好ましく、5か所以上であることがよりさらに好ましい。 In the present invention, when the average methylation rate of DMR is used as a marker, one of the DMRs represented by DMR numbers 1-112 may be used as a marker, and the DMR represented by DMR numbers 1-112 Any two or more locations selected from the group consisting of may be used as markers, and all of the DMRs represented by DMR numbers 1-112 may be used as markers. In the present invention, since the determination accuracy can be further improved, the number of DMRs used as markers in the group consisting of DMRs represented by DMR numbers 1-112 is preferably 2 or more, and more than 3 More preferably, it is more preferably 4 or more, and still more preferably 5 or more.
 より高い判定精度が得られることから、本発明においてそのメチル化率がマーカーとして用いられるDMRは、DMR番号1~58で表されるDMR(以下、まとめて「58DMRセット」ということがある。)からなる群より選択される1か所以上であることが好ましく、58DMRセットから選択される2か所以上であることがより好ましく、58DMRセットから選択される3か所以上であることがさらに好ましく、58DMRセットから選択される4か所以上であることがよりさらに好ましく、58DMRセットから選択される5か所以上であることが特に好ましい。なかでも、DMR番号1~11で表されるDMR(以下、まとめて「11DMRセット」ということがある。)からなる群より選択される1か所以上であることが好ましく、11DMRセットから選択される2か所以上であることがより好ましく、11DMRセットから選択される3か所以上であることがさらに好ましく、11DMRセットから選択される4か所以上であることがよりさらに好ましく、11DMRセットから選択される5か所以上であることが特に好ましい。 Since higher determination accuracy can be obtained, the DMR whose methylation rate is used as a marker in the present invention is a DMR represented by DMR numbers 1 to 58 (hereinafter sometimes referred to as “58 DMR set”). 1 or more selected from the group consisting of, more preferably 2 or more selected from the 58 DMR set, more preferably 3 or more selected from the 58 DMR set. 4 or more selected from the 58 DMR set, and more preferably 5 or more selected from the 58 DMR set. Among these, it is preferable that the number is one or more selected from the group consisting of DMRs represented by DMR numbers 1 to 11 (hereinafter sometimes collectively referred to as “11 DMR sets”), and selected from 11 DMR sets. 2 or more, more preferably 3 or more selected from the 11 DMR set, even more preferably 4 or more selected from the 11 DMR set, from the 11 DMR set. It is particularly preferable that the number is 5 or more selected.
 各DMRの平均メチル化率は、それぞれのDMR中に含まれる全てのCpGサイトのメチル化率の平均値としてもよく、それぞれのDMR中に含まれる全てのCpGサイトから少なくとも1個のCpGサイトを任意に選出し、この選出されたCpGサイトのメチル化率の平均値としてもよい。各CpGサイトのメチル化率は、配列番号1等で表される塩基配列中のCpGサイトのメチル化率の測定と同様にして測定することができる。 The average methylation rate of each DMR may be an average value of the methylation rates of all CpG sites included in each DMR, and at least one CpG site is selected from all CpG sites included in each DMR. It is good also as selecting arbitrarily and making it the average value of the methylation rate of this selected CpG site. The methylation rate of each CpG site can be measured in the same manner as the measurement of the methylation rate of the CpG site in the base sequence represented by SEQ ID NO: 1 or the like.
 各DMRの平均メチル化率については、予め、発癌潰瘍性大腸炎患者と非癌潰瘍性大腸炎患者を識別するための基準値を設定しておく。前記112DMRセットのうち表13~16で「+」と記されているDMRの場合には、測定されたDMRの平均メチル化率が予め設定された基準値以上である場合に、ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高い、と判定する。112DMRセットのうち表13~16で「-」と記されているDMRの場合には、測定されたDMRの平均メチル化率が予め設定された基準値以下である場合に、ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高い、と判定する。 For the average methylation rate of each DMR, a reference value for distinguishing between a carcinogenic ulcerative colitis patient and a non-cancer ulcerative colitis patient is set in advance. In the case of the DMR marked “+” in Tables 13 to 16 in the 112 DMR set, when the average methylation rate of the measured DMR is equal to or higher than a preset reference value, It is determined that the patient with inflammation is likely to develop colorectal cancer. In the case of a DMR marked as “-” in Tables 13 to 16 in the 112 DMR set, human ulcerative colitis when the average methylation rate of the measured DMR is not more than a preset reference value It is determined that the patient is likely to have colorectal cancer.
 各DMRの平均メチル化率の基準値は、発癌潰瘍性大腸炎患者群と非癌潰瘍性大腸炎患者群の当該DMRの平均メチル化率を測定し、両群を区別することができる閾値として実験的に求めることができる。具体的には、DMRの平均メチル化率の基準値は、一般的な統計学的手法によって求められる。 The standard value of the average methylation rate of each DMR is a threshold value that can be used to measure the average methylation rate of the DMR of the carcinogenic ulcerative colitis patient group and the non-cancer ulcerative colitis patient group, and to distinguish the two groups. It can be determined experimentally. Specifically, the standard value of the average methylation rate of DMR is obtained by a general statistical method.
 前記80CpGセット等のCpGサイトのメチル化率をマーカーとする場合には、本発明に係る判定方法は、前記判定工程を、前記測定工程において測定されたメチル化率と、予め設定された多変量判別式に基づいて、前記ヒト潰瘍性大腸炎患者の大腸癌発症の可能性を判定することができる。当該多変量判別式は、前記配列番号1~80で表される塩基配列中のCpGサイトのうち1か所以上のCpGサイトのメチル化率を変数として含む。 When the methylation rate of the CpG site such as the 80CpG set is used as a marker, the determination method according to the present invention includes the determination step including a methylation rate measured in the measurement step and a preset multivariate. Based on the discriminant, the possibility of developing colorectal cancer in the human ulcerative colitis patient can be determined. The multivariate discriminant includes, as a variable, the methylation rate of one or more CpG sites among the CpG sites in the base sequences represented by SEQ ID NOs: 1 to 80.
 前記112DMRセットからなる群より選択される1か所以上のDMRの平均メチル化率をマーカーとする場合には、本発明に係る判定方法は、前記判定工程を、前記測定工程において測定されたメチル化率に基づいて算出されたDMRの平均メチル化率と、予め設定された多変量判別式に基づいて、前記ヒト潰瘍性大腸炎患者の大腸癌発症の可能性を判定することができる。当該多変量判別式は、前記112DMRセット中のCpGサイトのうち1か所以上のCpGサイトのメチル化率を変数として含む。 In the case where the average methylation rate of one or more DMRs selected from the group consisting of the 112 DMR sets is used as a marker, the determination method according to the present invention includes the determination step including the methylation measured in the measurement step. Based on the average methylation rate of DMR calculated based on the conversion rate and a multivariate discriminant set in advance, the possibility of the onset of colon cancer in the human ulcerative colitis patient can be determined. The multivariate discriminant includes, as a variable, the methylation rate of one or more CpG sites among the CpG sites in the 112DMR set.
 本発明において用いられる多変量判別式は、2群を判別するために用いられる一般的な手法により求めることができる。当該多変量判別式としては、例えば、ロジスティック回帰式、線形判別式、ナイーブベイズ分類器で作成された式、又はサポートベクターマシンで作成された式が挙げられるが、これらに限定されるものではない。これらの多変量判別式は、例えば、発癌潰瘍性大腸炎患者群と非癌潰瘍性大腸炎患者群について、前記配列番号1~80で表される塩基配列中のCpGサイトのうち1か所又は2か所以上のCpGサイトのメチル化率を測定し、得られたメチル化率を変数として、常法により作成することができる。また、発癌潰瘍性大腸炎患者群と非癌潰瘍性大腸炎患者群について、前記112DMRセット中のDMRのうち1か所又は2か所以上のDMRの平均メチル化率を測定し、得られたメチル化率を変数として、常法により作成することができる。 The multivariate discriminant used in the present invention can be obtained by a general method used to discriminate between the two groups. Examples of the multivariate discriminant include, but are not limited to, a logistic regression equation, a linear discriminant, a formula created with a naive Bayes classifier, or a formula created with a support vector machine. . These multivariate discriminants include, for example, one of the CpG sites in the base sequences represented by SEQ ID NOs: 1 to 80 for the carcinogenic ulcerative colitis patient group and the non-cancer ulcerative colitis patient group or The methylation rate of two or more CpG sites can be measured, and the resulting methylation rate can be used as a variable to prepare a standard method. In addition, for the carcinogenic ulcerative colitis patient group and the non-cancer ulcerative colitis patient group, the average methylation rate of one or more DMRs among the DMRs in the 112 DMR set was measured and obtained. The methylation rate can be used as a variable, and can be prepared by a conventional method.
 本発明において用いられる多変量判別式には、予め、発癌潰瘍性大腸炎患者と非癌潰瘍性大腸炎患者を識別するための基準判別値を設定しておく。基準判別値は、発癌潰瘍性大腸炎患者群と非癌潰瘍性大腸炎患者群について、使用する多変量判別式の値である判別値を求め、発癌潰瘍性大腸炎患者群の判別値と非癌潰瘍性大腸炎患者群の判別値とを比較し、両群を区別することができる閾値として実験的に求めることができる。 In the multivariate discriminant used in the present invention, a reference discriminating value for discriminating between a carcinogenic ulcerative colitis patient and a non-cancer ulcerative colitis patient is set in advance. For the standard discriminant value, the discriminant value, which is the value of the multivariate discriminant used for the carcinogenic ulcerative colitis patient group and the non-cancer ulcerative colitis patient group, is obtained. It can be experimentally determined as a threshold value for distinguishing both groups by comparing the discriminant values of the cancer ulcerative colitis patient group.
 多変量判別式を用いて判定を行う場合、具体的には、前記測定工程において、使用する多変量判別式がそのメチル化率を変数として含むCpGサイトのメチル化率又はDMRの平均メチル化率を測定し、前記判定工程において、前記測定工程において測定されたメチル化率と前記多変量判別式に基づいて当該多変量判別式の値である判別値を算出し、この判別値と予め設定した基準判別値とに基づいて、CpGサイトのメチル化率又はDMRの平均メチル化率が測定されたヒト潰瘍性大腸炎患者が大腸癌を発症している可能性の高低を判定する。当該判別値が予め設定された基準判別値以上である場合に、当該ヒト潰瘍性大腸炎患者が、大腸癌を発症している可能性が高いと判定する。 When the determination is made using the multivariate discriminant, specifically, in the measurement step, the methylation rate of the CpG site or the average methylation rate of the DMR in which the multivariate discriminant used includes the methylation rate as a variable. In the determination step, a discriminant value which is a value of the multivariate discriminant is calculated based on the methylation rate measured in the measurement step and the multivariate discriminant, and the discriminant value is set in advance. Based on the reference discriminant value, it is determined whether a human ulcerative colitis patient whose CpG site methylation rate or DMR average methylation rate has been measured has developed colorectal cancer. When the discriminant value is greater than or equal to a preset reference discriminant value, it is determined that the human ulcerative colitis patient is likely to develop colorectal cancer.
 本発明において用いられる多変量判別式としては、前記34CpGサイトからなる群より選択される1か所以上のCpGサイトのメチル化率を変数として含む式が好ましく、前記34CpGサイトからなる群より選択される1か所以上のCpGサイトのメチル化率のみを変数として含む式がより好ましく、前記34CpGサイトからなる群より任意に選択される2~10か所のCpGサイトのメチル化率のみを変数として含む式がさらに好ましく、前記34CpGサイトからなる群より任意に選択される2~5か所のCpGサイトのメチル化率のみを変数として含む式がよりさらに好ましい。 The multivariate discriminant used in the present invention is preferably a formula containing as a variable the methylation rate of one or more CpG sites selected from the group consisting of the 34 CpG sites, and selected from the group consisting of the 34 CpG sites. More preferably, the formula includes only the methylation rate of one or more CpG sites as a variable, and only the methylation rate of 2 to 10 CpG sites arbitrarily selected from the group consisting of the 34 CpG sites is used as a variable. More preferably, the formula includes only the methylation rate of 2 to 5 CpG sites arbitrarily selected from the group consisting of the 34 CpG sites as a variable.
 本発明において用いられる多変量判別式としては、前記18CpGサイトからなる群より選択される1か所以上のCpGサイトのメチル化率を変数として含む式が好ましく、前記18CpGサイトからなる群より選択される1か所以上のCpGサイトのメチル化率のみを変数として含む式がより好ましく、前記18CpGサイトからなる群より任意に選択される2~10か所のCpGサイトのメチル化率のみを変数として含む式がさらに好ましく、前記18CpGサイトからなる群より任意に選択される2~5か所のCpGサイトのメチル化率のみを変数として含む式がよりさらに好ましい。 The multivariate discriminant used in the present invention is preferably a formula containing as a variable the methylation rate of one or more CpG sites selected from the group consisting of the 18CpG sites, and selected from the group consisting of the 18CpG sites. More preferably, the formula includes only the methylation rate of one or more CpG sites as a variable, and only the methylation rate of 2 to 10 CpG sites arbitrarily selected from the group consisting of the 18 CpG sites is used as a variable. More preferably, the formula includes only the methylation rate of 2 to 5 CpG sites arbitrarily selected from the group consisting of the 18 CpG sites as a variable.
 前記34CpGセット及び前記18CpGセットを構成するCpGサイトは、これらのセットから任意で2~10個、好ましくは2~5個のCpGサイトを選択し、この選択されたCpGサイトのみを用いた場合でも、充分な感度及び特異度で、ヒト潰瘍性大腸炎患者の大腸癌発症可能性を判定することができる。例えば、後記実施例2に示す通り、前記34CpGセットのうち、配列番号34で表される塩基配列中のCpGサイト、配列番号37で表される塩基配列中のCpGサイト、及び配列番号56で表される塩基配列中のCpGサイトの3個のCpGサイトをマーカーとして用い、これらの3個のCpGサイトのメチル化率を変数としてロジスティック回帰により作成された多変量判別式を用いた場合には、ヒト潰瘍性大腸炎患者について、感度約96%、特異度約92%で大腸癌の発症可能性を判定することができる。臨床検査等において、メチル化率を測定するCpGサイトの数が多いと、労力とコストが過大となるおそれがある。マーカーとするCpGサイトを前記34CpGセット及び前記18CpGセットを構成するCpGサイトから選抜することにより、2~10個という、臨床検査において測定可能な妥当な数のCpGサイトで、精度よくヒト潰瘍性大腸炎患者の大腸癌発症可能性を判定することができる。 The CpG sites constituting the 34 CpG set and the 18 CpG set are arbitrarily selected from 2 to 10, preferably 2 to 5 CpG sites from these sets, and even when only the selected CpG sites are used. With sufficient sensitivity and specificity, it is possible to determine the possibility of developing colon cancer in human ulcerative colitis patients. For example, as shown in Example 2 below, among the 34 CpG sets, the CpG site in the base sequence represented by SEQ ID NO: 34, the CpG site in the base sequence represented by SEQ ID NO: 37, and the sequence represented by SEQ ID NO: 56 In the case of using a multivariate discriminant created by logistic regression using the three CpG sites of the CpG site in the base sequence to be used as markers and the methylation rate of these three CpG sites as variables, For human ulcerative colitis patients, the likelihood of developing colon cancer can be determined with a sensitivity of about 96% and a specificity of about 92%. In clinical examinations and the like, if the number of CpG sites for measuring the methylation rate is large, labor and cost may be excessive. By selecting a CpG site as a marker from the CpG sites constituting the 34CpG set and the 18CpG set, it is an appropriate number of CpG sites that can be measured in clinical examinations, and is accurate to human ulcerative colon. The possibility of developing colorectal cancer in patients with inflammation can be determined.
 本発明において用いられる多変量判別式としては、前記112DMRセットからなる群より選択される1か所以上のDMRの平均メチル化率を変数として含む式が好ましく、前記112DMRセットからなる群より選択される2か所以上のDMRの平均メチル化率のみを変数として含む式がより好ましく、前記112DMRセットからなる群より任意に選択される3か所以上のDMRの平均メチル化率のみを変数として含む式がさらに好ましく、前記112DMRセットからなる群より任意に選択される4か所以上のDMRの平均メチル化率のみを変数として含む式がよりさらに好ましく、前記112DMRセットからなる群より任意に選択される5か所以上のDMRの平均メチル化率のみを変数として含む式が特に好ましい。中でも、前記58DMRセットからなる群より選択される1か所以上のDMRの平均メチル化率を変数として含む式が好ましく、前記58DMRセットからなる群より選択される2か所以上のDMRの平均メチル化率のみを変数として含む式がより好ましく、前記58DMRセットからなる群より任意に選択される2~10か所のDMRの平均メチル化率のみを変数として含む式がさらに好ましく、前記58DMRセットからなる群より任意に選択される3~10か所のDMRの平均メチル化率のみを変数として含む式がよりさらに好ましく、前記58DMRセットからなる群より任意に選択される5~10か所のDMRの平均メチル化率のみを変数として含む式が特に好ましい。より好ましくは、前記11DMRセットからなる群より選択される1か所以上のDMRの平均メチル化率を変数として含む式が好ましく、前記11DMRセットからなる群より選択される2か所以上のDMRの平均メチル化率のみを変数として含む式がより好ましく、前記11DMRセットからなる群より任意に選択される2~10か所のDMRの平均メチル化率のみを変数として含む式がさらに好ましく、前記11DMRセットからなる群より任意に選択される3~10か所のDMRの平均メチル化率のみを変数として含む式がよりさらに好ましく、前記11DMRセットからなる群より任意に選択される5~10か所のDMRの平均メチル化率のみを変数として含む式が特に好ましい。 The multivariate discriminant used in the present invention is preferably an expression including, as a variable, an average methylation rate of one or more DMRs selected from the group consisting of the 112 DMR set, and selected from the group consisting of the 112 DMR set. More preferably, the formula includes only the average methylation rate of two or more DMRs as a variable, and includes only the average methylation rate of three or more DMRs arbitrarily selected from the group consisting of the 112 DMR sets as a variable. More preferably, the formula includes only the average methylation rate of four or more DMRs arbitrarily selected from the group consisting of the 112 DMR set as a variable, and more preferably the formula is arbitrarily selected from the group consisting of the 112 DMR set. A formula including only the average methylation rate of 5 or more DMRs as a variable is particularly preferable. Among them, a formula including an average methylation rate of one or more DMRs selected from the group consisting of the 58 DMR sets as a variable is preferable, and an average methyl of two or more DMRs selected from the group consisting of the 58 DMR sets is preferable. More preferably, the formula includes only the conversion rate as a variable, and more preferably includes only the average methylation rate of 2 to 10 DMRs arbitrarily selected from the group consisting of the 58 DMR set as a variable. More preferably, the formula includes only the average methylation rate of 3 to 10 DMRs arbitrarily selected from the group consisting of the variables, and 5 to 10 DMRs arbitrarily selected from the group consisting of the 58 DMR sets. Particularly preferred is a formula containing only the average methylation rate of as a variable. More preferably, a formula including, as a variable, an average methylation rate of one or more DMRs selected from the group consisting of the 11 DMR sets is preferable, and two or more DMRs selected from the group consisting of the 11 DMR sets are used. A formula including only the average methylation rate as a variable is more preferable, and a formula including only the average methylation rate of 2 to 10 DMRs arbitrarily selected from the group consisting of the 11 DMR sets as a variable is more preferable. More preferably, the formula includes only the average methylation rate of 3 to 10 DMRs arbitrarily selected from the group consisting of the set as a variable, and 5 to 10 sites arbitrarily selected from the group consisting of the 11 DMR sets. Particularly preferred is a formula containing only the average methylation rate of DMR as a variable.
 本発明に係る判定方法に供される生体試料は、ヒト潰瘍性大腸炎患者から採取された生体試料であって、当該患者のゲノムDNAが含まれているものであれば特に限定されるものではなく、血液、血漿、血清、涙液、唾液等であってもよく、消化管粘膜や、肝臓等のその他の組織から採取された組織片であってもよい。本発明に係る判定方法に供される生体試料としては、大腸の状態をより強く反映していることから、大腸粘膜であることが好ましく、比較的低侵襲に採取可能であることから直腸粘膜であることがより好ましい。大腸の直腸粘膜は、例えば、後記の大腸粘膜採取用キットを用いて簡便に採取することができる。 The biological sample used in the determination method according to the present invention is a biological sample collected from a patient with human ulcerative colitis and is not particularly limited as long as it contains the genomic DNA of the patient. Alternatively, blood, plasma, serum, tears, saliva, or the like may be used, or tissue pieces collected from other tissues such as the digestive tract mucosa or the liver may be used. The biological sample used in the determination method according to the present invention is preferably the large intestine mucosa because it more strongly reflects the state of the large intestine, and can be collected in the rectal mucosa because it can be collected with relatively low invasiveness. More preferably. The rectal mucosa of the large intestine can be easily collected using, for example, a kit for collecting large intestine mucosa described later.
 また、当該生体試料は、DNAが抽出可能な状態であればよく、各種前処理が施されているものであってもよい。例えば、ホルマリン固定パラフィン包埋(FFPE)組織であってもよい。生体試料からのDNAの抽出は常法により行うことができ、各種市販のDNA抽出・精製キットを使用することもできる。 In addition, the biological sample may be in a state where DNA can be extracted, and may be subjected to various pretreatments. For example, it may be a formalin fixed paraffin embedded (FFPE) tissue. Extraction of DNA from a biological sample can be performed by a conventional method, and various commercially available DNA extraction / purification kits can also be used.
 CpGサイトのメチル化率を測定する方法としては、特定のCpGサイトについてメチル化シトシン塩基とメチル化されていないシトシン塩基を区別して定量可能な方法であれば、特に限定されるものではない。当該技術分野において公知の方法をそのまま又は必要に応じて適宜改変することによりCpGサイトのメチル化率を測定できる。CpGサイトのメチル化率の測定方法としては、例えば、バイサルファイトシーケンス法、COBRA(Combined Bisulfite Restriction Analysis)法、qAMP(quantitative analysis of DNA methylation using real-time PCR)法等が挙げられる。その他、MIAM(Microarray-based Integrated Analysis of Methylation by Isoschizomers)法を用いて行ってもよい。 The method for measuring the methylation rate of a CpG site is not particularly limited as long as it is a method capable of distinguishing and quantifying a methylated cytosine base and an unmethylated cytosine base for a specific CpG site. The methylation rate of the CpG site can be measured by appropriately modifying methods known in the art as they are or as necessary. Examples of methods for measuring the methylation rate of CpG sites include bisulfite sequencing, COBRA (Combined Bisulfite Restoration Analysis), and qAMP (quantitative analysis of DNA methylation using real-time PCR). In addition, you may perform using the MIAM (Microarray-based Integrated Analysis of Methylation by Isoschizomers) method.
<大腸粘膜採取用キット>
 本発明に係る大腸粘膜採取用キットは、直腸粘膜を挟んで採取するための採取具と、肛門を拡張し、当該採取具を肛門から大腸粘膜表面へ到達させるための採取補助具とを備える。以下、図1~5を参照しながら、本発明に係る大腸粘膜採取用キットについて説明する。
<Colonial mucosa collection kit>
The kit for collecting large intestine mucosa according to the present invention comprises a collection tool for collecting with the rectal mucosa sandwiched therein, and a collection aid for expanding the anus and allowing the collection tool to reach the surface of the large intestine mucosa from the anus. The colonic mucosa collection kit according to the present invention will be described below with reference to FIGS.
 図1(A)~図1(C)は大腸粘膜採取用キット1の採取具2の一実施態様である採取具2Aの説明図である。図1(A)は採取具2Aの第1の挟持片3aと第2の挟持片3bが加力されていない状態の斜視図であり、図1(B)は加力された状態の斜視図である。また、図1(C)は採取具2Aの挟持面を有する先端部の一部拡大図である。図1(A)に示すように、採取具2Aは、第1の挟持片3aと、第2の挟持片3bと、連結部4と、第1の挟持面5aと、第2の挟持面5bと、を有する。 FIG. 1 (A) to FIG. 1 (C) are explanatory views of a sampling tool 2A, which is an embodiment of the sampling tool 2 of the colonic mucosa sampling kit 1. FIG. FIG. 1 (A) is a perspective view of a state in which the first holding piece 3a and the second holding piece 3b of the sampling tool 2A are not applied, and FIG. 1 (B) is a perspective view of the applied state. It is. FIG. 1C is a partially enlarged view of the distal end portion having the clamping surface of the sampling tool 2A. As shown in FIG. 1 (A), the sampling tool 2A includes a first clamping piece 3a, a second clamping piece 3b, a connecting portion 4, a first clamping surface 5a, and a second clamping surface 5b. And having.
 第1の挟持片3aは、一方の端部に大腸粘膜を挟持する第1の挟持面5aが形成されている板状の部材であり、第2の挟持片3bは、一方の端部に大腸粘膜を挟持する第2の挟持面5bが形成されている板状の部材である。第1の挟持片3aと第2の挟持片3bは、連結部4において、互いに対向した状態で、第1の挟持面5a及び第2の挟持面5bが形成されていない端部において連結されている。第1の挟持片3a及び第2の挟持片3bの形状は、板状の他、棒状であってもよく、直腸粘膜を挟んで採取するための一定の長さを有するように形成されていれば形状にこだわらない。 The first clamping piece 3a is a plate-like member in which a first clamping surface 5a for clamping the colonic mucosa is formed at one end, and the second clamping piece 3b is a large intestine at one end. It is a plate-like member on which a second clamping surface 5b that clamps the mucous membrane is formed. The first sandwiching piece 3a and the second sandwiching piece 3b are connected to each other at the end where the first sandwiching surface 5a and the second sandwiching surface 5b are not formed in the connecting portion 4 in a state of facing each other. Yes. The shape of the first sandwiching piece 3a and the second sandwiching piece 3b may be plate-like or rod-like, and may be formed to have a certain length for collecting the rectal mucosa. Don't stick to the shape.
 第1の挟持片3aと第2の挟持片3bへの加力により、両者は互いに近接する。このため、採取具2Aの第1の挟持面5aと第2の挟持面5bを大腸粘膜に接触させた状態で、第1の挟持片3aと第2の挟持片3bに加力することによって、第1の挟持面5aと第2の挟持面5bにより大腸粘膜を挟持することができる。より詳細には、第1の挟持面5aの辺縁部6aと第2の挟持面5bの辺縁部6bが大腸粘膜を挟んだ状態で接する。この状態で採取具2Aを大腸粘膜から離すことにより、第1の挟持面5aと第2の挟持面5bに挟持された大腸粘膜が引きちぎられて採取される。 Both are close to each other by the force applied to the first sandwiching piece 3a and the second sandwiching piece 3b. For this reason, by applying force to the first clamping piece 3a and the second clamping piece 3b in a state where the first clamping surface 5a and the second clamping surface 5b of the sampling tool 2A are in contact with the large intestine mucosa, The large intestine mucosa can be clamped by the first clamping surface 5a and the second clamping surface 5b. More specifically, the edge 6a of the first clamping surface 5a and the edge 6b of the second clamping surface 5b are in contact with the large intestine mucosa sandwiched therebetween. In this state, by separating the collection tool 2A from the large intestine mucosa, the large intestine mucosa sandwiched between the first clamping surface 5a and the second clamping surface 5b is torn and collected.
 第1の挟持片3aと第2の挟持片3bの長さは、50~250mmが好ましく、100~200mmがより好ましく、70~200mmがさらに好ましく、70~150mmがよりさらに好ましい。第1の挟持片3aと第2の挟持片3bが前記範囲の長さであることにより、肛門から大腸粘膜を直接挟持して採取しやすい。 The length of the first clamping piece 3a and the second clamping piece 3b is preferably 50 to 250 mm, more preferably 100 to 200 mm, still more preferably 70 to 200 mm, and even more preferably 70 to 150 mm. Since the first clamping piece 3a and the second clamping piece 3b have a length within the above range, the colonic mucosa is easily clamped and collected from the anus.
