WO2018006500A1 - 一种单层多点触摸功能片及触摸坐标获取方法 - Google Patents

一种单层多点触摸功能片及触摸坐标获取方法 Download PDF

Info

Publication number
WO2018006500A1
WO2018006500A1 PCT/CN2016/100033 CN2016100033W WO2018006500A1 WO 2018006500 A1 WO2018006500 A1 WO 2018006500A1 CN 2016100033 W CN2016100033 W CN 2016100033W WO 2018006500 A1 WO2018006500 A1 WO 2018006500A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
electrode
electrodes
layer multi
wires
Prior art date
Application number
PCT/CN2016/100033
Other languages
English (en)
French (fr)
Inventor
丁武岭
Original Assignee
深圳贝特莱电子科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳贝特莱电子科技股份有限公司 filed Critical 深圳贝特莱电子科技股份有限公司
Publication of WO2018006500A1 publication Critical patent/WO2018006500A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04106Multi-sensing digitiser, i.e. digitiser using at least two different sensing technologies simultaneously or alternatively, e.g. for detecting pen and finger, for saving power or for improving position detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • the present invention relates to a capacitive touch screen, and more particularly to a single-layer multi-touch functional tablet and a touch coordinate acquisition method.
  • capacitive touch screens have become widely used in electronic products as an important component of human-computer interaction.
  • the touch screen of the single-layer sensing electrode has been widely concerned by people because of its low production cost, and has become an important development direction of the capacitive touch screen.
  • the mutual capacitance screen type touch screen adopting the double-layer electrode design scheme is widely used due to the better touch precision.
  • the touch screen using the double-layer electrode has higher material cost and more complicated processing steps than the touch screen using the single-layer electrode scheme, so the total production cost is relatively high.
  • the single-layer self-capacitive touch screen is relatively inexpensive to manufacture, a single-layer self-capacitive touch screen cannot realize the real multi-touch function.
  • a single-layer self-capacitance multi-touch screen includes a plurality of square sensing electrodes, each of which has substantially the same sensing area, the x-direction is the same group of electrodes, and the wires of each electrode are from two The group electrode is drawn out, and the bonding point is near the midpoint of one side of the next group of electrodes (such as the P1 point on the first electrode), and the wire is bent at a right angle and then led to the outside of the sensing area in the x direction. Since the width of the blind area between the two sets of adjacent electrodes is large (such as the A1 area between the first set of electrodes and the second set of electrodes), the touch accuracy is poor.
  • the technical problem to be solved by the present invention is that the manufacturing cost of the double-layer mutual capacitance type touch screen in the prior art is high, and the general single-layer self-capacitive touch screen cannot realize the multi-touch function and the large blind area is provided.
  • the present invention adopts the following technical solutions.
  • a single-layer multi-touch functional sheet comprising a plurality of electrode groups arranged in parallel from top to bottom, the electrode group comprising a plurality of electrodes, the electrodes being provided with wires, between adjacent two electrode groups Forming a wiring area for extracting the wires of the upper electrode thereof, and the wires of the adjacent two electrode groups are taken out in opposite directions, and the areas of the plurality of electrodes in the electrode group are sequentially decreased along the direction of the wire lead-out .
  • the electrode is a square electrode.
  • the wire is led out of the bottom edge of the electrode.
  • the electrodes are driven in a self-capacitance manner.
  • the electrode is made of ITO, IZO, nano silver or carbon nanotube material.
  • the electrodes and wires are made of chromium, copper, aluminum, ITO, IZO, nano silver or carbon nanotube materials.
  • a touch coordinate acquisition method for a single-layer multi-touch function piece wherein the touch coordinate X on the single-layer multi-touch function piece is obtained by the following formula:
  • m and n represent the labels of the first electrode and the last electrode, respectively, when the capacitance changes during the touch, each electrode is connected with a capacitance sensor
  • Ci represents the amount of capacitance change measured by the ith capacitance sensor
  • Xi represents the common barycentric coordinates of the electrodes to which the i-th capacitive sensor is connected.
  • the weighting factor or the sensing electrode touch variation amount of the coordinate calculation is adjusted according to the area of each electrode, and the smaller the area of the sensing electrode is, the larger the corresponding weighting factor or the touch variation amount is.
