WO2018008555A1 - Binder composition for nonaqueous secondary battery electrodes, slurry composition for nonaqueous secondary battery electrodes, electrode for nonaqueous secondary batteries, and nonaqueous secondary battery - Google Patents

Binder composition for nonaqueous secondary battery electrodes, slurry composition for nonaqueous secondary battery electrodes, electrode for nonaqueous secondary batteries, and nonaqueous secondary battery Download PDF

Info

Publication number
WO2018008555A1
WO2018008555A1 PCT/JP2017/024192 JP2017024192W WO2018008555A1 WO 2018008555 A1 WO2018008555 A1 WO 2018008555A1 JP 2017024192 W JP2017024192 W JP 2017024192W WO 2018008555 A1 WO2018008555 A1 WO 2018008555A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
secondary battery
mass
electrode
water
Prior art date
Application number
PCT/JP2017/024192
Other languages
French (fr)
Japanese (ja)
Inventor
園部 健矢
政憲 渋谷
祐輔 足立
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2018526342A priority Critical patent/JP7067473B2/en
Publication of WO2018008555A1 publication Critical patent/WO2018008555A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder composition for non-aqueous secondary battery electrodes, a slurry composition for non-aqueous secondary battery electrodes, an electrode for non-aqueous secondary batteries, and a non-aqueous secondary battery.
  • Non-aqueous secondary batteries such as lithium ion secondary batteries (hereinafter sometimes simply referred to as “secondary batteries”) have the characteristics of being small and lightweight, having high energy density, and capable of repeated charge and discharge. Yes, it is used for a wide range of purposes. Therefore, in recent years, improvement of battery members such as electrodes has been studied for the purpose of further improving the performance of non-aqueous secondary batteries.
  • an electrode for a secondary battery such as a lithium ion secondary battery is usually provided with a current collector and an electrode mixture layer formed on the current collector.
  • the electrode mixture layer is formed on the current collector by, for example, a slurry-like composition obtained by dispersing an electrode active material and a binder composition containing a polymer serving as a binder in a dispersion medium. It is formed by applying to and drying.
  • the electrode mixture layer formed using the slurry composition is in good contact with the current collector. If the adhesion between the current collector and the electrode mixture layer is low, the current collector and the electrode mixture layer are not sufficiently bonded and fixed, and as a result, battery performance such as cycle characteristics may be deteriorated. It is.
  • Patent Document 1 as a binder composition for an electrode when producing a secondary battery, a monomer group containing a polymerizable monomer of unsaturated carboxylic acids and (meth) acrylamide is polymerized.
  • Patent Document 1 discloses methacrylic acid: (meth) acrylamide: 2 as a specific acrylic aqueous dispersion for electrochemical cells that can improve the adhesion between the electrode mixture layer and the metal current collector.
  • An aqueous dispersion containing organic particles (b) obtained by emulsion polymerization of ester, (meth) acrylamide and / or (meth) acrylonitrile is disclosed.
  • a binder for electrodes at the time of manufacturing a secondary battery it has a structural unit derived from an acid-containing monomer and a structural unit derived from a hydroxyl group-containing monomer, and has a predetermined acid value.
  • Patent Document 2 discloses acrylic water or 2-carboxyethyl acrylate as a specific aqueous binder for an electrode composition that can provide sufficient peel strength (adhesiveness) between an electrode mixture layer and a current collector.
  • An aqueous binder containing a polymer obtained by polymerizing a mixture containing 2-hydroxyethyl acrylate is disclosed.
  • “(meth) acryl” means acryl and / or methacryl
  • “(meth) acrylo” means acrylo and / or methacrylo.
  • the electrode formed using the above conventional binder composition has room for improvement in terms of further increasing the adhesion strength between the electrode mixture layer and the current collector.
  • the slurry composition prepared using the binder composition may be stored until it is used for manufacturing the electrode. Therefore, even when the slurry composition after storage is used, from the viewpoint of further forming the electrode mixture layer and further improving the performance of the secondary battery, the slurry composition used for forming the electrode mixture layer
  • the product is required to have excellent viscosity stability.
  • the present invention provides a slurry composition capable of forming an electrode mixture layer having excellent viscosity stability and excellent adhesion to a current collector, and a binder composition capable of preparing the slurry composition.
  • the purpose is to do.
  • an object of this invention is to provide the secondary battery provided with the electrode which has an electrode compound-material layer excellent in adhesiveness with a collector, and the said electrode.
  • the present inventors have intensively studied for the purpose of solving the above problems.
  • the present inventors also provide a binder comprising a polymer containing an ethylenically unsaturated carboxylic acid monomer unit, a (meth) acrylamide monomer unit, and a hydroxyl group-containing vinyl monomer unit within a predetermined range.
  • a binder comprising a polymer containing an ethylenically unsaturated carboxylic acid monomer unit, a (meth) acrylamide monomer unit, and a hydroxyl group-containing vinyl monomer unit within a predetermined range.
  • the binder composition for a non-aqueous secondary battery electrode of the present invention is a binder composition containing a water-soluble polymer
  • the water-soluble polymer contains 1% by mass to 50% by mass of ethylenically unsaturated carboxylic acid monomer units, 10% by mass to 60% by mass of (meth) acrylamide monomer units, and hydroxyl group-containing vinyl. It includes a polymer X containing 5% to 89% by mass of monomer units.
  • a slurry composition capable of forming an electrode mixture layer that is excellent in viscosity stability and excellent in adhesion to a current collector Obtainable.
  • water-soluble means that the mixture obtained by adding 1 part by weight of polymer (corresponding to the solid content) and stirring with respect to 100 parts by weight of ion-exchanged water has a temperature of 20 ° C. When adjusted to one condition within a range of 70 ° C.
  • the “content ratio (mass%) of each monomer unit” can be measured using a nuclear magnetic resonance (NMR) method such as 1 H-NMR.
  • the glass transition temperature of the polymer X is preferably ⁇ 10 ° C. or more and 100 ° C. or less. This is because if the glass transition temperature of the polymer X is within the above range, it is possible to suppress the occurrence of springback of the electrode mixture layer during electrode production. Moreover, it is because it can suppress that the electrode which has the electrode compound-material layer formed using the binder composition expand
  • the “glass transition temperature” can be determined according to JIS K7121.
  • the polymer X further contains 0.001% by mass to 10% by mass of a polyfunctional ethylenically unsaturated carboxylic acid ester monomer unit.
  • polyfunctional ethylenically unsaturated carboxylic acid ester monomer refers to a monomer that is a carboxylic acid ester having two or more ethylenic unsaturated bonds (C ⁇ C) in the molecule. Point to.
  • the degree of swelling of the electrolyte solution of the polymer X is preferably more than 1 time and 3 times or less. If the electrolyte solution swelling degree of the polymer X is within the above range, the electrode having the electrode mixture layer formed using the binder composition can be prevented from expanding and contracting along with charge / discharge of the secondary battery. It is.
  • the “electrolyte swelling degree” can be measured using the measuring method described in the examples of the present specification.
  • the solubility of the polymer X at a temperature of 20 ° C. is preferably 1 g / 100 g-H 2 O or more. If the solubility of the polymer X in water is not less than the above lower limit, for example, a slurry composition using water as a solvent or a dispersion medium can be easily prepared, and an electrode produced using the slurry composition is an electrode. It is because it tends to have a uniform structure excellent in the mixing property of the active material and the binder composition.
  • the “solubility” can be measured according to the method described in the examples of the present specification.
  • the content ratio of the polymer X is 10% by mass to 100% by mass with respect to 100% by mass of the total polymer in the water-soluble polymer. It is preferable that If the ratio of the polymer X in the water-soluble polymer is within the above range, the viscosity stability of the slurry composition can be further improved, and an electrode mixture layer that is more excellent in adhesion to the current collector is formed. Because it can be done.
  • the water-soluble polymer further includes another water-soluble polymer different from the polymer X, and the other water-soluble polymer.
  • the water-soluble polymer further contains other water-soluble polymer having a predetermined composition in addition to the polymer X, an electrode mixture having excellent viscosity stability and excellent adhesion to the current collector This is because a slurry composition capable of forming a layer can be obtained.
  • the binder composition for a non-aqueous secondary battery electrode of the present invention further includes a particulate polymer having at least one of a carboxyl group and a hydroxyl group, and the content of the polymer X is the particulate polymer 100. It is preferable that it is 0.1 to 200 mass parts with respect to the mass part. If the binder composition further contains a predetermined particulate polymer, and the contents of the polymer X and the particulate polymer are within the above range, the viscosity stability of the slurry composition containing the binder composition is improved. This is because the adhesion between the electrode mixture layer formed using the slurry composition and the current collector can be further improved while ensuring.
  • the “particulate polymer” is a polymer having a particle shape at least in the binder composition, and is usually a water-insoluble polymer. Moreover, the particle shape which a particulate polymer has can be confirmed by the laser diffraction method, for example.
  • the slurry composition for non-aqueous secondary battery electrodes of this invention is an electrode active material and one of the non-aqueous two-components mentioned above. And a binder composition for secondary battery electrodes.
  • the slurry composition excellent in viscosity stability can be obtained.
  • the slurry composition which can form the electrode compound-material layer excellent in adhesiveness with a collector can be obtained.
  • the electrode for non-aqueous secondary batteries of this invention is a collector and the slurry composition for non-aqueous secondary battery electrodes mentioned above. It has the electrode compound-material layer formed using the thing, It is characterized by the above-mentioned. Thus, if an electrode compound-material layer is formed using the slurry composition mentioned above, the electrode which has an electrode compound-material layer excellent in adhesiveness with a collector can be obtained.
  • the non-aqueous secondary battery of this invention is equipped with a positive electrode, a negative electrode, a separator, and electrolyte solution, At least of the said positive electrode and negative electrode One of the electrodes is the above-described electrode for a non-aqueous secondary battery.
  • the positive electrode and / or the negative electrode is the above-described electrode for a non-aqueous secondary battery, the current collector and the electrode mixture layer are in good contact with each other in the electrode provided in the secondary battery. Excellent battery characteristics can be imparted to the battery.
  • a slurry composition capable of forming an electrode mixture layer having excellent viscosity stability and adhesion to a current collector, and a binder composition capable of preparing the slurry composition. be able to.
  • an electrode which has an electrode compound-material layer excellent in adhesiveness with a collector, and a secondary battery provided with the said electrode can be provided.
  • the binder composition for non-aqueous secondary battery electrodes of the present invention can be used when preparing a slurry composition for non-aqueous secondary battery electrodes.
  • a slurry composition for a non-aqueous secondary battery electrode prepared using the binder composition for a non-aqueous secondary battery electrode of the present invention is an electrode for a non-aqueous secondary battery such as a lithium ion secondary battery (non-aqueous secondary battery). It can be used when forming the electrode mixture layer of the secondary battery electrode.
  • the non-aqueous secondary battery of the present invention is characterized by using a non-aqueous secondary battery electrode having an electrode mixture layer formed using the slurry composition for a non-aqueous secondary battery electrode of the present invention. To do.
  • the binder composition for non-aqueous secondary battery electrodes of the present invention is characterized by containing a water-soluble polymer containing the polymer X having a predetermined composition.
  • the binder composition for non-aqueous secondary battery electrodes of the present invention may optionally further include other components such as a particulate polymer and a solvent.
  • the binder composition for non-aqueous secondary battery electrodes of this invention contains the polymer X which has a predetermined
  • the binder composition for non-aqueous secondary battery electrodes of the present invention contains the predetermined polymer X, it is collected in the electrode mixture layer formed using the slurry composition containing the binder composition. Excellent adhesion to the electric body can be exhibited.
  • the water-soluble polymer needs to include the polymer X containing each of the predetermined three types of monomer units in a ratio within a predetermined range.
  • the water-soluble polymer may further contain a predetermined other water-soluble polymer different from the polymer X. If the water-soluble polymer does not contain the polymer X having the predetermined composition, the slurry composition containing the binder composition containing the water-soluble polymer cannot exhibit good viscosity stability.
  • the water-soluble polymer does not contain the polymer X having the predetermined composition, when the electrode mixture layer is formed using the slurry composition containing the binder composition containing the water-soluble polymer, Sufficient adhesion cannot be obtained between the electrode mixture layer and the current collector.
  • the polymer X needs to contain an ethylenically unsaturated carboxylic acid monomer unit, a (meth) acrylamide monomer unit, and a hydroxyl group-containing vinyl monomer unit in a proportion within a predetermined range.
  • the polymer X may optionally further contain other monomer units such as a polyfunctional ethylenically unsaturated carboxylic acid ester monomer unit.
  • the ethylenically unsaturated carboxylic acid monomer capable of forming an ethylenically unsaturated carboxylic acid monomer unit usually does not have a hydroxyl group (—OH) other than the hydroxyl group in the carboxyl group.
  • the ethylenically unsaturated carboxylic acid monomer include ethylenically unsaturated monocarboxylic acid and derivatives thereof, ethylenically unsaturated dicarboxylic acid and acid anhydrides thereof, and derivatives thereof.
  • an ethylenically unsaturated carboxylic acid monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • examples of the ethylenically unsaturated monocarboxylic acid include acrylic acid, methacrylic acid, and crotonic acid.
  • examples of ethylenically unsaturated monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic. Acid, ⁇ -diaminoacrylic acid and the like.
  • examples of the ethylenically unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
  • Examples of acid anhydrides of ethylenically unsaturated dicarboxylic acids include maleic anhydride, diacrylic anhydride, methyl maleic anhydride, dimethyl maleic anhydride, and the like.
  • Examples of the ethylenically unsaturated dicarboxylic acid derivative include methylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, and fluoromaleic acid.
  • the ethylenically unsaturated carboxylic acid monomer is preferably ethylenically unsaturated monocarboxylic acid and ethylenically unsaturated dicarboxylic acid, more preferably acrylic acid, methacrylic acid and itaconic acid, Acrylic acid and methacrylic acid are more preferred.
  • acrylic acid is more preferable as the ethylenically unsaturated carboxylic acid monomer from the viewpoint of suppressing the degree of swelling of the resulting polymer with respect to the electrolytic solution.
  • the polymer X needs to contain 1 to 50 mass% of ethylenically unsaturated carboxylic acid monomer units in 100 mass% of all monomer units.
  • the content of the ethylenically unsaturated carboxylic acid monomer unit is preferably 5% by mass or more, more preferably 10% by mass or more, and preferably 30% by mass or less, 25% by mass. % Or less is more preferable.
  • an electrode mixture layer is formed using a slurry composition containing a binder composition containing the polymer X This is because the electrode mixture layer can exhibit excellent adhesion (high peel strength) with the current collector.
  • the content rate of the ethylenically unsaturated carboxylic acid monomer unit in the polymer X is not more than the above upper limit, the viscosity stability of the slurry composition prepared using the binder composition containing the polymer X This is because the storage stability of the slurry composition and the handleability during formation of the electrode mixture layer can be improved.
  • the polymer X can be prepared easily.
  • the (meth) acrylamide monomer unit is formed using a (meth) acrylamide monomer which is acrylamide and / or methacrylamide.
  • the polymer X needs to contain a (meth) acrylamide monomer unit in the ratio of 10 to 60 mass% in 100 mass% of all monomer units.
  • the content ratio of the (meth) acrylamide monomer unit is preferably 15% by mass or more, more preferably 20% by mass or more, and preferably 50% by mass or less, and 40% by mass or less. It is more preferable that If the content ratio of the (meth) acrylamide monomer unit in the polymer X is not less than the above lower limit, components such as an electrode active material and a conductive material are well dispersed in the slurry composition containing the binder composition, and the slurry This is because the viscosity stability of the composition is excellent.
  • the content ratio of the (meth) acrylamide monomer unit in the polymer X is not more than the above upper limit, it is excellent in the slurry composition by suppressing the viscosity of the slurry composition containing the binder composition from being excessively lowered. This is because the viscosity stability can be exhibited, and the storage stability of the slurry composition and the handleability when forming the electrode mixture layer can be improved. Furthermore, if the content ratio of the (meth) acrylamide monomer unit in the polymer X is within the above range, the polymer X can be easily prepared.
  • the hydroxyl group-containing vinyl monomer capable of forming a hydroxyl group-containing vinyl monomer unit is a hydroxyl group (—OH) and a vinyl group (—CH ⁇ CH 2 ) or an isopropenyl group (—C
  • a monofunctional compound having (CH 3 ) ⁇ CH 2 ) and having one ethylenically unsaturated bond (C ⁇ C) in the molecule is a monofunctional compound having (CH 3 ) ⁇ CH 2 ) and having one ethylenically unsaturated bond (C ⁇ C) in the molecule.
  • hydroxyl group-containing vinyl monomer examples include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, N-hydroxymethylacrylamide (N-methylolacrylamide), Examples thereof include N-hydroxymethyl methacrylamide, N-hydroxyethyl acrylamide, N-hydroxyethyl methacrylamide and the like. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • hydroxyl group-containing vinyl monomer 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, N-methylol acrylamide and N-hydroxyethyl acrylamide are preferable. More preferred are ethyl acrylate and 2-hydroxyethyl methacrylate.
  • the compound exemplified as the hydroxyl group-containing vinyl monomer capable of forming the hydroxyl group-containing vinyl monomer unit is an ethylenic compound capable of forming the above-described ethylenically unsaturated carboxylic acid monomer unit. It is not included in the unsaturated carboxylic acid monomer.
  • the polymer X needs to contain a hydroxyl group containing vinyl monomer unit in the ratio of 5 to 89 mass% in 100 mass% of all monomer units.
  • the content ratio of the hydroxyl group-containing vinyl monomer unit is preferably 10% by mass or more, more preferably 15% by mass or more, preferably 70% by mass or less, and 50% by mass or less. It is more preferable that When the content ratio of the hydroxyl group-containing vinyl monomer unit in the polymer X is not less than the above lower limit, when the electrode mixture layer is formed using the slurry composition containing the binder composition containing the polymer X In addition, the electrode composite material layer can exhibit excellent adhesion (high peel strength) to the current collector.
  • the slurry composition including the binder composition containing the polymer X exhibits good viscosity stability. This is because the storage stability of the slurry composition and the handleability during formation of the electrode mixture layer can be improved. Furthermore, if the content ratio of the hydroxyl group-containing vinyl monomer unit in the polymer X is within the above range, the polymer X can be easily prepared.
  • polyfunctional ethylenically unsaturated carboxylic acid ester monomer for example, 2-hydroxy-3-acryloyloxypropyl methacrylate (701A), polyethylene glycol # 200 diacrylate (A-200), polyethylene glycol # 400 diacrylate (A-400), polyethylene glycol # 600 diacrylate (A-600) Polyethylene glycol # 1000 diacrylate (A-1000), propoxylated ethoxylated bisphenol A diacrylate (A-B1206PE), ethoxylated bisphenol A diacrylate (ABE-300, A-BPE-10, A-BPE-20, A-BPE-30, A-BPE-4), 9,9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene (A-BPEF), propoxylated bisphenol A diacrylate (A-BPP) 3), tricyclodecane dimethanol diacrylate (A-DCP), 1,10-decanediol diacrylate (A-DOD-
  • the names in the parentheses are product names available from Shin-Nakamura Chemical Co., Ltd.
  • the polyfunctional ethylenically unsaturated carboxylic acid ester is used from the viewpoint of achieving good crosslinkability while ensuring high viscosity stability of the slurry composition and high adhesion to the current collector of the electrode mixture layer.
  • the number of ethylenically unsaturated bonds (functional number) of the monomer is preferably 2 or more and 6 or less (2 functions to 6 functions), and preferably 2 or more and 4 or less (2 functions to 4 functions). More preferred.
  • the content ratio of the polyfunctional ethylenically unsaturated carboxylic acid ester monomer unit is 100 mass of all monomer units. % Is preferably 0.001% by mass or more, more preferably 0.1% by mass or more, more preferably 10% by mass or less, and even more preferably 5% by mass or less. More preferably, it is at most mass%.
  • the polyfunctional ethylenically unsaturated carboxylic acid ester monomer unit having a plurality of ethylenically unsaturated bonds in the molecule usually has crosslinkability.
  • a slurry composition including a binder composition containing the polymer X is used. This is because the adhesion (peel strength) between the electrode mixture layer and the current collector when the electrode mixture layer is formed can be increased. Moreover, it is because the favorable viscosity stability of a slurry composition can be ensured by making the content rate of the polyfunctional ethylenically unsaturated carboxylic acid ester monomer unit in the polymer X below the above upper limit. .
  • the monomer unit other than the polyfunctional ethylenically unsaturated carboxylic acid ester monomer unit that can be further contained in the polymer X is not particularly limited, for example, a methyl acrylate monomer unit Methyl methacrylate monomer units, ethyl acrylate monomer units, ethyl methacrylate monomer units, and monomer units obtained by introducing fluorine-containing substituents such as trifluoromethyl groups into these monomer units Can be mentioned.
  • the content ratio of other monomer units other than the polyfunctional ethylenically unsaturated carboxylic acid ester monomer unit in the polymer X can be 0% by mass, and more than 0% by mass. 20 mass% or less, preferably 10 mass% or less, more preferably 1 mass% or less. If the content ratio of other monomer units other than the polyfunctional ethylenically unsaturated carboxylic acid ester monomer unit in the polymer X exceeds 0% by mass, the electrolyte solution swelling degree of the binder composition is excessively large. This is because it can be suppressed.
  • a slurry composition containing a binder composition is used. It is because the spring back mentioned later can be suppressed, maintaining favorable adhesiveness with the electrical power collector of the formed electrode compound-material layer.
  • the polymer X preferably has a glass transition temperature of ⁇ 10 ° C. or higher, more preferably 0 ° C. or higher, still more preferably 10 ° C. or higher, and usually 130 ° C. or lower. It is preferably at most 0 ° C, more preferably at most 70 ° C, still more preferably at most 60 ° C. If the glass transition temperature of the polymer X is equal to or higher than the above lower limit, the electrode mixture layer formed using the slurry composition containing the polymer X is suppressed from expanding with charge / discharge of the secondary battery, This is because the swelling of the electrode can be prevented.
  • the term “spring back” means a phenomenon in which the elastic deformation of the electrode body recovers its shape (elastic recovery) when the electrode body such as the electrode mixture layer is released after being pressed.
  • the electrode mixture layer is spring-backed, the thickness of the electrode mixture layer and the electrode is not sufficiently reduced, and a sufficiently high density electrode cannot be obtained.
  • “spring back” can be evaluated based on the electrode mixture layer density measured according to the examples of the present specification.
  • the degree of swelling of the polymer X with respect to the electrolytic solution is preferably 3 times or less, more preferably 2 times or less, still more preferably 1.5 times or less, and 1.2 times or less. More preferably, it is usually more than 1 time. If the degree of swelling of the electrolyte solution of the polymer X is less than or equal to the above upper limit, the electrode mixture layer formed using the slurry composition containing the polymer X is further suppressed from expanding with charge / discharge of the secondary battery. This is because the swelling of the electrode can be further prevented.
  • the polymer X preferably has a solubility in 100 g of water at a temperature of 20 ° C. of 1 g / 100 g-H 2 O or more, more preferably 7 g / 100 g-H 2 O or more, and 10 g / 100 g-H. 2 O or more is more preferable, and 20 g / 100 g-H 2 O or more is more preferable. If the solubility of the polymer X in water is equal to or higher than the lower limit, the polymer X can satisfactorily coat the electrode active material in the electrode mixture layer, and therefore when the manufactured secondary battery is charged, This is because metal deposition on the electrode having the electrode mixture layer can be suppressed. Further, as a result, the battery characteristics of the secondary battery such as cycle characteristics can be improved.
  • the content ratio of the polymer X in the water-soluble polymer is preferably 10% by mass or more, and more preferably 30% by mass or more with respect to 100% by mass of the total polymer in the water-soluble polymer. More preferably, it is more preferably 40% by mass or more, still more preferably 70% by mass or more, and can be 100% by mass. That is, the polymer X can be used as it is as a water-soluble polymer. If the content ratio of the polymer X in the water-soluble polymer is set to the above lower limit or more, the binder composition containing the water-soluble polymer is used, the viscosity stability is excellent, and the adhesion to the current collector is improved. This is because a slurry composition capable of forming an excellent electrode mixture layer can be obtained more easily.
  • the polymer X can be obtained, for example, by polymerizing a monomer composition obtained by mixing the above-described components and an arbitrary polymerization solvent by a known method by an arbitrary polymerization method.
  • the solution containing the polymer X and the polymerization solvent obtained by polymerizing the monomer composition may be used as it is for the preparation of the binder composition, solvent substitution, addition of optional components, etc. You may use for preparation of a binder composition after performing.
  • the polymerization method of the polymer X is not limited, and for example, any method such as solution polymerization method such as aqueous solution polymerization method, slurry polymerization method, suspension polymerization method, bulk polymerization method, emulsion polymerization method, etc. May be used.
  • addition polymerization such as ionic polymerization, radical polymerization, and living radical polymerization
  • polymerization initiators such as ionic polymerization, radical polymerization, and living radical polymerization
  • polymerization accelerators, emulsifiers, dispersants, chain transfer agents, etc. can be used, and the amount used is also generally used.
  • an aqueous solution polymerization method using water as the polymerization solvent is preferable because the operation for removing the solvent is unnecessary, the safety of the solvent is high, and there is no problem of mixing of the surfactant.
  • the pH of the aqueous solution should be adjusted to 7 or more and 9 or less after polymerization. Is preferred. This is because if the aqueous solution obtained is neutralized and adjusted to a pH in the above range, the viscosity stability of the slurry composition is easily improved.
  • the polymerization initiator that can be used for the preparation of the polymer X is not particularly limited, and examples thereof include known polymerization initiators such as sodium persulfate, ammonium persulfate, and potassium persulfate. Of these, potassium persulfate is preferably used.
  • a polymerization initiator may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the polymerization accelerator is not particularly limited, and a known reducing polymerization accelerator such as tetramethylethylenediamine can be used.
  • a polymerization accelerator may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the water-soluble polymer may further contain another water-soluble polymer different from the polymer X (other than the polymer X).
  • the other water-soluble polymer that can be included in the water-soluble polymer preferably includes any of a natural polymer, a semi-synthetic polymer, and a synthetic polymer.
  • water-soluble polymers for example, thickening polysaccharides, alginic acid and salts thereof (for example, sodium alginate), natural polymers such as starch; carboxymethyl cellulose and salts thereof
  • a semi-synthetic polymer obtained by chemically treating a natural polymer as a raw material a synthetic polymer such as polyacrylic acid such as polyvinylpyrrolidone, crosslinked polyacrylic acid and non-crosslinked polyacrylic acid; be able to.
  • the other water-soluble polymer is preferably a semi-synthetic polymer, a synthetic polymer, Carboxymethyl cellulose, a salt of carboxymethyl cellulose, and polyacrylic acid are more preferable.
  • the other water-soluble polymer is mixed with polymer X in advance to form a binder composition, and then the slurry composition is prepared. It may be used; it may be mixed with the polymer X together with the electrode active material or the like when preparing the slurry composition without being previously mixed with the polymer X.
  • the content rate of another water-soluble polymer is 0 with respect to 100 mass% of all the polymers in a water-soluble polymer. It can be more than mass%, preferably 90 mass% or less, more preferably 70 mass% or less, and still more preferably 60 mass% or less.
  • the particulate polymer that the binder composition for nonaqueous secondary battery electrodes of the present invention may optionally contain has at least one of a carboxyl group and a hydroxyl group (a hydroxyl group other than a hydroxyl group in the carboxyl group). Moreover, it is preferable that a particulate polymer has a carboxyl group and a hydroxyl group. Here, both the carboxyl group and hydroxyl group of the particulate polymer are hydrophilic groups. As described above, in the present invention, the particulate polymer is usually water-insoluble.
  • the particulate polymer usually has a particle shape in an aqueous binder composition containing water as a solvent or a dispersion medium and an aqueous slurry composition. Further, the particulate polymer may be present while maintaining the particle shape in the electrode mixture layer, or may be present with any non-particle shape.
  • the particulate polymer is not particularly limited, and any polymer such as a conjugated diene polymer, an acrylic polymer, or an unsaturated carboxylic acid polymer can be used.
  • the conjugated diene polymer is a polymer containing a conjugated diene monomer unit.
  • a specific example of the conjugated diene polymer is not particularly limited, and is a copolymer containing an aromatic vinyl monomer unit such as a styrene-butadiene copolymer (SBR) and an aliphatic conjugated diene monomer unit. Examples thereof include polymers, butadiene rubber (BR), isoprene rubber, acrylic rubber (NBR) (a copolymer containing acrylonitrile units and butadiene units), and hydrides thereof.
  • SBR styrene-butadiene copolymer
  • NBR acrylic rubber
  • a copolymer containing an aromatic vinyl monomer unit and an aliphatic conjugated diene monomer unit is an aromatic vinyl monomer and an aliphatic conjugated diene unit capable of forming an aromatic vinyl monomer unit.
  • An aliphatic conjugated diene monomer capable of forming a monomer unit and a carboxyl group-containing monomer and / or a hydroxyl group-containing monomer can be polymerized by any method.
  • a copolymer containing an aromatic vinyl monomer unit and an aliphatic conjugated diene monomer unit may optionally contain other carboxyl group-containing monomer and / or hydroxyl group-containing monomer. You may prepare using a monomer further.
  • aromatic vinyl monomer examples include styrene, ⁇ -methylstyrene, vinyl toluene, divinylbenzene and the like. These may be used alone or in combination of two or more. Among these, styrene is preferable as the aromatic vinyl monomer.
  • Aliphatic conjugated diene monomers include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, And chain conjugated pentadienes, substituted and side chain conjugated hexadienes, and the like. These may be used alone or in combination of two or more. Among these, 1,3-butadiene is preferable as the aliphatic conjugated diene monomer.
  • carboxyl group-containing monomer examples include the above-mentioned “ethylenically unsaturated carboxylic acid monomer unit”. And the same monomers as the “ethylenically unsaturated carboxylic acid monomer capable of forming“. These may be used alone or in combination of two or more. Among these, itaconic acid is preferable as the carboxyl group-containing monomer.
  • hydroxyl group-containing monomer examples include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl Acrylate, 2-hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, 3-chloro-2-hydroxypropyl methacrylate, di- (ethylene glycol) maleate, di- (ethylene glycol) itaconate, 2-hydroxyethyl maleate, bis (2-hydroxyethyl) maleate, 2-hydroxyethyl methyl fumarate and the like can be mentioned. These may be used alone or in combination of two or more. Among these, 2-hydroxyethyl acrylate is preferable as the hydroxyl group-containing monomer.
  • the other monomer used for preparing the copolymer containing the aromatic vinyl monomer unit and the aliphatic conjugated diene monomer unit include monomers copolymerizable with the above-described monomers.
  • fluorine-containing monomers such as fluorine-containing (meth) acrylic acid ester monomers; sulfate group-containing monomers such as acrylamide-2-methylpropanesulfonic acid; Amide group-containing monomers such as acrylamide and methacrylamide; crosslinkable monomers (crosslinkable monomers) such as allyl glycidyl ether, allyl (meth) acrylate, and N-methylolacrylamide; olefins such as ethylene and propylene Halogen-containing monomers such as vinyl chloride and vinylidene chloride; vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate and vinyl benzoate; vinyl ethers such as methyl vinyl ether
  • a (meth) acrylic acid ester monomer is used for the preparation of a conjugated diene polymer such as a copolymer containing an aromatic vinyl monomer unit and an aliphatic conjugated diene monomer unit, )
  • the content of the acrylate monomer is less than 50% by mass based on 100% by mass of all monomers capable of constituting the conjugated diene polymer.
  • the acrylic polymer is a polymer containing a (meth) acrylic acid ester monomer unit.
  • the acrylic polymer is an optional combination of a (meth) acrylic acid ester monomer capable of forming a (meth) acrylic acid ester monomer unit, and a carboxyl group-containing monomer and / or a hydroxyl group-containing monomer. It can obtain by superposing
  • the acrylic polymer may optionally further contain other monomers in addition to the carboxyl group-containing monomer and / or hydroxyl group-containing monomer.
  • the acrylic polymer usually contains 50% by mass or more of a (meth) acrylic acid ester monomer per 100% by mass of all monomers that can constitute the acrylic polymer, and the conjugated diene polymer described above Is different.
  • -(Meth) acrylate monomer- (Meth) acrylate monomers include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, 2-ethylhexyl Acrylic acid alkyl esters such as octyl acrylate such as acrylate; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, pentyl methacrylate, hexyl methacrylate, heptyl methacrylate, 2-ethylhexyl methacrylate Octyl methacrylate, etc., methacrylic acid al
  • carboxyl group-containing monomer used for the preparation of the acrylic polymer, a monomer similar to the above-mentioned “ethylenically unsaturated carboxylic acid monomer capable of forming an ethylenically unsaturated carboxylic acid monomer unit” Can be mentioned. These may be used alone or in combination of two or more. Among these, methacrylic acid is preferable as the carboxyl group-containing monomer.
  • hydroxyl group-containing monomer examples include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, N-methylol acrylamide and the like. These may be used alone or in combination of two or more. Of these, N-methylolacrylamide is preferred as the hydroxyl group-containing monomer.
  • -Other monomers examples include monomers copolymerizable with the above-described monomers.
  • other monomers include ⁇ , ⁇ -unsaturated nitrile monomers such as acrylonitrile and methacrylonitrile; sulfate group-containing monomers such as acrylamide-2-methylpropanesulfonic acid; acrylamide Amide group-containing monomers such as methacrylamide; crosslinkable monomers (crosslinkable monomers) such as allyl glycidyl ether, allyl (meth) acrylate, N-methylolacrylamide; styrene, chlorostyrene, vinyltoluene, Styrene monomers such as t-butylstyrene, methyl vinylbenzoate, vinylnaphthalene, chloromethylstyrene, ⁇ -methylstyrene, divinylbenzene; olefins such as ethylene
  • the unsaturated carboxylic acid polymer is a polymer containing an unsaturated carboxylic acid monomer unit.
  • unsaturated carboxylic acid monomer capable of forming the unsaturated carboxylic acid monomer unit acrylic acid, methacrylic acid, itaconic acid and the like can be used.
  • the polymerization method of the particulate polymer is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method may be used.
  • As the polymerization reaction addition polymerization such as ionic polymerization, radical polymerization, and living radical polymerization can be used.
  • the polymerization solvent, emulsifier, dispersant, polymerization initiator, chain transfer agent, etc. that can be used for the polymerization can be general ones, and the amount used can also be the amount generally used. it can.
  • the binder composition for non-aqueous secondary battery electrodes of the present invention contains any other component such as a reinforcing material, a leveling agent, a viscosity modifier, an electrolytic solution additive, in addition to the above-described components. Also good. These are not particularly limited as long as they do not affect the battery reaction, and known components such as those described in International Publication No. 2012/115096 can be used. Moreover, these components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the binder composition for non-aqueous secondary battery electrodes of this invention can be prepared by mixing the water-soluble polymer mentioned above and arbitrary particulate polymers, a solvent, and another component by a known method. It can. Specifically, the binder composition is obtained by mixing the above components using a mixer such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, a fill mix, etc. Product can be prepared.
  • a mixer such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, a fill mix, etc.
  • the water-soluble polymer and any particulate polymer are prepared by polymerization in an aqueous solvent, they are mixed as they are in the form of an aqueous solution or water dispersion to prepare a binder composition containing water as a solvent. can do. Also, for example, after mixing the water-soluble polymer and the electrode active material, the preparation of the binder composition and the preparation of the slurry composition described later may be performed simultaneously, such as adding an arbitrary particulate polymer. Good.
  • content of a water-soluble polymer and a particulate polymer is as follows. That is, the content of the entire water-soluble polymer is preferably 0.1 parts by mass or more, more preferably 1 part by mass or more, and 50 parts by mass or more with respect to 100 parts by mass of the particulate polymer. More preferably, it is more preferably 80 parts by mass or more, preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and still more preferably 120 parts by mass or less. If the content of the water-soluble polymer and the particulate polymer in the binder composition is within the above range, the slurry composition and the electrode obtained using the slurry composition tend to be excellent in productivity. .
  • the content of the polymer X is 100 masses of the particulate polymer. It is preferably 0.1 parts by mass or more, more preferably 1 part by mass or more, still more preferably 30 parts by mass or more, still more preferably 40 parts by mass or more, based on 200 parts by mass. It is preferably no greater than part by mass, more preferably no greater than 150 parts by mass, and even more preferably no greater than 120 parts by mass.
  • a binder composition is prepared using a water-soluble polymer and a particulate polymer so that the content of the polymer X is not less than the above lower limit, the viscosity stability of the slurry composition containing the binder composition is further improved. Because it does. Moreover, it is because the adhesiveness with the electrical power collector of the electrode compound-material layer formed using the said slurry composition improves more.
  • a binder composition is prepared using a water-soluble polymer and a particulate polymer so that the content of the polymer X is not more than the above upper limit, while maintaining the high viscosity stability of the slurry composition, This is because it is possible to further improve the adhesion of the electrode mixture layer formed using the slurry composition to the current collector.
  • the slurry composition for non-aqueous secondary battery electrodes of this invention is characterized by including an electrode active material and the binder composition for non-aqueous secondary battery electrodes mentioned above. Moreover, the slurry composition for non-aqueous secondary battery electrodes of the present invention may further contain a conductive material and other components in addition to the electrode active material and the binder composition. If the slurry composition does not contain a binder composition containing a water-soluble polymer containing the polymer X described above, the slurry composition is provided with good viscosity stability, and an electrode assembly formed using the slurry composition. The material layer cannot be satisfactorily adhered to the current collector.
  • the electrode mixture layer is formed using the slurry composition for a non-aqueous secondary battery electrode of the present invention, the adhesion between the current collector and the electrode mixture layer is excellent (having high peel strength). ) An electrode can be obtained.
  • the slurry composition for non-aqueous secondary battery electrodes of this invention is a slurry composition for lithium ion secondary battery negative electrodes is explained in full detail, this invention is not limited to the following example.
  • Electrode active material (negative electrode active material)>
  • a material that can occlude and release lithium is usually used as the negative electrode active material of the lithium ion secondary battery.
  • the material that can occlude and release lithium include a carbon-based negative electrode active material, a non-carbon-based negative electrode active material, and an active material that combines these materials.
  • the carbon-based negative electrode active material refers to an active material having carbon as a main skeleton into which lithium can be inserted (also referred to as “dope”).
  • examples of the carbon-based negative electrode active material include a carbonaceous material and graphite. Quality materials.
  • the carbonaceous material is a material having a low degree of graphitization (ie, low crystallinity) obtained by carbonizing a carbon precursor by heat treatment at 2000 ° C. or lower.
  • the minimum of the heat processing temperature at the time of carbonizing is not specifically limited, For example, it can be 500 degreeC or more.
  • the carbonaceous material include graphitizable carbon that easily changes the carbon structure depending on the heat treatment temperature, and non-graphitizable carbon having a structure close to an amorphous structure typified by glassy carbon.
  • the graphitizable carbon for example, a carbon material using tar pitch obtained from petroleum or coal as a raw material can be mentioned.
  • examples of the non-graphitizable carbon include a phenol resin fired body, polyacrylonitrile-based carbon fiber, pseudo-isotropic carbon, furfuryl alcohol resin fired body (PFA), and hard carbon.
  • the graphite material is a material having high crystallinity close to that of graphite obtained by heat-treating graphitizable carbon at 2000 ° C. or higher.
  • the upper limit of heat processing temperature is not specifically limited, For example, it can be 5000 degrees C or less.
  • the graphite material include natural graphite and artificial graphite.
  • the artificial graphite for example, artificial graphite obtained by heat-treating carbon containing graphitizable carbon mainly at 2800 ° C. or higher, graphitized MCMB heat-treated at 2000 ° C. or higher, and mesophase pitch-based carbon fiber at 2000 ° C. Examples thereof include graphitized mesophase pitch-based carbon fibers that have been heat-treated.
  • the carbon-based negative electrode active material natural graphite (amorphous coated natural graphite) whose surface is at least partially coated with amorphous carbon may be used.
  • the non-carbon-based negative electrode active material is an active material excluding a carbon-based negative electrode active material made of only a carbonaceous material or a graphite material, and examples of the non-carbon-based negative electrode active material include a metal-based negative electrode active material. .
  • the metal-based negative electrode active material is an active material containing a metal, and usually contains an element capable of inserting lithium in the structure, and the theoretical electric capacity per unit mass when lithium is inserted is 500 mAh / g or more. Is an active material.
  • the metal-based negative electrode active material for example, lithium metal, a single metal capable of forming a lithium alloy (for example, Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si, Sn, Sr, Zn, Ti, etc.) and alloys thereof, and oxides, sulfides, nitrides, silicides, carbides, phosphides, and the like thereof are used.
  • an active material containing silicon silicon-based negative electrode active material
  • silicon-based negative electrode active materials examples include silicon (Si), silicon-containing alloys, SiO, SiO x , and a composite of a Si-containing material obtained by coating or combining a Si-containing material with conductive carbon and conductive carbon. Etc.
  • these silicon type negative electrode active materials may be used individually by 1 type, and may be used in combination of 2 types. From the viewpoint of increasing the capacity of the lithium ion secondary battery, the silicon-based negative electrode active material is preferably an alloy containing silicon and SiO x .
  • the alloy containing silicon examples include an alloy composition containing silicon and at least one element selected from the group consisting of titanium, iron, cobalt, nickel, and copper.
  • the alloy containing silicon examples include an alloy composition containing silicon, aluminum, and a transition metal such as iron, and further containing a rare earth element such as tin and yttrium.
  • the dispersion medium of the lithium ion secondary battery negative electrode slurry composition is not particularly limited, and a known dispersion medium such as water, n-methylpyrrolidone, or the like can be used. Among these, water is preferably used as the dispersion medium. In addition, at least one part of the dispersion medium of a slurry composition can be made into the solvent which the binder composition used for preparation of a slurry composition contained, without being specifically limited.
  • the slurry composition for lithium ion secondary battery negative electrodes may further contain other components in addition to the components described above.
  • other components that can be included in the slurry composition include, for example, a conductive material; components similar to the other components that can be included in the binder composition described above.
  • the slurry composition for a lithium ion secondary battery negative electrode can be prepared by dispersing the above components in a dispersion medium. Specifically, the above components and the dispersion medium are mixed using a mixer such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crushed crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, or a fill mix. Thus, a slurry composition can be prepared.
  • water is usually used as the dispersion medium, but an aqueous solution of an arbitrary compound or a mixed solution of a small amount of an organic medium and water may be used.
  • the ratio of each said component in a slurry composition can be adjusted suitably.
  • the content of the binder composition in the slurry composition is preferably 0.5 parts by mass or more in terms of solid content per 100 parts by mass in terms of solid content in the slurry composition. More preferably, it is 7 parts by mass or more, more preferably 1 part by mass or more, preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and 3 parts by mass or less. Is more preferable.
  • the content of the water-soluble polymer in the slurry composition is preferably 0.2 parts by mass or more and 0.4 parts by mass or more per 100 parts by mass of the slurry composition in terms of solid content. More preferably, it is preferably 3 parts by mass or less, and more preferably 2 parts by mass or less. Furthermore, the content of the electrode active material in the slurry composition is preferably 90 parts by mass or more, more preferably 95 parts by mass or more, in terms of solid content, and more preferably 95 parts by mass or more. It is preferably 5 parts by mass or less, and more preferably 99.3 parts by mass or less.
  • the abundance ratio of the electrode active material and the water-soluble polymer in the slurry composition is 90:10 to 99.5: 0.5 in terms of solid content. Preferably, it is 95: 5 to 99: 1.
  • the electrode for a non-aqueous secondary battery of the present invention has a current collector and an electrode mixture layer formed using the above-described slurry composition for a non-aqueous secondary battery electrode of the present invention.
  • the electrode composite material layer has a structure formed on the current collector.
  • the electrode mixture layer includes at least an electrode active material and a water-soluble polymer containing the polymer X having a predetermined composition.
  • Each component such as the electrode active material is contained in the slurry composition for a non-aqueous secondary battery electrode described above, and a suitable abundance ratio of each component is in the binder composition and / or the slurry composition. It is the same as the preferred abundance ratio of each component in the product.
  • the electrode for a non-aqueous secondary battery of the present invention has an electrode mixture layer formed using a slurry composition containing the binder composition for a non-aqueous secondary battery electrode of the present invention.
  • the peel strength between the material layer and the current collector is high, and the adhesion is good. Therefore, when the nonaqueous secondary battery electrode of the present invention is used for the production of a secondary battery, a secondary battery excellent in battery characteristics, particularly in life characteristics such as cycle characteristics, can be obtained.
  • an electrically conductive and electrochemically durable material is used.
  • a current collector made of a metal material such as iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, or platinum can be used.
  • the said material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the electrode mixture layer includes, for example, a step of applying a slurry composition for a non-aqueous secondary battery electrode (application step), a step of drying the applied slurry composition for a non-aqueous secondary battery electrode (drying step), and It is formed through.
  • a method for applying the slurry composition for a non-aqueous secondary battery electrode on, for example, a current collector is not particularly limited, and a known method can be used. Specifically, as a coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, or the like can be used. At this time, the slurry composition may be applied to only one side of the current collector or may be applied to both sides. Further, the thickness of the slurry composition film on the current collector after application and before drying can be appropriately set according to the thickness of the electrode mixture layer obtained by drying.
  • the method for drying the slurry composition coated on the current collector is not particularly limited, and a known method can be used. For example, a drying method using hot air, hot air, low-humidity air, a vacuum drying method, infrared rays or electronic The drying method by irradiation of a line etc. is mentioned.
  • a drying method using hot air, hot air, low-humidity air, a vacuum drying method, infrared rays or electronic The drying method by irradiation of a line etc. is mentioned.
  • an electrode mixture layer can be formed on the current collector, and an electrode having a current collector and an electrode mixture layer can be obtained.
  • the electrode mixture layer may be subjected to pressure treatment using a die press or a roll press. The adhesion between the electrode mixture layer and the current collector can be improved by the pressure treatment.
  • the electrode mixture layer is formed using the slurry composition for a non-aqueous secondary battery electrode of the present invention, it is difficult to generate a springback even after being subjected to pressure treatment. Therefore, a high-density electrode can be manufactured.
  • an electrode compound-material layer contains a curable polymer, it is preferable to harden the said polymer after formation of an electrode compound-material layer.
  • the non-aqueous secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and an electrolytic solution, and at least one of the positive electrode and the negative electrode is the above-described electrode for a non-aqueous secondary battery of the present invention. That is, the non-aqueous secondary battery of the present invention may have a positive electrode that is a non-aqueous secondary battery electrode of the present invention and a negative electrode that is a known negative electrode, and the negative electrode is a non-aqueous secondary battery electrode of the present invention.
  • the positive electrode may be a known positive electrode
  • both the positive electrode and the negative electrode may be the nonaqueous secondary battery electrode of the present invention.
  • the non-aqueous secondary battery of this invention is equipped with the electrode for non-aqueous secondary batteries of this invention, it can have lifetime characteristics, such as the outstanding cycling characteristics.
  • the non-aqueous secondary battery is a lithium ion secondary battery
  • the present invention is not limited to the following example.
  • the positive electrode is not particularly limited, and can be the electrode for a non-aqueous secondary battery of the present invention described above. That is, the positive electrode can have a positive electrode mixture layer and a current collector formed using the slurry composition for a non-aqueous secondary battery electrode of the present invention.
  • the positive electrode is formed on a known positive electrode, for example, a positive electrode made of a thin metal plate, or on a current collector and a current collector.
  • a positive electrode having a positive electrode composite material layer can be used.
  • the positive electrode mixture layer usually contains a positive electrode active material, a conductive material, and a binder, and can optionally further contain other components such as a thickener.
  • a thin film made of a metal material such as aluminum can be used.
  • a method for forming the positive electrode active material, the conductive material, the binder, and the positive electrode mixture layer on the current collector for example, a method described in JP2013-145663A can be used.
  • the negative electrode is not particularly limited and can be the electrode for a non-aqueous secondary battery according to the present invention described above. That is, the negative electrode can have a negative electrode mixture layer formed using the slurry composition for a non-aqueous secondary battery electrode of the present invention and the above-described current collector, for example.
  • the negative electrode may be a known negative electrode. As the known negative electrode, for example, the negative electrode described in JP2013-145663A can be used.
  • the separator is not particularly limited.
  • a microporous film using a polyolefin-based resin polyethylene, polypropylene, polybutene, polyvinyl chloride), polyethylene terephthalate, polycycloolefin, polyether sulfone, polyamide, polyimide
  • microporous membranes using resins such as polyimide amide, polyaramid, polycycloolefin, nylon, and polytetrafluoroethylene, woven or non-woven fabrics using polyolefin fibers, and aggregates of particles made of insulating materials.
  • a microporous film using a polyolefin resin (polyethylene, polypropylene, polybutene, polyvinyl chloride) is preferred.
  • a microporous film made of polypropylene resin is more preferable.
  • an electrolytic solution in which an electrolyte is dissolved in a solvent can be used.
  • the solvent an organic solvent capable of dissolving the electrolyte can be used.
  • carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), ethyl methyl carbonate (EMC);
  • DMC dimethyl carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • EMC ethyl methyl carbonate
  • esters such as ⁇ -butyrolactone and methyl formate
  • ethers such as 1,2-dimethoxyethane and tetrahydrofuran
  • sulfur-containing compounds such as sulfolane and dimethyl sulfoxide
  • a lithium salt can be used as the electrolyte.
  • the lithium salt for example, compounds described in JP 2012-204303 A can be used.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable as the electrolyte because they are easily dissolved in an organic solvent and exhibit a high degree of dissociation.
  • electrolyte may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. Usually, the lithium ion conductivity tends to increase as the supporting electrolyte having a higher degree of dissociation is used, and therefore the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
  • the non-aqueous secondary battery of this invention can be manufactured using a known assembly method, without being restrict
  • the non-aqueous secondary battery of the present invention includes, for example, a negative electrode obtained as described above, a positive electrode, and a separator as necessary in a battery shape, folded into a battery container, and put into a battery container. It can manufacture by inject
  • an overcurrent prevention element such as a fuse or PTC element, an expanded metal, a lead plate, etc. are provided as necessary. May be.
  • the shape of the secondary battery may be any of a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, and the like.
  • battery members such as a positive electrode, a negative electrode, and a separator included in the secondary battery are usually arranged so that the positive electrode is in contact with one side of the separator and the negative electrode is in contact with the other side of the separator. More specifically, the positive electrode mixture layer is disposed on one side of the separator, and the negative electrode mixture layer is disposed on the other side of the separator so as to be in contact with the separator.
  • ⁇ Glass transition temperature> The aqueous solution containing the polymer X was dried for 3 days in an environment with a relative humidity of 50% and a temperature of 23 ° C. to 26 ° C. to form a film having a thickness of 1 ⁇ 0.3 mm.
  • the formed film was dried with a vacuum dryer at a temperature of 60 ° C. for 10 hours.
  • a differential scanning calorimeter product name, manufactured by Nanotechnology Co., Ltd.
  • the glass transition temperature (° C.) was measured using “DSC6220SII”).
  • ⁇ Electrolytic solution swelling> The aqueous solution containing the polymer X was dried in an environment with a relative humidity of 50% and a temperature of 23 ° C. to 25 ° C. to form a film having a thickness of 1 ⁇ 0.3 mm.
  • the film formed was dried with a vacuum dryer at a temperature of 60 ° C. for 10 hours, then cut into film pieces, and the mass W0 of the obtained film pieces was precisely weighed.
  • solvent ethylene carbonate
  • EMC ethyl methyl carbonate
  • solubility in water was measured and evaluated by filtration as follows. Specifically, 10 ⁇ 0.5 g of polymer X in terms of solid content is added to 100 g of ion-exchanged water and mixed in a disper (rotation speed: 2,000 rpm) for 2 hours in an environment of temperature 20 ° C. and pH 7. did. The resulting mixture was then filtered through a 400 mesh screen. Then, the residue remaining on the screen without passing through the screen is weighed and subtracted from the mass of the added polymer X, whereby the mass (g) of the polymer X dissolved in the ion-exchanged water is obtained at a temperature of 20 ° C.
  • the solubility of polymer X in water was calculated.
  • the solubility of polymer X in water at a temperature of 20 ° C. is 1 g / 100 g-H 2 O or more, the solubility is sufficient (corresponding to “ ⁇ ” in the table) and less than 1 g / 100 g-H 2 O When it was, it was evaluated that the solubility was insufficient (corresponding to “x” in the table).
  • DELTA viscosity maintenance factor
  • Viscosity maintenance factor ⁇ is 90% or more and 110% or less
  • B Viscosity maintenance factor ⁇ is 80% or more and less than 90%
  • C Viscosity maintenance factor ⁇ is 70% or more and less than 80%
  • D Viscosity maintenance factor ⁇ is less than 70%, Or over 110%
  • the springback of the negative electrode mixture layer was evaluated based on the electrode density. Specifically, first, the negative electrode composite material layer side of the produced negative electrode raw material was roll-pressed under the condition of a linear pressure of 11 t (tons) in an environment of a temperature of 25 ⁇ 3 ° C., and the electrode composite material layer density was 1.70 g. / Cm 3 was adjusted. Thereafter, the negative electrode was left for one week in an environment of a temperature of 25 ⁇ 3 ° C. and a relative humidity of 50 ⁇ 5%. And the electrode mixture layer density (g / cm ⁇ 3 >) of the negative electrode after standing was measured, and the following references
  • ⁇ Negative electrode adhesion> The prepared negative electrode for a lithium ion secondary battery was cut into a rectangle having a length of 100 mm and a width of 10 mm to obtain a test piece. Next, a cellophane tape (as defined in JIS Z1522) is applied to the surface of the negative electrode mixture layer with the surface having the negative electrode mixture layer facing down, and one end of the current collector is pulled vertically at a pulling speed of 50 mm / min. The peel strength (N / m) when the film was pulled and peeled was measured (note that the cellophane tape is fixed to the test bench). The same measurement as above was performed three times, the average value was obtained, and evaluated according to the following criteria.
  • ⁇ Bulge of negative electrode> The manufactured lithium ion secondary battery was allowed to stand for 5 hours in an environment at a temperature of 25 ° C. with the electrode immersed in the electrolyte. Next, the stationary secondary battery was charged to a cell voltage of 3.65 V by a constant current method at a rate of 0.2 C in an environment at a temperature of 25 ° C. Then, the aging process was performed with respect to the charged secondary battery for 12 hours in the environment of a temperature of 60 degreeC. Subsequently, the secondary battery subjected to the aging treatment was discharged to a cell voltage of 3.00 V by a constant current method at a rate of 0.2 C in an environment at a temperature of 25 ° C.
  • the lithium ion secondary battery which performed the discharge process was disassembled, and the value remove
  • the lithium ion secondary battery is assembled again, and the assembled secondary battery is charged and discharged under the conditions of a cell voltage of 4.20 V to 3.00 V and a charge / discharge rate of 1 C in an environment at a temperature of 25 ° C. 50 cycles were performed. Finally, the secondary battery after 50 cycles was charged at a rate of 1C in an environment at a temperature of 25 ° C.
  • the charged secondary battery was disassembled, the negative electrode was taken out, and a value obtained by removing the thickness of the current collector from the thickness of the entire negative electrode was measured as the thickness (d1) of the negative electrode after cycling.
  • the smaller the swelling of the negative electrode after the cycle the more the negative electrode mixture layer maintains the structure even when the charge / discharge cycle is repeated, indicating that the secondary battery has a longer life.
  • Example 1 Preparation of aqueous solution containing polymer X> 720 parts of ion exchange water was charged into a 1 L flask with a septum, heated to a temperature of 40 ° C., and the inside of the flask was replaced with nitrogen gas at a flow rate of 100 mL / min. Next, 10 parts of ion-exchanged water, 25 parts of acrylic acid as an ethylenically unsaturated carboxylic acid monomer, 35 parts of acrylamide as a (meth) acrylamide monomer, and as a hydroxyl group-containing vinyl monomer 40 parts of 2-hydroxyethyl acrylate was mixed and injected into the flask with a syringe.
  • the polymerization reaction was stopped by opening the flask in the air, and the product was deodorized at a temperature of 80 ° C. to remove residual monomers. Thereafter, by adjusting the pH of the product to 8 using a 10% aqueous solution of lithium hydroxide, an ethylenically unsaturated carboxylic acid monomer unit, a (meth) acrylamide monomer unit, and a hydroxyl group-containing vinyl monomer An aqueous solution containing a polymer X containing body units at a ratio within a predetermined range was obtained.
  • the composition of each monomer unit contained in the obtained polymer X was the same as the ratio (preparation ratio) of each monomer in all monomers used for polymerization of the polymer X.
  • the obtained polymer X was water-soluble according to the definition 1 of this specification. And using the aqueous solution containing the obtained polymer X, according to the above-mentioned method, the glass transition temperature of the polymer X, electrolyte solution swelling degree, and the solubility with respect to water were measured and evaluated. The results are shown in Table 1.
  • ⁇ Preparation of aqueous dispersion containing particulate polymer> In a 5 MPa pressure vessel equipped with a stirrer, 65 parts of styrene as an aromatic vinyl monomer, 35 parts of 1,3-butadiene as an aliphatic conjugated diene monomer, 2 parts of itaconic acid as a carboxyl group-containing monomer, 1 part of 2-hydroxyethyl acrylate as a hydroxyl group-containing monomer, 0.3 part of t-dodecyl mercaptan as a molecular weight modifier, 5 parts of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water as a solvent, And 1 part of potassium persulfate as a polymerization initiator was added, and after stirring sufficiently, the temperature was raised to 55 ° C.
  • a slurry composition containing a binder composition containing a water-soluble polymer and a particulate polymer was prepared as follows without preparing the binder composition in advance prior to the preparation of the slurry composition. . That is, the binder composition and the slurry composition were prepared in the same process. In other words, in a planetary mixer, 98 parts of artificial graphite (theoretical capacity: 360 mAh / g) as a negative electrode active material and an aqueous solution (solid content concentration: 4.5%) containing the water-soluble polymer obtained above were solidified. 1 part was added in minutes.
  • the slurry composition for a negative electrode of a lithium ion secondary battery is applied to the surface of a copper foil having a thickness of 15 ⁇ m, which is a current collector, with a comma coater so that the coating amount is 13.8 to 14.2 mg / cm 2. Applied. Thereafter, the copper foil coated with the lithium ion secondary battery negative electrode slurry composition is transported at a rate of 400 mm / min in an oven at a temperature of 80 ° C. for 2 minutes and further in an oven at a temperature of 110 ° C. for 2 minutes.
  • the slurry composition on copper foil was dried, and the negative electrode original fabric by which the negative electrode compound-material layer was formed on the electrical power collector was obtained. And using the obtained negative electrode raw material, according to the above-mentioned method, the springback of the negative mix layer was measured and evaluated. The results are shown in Table 1.
  • the obtained negative electrode original fabric was roll-pressed so that the electrode mixture layer density was adjusted to 1.68 to 1.72 g / cm 3 .
  • the negative electrode for lithium ion secondary batteries was obtained by placing it in an environment of 105 ° C. under vacuum conditions for 4 hours. And using the obtained negative electrode, according to the above-mentioned method, the adhesiveness of the negative electrode was measured and evaluated. The results are shown in Table 1.
  • the obtained slurry composition for a lithium ion secondary battery positive electrode was applied onto an aluminum foil having a thickness of 20 ⁇ m as a current collector with a comma coater in an amount of 26.0 to 27.0 mg / cm 2. It applied so that it might become.
  • the aluminum foil coated with the slurry composition for a positive electrode of a lithium ion secondary battery was dried by conveying it in an oven at a temperature of 60 ° C. at a rate of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a positive electrode raw material.
  • the obtained positive electrode raw material was pressed with a roll press machine so that the electrode mixture layer density was 3.40 to 3.50 g / cm 3, and for the purpose of removing the dispersion medium, The positive electrode was obtained by placing in an environment at a temperature of 120 ° C. for 3 hours.
  • Example 2 In the preparation of the aqueous solution containing the polymer X, the amount of acrylic acid was changed to 10 parts, the amount of acrylamide was changed to 25 parts, and the amount of 2-hydroxyethyl acrylate was changed to 65 parts. Except for the above, a polymer X, a water-soluble polymer, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1. In addition, the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification. And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
  • Example 3 In the preparation of the aqueous solution containing the polymer X, the amount of acrylic acid was changed to 15 parts, the amount of acrylamide was changed to 10 parts, and the amount of 2-hydroxyethyl acrylate was changed to 75 parts. Except for the above, a polymer X, a water-soluble polymer, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1. In addition, the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification. And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
  • Example 4 In the preparation of the aqueous solution containing the polymer X, the amount of acrylic acid was changed to 30 parts, the amount of acrylamide was changed to 45 parts, and the amount of 2-hydroxyethyl acrylate was changed to 25 parts. Except for the above, a polymer X, a water-soluble polymer, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1. In addition, the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification. And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
  • Example 5 In the preparation of the aqueous solution containing the polymer X, the amount of acrylic acid was changed to 15 parts, the amount of acrylamide was changed to 55 parts, and the amount of 2-hydroxyethyl acrylate was changed to 30 parts. Except for the above, a polymer X, a water-soluble polymer, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1. In addition, the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification. And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
  • Example 6 In the preparation of the aqueous solution containing the polymer X, the amount of acrylic acid was changed to 35 parts and the amount of 2-hydroxyethyl acrylate was changed to 30 parts. Except for the above, a polymer X, a water-soluble polymer, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1. In addition, the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification. And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
  • Example 7 In the preparation of the aqueous solution containing the polymer X, the amount of acrylic acid was changed to 8 parts, the amount of acrylamide was changed to 37 parts, and the amount of 2-hydroxyethyl acrylate was changed to 55 parts. Except for the above, a polymer X, a water-soluble polymer, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1. In addition, the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification. And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
  • Example 8 In the preparation of the aqueous solution containing the polymer X, the amount of 2-hydroxyethyl acrylate was changed to 25 parts, and 15 parts of 2-hydroxyethyl methacrylate was added. Except for the above, a polymer X, a water-soluble polymer, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1. In addition, the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification. And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
  • Example 9 In the preparation of the aqueous solution containing the polymer X, the amount of acrylic acid was changed to 24.5 parts, and a polyfunctional ethylenically unsaturated carboxylic acid ester unit capable of forming a polyfunctional ethylenically unsaturated carboxylic acid ester monomer unit was used. 0.5 parts of ethoxylated pentaerythritol tetraacrylate (product name: “ATM-35E” manufactured by Shin-Nakamura Chemical Co., Ltd.) as a tetrameric ethylenically unsaturated carboxylic acid ester monomer as a monomer was added.
  • ethoxylated pentaerythritol tetraacrylate product name: “ATM-35E” manufactured by Shin-Nakamura Chemical Co., Ltd.
  • a polymer X, a water-soluble polymer, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1.
  • the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification. And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
  • Example 10 In the preparation of the aqueous solution containing the polymer X, the amount of acrylamide was changed to 20 parts, and 15 parts of methyl acrylate as another monomer was added. Except for the above, a polymer X, a water-soluble polymer, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1. In addition, the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification. And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
  • Example 11 In the preparation of the aqueous solution containing the polymer X, 2-hydroxyethyl acrylate was not used, but 40 parts of N-hydroxyethyl acrylamide was used. Except for the above, a polymer X, a water-soluble polymer, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1. In addition, the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification. And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
  • Example 12 In the preparation of the aqueous solution containing the water-soluble polymer, 0.5 part of the aqueous solution containing the obtained polymer X was equivalent to the solid content, and 0.5 parts of the carboxymethyl cellulose as the other water-soluble polymer was equivalent to the solid content.
  • An aqueous solution containing a water-soluble polymer (polymer X and carboxymethyl cellulose) was obtained by mixing the parts. Except for the above, a polymer X, a water-soluble polymer, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1.
  • the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification. And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
  • Example 13 In the preparation of the binder composition and the slurry composition, an aqueous dispersion containing a particulate polymer prepared by the following method was used as an aqueous dispersion containing a particulate polymer. Except for the above, a polymer X, a water-soluble polymer, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1. In addition, the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification. And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
  • ⁇ Preparation of aqueous dispersion containing particulate polymer> In a 5 MPa pressure vessel with a stirrer, 82 parts of n-butyl acrylate as a (meth) acrylic acid ester monomer, 2 parts of methacrylic acid as a carboxyl group-containing monomer, N-methylol as a hydroxyl group-containing monomer 1 part of acrylamide, 2 parts of acrylonitrile as another monomer, 1 part of allyl glycidyl ether, 4 parts of sodium lauryl sulfate as an emulsifier, 150 parts of ion-exchanged water as a solvent, and ammonium persulfate as a polymerization initiator After 5 parts were added and sufficiently stirred, the temperature was raised to 80 ° C.
  • Example 14 In the preparation of the aqueous solution containing the water-soluble polymer, the aqueous solution containing the obtained polymer X was 0.5 parts in terms of solids, and sodium alginate as another water-soluble polymer was 0.5 parts in terms of solids.
  • the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification. And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
  • AA indicates an acrylic acid unit
  • MAA indicates a methacrylic acid unit
  • AAm indicates an acrylamide unit
  • MAAm indicates a methacrylamide unit
  • 2-HEA refers to 2-hydroxyethyl acrylate units
  • 2-HEMA refers to 2-hydroxyethyl methacrylate units
  • HEAAm indicates N-hydroxyethylacrylamide unit
  • EPETA refers to an ethoxylated pentaerythritol tetraacrylate unit
  • MA represents a methyl acrylate unit
  • CMC refers to the sodium salt of carboxymethylcellulose
  • SBR indicates a styrene-butadiene copolymer
  • ACR indicates an acrylic polymer
  • A-Na refers to sodium alginate.
  • Tables 1 and 2 show that the polymer X contains an ethylenically unsaturated carboxylic acid monomer unit, a (meth) acrylamide monomer unit, and a hydroxyl group-containing vinyl monomer unit within a predetermined range.
  • the slurry composition is excellent in viscosity stability and the electrode mixture layer is in good contact with the current collector.
  • Comparative Example 1 in which the polymer X does not contain a (meth) acrylamide monomer unit, both excellent viscosity stability of the slurry composition and excellent adhesion between the electrode mixture layer and the current collector are compatible. It cannot be seen that the viscosity stability of the slurry composition is particularly poor. Further, in Comparative Examples 2 to 4 in which the content ratio of the (meth) acrylamide monomer unit in the polymer X is more than 60% by mass, the excellent viscosity stability of the slurry composition, the electrode mixture layer and the current collector It can be seen that the excellent adhesion between the two is not compatible.
  • a slurry composition capable of forming an electrode mixture layer having excellent viscosity stability and adhesion to a current collector, and a binder composition capable of preparing the slurry composition. be able to.
  • an electrode which has an electrode compound-material layer excellent in adhesiveness with a collector, and a secondary battery provided with the said electrode can be provided.