 大腸粘膜を比較的組織の破損が少ない状態で採取するために、第1の挟持面5aと第2の挟持面5bの少なくとも一方はカップ形状であることが好ましい。両者の少なくとも一方がカップ形状の場合であるため、第1の挟持面5aの辺縁部6aと第2の挟持面5bの辺縁部6bが接した場合に、内部に空間が形成される。第1の挟持面5aと第2の挟持面5bに挟持された大腸粘膜のうち、当該空間内に収容された部分は、大腸粘膜を引きちぎる際に負荷があまりかからず、よって組織の破壊を抑制できる。図1に示すように、両方がカップ形状であることにより、大腸粘膜の採取がより容易であり、かつ組織の破壊を抑制できる。 In order to collect the colonic mucosa with relatively little tissue damage, at least one of the first clamping surface 5a and the second clamping surface 5b is preferably cup-shaped. Since at least one of them is a cup shape, when the edge 6a of the first clamping surface 5a and the edge 6b of the second clamping surface 5b are in contact with each other, a space is formed inside. Of the large intestine mucosa sandwiched between the first sandwiching surface 5a and the second sandwiching surface 5b, the portion accommodated in the space does not take much load when the large intestine mucosa is torn, thus destroying the tissue. Can be suppressed. As shown in FIG. 1, since both are cup-shaped, it is easier to collect the mucosa of the large intestine, and tissue destruction can be suppressed.
 第1の挟持面5aと第2の挟持面5bがカップ形状の場合、辺縁部6aと辺縁部6bの内径は、必要な量の大腸粘膜が採取できる大きさに設定すればよい。本発明に係る判定方法に供される大腸粘膜の場合、少量の粘膜が採取できれば十分である。例えば、辺縁部6aと辺縁部6bの内径を、1~5mm、好ましくは2~3mmとすることにより、大腸粘膜を過度に傷つけることなく、充分量の大腸粘膜を採取することができる。 When the first sandwiching surface 5a and the second sandwiching surface 5b are cup-shaped, the inner diameters of the marginal portion 6a and the marginal portion 6b may be set to such a size that a necessary amount of large intestine mucosa can be collected. In the case of the large intestine mucosa used in the determination method according to the present invention, it is sufficient if a small amount of mucosa can be collected. For example, by setting the inner diameters of the edge portion 6a and the edge portion 6b to 1 to 5 mm, preferably 2 to 3 mm, a sufficient amount of the large intestine mucosa can be collected without excessively damaging the large intestine mucosa.
 辺縁部6aと辺縁部6bは、互いに密接することが可能であればよく、平坦であってもよいが、図1(C)に示すように、鋸歯状であることが好ましい。鋸歯状の場合には、辺縁部6a’と辺縁部6b’により挟持することによって比較的弱い力で大腸粘膜を切断し採取することができる。 The edge portion 6a and the edge portion 6b may be flat as long as they can be brought into close contact with each other, but are preferably serrated as shown in FIG. In the case of a sawtooth shape, the large intestine mucosa can be cut and collected with a relatively weak force by being sandwiched between the edge 6a 'and the edge 6b'.
 第1の挟持片3aと第2の挟持片3bのいずれか一方の内側に突起部8aを、他方に筒部9aを、互いに対向するように形成していてもよい。第1の挟持片3aと第2の挟持片3bへ加力し、辺縁部6aと辺縁部6bが互いに接する状態において、突起部8aの先端は筒部9aに嵌る。突起部8aの先端が筒部9aに嵌っていることにより、採取具2を大腸粘膜から離す際に辺縁部6aと辺縁部6bがずれることなく、安定して大腸粘膜を採取することができる。 The protruding portion 8a may be formed on the inner side of one of the first holding piece 3a and the second holding piece 3b, and the cylindrical portion 9a may be formed on the other side so as to face each other. When the edge 6a and the edge 6b are in contact with each other by applying force to the first holding piece 3a and the second holding piece 3b, the tip of the protrusion 8a fits into the tube 9a. Since the tip of the protrusion 8a is fitted into the tube portion 9a, it is possible to stably collect the large intestine mucosa without the edge 6a and the edge 6b being displaced when the collection tool 2 is separated from the large intestine mucosa. it can.
 図1(D)は採取具2Aの変形例である採取具2Bの説明図であり、より詳細には、採取具2Bの第1の挟持片3aと第2の挟持片3bが加力されていない状態の斜視図である。第1の挟持片3aは、中心部よりも第1の挟持面5aが形成されている端部側に、第1の屈曲部7aを有していてもよい。第2の挟持片3bは、中心部よりも第2の挟持面5bが形成されている端部側に、第2の屈曲部7bを有していてもよい。第1の挟持片3aと第2の挟持片3bが、中心部よりも挟持面が形成されている先端側において、互いに対向している状態を維持したまま、傾斜していることにより、採取補助具11のスリット13を貫通して大腸粘膜に接することが容易になる。具体的には、図1(D)に示すように、第1の挟持片3aの中心部から連結部4側と第2の挟持片3bの中心部から連結部4側とを載せた仮想平面Pに交差するように屈曲している。屈曲の角度θは、10~50°が好ましく、20~40°がより好ましく、25~35°がさらに好ましい。また、第1の屈曲部7aから第1の挟持面5aの先端部までの長さ、及び第2の屈曲部7bから第2の挟持面5bの先端部までの長さは、20~60mmが好ましく、30~50mmがより好ましい。屈曲部から挟持面の先端部までの長さが前記範囲内であることにより、採取補助具11のスリット13を貫通した状態での粘膜採取がより容易になる。 FIG. 1D is an explanatory diagram of a sampling tool 2B which is a modification of the sampling tool 2A. More specifically, the first clamping piece 3a and the second clamping piece 3b of the sampling tool 2B are applied with force. FIG. The 1st clamping piece 3a may have the 1st bending part 7a in the edge part side in which the 1st clamping surface 5a is formed rather than the center part. The 2nd clamping piece 3b may have the 2nd bending part 7b in the edge part side in which the 2nd clamping surface 5b is formed rather than the center part. The first sandwiching piece 3a and the second sandwiching piece 3b are inclined while maintaining a state in which they are opposed to each other on the distal end side where the sandwiching surface is formed with respect to the center portion, thereby assisting collection. It becomes easy to penetrate the slit 13 of the tool 11 and contact the colonic mucosa. Specifically, as shown in FIG. 1D, a virtual plane in which the connecting portion 4 side from the center of the first holding piece 3a and the connecting portion 4 side from the center of the second holding piece 3b are placed. Bent to intersect P. The bending angle θ 1 is preferably 10 to 50 °, more preferably 20 to 40 °, and even more preferably 25 to 35 °. Further, the length from the first bent portion 7a to the tip portion of the first clamping surface 5a and the length from the second bent portion 7b to the tip portion of the second holding surface 5b are 20 to 60 mm. 30 to 50 mm is more preferable. When the length from the bent portion to the distal end portion of the clamping surface is within the above range, it is easier to collect the mucous membrane in a state where it passes through the slit 13 of the collection assisting tool 11.
 図2(A)~図2(E)は、採取具2Aの別の変形例である採取具2Cの説明図である。図2(A)は、採取具2の第1の挟持片3aと第2の挟持片3bが加力されていない状態の正面図であり、図2(B)は、採取具2Cの平面図である。図2(C)は、採取具2Cの突起部8bの拡大図であり、図2(D)は、採取具2Cの先端部分の、突起部8bの係止爪が筒部9bの開口縁部の張り出し部に係止されている状態の平面図であり、図2(E)は、採取具2Cの先端部分の、第1の挟持面5aと第2の挟持面5bが接着した状態の平面図である。 2 (A) to 2 (E) are explanatory views of a sampling tool 2C, which is another modification of the sampling tool 2A. FIG. 2 (A) is a front view showing a state in which the first clamping piece 3a and the second clamping piece 3b of the sampling tool 2 are not pressed, and FIG. 2 (B) is a plan view of the sampling tool 2C. It is. FIG. 2C is an enlarged view of the protruding portion 8b of the sampling tool 2C, and FIG. 2D is an opening edge of the cylindrical portion 9b where the locking claw of the protruding portion 8b is at the tip of the sampling tool 2C. FIG. 2E is a plan view showing a state in which the first clamping surface 5a and the second clamping surface 5b are bonded to each other at the distal end portion of the sampling tool 2C. FIG.
 被検者の直腸から粘膜組織を採取する際に、採取具2は、第1の挟持片3aと第2の挟持片3bの距離が開いた状態よりも閉じた状態のほうが、採取補助具11のスリット13を貫通させやすい。そこで、図2の突起部8bが示すように、採取具2の突起部は、係止爪であってもよい。突起部8bの係止爪は、1つ又は2つ以上であってもよく、筒部9bの開口縁部の張り出し部に係止できれば幾つであってもよい。この場合には、突起部8bを篏合させる筒部9bは、開口縁部に径方向内側に張り出し部を設けたものとし、突起部8bの係止爪が筒部9bの開口縁部の張り出し部に係止させることができる(図2(D))。突起部8bの係止爪の高さは、筒部9bの張り出し部に係止させた状態のときに、第1の挟持面5aと第2の挟持面5bの先端部が近接しているが、第1の挟持面5aと第2の挟持面5bが接着していない状態となり、かつ第1の挟持片3aと第2の挟持片3bをさらに加力することによって、突起部8bの先端部が筒部9bの底部を突き抜けることなく第1の挟持面5aと第2の挟持面5bを接着させることが可能となるように調整することが好ましい。これにより、採取具2の第1の挟持片3aと第2の挟持片3bを加力することなく、第1の挟持面5aと第2の挟持面5bの先端部を近接した状態で安定させることができる。採取具2は、図2(D)の状態で採取補助具11のスリット13を貫通させ、先端部が直腸粘膜組織に接触したら、第1の挟持片3aと第2の挟持片3bを加力し、粘膜組織の一部を挟み込むようにして図2(E)の状態にし、粘膜組織を採取する。 When collecting mucosal tissue from the rectum of the subject, the collection tool 2 is more in a closed state than in a state in which the distance between the first holding piece 3a and the second holding piece 3b is open. It is easy to penetrate the slit 13. Therefore, as shown by the protrusion 8b in FIG. 2, the protrusion of the collection tool 2 may be a locking claw. There may be one or more locking claws of the protruding portion 8b, and any number may be used as long as it can be locked to the overhanging portion of the opening edge of the cylindrical portion 9b. In this case, the cylindrical portion 9b for mating the protruding portion 8b is provided with a protruding portion on the opening edge radially inward, and the locking claw of the protruding portion 8b protrudes from the opening edge of the cylindrical portion 9b. (Fig. 2D). The height of the locking claw of the protrusion 8b is such that the tip of the first clamping surface 5a and the second clamping surface 5b are close to each other when locked to the overhanging portion of the tube portion 9b. The first sandwiching surface 5a and the second sandwiching surface 5b are not bonded to each other, and the first sandwiching piece 3a and the second sandwiching piece 3b are further applied, whereby the tip of the protruding portion 8b. It is preferable to adjust so that the first clamping surface 5a and the second clamping surface 5b can be bonded without penetrating through the bottom of the cylindrical portion 9b. This stabilizes the front end portions of the first clamping surface 5a and the second clamping surface 5b close to each other without applying force to the first clamping piece 3a and the second clamping piece 3b of the sampling tool 2. be able to. When the collection tool 2 penetrates the slit 13 of the collection assisting tool 11 in the state of FIG. 2D and the tip part contacts the rectal mucosa tissue, the first clamping piece 3a and the second clamping piece 3b are applied with force. Then, a part of the mucosal tissue is sandwiched and the state shown in FIG. 2E is obtained, and the mucosal tissue is collected.
 採取具2は、第1の挟持片3aと第2の挟持片3bに、それぞれ、連結部と屈曲部の間に対応する緩衝部10aを設けてもよい。緩衝部10aは、その先端に弾性部10bを備えており、突起部8bの係止爪が筒部9bの開口縁部の張り出し部に係止させた状態では、互いに弾性部10bで接着する(図2(D))。この緩衝部により、採取具2はより安定的に、突起部8bの係止爪が筒部9bの開口縁部の張り出し部に係止した状態を維持できる。第1の挟持片3aと第2の挟持片3bをさらに加力した場合にも、先端の弾性部10bが押圧により変形するため、第1の挟持面5aと第2の挟持面5bを接着させることができる(図2(E))。 The sampling tool 2 may be provided with a buffering portion 10a corresponding to a portion between the connecting portion and the bent portion in the first holding piece 3a and the second holding piece 3b, respectively. The buffer portion 10a is provided with an elastic portion 10b at the tip thereof, and is bonded to each other by the elastic portion 10b in a state where the locking claw of the projection portion 8b is locked to the protruding portion of the opening edge portion of the cylindrical portion 9b ( FIG. 2 (D)). By this buffer part, the sampling tool 2 can maintain the state which the latching claw of the projection part 8b latched to the overhang | projection part of the opening edge part of the cylinder part 9b more stably. Even when the first sandwiching piece 3a and the second sandwiching piece 3b are further applied, the elastic portion 10b at the tip is deformed by pressing, so that the first sandwiching surface 5a and the second sandwiching surface 5b are bonded. (FIG. 2E).
 図3(A)及び図3(B)は採取補助具11の一実施態様である採取補助具11Aの説明図である。図3(A)は採取補助具11Aの下側からみた斜視図であり、図3(B)は採取補助具11Aのスリット側からみた底面図である。図3(A)に示すように、採取補助具11Aは、採取具導入部12と、スリット13と、把持部14と、を有する。 3 (A) and 3 (B) are explanatory views of a collection assisting tool 11A which is an embodiment of the collection assisting tool 11. FIG. FIG. 3A is a perspective view seen from the lower side of the collection assisting tool 11A, and FIG. 3B is a bottom view seen from the slit side of the collection assisting tool 11A. As shown in FIG. 3A, the collection assisting tool 11A has a collection tool introducing part 12, a slit 13, and a gripping part 14.
 採取具導入部12は、側壁にスリット13を有する円錐台形状の部材である。採取具導入部12は、外径が小さい先端辺縁部15から肛門に挿入し、外径が大きい手元辺縁部16から採取具2を挿入する。採取具導入部12は、回転軸方向に貫通孔を有していてもよい。肛門への挿入のしやすさの点から、手元辺縁部16の外径は30~70mmが好ましく、40~50mmがより好ましい。また、採取具2の大腸粘膜表面への導入しやすさの点から、先端辺縁部15の外径は10~30mmが好ましく、15~25mmがより好ましい。同様に、採取具導入部12の回転軸方向の長さは50~150mmが好ましく、70~130mmがより好ましく、80~120mmがさらに好ましい。 The sampling tool introduction part 12 is a truncated cone-shaped member having a slit 13 on the side wall. The sampling tool introduction unit 12 is inserted into the anus from the distal edge 15 having a small outer diameter, and the sampling tool 2 is inserted from the proximal edge 16 having a large outer diameter. The collection tool introduction part 12 may have a through hole in the rotation axis direction. From the viewpoint of ease of insertion into the anus, the outer diameter of the hand edge 16 is preferably 30 to 70 mm, and more preferably 40 to 50 mm. Further, from the viewpoint of easy introduction of the collection tool 2 into the surface of the large intestine mucosa, the outer diameter of the distal edge portion 15 is preferably 10 to 30 mm, and more preferably 15 to 25 mm. Similarly, the length of the collection tool introduction part 12 in the rotation axis direction is preferably 50 to 150 mm, more preferably 70 to 130 mm, and even more preferably 80 to 120 mm.
 スリット13は、採取具導入部12の先端辺縁部15から手元辺縁部16に向かって設けられている。採取具導入部12の側壁の一部分に先端辺縁部15に達するスリット13があることにより、腸管内における採取具2の先端部の動きの自由度が高まり、内部構造が複雑な直腸内において、大腸粘膜をより容易に採取することができる。スリット13は、採取具導入部12のいずれの位置に設定されていてもよい。例えば、スリット13は、図3(A)に示すように、把持部14に近い側にあることが好ましい。また、採取具導入部12に設けられるスリット13の数は、1つであってもよく、2以上であってもよい。 The slit 13 is provided from the front edge portion 15 of the sampling tool introduction portion 12 toward the hand edge portion 16. The presence of the slit 13 reaching the distal edge 15 in a part of the side wall of the collection tool introducing portion 12 increases the freedom of movement of the distal end portion of the collection tool 2 in the intestine, and in the rectum having a complicated internal structure, Large intestine mucosa can be collected more easily. The slit 13 may be set at any position of the collection tool introduction unit 12. For example, the slit 13 is preferably on the side close to the gripping portion 14 as shown in FIG. Moreover, the number of the slits 13 provided in the collection tool introduction part 12 may be one, or two or more.
 スリット13を貫通して採取具2は大腸粘膜表面に達するため、スリット13の幅は、辺縁部6aと辺縁部6bとが接した状態における、採取具2の第1の挟持面5aと第2の挟持面5bの幅よりも広く設計される。また、スリット13の幅は、一定であってもよいが、図3(B)に示すように、先端辺縁部15から手元辺縁部16側にいくにつれて広くなっているほうが好ましい。例えば、辺縁部6aと辺縁部6bとが接した状態における、採取具2の第1の挟持面5aと第2の挟持面5bの幅L(図1(B)参照。)が3~8mmの場合、スリット13の先端辺縁部15側の幅L(図3(B)参照。)は7~15mmが好ましく、スリット13の手元辺縁部16側の幅L(図3(B)参照。)は10~20mmが好ましい。なお、スリット13は、採取具導入部12の壁面に2以上形成されていてもよい。 Since the collection tool 2 passes through the slit 13 and reaches the surface of the large intestine mucosa, the width of the slit 13 is the same as that of the first clamping surface 5a of the collection tool 2 in a state where the edge 6a and the edge 6b are in contact with each other. It is designed wider than the width of the second clamping surface 5b. Further, the width of the slit 13 may be constant, but as shown in FIG. 3B, it is preferable that the slit 13 becomes wider from the front edge portion 15 toward the hand edge portion 16 side. For example, the width L 1 (see FIG. 1 (B)) of the first clamping surface 5a and the second clamping surface 5b of the sampling tool 2 in a state where the edge portion 6a and the edge portion 6b are in contact with each other is 3. In the case of ˜8 mm, the width L 2 (see FIG. 3B) of the slit 13 on the front edge portion 15 side is preferably 7 to 15 mm, and the width L 3 of the slit 13 on the hand edge portion 16 side (FIG. 3). (See (B)) is preferably 10 to 20 mm. Note that two or more slits 13 may be formed on the wall surface of the collection tool introduction portion 12.
 把持部14は、その一端が、採取具導入部12の手元辺縁部16近傍に、採取具導入部12から遠ざかる方向に連結している。把持部14の長さは、手による握りやすさ等から、50~150mmが好ましく、70~130mmがより好ましい。把持部14の形状は、握りやすい形状であればどのような形状であってもよく、例えば、板状であってもよく、棒状であってもよく、その他の形状であってもよい。 One end of the gripping part 14 is connected to the vicinity of the hand edge 16 of the collection tool introduction part 12 in a direction away from the collection tool introduction part 12. The length of the gripping portion 14 is preferably 50 to 150 mm, more preferably 70 to 130 mm, from the viewpoint of ease of gripping with a hand. The shape of the gripping portion 14 may be any shape as long as it is easy to grip, and may be, for example, a plate shape, a rod shape, or other shapes.
 図4は、採取補助具11Aの変形例である採取補助具11Bの説明図である。図4(A)は採取補助具11Bの上側からみた斜視図であり、図4(B)は下側からみた斜視図である。また、図4(C)~図4(G)は、それぞれ、採取補助具11Bの正面図、平面図、底面図、左側面図、及び右側面図である。採取補助具の把持部は、把持部14に示すように、下方が開口した中空の棒状であって、リブで補強されているものであってもよい。 FIG. 4 is an explanatory diagram of a collection assisting tool 11B which is a modification of the collection assisting tool 11A. 4A is a perspective view seen from the upper side of the collection assisting tool 11B, and FIG. 4B is a perspective view seen from the lower side. 4 (C) to 4 (G) are a front view, a plan view, a bottom view, a left side view, and a right side view of the collection assisting tool 11B, respectively. As shown in the grip 14, the gripping part of the collection assisting tool may be a hollow rod having an opening at the bottom and reinforced with a rib.
 図5は、本発明に係る大腸粘膜採取用キット1の使用の態様を示す説明図である。まず、大腸粘膜を採取される被検者の肛門に、採取補助具11を先端辺縁部15から挿入する。把持部14を片手で持ち安定させた状態で、手元辺縁部16側の開口部から採取具2を導入する。導入された採取具2は、先端部からスリット13を貫通して大腸粘膜表面に達する。採取具2の挟持面5aと挟持面5bとで大腸粘膜を挟持した状態(挟持面5)で、採取具2をスリット13から引き出すことにより、大腸粘膜が採取できる。 FIG. 5 is an explanatory diagram showing a mode of use of the colonic mucosa collection kit 1 according to the present invention. First, the collection assisting tool 11 is inserted from the distal edge portion 15 into the anus of the subject from whom the colonic mucosa is collected. The sampling tool 2 is introduced from the opening on the side of the hand edge 16 in a state where the grip 14 is held and stabilized with one hand. The introduced collection tool 2 penetrates the slit 13 from the tip and reaches the surface of the large intestine mucosa. The colonic mucosa can be collected by pulling out the sampling tool 2 from the slit 13 while the colonic mucosa is sandwiched between the clamping surface 5a and the clamping surface 5b of the sampling tool 2 (the clamping surface 5).
 次に実施例等を示して本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。 Next, the present invention will be described in more detail with reference to examples and the like, but the present invention is not limited thereto.
[実施例1]
 潰瘍性大腸炎患者のうち、内視鏡検査での生検組織による病理診断により大腸癌と診断され、外科手術を施行した患者(UC癌患者)8名(男性7名、女性1名)と、内科的治療不応潰瘍性大腸炎患者であり、癌以外で外科手術を施行した患者(非癌UC患者)8名(男性7名、女性1名)とから採取された大腸粘膜中のDNAに対して、CpGサイトのメチル化率を網羅的に解析した。なお、UC癌患者8名の平均年齢は47.1±12.4歳であり、罹病期間の平均は11.4±7.3年であった。非癌UC患者8名の平均年齢は44.3±16.4歳であり、罹病期間の平均は6.5±5.2年であった。
[Example 1]
Among the patients with ulcerative colitis, 8 patients (7 men, 1 woman) who were diagnosed with colon cancer by pathological diagnosis by biopsy tissue in endoscopy and who underwent surgery (7 men, 1 woman) , DNA in colonic mucosa collected from 8 patients (7 men, 1 woman) who have undergone surgery other than cancer (non-cancer UC patients) who are refractory to medical treatment ulcerative colitis In contrast, the methylation rate of the CpG site was comprehensively analyzed. The average age of 8 UC cancer patients was 47.1 ± 12.4 years, and the average disease duration was 11.4 ± 7.3 years. The average age of the 8 non-cancer UC patients was 44.3 ± 16.4 years, and the average disease duration was 6.5 ± 5.2 years.
<CpGサイトのメチル化レベルの網羅的解析>
(1)生検及びDNA抽出
 同一患者の大腸3か所から粘膜組織を採取し、常法に従いホルマリン固定パラフィン包埋(FFPE)サンプルを作製した。採取部位は、UC癌患者は盲腸、直腸、及び癌部とし、非癌UC患者は盲腸、横行結腸、直腸とした。FFPEサンプルから切片を切り出し、QIAmp DNA FFPE tissue kit(Qiagen社製)を使用してDNAを抽出した。
<Comprehensive analysis of methylation level of CpG site>
(1) Biopsy and DNA extraction Mucosal tissues were collected from three large intestines of the same patient, and formalin-fixed paraffin-embedded (FFPE) samples were prepared according to a conventional method. The collection sites were the cecum, rectum, and cancer for UC cancer patients, and the cecum, transverse colon, and rectum for non-cancer UC patients. A section was cut out from the FFPE sample, and DNA was extracted using a QIAmp DNA FFPE tissue kit (manufactured by Qiagen).
(2)DNAサンプルの品質評価
 得られたDNAの濃度は次のようにして求めた。すなわち、Quant-iT PicoGreen dsDNA Assay Kit(Life Technologies社製)を用いて各サンプルの蛍光強度を測定し、キット付属のλ-DNAの検量線を用いて濃度を算出した。
 次に、各サンプルをTE(pH8.0)にて1ng/μLに希釈し、Illumina FFPE QC Kit(Illumina社製)及びFast SYBR Green Master Mix(Life Technologies社製)を用いてリアルタイムPCRを行い、Ct値を求めた。サンプルとポジティブコントロールとのCt値の差(以下、ΔCt値)をサンプルごとに算出し、品質を評価した。ΔCt値が5未満のサンプルは品質良好と判断し、以降のステップに進めた。
(2) Quality evaluation of DNA sample The concentration of the obtained DNA was determined as follows. Specifically, the fluorescence intensity of each sample was measured using Quant-iT PicoGreen dsDNA Assay Kit (manufactured by Life Technologies), and the concentration was calculated using the λ-DNA calibration curve attached to the kit.
Next, each sample was diluted to 1 ng / μL with TE (pH 8.0), and real-time PCR was performed using Illumina FFPE QC Kit (manufactured by Illumina) and Fast SYBR Green Master Mix (manufactured by Life Technologies). Ct value was determined. The difference in Ct value between the sample and the positive control (hereinafter referred to as ΔCt value) was calculated for each sample, and the quality was evaluated. Samples with a ΔCt value of less than 5 were judged to have good quality and proceeded to the subsequent steps.
(3)バイサルファイト処理
 EZ DNA Methylation Kit(ZYMO RESEARCH社製)を使用して、DNAサンプルに対してバイサルファイト処理を実施した。
(3) Bisulfite treatment Bisulfite treatment was performed on DNA samples using EZ DNA Methylation Kit (manufactured by ZYMO RESEARCH).
(4)分解DNAの修復及び全ゲノム増幅
 バイサルファイト処理後のDNAに対して、Infinium HD FFPE Restore Kit(Illumina社製)を使用し、分解DNAを修復した。修復されたDNAをアルカリ変性した後、中和させ、HumanMethylation450 DNA Analysis Kit(Illumina社製)の全ゲノム増幅用の酵素とプライマーを添加し、37℃のIncubation Oven(Illumina社製)で20時間以上、等温で反応させることによって、全ゲノムを増幅させた。
(4) Repair of degraded DNA and amplification of whole genome Degraded DNA was repaired by using Infinium HD FFPE Restore Kit (manufactured by Illumina) for the DNA after bisulfite treatment. The repaired DNA is alkali-denatured, neutralized, added with the enzyme and primers for whole genome amplification of HumanMethylation450 DNA Analysis Kit (Illumina), and incubated for more than 20 hours at 37 ° C Incubation Oven (Illumina) The whole genome was amplified by reacting isothermally.
 (5)全ゲノム増幅したDNAの断片化と精製
 全ゲノム増幅したDNAに、HumanMethylation450 DNA Analysis Kit(Illumina社製)の断片化用の酵素を添加し、Microsample Incubator(SciGene)で37℃、1時間反応させた。断片化したDNAに、共沈剤と2-プロパノールを加えて遠心分離処理し、DNAを沈澱させた。
(5) Fragmentation and purification of whole-genome amplified DNA To the whole-genome amplified DNA, the fragmentation enzyme of HumanMethylation450 DNA Analysis Kit (manufactured by Illumina) was added, and 37 ° C for 1 hour with Microsample Incubator (SciGene) Reacted. To the fragmented DNA, a coprecipitation agent and 2-propanol were added and centrifuged to precipitate the DNA.
(6)ハイブリダイゼーション
 沈澱させたDNAに、Hybridization bufferを加え、48℃のHybridization Oven(Illumina社製)で1時間反応させ、DNAを溶解させた。溶解させたDNAを95℃のMicrosample Incubator(SciGene社製)で20分間インキュベートして1本鎖に変性させた後、HumanMethylation450 DNA Analysis Kit(Illumina社製)のBeadChip上に分注した。48℃のHybridization Ovenで16時間以上反応させ、BeadChip上のプローブと1本鎖DNAをハイブリダイズした。
(6) Hybridization Hybridization buffer was added to the precipitated DNA, and the mixture was reacted with Hybridization Oven (manufactured by Illumina) at 48 ° C. for 1 hour to dissolve the DNA. The dissolved DNA was incubated with a 95 ° C. Microsample Incubator (manufactured by SciGene) for 20 minutes to denature into single strands, and then dispensed onto a BeadChip of a HumanMethylation450 DNA Analysis Kit (manufactured by Illumina). The reaction was carried out for 16 hours or more in Hybridization Oven at 48 ° C., and the probe on the BeadChip and the single-stranded DNA were hybridized.
(7)標識反応及びスキャニング
 ハイブリダイゼーション後のBeadChip上のプローブを伸長反応させ、蛍光色素を結合させた。次いで、当該BeadChipをiSCANシステム(Illumina社製)でスキャンし、メチル化蛍光強度及び非メチル化蛍光強度を測定した。実験終了時に、スキャンデータが全て揃っていること、及びスキャンが正常に行われたことを確認した。
(7) Labeling reaction and scanning The probe on the BeadChip after hybridization was subjected to an extension reaction to bind a fluorescent dye. Subsequently, the BeadChip was scanned with an iSCAN system (manufactured by Illumina), and methylated fluorescence intensity and unmethylated fluorescence intensity were measured. At the end of the experiment, it was confirmed that all the scan data was available and that the scan was performed normally.
(8)DNAメチル化レベルの定量及び比較解析
 DNAメチル化解析ソフトウェアGenomeStudio(Version:V2011.1)を用いてスキャンデータを解析した。DNAメチル化レベル(β値)は、次の式により算出した。
(8) Quantification of DNA methylation level and comparative analysis Scan data was analyzed using DNA methylation analysis software GenomeStudio (Version: V2011.1). The DNA methylation level (β value) was calculated by the following formula.
[β値]=
 [メチル化蛍光強度]÷ ([メチル化蛍光強度]+[非メチル化蛍光強度]+100)
[Β value] =