  • the present invention has the beneficial effects that the wiring space between the sensing electrodes is better saved, the requirements on the production process are reduced, the touch dead zone is effectively reduced, and the precision is improved. Multi-touch can be achieved.
  • FIG. 1 is a schematic structural diagram of a single-layer multi-touch functional sheet of the present invention.
  • FIG. 2 is a schematic structural view of a single-layer self-capacitance multi-touch screen in the prior art.
  • the present invention discloses a single-layer multi-touch functional sheet, as shown in FIG. 1 , which includes a multi-layer electrode group 1 disposed in parallel from top to bottom, the electrode group 1 including a plurality of electrodes 2,
  • the electrode 2 is provided with a wire 3, and a wiring area is formed between two adjacent electrode groups 1, and the wire area is used to lead the wire 3 of the upper electrode 2 thereof, and the wire 3 of the adjacent two electrode groups 1
  • the area of the plurality of electrodes 2 in the electrode group 1 is successively decreased in the direction in which the wires 3 are taken out.
  • the invention saves the wiring space between the sensing electrodes, reduces the requirements on the production process, effectively reduces the touch dead zone, improves the precision, and realizes multi-touch. .
  • the electrode 2 is a square electrode.
  • the wire 3 is led out from the bottom edge of the electrode 2.
  • the electrode 2 is driven by a self-capacitance method.
  • the electrode 2 is made of ITO, IZO, nano silver or carbon nanotube material, and a commonly used ITO material is preferred.
  • the electrodes 2 and the wires 3 are made of chromium, copper, aluminum, ITO, IZO, nano silver or carbon nanotube materials, preferably Use common copper materials.
  • the functional piece is a single-layer sensing electrode functional piece
  • the electrode is square or approximately square
  • the electrodes are arranged in a matrix on the functional piece, and the sensing area of the electrode in each electrode group gradually decreases along the outgoing direction of the lead wire to The space between the two electrodes separated by the traces gradually increases along the outgoing line direction.
  • the electrode area of the first group of electrodes gradually decreases from left to right along the trace direction, and the space between the electrodes between the two rows Gradually increasing from A1 to A2; the lead of each sensing electrode is in close contact with one side of the electrode in the direction of the trace, the bonding point is one of the corners P1 of the electrode, and the lead is closely followed by one side of the lower side of the square .
  • the outgoing directions between adjacent electrode groups are opposite.
  • the outgoing direction of the first group is the positive direction of x
  • the outgoing line of the second group is the opposite direction of x. If the outgoing direction of the first set of electrodes is the positive direction of x, then the outgoing direction of the second set of electrodes is the inverse of x.
  • the outgoing direction of the 2n+1th group electrode is the positive direction of x, where n is an integer greater than or equal to 0.
  • the blind areas of other areas are reduced to different extents, and the blind spot width of some areas is even reduced by several times, such as the A1 area.
  • the present invention also discloses a touch coordinate acquiring method thereof, wherein the touch coordinate X on the single-layer multi-touch function piece is obtained by the following formula:
  • m and n represent the labels of the first electrode and the last electrode, respectively, when the capacitance changes during the touch, each electrode 2 is connected to a capacitive sensor, and Ci represents the measured by the ith capacitive sensor.
  • the amount of change in capacitance, Xi represents the common barycentric coordinates of the electrode 2 to which the i-th capacitive sensor is connected.
  • the weighting factor of the coordinate calculation or the sensing electrode touch variation is adjusted according to the area of each electrode 2. The smaller the area of the sensing electrode, the larger the corresponding weighting factor or touch variation.
  • the detected capacitance changes are 21, 22, 23, 31, 32, 33, 41, 42 and 43 for a total of 9 sensing electrodes
  • m is Reference numeral
  • n is a reference numeral 43
  • the centroid coordinate x of the touch in the X direction can be calculated according to the above formula.
  • the weighting factor or the sensing electrode touch variation amount of the coordinate calculation is adjusted according to the area of each sensing electrode, and the smaller the area of the sensing electrode is, the larger the corresponding weighting factor or the touch variation amount is.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种单层多点触摸功能片,其包括有由上至下并行设置的多层电极组(1),所述电极组(1)包括有多个电极(2),所述电极(2)设有导线(3),相邻两个电极组(1)之间形成有走线区,所述走线区用于将其上方电极(2)的导线(3)引出,且相邻两个电极组(1)的导线(3)引出方向相反,所述电极组(1)中多个电极(2)的面积沿导线(3)引出方向依次递减,由此较好地节省了感应电极之间的走线空间,降低了对生产工艺的要求,有效减少了触摸盲区,提高了精准度,同时可实现多点触控。