Abstract

Provided is a binder composition which enables the preparation of a slurry composition that has excellent viscosity stability and is capable of forming an electrode mixture layer which exhibits excellent adhesion to a collector. A binder composition for nonaqueous secondary battery electrodes according to the present invention contains a water-soluble polymer containing a polymer X which contains from 1% by mass to 50% by mass (inclusive) of an ethylenically unsaturated carboxylic acid monomer unit, from 10% by mass to 60% by mass (inclusive) of a (meth)acrylamide monomer unit, and from 5% by mass to 89% by mass (inclusive) of a hydroxyl group-containing vinyl monomer unit.

Description

非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池Non-aqueous secondary battery electrode binder composition, non-aqueous secondary battery electrode slurry composition, non-aqueous secondary battery electrode, and non-aqueous secondary battery
 本発明は、非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池に関する。 The present invention relates to a binder composition for non-aqueous secondary battery electrodes, a slurry composition for non-aqueous secondary battery electrodes, an electrode for non-aqueous secondary batteries, and a non-aqueous secondary battery.
 リチウムイオン二次電池などの非水系二次電池(以下、単に「二次電池」と略記する場合がある。)は、小型で軽量、且つエネルギー密度が高く、さらに繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そのため、近年では、非水系二次電池の更なる高性能化を目的として、電極などの電池部材の改良が検討されている。 Non-aqueous secondary batteries such as lithium ion secondary batteries (hereinafter sometimes simply referred to as “secondary batteries”) have the characteristics of being small and lightweight, having high energy density, and capable of repeated charge and discharge. Yes, it is used for a wide range of purposes. Therefore, in recent years, improvement of battery members such as electrodes has been studied for the purpose of further improving the performance of non-aqueous secondary batteries.
 ここで、リチウムイオン二次電池などの二次電池用の電極は、通常、集電体と、集電体上に形成された電極合材層とを備えている。そして、電極合材層は、例えば、電極活物質と、結着材としての役割を担う重合体を含むバインダー組成物などとを分散媒に分散させてなるスラリー状の組成物を集電体上に塗布し、乾燥させることにより形成される。 Here, an electrode for a secondary battery such as a lithium ion secondary battery is usually provided with a current collector and an electrode mixture layer formed on the current collector. The electrode mixture layer is formed on the current collector by, for example, a slurry-like composition obtained by dispersing an electrode active material and a binder composition containing a polymer serving as a binder in a dispersion medium. It is formed by applying to and drying.
 そこで、近年では、二次電池の更なる性能向上を達成すべく、電極合材層の形成に用いられる電極用スラリー組成物および電極用バインダー組成物の改良が試みられている。 Therefore, in recent years, attempts have been made to improve the electrode slurry composition and the electrode binder composition used to form the electrode mixture layer in order to further improve the performance of the secondary battery.
 ここで、一般に、二次電池の性能を向上させる観点からは、スラリー組成物を用いて形成した電極合材層が集電体と良好に密着することが求められている。集電体と電極合材層との間の密着性が低いと、集電体と電極合材層とが十分に接着固定されず、結果としてサイクル特性等の電池性能が低下することがあるからである。 Here, generally, from the viewpoint of improving the performance of the secondary battery, it is required that the electrode mixture layer formed using the slurry composition is in good contact with the current collector. If the adhesion between the current collector and the electrode mixture layer is low, the current collector and the electrode mixture layer are not sufficiently bonded and fixed, and as a result, battery performance such as cycle characteristics may be deteriorated. It is.
 そこで、例えば、特許文献1では、二次電池を製造する際の電極用バインダー組成物として、不飽和カルボン酸類の重合性単量体および(メタ)アクリルアミドを含む単量体群を重合して得られる水溶性樹脂(a)と、有機粒子(b)とを含む電気化学セル用アクリル系水分散体を用いることにより、電極合材層および金属集電体の間の密着性を高める技術が提案されている。そして、特許文献1には、電極合材層と金属集電体との間の密着性を向上させ得る具体的な電気化学セル用アクリル系水分散体として、メタクリル酸:(メタ)アクリルアミド:2-ヒドロキシエチルメタクリレート:メチルアクリレートを10:65:20:5の割合(質量比)で含有する混合物を重合してなる水溶性樹脂(a)と、(メタ)アクリル酸と、(メタ)アクリル酸エステル、(メタ)アクリルアミドおよび/または(メタ)アクリロニトリルとを乳化重合してなる有機粒子(b)とを含む水分散体が開示されている。
 また、特許文献2では、二次電池を製造する際の電極用バインダーとして、酸含有単量体由来の構造単位および水酸基含有単量体由来の構造単位を有し、且つ所定の酸価を有する重合体と水とを含む電極組成物用水系バインダーが提案されている。そして、特許文献2には、電極合材層および集電体の間に十分な剥離強度(密着性)を与え得る具体的な電極組成物用水系バインダーとして、アクリル酸または2-カルボキシエチルアクリレートと、2-ヒドロキシエチルアクリレートとを含有する混合物を重合してなる重合体を含む水系バインダーが開示されている。
 なお、本明細書において、「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味し、「(メタ)アクリロ」とは、アクリロおよび/またはメタクリロを意味する。
Thus, for example, in Patent Document 1, as a binder composition for an electrode when producing a secondary battery, a monomer group containing a polymerizable monomer of unsaturated carboxylic acids and (meth) acrylamide is polymerized. A technique for improving the adhesion between the electrode mixture layer and the metal current collector by using an acrylic aqueous dispersion for electrochemical cells containing the water-soluble resin (a) and the organic particles (b) proposed Has been. Patent Document 1 discloses methacrylic acid: (meth) acrylamide: 2 as a specific acrylic aqueous dispersion for electrochemical cells that can improve the adhesion between the electrode mixture layer and the metal current collector. A water-soluble resin (a) obtained by polymerizing a mixture containing hydroxyethyl methacrylate: methyl acrylate in a ratio (mass ratio) of 10: 65: 20: 5, (meth) acrylic acid, and (meth) acrylic acid An aqueous dispersion containing organic particles (b) obtained by emulsion polymerization of ester, (meth) acrylamide and / or (meth) acrylonitrile is disclosed.
Moreover, in patent document 2, as a binder for electrodes at the time of manufacturing a secondary battery, it has a structural unit derived from an acid-containing monomer and a structural unit derived from a hydroxyl group-containing monomer, and has a predetermined acid value. An aqueous binder for an electrode composition containing a polymer and water has been proposed. Patent Document 2 discloses acrylic water or 2-carboxyethyl acrylate as a specific aqueous binder for an electrode composition that can provide sufficient peel strength (adhesiveness) between an electrode mixture layer and a current collector. An aqueous binder containing a polymer obtained by polymerizing a mixture containing 2-hydroxyethyl acrylate is disclosed.
In the present specification, “(meth) acryl” means acryl and / or methacryl, and “(meth) acrylo” means acrylo and / or methacrylo.
特開2012-151108号公報JP 2012-151108 A 特開2015-195114号公報JP 2015-195114 A
 しかし、上記従来のバインダー組成物を用いて形成した電極には、電極合材層と集電体との間の密着強度を更に高めるという点において改善の余地があった。 However, the electrode formed using the above conventional binder composition has room for improvement in terms of further increasing the adhesion strength between the electrode mixture layer and the current collector.
 また、一般に、工業規模で電極を製造する場合、バインダー組成物を用いて調製したスラリー組成物は、電極の製造に使用するまで貯蔵されることがある。そのため、貯蔵後のスラリー組成物を使用した場合であっても電極合材層を良好に形成して二次電池の性能を更に向上させる観点からは、電極合材層の形成に用いられるスラリー組成物には、粘度の安定性に優れていることが求められている。 In general, when manufacturing an electrode on an industrial scale, the slurry composition prepared using the binder composition may be stored until it is used for manufacturing the electrode. Therefore, even when the slurry composition after storage is used, from the viewpoint of further forming the electrode mixture layer and further improving the performance of the secondary battery, the slurry composition used for forming the electrode mixture layer The product is required to have excellent viscosity stability.
 そこで、本発明は、粘度安定性に優れ、且つ、集電体との密着性に優れる電極合材層を形成可能なスラリー組成物、並びに、当該スラリー組成物を調製し得るバインダー組成物を提供することを目的とする。
 また、本発明は、集電体との密着性に優れる電極合材層を有する電極、および当該電極を備える二次電池を提供することを目的とする。
Therefore, the present invention provides a slurry composition capable of forming an electrode mixture layer having excellent viscosity stability and excellent adhesion to a current collector, and a binder composition capable of preparing the slurry composition. The purpose is to do.
Moreover, an object of this invention is to provide the secondary battery provided with the electrode which has an electrode compound-material layer excellent in adhesiveness with a collector, and the said electrode.
 本発明者らは、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者らは、エチレン性不飽和カルボン酸単量体単位、(メタ)アクリルアミド単量体単位およびヒドロキシル基含有ビニル単量体単位を所定範囲内の割合で含有する重合体を含むバインダー組成物を使用すれば、集電体との密着性に優れる電極合材層を形成可能であり、更に粘度安定性にも優れているスラリー組成物が得られることを見出し、本発明を完成させた。 The present inventors have intensively studied for the purpose of solving the above problems. The present inventors also provide a binder comprising a polymer containing an ethylenically unsaturated carboxylic acid monomer unit, a (meth) acrylamide monomer unit, and a hydroxyl group-containing vinyl monomer unit within a predetermined range. By using the composition, it was found that an electrode mixture layer having excellent adhesion to the current collector can be formed, and a slurry composition having excellent viscosity stability can be obtained, and the present invention was completed. It was.
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池電極用バインダー組成物は、水溶性重合体を含むバインダー組成物であって、前記水溶性重合体は、エチレン性不飽和カルボン酸単量体単位を1質量%以上50質量%以下、(メタ)アクリルアミド単量体単位を10質量%以上60質量%以下、およびヒドロキシル基含有ビニル単量体単位を5質量%以上89質量%以下含有する重合体Xを含むことを特徴とする。上記所定の組成を有する重合体Xを含むバインダー組成物を用いることにより、粘度安定性に優れており、且つ、集電体との密着性に優れる電極合材層を形成可能なスラリー組成物を得ることができる。
 なお、本発明において、重合体が「水溶性」であるとは、イオン交換水100質量部当たり重合体1質量部(固形分相当)を添加し撹拌して得られる混合物を、温度20℃以上70℃以下の範囲内で、且つ、pH3以上12以下(pH調整にはNaOH水溶液および/またはHCl水溶液を使用)の範囲内の一条件に調整し、250メッシュのスクリーンを通過させた際に、スクリーンを通過せずにスクリーン上に残る残渣の固形分の質量が、添加した重合体の固形分に対して50質量%を超えないこと(以下、「定義1」とも称する。)をいう。
 また、本発明において、「各単量体単位の含有割合(質量%)」は、1H-NMRなどの核磁気共鳴(NMR)法を用いて測定することができる。
That is, the present invention aims to advantageously solve the above problems, and the binder composition for a non-aqueous secondary battery electrode of the present invention is a binder composition containing a water-soluble polymer, The water-soluble polymer contains 1% by mass to 50% by mass of ethylenically unsaturated carboxylic acid monomer units, 10% by mass to 60% by mass of (meth) acrylamide monomer units, and hydroxyl group-containing vinyl. It includes a polymer X containing 5% to 89% by mass of monomer units. By using a binder composition containing the polymer X having the above-mentioned predetermined composition, a slurry composition capable of forming an electrode mixture layer that is excellent in viscosity stability and excellent in adhesion to a current collector Obtainable.
In the present invention, the term “water-soluble” means that the mixture obtained by adding 1 part by weight of polymer (corresponding to the solid content) and stirring with respect to 100 parts by weight of ion-exchanged water has a temperature of 20 ° C. When adjusted to one condition within a range of 70 ° C. or lower and within a range of pH 3 or higher and 12 or lower (using NaOH aqueous solution and / or HCl aqueous solution for pH adjustment) and passing through a 250 mesh screen, It means that the mass of the solid content of the residue remaining on the screen without passing through the screen does not exceed 50 mass% with respect to the solid content of the added polymer (hereinafter also referred to as “Definition 1”).
In the present invention, the “content ratio (mass%) of each monomer unit” can be measured using a nuclear magnetic resonance (NMR) method such as 1 H-NMR.
 ここで、本発明の非水系二次電池電極用バインダー組成物は、前記重合体Xのガラス転移温度が-10℃以上100℃以下であることが好ましい。重合体Xのガラス転移温度が上記範囲内であれば、電極製造時に電極合材層のスプリングバックが発生するのを抑制することができるからである。また、バインダー組成物を用いて形成した電極合材層を有する電極が、二次電池の充放電に伴って膨張することを抑制できるからである。
 なお、本発明において、「ガラス転移温度」は、JIS K7121に準拠して求めることができる。
Here, in the binder composition for a non-aqueous secondary battery electrode of the present invention, the glass transition temperature of the polymer X is preferably −10 ° C. or more and 100 ° C. or less. This is because if the glass transition temperature of the polymer X is within the above range, it is possible to suppress the occurrence of springback of the electrode mixture layer during electrode production. Moreover, it is because it can suppress that the electrode which has the electrode compound-material layer formed using the binder composition expand | swells with charging / discharging of a secondary battery.
In the present invention, the “glass transition temperature” can be determined according to JIS K7121.
 また、本発明の非水系二次電池電極用バインダー組成物は、前記重合体Xが、多官能エチレン性不飽和カルボン酸エステル単量体単位を0.001質量%以上10質量%以下更に含有することができる。
 なお、本発明において、「多官能エチレン性不飽和カルボン酸エステル単量体」とは、エチレン性不飽和結合(C=C)を分子中に2つ以上有するカルボン酸エステルである単量体を指す。
In the binder composition for a non-aqueous secondary battery electrode of the present invention, the polymer X further contains 0.001% by mass to 10% by mass of a polyfunctional ethylenically unsaturated carboxylic acid ester monomer unit. be able to.
In the present invention, “polyfunctional ethylenically unsaturated carboxylic acid ester monomer” refers to a monomer that is a carboxylic acid ester having two or more ethylenic unsaturated bonds (C═C) in the molecule. Point to.
 また、本発明の非水系二次電池電極用バインダー組成物は、前記重合体Xの電解液膨潤度が1倍超3倍以下であることが好ましい。重合体Xの電解液膨潤度が上記範囲内であれば、バインダー組成物を用いて形成した電極合材層を有する電極が、二次電池の充放電に伴って膨張収縮することを抑制できるからである。
 なお、本発明において「電解液膨潤度」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
In the binder composition for a non-aqueous secondary battery electrode of the present invention, the degree of swelling of the electrolyte solution of the polymer X is preferably more than 1 time and 3 times or less. If the electrolyte solution swelling degree of the polymer X is within the above range, the electrode having the electrode mixture layer formed using the binder composition can be prevented from expanding and contracting along with charge / discharge of the secondary battery. It is.
In the present invention, the “electrolyte swelling degree” can be measured using the measuring method described in the examples of the present specification.
 また、本発明の非水系二次電池電極用バインダー組成物は、前記重合体Xの、温度20℃における溶解度が1g/100g-H2O以上であることが好ましい。重合体Xの水に対する溶解度が上記下限以上であれば、例えば、水を溶媒または分散媒としたスラリー組成物を容易に調製することができ、当該スラリー組成物を用いて作製した電極が、電極活物質およびバインダー組成物の混合性に優れた均一な構造体を有する傾向になるからである。そして、均一な構造体を有する電極では電子抵抗が局所的に高まることなく均一に低下し、当該電極を備える二次電池を充電した際にリチウム等の金属の析出を抑制することができるからである。
 なお、本発明において、「溶解度」は、本明細書の実施例に記載した方法に従って測定することができる。
In the binder composition for non-aqueous secondary battery electrodes of the present invention, the solubility of the polymer X at a temperature of 20 ° C. is preferably 1 g / 100 g-H 2 O or more. If the solubility of the polymer X in water is not less than the above lower limit, for example, a slurry composition using water as a solvent or a dispersion medium can be easily prepared, and an electrode produced using the slurry composition is an electrode. It is because it tends to have a uniform structure excellent in the mixing property of the active material and the binder composition. And, in the electrode having a uniform structure, the electronic resistance is uniformly reduced without locally increasing, and the deposition of a metal such as lithium can be suppressed when the secondary battery including the electrode is charged. is there.
In the present invention, the “solubility” can be measured according to the method described in the examples of the present specification.
 また、本発明の非水系二次電池電極用バインダー組成物は、前記重合体Xの含有割合が、前記水溶性重合体中の全重合体100質量%に対して10質量%以上100質量%以下であることが好ましい。水溶性重合体中の重合体Xの割合が上記範囲内であれば、スラリー組成物の粘度安定性を更に向上させることができると共に、集電体との密着性により優れる電極合材層を形成することができるからである。 In the binder composition for a non-aqueous secondary battery electrode of the present invention, the content ratio of the polymer X is 10% by mass to 100% by mass with respect to 100% by mass of the total polymer in the water-soluble polymer. It is preferable that If the ratio of the polymer X in the water-soluble polymer is within the above range, the viscosity stability of the slurry composition can be further improved, and an electrode mixture layer that is more excellent in adhesion to the current collector is formed. Because it can be done.
 また、本発明の非水系二次電池電極用バインダー組成物は、前記水溶性重合体が、前記重合体Xとは異なるその他の水溶性の重合体を更に含み、前記その他の水溶性の重合体が、天然系高分子、半合成系高分子又は合成系高分子の何れかを含むことも好ましい。水溶性重合体が重合体Xに加えて所定の組成を有するその他の水溶性の重合体を更に含む場合においても、粘度安定性に優れ、且つ、集電体との密着性に優れる電極合材層を形成可能なスラリー組成物を得ることができるからである。 In the binder composition for a non-aqueous secondary battery electrode of the present invention, the water-soluble polymer further includes another water-soluble polymer different from the polymer X, and the other water-soluble polymer. However, it is also preferable that any of a natural polymer, a semisynthetic polymer, or a synthetic polymer is included. In the case where the water-soluble polymer further contains other water-soluble polymer having a predetermined composition in addition to the polymer X, an electrode mixture having excellent viscosity stability and excellent adhesion to the current collector This is because a slurry composition capable of forming a layer can be obtained.
 そして、本発明の非水系二次電池電極用バインダー組成物は、カルボキシル基およびヒドロキシル基の少なくとも一方を有する粒子状重合体を更に含み、前記重合体Xの含有量が、前記粒子状重合体100質量部に対して0.1質量部以上200質量部以下であることが好ましい。バインダー組成物が所定の粒子状重合体を更に含み、且つ、重合体Xおよび粒子状重合体の含有量を上記範囲内の関係とすれば、バインダー組成物を含むスラリー組成物の粘度安定性を確保しつつ、当該スラリー組成物を用いて形成される電極合材層と集電体との密着性をより向上させることができるからである。
 なお、本発明において、「粒子状重合体」とは、少なくともバインダー組成物中において粒子形状を有する重合体であり、通常は非水溶性の重合体である。また、粒子状重合体が有する粒子形状は、例えば、レーザー回折法によって確認することができる。
The binder composition for a non-aqueous secondary battery electrode of the present invention further includes a particulate polymer having at least one of a carboxyl group and a hydroxyl group, and the content of the polymer X is the particulate polymer 100. It is preferable that it is 0.1 to 200 mass parts with respect to the mass part. If the binder composition further contains a predetermined particulate polymer, and the contents of the polymer X and the particulate polymer are within the above range, the viscosity stability of the slurry composition containing the binder composition is improved. This is because the adhesion between the electrode mixture layer formed using the slurry composition and the current collector can be further improved while ensuring.
In the present invention, the “particulate polymer” is a polymer having a particle shape at least in the binder composition, and is usually a water-insoluble polymer. Moreover, the particle shape which a particulate polymer has can be confirmed by the laser diffraction method, for example.
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池電極用スラリー組成物は、電極活物質と、上述したいずれかの非水系二次電池電極用バインダー組成物とを含むことを特徴とする。このように、上述したいずれかのバインダー組成物を使用すれば、粘度安定性に優れるスラリー組成物を得ることができる。また、集電体との密着性に優れる電極合材層を形成可能なスラリー組成物を得ることができる。 Moreover, this invention aims at solving the said subject advantageously, The slurry composition for non-aqueous secondary battery electrodes of this invention is an electrode active material and one of the non-aqueous two-components mentioned above. And a binder composition for secondary battery electrodes. Thus, if any binder composition mentioned above is used, the slurry composition excellent in viscosity stability can be obtained. Moreover, the slurry composition which can form the electrode compound-material layer excellent in adhesiveness with a collector can be obtained.
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用電極は、集電体と、上述した非水系二次電池電極用スラリー組成物を用いて形成された電極合材層とを有することを特徴とする。このように、上述したスラリー組成物を用いて電極合材層を形成すれば、集電体との密着性に優れる電極合材層を有する電極を得ることができる。 Moreover, this invention aims at solving the said subject advantageously, The electrode for non-aqueous secondary batteries of this invention is a collector and the slurry composition for non-aqueous secondary battery electrodes mentioned above. It has the electrode compound-material layer formed using the thing, It is characterized by the above-mentioned. Thus, if an electrode compound-material layer is formed using the slurry composition mentioned above, the electrode which has an electrode compound-material layer excellent in adhesiveness with a collector can be obtained.
 そして、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池は、正極、負極、セパレータ、および電解液を備え、前記正極および負極の少なくとも一方が、上述した非水系二次電池用電極であることを特徴とする。このように、正極および/または負極を上述した非水系二次電池用電極とすれば、二次電池が備える電極において集電体と電極合材層とが良好に密着しているため、二次電池に優れた電池特性を与え得る。 And this invention aims at solving the said subject advantageously, The non-aqueous secondary battery of this invention is equipped with a positive electrode, a negative electrode, a separator, and electrolyte solution, At least of the said positive electrode and negative electrode One of the electrodes is the above-described electrode for a non-aqueous secondary battery. Thus, if the positive electrode and / or the negative electrode is the above-described electrode for a non-aqueous secondary battery, the current collector and the electrode mixture layer are in good contact with each other in the electrode provided in the secondary battery. Excellent battery characteristics can be imparted to the battery.
 本発明によれば、粘度安定性に優れ、且つ、集電体との密着性に優れる電極合材層を形成可能なスラリー組成物、並びに当該スラリー組成物を調製し得るバインダー組成物を提供することができる。
 また、本発明によれば、集電体との密着性に優れる電極合材層を有する電極、および当該電極を備える二次電池を提供することができる。
According to the present invention, there are provided a slurry composition capable of forming an electrode mixture layer having excellent viscosity stability and adhesion to a current collector, and a binder composition capable of preparing the slurry composition. be able to.
Moreover, according to this invention, an electrode which has an electrode compound-material layer excellent in adhesiveness with a collector, and a secondary battery provided with the said electrode can be provided.
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の非水系二次電池電極用バインダー組成物は、非水系二次電池電極用スラリー組成物を調製する際に用いることができる。そして、本発明の非水系二次電池電極用バインダー組成物を用いて調製した非水系二次電池電極用スラリー組成物は、リチウムイオン二次電池等の非水系二次電池の電極(非水系二次電池用電極)が有する電極合材層を形成する際に用いることができる。更に、本発明の非水系二次電池は、本発明の非水系二次電池電極用スラリー組成物を用いて形成した電極合材層を有する非水系二次電池用電極を用いたことを特徴とする。
Hereinafter, embodiments of the present invention will be described in detail.
Here, the binder composition for non-aqueous secondary battery electrodes of the present invention can be used when preparing a slurry composition for non-aqueous secondary battery electrodes. A slurry composition for a non-aqueous secondary battery electrode prepared using the binder composition for a non-aqueous secondary battery electrode of the present invention is an electrode for a non-aqueous secondary battery such as a lithium ion secondary battery (non-aqueous secondary battery). It can be used when forming the electrode mixture layer of the secondary battery electrode. Furthermore, the non-aqueous secondary battery of the present invention is characterized by using a non-aqueous secondary battery electrode having an electrode mixture layer formed using the slurry composition for a non-aqueous secondary battery electrode of the present invention. To do.
(非水系二次電池電極用バインダー組成物)
 本発明の非水系二次電池電極用バインダー組成物は、所定の組成を有する重合体Xを含有する水溶性重合体を含むことを特徴とする。また、本発明の非水系二次電池電極用バインダー組成物は、上記水溶性重合体に加え、任意に、粒子状重合体、および溶媒などのその他の成分を更に含んでいてもよい。そして、本発明の非水系二次電池電極用バインダー組成物は、所定の組成を有する重合体Xを含んでいるので、スラリー組成物の調製に用いられた際に、得られるスラリー組成物に良好な粘度安定性を与えることができる。また、本発明の非水系二次電池電極用バインダー組成物は、所定の重合体Xを含んでいるので、上記バインダー組成物を含むスラリー組成物を用いて形成される電極合材層に、集電体との優れた密着性を発揮させることができる。
(Binder composition for non-aqueous secondary battery electrode)
The binder composition for nonaqueous secondary battery electrodes of the present invention is characterized by containing a water-soluble polymer containing the polymer X having a predetermined composition. In addition to the water-soluble polymer, the binder composition for non-aqueous secondary battery electrodes of the present invention may optionally further include other components such as a particulate polymer and a solvent. And since the binder composition for non-aqueous secondary battery electrodes of this invention contains the polymer X which has a predetermined | prescribed composition, when it is used for preparation of a slurry composition, it is favorable to the slurry composition obtained. Viscosity stability can be provided. Moreover, since the binder composition for non-aqueous secondary battery electrodes of the present invention contains the predetermined polymer X, it is collected in the electrode mixture layer formed using the slurry composition containing the binder composition. Excellent adhesion to the electric body can be exhibited.
<水溶性重合体>
 ここで、水溶性重合体は、所定の3種類の単量体単位をそれぞれ所定範囲内の割合で含有する重合体Xを含む必要がある。また、水溶性重合体は、上記重合体Xに加え、重合体Xとは異なる所定のその他の水溶性の重合体を更に含んでいてもよい。水溶性重合体が上記所定の組成を有する重合体Xを含まなければ、当該水溶性重合体を含有するバインダー組成物を含むスラリー組成物に、良好な粘度安定性を発揮させることができない。また、水溶性重合体が上記所定の組成を有する重合体Xを含まなければ、当該水溶性重合体を含有するバインダー組成物を含むスラリー組成物を用いて電極合材層を形成した際に、電極合材層と集電体との間に十分な密着性が得られない。
<Water-soluble polymer>
Here, the water-soluble polymer needs to include the polymer X containing each of the predetermined three types of monomer units in a ratio within a predetermined range. In addition to the polymer X, the water-soluble polymer may further contain a predetermined other water-soluble polymer different from the polymer X. If the water-soluble polymer does not contain the polymer X having the predetermined composition, the slurry composition containing the binder composition containing the water-soluble polymer cannot exhibit good viscosity stability. In addition, if the water-soluble polymer does not contain the polymer X having the predetermined composition, when the electrode mixture layer is formed using the slurry composition containing the binder composition containing the water-soluble polymer, Sufficient adhesion cannot be obtained between the electrode mixture layer and the current collector.
<<重合体X>>
 重合体Xは、エチレン性不飽和カルボン酸単量体単位、(メタ)アクリルアミド単量体単位およびヒドロキシル基含有ビニル単量体単位をそれぞれ所定範囲内の割合で含有する必要がある。なお、重合体Xは、上記単量体単位に加え、任意に、多官能エチレン性不飽和カルボン酸エステル単量体単位などのその他の単量体単位を更に含有していてもよい。
<< Polymer X >>
The polymer X needs to contain an ethylenically unsaturated carboxylic acid monomer unit, a (meth) acrylamide monomer unit, and a hydroxyl group-containing vinyl monomer unit in a proportion within a predetermined range. In addition to the above monomer units, the polymer X may optionally further contain other monomer units such as a polyfunctional ethylenically unsaturated carboxylic acid ester monomer unit.
[重合体Xの組成]
[[エチレン性不飽和カルボン酸単量体単位]]
-種類-
 本発明において、エチレン性不飽和カルボン酸単量体単位を形成し得るエチレン性不飽和カルボン酸単量体は、通常、カルボキシル基中のヒドロキシル基以外にヒドロキシル基(-OH)を有しない。
 そして、エチレン性不飽和カルボン酸単量体としては、例えば、エチレン性不飽和モノカルボン酸およびその誘導体、エチレン性不飽和ジカルボン酸およびその酸無水物並びにそれらの誘導体などが挙げられる。なお、エチレン性不飽和カルボン酸単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[Composition of Polymer X]
[[Ethylenically unsaturated carboxylic acid monomer unit]]
-type-
In the present invention, the ethylenically unsaturated carboxylic acid monomer capable of forming an ethylenically unsaturated carboxylic acid monomer unit usually does not have a hydroxyl group (—OH) other than the hydroxyl group in the carboxyl group.
Examples of the ethylenically unsaturated carboxylic acid monomer include ethylenically unsaturated monocarboxylic acid and derivatives thereof, ethylenically unsaturated dicarboxylic acid and acid anhydrides thereof, and derivatives thereof. In addition, an ethylenically unsaturated carboxylic acid monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 ここで、エチレン性不飽和モノカルボン酸の例としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。
 また、エチレン性不飽和モノカルボン酸の誘導体の例としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、β-ジアミノアクリル酸などが挙げられる。
 また、エチレン性不飽和ジカルボン酸の例としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 また、エチレン性不飽和ジカルボン酸の酸無水物の例としては、無水マレイン酸、ジアクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。
 そして、エチレン性不飽和ジカルボン酸の誘導体の例としては、メチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸、などが挙げられる。
Here, examples of the ethylenically unsaturated monocarboxylic acid include acrylic acid, methacrylic acid, and crotonic acid.
Examples of ethylenically unsaturated monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, α-acetoxyacrylic acid, β-trans-aryloxyacrylic acid, α-chloro-β-E-methoxyacrylic. Acid, β-diaminoacrylic acid and the like.
Examples of the ethylenically unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
Examples of acid anhydrides of ethylenically unsaturated dicarboxylic acids include maleic anhydride, diacrylic anhydride, methyl maleic anhydride, dimethyl maleic anhydride, and the like.
Examples of the ethylenically unsaturated dicarboxylic acid derivative include methylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, and fluoromaleic acid.
 上述した中でも、エチレン性不飽和カルボン酸単量体としては、分子中にエチレン性不飽和結合(C=C)を1つ有する単官能エチレン性不飽和カルボン酸単量体が好ましい。また、重合性の観点からは、エチレン性不飽和カルボン酸単量体としては、エチレン性不飽和モノカルボン酸およびエチレン性不飽和ジカルボン酸が好ましく、アクリル酸、メタクリル酸およびイタコン酸がより好ましく、アクリル酸およびメタクリル酸が更に好ましい。更に、得られる重合体の電解液に対する膨潤度を抑制する観点からは、エチレン性不飽和カルボン酸単量体としてはアクリル酸が一層好ましい。 Among the above-mentioned, as the ethylenically unsaturated carboxylic acid monomer, a monofunctional ethylenically unsaturated carboxylic acid monomer having one ethylenically unsaturated bond (C = C) in the molecule is preferable. From the viewpoint of polymerizability, the ethylenically unsaturated carboxylic acid monomer is preferably ethylenically unsaturated monocarboxylic acid and ethylenically unsaturated dicarboxylic acid, more preferably acrylic acid, methacrylic acid and itaconic acid, Acrylic acid and methacrylic acid are more preferred. Furthermore, acrylic acid is more preferable as the ethylenically unsaturated carboxylic acid monomer from the viewpoint of suppressing the degree of swelling of the resulting polymer with respect to the electrolytic solution.
-含有割合-
 そして、重合体Xは、全単量体単位100質量%中、エチレン性不飽和カルボン酸単量体単位を1質量%以上50質量%以下の割合で含有する必要がある。また、エチレン性不飽和カルボン酸単量体単位の含有割合は、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、30質量%以下であることが好ましく、25質量%以下であることがより好ましい。重合体X中のエチレン性不飽和カルボン酸単量体単位の含有割合が上記下限以上であれば、当該重合体Xを含有するバインダー組成物を含むスラリー組成物を用いて電極合材層を形成した際に、電極合材層が集電体と優れた密着性(高いピール強度)を発揮することができるからである。また、重合体X中のエチレン性不飽和カルボン酸単量体単位の含有割合が上記上限以下であれば、当該重合体Xを含有するバインダー組成物を用いて調製したスラリー組成物の粘度安定性を高め、スラリー組成物の保存安定性および電極合材層の形成時における取扱性を良好にすることができるからである。更に、重合体X中のエチレン性不飽和カルボン酸単量体単位の含有割合が上記上限以下であれば、後述するスプリングバックを抑制し得るからである。そして、重合体X中のエチレン性不飽和カルボン酸単量体単位の含有割合が上記範囲内であれば、重合体Xを容易に調製することができるからである。
-Content-
And the polymer X needs to contain 1 to 50 mass% of ethylenically unsaturated carboxylic acid monomer units in 100 mass% of all monomer units. The content of the ethylenically unsaturated carboxylic acid monomer unit is preferably 5% by mass or more, more preferably 10% by mass or more, and preferably 30% by mass or less, 25% by mass. % Or less is more preferable. If the content ratio of the ethylenically unsaturated carboxylic acid monomer unit in the polymer X is not less than the above lower limit, an electrode mixture layer is formed using a slurry composition containing a binder composition containing the polymer X This is because the electrode mixture layer can exhibit excellent adhesion (high peel strength) with the current collector. Moreover, if the content rate of the ethylenically unsaturated carboxylic acid monomer unit in the polymer X is not more than the above upper limit, the viscosity stability of the slurry composition prepared using the binder composition containing the polymer X This is because the storage stability of the slurry composition and the handleability during formation of the electrode mixture layer can be improved. Furthermore, if the content ratio of the ethylenically unsaturated carboxylic acid monomer unit in the polymer X is equal to or less than the above upper limit, spring back described later can be suppressed. And if the content rate of the ethylenically unsaturated carboxylic acid monomer unit in the polymer X is in the said range, the polymer X can be prepared easily.