[Methylated fluorescence intensity] ÷ ([Methylated fluorescence intensity] + [Unmethylated fluorescence intensity] +100)
 メチル化レベルが高い場合、β値は1に近づき、メチル化レベルが低い場合、β値は0に近づく。非癌UC患者直腸サンプル群(n=8)に対するUC癌患者直腸サンプル群(n=8)のDNAメチル化レベルの比較解析には、GenomeStudioにより算出されるDiffScoreを用いた。両者のDNAメチル化レベルが近い場合、DiffScoreは0に近づき、UC癌患者でのレベルが高い場合は正の値を示し、低い場合は負の値を示す。両群のメチル化レベルの差異が大きいほど、DiffScoreの絶対値は大きくなる。また、UC癌患者直腸サンプル群(n=8)の平均β値から非癌UC患者直腸サンプル群(n=8)の平均β値を差し引いた値(Δβ値)も比較解析に用いた。 When the methylation level is high, the β value approaches 1 and when the methylation level is low, the β value approaches 0. DiffScore calculated by GenomeStudio was used for comparative analysis of the DNA methylation level of the UC cancer patient rectal sample group (n = 8) to the non-cancer UC patient rectal sample group (n = 8). When both DNA methylation levels are close, DiffScore approaches 0, showing a positive value when the level is high in UC cancer patients, and a negative value when low. The greater the difference in methylation level between the two groups, the greater the absolute value of DiffScore. In addition, a value (Δβ value) obtained by subtracting the average β value of the non-cancer UC patient rectal sample group (n = 8) from the average β value of the UC cancer patient rectal sample group (n = 8) was also used for the comparative analysis.
 なお、DNAメチル化定量とDNAメチル化レベル比較解析には、GenomeStudioとソフトウェアMethylation Module(Version:1.9.0)を用いた。GenomeStudioの設定条件は、下記の通りである。 In addition, GenomeStudio and software Methylation Module (Version: 1.9.0) were used for DNA methylation quantification and DNA methylation level comparison analysis. The setting conditions of GenomeStudio are as follows.
DNAメチル化定量;
 Normalization: 有り(Controls)
 Subtract Background: 有り
 Content Descriptor:    HumanMethylation450_15017482_v.1.2.bpm
DNA methylation quantification;
Normalization: Yes (Controls)
Subtract Background: Yes Content Descriptor: HumanMethylation450_15017482_v.1.2.bpm
DNAメチル化レベル比較解析;
 Normalization: 有り(Controls)
 Subtract Background: 有り
 Content Descriptor: HumanMethylation450_15017482_v.1.2.bpm
 Ref Group: 比較解析4. Group-3
 Error Model: Illumina custom
 Compute False Discovery Rate: 無し
DNA methylation level comparative analysis;
Normalization: Yes (Controls)
Subtract Background: Yes Content Descriptor: HumanMethylation450_15017482_v.1.2.bpm
Ref Group: Comparative analysis 4. Group-3
Error Model: Illumina custom
Compute False Discovery Rate: None
(9)多変量解析
 DNAメチル化レベルの定量及び比較解析の結果を用いて、統計解析ソフトウェアR(Version: 3.0.1、64bit、Windows(登録商標))を用いて、DiffScoreの算出、クラスター解析及び主成分分析を実施した。
(9) Multivariate analysis Using the results of quantitative and comparative analysis of DNA methylation level, statistical analysis software R (Version: 3.0.1, 64bit, Windows (registered trademark)), DiffScore calculation, cluster analysis And principal component analysis.
クラスター解析のRスクリプト:
> data.dist<-as.dist(1-cor(data.frame,use="pairwise.complete.obs",method="p"))> hclust(data.dist,method="complete")
    # data.frame: CpG(行)x サンプル(列)から成るデータフレーム
   # 1-ピアソン相関係数を距離として定義し、complete linkage法により実施
R script for cluster analysis:
> data.dist <-as.dist (1-cor (data.frame, use = "pairwise.complete.obs", method = "p"))> hclust (data.dist, method = "complete")
# data.frame: Data frame consisting of CpG (rows) x samples (columns) # 1-Pearson correlation coefficient is defined as a distance and implemented by the complete linkage method
主成分分析のRスクリプト:
> prcomp(t(data.frame),scale=T)
# data.frame: CpG(行)x サンプル(列)から成るデータフレーム
R script for principal component analysis:
> prcomp (t (data.frame), scale = T)
# data.frame: data frame consisting of CpG (row) x sample (column)
<CpGバイオマーカーの選択>
(1)CpGバイオマーカー候補の抽出
 網羅的DNAメチル化解析データからGpGバイオマーカー候補を選定する手段として、DiffScore及びΔβ値に基づいた絞り込みが報告されている(BMC Med genomics vol.4, p.50, 2011; Sex Dev vol.5, p.70, 2011)。前者はDiffScoreの絶対値が30超、及びΔβ値の絶対値が0.2超に設定し、後者はDiffScoreの絶対値が30超、及びΔβ値の絶対値が0.3超に設定して、バイオマーカー候補を抽出している。これらの方法に準じて、BeadChipに搭載されている485,577個のCpGサイトからバイオマーカー候補を抽出した。
<Selection of CpG biomarker>
(1) Extraction of CpG biomarker candidates As a means for selecting GpG biomarker candidates from comprehensive DNA methylation analysis data, narrowing based on DiffScore and Δβ values has been reported (BMC Med genomics vol.4, p. 50, 2011; Sex Dev vol.5, p.70, 2011). The former sets the absolute value of DiffScore to more than 30 and the absolute value of Δβ value to more than 0.2, and the latter sets the absolute value of DiffScore to more than 30 and the absolute value of Δβ value to more than 0.3. Biomarker candidates are extracted. In accordance with these methods, biomarker candidates were extracted from 485,577 CpG sites mounted on BeadChip.
 具体的には、まず、485,577個のCpGサイトから、DiffScoreの絶対値が30超である72,905個のCpGサイトを選択した。BeadChipには、特許文献1に記載されているmiR-1、miR-9、miR-124、miR-137、miR-34b/cの各遺伝子領域に位置する86個のCpGサイトも搭載されていたが、このうち、DiffScoreの絶対値が30超であったのは27個であった。
 次に、この72,905個のCpGサイトの中から、Δβ値の絶対値が0.3超である32個のCpGサイトを抽出した。以下、この32個のCpGサイトをまとめて「32CpGセット」という。この時点で、特許文献1に記載されている各遺伝子領域に位置するCpGサイトは、全て除外されてしまった。
 さらに、癌患者を取りこぼしなく判別することを目的に、癌患者サンプル内でDNAメチル化レベルの変動が少ないものを絞り込んだ。すなわち、UC癌患者24サンプル(3部位×各部位8サンプル)のβ値の不偏分散varを求め、不偏分散varの値が0.05より小さい16個のCpGサイトを選抜した。以下、この16個のCpGサイトをまとめて「16CpGセット」という。16CpGセットからさらに、不偏分散varの値が0.03より小さい9個のCpGサイトを絞り込んだ。以下、この9個のCpGサイトをまとめて「9CpGセット」という。
Specifically, first, 72,905 CpG sites having an absolute DiffScore value of more than 30 were selected from 485,577 CpG sites. BeadChip also had 86 CpG sites located in each gene region of miR-1, miR-9, miR-124, miR-137, miR-34b / c described in Patent Document 1. However, of these, the absolute value of DiffScore was more than 30 and 27.
Next, 32 CpG sites having an absolute value of Δβ value exceeding 0.3 were extracted from the 72,905 CpG sites. Hereinafter, the 32 CpG sites are collectively referred to as a “32 CpG set”. At this point, all CpG sites located in each gene region described in Patent Document 1 have been excluded.
Furthermore, in order to discriminate cancer patients without missing, the cancer patient samples were narrowed down to those with little fluctuation in DNA methylation level. That is, the unbiased variance var of the β value of 24 samples of UC cancer patients (3 sites × 8 samples of each site) was obtained, and 16 CpG sites having an unbiased variance var value smaller than 0.05 were selected. Hereinafter, the 16 CpG sites are collectively referred to as a “16 CpG set”. Nine CpG sites with an unbiased variance var value smaller than 0.03 were further narrowed down from the 16 CpG set. Hereinafter, these nine CpG sites are collectively referred to as a “9CpG set”.
 32CpGセットの各CpGサイトの結果を表17に示す。表中、「16CpG」欄に#があるCpGサイトは16CpGセットに含まれるものを、「9CpG」欄に#があるCpGサイトは9CpGセットに含まれるものを、それぞれ示す。 Table 17 shows the results of each CpG site of the 32CpG set. In the table, CpG sites with # in the “16CpG” column indicate those included in the 16CpG set, and CpG sites with # in the “9CpG” column indicate those included in the 9CpG set.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
(2)CpGバイオマーカー候補を用いた臨床サンプルの多変量解析
 前記32CpGセット、16CpGセット、9CpGセットを用いて、全48サンプルのクラスター解析及び主成分分析を行ったところ、図6A、6C、及び6Eに示すように、いずれのCpGセットでも、クラスター解析では、全てのUC癌患者サンプルが同一クラスター(図中、枠内)に集積した。また、図6B、6D、及び6Fに示すように、主成分分析(縦軸は第2主成分)では、UC癌患者サンプル(●)と非癌UC患者サンプル(▲)が第1主成分(横軸)方向にそれぞれ独立のクラスターを形成した。すなわち、いずれのCpGセットでも、UC癌患者24サンプルと非癌UC患者24サンプルを明確に区別することができた。一方、特許文献1に記載されている各遺伝子領域に位置するCpGサイトから選抜された27個のCpGサイトを用いて、同様にクラスター解析及び主成分分析を行ったところ、図7A及び7Bに示すように、UC癌患者サンプルと非癌UC患者サンプルを明確に区別することは出来なかった。これらの結果から、表17に記載の32CpGは、潰瘍性大腸炎患者における大腸癌の発症のバイオマーカーとして極めて有用であり、これらを用いることにより、潰瘍性大腸炎患者の大腸癌の発症の有無を高い感度と特異度によって判定できることが明らかである。
(2) Multivariate analysis of clinical samples using CpG biomarker candidates Cluster analysis and principal component analysis of all 48 samples were performed using the 32CpG set, 16CpG set, and 9CpG set. As shown in 6E, in any CpG set, in the cluster analysis, all UC cancer patient samples were accumulated in the same cluster (in the frame in the figure). As shown in FIGS. 6B, 6D, and 6F, in the principal component analysis (vertical axis is the second principal component), the UC cancer patient sample (●) and the non-cancer UC patient sample (▲) are the first principal component ( Independent clusters were formed in the horizontal axis direction. That is, in any CpG set, 24 UC cancer patient samples and 24 non-cancer UC patient samples could be clearly distinguished. On the other hand, the cluster analysis and the principal component analysis were similarly performed using 27 CpG sites selected from the CpG sites located in each gene region described in Patent Document 1, and the results are shown in FIGS. 7A and 7B. Thus, a UC cancer patient sample and a non-cancer UC patient sample could not be clearly distinguished. From these results, 32CpG described in Table 17 is extremely useful as a biomarker of the onset of colon cancer in patients with ulcerative colitis, and by using these, the presence or absence of onset of colon cancer in patients with ulcerative colitis It is clear that can be determined by high sensitivity and specificity.
 [実施例2]
 実施例1の潰瘍性大腸炎患者とは別に、内視鏡検査での生検組織による病理診断により大腸癌と診断され、外科手術を施行した患者(UC癌患者)24名と、内科的治療不応潰瘍性大腸炎患者であり、癌以外で外科手術を施行した患者(非癌UC患者)24名とから採取された大腸粘膜中のDNAに対して、CpGサイトのメチル化率を網羅的に解析した。
[Example 2]
In addition to the patients with ulcerative colitis of Example 1, 24 patients (UC cancer patients) who were diagnosed with colorectal cancer by pathological diagnosis with biopsy tissue by endoscopy and who underwent surgery, and medical treatment Comprehensive CpG site methylation rate for DNA in colon mucosa collected from 24 patients with refractory ulcerative colitis who have undergone surgery other than cancer (non-cancer UC patients) Was analyzed.
 CpGサイトのメチル化率の解析に供したDNAは、潰瘍性大腸炎患者の直腸の粘膜組織から採取したFFPEサンプルから、実施例1と同様にしてDNAを抽出し、全ゲノム増幅し、CpGサイトのDNAメチル化レベルの定量及び比較解析を行い、その結果を用いてDiffScoreの算出、クラスター解析及び主成分分析を実施した。 The DNA used for the analysis of the methylation rate of the CpG site was extracted from the FFPE sample collected from the rectal mucosal tissue of a patient with ulcerative colitis in the same manner as in Example 1, and the whole genome was amplified. Quantification and comparative analysis of DNA methylation levels were performed, and DiffScore calculation, cluster analysis, and principal component analysis were performed using the results.
 (1)CpGバイオマーカー候補の抽出
 次いで、網羅的DNAメチル化解析データからCpGバイオマーカー候補を抽出した。 具体的には、まず、485,577個のCpGサイトから、Δβ値の絶対値が0.2超である324個のCpGサイトを抽出した。
(1) Extraction of CpG biomarker candidates Next, CpG biomarker candidates were extracted from comprehensive DNA methylation analysis data. Specifically, first, 324 CpG sites having an absolute value of Δβ value exceeding 0.2 were extracted from 485,577 CpG sites.
 次に、下記の2種類のロジスティック回帰モデルを作成した。
(1)324個のCpGサイトから2群のt-test検定で上位100個のCpGサイトを選択し、100個のCpGから選んだ3個のCpG全ての組み合わせに基づく161,700個のロジスティック回帰モデル。(2)324個のCpGサイトから選んだ2個のCpGの全ての組み合わせに基づく、52,326個のロジスティック回帰モデル。
Next, the following two types of logistic regression models were created.
(1) Top 100 CpG sites were selected from 324 CpG sites by 2 groups of t-test tests, and 161,700 logistic regressions based on combinations of all 3 CpGs selected from 100 CpGs model. (2) 52,326 logistic regression models based on all combinations of two CpGs selected from 324 CpG sites.
 両ロジスティック回帰モデルの判別式について、下記の4つの基準について、それぞれ充足するCpGサイトを選定し、出現するCpGサイトの頻度を算出した。
[基準1]感度が90%超、特異度が90%超、かつ判別式の係数p値が0.05未満。[基準2]感度が90%超、特異度が90%超、判別式の係数p値が0.05未満、かつAIC(赤池の情報量基準)が30未満。
[基準3]感度が95%超、特異度が85%超、かつ判別式の係数p値が0.05未満。[基準4]感度が95%超、特異度が85%超、判別式の係数p値が0.05未満、かつAICが30未満。
Regarding the discriminants of both logistic regression models, CpG sites that satisfy each of the following four criteria were selected, and the frequency of appearing CpG sites was calculated.
[Standard 1] Sensitivity is over 90%, specificity is over 90%, and coefficient p value of discriminant is less than 0.05. [Standard 2] Sensitivity is more than 90%, specificity is more than 90%, discriminant coefficient p-value is less than 0.05, and AIC (Akaike's information criterion) is less than 30.
[Standard 3] Sensitivity is over 95%, specificity is over 85%, and coefficient p value of discriminant is less than 0.05. [Standard 4] Sensitivity is over 95%, specificity is over 85%, discriminant coefficient p-value is less than 0.05, and AIC is less than 30.
 4つの基準のそれぞれについて、上位10CpGサイトを選択したところ、表8~10に記載の34個のCpGサイト(34CpGセット)が選抜された。各CpGサイトの結果を表18に示す。 When the top 10 CpG sites were selected for each of the four criteria, 34 CpG sites (34 CpG sets) listed in Tables 8 to 10 were selected. The results for each CpG site are shown in Table 18.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
(2)CpGバイオマーカー候補を用いた臨床サンプルの多変量解析
 前記34CpGセットのメチル化レベルに基づき、全48サンプルのクラスター解析及び主成分分析を行った。この結果、クラスター解析(図8A)では、大多数のUC癌患者サンプルが同一クラスター(図中、枠内)に集積した。また、主成分分析(図8B、縦軸は第2主成分)では、UC癌患者サンプル(●)と非癌UC患者サンプル(▲)が第1主成分(横軸)方向にそれぞれ独立のクラスターを形成した。すなわち、いずれのCpGセットでも、UC癌患者24サンプルと非癌UC患者24サンプルを明確に区別することができた。
(2) Multivariate analysis of clinical samples using CpG biomarker candidates Based on the methylation level of the 34CpG set, cluster analysis and principal component analysis of all 48 samples were performed. As a result, in the cluster analysis (FIG. 8A), the majority of UC cancer patient samples accumulated in the same cluster (in the frame in the figure). In the principal component analysis (FIG. 8B, the vertical axis is the second principal component), the UC cancer patient sample (●) and the non-cancer UC patient sample (▲) are independent clusters in the first principal component (horizontal axis) direction. Formed. That is, in any CpG set, 24 UC cancer patient samples and 24 non-cancer UC patient samples could be clearly distinguished.
(3)CpGバイオマーカー候補を用いた臨床サンプルの大腸癌発症可能性の評価
 前記34CpGセットのうち、配列番号34で表される塩基配列中のCpGサイト(cg10931190)、配列番号37で表される塩基配列中のCpGサイト(cg13677149)、及び配列番号56で表される塩基配列中のCpGサイト(cg14516100)の3個のCpGサイトのメチル化率をマーカーとした場合の、潰瘍性大腸炎患者の大腸癌発症の有無の判定の精度を調べた。
(3) Evaluation of the likelihood of developing colon cancer in a clinical sample using a CpG biomarker candidate Among the 34 CpG sets, a CpG site (cg10931190) in the base sequence represented by SEQ ID NO: 34, represented by SEQ ID NO: 37 When the methylation rate of 3 CpG sites in the CpG site (cg136767149) in the nucleotide sequence and the CpG site (cg14516100) in the nucleotide sequence represented by SEQ ID NO: 56 is used as a marker, The accuracy of the determination of the presence or absence of colorectal cancer was examined.
 具体的には、24名のUC癌患者及び24名の非癌UC患者の直腸から採取された検体の前記3つのCpGサイトのメチル化レベルの数値(β値)を用いてロジスティック回帰モデルに基づく判別式を作成してUC癌患者と非癌UC患者の判別を行った。この結果、感度(UC癌患者のうち、陽性と評価された患者の割合)が95.8%、特異度(非癌UC患者のうち、陰性と評価された患者の割合)が91.7%、陽性的中率(陽性と評価された患者のうち、UC癌患者の割合)が92%、陰性的中率(陰性と評価された患者のうち、非癌UC患者の割合)が95.6%であり、いずれも90%以上と高かった。また、図9にROC(Receiver Operating Characteristic)曲線を示す。AUC(ROC曲線下面積)は0.98であった。これらの結果から、前記34CpGセットから選択された数個のCpGサイトのメチル化率に基づいて、高感度かつ高特異度で、潰瘍性大腸炎患者の大腸癌発症の可能性を評価できることが確認された。 Specifically, based on a logistic regression model using numerical values (β values) of methylation levels of the three CpG sites of specimens collected from rectums of 24 UC cancer patients and 24 non-cancer UC patients. A discriminant was created to discriminate between UC cancer patients and non-cancer UC patients. As a result, the sensitivity (the ratio of patients who were evaluated as positive among UC cancer patients) was 95.8%, and the specificity (the ratio of patients who were evaluated as negative among non-cancer UC patients) was 91.7%. The positive predictive value (the ratio of UC cancer patients out of patients evaluated as positive) was 92%, and the negative predictive value (the ratio of non-cancer UC patients out of patients evaluated as negative) was 95.6. %, Both of which were as high as 90% or more. FIG. 9 shows a ROC (Receiver-Operating-Characteristic) curve. The AUC (area under the ROC curve) was 0.98. Based on these results, it was confirmed that the possibility of developing colon cancer in ulcerative colitis patients can be evaluated with high sensitivity and specificity based on the methylation rate of several CpG sites selected from the 34CpG set. It was done.
 [実施例3]
 実施例1において求めた潰瘍性大腸炎患者の直腸から採取した検体の各CpGサイトのDNAメチル化レベル(β値)と、実施例2において求めた潰瘍性大腸炎患者の各CpGサイトのDNAメチル化レベル(β値)から、CpGバイオマーカー候補を抽出した。
[Example 3]
The DNA methylation level (β value) of each CpG site of the specimen collected from the rectum of the ulcerative colitis patient obtained in Example 1 and the DNA methylation of each CpG site of the ulcerative colitis patient obtained in Example 2 CpG biomarker candidates were extracted from the conversion level (β value).
(1)CpGバイオマーカー候補の抽出
 具体的には、まず、485,577個のCpGサイトから、Δβ値の絶対値が0.2超である172個のCpGサイトを抽出した。次いで、この172個のCpGサイトから、実施例2と同様にして、2種類のロジスティック回帰モデルを作成し、前記4つの基準のそれぞれについて、上位10CpGサイトを選択した。この結果、表11及び表12に記載の18個のCpGサイト(18CpGセット)が選抜された。各CpGサイトの結果を表19に示す。
(1) Extraction of CpG biomarker candidates Specifically, 172 CpG sites having an absolute value of Δβ value exceeding 0.2 were first extracted from 485,577 CpG sites. Next, two types of logistic regression models were created from the 172 CpG sites in the same manner as in Example 2, and the top 10 CpG sites were selected for each of the four criteria. As a result, 18 CpG sites (18 CpG set) described in Table 11 and Table 12 were selected. The results for each CpG site are shown in Table 19.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
(2)CpGバイオマーカー候補を用いた臨床サンプルの多変量解析
 前記18CpGセットのメチル化レベルに基づき、全64サンプルのクラスター解析及び主成分分析を行った。この結果、クラスター解析(図10A)では、大多数のUC癌患者サンプルが同一クラスター(図中、枠内)に集積した。また、主成分分析(図10B、縦軸は第2主成分)では、UC癌患者サンプル(●)と非癌UC患者サンプル(▲)が第1主成分(横軸)方向にそれぞれ独立のクラスターを形成した。すなわち、いずれのCpGセットでも、UC癌患者32サンプルと非癌UC患者32サンプルを明確に区別することができた。
(2) Multivariate analysis of clinical samples using CpG biomarker candidates Based on the methylation level of the 18CpG set, cluster analysis and principal component analysis of all 64 samples were performed. As a result, in the cluster analysis (FIG. 10A), the majority of UC cancer patient samples were accumulated in the same cluster (in the frame in the figure). In the principal component analysis (FIG. 10B, the vertical axis is the second principal component), the UC cancer patient sample (●) and the non-cancer UC patient sample (▲) are independent clusters in the first principal component (horizontal axis) direction. Formed. That is, in any CpG set, 32 samples of UC cancer patients and 32 samples of non-cancer UC patients could be clearly distinguished.
[実施例4]
 実施例2において取得したUC癌患者24名及び非癌UC患者24名の直腸から採取した検体の各DMRの平均メチル化率(平均β値;各DMR中に存在するCpGサイトのメチル化レベル(β値)の相加平均値)から、DMRバイオマーカー候補を抽出した。
[Example 4]
The average methylation rate of each DMR (average β value; methylation level of CpG sites present in each DMR) of specimens collected from the rectums of 24 UC cancer patients and 24 non-cancer UC patients obtained in Example 2 ( DMR biomarker candidates were extracted from the arithmetic average value of β value).
(1)DMRバイオマーカー候補の抽出
 具体的には、まず、485,577個のCpGサイトのメチル化データ(IDAT形式)を、ChAMPパイプライン(Bioinformatics、30、428、2014;http://bioconductor.org/packages/release/bioc/html/ChAMP.html)に入力し、UC癌患者と非癌UC患者の2群間で有意と判定されたDMR2,549か所を抽出した。この中でΔβ値([平均β値(UC癌)]-[平均β値(非癌UC)])の絶対値を0.15超に設定したところ、39か所に絞り込まれた。さらにΔβ値の絶対値が0.1超である484か所のうち、実施例1で取得したUC癌患者と非癌UC患者とのΔβ値が0.15超である80か所を追加し、総数112か所(DMR番号1~112)をDMRバイオマーカー候補とした。この112か所のDMR(112DMRセット)の結果を表20~22に示す。
(1) Extraction of DMR biomarker candidates Specifically, first, methylation data (IDAT format) of 485,577 CpG sites was converted into ChAMP pipeline (Bioinformatics, 30, 428, 2014; http: // bioconductor org / packages / release / bioc / html / ChAMP.html), and extracted 2,549 DMRs judged to be significant between the two groups of UC cancer patients and non-cancer UC patients. Among them, when the absolute value of Δβ value ([average β value (UC cancer)] − [average β value (non-cancer UC)]) was set to more than 0.15, it was narrowed down to 39 locations. Furthermore, among the 484 places where the absolute value of Δβ value is more than 0.1, 80 places where the Δβ value between the UC cancer patient and the non-cancer UC patient obtained in Example 1 is more than 0.15 are added. A total of 112 locations (DMR numbers 1-112) were designated as DMR biomarker candidates. The results of these 112 DMRs (112 DMR sets) are shown in Tables 20-22.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 次に、前記112DMRセットから選んだ3か所のDMR全ての組み合わせに基づく227,920個のロジスティック回帰モデルを作成した。得られた判別式について、感度が95%である判別式79個を選択したところ、この中に出現するDMRは58か所であった(表中、58DMR)。さらに、判別式79個に出現するDMRの頻度を求めたところ、4回以上出現するものは11か所であった(表中、11DMR)。 Next, 227,920 logistic regression models based on combinations of all three DMRs selected from the 112 DMR set were created. When 79 discriminants having a sensitivity of 95% were selected from the obtained discriminants, 58 DMRs appeared in the discriminant (58 DMR in the table). Furthermore, when the frequency of DMR appearing in 79 discriminants was determined, 11 were found 4 times or more (11 DMR in the table).
(2)DMRバイオマーカー候補を用いた臨床サンプルの多変量解析
 前記112DMRセットのメチル化率に基づき、実施例2の全48サンプルのクラスター解析及び主成分分析を行った。この結果、クラスター解析では、大多数のUC癌患者サンプルが同一クラスター(図11中、枠内)に集積した。また、主成分分析(図12)では、UC癌患者サンプル(●)と非癌UC患者サンプル(▲)が第1主成分方向にそれぞれ独立のクラスターを形成した。
(2) Multivariate analysis of clinical samples using DMR biomarker candidates Cluster analysis and principal component analysis of all 48 samples of Example 2 were performed based on the methylation rate of the 112 DMR set. As a result, in the cluster analysis, the majority of UC cancer patient samples accumulated in the same cluster (in the frame in FIG. 11). In the principal component analysis (FIG. 12), the UC cancer patient sample (●) and the non-cancer UC patient sample (▲) formed independent clusters in the first principal component direction.
(3)DMRバイオマーカー候補を用いて臨床サンプルの大腸癌発症可能性の評価
 前記112DMRセットのうち、DMR番号2(SIX10)、10(CEP112)、55(HNF4A)の領域のメチル化率をマーカーとした場合の、潰瘍性大腸炎患者の大腸癌発症の有無の判定の精度を調べた。
(3) Evaluation of likelihood of developing colon cancer in clinical samples using DMR biomarker candidates Markers of methylation rate in the region of DMR number 2 (SIX10), 10 (CEP112), 55 (HNF4A) in the 112 DMR set The accuracy of the determination of the presence or absence of colon cancer in patients with ulcerative colitis was investigated.
 具体的には、24名のUC癌患者及び24名の非癌UC患者の直腸から採取された検体の前記3か所のDMRのメチル化レベルの数値(β値)を用いてロジスティック回帰モデルに基づく判別式を作成してUC癌患者と非癌UC患者の判別を行った。この結果、感度(UC癌患者のうち、陽性と評価された患者の割合)が95.8%、特異度(非癌UC患者のうち、陰性と評価された患者の割合)が95.8%、陽性的中率(陽性と評価された患者のうち、UC癌患者の割合)が95.8%、陰性的中率(陰性と評価された患者のうち、非癌UC患者の割合)が95.8%であり、いずれも95%以上と高かった。また、図13にROC曲線を示す。この結果、AUC(ROC曲線下面積)は0.974であった。これらの結果から、前記112DMRセットから選択された数か所のDMRの平均メチル化率に基づいて、高感度かつ高特異度で、潰瘍性大腸炎患者の大腸癌発症の可能性を評価できることが確認された。 Specifically, a logistic regression model was obtained using the numerical values (β values) of the three DMR methylation levels of specimens collected from the rectums of 24 UC cancer patients and 24 non-cancer UC patients. Based on the discriminant, a UC cancer patient and a non-cancer UC patient were discriminated. As a result, the sensitivity (the ratio of patients evaluated as positive among UC cancer patients) was 95.8%, and the specificity (the ratio of patients evaluated as negative among non-cancer UC patients) was 95.8%. The positive predictive value (the proportion of UC cancer patients out of those evaluated as positive) is 95.8%, and the negative predictive value (the proportion of non-cancer UC patients out of patients evaluated as negative) is 95%. .8%, both being as high as 95% or more. FIG. 13 shows the ROC curve. As a result, AUC (area under the ROC curve) was 0.974. From these results, it is possible to evaluate the possibility of developing colon cancer in patients with ulcerative colitis with high sensitivity and high specificity based on the average methylation rate of several DMRs selected from the 112 DMR set. confirmed.
1…大腸粘膜採取用キット、2、2A、2B、2C…採取具、3a…第1の挟持片、3b…第2の挟持片、4…連結部、5…挟持面、5a…第1の挟持面、5b…第2の挟持面、6a、6a’…第1の挟持面5aの辺縁部、6b、6b’…第2の挟持面5bの辺縁部、7a…第1の屈曲部、7b…第2の屈曲部、8a、8b…突起部、9a、9b…筒部、10a…緩衝部、10b…弾性部、11、11A、11B…採取補助具、12…採取具導入部、13…スリット、14…把持部、15…先端辺縁部、16…手元辺縁部。 DESCRIPTION OF SYMBOLS 1 ... Colorectal mucosa sampling kit 2, 2A, 2B, 2C ... Collection tool, 3a ... 1st clamping piece, 3b ... 2nd clamping piece, 4 ... Connection part, 5 ... clamping surface, 5a ... 1st Clamping surface, 5b... 2nd clamping surface, 6a, 6a '.. edge portion of first clamping surface 5a, 6b, 6b' .. edge portion of second clamping surface 5b, 7a. 7b ... second bent portion, 8a, 8b ... projection portion, 9a, 9b ... cylindrical portion, 10a ... buffer portion, 10b ... elastic portion, 11, 11A, 11B ... collecting aid, 12 ... collecting device introduction portion, 13 ... slit, 14 ... gripping part, 15 ... tip edge part, 16 ... hand edge part.