Description

一种单层多点触摸功能片及触摸坐标获取方法 技术领域
本发明涉及电容触摸屏,尤其涉及一种单层多点触摸功能片及触摸坐标获取方法。
背景技术
目前,电容式触摸屏作为人机交互的重要部件,已经广泛地应用在电子产品中。其中,单层感应电极的触摸屏,由于制作成本低,受到了人们的广泛关注,成为电容式触摸屏的重要发展方向。
采用双层电极设计方案的互电容屏式触摸屏,由于触摸精准度比较好而得到广泛的应用。但是,采用双层电极的触摸屏与采用单层电极方案的触摸屏相比,材料成本比较高,加工工序也比较复杂,所以总的制作成本就比较高。虽然单层自电容式的触摸屏的制作成本较低,但是一般单层自电容式的触摸屏又无法实现真实多点触控的功能。
现有的一种单层自电容式多点触摸屏,如图2所示,包括多个方形感应电极,每个电极的感应面积大致相等,x方向为同一组电极,每个电极的导线从两组电极之间引出,邦定点为靠近下一组电极的一条边的中点附近(如第一个电极上的P1点),导线通过直角弯折后沿x方向引到感应区之外。由于在两组相邻电极之间的走线盲区的宽度较大(如第一组电极与第二组电极之间的A1区域),进而使得触控精度较差。
发明内容
本发明要解决的技术问题在于,针对现有技术中双层互电容式触摸屏的制作成本较高、一般单层自电容式触摸屏无法实现多点触控功能以及走线盲区较大等不足,提供一种单层多点触摸功能片及触摸坐标获取方法。
为解决上述技术问题,本发明采用如下技术方案。
一种单层多点触摸功能片,其包括有由上至下并行设置的多层电极组,所述电极组包括有多个电极,所述电极设有导线,相邻两个电极组之间形成有走线区,所述走线区用于将其上方电极的导线引出,且相邻两个电极组的导线引出方向相反,所述电极组中多个电极的面积沿导线引出方向依次递减。
优选地,所述电极是方形电极。
优选地,所述导线由电极的底边引出。
优选地,所述电极采用自电容方式驱动。
优选地,所述单层多点触摸功能片用作透明触摸屏时,所述电极由ITO、IZO、纳米银或碳纳米管材料制成。
优选地,所述单层多点触摸功能片用作透明触摸板时,所述电极和导线由铬、铜、铝、ITO、IZO、纳米银或碳纳米管材料制成。
一种单层多点触摸功能片的触摸坐标获取方法,所述单层多点触摸功能片上的触摸坐标X用如下公式得出:
Figure PCTCN2016100033-appb-000001
其中,m和n分别代表触碰时发生电容变化的第1个电极和最后一个电极的标号,每个电极连接有一电容感应器,Ci代表用第i个电容感应器测得的电容变化量,Xi代表第i个电容感应器所连接的电极的共同重心坐标。
优选地,计算触摸坐标时,根据每个电极的面积来调整其坐标运算的权重因子或感应电极触摸变化量,感应电极的面积越小,对应的权重因子或触摸变化量越大。
本发明相比现有技术而言的有益效果在于,本发明较好地节省了感应电极之间的走线空间,降低了对生产工艺的要求,有效减少了触摸盲区,提高了精准度,同时可实现多点触控。
附图说明
图1为本发明单层多点触摸功能片的结构示意图。
图2为现有技术中单层自电容式多点触摸屏的结构示意图。
具体实施方式
下面结合附图和实施例对本发明作更加详细的描述。
本发明公开了一种单层多点触摸功能片,如图1所示,其包括有由上至下并行设置的多层电极组1,所述电极组1包括有多个电极2,所述电极2设有导线3,相邻两个电极组1之间形成有走线区,所述走线区用于将其上方电极2的导线3引出,且相邻两个电极组1的导线3引出方向相反,所述电极组1中多个电极2的面积沿导线3引出方向依次递减。