[[(メタ)アクリルアミド単量体単位]]
-種類-
 また、本発明において、(メタ)アクリルアミド単量体単位は、アクリルアミドおよび/またはメタクリルアミドである(メタ)アクリルアミド単量体を用いて形成される。
[[(Meth) acrylamide monomer unit]]
-type-
In the present invention, the (meth) acrylamide monomer unit is formed using a (meth) acrylamide monomer which is acrylamide and / or methacrylamide.
-含有割合-
 そして、重合体Xは、全単量体単位100質量%中、(メタ)アクリルアミド単量体単位を10質量%以上60質量%以下の割合で含有する必要がある。また、(メタ)アクリルアミド単量体単位の含有割合は、15質量%以上であることが好ましく、20質量%以上であることがより好ましく、50質量%以下であることが好ましく、40質量%以下であることがより好ましい。重合体X中の(メタ)アクリルアミド単量体単位の含有割合が上記下限以上であれば、バインダー組成物を含むスラリー組成物中で電極活物質および導電材などの成分が良好に分散され、スラリー組成物の粘度安定性が優れるからである。また、重合体X中の(メタ)アクリルアミド単量体単位の含有割合が上記上限以下であれば、バインダー組成物を含むスラリー組成物の粘度が低下し過ぎることを抑制してスラリー組成物に優れた粘度安定性を発揮させ、スラリー組成物の保存安定性および電極合材層の形成時における取扱性を良好にすることができるからである。更に、重合体X中の(メタ)アクリルアミド単量体単位の含有割合が上記範囲内であれば、重合体Xを容易に調製することができるからである。
-Content-
And the polymer X needs to contain a (meth) acrylamide monomer unit in the ratio of 10 to 60 mass% in 100 mass% of all monomer units. The content ratio of the (meth) acrylamide monomer unit is preferably 15% by mass or more, more preferably 20% by mass or more, and preferably 50% by mass or less, and 40% by mass or less. It is more preferable that If the content ratio of the (meth) acrylamide monomer unit in the polymer X is not less than the above lower limit, components such as an electrode active material and a conductive material are well dispersed in the slurry composition containing the binder composition, and the slurry This is because the viscosity stability of the composition is excellent. Moreover, if the content ratio of the (meth) acrylamide monomer unit in the polymer X is not more than the above upper limit, it is excellent in the slurry composition by suppressing the viscosity of the slurry composition containing the binder composition from being excessively lowered. This is because the viscosity stability can be exhibited, and the storage stability of the slurry composition and the handleability when forming the electrode mixture layer can be improved. Furthermore, if the content ratio of the (meth) acrylamide monomer unit in the polymer X is within the above range, the polymer X can be easily prepared.
[[ヒドロキシル基含有ビニル単量体単位]]
-種類-
 また、本発明において、ヒドロキシル基含有ビニル単量体単位を形成し得るヒドロキシル基含有ビニル単量体は、ヒドロキシル基(-OH)およびビニル基(-CH=CH2)又はイソプロペニル基(-C(CH3)=CH2)を有し、当該ビニル基が有するエチレン性不飽和結合(C=C)が分子中に1つである単官能化合物であれば特に制限されない。また、ヒドロキシル基含有ビニル単量体としては、例えば、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレート、N-ヒドロキシメチルアクリルアミド(N-メチロールアクリルアミド)、N-ヒドロキシメチルメタクリルアミド、N-ヒドロキシエチルアクリルアミド、N-ヒドロキシエチルメタクリルアミドなどが挙げられる。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[[Hydroxyl group-containing vinyl monomer unit]]
-type-
In the present invention, the hydroxyl group-containing vinyl monomer capable of forming a hydroxyl group-containing vinyl monomer unit is a hydroxyl group (—OH) and a vinyl group (—CH═CH 2 ) or an isopropenyl group (—C There is no particular limitation as long as it is a monofunctional compound having (CH 3 ) ═CH 2 ) and having one ethylenically unsaturated bond (C═C) in the molecule. Examples of the hydroxyl group-containing vinyl monomer include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, N-hydroxymethylacrylamide (N-methylolacrylamide), Examples thereof include N-hydroxymethyl methacrylamide, N-hydroxyethyl acrylamide, N-hydroxyethyl methacrylamide and the like. One of these may be used alone, or two or more of these may be used in combination at any ratio.
 ここで、スラリー組成物の粘度安定性をより高め、且つ集電体との密着性をより高めた電極合材層を形成可能にする観点、更には後述するスプリングバックを抑制する観点からは、ヒドロキシル基含有ビニル単量体としては、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレート、N-メチロールアクリルアミドおよびN-ヒドロキシエチルアクリルアミドが好ましく、2-ヒドロキシエチルアクリレートおよび2-ヒドロキシエチルメタクリレートがより好ましい。
 なお、本発明において、上記ヒドロキシル基含有ビニル単量体単位を形成し得るヒドロキシル基含有ビニル単量体として例示する化合物は、上述したエチレン性不飽和カルボン酸単量体単位を形成し得るエチレン性不飽和カルボン酸単量体には含まれないものとする。
Here, from the viewpoint of further improving the viscosity stability of the slurry composition and enabling the formation of an electrode mixture layer having improved adhesion with the current collector, and further suppressing the spring back described later, As the hydroxyl group-containing vinyl monomer, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, N-methylol acrylamide and N-hydroxyethyl acrylamide are preferable. More preferred are ethyl acrylate and 2-hydroxyethyl methacrylate.
In the present invention, the compound exemplified as the hydroxyl group-containing vinyl monomer capable of forming the hydroxyl group-containing vinyl monomer unit is an ethylenic compound capable of forming the above-described ethylenically unsaturated carboxylic acid monomer unit. It is not included in the unsaturated carboxylic acid monomer.
-含有割合-
 そして、重合体Xは、全単量体単位100質量%中、ヒドロキシル基含有ビニル単量体単位を5質量%以上89質量%以下の割合で含有する必要がある。また、ヒドロキシル基含有ビニル単量体単位の含有割合は、10質量%以上であることが好ましく、15質量%以上であることがより好ましく、70質量%以下であることが好ましく、50質量%以下であることがより好ましい。重合体X中のヒドロキシル基含有ビニル単量体単位の含有割合が上記下限以上であれば、当該重合体Xを含有するバインダー組成物を含むスラリー組成物を用いて電極合材層を形成した際に、電極合材層が集電体と優れた密着性(高いピール強度)を発揮することができるからである。また、重合体X中のヒドロキシル基含有ビニル単量体単位の含有割合が上記上限以下であれば、当該重合体Xを含有するバインダー組成物を含むスラリー組成物が良好な粘度安定性を発揮することができ、スラリー組成物の保存安定性および電極合材層の形成時における取扱性を良好にすることができるからである。更に、重合体X中のヒドロキシル基含有ビニル単量体単位の含有割合が上記範囲内であれば、重合体Xを容易に調製することができるからである。
-Content-
And the polymer X needs to contain a hydroxyl group containing vinyl monomer unit in the ratio of 5 to 89 mass% in 100 mass% of all monomer units. The content ratio of the hydroxyl group-containing vinyl monomer unit is preferably 10% by mass or more, more preferably 15% by mass or more, preferably 70% by mass or less, and 50% by mass or less. It is more preferable that When the content ratio of the hydroxyl group-containing vinyl monomer unit in the polymer X is not less than the above lower limit, when the electrode mixture layer is formed using the slurry composition containing the binder composition containing the polymer X In addition, the electrode composite material layer can exhibit excellent adhesion (high peel strength) to the current collector. Further, if the content ratio of the hydroxyl group-containing vinyl monomer unit in the polymer X is not more than the above upper limit, the slurry composition including the binder composition containing the polymer X exhibits good viscosity stability. This is because the storage stability of the slurry composition and the handleability during formation of the electrode mixture layer can be improved. Furthermore, if the content ratio of the hydroxyl group-containing vinyl monomer unit in the polymer X is within the above range, the polymer X can be easily prepared.
[[その他の単量体単位]]
-多官能エチレン性不飽和カルボン酸エステル単量体単位-
=種類=
 また、重合体Xが更に含有することができる多官能エチレン性不飽和カルボン酸エステル単量体単位を形成し得る多官能エチレン性不飽和カルボン酸エステル単量体は、分子中に2以上のエチレン性不飽和結合(C=C)を有するカルボン酸エステルであれば特に制限されない。多官能エチレン性不飽和カルボン酸エステル単量体としては、例えば、
 2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート(701A)、ポリエチレングリコール#200ジアクリレート(A-200)、ポリエチレングリコール#400ジアクリレート(A-400)、ポリエチレングリコール#600ジアクリレート(A-600)、ポリエチレングリコール#1000ジアクリレート(A-1000)、プロポキシ化エトキシ化ビスフェノールAジアクリレート(A-B1206PE)、エトキシ化ビスフェノールAジアクリレート(ABE-300、A-BPE-10、A-BPE-20、A-BPE-30、A-BPE-4)、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン(A-BPEF)、プロポキシ化ビスフェノールAジアクリレート(A-BPP-3)、トリシクロデカンジメタノールジアクリレート(A-DCP)、1,10-デカンジオールジアクリレート(A-DOD-N)、1,6-ヘキサンジオールジアクリレート(A-HD-N)、1,9-ノナンジオールジアクリレート(A-NOD-N)、ジプロピレングリコールジアクリレート(APG-100)、トリプロピレングリコールジアクリレート(APG-200)、ポリプロピレングリコール#400ジアクリレート(APG-400)、ポリプロピレングリコール#700ジアクリレート(APG-700)、ポリテトラメチレングリコール#650ジアクリレート(A-PTMG-65)、エチレングリコールジメタクリレート(1G)、ジエチレングリコールジメタクリレート(2G)、トリエチレングリコールジメタクリレート(3G)、ポリエチレングリコール#200ジメタクリレート(4G)、ポリエチレングリコール#400ジメタクリレート(9G)、ポリエチレングリコール#600ジメタクリレート(14G)、ポリエチレングリコール#1000ジメタクリレート(23G)、エトキシ化ビスフェノールAジメタクリレート(BPE-80N、BPE-100、BPE-200、BPE-500、BPE-900、BPE-1300N、)トリシクロデカンジメタノールジメタクリレート(DCP)、1,10-デカンジオールジメタクリレート(DOD-N)、1,6-ヘキサンジオールジメタクリレート(HD-N)、1,9-ノナンジオールジメタクリレート(NOD-N)、ネオペンチルグリコールジメタクリレート(NPG)、エトキシ化ポリプロピレングリコール#700ジメタクリレート(1206PE)、グリセリンジメタクリレート(701)、ポリプロピレングリコール#400ジメタクリレート(9PG)等の、分子中に2つのエチレン性不飽和結合を有する2官能エチレン性不飽和カルボン酸エステル単量体;
 エトキシ化イソシアヌル酸トリアクリレート(A-9300)、ε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート(A-9300-1CL)、エトキシ化グリセリントリアクリレート(A-GLY-9E、A-GLY-20E)、ペンタエリスリトールトリアクリレート(A-TMM-3、A-TMM-3L、A-TMM-3LM-N)、トリメチロールプロパントリアクリレート(A-TMPT)、トリメチロールプロパントリメタクリレート(TMPT)等の、分子中に3つのエチレン性不飽和結合を有する3官能エチレン性不飽和カルボン酸エステル単量体;
 ジトリメチロールプロパンテトラアクリレート(AD-TMP)、エトキシ化ペンタエリスリトールテトラアクリレート(ATM-35E)、ペンタエリスリトールテトラアクリレート(A-TMMT)、ジペンタエリスリトールポリアクリレート(A-9550)、ジペンタエリスリトールヘキサアクリレート(A-DPH)等の、分子中に4つ以上のエチレン性不飽和結合を有する4官能以上のエチレン性不飽和カルボン酸エステル単量体;等が挙げられる。
 なお、上記括弧内の名称は、いずれも新中村化学工業株式会社から入手可能な製品名である。
[[Other monomer units]]
-Polyfunctional ethylenically unsaturated carboxylic acid ester monomer unit-
= Type =
Further, the polyfunctional ethylenically unsaturated carboxylic acid ester monomer capable of forming a polyfunctional ethylenically unsaturated carboxylic acid ester monomer unit that can be further contained in the polymer X is composed of two or more ethylene atoms in the molecule. If it is a carboxylic acid ester which has a sexable unsaturated bond (C = C), it will not restrict | limit. As the polyfunctional ethylenically unsaturated carboxylic acid ester monomer, for example,
2-hydroxy-3-acryloyloxypropyl methacrylate (701A), polyethylene glycol # 200 diacrylate (A-200), polyethylene glycol # 400 diacrylate (A-400), polyethylene glycol # 600 diacrylate (A-600) Polyethylene glycol # 1000 diacrylate (A-1000), propoxylated ethoxylated bisphenol A diacrylate (A-B1206PE), ethoxylated bisphenol A diacrylate (ABE-300, A-BPE-10, A-BPE-20, A-BPE-30, A-BPE-4), 9,9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene (A-BPEF), propoxylated bisphenol A diacrylate (A-BPP) 3), tricyclodecane dimethanol diacrylate (A-DCP), 1,10-decanediol diacrylate (A-DOD-N), 1,6-hexanediol diacrylate (A-HD-N), 1, 9-nonanediol diacrylate (A-NOD-N), dipropylene glycol diacrylate (APG-100), tripropylene glycol diacrylate (APG-200), polypropylene glycol # 400 diacrylate (APG-400), polypropylene glycol # 700 diacrylate (APG-700), polytetramethylene glycol # 650 diacrylate (A-PTMG-65), ethylene glycol dimethacrylate (1G), diethylene glycol dimethacrylate (2G), triethyleneglycol Dimethacrylate (3G), polyethylene glycol # 200 dimethacrylate (4G), polyethylene glycol # 400 dimethacrylate (9G), polyethylene glycol # 600 dimethacrylate (14G), polyethylene glycol # 1000 dimethacrylate (23G), ethoxylated bisphenol A Dimethacrylate (BPE-80N, BPE-100, BPE-200, BPE-500, BPE-900, BPE-1300N,) Tricyclodecane dimethanol dimethacrylate (DCP), 1,10-decanediol dimethacrylate (DOD- N), 1,6-hexanediol dimethacrylate (HD-N), 1,9-nonanediol dimethacrylate (NOD-N), neopentyl glycol dimethacrylate (NP) G), ethoxylated polypropylene glycol # 700 dimethacrylate (1206PE), glycerin dimethacrylate (701), polypropylene glycol # 400 dimethacrylate (9PG), etc., bifunctional ethylenic having two ethylenically unsaturated bonds in the molecule Unsaturated carboxylic acid ester monomers;
Ethoxylated isocyanuric acid triacrylate (A-9300), ε-caprolactone modified tris- (2-acryloxyethyl) isocyanurate (A-9300-1CL), ethoxylated glycerin triacrylate (A-GLY-9E, A-GLY) -20E), pentaerythritol triacrylate (A-TMM-3, A-TMM-3L, A-TMM-3LM-N), trimethylolpropane triacrylate (A-TMPT), trimethylolpropane trimethacrylate (TMPT), etc. A trifunctional ethylenically unsaturated carboxylic acid ester monomer having three ethylenically unsaturated bonds in the molecule;
Ditrimethylolpropane tetraacrylate (AD-TMP), ethoxylated pentaerythritol tetraacrylate (ATM-35E), pentaerythritol tetraacrylate (A-TMMT), dipentaerythritol polyacrylate (A-9550), dipentaerythritol hexaacrylate ( A-DPH) and the like, and a tetrafunctional or higher functional ethylenically unsaturated carboxylic acid ester monomer having 4 or more ethylenically unsaturated bonds in the molecule.
The names in the parentheses are product names available from Shin-Nakamura Chemical Co., Ltd.
 なお、スラリー組成物の高い粘度安定性、および電極合材層の集電体との高い密着性を確保しつつ、架橋性を良好に発揮させる観点からは、多官能エチレン性不飽和カルボン酸エステル単量体が有するエチレン性不飽和結合の数(官能数)は、2以上6以下(2官能~6官能)であることが好ましく、2以上4以下(2官能~4官能)であることがより好ましい。 The polyfunctional ethylenically unsaturated carboxylic acid ester is used from the viewpoint of achieving good crosslinkability while ensuring high viscosity stability of the slurry composition and high adhesion to the current collector of the electrode mixture layer. The number of ethylenically unsaturated bonds (functional number) of the monomer is preferably 2 or more and 6 or less (2 functions to 6 functions), and preferably 2 or more and 4 or less (2 functions to 4 functions). More preferred.
=含有割合=
 そして、重合体Xが多官能エチレン性不飽和カルボン酸エステル単量体単位を含有する場合は、多官能エチレン性不飽和カルボン酸エステル単量体単位の含有割合は、全単量体単位100質量%中、0.001質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、1質量%以下であることが更に好ましい。エチレン性不飽和結合を分子中に複数有する多官能エチレン性不飽和カルボン酸エステル単量体単位は、通常、架橋性を有する。従って、重合体X中の多官能エチレン性不飽和カルボン酸エステル単量体単位の含有割合を上記下限以上とすることで、当該重合体Xを含有するバインダー組成物を含むスラリー組成物を用いて電極合材層を形成した際の、電極合材層と集電体との密着性(ピール強度)を高めることができるからである。また、重合体X中の多官能エチレン性不飽和カルボン酸エステル単量体単位の含有割合を上記上限以下とすることで、スラリー組成物の良好な粘度安定性を確保することができるからである。
= Content ratio =
And when the polymer X contains a polyfunctional ethylenically unsaturated carboxylic acid ester monomer unit, the content ratio of the polyfunctional ethylenically unsaturated carboxylic acid ester monomer unit is 100 mass of all monomer units. % Is preferably 0.001% by mass or more, more preferably 0.1% by mass or more, more preferably 10% by mass or less, and even more preferably 5% by mass or less. More preferably, it is at most mass%. The polyfunctional ethylenically unsaturated carboxylic acid ester monomer unit having a plurality of ethylenically unsaturated bonds in the molecule usually has crosslinkability. Therefore, by setting the content ratio of the polyfunctional ethylenically unsaturated carboxylic acid ester monomer unit in the polymer X to the above lower limit or more, a slurry composition including a binder composition containing the polymer X is used. This is because the adhesion (peel strength) between the electrode mixture layer and the current collector when the electrode mixture layer is formed can be increased. Moreover, it is because the favorable viscosity stability of a slurry composition can be ensured by making the content rate of the polyfunctional ethylenically unsaturated carboxylic acid ester monomer unit in the polymer X below the above upper limit. .
-多官能エチレン性不飽和カルボン酸エステル単量体単位以外のその他の単量体単位-
 また、重合体Xが更に含有し得る、多官能エチレン性不飽和カルボン酸エステル単量体単位以外のその他の単量体単位としては、特に制限されることなく、例えば、メチルアクリレート単量体単位、メチルメタクリレート単量体単位、エチルアクリレート単量体単位、エチルメタクリレート単量体単位、およびこれらの単量体単位にトリフルオロメチル基等のフッ素含有置換基が導入された単量体単位等が挙げられる。
 ここで、重合体X中の多官能エチレン性不飽和カルボン酸エステル単量体単位以外のその他の単量体単位の含有割合は、0質量%とすることができ、0質量%超とすることもでき、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、1質量%以下であることが更に好ましい。重合体X中の多官能エチレン性不飽和カルボン酸エステル単量体単位以外のその他の単量体単位の含有割合が0質量%超であれば、バインダー組成物の電解液膨潤度が過度に大きくなることを抑制し得るからである。また、重合体X中の多官能エチレン性不飽和カルボン酸エステル単量体単位以外のその他の単量体単位の含有割合が上記上限以下であれば、バインダー組成物を含むスラリー組成物を用いて形成した電極合材層の集電体との良好な密着性を維持しつつ、後述するスプリングバックを抑制し得るからである。
-Other monomer units other than polyfunctional ethylenically unsaturated carboxylic acid ester monomer units-
In addition, the monomer unit other than the polyfunctional ethylenically unsaturated carboxylic acid ester monomer unit that can be further contained in the polymer X is not particularly limited, for example, a methyl acrylate monomer unit Methyl methacrylate monomer units, ethyl acrylate monomer units, ethyl methacrylate monomer units, and monomer units obtained by introducing fluorine-containing substituents such as trifluoromethyl groups into these monomer units Can be mentioned.
Here, the content ratio of other monomer units other than the polyfunctional ethylenically unsaturated carboxylic acid ester monomer unit in the polymer X can be 0% by mass, and more than 0% by mass. 20 mass% or less, preferably 10 mass% or less, more preferably 1 mass% or less. If the content ratio of other monomer units other than the polyfunctional ethylenically unsaturated carboxylic acid ester monomer unit in the polymer X exceeds 0% by mass, the electrolyte solution swelling degree of the binder composition is excessively large. This is because it can be suppressed. Moreover, if the content rate of other monomer units other than the polyfunctional ethylenically unsaturated carboxylic acid ester monomer unit in the polymer X is not more than the above upper limit, a slurry composition containing a binder composition is used. It is because the spring back mentioned later can be suppressed, maintaining favorable adhesiveness with the electrical power collector of the formed electrode compound-material layer.
[重合体Xの性状]
[[ガラス転移温度]]
 ここで、重合体Xは、ガラス転移温度が-10℃以上であることが好ましく、0℃以上であることがより好ましく、10℃以上であることが更に好ましく、通常130℃以下であり、100℃以下であることが好ましく、70℃以下であることがより好ましく、60℃以下であることが更に好ましい。重合体Xのガラス転移温度が上記下限以上であれば、当該重合体Xを含むスラリー組成物を用いて形成した電極合材層が二次電池の充放電に伴って膨張することを抑制し、電極の膨らみを防止することができるからである。また、重合体Xのガラス転移温度が上記上限以下であれば、電極を作製する際、とりわけ電極合材層に外力を加えて電極を作製する際に、電極合材層のスプリングバックを抑制することができるからである。
 なお、本明細書において「スプリングバック」とは、例えば電極合材層等の電極体を加圧後に離型した際に、電極体の弾性変形分が形状回復(弾性回復)する現象を意味する。そして、例えば電極合材層がスプリングバックすると、電極合材層および電極の厚みが十分小さくならず、十分に高密度な電極を得ることができない。
 そして、本発明において、「スプリングバック」は、本明細の実施例に従って測定した電極合材層密度に基づいて評価することができる。
[Properties of polymer X]
[[Glass-transition temperature]]
Here, the polymer X preferably has a glass transition temperature of −10 ° C. or higher, more preferably 0 ° C. or higher, still more preferably 10 ° C. or higher, and usually 130 ° C. or lower. It is preferably at most 0 ° C, more preferably at most 70 ° C, still more preferably at most 60 ° C. If the glass transition temperature of the polymer X is equal to or higher than the above lower limit, the electrode mixture layer formed using the slurry composition containing the polymer X is suppressed from expanding with charge / discharge of the secondary battery, This is because the swelling of the electrode can be prevented. Moreover, if the glass transition temperature of the polymer X is not more than the above upper limit, when producing an electrode, particularly when an electrode is produced by applying an external force to the electrode mixture layer, spring back of the electrode mixture layer is suppressed. Because it can.
In the present specification, the term “spring back” means a phenomenon in which the elastic deformation of the electrode body recovers its shape (elastic recovery) when the electrode body such as the electrode mixture layer is released after being pressed. . For example, when the electrode mixture layer is spring-backed, the thickness of the electrode mixture layer and the electrode is not sufficiently reduced, and a sufficiently high density electrode cannot be obtained.
In the present invention, “spring back” can be evaluated based on the electrode mixture layer density measured according to the examples of the present specification.
[[電解液膨潤度]]
 また、重合体Xは、電解液に対する膨潤度が3倍以下であることが好ましく、2倍以下であることがより好ましく、1.5倍以下であることが更に好ましく、1.2倍以下であることが一層好ましく、通常1倍超である。重合体Xの電解液膨潤度が上記上限以下であれば、当該重合体Xを含むスラリー組成物を用いて形成した電極合材層が二次電池の充放電に伴って膨張することをより抑制し、電極の膨らみをより防止することができるからである。
[[Electrolytic solution swelling]]
Further, the degree of swelling of the polymer X with respect to the electrolytic solution is preferably 3 times or less, more preferably 2 times or less, still more preferably 1.5 times or less, and 1.2 times or less. More preferably, it is usually more than 1 time. If the degree of swelling of the electrolyte solution of the polymer X is less than or equal to the above upper limit, the electrode mixture layer formed using the slurry composition containing the polymer X is further suppressed from expanding with charge / discharge of the secondary battery. This is because the swelling of the electrode can be further prevented.
[[水に対する溶解度]]
 そして、重合体Xは、温度20℃における水100gに対する溶解度が1g/100g-H2O以上であることが好ましく、7g/100g-H2O以上であることがより好ましく、10g/100g-H2O以上であることが更に好ましく、20g/100g-H2O以上であることが一層好ましい。重合体Xの水に対する溶解度が上記下限以上であれば、電極合材層中において重合体Xが電極活物質を良好に被覆することができるため、製造された二次電池を充電した時に、当該電極合材層を有する電極上への金属析出を抑制することができるからである。また、その結果、サイクル特性等、二次電池の電池特性を良好にし得るからである。
[[Solubility in water]
The polymer X preferably has a solubility in 100 g of water at a temperature of 20 ° C. of 1 g / 100 g-H 2 O or more, more preferably 7 g / 100 g-H 2 O or more, and 10 g / 100 g-H. 2 O or more is more preferable, and 20 g / 100 g-H 2 O or more is more preferable. If the solubility of the polymer X in water is equal to or higher than the lower limit, the polymer X can satisfactorily coat the electrode active material in the electrode mixture layer, and therefore when the manufactured secondary battery is charged, This is because metal deposition on the electrode having the electrode mixture layer can be suppressed. Further, as a result, the battery characteristics of the secondary battery such as cycle characteristics can be improved.
[重合体Xの含有割合]
 ここで、水溶性重合体中の重合体Xの含有割合は、水溶性重合体中の全重合体100質量%に対して10質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることが更に好ましく、70質量%以上であることが一層好ましく、100質量%とすることができる。つまり、重合体Xをそのまま水溶性重合体として用いることができる。水溶性重合体中の重合体Xの含有割合を上記下限以上にすれば、当該水溶性重合体を含むバインダー組成物を用いて、粘度安定性により優れ、且つ、集電体との密着性により優れる電極合材層を形成可能なスラリー組成物を、より容易に得ることができるからである。
[Content Ratio of Polymer X]
Here, the content ratio of the polymer X in the water-soluble polymer is preferably 10% by mass or more, and more preferably 30% by mass or more with respect to 100% by mass of the total polymer in the water-soluble polymer. More preferably, it is more preferably 40% by mass or more, still more preferably 70% by mass or more, and can be 100% by mass. That is, the polymer X can be used as it is as a water-soluble polymer. If the content ratio of the polymer X in the water-soluble polymer is set to the above lower limit or more, the binder composition containing the water-soluble polymer is used, the viscosity stability is excellent, and the adhesion to the current collector is improved. This is because a slurry composition capable of forming an excellent electrode mixture layer can be obtained more easily.
[重合体Xの調製方法]
 重合体Xは、例えば、上述した各成分と任意の重合溶媒とを既知の方法で混合して得た単量体組成物を、任意の重合方法で重合させることで得られる。なお、上記単量体組成物を重合して得られる、重合体Xと重合溶媒とを含む溶液は、そのままバインダー組成物の調製に使用してもよいし、溶媒置換や任意の成分の添加などを行なった後にバインダー組成物の調製に使用してもよい。
 ここで、重合体Xの重合方法としては、限定されることなく、例えば、水溶液重合法等の溶液重合法、スラリー重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法を用いてもよい。また、重合体Xの重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合などの付加重合を用いることができる。そして、重合に使用される重合開始剤、重合促進剤、乳化剤、分散剤、連鎖移動剤などは、一般に用いられるものを使用することができ、その使用量も、一般に使用される量とすることができる。
 中でも、溶媒の除去操作が不要であり、溶媒の安全性が高く、且つ、界面活性剤の混入の問題が無いことから、重合溶媒として水を使用した水溶液重合法が好ましい。
[Method for Preparing Polymer X]
The polymer X can be obtained, for example, by polymerizing a monomer composition obtained by mixing the above-described components and an arbitrary polymerization solvent by a known method by an arbitrary polymerization method. In addition, the solution containing the polymer X and the polymerization solvent obtained by polymerizing the monomer composition may be used as it is for the preparation of the binder composition, solvent substitution, addition of optional components, etc. You may use for preparation of a binder composition after performing.
Here, the polymerization method of the polymer X is not limited, and for example, any method such as solution polymerization method such as aqueous solution polymerization method, slurry polymerization method, suspension polymerization method, bulk polymerization method, emulsion polymerization method, etc. May be used. Moreover, as polymerization reaction of the polymer X, addition polymerization, such as ionic polymerization, radical polymerization, and living radical polymerization, can be used. And generally used polymerization initiators, polymerization accelerators, emulsifiers, dispersants, chain transfer agents, etc. can be used, and the amount used is also generally used. Can do.
Among these, an aqueous solution polymerization method using water as the polymerization solvent is preferable because the operation for removing the solvent is unnecessary, the safety of the solvent is high, and there is no problem of mixing of the surfactant.
 なお、重合溶媒として水を使用し、上述した単量体組成物を水中で重合して重合体Xを含む水溶液を調製する場合には、重合後に水溶液のpHを7以上9以下に調整することが好ましい。得られる水溶液を中和して上記範囲のpHに調整すれば、スラリー組成物の粘度安定性を良好にし易くなるからである。 In addition, when using water as a polymerization solvent and polymerizing the monomer composition described above in water to prepare an aqueous solution containing the polymer X, the pH of the aqueous solution should be adjusted to 7 or more and 9 or less after polymerization. Is preferred. This is because if the aqueous solution obtained is neutralized and adjusted to a pH in the above range, the viscosity stability of the slurry composition is easily improved.
 ここで、重合体Xの調製に用い得る重合開始剤としては、特に制限されることなく、既知の重合開始剤、例えば、過硫酸ナトリウム、過硫酸アンモニウム、過硫酸カリウムが挙げられる。中でも、過硫酸カリウムを用いることが好ましい。重合開始剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Here, the polymerization initiator that can be used for the preparation of the polymer X is not particularly limited, and examples thereof include known polymerization initiators such as sodium persulfate, ammonium persulfate, and potassium persulfate. Of these, potassium persulfate is preferably used. A polymerization initiator may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 また、重合促進剤としては、特に制限されることなく、既知の還元性の重合促進剤、例えば、テトラメチルエチレンジアミンを使用することができる。重合促進剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Further, the polymerization accelerator is not particularly limited, and a known reducing polymerization accelerator such as tetramethylethylenediamine can be used. A polymerization accelerator may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
<<その他の水溶性の重合体>>
 水溶性重合体は、上記重合体Xに加え、重合体Xとは異なる(重合体X以外の)その他の水溶性の重合体を更に含んでいてもよい。
 ここで、水溶性重合体に含まれ得るその他の水溶性の重合体は、天然系高分子、半合成系高分子又は合成系高分子の何れかを含むことが好ましい。より具体的には、その他の水溶性の重合体としては、例えば、増粘多糖類、アルギン酸およびこれらの塩(例えば、アルギン酸ナトリウム)、でんぷんなどの天然系高分子;カルボキシメチルセルロースおよびこれらの塩などの、原料である天然系高分子を化学的処理することによって得られる半合成系高分子;ポリビニルピロリドン、架橋ポリアクリル酸および非架橋ポリアクリル酸といったポリアクリル酸などの合成系高分子;を挙げることができる。これらの中でも、スラリー組成物に良好な粘度安定性を与えてスラリー安定性を高める観点、スラリー組成物中で電極活物質等の成分をより良好に分散させる観点、集電体との密着性により優れる電極合材層を形成する観点、二次電池における電極上への金属析出をより抑制する観点からは、その他の水溶性の重合体としては半合成系高分子、合成系高分子が好ましく、カルボキシメチルセルロース、カルボキシメチルセルロースの塩、ポリアクリル酸がより好ましい。
<< Other water-soluble polymers >>
In addition to the polymer X, the water-soluble polymer may further contain another water-soluble polymer different from the polymer X (other than the polymer X).
Here, the other water-soluble polymer that can be included in the water-soluble polymer preferably includes any of a natural polymer, a semi-synthetic polymer, and a synthetic polymer. More specifically, as other water-soluble polymers, for example, thickening polysaccharides, alginic acid and salts thereof (for example, sodium alginate), natural polymers such as starch; carboxymethyl cellulose and salts thereof A semi-synthetic polymer obtained by chemically treating a natural polymer as a raw material; a synthetic polymer such as polyacrylic acid such as polyvinylpyrrolidone, crosslinked polyacrylic acid and non-crosslinked polyacrylic acid; be able to. Among these, from the viewpoint of improving the slurry stability by giving the slurry composition good viscosity stability, from the viewpoint of better dispersing components such as the electrode active material in the slurry composition, the adhesion with the current collector From the viewpoint of forming an excellent electrode mixture layer, and from the viewpoint of further suppressing metal deposition on the electrode in the secondary battery, the other water-soluble polymer is preferably a semi-synthetic polymer, a synthetic polymer, Carboxymethyl cellulose, a salt of carboxymethyl cellulose, and polyacrylic acid are more preferable.
 なお、その他の水溶性の重合体を併用してスラリー組成物を調製する場合は、その他の水溶性の重合体は、予め重合体Xと混合してバインダー組成物としてからスラリー組成物の調製に使用してもよいし;重合体Xと予め混合することなく、スラリー組成物の調製時に、電極活物質などと共に、重合体Xと混合してもよい。 When preparing a slurry composition using other water-soluble polymer in combination, the other water-soluble polymer is mixed with polymer X in advance to form a binder composition, and then the slurry composition is prepared. It may be used; it may be mixed with the polymer X together with the electrode active material or the like when preparing the slurry composition without being previously mixed with the polymer X.
 また、その他の水溶性の重合体を併用してスラリー組成物を調製する場合は、その他の水溶性の重合体の含有割合は、水溶性重合体中の全重合体100質量%に対して0質量%超とすることができ、90質量%以下であることが好ましく、70質量%以下であることがより好ましく、60質量%以下であることが更に好ましい。 Moreover, when preparing a slurry composition using other water-soluble polymer together, the content rate of another water-soluble polymer is 0 with respect to 100 mass% of all the polymers in a water-soluble polymer. It can be more than mass%, preferably 90 mass% or less, more preferably 70 mass% or less, and still more preferably 60 mass% or less.
<粒子状重合体>
[組成]
 本発明の非水系二次電池電極用バインダー組成物が任意に含み得る粒子状重合体は、カルボキシル基およびヒドロキシル基(カルボキシル基中のヒドロキシル基以外のヒドロキシル基)の少なくとも一方を有する。また、粒子状重合体は、カルボキシル基およびヒドロキシル基を有することが好ましい。ここで、粒子状重合体が有するカルボキシル基およびヒドロキシル基は何れも親水性基である。
 なお、上述した通り、本発明において、通常、粒子状重合体は非水溶性である。従って、通常、粒子状重合体は、溶媒または分散媒として水を含む水系のバインダー組成物および水系のスラリー組成物中では粒子形状を有している。また、粒子状重合体は、電極合材層中では、粒子形状を維持したまま存在していてもよく、任意の非粒子形状を有して存在していてもよい。
<Particulate polymer>
[composition]
The particulate polymer that the binder composition for nonaqueous secondary battery electrodes of the present invention may optionally contain has at least one of a carboxyl group and a hydroxyl group (a hydroxyl group other than a hydroxyl group in the carboxyl group). Moreover, it is preferable that a particulate polymer has a carboxyl group and a hydroxyl group. Here, both the carboxyl group and hydroxyl group of the particulate polymer are hydrophilic groups.
As described above, in the present invention, the particulate polymer is usually water-insoluble. Accordingly, the particulate polymer usually has a particle shape in an aqueous binder composition containing water as a solvent or a dispersion medium and an aqueous slurry composition. Further, the particulate polymer may be present while maintaining the particle shape in the electrode mixture layer, or may be present with any non-particle shape.
 そして、粒子状重合体としては、特に限定されることなく、例えば、共役ジエン系重合体、アクリル系重合体、不飽和カルボン酸系重合体などの任意の重合体を用いることができる。 The particulate polymer is not particularly limited, and any polymer such as a conjugated diene polymer, an acrylic polymer, or an unsaturated carboxylic acid polymer can be used.
[[共役ジエン系重合体]]
 ここで、共役ジエン系重合体とは、共役ジエン単量体単位を含む重合体である。そして、共役ジエン系重合体の具体例としては、特に限定されることなく、スチレン-ブタジエン共重合体(SBR)などの芳香族ビニル単量体単位および脂肪族共役ジエン単量体単位を含む共重合体、ブタジエンゴム(BR)、イソプレンゴム、アクリルゴム(NBR)(アクリロニトリル単位およびブタジエン単位を含む共重合体)、並びに、それらの水素化物などが挙げられる。
 そして、例えば、芳香族ビニル単量体単位および脂肪族共役ジエン単量体単位を含む共重合体は、芳香族ビニル単量体単位を形成し得る芳香族ビニル単量体および脂肪族共役ジエン単量体単位を形成し得る脂肪族共役ジエン単量体と、カルボキシル基含有単量体および/またはヒドロキシル基含有単量体とを任意の方法で重合して得ることができる。また、例えば、芳香族ビニル単量体単位および脂肪族共役ジエン単量体単位を含む共重合体は、上記カルボキシル基含有単量体および/またはヒドロキシル基含有単量体に加え、任意にその他の単量体を更に用いて調製してもよい。
[[Conjugated Diene Polymer]]