Claims (34)


  1.  ヒト潰瘍性大腸炎患者の大腸癌発症可能性を判定する方法であって、
     ヒト潰瘍性大腸炎患者から採取された生体試料から回収されたDNA中の、表1~4に記載のメチル化可変領域番号1~112で表される各メチル化可変領域中に存在する1個以上のCpGサイトのメチル化率を測定する測定工程と、
     前記測定工程において測定されたメチル化率に基づいて算出されたメチル化可変領域の平均メチル化率と、予め設定された基準値又は予め設定された多変量判別式に基づいて、前記ヒト潰瘍性大腸炎患者の大腸癌発症の可能性を判定する判定工程
    を有し、
     前記メチル化可変領域の平均メチル化率が、当該メチル化可変領域中のCpGサイトのうち、前記測定工程においてメチル化率が測定された全てのCpGサイトのメチル化率の平均値であり、
     前記基準値が、各メチル化可変領域の平均メチル化率に対してそれぞれ設定された、発癌潰瘍性大腸炎患者と非癌潰瘍性大腸炎患者を識別するための値であり、
     前記多変量判別式が、前記メチル化可変領域番号1~112で表されるメチル化可変領域のうちの1か所以上のメチル化可変領域の平均メチル化率を変数として含む、
    大腸癌発症可能性の判定方法。
    Figure JPOXMLDOC01-appb-T000001
    Figure JPOXMLDOC01-appb-T000002
    Figure JPOXMLDOC01-appb-T000003
    Figure JPOXMLDOC01-appb-T000004