相比现有技术而言,本发明较好地节省了感应电极之间的走线空间,降低了对生产工艺的要求,有效减少了触摸盲区,提高了精准度,同时可实现多点触控。
进一步地,所述电极2是方形电极。所述导线3由电极2的底边引出。所述电极2采用自电容方式驱动。所述单层多点触摸功能片用作透明触摸屏时, 所述电极2由ITO、IZO、纳米银或碳纳米管材料制成,优先选用常用的ITO材料。相比之下,所述单层多点触摸功能片用作透明触摸板时,所述电极2和导线3由铬、铜、铝、ITO、IZO、纳米银或碳纳米管材料制成,优先选用常用的铜材料。
本实施例中,功能片为单层感应电极功能片,电极为方形或近似为方形,电极呈矩阵分布在功能片上,每个电极组中电极的感应面积沿其引线的出线方向逐渐递减,以走线分隔开的两个电极之间的空间沿出线方向逐渐递增,如图1所示,第1组电极从左到右沿走线方向电极面积逐渐递减,两行之间的电极的空间从A1到A2逐渐递增;每个感应电极的引线沿走线方向紧贴着该电极的其中一条边,邦定点为电极的其中一个角P1,引线紧沿着该方形的下边的一条边走线。相邻的电极组之间的出线方向是相反的。如第1组的出线方向为x的正方向,第2组的出线为x的反方向,假设第1组电极的出线方向为x的正方向,那么第2n组电极的出线方向为x的反方向,第2n+1组电极的出线方向为x的正方向,其中n为大于或等于0的整数。采用以上所述方案的触摸功能片,除导线引出最多的区域(如A2),其它区域的盲区均有不同程度的减少,有些区域的盲区宽度甚至减少了数倍,如A1区域。
基于上述结构的单层多点触摸功能片,本发明还公开了其触摸坐标获取方法,其中,所述单层多点触摸功能片上的触摸坐标X用如下公式得出:
Figure PCTCN2016100033-appb-000002
其中,m和n分别代表触碰时发生电容变化的第1个电极和最后一个电极的标号,每个电极2连接有一电容感应器,Ci代表用第i个电容感应器测得的 电容变化量,Xi代表第i个电容感应器所连接的电极2的共同重心坐标。
计算触摸坐标时,根据每个电极2的面积来调整其坐标运算的权重因子或感应电极触摸变化量,感应电极的面积越小,对应的权重因子或触摸变化量越大。
具体地,以手指触碰在电极32附近为例,检测到的电容变化的电极标号为21、22、23、31、32、33、41、42和43,共9个感应电极,则m为标号21,n为标号43,根据以上公式即可计算出触碰在X方向上的重心坐标x。在计算触摸坐标时,根据每个感应电极的面积来调整其坐标运算的权重因子或感应电极触摸变化量,感应电极的面积越小,对应的权重因子或触摸变化量越大。当手指触碰在电极32附近时,由于电极21的面积相对较小,在计算x方向的重心坐标时就要放大C21的值,假设面积比例电极21:电极22:电极23=1:2:4,则计算重心坐标时要分别把C21、C22调整为4*C21、2C22,C23不变。同时电极31、32、33、41、42和43也都需要根据其面积比例关系进行调整,调整的比例以触摸计算单元中面积最大的电极为参考,按照最大面积除以当前电极面积的数值对Ci进行放大处理。通过以上所述坐标计算调整,消除了电极面积不均等导致的触摸精准度问题。所述功能片为多电极矩阵式分布,故可实现多点触控。
以上所述只是本发明较佳的实施例,并不用于限制本发明,凡在本发明的技术范围内所做的修改、等同替换或者改进等,均应包含在本发明所保护的范围内。