Here, the conjugated diene polymer is a polymer containing a conjugated diene monomer unit. A specific example of the conjugated diene polymer is not particularly limited, and is a copolymer containing an aromatic vinyl monomer unit such as a styrene-butadiene copolymer (SBR) and an aliphatic conjugated diene monomer unit. Examples thereof include polymers, butadiene rubber (BR), isoprene rubber, acrylic rubber (NBR) (a copolymer containing acrylonitrile units and butadiene units), and hydrides thereof.
For example, a copolymer containing an aromatic vinyl monomer unit and an aliphatic conjugated diene monomer unit is an aromatic vinyl monomer and an aliphatic conjugated diene unit capable of forming an aromatic vinyl monomer unit. An aliphatic conjugated diene monomer capable of forming a monomer unit and a carboxyl group-containing monomer and / or a hydroxyl group-containing monomer can be polymerized by any method. In addition, for example, a copolymer containing an aromatic vinyl monomer unit and an aliphatic conjugated diene monomer unit may optionally contain other carboxyl group-containing monomer and / or hydroxyl group-containing monomer. You may prepare using a monomer further.
 -芳香族ビニル単量体-
 芳香族ビニル単量体としては、スチレン、α-メチルスチレン、ビニルトルエン、ジビニルベンゼンなどが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。これらの中でも、芳香族ビニル単量体としてはスチレンが好ましい。
-Aromatic vinyl monomer-
Examples of the aromatic vinyl monomer include styrene, α-methylstyrene, vinyl toluene, divinylbenzene and the like. These may be used alone or in combination of two or more. Among these, styrene is preferable as the aromatic vinyl monomer.
-脂肪族共役ジエン単量体-
 脂肪族共役ジエン単量体としては、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロル-1,3-ブタジエン、置換直鎖共役ペンタジエン類、置換および側鎖共役ヘキサジエン類などが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。これらの中でも、脂肪族共役ジエン単量体としては1,3-ブタジエンが好ましい。
-Aliphatic conjugated diene monomer-
Aliphatic conjugated diene monomers include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, And chain conjugated pentadienes, substituted and side chain conjugated hexadienes, and the like. These may be used alone or in combination of two or more. Among these, 1,3-butadiene is preferable as the aliphatic conjugated diene monomer.
-カルボキシル基含有単量体-
 芳香族ビニル単量体単位および脂肪族共役ジエン単量体単位を含む共重合体の調製に用い得るカルボキシル基含有単量体としては、例えば、上述した「エチレン性不飽和カルボン酸単量体単位を形成し得るエチレン性不飽和カルボン酸単量体」と同様の単量体を挙げることができる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。これらの中でも、カルボキシル基含有単量体としては、イタコン酸が好ましい。
-Carboxyl group-containing monomer-
Examples of the carboxyl group-containing monomer that can be used for the preparation of a copolymer containing an aromatic vinyl monomer unit and an aliphatic conjugated diene monomer unit include the above-mentioned “ethylenically unsaturated carboxylic acid monomer unit”. And the same monomers as the “ethylenically unsaturated carboxylic acid monomer capable of forming“. These may be used alone or in combination of two or more. Among these, itaconic acid is preferable as the carboxyl group-containing monomer.
-ヒドロキシル基含有単量体-
 芳香族ビニル単量体単位および脂肪族共役ジエン単量体単位を含む共重合体の調製に用いるヒドロキシル基含有単量体としては、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレート、ヒドロキシブチルアクリレート、ヒドロキシブチルメタクリレート、3-クロロ-2-ヒドロキシプロピルメタクリレート、ジ-(エチレングリコール)マレエート、ジ-(エチレングリコール)イタコネート、2-ヒドロキシエチルマレエート、ビス(2-ヒドロキシエチル)マレエート、2-ヒドロキシエチルメチルフマレートなどが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。これらの中でも、ヒドロキシル基含有単量体としては、2-ヒドロキシエチルアクリレートが好ましい。
-Hydroxyl group-containing monomer-
Examples of the hydroxyl group-containing monomer used for the preparation of a copolymer containing an aromatic vinyl monomer unit and an aliphatic conjugated diene monomer unit include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl Acrylate, 2-hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, 3-chloro-2-hydroxypropyl methacrylate, di- (ethylene glycol) maleate, di- (ethylene glycol) itaconate, 2-hydroxyethyl maleate, bis (2-hydroxyethyl) maleate, 2-hydroxyethyl methyl fumarate and the like can be mentioned. These may be used alone or in combination of two or more. Among these, 2-hydroxyethyl acrylate is preferable as the hydroxyl group-containing monomer.
-その他の単量体-
 芳香族ビニル単量体単位および脂肪族共役ジエン単量体単位を含む共重合体の調製に用いるその他の単量体としては、上述した単量体と共重合可能な単量体が挙げられる。具体的には、その他の単量体としては、フッ素含有(メタ)アクリル酸エステル単量体等のフッ素含有単量体;アクリルアミド-2-メチルプロパンスルホン酸等の硫酸エステル基含有単量体;アクリルアミド、メタクリルアミド等のアミド基含有単量体;アリルグリシジルエーテル、アリル(メタ)アクリレート、N-メチロールアクリルアミドなどの架橋性単量体(架橋可能な単量体);エチレン、プロピレン等のオレフィン類;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビエルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物;アミノエチルビニルエーテル、ジメチルアミノエチルビニルエーテル等のアミノ基含有単量体;アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル単量体;などが挙げられる。これらのその他の単量体は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
-Other monomers-
Examples of the other monomer used for preparing the copolymer containing the aromatic vinyl monomer unit and the aliphatic conjugated diene monomer unit include monomers copolymerizable with the above-described monomers. Specifically, as other monomers, fluorine-containing monomers such as fluorine-containing (meth) acrylic acid ester monomers; sulfate group-containing monomers such as acrylamide-2-methylpropanesulfonic acid; Amide group-containing monomers such as acrylamide and methacrylamide; crosslinkable monomers (crosslinkable monomers) such as allyl glycidyl ether, allyl (meth) acrylate, and N-methylolacrylamide; olefins such as ethylene and propylene Halogen-containing monomers such as vinyl chloride and vinylidene chloride; vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate and vinyl benzoate; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether and butyl vinyl ether; methyl vinyl Ketone, ethyl vinyl ketone, butyl vinyl keto , Vinyl ketones such as hexyl vinyl ketone and isopropenyl vinyl ketone; heterocycle-containing vinyl compounds such as N-vinylpyrrolidone, vinylpyridine and vinylimidazole; amino group-containing monomers such as aminoethyl vinyl ether and dimethylaminoethyl vinyl ether; acrylonitrile , Α, β-unsaturated nitrile monomers such as methacrylonitrile; and the like. One of these other monomers may be used alone, or two or more thereof may be used in combination.
 なお、芳香族ビニル単量体単位および脂肪族共役ジエン単量体単位を含む共重合体などの共役ジエン系重合体の調製に(メタ)アクリル酸エステル単量体を用いる場合は、当該(メタ)アクリル酸エステル単量体の含有割合は、共役ジエン系重合体を構成し得る全単量体100質量%当たり50質量%未満である。 In addition, when a (meth) acrylic acid ester monomer is used for the preparation of a conjugated diene polymer such as a copolymer containing an aromatic vinyl monomer unit and an aliphatic conjugated diene monomer unit, ) The content of the acrylate monomer is less than 50% by mass based on 100% by mass of all monomers capable of constituting the conjugated diene polymer.
[[アクリル系重合体]]
 また、アクリル系重合体は、(メタ)アクリル酸エステル単量体単位を含む重合体である。
 そしてアクリル系重合体は、(メタ)アクリル酸エステル単量体単位を形成し得る(メタ)アクリル酸エステル単量体と、カルボキシル基含有単量体および/またはヒドロキシル基含有単量体とを任意の方法で重合して得ることができる。また、アクリル系重合体は、上記カルボキシル基含有単量体および/またはヒドロキシル基含有単量体に加え、任意にその他の単量体を更に含んでもよい。
 なお、アクリル系重合体は、通常、アクリル系重合体を構成し得る全単量体100質量%当たり(メタ)アクリル酸エステル単量体を50質量%以上含み、上述した共役ジエン系重合体とは異なる。
[[Acrylic polymer]]
The acrylic polymer is a polymer containing a (meth) acrylic acid ester monomer unit.
The acrylic polymer is an optional combination of a (meth) acrylic acid ester monomer capable of forming a (meth) acrylic acid ester monomer unit, and a carboxyl group-containing monomer and / or a hydroxyl group-containing monomer. It can obtain by superposing | polymerizing by the method of. The acrylic polymer may optionally further contain other monomers in addition to the carboxyl group-containing monomer and / or hydroxyl group-containing monomer.
The acrylic polymer usually contains 50% by mass or more of a (meth) acrylic acid ester monomer per 100% by mass of all monomers that can constitute the acrylic polymer, and the conjugated diene polymer described above Is different.
-(メタ)アクリル酸エステル単量体-
 (メタ)アクリル酸エステル単量体としては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレー卜、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、2-エチルヘキシルアクリレート等のオクチルアクリレート、等のアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、2-エチルヘキシルメタクリレート等のオクチルメタクリレート、等のメタクリル酸アルキルエステル;などが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。これらの中でも、(メタ)アクリル酸エステル単量体としては、n-ブチルアクリレートが好ましい。
-(Meth) acrylate monomer-
(Meth) acrylate monomers include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, 2-ethylhexyl Acrylic acid alkyl esters such as octyl acrylate such as acrylate; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, pentyl methacrylate, hexyl methacrylate, heptyl methacrylate, 2-ethylhexyl methacrylate Octyl methacrylate, etc., methacrylic acid alkyl esters, etc. That. These may be used alone or in combination of two or more. Among these, as the (meth) acrylic acid ester monomer, n-butyl acrylate is preferable.
-カルボキシル基含有単量体-
 アクリル系重合体の調製に用いるカルボキシル基含有単量体としては、上述した「エチレン性不飽和カルボン酸単量体単位を形成し得るエチレン性不飽和カルボン酸単量体」と同様の単量体を挙げることができる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。これらの中でも、カルボキシル基含有単量体としては、メタクリル酸が好ましい。
-Carboxyl group-containing monomer-
As the carboxyl group-containing monomer used for the preparation of the acrylic polymer, a monomer similar to the above-mentioned “ethylenically unsaturated carboxylic acid monomer capable of forming an ethylenically unsaturated carboxylic acid monomer unit” Can be mentioned. These may be used alone or in combination of two or more. Among these, methacrylic acid is preferable as the carboxyl group-containing monomer.
-ヒドロキシル基含有単量体-
 アクリル系重合体の調製に用いるヒドロキシル基含有単量体としては、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレート、N-メチロールアクリルアミド等が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。これらの中でも、ヒドロキシル基含有単量体としては、N-メチロールアクリルアミドが好ましい。
-Hydroxyl group-containing monomer-
Examples of the hydroxyl group-containing monomer used for preparing the acrylic polymer include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, N-methylol acrylamide and the like. These may be used alone or in combination of two or more. Of these, N-methylolacrylamide is preferred as the hydroxyl group-containing monomer.
-その他の単量体-
 アクリル系重合体の調製に用いるその他の単量体としては、上述した単量体と共重合可能な単量体が挙げられる。具体的には、その他の単量体としては、アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル単量体;アクリルアミド-2-メチルプロパンスルホン酸等の硫酸エステル基含有単量体;アクリルアミド、メタクリルアミド等のアミド基含有単量体;アリルグリシジルエーテル、アリル(メタ)アクリレート、N-メチロールアクリルアミドなどの架橋性単量体(架橋可能な単量体);スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、α-メチルスチレン、ジビニルベンゼン等のスチレン系単量体;エチレン、プロピレン等のオレフィン類;ブタジエン、イソプレン等のジエン系単量体;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビエルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物;アミノエチルビニルエーテル、ジメチルアミノエチルビニルエーテル等のアミノ基含有単量体;などが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
-Other monomers-
Examples of other monomers used for preparing the acrylic polymer include monomers copolymerizable with the above-described monomers. Specifically, other monomers include α, β-unsaturated nitrile monomers such as acrylonitrile and methacrylonitrile; sulfate group-containing monomers such as acrylamide-2-methylpropanesulfonic acid; acrylamide Amide group-containing monomers such as methacrylamide; crosslinkable monomers (crosslinkable monomers) such as allyl glycidyl ether, allyl (meth) acrylate, N-methylolacrylamide; styrene, chlorostyrene, vinyltoluene, Styrene monomers such as t-butylstyrene, methyl vinylbenzoate, vinylnaphthalene, chloromethylstyrene, α-methylstyrene, divinylbenzene; olefins such as ethylene and propylene; diene monomers such as butadiene and isoprene ; Monomers containing halogen atoms such as vinyl chloride and vinylidene chloride Body; vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl benzoate; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether; methyl vinyl ketone, ethyl vinyl ketone, butyl vinyl ketone, hexyl vinyl ketone And vinyl ketones such as isopropenyl vinyl ketone; heterocyclic ring-containing vinyl compounds such as N-vinyl pyrrolidone, vinyl pyridine and vinyl imidazole; amino group-containing monomers such as aminoethyl vinyl ether and dimethylaminoethyl vinyl ether; These may be used alone or in combination of two or more.
[[不飽和カルボン酸系重合体]]
 また、不飽和カルボン酸系重合体は、不飽和カルボン酸単量体単位を含む重合体である。ここで、不飽和カルボン酸単量体単位を形成し得る不飽和カルボン酸単量体としては、アクリル酸、メタクリル酸、イタコン酸などを用いることができる。
[[Unsaturated carboxylic acid polymer]]
The unsaturated carboxylic acid polymer is a polymer containing an unsaturated carboxylic acid monomer unit. Here, as the unsaturated carboxylic acid monomer capable of forming the unsaturated carboxylic acid monomer unit, acrylic acid, methacrylic acid, itaconic acid and the like can be used.
[粒子状重合体の調製方法]
 そして、粒子状重合体の重合方法は、特に限定されることなく、例えば、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法を用いてもよい。また、重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合などの付加重合を用いることができる。そして、重合に使用され得る重合溶媒、乳化剤、分散剤、重合開始剤、連鎖移動剤などは、一般的なものを使用することができ、その使用量も、一般に使用される量とすることができる。
[Preparation method of particulate polymer]
The polymerization method of the particulate polymer is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method may be used. As the polymerization reaction, addition polymerization such as ionic polymerization, radical polymerization, and living radical polymerization can be used. The polymerization solvent, emulsifier, dispersant, polymerization initiator, chain transfer agent, etc. that can be used for the polymerization can be general ones, and the amount used can also be the amount generally used. it can.
<溶媒>
 本発明の非水系二次電池電極用バインダー組成物の調製に使用できる溶媒または分散媒としては、上述した水溶性重合体および任意の粒子状重合体を溶解または分散可能な既知の溶媒または分散媒を用いることができる。中でも、溶媒または分散媒としては、水を用いることが好ましい。なお、バインダー組成物の溶媒の少なくとも一部は、特に限定されることなく、水溶性重合体および/または任意の粒子状重合体の調製に用いた重合溶媒とすることができる。
<Solvent>
Examples of the solvent or dispersion medium that can be used for the preparation of the binder composition for non-aqueous secondary battery electrodes of the present invention include known solvents or dispersion media that can dissolve or disperse the water-soluble polymer and any particulate polymer described above. Can be used. Among these, water is preferably used as the solvent or dispersion medium. In addition, at least one part of the solvent of a binder composition can be made into the polymerization solvent used for preparation of a water-soluble polymer and / or arbitrary particulate polymers, without being specifically limited.
<その他の成分>
 また、本発明の非水系二次電池電極用バインダー組成物は、上述した成分の他に、補強材、レベリング剤、粘度調整剤、電解液添加剤等の任意のその他の成分を含有していてもよい。これらは、電池反応に影響を及ぼさないものであれば特に限られず、公知の成分、例えば国際公開第2012/115096号に記載の成分を使用することができる。また、これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<Other ingredients>
Moreover, the binder composition for non-aqueous secondary battery electrodes of the present invention contains any other component such as a reinforcing material, a leveling agent, a viscosity modifier, an electrolytic solution additive, in addition to the above-described components. Also good. These are not particularly limited as long as they do not affect the battery reaction, and known components such as those described in International Publication No. 2012/115096 can be used. Moreover, these components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
<バインダー組成物の調製方法>
 そして、本発明の非水系二次電池電極用バインダー組成物は、上述した水溶性重合体並びに任意の粒子状重合体、溶媒およびその他の成分を、既知の方法で混合することにより調製することができる。具体的には、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの混合機を用いて上記各成分を混合することにより、バインダー組成物を調製することができる。
 なお、水溶性重合体および任意の粒子状重合体は、水系溶媒中で重合して調製した場合には、水溶液または水分散体の状態でそのまま混合し、溶媒として水を含むバインダー組成物を調製することができる。
 また、例えば、水溶性重合体と電極活物質とを混合した後、任意の粒子状重合体を添加するなど、バインダー組成物の調製と、後述するスラリー組成物の調製とを同時に実施してもよい。
<Method for preparing binder composition>
And the binder composition for non-aqueous secondary battery electrodes of this invention can be prepared by mixing the water-soluble polymer mentioned above and arbitrary particulate polymers, a solvent, and another component by a known method. it can. Specifically, the binder composition is obtained by mixing the above components using a mixer such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, a fill mix, etc. Product can be prepared.
When the water-soluble polymer and any particulate polymer are prepared by polymerization in an aqueous solvent, they are mixed as they are in the form of an aqueous solution or water dispersion to prepare a binder composition containing water as a solvent. can do.
Also, for example, after mixing the water-soluble polymer and the electrode active material, the preparation of the binder composition and the preparation of the slurry composition described later may be performed simultaneously, such as adding an arbitrary particulate polymer. Good.
[含有量]
 そして、本発明の非水系二次電池電極用バインダー組成物では、水溶性重合体および粒子状重合体の含有量が以下の通りであることが好ましい。即ち、水溶性重合体全体の含有量が、粒子状重合体100質量部に対して0.1質量部以上であることが好ましく、1質量部以上であることがより好ましく、50質量部以上であることが更に好ましく、80質量部以上であることが一層好ましく、200質量部以下であることが好ましく、150質量部以下であることがより好ましく、120質量部以下であることが更に好ましい。バインダー組成物中の水溶性重合体および粒子状重合体の含有量が上記範囲内であれば、スラリー組成物および当該スラリー組成物を用いて得られる電極の生産性に優れる傾向にあるからである。
[Content]
And in the binder composition for non-aqueous secondary battery electrodes of this invention, it is preferable that content of a water-soluble polymer and a particulate polymer is as follows. That is, the content of the entire water-soluble polymer is preferably 0.1 parts by mass or more, more preferably 1 part by mass or more, and 50 parts by mass or more with respect to 100 parts by mass of the particulate polymer. More preferably, it is more preferably 80 parts by mass or more, preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and still more preferably 120 parts by mass or less. If the content of the water-soluble polymer and the particulate polymer in the binder composition is within the above range, the slurry composition and the electrode obtained using the slurry composition tend to be excellent in productivity. .
 更に、水溶性重合体が重合体Xおよび重合体Xとは異なる(重合体X以外の)その他の水溶性の重合体を含む場合は、重合体Xの含有量は、粒子状重合体100質量部に対して0.1質量部以上であることが好ましく、1質量部以上であることがより好ましく、30質量部以上であることが更に好ましく、40質量部以上であることが一層好ましく、200質量部以下であることが好ましく、150質量部以下であることがより好ましく、120質量部以下であることが更に好ましい。重合体Xの含有量が上記下限以上となるように水溶性重合体および粒子状重合体を用いてバインダー組成物を調製すれば、当該バインダー組成物を含むスラリー組成物の粘度安定性がより向上するからである。また、当該スラリー組成物を用いて形成される電極合材層の集電体との密着性がより向上するからである。また、重合体Xの含有量が上記上限以下となるように水溶性重合体および粒子状重合体を用いてバインダー組成物を調製すれば、スラリー組成物の高い粘度安定性を維持しつつ、当該スラリー組成物を用いて形成される電極合材層の集電体との密着性を更に向上できるからである。 Further, when the water-soluble polymer includes the polymer X and other water-soluble polymers different from the polymer X (other than the polymer X), the content of the polymer X is 100 masses of the particulate polymer. It is preferably 0.1 parts by mass or more, more preferably 1 part by mass or more, still more preferably 30 parts by mass or more, still more preferably 40 parts by mass or more, based on 200 parts by mass. It is preferably no greater than part by mass, more preferably no greater than 150 parts by mass, and even more preferably no greater than 120 parts by mass. If a binder composition is prepared using a water-soluble polymer and a particulate polymer so that the content of the polymer X is not less than the above lower limit, the viscosity stability of the slurry composition containing the binder composition is further improved. Because it does. Moreover, it is because the adhesiveness with the electrical power collector of the electrode compound-material layer formed using the said slurry composition improves more. In addition, if a binder composition is prepared using a water-soluble polymer and a particulate polymer so that the content of the polymer X is not more than the above upper limit, while maintaining the high viscosity stability of the slurry composition, This is because it is possible to further improve the adhesion of the electrode mixture layer formed using the slurry composition to the current collector.
(非水系二次電池電極用スラリー組成物)
 本発明の非水系二次電池電極用スラリー組成物は、電極活物質と、上述した非水系二次電池電極用バインダー組成物とを含むことを特徴とする。また、本発明の非水系二次電池電極用スラリー組成物は、上記電極活物質およびバインダー組成物以外に、導電材およびその他の成分を更に含んでいてもよい。スラリー組成物が上述した重合体Xを含有する水溶性重合体を含むバインダー組成物を含まなければ、スラリー組成物に良好な粘度安定性を与えること、およびスラリー組成物を用いて形成した電極合材層を集電体と良好に密着させることができない。従って、本発明の非水系二次電池電極用スラリー組成物を用いて電極合材層を形成すれば、集電体と電極合材層との間の密着性に優れた(高いピール強度を有する)電極を得ることができる。
 以下、本発明の非水系二次電池電極用スラリー組成物がリチウムイオン二次電池負極用スラリー組成物である場合について詳述するが、本発明は下記の一例に限定されない。
(Slurry composition for non-aqueous secondary battery electrode)
The slurry composition for non-aqueous secondary battery electrodes of this invention is characterized by including an electrode active material and the binder composition for non-aqueous secondary battery electrodes mentioned above. Moreover, the slurry composition for non-aqueous secondary battery electrodes of the present invention may further contain a conductive material and other components in addition to the electrode active material and the binder composition. If the slurry composition does not contain a binder composition containing a water-soluble polymer containing the polymer X described above, the slurry composition is provided with good viscosity stability, and an electrode assembly formed using the slurry composition. The material layer cannot be satisfactorily adhered to the current collector. Therefore, when the electrode mixture layer is formed using the slurry composition for a non-aqueous secondary battery electrode of the present invention, the adhesion between the current collector and the electrode mixture layer is excellent (having high peel strength). ) An electrode can be obtained.
Hereinafter, although the case where the slurry composition for non-aqueous secondary battery electrodes of this invention is a slurry composition for lithium ion secondary battery negative electrodes is explained in full detail, this invention is not limited to the following example.
<電極活物質(負極活物質)>
 ここで、リチウムイオン二次電池の負極活物質としては、通常は、リチウムを吸蔵および放出し得る物質を用いる。リチウムを吸蔵および放出し得る物質としては、例えば、炭素系負極活物質、非炭素系負極活物質、および、これらを組み合わせた活物質などが挙げられる。
<Electrode active material (negative electrode active material)>
Here, as the negative electrode active material of the lithium ion secondary battery, a material that can occlude and release lithium is usually used. Examples of the material that can occlude and release lithium include a carbon-based negative electrode active material, a non-carbon-based negative electrode active material, and an active material that combines these materials.
[炭素系負極活物質]
 ここで、炭素系負極活物質とは、リチウムを挿入(「ドープ」ともいう。)可能な、炭素を主骨格とする活物質をいい、炭素系負極活物質としては、例えば炭素質材料と黒鉛質材料とが挙げられる。
[Carbon-based negative electrode active material]
Here, the carbon-based negative electrode active material refers to an active material having carbon as a main skeleton into which lithium can be inserted (also referred to as “dope”). Examples of the carbon-based negative electrode active material include a carbonaceous material and graphite. Quality materials.
 炭素質材料は、炭素前駆体を2000℃以下で熱処理して炭素化させることによって得られる、黒鉛化度の低い(即ち、結晶性の低い)材料である。なお、炭素化させる際の熱処理温度の下限は特に限定されないが、例えば500℃以上とすることができる。そして、炭素質材料としては、例えば、熱処理温度によって炭素の構造を容易に変える易黒鉛性炭素や、ガラス状炭素に代表される非晶質構造に近い構造を持つ難黒鉛性炭素などが挙げられる。
 ここで、易黒鉛性炭素としては、例えば、石油または石炭から得られるタールピッチを原料とした炭素材料が挙げられる。具体例を挙げると、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維などが挙げられる。
 また、難黒鉛性炭素としては、例えば、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)、ハードカーボンなどが挙げられる。
The carbonaceous material is a material having a low degree of graphitization (ie, low crystallinity) obtained by carbonizing a carbon precursor by heat treatment at 2000 ° C. or lower. In addition, although the minimum of the heat processing temperature at the time of carbonizing is not specifically limited, For example, it can be 500 degreeC or more. Examples of the carbonaceous material include graphitizable carbon that easily changes the carbon structure depending on the heat treatment temperature, and non-graphitizable carbon having a structure close to an amorphous structure typified by glassy carbon. .
Here, as the graphitizable carbon, for example, a carbon material using tar pitch obtained from petroleum or coal as a raw material can be mentioned. Specific examples include coke, mesocarbon microbeads (MCMB), mesophase pitch carbon fibers, pyrolytic vapor grown carbon fibers, and the like.
In addition, examples of the non-graphitizable carbon include a phenol resin fired body, polyacrylonitrile-based carbon fiber, pseudo-isotropic carbon, furfuryl alcohol resin fired body (PFA), and hard carbon.
 黒鉛質材料は、易黒鉛性炭素を2000℃以上で熱処理することによって得られる、黒鉛に近い高い結晶性を有する材料である。なお、熱処理温度の上限は、特に限定されないが、例えば5000℃以下とすることができる。そして、黒鉛質材料としては、例えば、天然黒鉛、人造黒鉛などが挙げられる。
 ここで、人造黒鉛としては、例えば、易黒鉛性炭素を含んだ炭素を主に2800℃以上で熱処理した人造黒鉛、MCMBを2000℃以上で熱処理した黒鉛化MCMB、メソフェーズピッチ系炭素繊維を2000℃以上で熱処理した黒鉛化メソフェーズピッチ系炭素繊維などが挙げられる。
 また、本発明においては、炭素系負極活物質として、その表面の少なくとも一部が非晶質炭素で被覆された天然黒鉛(非晶質コート天然黒鉛)を用いてもよい。
The graphite material is a material having high crystallinity close to that of graphite obtained by heat-treating graphitizable carbon at 2000 ° C. or higher. In addition, although the upper limit of heat processing temperature is not specifically limited, For example, it can be 5000 degrees C or less. Examples of the graphite material include natural graphite and artificial graphite.
Here, as the artificial graphite, for example, artificial graphite obtained by heat-treating carbon containing graphitizable carbon mainly at 2800 ° C. or higher, graphitized MCMB heat-treated at 2000 ° C. or higher, and mesophase pitch-based carbon fiber at 2000 ° C. Examples thereof include graphitized mesophase pitch-based carbon fibers that have been heat-treated.
In the present invention, as the carbon-based negative electrode active material, natural graphite (amorphous coated natural graphite) whose surface is at least partially coated with amorphous carbon may be used.
[非炭素系負極活物質]
 非炭素系負極活物質は、炭素質材料または黒鉛質材料のみからなる炭素系負極活物質を除く活物質であり、非炭素系負極活物質としては、例えば金属系負極活物質を挙げることができる。
[Non-carbon negative electrode active material]
The non-carbon-based negative electrode active material is an active material excluding a carbon-based negative electrode active material made of only a carbonaceous material or a graphite material, and examples of the non-carbon-based negative electrode active material include a metal-based negative electrode active material. .
 金属系負極活物質とは、金属を含む活物質であり、通常は、リチウムの挿入が可能な元素を構造に含み、リチウムが挿入された場合の単位質量当たりの理論電気容量が500mAh/g以上である活物質をいう。金属系負極活物質としては、例えば、リチウム金属、リチウム合金を形成し得る単体金属(例えば、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn、Tiなど)およびその合金、並びに、それらの酸化物、硫化物、窒化物、ケイ化物、炭化物、燐化物などが用いられる。そして、これらの中でも、金属系負極活物質としては、ケイ素を含む活物質(シリコン系負極活物質)が好ましい。シリコン系負極活物質を用いることにより、リチウムイオン二次電池を高容量化することができるからである。 The metal-based negative electrode active material is an active material containing a metal, and usually contains an element capable of inserting lithium in the structure, and the theoretical electric capacity per unit mass when lithium is inserted is 500 mAh / g or more. Is an active material. As the metal-based negative electrode active material, for example, lithium metal, a single metal capable of forming a lithium alloy (for example, Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si, Sn, Sr, Zn, Ti, etc.) and alloys thereof, and oxides, sulfides, nitrides, silicides, carbides, phosphides, and the like thereof are used. Among these, as the metal-based negative electrode active material, an active material containing silicon (silicon-based negative electrode active material) is preferable. This is because the capacity of the lithium ion secondary battery can be increased by using the silicon-based negative electrode active material.
 シリコン系負極活物質としては、例えば、ケイ素(Si)、ケイ素を含む合金、SiO、SiOx、Si含有材料を導電性カーボンで被覆または複合化してなるSi含有材料と導電性カーボンとの複合化物などが挙げられる。なお、これらのシリコン系負極活物質は、1種類を単独で用いてもよいし、2種類上を組み合わせて用いてもよい。
 なお、リチウムイオン二次電池の高容量化の観点からは、シリコン系負極活物質としては、ケイ素を含む合金およびSiOxが好ましい。
Examples of silicon-based negative electrode active materials include silicon (Si), silicon-containing alloys, SiO, SiO x , and a composite of a Si-containing material obtained by coating or combining a Si-containing material with conductive carbon and conductive carbon. Etc. In addition, these silicon type negative electrode active materials may be used individually by 1 type, and may be used in combination of 2 types.
From the viewpoint of increasing the capacity of the lithium ion secondary battery, the silicon-based negative electrode active material is preferably an alloy containing silicon and SiO x .
 ケイ素を含む合金としては、例えば、ケイ素と、チタン、鉄、コバルト、ニッケルおよび銅からなる群より選択される少なくとも一種の元素とを含む合金組成物が挙げられる。また、ケイ素を含む合金としては、例えば、ケイ素と、アルミニウムと、鉄などの遷移金属とを含み、さらにスズおよびイットリウム等の希土類元素を含む合金組成物も挙げられる。 Examples of the alloy containing silicon include an alloy composition containing silicon and at least one element selected from the group consisting of titanium, iron, cobalt, nickel, and copper. Examples of the alloy containing silicon include an alloy composition containing silicon, aluminum, and a transition metal such as iron, and further containing a rare earth element such as tin and yttrium.
<分散媒>
 リチウムイオン二次電池負極用スラリー組成物の分散媒としては、特に限定されることなく、既知の分散媒、例えば、水、n-メチルピロリドン等を用いることができる。中でも、分散媒としては、水を用いることが好ましい。
 なお、スラリー組成物の分散媒の少なくとも一部は、特に限定されることなく、スラリー組成物の調製に使用したバインダー組成物が含有していた溶媒とすることができる。
<Dispersion medium>
The dispersion medium of the lithium ion secondary battery negative electrode slurry composition is not particularly limited, and a known dispersion medium such as water, n-methylpyrrolidone, or the like can be used. Among these, water is preferably used as the dispersion medium.
In addition, at least one part of the dispersion medium of a slurry composition can be made into the solvent which the binder composition used for preparation of a slurry composition contained, without being specifically limited.
<その他の成分>
 また、リチウムイオン二次電池負極用スラリー組成物は、上述した成分の他に、その他の成分を更に含有していてもよい。そして、スラリー組成物に含まれ得るその他の成分としては、例えば、導電材;上述したバインダー組成物に含まれ得るその他の成分と同様の成分;が挙げられる。
<Other ingredients>
Moreover, the slurry composition for lithium ion secondary battery negative electrodes may further contain other components in addition to the components described above. Examples of other components that can be included in the slurry composition include, for example, a conductive material; components similar to the other components that can be included in the binder composition described above.
<スラリー組成物の調製方法>
 リチウムイオン二次電池負極用スラリー組成物は、上記各成分を分散媒に分散させることにより調製することができる。具体的には、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの混合機を用いて上記各成分と分散媒とを混合することにより、スラリー組成物を調製することができる。
 ここで、分散媒としては、通常は水を用いるが、任意の化合物の水溶液や、少量の有機媒体と水との混合溶液などを用いてもよい。
<Method for preparing slurry composition>
The slurry composition for a lithium ion secondary battery negative electrode can be prepared by dispersing the above components in a dispersion medium. Specifically, the above components and the dispersion medium are mixed using a mixer such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crushed crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, or a fill mix. Thus, a slurry composition can be prepared.
Here, water is usually used as the dispersion medium, but an aqueous solution of an arbitrary compound or a mixed solution of a small amount of an organic medium and water may be used.
 なお、スラリー組成物中の上記各成分の割合は、適宜に調整することができる。
 ここで、スラリー組成物の優れた粘度安定性、およびスラリー組成物を用いて形成した電極合材層と集電体との優れた密着性を確保しつつ、リチウムイオン二次電池の性能を確保する観点からは、スラリー組成物中のバインダー組成物の含有量は、スラリー組成物中の固形分換算で100質量部当たり、固形分換算で0.5質量部以上であることが好ましく、0.7質量部以上であることがより好ましく、1質量部以上であることが更に好ましく、10質量部以下であることが好ましく、5質量部以下であることがより好ましく、3質量部以下であることが更に好ましい。
 また、スラリー組成物中の水溶性重合体の含有量は、固形分換算で、スラリー組成物100質量部当たり0.2質量部以上であることが好ましく、0.4質量部以上であることがより好ましく、3質量部以下であることが好ましく、2質量部以下であることがより好ましい。
 更に、スラリー組成物中の電極活物質の含有量は、固形分換算で、スラリー組成物100質量部当たり90質量部以上であることが好ましく、95質量部以上であることがより好ましく、99.5質量部以下であることが好ましく、99.3質量部以下であることがより好ましい。
 そして、スラリー組成物中の電極活物質と水溶性重合体との存在比(電極活物質:水溶性重合体)は、固形分換算で90:10~99.5:0.5であることが好ましく、95:5~99:1であることがより好ましい。