    A method for determining the likelihood of developing colorectal cancer in a patient with human ulcerative colitis,
    One DNA present in each methylation variable region represented by methylation variable region numbers 1-112 shown in Tables 1 to 4 in DNA collected from a biological sample collected from a patient with human ulcerative colitis A measuring step for measuring the methylation rate of the above CpG site;
    Based on the average methylation rate of the methylation variable region calculated based on the methylation rate measured in the measurement step, and a preset reference value or a preset multivariate discriminant, the human ulcerative property A determination step of determining the likelihood of developing colon cancer in a patient with colitis,
    The average methylation rate of the methylation variable region is an average value of the methylation rates of all CpG sites whose methylation rates were measured in the measurement step among the CpG sites in the methylation variable region,
    The reference value is a value for discriminating between a carcinogenic ulcerative colitis patient and a non-cancer ulcerative colitis patient, each set for the average methylation rate of each methylation variable region,
    The multivariate discriminant includes, as a variable, an average methylation rate of one or more methylation variable regions among the methylation variable regions represented by the methylation variable region numbers 1-112.
    A method for determining the likelihood of developing colorectal cancer.
    Figure JPOXMLDOC01-appb-T000001
    Figure JPOXMLDOC01-appb-T000002
    Figure JPOXMLDOC01-appb-T000003
    Figure JPOXMLDOC01-appb-T000004