Claims (8)

  1. 一种单层多点触摸功能片,其特征在于,包括有由上至下并行设置的多层电极组,所述电极组包括有多个电极,所述电极设有导线,相邻两个电极组之间形成有走线区,所述走线区用于将其上方电极的导线引出,且相邻两个电极组的导线引出方向相反,所述电极组中多个电极的面积沿导线引出方向依次递减。
  2. 如权利要求1所述的单层多点触摸功能片,其特征在于,所述电极是方形电极。
  3. 如权利要求2所述的单层多点触摸功能片,其特征在于,所述导线由电极的底边引出。
  4. 如权利要求1所述的单层多点触摸功能片,其特征在于,所述电极采用自电容方式驱动。
  5. 如权利要求1所述的单层多点触摸功能片,其特征在于,所述单层多点触摸功能片用作透明触摸屏时,所述电极由ITO、IZO、纳米银或碳纳米管材料制成。
  6. 如权利要求1所述的单层多点触摸功能片,其特征在于,所述单层多点触摸功能片用作透明触摸板时,所述电极和导线由铬、铜、铝、ITO、IZO、纳米银或碳纳米管材料制成。
  7. 一种如权利要求1至6任一项所述单层多点触摸功能片的触摸坐标获取方法,其特征在于,所述单层多点触摸功能片上的触摸坐标X用如下公式得出:
    Figure PCTCN2016100033-appb-100001
    其中,m和n分别代表触碰时发生电容变化的第1个电极和最后一个电极 的标号,每个电极连接有一电容感应器,Ci代表用第i个电容感应器测得的电容变化量,Xi代表第i个电容感应器所连接的电极的共同重心坐标。
  8. 如权利要求7所述的触摸坐标获取方法,其特征在于,计算触摸坐标时,根据每个电极的面积来调整其坐标运算的权重因子或感应电极触摸变化量,感应电极的面积越小,对应的权重因子或触摸变化量越大。
PCT/CN2016/100033 2016-07-03 2016-09-25 一种单层多点触摸功能片及触摸坐标获取方法 WO2018006500A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610511961.8A CN106126002B (zh) 2016-07-03 2016-07-03 一种单层多点触摸功能片及触摸坐标获取方法
CN2016105119618 2016-07-03

Publications (1)

Publication Number Publication Date
WO2018006500A1 true WO2018006500A1 (zh) 2018-01-11

Family

ID=57468148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100033 WO2018006500A1 (zh) 2016-07-03 2016-09-25 一种单层多点触摸功能片及触摸坐标获取方法

Country Status (2)

Country Link
CN (1) CN106126002B (zh)
WO (1) WO2018006500A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511945A (zh) * 2020-12-03 2021-03-16 歌尔科技有限公司 具有智能语音功能的无线耳机盒