In addition, the ratio of each said component in a slurry composition can be adjusted suitably.
Here, while ensuring the excellent viscosity stability of the slurry composition and the excellent adhesion between the electrode mixture layer formed using the slurry composition and the current collector, the performance of the lithium ion secondary battery is ensured From this viewpoint, the content of the binder composition in the slurry composition is preferably 0.5 parts by mass or more in terms of solid content per 100 parts by mass in terms of solid content in the slurry composition. More preferably, it is 7 parts by mass or more, more preferably 1 part by mass or more, preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and 3 parts by mass or less. Is more preferable.
The content of the water-soluble polymer in the slurry composition is preferably 0.2 parts by mass or more and 0.4 parts by mass or more per 100 parts by mass of the slurry composition in terms of solid content. More preferably, it is preferably 3 parts by mass or less, and more preferably 2 parts by mass or less.
Furthermore, the content of the electrode active material in the slurry composition is preferably 90 parts by mass or more, more preferably 95 parts by mass or more, in terms of solid content, and more preferably 95 parts by mass or more. It is preferably 5 parts by mass or less, and more preferably 99.3 parts by mass or less.
The abundance ratio of the electrode active material and the water-soluble polymer in the slurry composition (electrode active material: water-soluble polymer) is 90:10 to 99.5: 0.5 in terms of solid content. Preferably, it is 95: 5 to 99: 1.
(非水系二次電池用電極)
 本発明の非水系二次電池用電極は、集電体と、上述した本発明の非水系二次電池電極用スラリー組成物を用いて形成された電極合材層とを有し、通常は、電極合材層が集電体上に形成された構造を有している。そして、電極合材層には、少なくとも、電極活物質と、所定の組成である重合体Xを含有する水溶性重合体とが含まれている。なお、電極合材層中に含まれているエチレン性不飽和カルボン酸単量体単位、(メタ)アクリルアミド単量体単位、ヒドロキシル基含有ビニル単量体単位、重合体X、水溶性重合体、電極活物質等の各成分は、上述した非水系二次電池電極用スラリー組成物中に含まれていたものであり、当該各成分の好適な存在比は、バインダー組成物中及び/又はスラリー組成物中の各成分の好適な存在比と同じである。
 そして、本発明の非水系二次電池用電極は、本発明の非水系二次電池電極用バインダー組成物を含むスラリー組成物を用いて形成した電極合材層を有しているので、電極合材層および集電体間のピール強度が高く、密着性が良好である。従って、本発明の非水系二次電池用電極を二次電池の製造に使用すれば、電池特性、特にサイクル特性等の寿命特性に優れた二次電池を得ることができる。
(Electrode for non-aqueous secondary battery)
The electrode for a non-aqueous secondary battery of the present invention has a current collector and an electrode mixture layer formed using the above-described slurry composition for a non-aqueous secondary battery electrode of the present invention. The electrode composite material layer has a structure formed on the current collector. The electrode mixture layer includes at least an electrode active material and a water-soluble polymer containing the polymer X having a predetermined composition. The ethylenically unsaturated carboxylic acid monomer unit, (meth) acrylamide monomer unit, hydroxyl group-containing vinyl monomer unit, polymer X, water-soluble polymer, contained in the electrode mixture layer, Each component such as the electrode active material is contained in the slurry composition for a non-aqueous secondary battery electrode described above, and a suitable abundance ratio of each component is in the binder composition and / or the slurry composition. It is the same as the preferred abundance ratio of each component in the product.
The electrode for a non-aqueous secondary battery of the present invention has an electrode mixture layer formed using a slurry composition containing the binder composition for a non-aqueous secondary battery electrode of the present invention. The peel strength between the material layer and the current collector is high, and the adhesion is good. Therefore, when the nonaqueous secondary battery electrode of the present invention is used for the production of a secondary battery, a secondary battery excellent in battery characteristics, particularly in life characteristics such as cycle characteristics, can be obtained.
<集電体>
 集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、集電体としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料からなる集電体を用い得る。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<Current collector>
As the current collector, an electrically conductive and electrochemically durable material is used. Specifically, as the current collector, for example, a current collector made of a metal material such as iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, or platinum can be used. In addition, the said material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
<電極合材層>
 電極合材層は、例えば、非水系二次電池電極用スラリー組成物を塗布する工程(塗布工程)と、塗布された非水系二次電池電極用スラリー組成物を乾燥する工程(乾燥工程)とを経て形成される。
<Electrode compound layer>
The electrode mixture layer includes, for example, a step of applying a slurry composition for a non-aqueous secondary battery electrode (application step), a step of drying the applied slurry composition for a non-aqueous secondary battery electrode (drying step), and It is formed through.
<<塗布工程>>
 非水系二次電池電極用スラリー組成物を、例えば集電体上に塗布する方法としては、特に限定されず公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、スラリー組成物を集電体の片面だけに塗布してもよいし、両面に塗布してもよい。また、塗布後乾燥前の集電体上のスラリー組成物膜の厚みは、乾燥して得られる電極合材層の厚みに応じて適宜に設定しうる。
<< Application process >>
A method for applying the slurry composition for a non-aqueous secondary battery electrode on, for example, a current collector is not particularly limited, and a known method can be used. Specifically, as a coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, or the like can be used. At this time, the slurry composition may be applied to only one side of the current collector or may be applied to both sides. Further, the thickness of the slurry composition film on the current collector after application and before drying can be appropriately set according to the thickness of the electrode mixture layer obtained by drying.
<<乾燥工程>>
 集電体上に塗布されたスラリー組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥法、真空乾燥法、赤外線や電子線などの照射による乾燥法が挙げられる。このように集電体上に塗布されたスラリー組成物を乾燥することで、集電体上に電極合材層を形成し、集電体と電極合材層とを有する電極を得ることができる。
 なお、乾燥工程の後、金型プレスまたはロールプレスなどを用い、電極合材層に加圧処理を施してもよい。加圧処理により、電極合材層と集電体との密着性を向上させることができる。ここで、電極合材層は本発明の非水系二次電池電極用スラリー組成物を用いて形成されているため、加圧処理を施された後でもスプリングバックを発生し難い。従って、高密度な電極を作製することができる。
 また、電極合材層が硬化性の重合体を含む場合は、電極合材層の形成後に前記重合体を硬化させることが好ましい。
<< Drying process >>
The method for drying the slurry composition coated on the current collector is not particularly limited, and a known method can be used. For example, a drying method using hot air, hot air, low-humidity air, a vacuum drying method, infrared rays or electronic The drying method by irradiation of a line etc. is mentioned. Thus, by drying the slurry composition applied on the current collector, an electrode mixture layer can be formed on the current collector, and an electrode having a current collector and an electrode mixture layer can be obtained. .
Note that after the drying step, the electrode mixture layer may be subjected to pressure treatment using a die press or a roll press. The adhesion between the electrode mixture layer and the current collector can be improved by the pressure treatment. Here, since the electrode mixture layer is formed using the slurry composition for a non-aqueous secondary battery electrode of the present invention, it is difficult to generate a springback even after being subjected to pressure treatment. Therefore, a high-density electrode can be manufactured.
Moreover, when an electrode compound-material layer contains a curable polymer, it is preferable to harden the said polymer after formation of an electrode compound-material layer.
(非水系二次電池)
 本発明の非水系二次電池は、正極、負極、セパレータ、および電解液を備え、正極および負極少なくとも一方が、上述した本発明の非水系二次電池用電極であることを特徴とする。つまり、本発明の非水系二次電池は、正極が本発明の非水系二次電池用電極であって負極が既知の負極であってもよく、負極が本発明の非水系二次電池用電極であって正極が既知の正極であってもよく、正極および負極のいずれもが本発明の非水系二次電池用電極であってもよい。
 そして、本発明の非水系二次電池は、本発明の非水系二次電池用電極を備えているので、優れたサイクル特性等の寿命特性を有し得る。
 なお、以下では、一例として非水系二次電池がリチウムイオン二次電池である場合について説明するが、本発明は下記の一例に限定されるものではない。
(Non-aqueous secondary battery)
The non-aqueous secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and an electrolytic solution, and at least one of the positive electrode and the negative electrode is the above-described electrode for a non-aqueous secondary battery of the present invention. That is, the non-aqueous secondary battery of the present invention may have a positive electrode that is a non-aqueous secondary battery electrode of the present invention and a negative electrode that is a known negative electrode, and the negative electrode is a non-aqueous secondary battery electrode of the present invention. In addition, the positive electrode may be a known positive electrode, and both the positive electrode and the negative electrode may be the nonaqueous secondary battery electrode of the present invention.
And since the non-aqueous secondary battery of this invention is equipped with the electrode for non-aqueous secondary batteries of this invention, it can have lifetime characteristics, such as the outstanding cycling characteristics.
In the following, the case where the non-aqueous secondary battery is a lithium ion secondary battery will be described as an example, but the present invention is not limited to the following example.
<正極>
 正極は、特に制限されることなく、上述の本発明の非水系二次電池用電極とすることができる。つまり、正極は、本発明の非水系二次電池電極用スラリー組成物を用いて形成した正極合材層と集電体とを有することができる。
 また、正極に本発明の非水系二次電池用電極を用いない場合は、正極としては、既知の正極、例えば、金属の薄板よりなる正極、或いは、集電体と集電体上に形成された正極合材層とを有する正極を用いることができる。ここで、正極合材層は、通常、正極活物質、導電材および結着材を含有し、任意に増粘剤等のその他の成分を更に含有することができる。また、集電体としては、アルミニウム等の金属材料からなる薄膜を用いることができる。そして、正極活物質、導電材、結着材、集電体上への正極合材層の形成方法などは、例えば特開2013-145763号公報に記載の方法を用いることができる。
<Positive electrode>
The positive electrode is not particularly limited, and can be the electrode for a non-aqueous secondary battery of the present invention described above. That is, the positive electrode can have a positive electrode mixture layer and a current collector formed using the slurry composition for a non-aqueous secondary battery electrode of the present invention.
When the non-aqueous secondary battery electrode of the present invention is not used for the positive electrode, the positive electrode is formed on a known positive electrode, for example, a positive electrode made of a thin metal plate, or on a current collector and a current collector. A positive electrode having a positive electrode composite material layer can be used. Here, the positive electrode mixture layer usually contains a positive electrode active material, a conductive material, and a binder, and can optionally further contain other components such as a thickener. As the current collector, a thin film made of a metal material such as aluminum can be used. As a method for forming the positive electrode active material, the conductive material, the binder, and the positive electrode mixture layer on the current collector, for example, a method described in JP2013-145663A can be used.
<負極>
 負極は、特に制限されることなく、上述の本発明の非水系二次電池用電極とすることができる。つまり、負極は、本発明の非水系二次電池電極用スラリー組成物を用いて形成した負極合材層と、例えば上述した集電体とを有することができる。
 また、負極に本発明の非水系二次電池用電極を用いない場合は、負極は、既知の負極であってもよい。そして、既知の負極としては、例えば特開2013-145763号公報に記載の負極を用いることができる。
<Negative electrode>
The negative electrode is not particularly limited and can be the electrode for a non-aqueous secondary battery according to the present invention described above. That is, the negative electrode can have a negative electrode mixture layer formed using the slurry composition for a non-aqueous secondary battery electrode of the present invention and the above-described current collector, for example.
In addition, when the nonaqueous secondary battery electrode of the present invention is not used for the negative electrode, the negative electrode may be a known negative electrode. As the known negative electrode, for example, the negative electrode described in JP2013-145663A can be used.
<セパレータ>
 セパレータとしては、特に限定されることなく、例えば、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂を用いた微多孔膜、ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルフォン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ポリシクロオレフィン、ナイロン、ポリテトラフルオロエチレン等の樹脂を用いた微多孔膜、ポリオレフィン系の繊維を用いた織布または不織布、絶縁性物質よりなる粒子の集合体等が挙げられる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、非水系二次電池内の電極合材層の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂を用いた微多孔膜が好ましい。中でも、ポリプロピレンの樹脂からなる微多孔膜がより好ましい。
<Separator>
The separator is not particularly limited. For example, a microporous film using a polyolefin-based resin (polyethylene, polypropylene, polybutene, polyvinyl chloride), polyethylene terephthalate, polycycloolefin, polyether sulfone, polyamide, polyimide, Examples include microporous membranes using resins such as polyimide amide, polyaramid, polycycloolefin, nylon, and polytetrafluoroethylene, woven or non-woven fabrics using polyolefin fibers, and aggregates of particles made of insulating materials. . Among these, the thickness of the entire separator can be reduced, thereby increasing the ratio of the electrode mixture layer in the non-aqueous secondary battery and increasing the capacity per volume, A microporous film using a polyolefin resin (polyethylene, polypropylene, polybutene, polyvinyl chloride) is preferred. Among these, a microporous film made of polypropylene resin is more preferable.
<電解液>
 電解液としては、溶媒に電解質を溶解した電解液を用いることができる。
 ここで、溶媒としては、電解質を溶解可能な有機溶媒を用いることができる。具体的には、溶媒としては、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、エチルメチルカーボネート(EMC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。また、溶媒には、既知の添加剤、例えば、ビニレンカーボネート(VC)、フルオロエチレンカーボネート(FEC)やエチルメチルスルホンなどを添加してもよい。
 電解質としては、リチウム塩を用いることができる。リチウム塩としては、例えば、特開2012-204303号公報に記載の化合物を用いることができる。これらのリチウム塩の中でも、有機溶媒に溶解しやすく、高い解離度を示すという点より、電解質としてはLiPF6、LiClO4、CF3SO3Liが好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導性が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導性を調節することができる。
<Electrolyte>
As the electrolytic solution, an electrolytic solution in which an electrolyte is dissolved in a solvent can be used.
Here, as the solvent, an organic solvent capable of dissolving the electrolyte can be used. Specifically, as the solvent, carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), ethyl methyl carbonate (EMC); Preference is given to esters such as γ-butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide; Moreover, you may use the liquid mixture of these solvents. In addition, known additives such as vinylene carbonate (VC), fluoroethylene carbonate (FEC), and ethyl methyl sulfone may be added to the solvent.
A lithium salt can be used as the electrolyte. As the lithium salt, for example, compounds described in JP 2012-204303 A can be used. Among these lithium salts, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable as the electrolyte because they are easily dissolved in an organic solvent and exhibit a high degree of dissociation. In addition, electrolyte may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. Usually, the lithium ion conductivity tends to increase as the supporting electrolyte having a higher degree of dissociation is used, and therefore the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
<組立工程>
 そして、本発明の非水系二次電池は、特に制限されることなく、既知の組立方法を用いて製造することができる。具体的には、本発明の非水系二次電池は、例えば、上述で得られた負極と、正極と、セパレータとを必要に応じて電池形状に巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより、製造することができる。ここで、非水系二次電池の内部圧力の上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。また、二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
 なお、二次電池が備える正極、負極、およびセパレータ等の電池部材は、通常、セパレータの片側に正極が、セパレータの他方の片側に負極が接するように配置される。より具体的には、セパレータの片側に正極合材層が、セパレータの他方の片側に負極合材層が、それぞれセパレータと接するように配置される。
<Assembly process>
And the non-aqueous secondary battery of this invention can be manufactured using a known assembly method, without being restrict | limited in particular. Specifically, the non-aqueous secondary battery of the present invention includes, for example, a negative electrode obtained as described above, a positive electrode, and a separator as necessary in a battery shape, folded into a battery container, and put into a battery container. It can manufacture by inject | pouring electrolyte solution into a container and sealing. Here, in order to prevent an increase in internal pressure of the non-aqueous secondary battery, occurrence of overcharge / discharge, etc., an overcurrent prevention element such as a fuse or PTC element, an expanded metal, a lead plate, etc. are provided as necessary. May be. The shape of the secondary battery may be any of a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, and the like.
In addition, battery members such as a positive electrode, a negative electrode, and a separator included in the secondary battery are usually arranged so that the positive electrode is in contact with one side of the separator and the negative electrode is in contact with the other side of the separator. More specifically, the positive electrode mixture layer is disposed on one side of the separator, and the negative electrode mixture layer is disposed on the other side of the separator so as to be in contact with the separator.
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
 そして、重合体Xのガラス転移温度、電解液膨潤度、および水に対する溶解度;スラリー組成物の粘度安定性;負極合材層のスプリングバック;負極の密着性;並びに、リチウムイオン二次電池における負極の膨らみおよび負極上へのリチウム析出率;は、それぞれ以下の方法を使用して測定、評価した。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In the following description, “%” and “part” representing amounts are based on mass unless otherwise specified.
And the glass transition temperature of the polymer X, the electrolyte swelling degree, the solubility in water; the viscosity stability of the slurry composition; the spring back of the negative electrode mixture layer; the adhesion of the negative electrode; and the negative electrode in the lithium ion secondary battery The bulges and the lithium deposition rate on the negative electrode were measured and evaluated using the following methods, respectively.
<ガラス転移温度>
 重合体Xを含む水溶液を、相対湿度50%、温度23℃~26℃の環境下で3日間乾燥させて、厚み1±0.3mmに成膜した。成膜したフィルムを、温度60℃の真空乾燥機で10時間乾燥させた。その後、乾燥させたフィルムをサンプルとし、JIS K7121に準拠して、測定温度-100℃~180℃、昇温速度5℃/分の条件下、示差走査熱量分析計(ナノテクノロジー社製、製品名「DSC6220SII」)を用いてガラス転移温度(℃)を測定した。
<Glass transition temperature>
The aqueous solution containing the polymer X was dried for 3 days in an environment with a relative humidity of 50% and a temperature of 23 ° C. to 26 ° C. to form a film having a thickness of 1 ± 0.3 mm. The formed film was dried with a vacuum dryer at a temperature of 60 ° C. for 10 hours. Then, using the dried film as a sample, in accordance with JIS K7121, a differential scanning calorimeter (product name, manufactured by Nanotechnology Co., Ltd.) under the conditions of a measurement temperature of −100 ° C. to 180 ° C. and a heating rate of 5 ° C./min. The glass transition temperature (° C.) was measured using “DSC6220SII”).
<電解液膨潤度>
 重合体Xを含む水溶液を、相対湿度50%、温度23℃~25℃の環境下で乾燥させて、厚み1±0.3mmに成膜した。成膜したフィルムを、温度60℃の真空乾燥機で10時間乾燥させた後、裁断してフィルム片とし、得られたフィルム片の質量W0を精秤した。次に、得られたフィルム片を、温度60℃の環境下で、電解液としての濃度1.0MのLiPF6溶液(溶媒:エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)=3/7(体積比)の混合溶媒、添加剤:ビニレンカーボネート2体積%(溶媒比)含有)に3日間浸漬し、膨潤させた。その後、膨潤させたフィルム片を引き上げ、表面の電解液をキムワイプで拭いた後、膨潤後のフィルム片の質量W1を精秤した。そして、電解液膨潤度=W1/W0(倍)を算出した。
<Electrolytic solution swelling>
The aqueous solution containing the polymer X was dried in an environment with a relative humidity of 50% and a temperature of 23 ° C. to 25 ° C. to form a film having a thickness of 1 ± 0.3 mm. The film formed was dried with a vacuum dryer at a temperature of 60 ° C. for 10 hours, then cut into film pieces, and the mass W0 of the obtained film pieces was precisely weighed. Next, the obtained film piece was subjected to an LiPF 6 solution having a concentration of 1.0 M as an electrolytic solution (solvent: ethylene carbonate (EC) / ethyl methyl carbonate (EMC) = 3/7 ( (Volume ratio) mixed solvent, additive: vinylene carbonate (2% by volume (solvent ratio) contained) was immersed for 3 days to swell. Thereafter, the swollen film piece was pulled up, the surface electrolyte was wiped with Kimwipe, and then the mass W1 of the swollen film piece was precisely weighed. And electrolyte solution swelling degree = W1 / W0 (times) was computed.
<水に対する溶解度>
 重合体Xの水に対する溶解度は、以下の通りろ過により測定、評価した。具体的には、固形分換算で10±0.5gの重合体Xをイオン交換水100gに添加し、温度20℃、pH7の環境下、ディスパー(回転数:2,000rpm)にて2時間混合した。次に、得られた混合物を400メッシュのスクリーンに通過させてろ過した。そして、スクリーンを通過せずにスクリーン上に残った残渣を秤量し、添加した重合体Xの質量から差し引くことにより、イオン交換水中に溶解した重合体Xの質量(g)を、温度20℃における重合体Xの水に対する溶解度として算出した。
 そして、温度20℃における重合体Xの水に対する溶解度が1g/100g-H2O以上である場合は溶解度が十分である(表中の「○」に相当)、1g/100g-H2O未満である場合は溶解度が不十分である(表中の「×」に相当)として評価した。
<Solubility in water>
The solubility of the polymer X in water was measured and evaluated by filtration as follows. Specifically, 10 ± 0.5 g of polymer X in terms of solid content is added to 100 g of ion-exchanged water and mixed in a disper (rotation speed: 2,000 rpm) for 2 hours in an environment of temperature 20 ° C. and pH 7. did. The resulting mixture was then filtered through a 400 mesh screen. Then, the residue remaining on the screen without passing through the screen is weighed and subtracted from the mass of the added polymer X, whereby the mass (g) of the polymer X dissolved in the ion-exchanged water is obtained at a temperature of 20 ° C. The solubility of polymer X in water was calculated.
When the solubility of polymer X in water at a temperature of 20 ° C. is 1 g / 100 g-H 2 O or more, the solubility is sufficient (corresponding to “◯” in the table) and less than 1 g / 100 g-H 2 O When it was, it was evaluated that the solubility was insufficient (corresponding to “x” in the table).
<粘度安定性>
 B型粘度計(東機産業社製、製品名「TVB-10」、回転数:60rpm)を用いて、得られたスラリー組成物の粘度η0を測定した。次に、粘度を測定したスラリー組成物を、プラネタリーミキサー(回転数:60rpm)を用いて24時間撹拌し、撹拌後のスラリー組成物の粘度η1を、上記と同様のB型粘度計(回転数:60rpm)を用いて測定した。そして、撹拌前後のスラリー組成物の粘度維持率Δη=η1/η0×100(%)を算出し、以下の基準にてスラリー組成物の粘度安定性を評価した。なお、粘度測定時の温度は25℃であった。粘度維持率Δηの値が100%に近いほど、スラリー組成物の粘度安定性が優れていることを示す。
 A:粘度維持率Δηが90%以上110%以下
 B:粘度維持率Δηが80%以上90%未満
 C:粘度維持率Δηが70%以上80%未満
 D:粘度維持率Δηが70%未満、または110%超
<Viscosity stability>
The viscosity η0 of the obtained slurry composition was measured using a B-type viscometer (manufactured by Toki Sangyo Co., Ltd., product name “TVB-10”, rotation speed: 60 rpm). Next, the slurry composition whose viscosity was measured was stirred for 24 hours using a planetary mixer (rotation speed: 60 rpm). Number: 60 rpm). And the viscosity maintenance factor (DELTA) (eta) = (eta) 1 / (eta) 0 * 100 (%) of the slurry composition before and behind stirring was computed, and the viscosity stability of the slurry composition was evaluated on the following references | standards. The temperature at the time of viscosity measurement was 25 ° C. It shows that the viscosity stability of a slurry composition is excellent, so that the value of viscosity maintenance factor (DELTA) (eta) is near 100%.
A: Viscosity maintenance factor Δη is 90% or more and 110% or less B: Viscosity maintenance factor Δη is 80% or more and less than 90% C: Viscosity maintenance factor Δη is 70% or more and less than 80% D: Viscosity maintenance factor Δη is less than 70%, Or over 110%
<負極合材層のスプリングバック>
 負極合材層のスプリングバックは、電極密度に基づいて評価した。具体的には、まず、作製した負極原反の負極合材層側を温度25±3℃の環境下、線圧11t(トン)の条件でロールプレスし、電極合材層密度を1.70g/cm3に調整した。その後、温度25±3℃、相対湿度50±5%の環境下にて、当該負極を1週間放置した。そして、放置後の負極の電極合材層密度(g/cm3)を測定し、以下の基準で評価した。放置後の電極合材層密度が高いほど負極合材層がスプリングバックを生じておらず、負極が良好であることを示す。
 A:放置後の電極合材層密度が1.65g/cm3以上
 B:放置後の電極合材層密度が1.60g/cm3以上1.65g/cm3未満
 C:放置後の電極合材層密度が1.50g/cm3以上1.60g/cm3未満
 D:放置後の電極合材層密度が1.50g/cm3未満
<Springback of negative electrode composite layer>
The springback of the negative electrode mixture layer was evaluated based on the electrode density. Specifically, first, the negative electrode composite material layer side of the produced negative electrode raw material was roll-pressed under the condition of a linear pressure of 11 t (tons) in an environment of a temperature of 25 ± 3 ° C., and the electrode composite material layer density was 1.70 g. / Cm 3 was adjusted. Thereafter, the negative electrode was left for one week in an environment of a temperature of 25 ± 3 ° C. and a relative humidity of 50 ± 5%. And the electrode mixture layer density (g / cm < 3 >) of the negative electrode after standing was measured, and the following references | standards evaluated. The higher the electrode mixture layer density after standing, the more the negative electrode mixture layer is not spring-backed, indicating that the negative electrode is better.
A: Density of electrode mixture layer after standing 1.65 g / cm 3 or more B: Density of electrode mixture layer after standing 1.60 g / cm 3 or more and less than 1.65 g / cm 3 C: Electrode combination after standing The material layer density is 1.50 g / cm 3 or more and less than 1.60 g / cm 3 D: The electrode mixture layer density after standing is less than 1.50 g / cm 3
<負極の密着性>
 作製したリチウムイオン二次電池用負極を長さ100mm、幅10mmの長方形に切り出して試験片とした。次に、負極合材層を有する面を下にして負極合材層表面にセロハンテープ(JIS Z1522に規定されるもの)を貼り付け、集電体の一端を垂直方向に引張り速度50mm/分で引っ張って剥がしたときのピール強度(N/m)を測定した(なお、セロハンテープは試験台に固定されている)。上記と同様の測定を3回行い、その平均値を求めて、以下の基準により評価した。ピール強度の平均値が大きいほど、負極合材層と集電体との密着性が優れることを示す。
 A:ピール強度の平均値が2.0N/m以上
 B:ピール強度の平均値が1.5N/m以上2.0N/m未満
 C:ピール強度の平均値が1.0N/m以上1.5N/m未満
 D:ピール強度の平均値が1.0N/m未満
<Negative electrode adhesion>
The prepared negative electrode for a lithium ion secondary battery was cut into a rectangle having a length of 100 mm and a width of 10 mm to obtain a test piece. Next, a cellophane tape (as defined in JIS Z1522) is applied to the surface of the negative electrode mixture layer with the surface having the negative electrode mixture layer facing down, and one end of the current collector is pulled vertically at a pulling speed of 50 mm / min. The peel strength (N / m) when the film was pulled and peeled was measured (note that the cellophane tape is fixed to the test bench). The same measurement as above was performed three times, the average value was obtained, and evaluated according to the following criteria. It shows that the adhesiveness of a negative mix layer and an electrical power collector is excellent, so that the average value of peel strength is large.
A: The average value of peel strength is 2.0 N / m or more B: The average value of peel strength is 1.5 N / m or more and less than 2.0 N / m C: The average value of peel strength is 1.0 N / m or more and 1. Less than 5 N / m D: Average peel strength is less than 1.0 N / m
<負極の膨らみ>
 製造したリチウムイオン二次電池を、電極が電解液に浸漬されている状態で、温度25℃の環境下で5時間静置した。次に、静置した二次電池を、温度25℃の環境下、レート0.2Cの定電流法にてセル電圧3.65Vまで充電した。その後、充電した二次電池に対して、温度60℃の環境下、12時間、エージング処理を行った。続けて、エージング処理を行った二次電池を、温度25℃の環境下、レート0.2Cの定電流法にてセル電圧3.00Vまで放電した。そして、放電処理を行ったリチウムイオン二次電池を解体し、負極全体の厚みから集電体の厚みを除いた値を、サイクル前の負極の厚み(d0)として測定した。
 次に、再度リチウムイオン二次電池を組み立て、組み立てられた二次電池に対し、温度25℃の環境下、セル電圧4.20V~3.00V、充放電レート1Cの条件にて充放電操作を50サイクル行った。最後に、50サイクル行った後の二次電池に対し、温度25℃の環境下、レート1Cにて充電を行った。そして、充電された状態の二次電池を解体して負極を取り出し、負極全体の厚みから集電体の厚みを除いた値を、サイクル後の負極の厚み(d1)として測定した。そして、サイクル前の負極の厚みd0に対する、サイクル後の負極の厚みd1の変化率を、サイクル後の負極の膨らみ={(d1-d0)/d0}×100(%)として求め、以下の基準により判定した。サイクル後の負極の膨らみが小さいほど、充放電サイクルを繰り返しても負極合材層が構造を保ち、二次電池が長寿命であることを示す。
 A:サイクル後の負極の膨らみが25%未満
 B:サイクル後の負極の膨らみが25%以上30%未満
 C:サイクル後の負極の膨らみが30%以上35%未満
 D:サイクル後の負極の膨らみが35%以上
<Bulge of negative electrode>
The manufactured lithium ion secondary battery was allowed to stand for 5 hours in an environment at a temperature of 25 ° C. with the electrode immersed in the electrolyte. Next, the stationary secondary battery was charged to a cell voltage of 3.65 V by a constant current method at a rate of 0.2 C in an environment at a temperature of 25 ° C. Then, the aging process was performed with respect to the charged secondary battery for 12 hours in the environment of a temperature of 60 degreeC. Subsequently, the secondary battery subjected to the aging treatment was discharged to a cell voltage of 3.00 V by a constant current method at a rate of 0.2 C in an environment at a temperature of 25 ° C. And the lithium ion secondary battery which performed the discharge process was disassembled, and the value remove | excluding the thickness of the electrical power collector from the thickness of the whole negative electrode was measured as thickness (d0) of the negative electrode before a cycle.
Next, the lithium ion secondary battery is assembled again, and the assembled secondary battery is charged and discharged under the conditions of a cell voltage of 4.20 V to 3.00 V and a charge / discharge rate of 1 C in an environment at a temperature of 25 ° C. 50 cycles were performed. Finally, the secondary battery after 50 cycles was charged at a rate of 1C in an environment at a temperature of 25 ° C. Then, the charged secondary battery was disassembled, the negative electrode was taken out, and a value obtained by removing the thickness of the current collector from the thickness of the entire negative electrode was measured as the thickness (d1) of the negative electrode after cycling. Then, the change rate of the negative electrode thickness d1 after the cycle with respect to the negative electrode thickness d0 before the cycle was calculated as the negative electrode bulge after the cycle = {(d1−d0) / d0} × 100 (%), and the following criteria Judged by. The smaller the swelling of the negative electrode after the cycle, the more the negative electrode mixture layer maintains the structure even when the charge / discharge cycle is repeated, indicating that the secondary battery has a longer life.
A: The swelling of the negative electrode after cycling is less than 25% B: The swelling of the negative electrode after cycling is 25% or more and less than 30% C: The swelling of the negative electrode after cycling is 30% or more and less than 35% D: The swelling of the negative electrode after cycling 35% or more
<負極上へのリチウム析出率>
 製造したリチウムイオン二次電池を、温度-10℃の環境下、1Cの定電流で充電深度(SOC)100%まで満充電した。また、満充電した二次電池を解体して負極を取り出し、負極が有する負極合材層の表面状態を観察した。そして、負極合材層の表面に析出したリチウムの面積を測定し、負極上へのリチウム析出率=(析出したリチウムの面積/負極合材層の表面の面積)×100(%)を算出した。そして、以下の基準で評価した。リチウム析出率が低いほど、二次電池として良好であることを示す。
 A:リチウム析出率が10%未満
 B:リチウム析出率が10%以上20%未満
 C:リチウム析出率が20%以上
<Deposition rate of lithium on the negative electrode>
The manufactured lithium ion secondary battery was fully charged to a depth of charge (SOC) of 100% at a constant current of 1 C in an environment at a temperature of −10 ° C. Moreover, the fully charged secondary battery was disassembled, the negative electrode was taken out, and the surface state of the negative electrode mixture layer of the negative electrode was observed. Then, the area of lithium deposited on the surface of the negative electrode mixture layer was measured, and the lithium deposition rate on the negative electrode = (area of precipitated lithium / surface area of the negative electrode mixture layer) × 100 (%) was calculated. . And it evaluated on the following references | standards. The lower the lithium deposition rate, the better the secondary battery.
A: The lithium deposition rate is less than 10% B: The lithium deposition rate is 10% or more and less than 20% C: The lithium deposition rate is 20% or more
(実施例1)
<重合体Xを含む水溶液の調製>