  2.  前記判定工程において、メチル化可変領域番号1、3~20、23~28、31~46、49~60、62、65~69、71、73、74、79、81、82、84、86、87、90~92、95、101、103、109、110、及び112で表されるメチル化可変領域のうち1か所以上が、平均メチル化率が予め設定された基準値以下である、又は、メチル化可変領域番号2、21、22、29、30、47、48、61,63、64、70、72、75~78、80、83、85、88、89、93、94、96~100、102、104~108、及び111で表されるメチル化可変領域のうち1か所以上が、平均メチル化率が予め設定された基準値以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、請求項1に記載の大腸癌発症可能性の判定方法。

    In the determination step, methylation variable region numbers 1, 3 to 20, 23 to 28, 31 to 46, 49 to 60, 62, 65 to 69, 71, 73, 74, 79, 81, 82, 84, 86, One or more of the methylation variable regions represented by 87, 90 to 92, 95, 101, 103, 109, 110, and 112 has an average methylation rate equal to or lower than a preset reference value; or , Methylation variable region numbers 2, 21, 22, 29, 30, 47, 48, 61, 63, 64, 70, 72, 75 to 78, 80, 83, 85, 88, 89, 93, 94, 96 to The human ulcerative colitis patient when one or more of the methylation variable regions represented by 100, 102, 104 to 108, and 111 has an average methylation rate equal to or higher than a preset reference value May have developed colorectal cancer It determines that the high, colon cancer onset possibility determination method according to claim 1.

  3.  前記測定工程において、前記多変量判別式がその平均メチル化率を変数として含むメチル化可変領域中に存在する1個以上のCpGサイトのメチル化率を測定し、
     前記判定工程において、前記測定工程において測定されたメチル化率に基づいて算出されたメチル化可変領域の平均メチル化率と前記多変量判別式に基づいて当該多変量判別式の値である判別値を算出し、当該判別値が予め設定された基準判別値以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、請求項1に記載の大腸癌発症可能性の判定方法。

    In the measurement step, the multivariate discriminant measures the methylation rate of one or more CpG sites present in the methylation variable region including the average methylation rate as a variable,
    In the determination step, a discriminant value that is a value of the multivariate discriminant based on the average methylation rate of the methylation variable region calculated based on the methylation rate measured in the measurement step and the multivariate discriminant The human ulcerative colitis is determined to have a high possibility of developing colorectal cancer when the discriminant value is greater than or equal to a preset reference discriminant value. A method for determining the likelihood of developing colorectal cancer.

  4.  前記多変量判別式が、メチル化可変領域番号1~112で表されるメチル化可変領域から選択される2か所以上のメチル化可変領域の平均メチル化率を変数として含む、請求項3に記載の大腸癌発症可能性の判定方法。

    4. The multivariate discriminant includes, as a variable, an average methylation rate of two or more methylation variable regions selected from methylation variable regions represented by methylation variable region numbers 1-112. The method for determining the likelihood of developing colorectal cancer as described.

  5.  前記多変量判別式が、メチル化可変領域番号1~112で表されるメチル化可変領域から選択される3か所以上のメチル化可変領域の平均メチル化率を変数として含む、請求項3に記載の大腸癌発症可能性の判定方法。

    The multivariate discriminant includes, as a variable, an average methylation rate of three or more methylation variable regions selected from methylation variable regions represented by methylation variable region numbers 1-112 as variables. The method for determining the likelihood of developing colorectal cancer as described.

  6.  前記多変量判別式が、メチル化可変領域番号1~58で表されるメチル化可変領域からなる群より選択される1か所以上のメチル化可変領域の平均メチル化率を変数として含む、請求項3に記載の大腸癌発症可能性の判定方法。

    The multivariate discriminant includes, as a variable, an average methylation rate of one or more methylation variable regions selected from the group consisting of methylation variable regions represented by methylation variable region numbers 1 to 58. Item 4. A method for determining the likelihood of developing colorectal cancer according to Item 3.

  7.  前記多変量判別式が、メチル化可変領域番号1~11で表されるメチル化可変領域からなる群より選択される1か所以上のメチル化可変領域の平均メチル化率を変数として含む、請求項3に記載の大腸癌発症可能性の判定方法。

    The multivariate discriminant includes, as a variable, an average methylation rate of one or more methylation variable regions selected from the group consisting of methylation variable regions represented by methylation variable region numbers 1 to 11. Item 4. A method for determining the likelihood of developing colorectal cancer according to Item 3.

  8.  ヒト潰瘍性大腸炎患者の大腸癌発症可能性を判定する方法であって、
     ヒト潰瘍性大腸炎患者から採取された生体試料から回収されたDNA中の、配列番号1~80で表される塩基配列中のCpGサイトからなる群より選択される1か所以上のCpGサイトのメチル化率を測定する測定工程と、
     前記測定工程において測定されたメチル化率と、予め設定された基準値又は予め設定された多変量判別式に基づいて、前記ヒト潰瘍性大腸炎患者の大腸癌発症の可能性を判定する判定工程
    を有し、
     前記基準値が、各CpGサイトのメチル化率に対してそれぞれ設定された、発癌潰瘍性大腸炎患者と非癌潰瘍性大腸炎患者を識別するための値であり、
     前記多変量判別式が、前記配列番号1~80で表される塩基配列中のCpGサイトのうち1か所以上のCpGサイトのメチル化率を変数として含む、
    大腸癌発症可能性の判定方法。

    A method for determining the likelihood of developing colorectal cancer in a patient with human ulcerative colitis,
    One or more CpG sites selected from the group consisting of CpG sites in the base sequences represented by SEQ ID NOs: 1 to 80 in DNA collected from biological samples collected from human ulcerative colitis patients A measurement process for measuring the methylation rate;
    Determination step of determining the possibility of developing colon cancer in the human ulcerative colitis patient based on the methylation rate measured in the measurement step and a preset reference value or a preset multivariate discriminant Have
    The reference value is a value for discriminating between a carcinogenic ulcerative colitis patient and a non-cancer ulcerative colitis patient, each set for the methylation rate of each CpG site,
    The multivariate discriminant includes, as a variable, the methylation rate of one or more CpG sites among the CpG sites in the base sequences represented by SEQ ID NOs: 1 to 80.
    A method for determining the likelihood of developing colorectal cancer.

  9.  前記測定工程において、2~10個のCpGサイトのメチル化率を測定する、請求項8に記載の大腸癌発症可能性の判定方法。

    The method for determining the possibility of developing colorectal cancer according to claim 8, wherein the methylation rate of 2 to 10 CpG sites is measured in the measurement step.

  10.  前記判定工程において、配列番号1、2、11、12、14~18、21~24、26、27、29、31、45、64、65、67、77、79、及び80で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号3~10、13、19、20、25、28、30、32~44、46~63、66、68~76、及び78で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、請求項8又は9に記載の大腸癌発症可能性の判定方法。

    In the determination step, the bases represented by SEQ ID NOs: 1, 2, 11, 12, 14-18, 21-24, 26, 27, 29, 31, 45, 64, 65, 67, 77, 79, and 80 One or more of the CpG sites in the sequence have a methylation rate equal to or lower than a preset reference value, or SEQ ID NOs: 3 to 10, 13, 19, 20, 25, 28, 30, 32 to 44 , 46-63, 66, 68-76, and 78, when one or more of the CpG sites in the base sequence have a methylation rate equal to or higher than a preset reference value, the human ulcer The method for determining the likelihood of developing colorectal cancer according to claim 8 or 9, wherein it is determined that the patient with ulcerative colitis is highly likely to develop colorectal cancer.

  11.  前記測定工程において、配列番号1~32で表される塩基配列中のCpGサイトのメチル化率を測定し、
     前記判定工程において、配列番号1、2、11、12、14~18、21~24、26、27、29、及び31で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号3~10、13、19、20、25、28、30、及び32で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、請求項8~10のいずれか一項に記載の大腸癌発症可能性の判定方法。

    In the measurement step, the methylation rate of the CpG site in the base sequence represented by SEQ ID NOs: 1 to 32 is measured,
    In the determination step, one or more of the CpG sites in the base sequence represented by SEQ ID NOs: 1, 2, 11, 12, 14 to 18, 21 to 24, 26, 27, 29, and 31 are methyl Of the CpG site in the base sequence represented by SEQ ID NOs: 3 to 10, 13, 19, 20, 25, 28, 30, and 32 The method according to any one of claims 8 to 10, wherein when the methylation rate is equal to or higher than a preset reference value, it is determined that the human ulcerative colitis patient is likely to develop colorectal cancer. The method for determining the likelihood of developing colorectal cancer according to one item.

  12.  前記判定工程において、配列番号1、2、11、12、14~18、21~24、26、27、29、及び31で表される塩基配列中のCpGサイトのうち、メチル化率が予め設定された基準値以下であるCpGサイトの数と、配列番号3~10、13、19、20、25、28、30、及び32で表される塩基配列中のCpGサイトのうちメチル化率が予め設定された基準値以上であるCpGサイトの数との和が3以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、請求項8~11のいずれか一項に記載の大腸癌発症可能性の判定方法。

    In the determination step, a methylation rate is set in advance among CpG sites in the base sequences represented by SEQ ID NOs: 1, 2, 11, 12, 14 to 18, 21 to 24, 26, 27, 29, and 31. The number of CpG sites that are equal to or less than the reference value and the methylation rate of CpG sites in the base sequences represented by SEQ ID NOs: 3 to 10, 13, 19, 20, 25, 28, 30, and 32 are preliminarily determined. The human ulcerative colitis patient is determined to have a high possibility of developing colorectal cancer when the sum of the number of CpG sites equal to or greater than a set reference value is 3 or greater. The method for determining the likelihood of developing colorectal cancer according to any one of 11.

  13.  前記測定工程において、配列番号1~16で表される塩基配列中のCpGサイトのメチル化率を測定し、
     前記判定工程において、配列番号1、2、11、12、14~16で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号3~10、13で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、請求項8~10のいずれか一項に記載の大腸癌発症可能性の判定方法。

    In the measurement step, the methylation rate of the CpG site in the base sequence represented by SEQ ID NOs: 1 to 16 is measured,
    In the determination step, at least one of the CpG sites in the base sequence represented by SEQ ID NOs: 1, 2, 11, 12, 14 to 16 has a methylation rate equal to or lower than a preset reference value. Alternatively, when one or more of the CpG sites in the base sequences represented by SEQ ID NOs: 3 to 10 and 13 have a methylation rate equal to or higher than a preset reference value, the human ulcerative colitis patient The method for determining the likelihood of developing colorectal cancer according to any one of claims 8 to 10, wherein it is determined that there is a high possibility that the patient has developed colorectal cancer.

  14.  前記判定工程において、配列番号1、2、11、12、14~16で表される塩基配列中のCpGサイトのうち、メチル化率が予め設定された基準値以下であるCpGサイトの数と、配列番号3~10、13で表される塩基配列中のCpGサイトのうちメチル化率が予め設定された基準値以上であるCpGサイトの数との和が3以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、請求項8~10及び13のいずれか一項に記載の大腸癌発症可能性の判定方法。

    In the determination step, among the CpG sites in the base sequences represented by SEQ ID NOs: 1, 2, 11, 12, 14 to 16, the number of CpG sites having a methylation rate equal to or lower than a preset reference value; The human ulcer when the sum of the CpG sites in the base sequences represented by SEQ ID NOs: 3 to 10, 13 and the number of CpG sites having a methylation rate equal to or higher than a preset reference value is 3 or more The method for determining the likelihood of developing colorectal cancer according to any one of claims 8 to 10 and 13, wherein a patient with ulcerative colitis is determined to have a high probability of developing colorectal cancer.

  15.  前記測定工程において、配列番号1~9で表される塩基配列中のCpGサイトのメチル化率を測定し、
     前記判定工程において、配列番号1及び2で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号3~9で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、請求項8~10のいずれか一項に記載の大腸癌発症可能性の判定方法。

    In the measurement step, the methylation rate of CpG sites in the base sequences represented by SEQ ID NOs: 1 to 9 is measured,
    In the determination step, one or more of the CpG sites in the base sequences represented by SEQ ID NOs: 1 and 2 have a methylation rate equal to or lower than a preset reference value, or SEQ ID NOs: 3 to 9 Possibility that the human ulcerative colitis patient develops colorectal cancer when one or more of the CpG sites in the represented base sequence has a methylation rate that is equal to or higher than a preset reference value The method for determining the likelihood of developing colorectal cancer according to any one of claims 8 to 10, wherein it is determined that the colorectal cancer is high.

  16.  前記判定工程において、配列番号1及び2で表される塩基配列中のCpGサイトのうち、メチル化率が予め設定された基準値以下であるCpGサイトの数と、配列番号3~9で表される塩基配列中のCpGサイトのうちメチル化率が予め設定された基準値以上であるCpGサイトの数との和が3以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、請求項8~10及び15のいずれか一項に記載の大腸癌発症可能性の判定方法。

    In the determination step, among the CpG sites in the base sequences represented by SEQ ID NOs: 1 and 2, the number of CpG sites having a methylation rate equal to or lower than a preset reference value, and SEQ ID NOs: 3 to 9 When the sum of the number of CpG sites having a methylation rate equal to or higher than a preset reference value among CpG sites in the base sequence is 3 or more, the human ulcerative colitis patient develops colorectal cancer The method for determining the likelihood of developing colorectal cancer according to any one of claims 8 to 10 and 15, wherein it is determined that there is a high possibility that the patient has a colorectal cancer.

  17.  前記測定工程において、配列番号33~66で表される塩基配列中のCpGサイトからなる群より選択される1か所以上のCpGサイトのメチル化率を測定し、
     前記判定工程において、配列番号45、64、及び65で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号32~44、46~63、及び66で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、請求項8~10のいずれか一項に記載の大腸癌発症可能性の判定方法。

    In the measurement step, the methylation rate of one or more CpG sites selected from the group consisting of CpG sites in the base sequences represented by SEQ ID NOs: 33 to 66 is measured,
    In the determination step, at least one of the CpG sites in the base sequences represented by SEQ ID NOs: 45, 64, and 65 has a methylation rate equal to or lower than a preset reference value, or SEQ ID NO: 32 A patient with human ulcerative colitis when one or more of the CpG sites in the base sequences represented by -44, 46-63, and 66 have a methylation rate equal to or higher than a preset reference value The method for determining the likelihood of developing colorectal cancer according to any one of claims 8 to 10, wherein it is determined that there is a high possibility that the patient has developed colorectal cancer.

  18.  前記判定工程において、配列番号45、64、及び65で表される塩基配列中のCpGサイトのうち、メチル化率が予め設定された基準値以下であるCpGサイトの数と、配列番号32~44、46~63、及び66で表される塩基配列中のCpGサイトのうちメチル化率が予め設定された基準値以上であるCpGサイトの数との和が2以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、請求項8~10及び17のいずれか一項に記載の大腸癌発症可能性の判定方法。

    In the determination step, among the CpG sites in the base sequences represented by SEQ ID NOs: 45, 64, and 65, the number of CpG sites having a methylation rate equal to or lower than a preset reference value, and SEQ ID NOs: 32-44 46 to 63 and 66, the sum of the number of CpG sites having a methylation rate equal to or higher than a preset reference value among CpG sites in the base sequences represented by 46 to 63 and 66 is 2 or more. The method for determining the likelihood of developing colorectal cancer according to any one of claims 8 to 10 and 17, wherein it is determined that a patient with ulcerative colitis is highly likely to develop colorectal cancer.

  19.  前記測定工程において、配列番号33、35、36、43、67~80で表される塩基配列中のCpGサイトからなる群より選択される1か所以上のCpGサイトのメチル化率を測定し、
     前記判定工程において、配列番号67、77、79、及び80で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号33、35、36、43、68~76、及び78で表される塩基配列中のCpGサイトのうち1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、請求項8~10のいずれか一項に記載の大腸癌発症可能性の判定方法。

    In the measurement step, the methylation rate of one or more CpG sites selected from the group consisting of CpG sites in the base sequence represented by SEQ ID NOs: 33, 35, 36, 43, 67-80 is measured,
    In the determination step, at least one of the CpG sites in the base sequences represented by SEQ ID NOs: 67, 77, 79, and 80 has a methylation rate equal to or lower than a preset reference value, or a sequence When one or more of the CpG sites in the base sequences represented by the numbers 33, 35, 36, 43, 68 to 76, and 78 have a methylation rate that is equal to or higher than a preset reference value, The method for determining the likelihood of developing colorectal cancer according to any one of claims 8 to 10, wherein it is determined that a human ulcerative colitis patient is likely to develop colorectal cancer.

  20.  前記判定工程において、配列番号67、77、79、及び80で表される塩基配列中のCpGサイトのうち、メチル化率が予め設定された基準値以下であるCpGサイトの数と、配列番号33、35、36、43、68~76、及び78で表される塩基配列中のCpGサイトのうちメチル化率が予め設定された基準値以上であるCpGサイトの数との和が2以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、請求項8~10及び19のいずれか一項に記載の大腸癌発症可能性の判定方法。

    In the determination step, among the CpG sites in the base sequences represented by SEQ ID NOs: 67, 77, 79, and 80, the number of CpG sites having a methylation rate equal to or lower than a preset reference value, and SEQ ID NO: 33 , 35, 36, 43, 68 to 76, and 78, the sum of the number of CpG sites having a methylation rate equal to or higher than a preset reference value among the CpG sites in the base sequence represented by 2 or more The method for determining the likelihood of developing colorectal cancer according to any one of claims 8 to 10 and 19, wherein the human ulcerative colitis patient is determined to have a high possibility of developing colorectal cancer.

  21.  前記和が5以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、請求項12、14、16、18、又は20に記載の大腸癌発症可能性の判定方法。

    The colorectal cancer according to claim 12, 14, 16, 18, or 20, wherein when the sum is 5 or more, it is determined that the human ulcerative colitis patient is likely to develop colorectal cancer. How to determine the likelihood of onset.

  22.  前記多変量判別式が、配列番号33~66で表される塩基配列中のCpGサイトからなる群より選択される1か所以上のCpGサイトのメチル化率を変数として含み、
     前記測定工程において、前記多変量判別式がそのメチル化率を変数として含むCpGサイトのメチル化率を測定し、
     前記判定工程において、前記測定工程において測定されたメチル化率と前記多変量判別式に基づいて当該多変量判別式の値である判別値を算出し、当該判別値が予め設定された基準判別値以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、請求項8又は9に記載の大腸癌発症可能性の判定方法。

    The multivariate discriminant includes, as a variable, the methylation rate of one or more CpG sites selected from the group consisting of CpG sites in the base sequences represented by SEQ ID NOs: 33 to 66,
    In the measurement step, the multivariate discriminant measures the methylation rate of the CpG site including the methylation rate as a variable,
    In the determination step, a discriminant value that is a value of the multivariate discriminant is calculated based on the methylation rate measured in the measurement step and the multivariate discriminant, and the discriminant value is set in advance as a reference discriminant value. 10. The method for determining the likelihood of developing colorectal cancer according to claim 8 or 9, wherein, in the case described above, it is determined that the human ulcerative colitis patient is likely to develop colorectal cancer.

  23.  前記多変量判別式が、配列番号33、35、36、43、67~80で表される塩基配列中のCpGサイトからなる群より選択される1か所以上のCpGサイトのメチル化率を変数として含み、
     前記測定工程において、前記多変量判別式がそのメチル化率を変数として含むCpGサイトのメチル化率を測定し、
     前記判定工程において、前記測定工程において測定されたメチル化率と前記多変量判別式に基づいて当該多変量判別式の値である判別値を算出し、当該判別値が予め設定された基準判別値以上である場合に、前記ヒト潰瘍性大腸炎患者が大腸癌を発症している可能性が高いと判定する、請求項8又は9に記載の大腸癌発症可能性の判定方法。

    The multivariate discriminant is a variable of the methylation rate of one or more CpG sites selected from the group consisting of CpG sites in the base sequences represented by SEQ ID NOs: 33, 35, 36, 43, 67-80. Including as
    In the measurement step, the multivariate discriminant measures the methylation rate of the CpG site including the methylation rate as a variable,
    In the determination step, a discriminant value that is a value of the multivariate discriminant is calculated based on the methylation rate measured in the measurement step and the multivariate discriminant, and the discriminant value is set in advance as a reference discriminant value. 10. The method for determining the likelihood of developing colorectal cancer according to claim 8 or 9, wherein, in the case described above, it is determined that the human ulcerative colitis patient is likely to develop colorectal cancer.

  24.  前記多変量判別式が、ロジスティック回帰式、線形判別式、ナイーブベイズ分類器で作成された式、又はサポートベクターマシンで作成された式である、請求項1~23のいずれか一項に記載の大腸癌発症可能性の判定方法。

    The multivariate discriminant is a logistic regression equation, a linear discriminant, a formula created with a naive Bayes classifier, or a formula created with a support vector machine. A method for determining the likelihood of developing colorectal cancer.

  25.  前記生体試料が、腸管組織である、請求項1~24のいずれか一項に記載の大腸癌発症可能性の判定方法。

    The method for determining the likelihood of developing colon cancer according to any one of claims 1 to 24, wherein the biological sample is intestinal tissue.

  26.  前記生体試料が、直腸粘膜組織である、請求項1~25のいずれか一項に記載の大腸癌発症可能性の判定方法。

    The method for determining the likelihood of developing colorectal cancer according to any one of claims 1 to 25, wherein the biological sample is a rectal mucosa tissue.

  27.  前記直腸粘膜組織が、
     採取具と、採取補助具とを備え、
     前記採取具は、
     一方の端部に大腸粘膜を挟持する第1の挟持面が形成されている板状の第1の挟持片と、
     一方の端部に大腸粘膜を挟持する第2の挟持面が形成されている板状の第2の挟持片と、
     前記第1の挟持片と前記第2の挟持片を、互いに対向した状態で、前記第1の挟持面及び前記第2の挟持面が形成されていない端部において連結する連結部と、
    を有し、
     前記第1の挟持面及び前記第2の挟持面の少なくとも一方がカップ形状であり、
     前記採取補助具は、
     側壁にスリットを有する円錐台形状の採取具導入部と、
     棒状の把持部と、
    を有し、
     前記把持部の一端が、前記採取具導入部の外径が大きい方の辺縁部近傍に連結しており、
     前記スリットは、前記採取具導入部の外径が小さい方の辺縁部から外径が大きい方の辺縁部に向かって設けられており、
     前記スリットの幅が、前記第1の挟持片の一方の端部と前記第2の挟持片の一方の端部の幅よりも広く、
     前記採取具導入部の大きい方の外径が30~70mmであり、回転軸方向の長さが50~150mmである、大腸粘膜採取用キットによって採取されたものである、請求項26に記載の大腸癌発症可能性の判定方法。

    The rectal mucosa tissue is
    A collection tool and a collection aid;
    The sampling tool is
    A plate-like first clamping piece in which a first clamping surface for clamping the colonic mucosa is formed at one end;
    A plate-like second clamping piece in which a second clamping surface for clamping the colonic mucosa is formed at one end;
    A connecting portion that connects the first clamping piece and the second clamping piece in a state of being opposed to each other at an end portion where the first clamping surface and the second clamping surface are not formed;
    Have
    At least one of the first clamping surface and the second clamping surface is cup-shaped,
    The collection aid is
    A frustoconical sampling tool introduction part having a slit on the side wall;
    A rod-shaped gripping part;
    Have
    One end of the gripping part is connected to the vicinity of the edge part of the larger outer diameter of the sampling tool introduction part,
    The slit is provided from the edge of the smaller outer diameter of the sampling tool introduction part toward the edge of the larger outer diameter,
    The width of the slit is wider than the width of one end of the first clamping piece and the one end of the second clamping piece,
    27. The large-sized outer diameter of the collection tool introduction part is 30 to 70 mm, and the length in the rotation axis direction is 50 to 150 mm. A method for determining the likelihood of developing colorectal cancer.