 セプタム付き1Lフラスコに、イオン交換水720部を投入して、温度40℃に加熱し、流量100mL/分の窒素ガスでフラスコ内を置換した。次に、イオン交換水10部と、エチレン性不飽和カルボン酸単量体としてのアクリル酸25部と、(メタ)アクリルアミド単量体としてのアクリルアミド35部と、ヒドロキシル基含有ビニル単量体としての2-ヒドロキシエチルアクリレート40部とを混合して、シリンジでフラスコ内に注入した。その後、重合開始剤としての過硫酸カリウムの2.5%水溶液8部をシリンジでフラスコ内に追加した。更に、その15分後に、重合促進剤としてのテトラメチルエチレンジアミンの2.0%水溶液22部をシリンジで追加した。4時間後、重合開始剤としての過硫酸カリウムの2.5%水溶液4部をフラスコ内に追加し、更に重合促進剤としてのテトラメチルエチレンジアミンの2.0%水溶液11部を追加して、温度を60℃に昇温し、重合反応を進めた。3時間後、フラスコを空気中に開放して重合反応を停止させ、生成物を温度80℃で脱臭し、残留単量体を除去した。その後、水酸化リチウムの10%水溶液を用いて生成物のpHを8に調整することにより、エチレン性不飽和カルボン酸単量体単位、(メタ)アクリルアミド単量体単位およびヒドロキシル基含有ビニル単量体単位を所定範囲内の割合で含有する重合体Xを含む水溶液を得た。
 なお、得られた重合体Xが含有する各単量体単位の組成は、重合体Xの重合に用いた全単量体に占める各単量体の比率(仕込み比率)と同じであった。また、得られた重合体Xは本明細書の定義1に従う水溶性であった。
 そして、得られた重合体Xを含む水溶液を用いて、上述の方法に従って、重合体Xのガラス転移温度、電解液膨潤度、および水に対する溶解度を測定、評価した。結果を表1に示す。
Example 1
<Preparation of aqueous solution containing polymer X>
720 parts of ion exchange water was charged into a 1 L flask with a septum, heated to a temperature of 40 ° C., and the inside of the flask was replaced with nitrogen gas at a flow rate of 100 mL / min. Next, 10 parts of ion-exchanged water, 25 parts of acrylic acid as an ethylenically unsaturated carboxylic acid monomer, 35 parts of acrylamide as a (meth) acrylamide monomer, and as a hydroxyl group-containing vinyl monomer 40 parts of 2-hydroxyethyl acrylate was mixed and injected into the flask with a syringe. Thereafter, 8 parts of a 2.5% aqueous solution of potassium persulfate as a polymerization initiator was added to the flask with a syringe. Further, 15 minutes later, 22 parts of a 2.0% aqueous solution of tetramethylethylenediamine as a polymerization accelerator was added by a syringe. After 4 hours, 4 parts of a 2.5% aqueous solution of potassium persulfate as a polymerization initiator was added to the flask, and 11 parts of a 2.0% aqueous solution of tetramethylethylenediamine as a polymerization accelerator was added. The temperature was raised to 60 ° C. to advance the polymerization reaction. After 3 hours, the polymerization reaction was stopped by opening the flask in the air, and the product was deodorized at a temperature of 80 ° C. to remove residual monomers. Thereafter, by adjusting the pH of the product to 8 using a 10% aqueous solution of lithium hydroxide, an ethylenically unsaturated carboxylic acid monomer unit, a (meth) acrylamide monomer unit, and a hydroxyl group-containing vinyl monomer An aqueous solution containing a polymer X containing body units at a ratio within a predetermined range was obtained.
In addition, the composition of each monomer unit contained in the obtained polymer X was the same as the ratio (preparation ratio) of each monomer in all monomers used for polymerization of the polymer X. Moreover, the obtained polymer X was water-soluble according to the definition 1 of this specification.
And using the aqueous solution containing the obtained polymer X, according to the above-mentioned method, the glass transition temperature of the polymer X, electrolyte solution swelling degree, and the solubility with respect to water were measured and evaluated. The results are shown in Table 1.
<水溶性重合体を含む水溶液の調製>
 そして、得られた重合体Xを含む水溶液をそのまま水溶性重合体を含む水溶液として用いた。つまり、得られた水溶性重合体は本明細書の定義1に従う水溶性であった。
<Preparation of aqueous solution containing water-soluble polymer>
And the aqueous solution containing the obtained polymer X was used as an aqueous solution containing a water-soluble polymer as it was. That is, the obtained water-soluble polymer was water-soluble according to Definition 1 of the present specification.
<粒子状重合体を含む水分散液の調製>
 撹拌機付き5MPa耐圧容器に、芳香族ビニル単量体としてのスチレン65部、脂肪族共役ジエン単量体としての1,3-ブタジエン35部、カルボキシル基含有単量体としてのイタコン酸2部、ヒドロキシル基含有単量体としての2-ヒドロキシエチルアクリレート1部、分子量調整剤としてのt-ドデシルメルカプタン0.3部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム5部、溶媒としてのイオン交換水150部、および、重合開始剤としての過硫酸カリウム1部を投入し、十分に撹拌した後、温度55℃に加温して重合を開始した。単量体消費量が95.0%になった時点で冷却し、反応を停止した。こうして得られた重合体を含んだ水分散体に、5%水酸化ナトリウム水溶液を添加して、pHを8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。さらにその後、温度30℃以下まで冷却することにより、カルボキシル基およびヒドロキシル基を有する粒子状重合体としてのスチレン-ブタジエン系共重合体を含む水分散液を得た。
<Preparation of aqueous dispersion containing particulate polymer>
In a 5 MPa pressure vessel equipped with a stirrer, 65 parts of styrene as an aromatic vinyl monomer, 35 parts of 1,3-butadiene as an aliphatic conjugated diene monomer, 2 parts of itaconic acid as a carboxyl group-containing monomer, 1 part of 2-hydroxyethyl acrylate as a hydroxyl group-containing monomer, 0.3 part of t-dodecyl mercaptan as a molecular weight modifier, 5 parts of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water as a solvent, And 1 part of potassium persulfate as a polymerization initiator was added, and after stirring sufficiently, the temperature was raised to 55 ° C. to initiate polymerization. The reaction was stopped by cooling when the monomer consumption reached 95.0%. A 5% aqueous sodium hydroxide solution was added to the aqueous dispersion containing the polymer thus obtained to adjust the pH to 8. Then, the unreacted monomer was removed by heating under reduced pressure. Thereafter, by cooling to a temperature of 30 ° C. or lower, an aqueous dispersion containing a styrene-butadiene copolymer as a particulate polymer having a carboxyl group and a hydroxyl group was obtained.
<バインダー組成物およびスラリー組成物の調製>
 本実施例では、以下の通り、スラリー組成物の調製に先立ってバインダー組成物を予め調製することなく、水溶性重合体および粒子状重合体を含有するバインダー組成物を含むスラリー組成物を調製した。即ち、バインダー組成物およびスラリー組成物を同一工程内で調製した。
 即ち、プラネタリーミキサーに、負極活物質としての人造黒鉛(理論容量:360mAh/g)98部と、上述で得られた水溶性重合体を含む水溶液(固形分濃度:4.5%)を固形分相当で1部とを投入した。さらに、イオン交換水にて固形分濃度が60%となるように希釈し、その後、回転速度45rpmで60分混練した。その後、上述で得られた粒子状重合体を含む水分散液(固形分濃度:40%)を固形分相当で1部投入し、回転速度40rpmで40分混練した。そして、粘度が1100±100mPa・s(B型粘度計、25℃、12rpmで測定)となるようにイオン交換水を加えることにより、リチウムイオン二次電池負極用スラリー組成物を調製した。
 そして、得られたリチウムイオン二次電池負極用スラリー組成物を用いて、上述の方法に従って、スラリー組成物の粘度安定性を測定、評価した。結果を表1に示す。
<Preparation of binder composition and slurry composition>
In this example, a slurry composition containing a binder composition containing a water-soluble polymer and a particulate polymer was prepared as follows without preparing the binder composition in advance prior to the preparation of the slurry composition. . That is, the binder composition and the slurry composition were prepared in the same process.
In other words, in a planetary mixer, 98 parts of artificial graphite (theoretical capacity: 360 mAh / g) as a negative electrode active material and an aqueous solution (solid content concentration: 4.5%) containing the water-soluble polymer obtained above were solidified. 1 part was added in minutes. Furthermore, it diluted so that solid content concentration might be set to 60% with ion-exchange water, and knead | mixed for 60 minutes after that with the rotational speed of 45 rpm. Thereafter, 1 part of the aqueous dispersion containing the particulate polymer obtained above (solid content concentration: 40%) was added in an amount corresponding to the solid content, and kneaded at a rotational speed of 40 rpm for 40 minutes. And the slurry composition for lithium ion secondary battery negative electrodes was prepared by adding ion-exchange water so that a viscosity might be set to 1100 +/- 100mPa * s (B type viscometer, 25 degreeC, measured by 12 rpm).
And the viscosity stability of a slurry composition was measured and evaluated according to the above-mentioned method using the obtained slurry composition for lithium ion secondary battery negative electrodes. The results are shown in Table 1.
<リチウムイオン二次電池用負極の製造>
 上記リチウムイオン二次電池負極用スラリー組成物を、コンマコーターで、集電体である厚さ15μmの銅箔の表面に、塗付量が13.8~14.2mg/cm2となるように塗布した。その後、リチウムイオン二次電池負極用スラリー組成物が塗布された銅箔を、400mm/分の速度で、温度80℃のオーブン内を2分間、さらに温度110℃のオーブン内を2分間かけて搬送することにより、銅箔上のスラリー組成物を乾燥させ、集電体上に負極合材層が形成された負極原反を得た。
 そして、得られた負極原反を用いて、上述の方法に従って、負極合材層のスプリングバックを測定、評価した。結果を表1に示す。
 次に、得られた負極原反をロールプレスして電極合材層密度が1.68~1.72g/cm3となるように調整した。さらに、真空条件下、温度105℃の環境下に4時間置くことにより、リチウムイオン二次電池用負極を得た。
 そして、得られた負極を用いて、上述の方法に従って、負極の密着性を測定、評価した。結果を表1に示す。
<Manufacture of negative electrode for lithium ion secondary battery>
The slurry composition for a negative electrode of a lithium ion secondary battery is applied to the surface of a copper foil having a thickness of 15 μm, which is a current collector, with a comma coater so that the coating amount is 13.8 to 14.2 mg / cm 2. Applied. Thereafter, the copper foil coated with the lithium ion secondary battery negative electrode slurry composition is transported at a rate of 400 mm / min in an oven at a temperature of 80 ° C. for 2 minutes and further in an oven at a temperature of 110 ° C. for 2 minutes. By doing this, the slurry composition on copper foil was dried, and the negative electrode original fabric by which the negative electrode compound-material layer was formed on the electrical power collector was obtained.
And using the obtained negative electrode raw material, according to the above-mentioned method, the springback of the negative mix layer was measured and evaluated. The results are shown in Table 1.
Next, the obtained negative electrode original fabric was roll-pressed so that the electrode mixture layer density was adjusted to 1.68 to 1.72 g / cm 3 . Furthermore, the negative electrode for lithium ion secondary batteries was obtained by placing it in an environment of 105 ° C. under vacuum conditions for 4 hours.
And using the obtained negative electrode, according to the above-mentioned method, the adhesiveness of the negative electrode was measured and evaluated. The results are shown in Table 1.
<リチウムイオン二次電池用正極の製造>
 プラネタリーミキサーに、正極活物質としてのLiCoO2100部、導電材としてのアセチレンブラック2部(電気化学工業製、商品名「HS-100」)、結着材としてのポリフッ化ビニリデン(クレハ化学製、商品名「KF-1100」)2部を添加し、さらに、分散媒としての2-メチルピリロドンを全固形分濃度が67%となるように加えて混合し、リチウムイオン二次電池正極用スラリー組成物を調製した。
 続いて、得られたリチウムイオン二次電池正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミニウム箔の上に、塗布量が26.0~27.0mg/cm2となるように塗布した。その後、リチウムイオン二次電池正極用スラリー組成物が塗布されたアルミ箔を、0.5m/分の速度で温度60℃のオーブン内を2分間かけて搬送することにより、乾燥させた。その後、温度120℃にて2分間加熱処理して、正極原反を得た。
 そして、得られた正極原反をロールプレス機にて電極合材層密度が3.40~3.50g/cm3となるようにプレスし、さらに、分散媒の除去を目的として、真空条件下、温度120℃の環境下に3時間置くことにより、正極を得た。
<Manufacture of positive electrode for lithium ion secondary battery>
In a planetary mixer, 100 parts of LiCoO 2 as a positive electrode active material, 2 parts of acetylene black as a conductive material (trade name “HS-100” manufactured by Denki Kagaku Kogyo), polyvinylidene fluoride as a binder (manufactured by Kureha Chemical) , Trade name “KF-1100”) and 2 parts of 2-methylpyrrhodone as a dispersion medium is added and mixed so that the total solid content is 67%. A slurry composition was prepared.
Subsequently, the obtained slurry composition for a lithium ion secondary battery positive electrode was applied onto an aluminum foil having a thickness of 20 μm as a current collector with a comma coater in an amount of 26.0 to 27.0 mg / cm 2. It applied so that it might become. Thereafter, the aluminum foil coated with the slurry composition for a positive electrode of a lithium ion secondary battery was dried by conveying it in an oven at a temperature of 60 ° C. at a rate of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a positive electrode raw material.
Then, the obtained positive electrode raw material was pressed with a roll press machine so that the electrode mixture layer density was 3.40 to 3.50 g / cm 3, and for the purpose of removing the dispersion medium, The positive electrode was obtained by placing in an environment at a temperature of 120 ° C. for 3 hours.
<リチウムイオン二次電池の製造>
 単層のポリプロピレン製セパレータ、上記の負極および正極を用いて、捲回セル(放電容量520mAh相当)を作製し、アルミ包材内に配置した。その後、電解液として濃度1.0MのLiPF6溶液(溶媒:エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)=3/7(体積比)の混合溶媒、添加剤:ビニレンカーボネート2体積%(溶媒比)含有)を充填した。さらに、アルミ包材の開口を密封するために、温度150℃のヒートシールをしてアルミ包材を閉口し、リチウムイオン二次電池を製造した。
 そして、得られたリチウムイオン二次電池を用いて、上述の方法に従って、負極の膨らみおよび負極上へのリチウム析出率を測定、評価した。結果を表1に示す。
<Manufacture of lithium ion secondary batteries>
A wound cell (equivalent to a discharge capacity of 520 mAh) was prepared using a single-layer polypropylene separator, the negative electrode and the positive electrode, and placed in an aluminum wrapping material. Thereafter, a LiPF 6 solution having a concentration of 1.0 M (solvent: ethylene carbonate (EC) / ethyl methyl carbonate (EMC) = 3/7 (volume ratio) mixed solvent as an electrolytic solution, additive: vinylene carbonate 2% by volume (solvent) Ratio) containing). Further, in order to seal the opening of the aluminum packaging material, heat sealing at a temperature of 150 ° C. was performed to close the aluminum packaging material, and a lithium ion secondary battery was manufactured.
And using the obtained lithium ion secondary battery, according to the above-mentioned method, the swelling of the negative electrode and the lithium deposition rate on the negative electrode were measured and evaluated. The results are shown in Table 1.
(実施例2)
 重合体Xを含む水溶液の調製において、アクリル酸の量を10部、アクリルアミドの量を25部、2-ヒドロキシエチルアクリレートの量を65部に変更した。上記以外は、実施例1と同様にして、重合体X、水溶性重合体、粒子状重合体、バインダー組成物、スラリー組成物、負極、正極および二次電池を製造した。なお、得られた重合体X及び水溶性重合体は本明細書の定義1に従う水溶性であった。
 そして、実施例1と同様の方法により測定、評価を行った。結果を表1に示す。
(Example 2)
In the preparation of the aqueous solution containing the polymer X, the amount of acrylic acid was changed to 10 parts, the amount of acrylamide was changed to 25 parts, and the amount of 2-hydroxyethyl acrylate was changed to 65 parts. Except for the above, a polymer X, a water-soluble polymer, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1. In addition, the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification.
And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
(実施例3)
 重合体Xを含む水溶液の調製において、アクリル酸の量を15部、アクリルアミドの量を10部、2-ヒドロキシエチルアクリレートの量を75部に変更した。上記以外は、実施例1と同様にして、重合体X、水溶性重合体、粒子状重合体、バインダー組成物、スラリー組成物、負極、正極および二次電池を製造した。なお、得られた重合体X及び水溶性重合体は本明細書の定義1に従う水溶性であった。
 そして、実施例1と同様の方法により測定、評価を行った。結果を表1に示す。
(Example 3)
In the preparation of the aqueous solution containing the polymer X, the amount of acrylic acid was changed to 15 parts, the amount of acrylamide was changed to 10 parts, and the amount of 2-hydroxyethyl acrylate was changed to 75 parts. Except for the above, a polymer X, a water-soluble polymer, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1. In addition, the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification.
And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
(実施例4)
 重合体Xを含む水溶液の調製において、アクリル酸の量を30部、アクリルアミドの量を45部、2-ヒドロキシエチルアクリレートの量を25部に変更した。上記以外は、実施例1と同様にして、重合体X、水溶性重合体、粒子状重合体、バインダー組成物、スラリー組成物、負極、正極および二次電池を製造した。なお、得られた重合体X及び水溶性重合体は本明細書の定義1に従う水溶性であった。
 そして、実施例1と同様の方法により測定、評価を行った。結果を表1に示す。
(Example 4)
In the preparation of the aqueous solution containing the polymer X, the amount of acrylic acid was changed to 30 parts, the amount of acrylamide was changed to 45 parts, and the amount of 2-hydroxyethyl acrylate was changed to 25 parts. Except for the above, a polymer X, a water-soluble polymer, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1. In addition, the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification.
And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
(実施例5)
 重合体Xを含む水溶液の調製において、アクリル酸の量を15部、アクリルアミドの量を55部、2-ヒドロキシエチルアクリレートの量を30部に変更した。上記以外は、実施例1と同様にして、重合体X、水溶性重合体、粒子状重合体、バインダー組成物、スラリー組成物、負極、正極および二次電池を製造した。なお、得られた重合体X及び水溶性重合体は本明細書の定義1に従う水溶性であった。
 そして、実施例1と同様の方法により測定、評価を行った。結果を表1に示す。
(Example 5)
In the preparation of the aqueous solution containing the polymer X, the amount of acrylic acid was changed to 15 parts, the amount of acrylamide was changed to 55 parts, and the amount of 2-hydroxyethyl acrylate was changed to 30 parts. Except for the above, a polymer X, a water-soluble polymer, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1. In addition, the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification.
And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
(実施例6)
 重合体Xを含む水溶液の調製において、アクリル酸の量を35部、2-ヒドロキシエチルアクリレートの量を30部に変更した。上記以外は、実施例1と同様にして、重合体X、水溶性重合体、粒子状重合体、バインダー組成物、スラリー組成物、負極、正極および二次電池を製造した。なお、得られた重合体X及び水溶性重合体は本明細書の定義1に従う水溶性であった。
 そして、実施例1と同様の方法により測定、評価を行った。結果を表1に示す。
(Example 6)
In the preparation of the aqueous solution containing the polymer X, the amount of acrylic acid was changed to 35 parts and the amount of 2-hydroxyethyl acrylate was changed to 30 parts. Except for the above, a polymer X, a water-soluble polymer, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1. In addition, the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification.
And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
(実施例7)
 重合体Xを含む水溶液の調製において、アクリル酸の量を8部、アクリルアミドの量を37部、2-ヒドロキシエチルアクリレートの量を55部に変更した。上記以外は、実施例1と同様にして、重合体X、水溶性重合体、粒子状重合体、バインダー組成物、スラリー組成物、負極、正極および二次電池を製造した。なお、得られた重合体X及び水溶性重合体は本明細書の定義1に従う水溶性であった。
 そして、実施例1と同様の方法により測定、評価を行った。結果を表1に示す。
(Example 7)
In the preparation of the aqueous solution containing the polymer X, the amount of acrylic acid was changed to 8 parts, the amount of acrylamide was changed to 37 parts, and the amount of 2-hydroxyethyl acrylate was changed to 55 parts. Except for the above, a polymer X, a water-soluble polymer, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1. In addition, the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification.
And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
(実施例8)
 重合体Xを含む水溶液の調製において、2-ヒドロキシエチルアクリレートの量を25部に変更して2-ヒドロキシエチルメタクリレートを15部追加した。上記以外は、実施例1と同様にして、重合体X、水溶性重合体、粒子状重合体、バインダー組成物、スラリー組成物、負極、正極および二次電池を製造した。なお、得られた重合体X及び水溶性重合体は本明細書の定義1に従う水溶性であった。
 そして、実施例1と同様の方法により測定、評価を行った。結果を表1に示す。
(Example 8)
In the preparation of the aqueous solution containing the polymer X, the amount of 2-hydroxyethyl acrylate was changed to 25 parts, and 15 parts of 2-hydroxyethyl methacrylate was added. Except for the above, a polymer X, a water-soluble polymer, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1. In addition, the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification.
And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
(実施例9)
 重合体Xを含む水溶液の調製において、アクリル酸の量を24.5部に変更し、多官能エチレン性不飽和カルボン酸エステル単量体単位を形成し得る多官能エチレン性不飽和カルボン酸エステル単量体である4官能エチレン性不飽和カルボン酸エステル単量体としてのエトキシ化ペンタエリスリトールテトラアクリレート(新中村化学工業製、製品名「ATM-35E」)を0.5部追加した。上記以外は、実施例1と同様にして、重合体X、水溶性重合体、粒子状重合体、バインダー組成物、スラリー組成物、負極、正極および二次電池を製造した。なお、得られた重合体X及び水溶性重合体は本明細書の定義1に従う水溶性であった。
 そして、実施例1と同様の方法により測定、評価を行った。結果を表1に示す。
Example 9
In the preparation of the aqueous solution containing the polymer X, the amount of acrylic acid was changed to 24.5 parts, and a polyfunctional ethylenically unsaturated carboxylic acid ester unit capable of forming a polyfunctional ethylenically unsaturated carboxylic acid ester monomer unit was used. 0.5 parts of ethoxylated pentaerythritol tetraacrylate (product name: “ATM-35E” manufactured by Shin-Nakamura Chemical Co., Ltd.) as a tetrameric ethylenically unsaturated carboxylic acid ester monomer as a monomer was added. Except for the above, a polymer X, a water-soluble polymer, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1. In addition, the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification.
And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
(実施例10)
 重合体Xを含む水溶液の調製において、アクリルアミドの量を20部に変更し、その他の単量体としてのメチルアクリレートを15部追加した。上記以外は、実施例1と同様にして、重合体X、水溶性重合体、粒子状重合体、バインダー組成物、スラリー組成物、負極、正極および二次電池を製造した。なお、得られた重合体X及び水溶性重合体は本明細書の定義1に従う水溶性であった。
 そして、実施例1と同様の方法により測定、評価を行った。結果を表1に示す。
(Example 10)
In the preparation of the aqueous solution containing the polymer X, the amount of acrylamide was changed to 20 parts, and 15 parts of methyl acrylate as another monomer was added. Except for the above, a polymer X, a water-soluble polymer, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1. In addition, the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification.
And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
(実施例11)
 重合体Xを含む水溶液の調製において、2-ヒドロキシエチルアクリレートを使用せず、N-ヒドロキシエチルアクリルアミド40部を使用した。上記以外は、実施例1と同様にして、重合体X、水溶性重合体、粒子状重合体、バインダー組成物、スラリー組成物、負極、正極および二次電池を製造した。なお、得られた重合体X及び水溶性重合体は本明細書の定義1に従う水溶性であった。
 そして、実施例1と同様の方法により測定、評価を行った。結果を表1に示す。
(Example 11)
In the preparation of the aqueous solution containing the polymer X, 2-hydroxyethyl acrylate was not used, but 40 parts of N-hydroxyethyl acrylamide was used. Except for the above, a polymer X, a water-soluble polymer, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1. In addition, the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification.
And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
(実施例12)
 水溶性重合体を含む水溶液の調製において、得られた重合体Xを含む水溶液を固形分相当で0.5部と、その他の水溶性の重合体としてのカルボキシメチルセルロースを固形分相当で0.5部とを混合することにより、水溶性重合体(重合体Xおよびカルボキシメチルセルロース)を含む水溶液を得た。上記以外は、実施例1と同様にして、重合体X、水溶性重合体、粒子状重合体、バインダー組成物、スラリー組成物、負極、正極および二次電池を製造した。なお、得られた重合体X及び水溶性重合体は本明細書の定義1に従う水溶性であった。
 そして、実施例1と同様の方法により測定、評価を行った。結果を表1に示す。
(Example 12)
In the preparation of the aqueous solution containing the water-soluble polymer, 0.5 part of the aqueous solution containing the obtained polymer X was equivalent to the solid content, and 0.5 parts of the carboxymethyl cellulose as the other water-soluble polymer was equivalent to the solid content. An aqueous solution containing a water-soluble polymer (polymer X and carboxymethyl cellulose) was obtained by mixing the parts. Except for the above, a polymer X, a water-soluble polymer, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1. In addition, the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification.
And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
(実施例13)
 バインダー組成物およびスラリー組成物の調製において、粒子状重合体を含む水分散液として、以下の方法により調製された粒子状重合体を含む水分散液を使用した。上記以外は、実施例1と同様にして、重合体X、水溶性重合体、粒子状重合体、バインダー組成物、スラリー組成物、負極、正極および二次電池を製造した。なお、得られた重合体X及び水溶性重合体は本明細書の定義1に従う水溶性であった。
 そして、実施例1と同様の方法により測定、評価を行った。結果を表1に示す。
<粒子状重合体を含む水分散液の調製>
 撹拌機付き5MPa耐圧容器に、(メタ)アクリル酸エステル単量体としてのn-ブチルアクリレート82部、カルボキシル基含有単量体としてのメタクリル酸2部、ヒドロキシル基含有単量体としてのN-メチロールアクリルアミド1部、その他の単量体としてのアクリロニトリル2部、アリルグリシジルエーテル1部、乳化剤としてのラウリル硫酸ナトリウム4部、溶媒としてのイオン交換水150部、並びに、重合開始剤としての過硫酸アンモニウム0.5部を投入し、十分に撹拌した後、温度80℃に加温して重合を開始した。
 単量体消費量が96.0%になった時点で冷却し、反応を停止した。こうして得られた重合体を含んだ水分散体に、5%水酸化ナトリウム水溶液を添加して、pHを7に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。さらにその後、温度30℃以下まで冷却することにより、カルボキシル基およびヒドロキシル基を有する粒子状重合体としてのアクリル系重合体を含む水分散液を得た。
(Example 13)
In the preparation of the binder composition and the slurry composition, an aqueous dispersion containing a particulate polymer prepared by the following method was used as an aqueous dispersion containing a particulate polymer. Except for the above, a polymer X, a water-soluble polymer, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1. In addition, the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification.
And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
<Preparation of aqueous dispersion containing particulate polymer>
In a 5 MPa pressure vessel with a stirrer, 82 parts of n-butyl acrylate as a (meth) acrylic acid ester monomer, 2 parts of methacrylic acid as a carboxyl group-containing monomer, N-methylol as a hydroxyl group-containing monomer 1 part of acrylamide, 2 parts of acrylonitrile as another monomer, 1 part of allyl glycidyl ether, 4 parts of sodium lauryl sulfate as an emulsifier, 150 parts of ion-exchanged water as a solvent, and ammonium persulfate as a polymerization initiator After 5 parts were added and sufficiently stirred, the temperature was raised to 80 ° C. to initiate polymerization.
When the monomer consumption reached 96.0%, the reaction was stopped by cooling. A 5% aqueous sodium hydroxide solution was added to the aqueous dispersion containing the polymer thus obtained to adjust the pH to 7. Then, the unreacted monomer was removed by heating under reduced pressure. Thereafter, by cooling to a temperature of 30 ° C. or lower, an aqueous dispersion containing an acrylic polymer as a particulate polymer having a carboxyl group and a hydroxyl group was obtained.
(実施例14)
 水溶性重合体を含む水溶液の調製において、得られた重合体Xを含む水溶液を固形分相当で0.5部と、その他の水溶性の重合体としてのアルギン酸ナトリウムを固形分相当で0.5部とを混合することにより、水溶性重合体(重合体Xおよびアルギン酸ナトリウム)を含む水溶液を得た。上記以外は、実施例1と同様にして、重合体X、水溶性重合体、粒子状重合体、バインダー組成物、スラリー組成物、負極、正極および二次電池を製造した。なお、得られた重合体X及び水溶性重合体は本明細書の定義1に従う水溶性であった。
 そして、実施例1と同様の方法により測定、評価を行った。結果を表1に示す。
(Example 14)
In the preparation of the aqueous solution containing the water-soluble polymer, the aqueous solution containing the obtained polymer X was 0.5 parts in terms of solids, and sodium alginate as another water-soluble polymer was 0.5 parts in terms of solids. An aqueous solution containing a water-soluble polymer (polymer X and sodium alginate) was obtained by mixing the parts. Except for the above, a polymer X, a water-soluble polymer, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1. In addition, the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification.
And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
(比較例1)
 重合体Xを含む水溶液の調製において、アクリル酸の量を50部に変更し、アクリルアミドを使用せず、2-ヒドロキシエチルアクリレートの量を50部に変更した。上記以外は、実施例1と同様にして、重合体X、水溶性重合体、粒子状重合体、バインダー組成物、スラリー組成物、負極、正極および二次電池を製造した。なお、得られた重合体X及び水溶性重合体は本明細書の定義1に従う水溶性であった。
 そして、実施例1と同様の方法により測定、評価を行った。結果を表2に示す。
(Comparative Example 1)
In the preparation of the aqueous solution containing the polymer X, the amount of acrylic acid was changed to 50 parts, acrylamide was not used, and the amount of 2-hydroxyethyl acrylate was changed to 50 parts. Except for the above, a polymer X, a water-soluble polymer, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1. In addition, the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification.
And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 2.
(比較例2)
 重合体Xを含む水溶液の調製において、アクリルアミドの量を65部、2-ヒドロキシエチルアクリレートの量を10部に変更した。上記以外は、実施例1と同様にして、重合体X、水溶性重合体、粒子状重合体、バインダー組成物、スラリー組成物、負極、正極および二次電池を製造した。なお、得られた重合体X及び水溶性重合体は本明細書の定義1に従う水溶性であった。
 そして、実施例1と同様の方法により測定、評価を行った。結果を表2に示す。
(Comparative Example 2)
In the preparation of the aqueous solution containing the polymer X, the amount of acrylamide was changed to 65 parts and the amount of 2-hydroxyethyl acrylate was changed to 10 parts. Except for the above, a polymer X, a water-soluble polymer, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1. In addition, the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification.
And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 2.
(比較例3)
 重合体Xを含む水溶液の調製において、アクリルアミドの量を75部に変更し、2-ヒドロキシエチルアクリレートを使用しなかった。上記以外は、実施例1と同様にして、重合体X、水溶性重合体、粒子状重合体、バインダー組成物、スラリー組成物、負極、正極および二次電池を製造した。なお、得られた重合体X及び水溶性重合体は本明細書の定義1に従う水溶性であった。
 そして、実施例1と同様の方法により測定、評価を行った。結果を表2に示す。
(Comparative Example 3)
In the preparation of the aqueous solution containing polymer X, the amount of acrylamide was changed to 75 parts and 2-hydroxyethyl acrylate was not used. Except for the above, a polymer X, a water-soluble polymer, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1. In addition, the obtained polymer X and water-soluble polymer were water-soluble according to the definition 1 of this specification.
And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 2.
(比較例4)
 重合体Xを含む水溶液の調製において、アクリル酸に替えてメタクリル酸を10部使用し、アクリルアミドの量を30部に変更してメタクリルアミドを35部追加し、2-ヒドロキシエチルアクリレートの量を20部に変更し、その他の単量体としてのメチルアクリレートを5部追加した。上記以外は、実施例1と同様にして、重合体X、粒子状重合体、バインダー組成物、スラリー組成物、負極、正極および二次電池を製造した。なお、得られた重合体Xは本明細書の定義1に従う水溶性ではなかった。
 そして、実施例1と同様の方法により測定、評価を行った。結果を表2に示す。
(Comparative Example 4)
In the preparation of the aqueous solution containing the polymer X, 10 parts of methacrylic acid was used instead of acrylic acid, the amount of acrylamide was changed to 30 parts, 35 parts of methacrylamide was added, and the amount of 2-hydroxyethyl acrylate was 20 parts. 5 parts of methyl acrylate as another monomer was added. Except for the above, a polymer X, a particulate polymer, a binder composition, a slurry composition, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1. In addition, the obtained polymer X was not water-soluble according to the definition 1 of this specification.
And it measured and evaluated by the method similar to Example 1. FIG. The results are shown in Table 2.
 なお、以下に示す表中、
「AA」は、アクリル酸単位を示し、
「MAA」は、メタクリル酸単位を示し、
「AAm」は、アクリルアミド単位を示し、
「MAAm」は、メタクリルアミド単位を示し、
「2-HEA」は、2-ヒドロキシエチルアクリレート単位を示し、
「2-HEMA」は、2-ヒドロキシエチルメタクリレート単位を示し、
「HEAAm」は、N-ヒドロキシエチルアクリルアミド単位を示し、
「EPETA」は、エトキシ化ペンタエリスリトールテトラアクリレート単位を示し、
「MA」は、メチルアクリレート単位を示し、
「CMC」は、カルボキシメチルセルロースのナトリウム塩を示し、
「SBR」は、スチレン-ブタジエン系共重合体を示し、
「ACR」は、アクリル系重合体を示し、
「A-Na」は、アルギン酸ナトリウムを示す。
In the table below,
“AA” indicates an acrylic acid unit;
“MAA” indicates a methacrylic acid unit;
“AAm” indicates an acrylamide unit;
“MAAm” indicates a methacrylamide unit;
“2-HEA” refers to 2-hydroxyethyl acrylate units;
“2-HEMA” refers to 2-hydroxyethyl methacrylate units;
“HEAAm” indicates N-hydroxyethylacrylamide unit;
“EPETA” refers to an ethoxylated pentaerythritol tetraacrylate unit,
“MA” represents a methyl acrylate unit;
“CMC” refers to the sodium salt of carboxymethylcellulose;
“SBR” indicates a styrene-butadiene copolymer,
“ACR” indicates an acrylic polymer;
“A-Na” refers to sodium alginate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1~2より、重合体Xがエチレン性不飽和カルボン酸単量体単位、(メタ)アクリルアミド単量体単位およびヒドロキシル基含有ビニル単量体単位を所定範囲内の割合で含有している実施例1~13では、スラリー組成物が粘度安定性に優れ、且つ、電極合材層が集電体と良好に密着していることが分かる。 Tables 1 and 2 show that the polymer X contains an ethylenically unsaturated carboxylic acid monomer unit, a (meth) acrylamide monomer unit, and a hydroxyl group-containing vinyl monomer unit within a predetermined range. In Examples 1 to 13, it can be seen that the slurry composition is excellent in viscosity stability and the electrode mixture layer is in good contact with the current collector.
 一方、重合体Xが(メタ)アクリルアミド単量体単位を含有していない比較例1では、スラリー組成物の優れた粘度安定性並びに電極合材層および集電体間の優れた密着性を両立できず、特にスラリー組成物の粘度安定性に劣ることが分かる。
 また、重合体X中の(メタ)アクリルアミド単量体単位の含有割合が60質量%超である比較例2~4でも、スラリー組成物の優れた粘度安定性並びに電極合材層および集電体間の優れた密着性を両立できていないことが分かる。中でも、重合体Xが更にヒドロキシル基含有ビニル単量体単位を含有していない比較例3では、電極合材層および集電体間の密着性が顕著に劣っていることが分かる。
 そして、重合体Xのガラス転移温度が100℃を超えている実施例11および比較例2~4では、電極合材層のスプリングバックが悪化していることが分かる。
On the other hand, in Comparative Example 1 in which the polymer X does not contain a (meth) acrylamide monomer unit, both excellent viscosity stability of the slurry composition and excellent adhesion between the electrode mixture layer and the current collector are compatible. It cannot be seen that the viscosity stability of the slurry composition is particularly poor.
Further, in Comparative Examples 2 to 4 in which the content ratio of the (meth) acrylamide monomer unit in the polymer X is more than 60% by mass, the excellent viscosity stability of the slurry composition, the electrode mixture layer and the current collector It can be seen that the excellent adhesion between the two is not compatible. In particular, it can be seen that in Comparative Example 3 in which the polymer X does not further contain a hydroxyl group-containing vinyl monomer unit, the adhesion between the electrode mixture layer and the current collector is significantly inferior.
In Example 11 and Comparative Examples 2 to 4 in which the glass transition temperature of the polymer X exceeds 100 ° C., it can be seen that the spring back of the electrode mixture layer is deteriorated.
 本発明によれば、粘度安定性に優れ、且つ、集電体との密着性に優れる電極合材層を形成可能なスラリー組成物、並びに当該スラリー組成物を調製し得るバインダー組成物を提供することができる。
 また、本発明によれば、集電体との密着性に優れる電極合材層を有する電極、および当該電極を備える二次電池を提供することができる。
According to the present invention, there are provided a slurry composition capable of forming an electrode mixture layer having excellent viscosity stability and adhesion to a current collector, and a binder composition capable of preparing the slurry composition. be able to.
Moreover, according to this invention, an electrode which has an electrode compound-material layer excellent in adhesiveness with a collector, and a secondary battery provided with the said electrode can be provided.