  28.  前記採取具が、
     前記第1の挟持片の中心部よりも前記第1の挟持面が形成されている端部側に、第1の屈曲部を有し、
     前記第2の挟持片の中心部よりも前記第2の挟持面が形成されている端部側に、第2の屈曲部を有する、請求項27に記載の大腸癌発症可能性の判定方法。

    The sampling tool is
    Having a first bent portion on the end side where the first clamping surface is formed with respect to the center of the first clamping piece;
    28. The method for determining the likelihood of developing colorectal cancer according to claim 27, further comprising a second bent portion on an end portion side where the second clamping surface is formed with respect to a center portion of the second clamping piece.

  29.  採取具と、採取補助具とを備える大腸粘膜採取用キットであり、
     前記採取具は、
     一方の端部に大腸粘膜を挟持する第1の挟持面が形成されている板状の第1の挟持片と、
     一方の端部に大腸粘膜を挟持する第2の挟持面が形成されている板状の第2の挟持片と、
     前記第1の挟持片と前記第2の挟持片を、互いに対向した状態で、前記第1の挟持面及び前記第2の挟持面が形成されていない端部において連結する連結部と、
    を有し、
     前記第1の挟持面及び前記第2の挟持面の少なくとも一方がカップ形状であり、
     前記採取補助具は、
     側壁にスリットを有する円錐台形状の採取具導入部と、
     棒状の把持部と、
    を有し、
     前記把持部の一端が、前記採取具導入部の外径が大きい方の辺縁部近傍に連結しており、
     前記スリットは、前記採取具導入部の外径が小さい方の辺縁部から外径が大きい方の辺縁部に向かって設けられており、
     前記スリットの幅が、前記第1の挟持片の一方の端部と前記第2の挟持片の一方の端部の幅よりも広く、
     前記採取具導入部の大きい方の外径が30~70mmであり、回転軸方向の長さが50~150mmである、大腸粘膜採取用キット。

    A kit for collecting large intestine mucosa comprising a collection tool and a collection aid,
    The sampling tool is
    A plate-like first clamping piece in which a first clamping surface for clamping the colonic mucosa is formed at one end;
    A plate-like second clamping piece in which a second clamping surface for clamping the colonic mucosa is formed at one end;
    A connecting portion that connects the first clamping piece and the second clamping piece in a state of being opposed to each other at an end portion where the first clamping surface and the second clamping surface are not formed;
    Have
    At least one of the first clamping surface and the second clamping surface is cup-shaped,
    The collection aid is
    A frustoconical sampling tool introduction part having a slit on the side wall;
    A rod-shaped gripping part;
    Have
    One end of the gripping part is connected to the vicinity of the edge part of the larger outer diameter of the sampling tool introduction part,
    The slit is provided from the edge of the smaller outer diameter of the sampling tool introduction part toward the edge of the larger outer diameter,
    The width of the slit is wider than the width of one end of the first clamping piece and the one end of the second clamping piece,
    A large intestine mucosa collection kit having a larger outer diameter of the collection tool introduction part of 30 to 70 mm and a length in the rotation axis direction of 50 to 150 mm.

  30.  前記採取具が、
     前記第1の挟持片の中心部よりも前記第1の挟持面が形成されている端部側に、第1の屈曲部を有し、
     前記第2の挟持片の中心部よりも前記第2の挟持面が形成されている端部側に、第2の屈曲部を有する、請求項29に記載の大腸粘膜採取用キット。

    The sampling tool is
    Having a first bent portion on the end side where the first clamping surface is formed with respect to the center of the first clamping piece;
    30. The large intestine mucosa collection kit according to claim 29, further comprising a second bent portion on an end side where the second holding surface is formed with respect to a center portion of the second holding piece.

  31.  前記第1の挟持面と前記第2の挟持面の両方がカップ形状である、請求項29又は30に記載の大腸粘膜採取用キット。

    The colonic mucosa collection kit according to claim 29 or 30, wherein both of the first clamping surface and the second clamping surface are cup-shaped.

  32.  前記採取補助具が、回転軸方向に貫通孔を有し、前記採取具導入部の大きい方の外径が30~70mm、回転軸方向の長さが50~150mmであり、
     前記カップ形状の辺縁部の内径が2~3mmである、請求項29~31のいずれか一項に記載の大腸粘膜採取用キット。

    The collection aid has a through hole in the rotation axis direction, the outer diameter of the larger one of the collection tool introduction part is 30 to 70 mm, and the length in the rotation axis direction is 50 to 150 mm;
    The colonic mucosa collection kit according to any one of claims 29 to 31, wherein an inner diameter of the cup-shaped edge is 2 to 3 mm.

  33.  前記第1の挟持面と前記第2の挟持面の辺縁部が鋸歯状である、請求項29~32のいずれか一項に記載の大腸粘膜採取用キット。

    The large intestine mucosa collection kit according to any one of claims 29 to 32, wherein edge portions of the first clamping surface and the second clamping surface are serrated.

  34.  配列番号1~80で表される塩基配列中のCpGサイトからなる群より選択される1か所以上のCpGサイトを含む部分塩基配列を有するDNA断片からなり、潰瘍性大腸炎患者の大腸癌発症可能性を判定するために用いられる、DNAメチル化率分析用マーカー。

    Onset of colorectal cancer in patients with ulcerative colitis, comprising a DNA fragment having a partial base sequence containing one or more CpG sites selected from the group consisting of CpG sites in the base sequences represented by SEQ ID NOs: 1 to 80 DNA methylation rate analysis marker used to determine the possibility.
PCT/JP2017/024956 2016-07-08 2017-07-07 Method for judging onset possibility of large bowel cancer WO2018008740A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP21152410.3A EP3845669A1 (en) 2016-07-08 2017-07-07 Method for judging onset possibility of large bowel cancer
CN201780041963.8A CN109415771A (en) 2016-07-08 2017-07-07 The determination method of colorectal cancer initiation potential
EP17824343.2A EP3483282A4 (en) 2016-07-08 2017-07-07 Method for judging onset possibility of large bowel cancer
EP21211939.0A EP4023162A2 (en) 2016-07-08 2017-07-07 Method for judging onset possibility of large bowel cancer
US16/315,961 US20190241970A1 (en) 2016-07-08 2017-07-07 Method for determining likelihood of colorectal cancer development
KR1020197000171A KR20190045146A (en) 2016-07-08 2017-07-07 How to determine the likelihood of developing colon cancer
JP2018526453A JP7094881B2 (en) 2016-07-08 2017-07-07 Method for determining the possibility of developing colorectal cancer
US17/500,346 US20220022851A1 (en) 2016-07-08 2021-10-13 Method for determining likelihood of colorectal cancer development

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/JP2016/070330 WO2018008153A1 (en) 2016-07-08 2016-07-08 Method for determining possibility of onset of colon cancer
JPPCT/JP2016/070330 2016-07-08
JP2017007725 2017-01-19
JP2017-007725 2017-01-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/315,961 A-371-Of-International US20190241970A1 (en) 2016-07-08 2017-07-07 Method for determining likelihood of colorectal cancer development
US17/500,346 Division US20220022851A1 (en) 2016-07-08 2021-10-13 Method for determining likelihood of colorectal cancer development

Publications (1)

Publication Number Publication Date
WO2018008740A1 true WO2018008740A1 (en) 2018-01-11

Family

ID=60912752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024956 WO2018008740A1 (en) 2016-07-08 2017-07-07 Method for judging onset possibility of large bowel cancer

Country Status (6)

Country Link
US (2) US20190241970A1 (en)
EP (3) EP3483282A4 (en)
JP (1) JP7094881B2 (en)
KR (1) KR20190045146A (en)
CN (1) CN109415771A (en)
WO (1) WO2018008740A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111440863A (en) * 2019-01-17 2020-07-24 中山大学附属第六医院 Application of KAZN gene methylation detection reagent in preparation of colorectal cancer prognosis diagnosis reagent
CN114438188A (en) * 2021-11-29 2022-05-06 中国辐射防护研究院 Use of hypermethylated CDK2AP1 gene as molecular marker for alpha radiation damage prediction
CN114959030A (en) * 2022-05-18 2022-08-30 武汉艾米森生命科技有限公司 Application of reagent for detecting HCG9 gene methylation in preparation of product for diagnosing bladder cancer
WO2024004523A1 (en) * 2022-06-30 2024-01-04 公立大学法人名古屋市立大学 Colorectal cancer biomarker and use thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102589866B1 (en) * 2020-11-03 2023-10-17 영남대학교 산학협력단 Composition for inhibiting cancer cell containing genes derived from skeletal muscle expressed by high intensity aerobic exercise
WO2022253288A1 (en) * 2021-06-03 2022-12-08 广州燃石医学检验所有限公司 Methylation sequencing method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235799A (en) * 2002-02-14 2003-08-26 Yukiyasu Okumura Anoscope
WO2014026768A1 (en) * 2012-08-14 2014-02-20 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Colorectal cancer markers
JP2014140377A (en) * 2008-05-07 2014-08-07 Sapporo Medical Univ Method and kit for detection of cancer, and therapeutic agent for cancer
JP2015006164A (en) * 2013-05-29 2015-01-15 シスメックス株式会社 Method for acquiring information about colon cancer, and marker and kit for acquiring information about colon cancer
WO2015153283A1 (en) * 2014-03-31 2015-10-08 Mayo Foundation For Medical Education And Research Detecting colorectal neoplasm

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2403371Y (en) * 1999-11-25 2000-11-01 北京德佳科技开发有限责任公司 Surgical pincette
JP2001299689A (en) * 2000-04-24 2001-10-30 Asahi Optical Co Ltd Biopsy forcepts for endoscope
GB0700374D0 (en) * 2007-01-09 2007-02-14 Oncomethylome Sciences S A NDRG family methylation markers
CN201384551Y (en) * 2009-04-23 2010-01-20 王魏 Pliers for plucking thorn
CN201551368U (en) * 2009-12-22 2010-08-18 滕和志 Special tweezers for tumor surgery
CN201782797U (en) * 2010-08-31 2011-04-06 宁波江东轻舟机械科技有限公司 Spherical occluded lymph gland gripper
US10041948B2 (en) * 2010-10-12 2018-08-07 Mayo Foundation For Medical Education And Research Materials and methods for determining cancer risk
JP5917424B2 (en) 2013-02-08 2016-05-11 日精樹脂工業株式会社 Display device for molding machine
EP2971149B1 (en) * 2013-03-15 2018-05-09 Baylor Research Institute Ulcerative colitis (uc)-associated colorectal neoplasia markers
JP6581818B2 (en) 2015-06-25 2019-09-25 昭和パックス株式会社 paper bag
CN105343994A (en) * 2015-12-14 2016-02-24 丁永斌 Rectum dilator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235799A (en) * 2002-02-14 2003-08-26 Yukiyasu Okumura Anoscope
JP2014140377A (en) * 2008-05-07 2014-08-07 Sapporo Medical Univ Method and kit for detection of cancer, and therapeutic agent for cancer
WO2014026768A1 (en) * 2012-08-14 2014-02-20 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Colorectal cancer markers
JP2015006164A (en) * 2013-05-29 2015-01-15 シスメックス株式会社 Method for acquiring information about colon cancer, and marker and kit for acquiring information about colon cancer
WO2015153283A1 (en) * 2014-03-31 2015-10-08 Mayo Foundation For Medical Education And Research Detecting colorectal neoplasm

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "13B1X00204MC009: Codman Micro Tweezers", PMDA, 19 June 2009 (2009-06-19), pages 1 - 3, XP009519712, Retrieved from the Internet <URL:https://www.pmda.go.jp/PmdaSearch/kikiDetail/ResultDataSetPDF/340216_13B1X00204MC0009_A_01_01> [retrieved on 20170804] *
CHEN, WEI: "Screening for differentially methylated genes among human colorectal cancer tissues and normal mucosa by microarray chip.", MOL. BIOL. REP., vol. 40, no. 5, 2013, pages 3457 - 3464, XP055451736 *
KIBRIYA, MUHAMMAD G.: "A genome-wide DNA methylation study in colorectal carcinoma", BMC MEDICAL GENOMICS, vol. 4, no. 1, 2011, pages 1 - 16, XP021104259 *
See also references of EP3483282A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111440863A (en) * 2019-01-17 2020-07-24 中山大学附属第六医院 Application of KAZN gene methylation detection reagent in preparation of colorectal cancer prognosis diagnosis reagent
CN111440863B (en) * 2019-01-17 2023-08-01 中山大学附属第六医院 Application of KAZN gene methylation detection reagent in preparation of colorectal cancer prognosis diagnosis reagent
CN114438188A (en) * 2021-11-29 2022-05-06 中国辐射防护研究院 Use of hypermethylated CDK2AP1 gene as molecular marker for alpha radiation damage prediction
CN114959030A (en) * 2022-05-18 2022-08-30 武汉艾米森生命科技有限公司 Application of reagent for detecting HCG9 gene methylation in preparation of product for diagnosing bladder cancer
WO2024004523A1 (en) * 2022-06-30 2024-01-04 公立大学法人名古屋市立大学 Colorectal cancer biomarker and use thereof

Also Published As

Publication number Publication date
EP3845669A1 (en) 2021-07-07
EP3483282A1 (en) 2019-05-15
JP7094881B2 (en) 2022-07-04
KR20190045146A (en) 2019-05-02
CN109415771A (en) 2019-03-01
EP3483282A4 (en) 2020-07-29
US20220022851A1 (en) 2022-01-27
EP4023162A2 (en) 2022-07-06
US20190241970A1 (en) 2019-08-08
JPWO2018008740A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
WO2018008740A1 (en) Method for judging onset possibility of large bowel cancer
JP7139248B2 (en) Method for determining the possibility of developing sporadic colorectal cancer
CN110387421A (en) DNA methylation qPCR kit and application method for lung cancer detection
TWI456197B (en) Line-1 hypomethylation as a biomarker for early-onset colorectal cancer
WO2016115967A1 (en) Use of methylation sites in y chromosome as prostate cancer diagnosis marker
JP6381020B2 (en) Method for obtaining information on colorectal cancer, and marker and kit for obtaining information on colorectal cancer
WO2023226938A1 (en) Methylation biomarker, kit and use
CN111363811B (en) Lung cancer diagnostic agent and kit based on FOXD3 gene
WO2022222146A1 (en) Composition, kit, and application for detection of colorectal cancer
WO2018008153A1 (en) Method for determining possibility of onset of colon cancer
CN116121387A (en) Combined marker for colorectal cancer detection and application thereof
CN108251532B (en) Fecal DNA colorectal tumor polygene prediction model based on NGS technology
WO2018061143A1 (en) Method for determining possibility of onset of sporadic colon cancer
CN106868130A (en) For the biomarker used in colorectal cancer
CN111363816B (en) PAX3 and ZIC4 gene-based lung cancer diagnosis reagent and kit
CN111363818B (en) PAX3 gene-based lung cancer diagnostic agent and kit
CN111363814B (en) Lung cancer diagnosis reagent and reagent kit based on DMRTA2 and FOXD3 genes
JP2023176770A (en) Diagnostic support method, diagnostic support apparatus, diagnostic support system, and diagnostic evaluation method
JP6636105B2 (en) Method for obtaining information on colorectal cancer, and marker and kit for obtaining information on colorectal cancer
CN116445614A (en) Nucleic acid molecule for detecting cervical squamous carcinoma, kit and application thereof
JP6551656B2 (en) Method for obtaining information on ovarian cancer, and marker for obtaining information on ovarian cancer and kit for detecting ovarian cancer
CN117431315A (en) Methylation biomarker for colorectal cancer lymph node metastasis detection and detection kit
CN116814790A (en) Application of PITX2 gene as marker in lung cancer detection
CN117187388A (en) Application of GRIK2 gene as marker in preparation of lung cancer detection kit
CN116396960A (en) Nucleic acid molecules and kits for detecting cervical intraepithelial neoplasia and cervical squamous cell carcinoma

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018526453

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824343

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197000171

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017824343

Country of ref document: EP

Effective date: 20190208