Claims (11)

  1.  水溶性重合体を含むバインダー組成物であって、
     前記水溶性重合体は、エチレン性不飽和カルボン酸単量体単位を1質量%以上50質量%以下、(メタ)アクリルアミド単量体単位を10質量%以上60質量%以下、およびヒドロキシル基含有ビニル単量体単位を5質量%以上89質量%以下含有する重合体Xを含む、非水系二次電池電極用バインダー組成物。
    A binder composition comprising a water-soluble polymer,
    The water-soluble polymer contains 1% by mass to 50% by mass of ethylenically unsaturated carboxylic acid monomer units, 10% by mass to 60% by mass of (meth) acrylamide monomer units, and hydroxyl group-containing vinyl. A binder composition for a non-aqueous secondary battery electrode, comprising a polymer X containing 5% by mass or more and 89% by mass or less of a monomer unit.
  2.  前記重合体Xのガラス転移温度が-10℃以上100℃以下である、請求項1に記載の非水系二次電池電極用バインダー組成物。 The binder composition for a non-aqueous secondary battery electrode according to claim 1, wherein the glass transition temperature of the polymer X is from -10 ° C to 100 ° C.
  3.  前記重合体Xが、多官能エチレン性不飽和カルボン酸エステル単量体単位を0.001質量%以上10質量%以下更に含有する、請求項1または2に記載の非水系二次電池電極用バインダー組成物。 The binder for nonaqueous secondary battery electrodes according to claim 1 or 2, wherein the polymer X further contains 0.001% by mass to 10% by mass of a polyfunctional ethylenically unsaturated carboxylic acid ester monomer unit. Composition.
  4.  前記重合体Xの電解液膨潤度が1倍超3倍以下である、請求項1~3のいずれか一項に記載の非水系二次電池電極用バインダー組成物。 The binder composition for a non-aqueous secondary battery electrode according to any one of claims 1 to 3, wherein the degree of swelling of the electrolyte solution of the polymer X is more than 1 time and 3 times or less.
  5.  前記重合体Xの、温度20℃における溶解度が1g/100g-H2O以上である、請求項1~4のいずれか一項に記載の非水系二次電池電極用バインダー組成物。 The binder composition for a non-aqueous secondary battery electrode according to any one of claims 1 to 4, wherein the solubility of the polymer X at a temperature of 20 ° C is 1 g / 100 g-H 2 O or more.
  6.  前記重合体Xの含有割合が、前記水溶性重合体中の全重合体100質量%に対して10質量%以上100質量%以下である、請求項1~5のいずれか一項に記載の非水系二次電池電極用バインダー組成物。 The content ratio of the polymer X is 10% by mass or more and 100% by mass or less with respect to 100% by mass of the total polymer in the water-soluble polymer, according to any one of claims 1 to 5. A binder composition for an aqueous secondary battery electrode.
  7.  前記水溶性重合体が、前記重合体Xとは異なるその他の水溶性の重合体を更に含み、
     前記その他の水溶性の重合体が、天然系高分子、半合成系高分子又は合成系高分子の何れかを含む、請求項1~6のいずれか一項に記載の非水系二次電池電極用バインダー組成物。
    The water-soluble polymer further includes another water-soluble polymer different from the polymer X,
    The nonaqueous secondary battery electrode according to any one of claims 1 to 6, wherein the other water-soluble polymer includes any one of a natural polymer, a semisynthetic polymer, and a synthetic polymer. Binder composition.
  8.  カルボキシル基およびヒドロキシル基の少なくとも一方を有する粒子状重合体を更に含み、
     前記重合体Xの含有量が、前記粒子状重合体100質量部に対して0.1質量部以上200質量部以下である、請求項1~7のいずれか一項に記載の非水系二次電池電極用バインダー組成物。
    Further comprising a particulate polymer having at least one of a carboxyl group and a hydroxyl group,
    The non-aqueous secondary according to any one of claims 1 to 7, wherein the content of the polymer X is 0.1 to 200 parts by mass with respect to 100 parts by mass of the particulate polymer. Binder composition for battery electrodes.
  9.  電極活物質と、
     請求項1~8のいずれか一項に記載の非水系二次電池電極用バインダー組成物と、を含む、非水系二次電池電極用スラリー組成物。
    An electrode active material;
    A slurry composition for non-aqueous secondary battery electrodes, comprising the binder composition for non-aqueous secondary battery electrodes according to any one of claims 1 to 8.
  10.  集電体と、
     請求項9に記載の非水系二次電池電極用スラリー組成物を用いて形成された電極合材層と、を有する、非水系二次電池用電極。
    A current collector,
    An electrode mixture layer formed using the slurry composition for a non-aqueous secondary battery electrode according to claim 9, and a non-aqueous secondary battery electrode.
  11.  正極、負極、セパレータ、および電解液を備え、
     前記正極および負極の少なくとも一方が、請求項10に記載の非水系二次電池用電極である、非水系二次電池。
    Comprising a positive electrode, a negative electrode, a separator, and an electrolyte;
    The nonaqueous secondary battery whose at least one of the said positive electrode and a negative electrode is the electrode for nonaqueous secondary batteries of Claim 10.
PCT/JP2017/024192 2016-07-07 2017-06-30 Binder composition for nonaqueous secondary battery electrodes, slurry composition for nonaqueous secondary battery electrodes, electrode for nonaqueous secondary batteries, and nonaqueous secondary battery WO2018008555A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018526342A JP7067473B2 (en) 2016-07-07 2017-06-30 Binder composition for non-aqueous secondary battery electrodes, slurry composition for non-aqueous secondary battery electrodes, electrodes for non-aqueous secondary batteries and non-aqueous secondary batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-135333 2016-07-07
JP2016135333 2016-07-07

Publications (1)

Publication Number Publication Date
WO2018008555A1 true WO2018008555A1 (en) 2018-01-11

Family

ID=60912822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024192 WO2018008555A1 (en) 2016-07-07 2017-06-30 Binder composition for nonaqueous secondary battery electrodes, slurry composition for nonaqueous secondary battery electrodes, electrode for nonaqueous secondary batteries, and nonaqueous secondary battery

Country Status (2)

Country Link
JP (1) JP7067473B2 (en)
WO (1) WO2018008555A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159706A1 (en) * 2018-02-19 2019-08-22 日本ゼオン株式会社 Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2019183040A1 (en) 2018-03-21 2019-09-26 Five Prime Therapeutics, Inc. ANTIBODIES BINDING TO VISTA AT ACIDIC pH
JP2019197695A (en) * 2018-05-11 2019-11-14 Jsr株式会社 Composition for electric power storage device, slurry for electrode for electric power storage device, electrode for electric power storage device, and electric power storage device
WO2020014327A2 (en) 2018-07-11 2020-01-16 Five Prime Therapeutics, Inc. Antibodies binding to vista at acidic ph
JP2020024896A (en) * 2017-12-18 2020-02-13 荒川化学工業株式会社 Aqueous solution of thermally crosslinkable binder for lithium ion battery, electrode slurry for lithium ion battery and manufacturing method thereof, electrode for lithium ion battery, and lithium ion battery
CN111129457A (en) * 2019-12-19 2020-05-08 名添科技(深圳)有限公司 Aqueous ternary cathode slurry and preparation method thereof
WO2020175246A1 (en) * 2019-02-27 2020-09-03 日本ゼオン株式会社 Binder composition for secondary batteries, slurry composition for secondary battery functional layers, functional layer for secondary batteries, and secondary battery
CN112094372A (en) * 2019-06-17 2020-12-18 荒川化学工业株式会社 Binder aqueous solution for lithium ion battery, slurry for negative electrode, material for negative electrode, lithium ion battery, and method for producing same
EP3783699A1 (en) * 2019-08-22 2021-02-24 Arakawa Chemical Industries, Ltd. Thermally crosslinkable binder aqueous solution for lithium-ion battery, thermally crosslinkable slurry for lithium-ion battery negative electrode, negative electrode for lithium-ion battery, and lithium-ion battery
WO2021055698A1 (en) 2019-09-19 2021-03-25 Bristol-Myers Squibb Company Antibodies binding to vista at acidic ph
CN113169334A (en) * 2018-10-31 2021-07-23 日本瑞翁株式会社 Slurry composition for secondary battery, electrode layer, binder composition, functional layer, method for producing both, and secondary battery
CN113948685A (en) * 2021-09-09 2022-01-18 广州理文科技有限公司 Silicon-based composite negative electrode material of lithium ion battery and preparation method thereof
CN114556636A (en) * 2019-10-31 2022-05-27 日本瑞翁株式会社 Binder composition for all-solid-state secondary battery, slurry composition for all-solid-state secondary battery, solid electrolyte-containing layer, and all-solid-state secondary battery
US20230197961A1 (en) * 2021-12-15 2023-06-22 Lg Energy Solution, Ltd. Anode composition, lithium secondary battery anode comprising same, and lithium secondary battery comprising anode
WO2023120533A1 (en) * 2021-12-21 2023-06-29 富士フイルム株式会社 Binder composition for secondary batteries, electrode sheet, secondary battery, method for producing electrode sheet and method for producing secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035557A (en) * 2005-07-29 2007-02-08 Nitto Denko Corp Separator for battery and manufacturing method of battery using same
JP2015106488A (en) * 2013-11-29 2015-06-08 Jsr株式会社 Slurry for electricity storage device negative electrode and electricity storage device negative electrode, slurry for electricity storage device positive electrode and electricity storage device positive electrode, and electricity storage device
WO2015186363A1 (en) * 2014-06-04 2015-12-10 日本ゼオン株式会社 Binder composition for lithium ion secondary cell electrode, slurry composition for lithium ion secondary cell electrode, lithium ion secondary cell electrode, and lithium ion secondary cell
JP2016171074A (en) * 2015-03-13 2016-09-23 日本ゼオン株式会社 Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2017056467A1 (en) * 2015-09-30 2017-04-06 日本ゼオン株式会社 Binder composition for non-aqueous secondary cell electrode, slurry composition for non-aqueous secondary cell electrode, non-aqueous secondary cell electrode, and non-aqueous secondary cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192434A (en) * 2009-01-23 2010-09-02 Nippon A&L Inc Binder for secondary battery electrode
JP5567429B2 (en) * 2010-08-25 2014-08-06 株式会社日本触媒 Conductive layer for lithium ion secondary battery
JP5825006B2 (en) * 2011-09-22 2015-12-02 藤倉化成株式会社 Positive electrode material for lithium ion secondary battery and lithium ion secondary battery
HUE046389T2 (en) * 2014-08-11 2020-03-30 Zeon Corp Binder composition for secondary battery electrodes, slurry composition for secondary battery electrodes, electrode for secondary battery, and secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035557A (en) * 2005-07-29 2007-02-08 Nitto Denko Corp Separator for battery and manufacturing method of battery using same
JP2015106488A (en) * 2013-11-29 2015-06-08 Jsr株式会社 Slurry for electricity storage device negative electrode and electricity storage device negative electrode, slurry for electricity storage device positive electrode and electricity storage device positive electrode, and electricity storage device
WO2015186363A1 (en) * 2014-06-04 2015-12-10 日本ゼオン株式会社 Binder composition for lithium ion secondary cell electrode, slurry composition for lithium ion secondary cell electrode, lithium ion secondary cell electrode, and lithium ion secondary cell
JP2016171074A (en) * 2015-03-13 2016-09-23 日本ゼオン株式会社 Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2017056467A1 (en) * 2015-09-30 2017-04-06 日本ゼオン株式会社 Binder composition for non-aqueous secondary cell electrode, slurry composition for non-aqueous secondary cell electrode, non-aqueous secondary cell electrode, and non-aqueous secondary cell

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020024896A (en) * 2017-12-18 2020-02-13 荒川化学工業株式会社 Aqueous solution of thermally crosslinkable binder for lithium ion battery, electrode slurry for lithium ion battery and manufacturing method thereof, electrode for lithium ion battery, and lithium ion battery
JP7238379B2 (en) 2017-12-18 2023-03-14 荒川化学工業株式会社 Thermally crosslinkable binder aqueous solution for lithium ion battery, electrode slurry for lithium ion battery and method for producing the same, electrode for lithium ion battery, and lithium ion battery
WO2019159706A1 (en) * 2018-02-19 2019-08-22 日本ゼオン株式会社 Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
CN111656588B (en) * 2018-02-19 2023-12-22 日本瑞翁株式会社 Binder composition for nonaqueous secondary battery electrode, slurry composition, electrode, and secondary battery
CN111656588A (en) * 2018-02-19 2020-09-11 日本瑞翁株式会社 Binder composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP7327379B2 (en) 2018-02-19 2023-08-16 日本ゼオン株式会社 Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
US20200411867A1 (en) * 2018-02-19 2020-12-31 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JPWO2019159706A1 (en) * 2018-02-19 2021-02-12 日本ゼオン株式会社 Binder composition for non-aqueous secondary battery electrodes, slurry composition for non-aqueous secondary battery electrodes, electrodes for non-aqueous secondary batteries and non-aqueous secondary batteries
WO2019183040A1 (en) 2018-03-21 2019-09-26 Five Prime Therapeutics, Inc. ANTIBODIES BINDING TO VISTA AT ACIDIC pH
JP2019197695A (en) * 2018-05-11 2019-11-14 Jsr株式会社 Composition for electric power storage device, slurry for electrode for electric power storage device, electrode for electric power storage device, and electric power storage device
JP7143114B2 (en) 2018-05-11 2022-09-28 株式会社Eneosマテリアル Composition for power storage device, slurry for power storage device electrode, power storage device electrode, and power storage device
WO2020014327A2 (en) 2018-07-11 2020-01-16 Five Prime Therapeutics, Inc. Antibodies binding to vista at acidic ph
CN113169334A (en) * 2018-10-31 2021-07-23 日本瑞翁株式会社 Slurry composition for secondary battery, electrode layer, binder composition, functional layer, method for producing both, and secondary battery
WO2020175246A1 (en) * 2019-02-27 2020-09-03 日本ゼオン株式会社 Binder composition for secondary batteries, slurry composition for secondary battery functional layers, functional layer for secondary batteries, and secondary battery
JP2020205257A (en) * 2019-06-17 2020-12-24 荒川化学工業株式会社 Thermal crosslinking binder aqueous solution for lithium ion battery, thermal crosslinking slurry for lithium ion battery negative electrode, negative electrode for lithium ion battery, material for lithium ion battery negative electrode, and lithium ion battery and production method thereof
CN112094372A (en) * 2019-06-17 2020-12-18 荒川化学工业株式会社 Binder aqueous solution for lithium ion battery, slurry for negative electrode, material for negative electrode, lithium ion battery, and method for producing same
CN112094372B (en) * 2019-06-17 2023-07-14 荒川化学工业株式会社 Binder aqueous solution for lithium ion battery, slurry for negative electrode, material for negative electrode, and lithium ion battery and method for producing same
JP7238854B2 (en) 2019-06-17 2023-03-14 荒川化学工業株式会社 Thermally crosslinkable binder aqueous solution for lithium ion battery, thermally crosslinkable slurry for lithium ion battery negative electrode, lithium ion battery negative electrode, lithium ion battery negative electrode material, lithium ion battery and method for producing the same
EP3783699A1 (en) * 2019-08-22 2021-02-24 Arakawa Chemical Industries, Ltd. Thermally crosslinkable binder aqueous solution for lithium-ion battery, thermally crosslinkable slurry for lithium-ion battery negative electrode, negative electrode for lithium-ion battery, and lithium-ion battery
US11646421B2 (en) 2019-08-22 2023-05-09 Arakawa Chemical Industries, Ltd. Thermally crosslinkable binder aqueous solution for lithium-ion battery, thermally crosslinkable slurry for lithium-ion battery negative electrode, negative electrode for lithium-ion battery
WO2021055698A1 (en) 2019-09-19 2021-03-25 Bristol-Myers Squibb Company Antibodies binding to vista at acidic ph
CN114556636A (en) * 2019-10-31 2022-05-27 日本瑞翁株式会社 Binder composition for all-solid-state secondary battery, slurry composition for all-solid-state secondary battery, solid electrolyte-containing layer, and all-solid-state secondary battery
CN111129457A (en) * 2019-12-19 2020-05-08 名添科技(深圳)有限公司 Aqueous ternary cathode slurry and preparation method thereof
CN113948685A (en) * 2021-09-09 2022-01-18 广州理文科技有限公司 Silicon-based composite negative electrode material of lithium ion battery and preparation method thereof
CN113948685B (en) * 2021-09-09 2023-11-28 广州理文科技有限公司 Silicon-based composite negative electrode material of lithium ion battery and preparation method thereof
US20230197961A1 (en) * 2021-12-15 2023-06-22 Lg Energy Solution, Ltd. Anode composition, lithium secondary battery anode comprising same, and lithium secondary battery comprising anode
WO2023120533A1 (en) * 2021-12-21 2023-06-29 富士フイルム株式会社 Binder composition for secondary batteries, electrode sheet, secondary battery, method for producing electrode sheet and method for producing secondary battery

Also Published As

Publication number Publication date
JPWO2018008555A1 (en) 2019-04-18
JP7067473B2 (en) 2022-05-16

Similar Documents

Publication Publication Date Title
JP7067473B2 (en) Binder composition for non-aqueous secondary battery electrodes, slurry composition for non-aqueous secondary battery electrodes, electrodes for non-aqueous secondary batteries and non-aqueous secondary batteries
JP6988948B2 (en) Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery and lithium ion secondary battery
JP5708301B2 (en) Secondary battery negative electrode, secondary battery, negative electrode slurry composition, and method for producing secondary battery negative electrode
JP6229290B2 (en) Electrode laminate for secondary battery and secondary battery
KR20140018882A (en) Secondary cell negative electrode, secondary cell, slurry composition for negative electrode, and method of producing secondary cell negative electrode
WO2016067633A1 (en) Paste composition for negative electrode for lithium-ion rechargeable battery, composite particles for negative electrode for lithium-ion rechargeable battery, slurry composition for negative electrode for lithium-ion rechargeable battery, negative electrode for lithium-ion rechargeable battery, and lithium-ion rechargeable battery
JP5987471B2 (en) Secondary battery negative electrode, secondary battery, negative electrode slurry composition, and method for producing secondary battery negative electrode
WO2016035286A1 (en) Binder composition for secondary-battery electrode, slurry composition for secondary-battery electrode, secondary-battery electrode, and secondary battery
JP6428342B2 (en) Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7327379B2 (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
KR20140063632A (en) Binder composition for secondary battery negative electrode, negative electrode for secondary battery, negative electrode slurry composition, manufacturing method, and secondary battery
KR20150063958A (en) Lithium ion secondary battery
JP6593320B2 (en) Slurry composition for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR20150092115A (en) Lithium ion secondary battery
WO2014196436A1 (en) Porous film slurry composition for lithium ion secondary batteries, separator for lithium ion secondary batteries, electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2017077940A1 (en) Binder for negative electrodes of lithium ion secondary batteries, slurry composition for negative electrodes, negative electrode, and lithium ion secondary battery
KR20150042147A (en) Slurry composition for lithium-ion secondary cell negative electrode
JP2017069108A (en) Slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery electrode and lithium ion secondary battery
KR102369485B1 (en) Binder composition for secondary battery electrodes, slurry composition for secondary battery electrodes, electrode for secondary batteries, production method therefor, and secondary battery
JP6874690B2 (en) Binder composition for non-aqueous secondary battery electrodes, slurry composition for non-aqueous secondary battery electrodes, electrodes for non-aqueous secondary batteries, and non-aqueous secondary batteries
JP6488592B2 (en) Slurry composition for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
WO2013002322A1 (en) Binder composition for secondary cell negative electrode, slurry composition for secondary cell negative electrode, negative electrode for secondary cell, and secondary cell
JP7143114B2 (en) Composition for power storage device, slurry for power storage device electrode, power storage device electrode, and power storage device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018526342

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17824159

Country of ref document: EP

Kind code of ref document: A1