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108319402B (zh) * 2017-01-17 2021-11-30 上海和辉光电股份有限公司 触控面板及触控装置
CN107422910B (zh) * 2017-07-07 2020-08-04 昆山龙腾光电股份有限公司 一种触控显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102193700A (zh) * 2010-03-15 2011-09-21 上海天马微电子有限公司 一种触摸屏
CN102227705A (zh) * 2008-10-01 2011-10-26 集成装置技术公司 多触摸传感器的交替互补导电元件图案
CN102339186A (zh) * 2011-10-26 2012-02-01 苏州瀚瑞微电子有限公司 一种单层ito的布线结构
CN102479011A (zh) * 2010-11-29 2012-05-30 北京京东方光电科技有限公司 电容式触摸屏
CN102855043A (zh) * 2012-08-31 2013-01-02 敦泰科技有限公司 一种单导电层多点识别电容屏
CN103365503A (zh) * 2012-04-05 2013-10-23 香港商灿芯半导体有限公司 相互电容型触控装置与其操作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103294292B (zh) * 2012-03-27 2016-12-14 上海天马微电子有限公司 一种电容式触摸屏的触摸检测方法和电容式触摸屏
CN104049817B (zh) * 2013-03-15 2017-09-29 北京京东方光电科技有限公司 一种电容式触控面板和触控式显示装置
CN203324960U (zh) * 2013-06-24 2013-12-04 深圳市汇顶科技股份有限公司 一种单层多点的电容式二维触摸传感器
TW201511099A (zh) * 2013-09-02 2015-03-16 Wintek Corp 觸控面板
CN105487737A (zh) * 2016-01-25 2016-04-13 南京华睿川电子科技有限公司 一种单层电极的多点电容式触摸屏功能片及电容式触摸屏

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102227705A (zh) * 2008-10-01 2011-10-26 集成装置技术公司 多触摸传感器的交替互补导电元件图案
CN102193700A (zh) * 2010-03-15 2011-09-21 上海天马微电子有限公司 一种触摸屏
CN102479011A (zh) * 2010-11-29 2012-05-30 北京京东方光电科技有限公司 电容式触摸屏
CN102339186A (zh) * 2011-10-26 2012-02-01 苏州瀚瑞微电子有限公司 一种单层ito的布线结构
CN103365503A (zh) * 2012-04-05 2013-10-23 香港商灿芯半导体有限公司 相互电容型触控装置与其操作方法
CN102855043A (zh) * 2012-08-31 2013-01-02 敦泰科技有限公司 一种单导电层多点识别电容屏

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511945A (zh) * 2020-12-03 2021-03-16 歌尔科技有限公司 具有智能语音功能的无线耳机盒
CN112511945B (zh) * 2020-12-03 2022-11-22 歌尔科技有限公司 具有智能语音功能的无线耳机盒

Also Published As

Publication number Publication date
CN106126002A (zh) 2016-11-16
CN106126002B (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
TWI522867B (zh) 內嵌式有源矩陣有機發光二極體觸控面板
TWI517012B (zh) A Single Layer Self - Capacitive Touch Screen for Multi - Touch Recognition and Its Data Processing
CN107045400B (zh) 多点压力触控侦测方法及多点压力触控模组
US10929634B2 (en) Touch sensor, display device including the same, and operating method of the touch sensor
US8698001B2 (en) Electrode structure of the touch panel, method thereof and touch panel
US8610683B2 (en) Touch screen panel
US9134870B2 (en) Capacitive touch-sensitive panel and mobile terminal using the same
US10268301B2 (en) Three-dimensional touch panel
WO2018006500A1 (zh) 一种单层多点触摸功能片及触摸坐标获取方法
US20160283769A1 (en) Biometric recognition apparatus
CN106201053A (zh) 检测触摸压力的触摸输入装置的灵敏度修正方法及计算机可读记录介质
KR101009925B1 (ko) 단층형 터치 패널 센서
CN104111760B (zh) 双模式触摸输入装置以及触摸面板
WO2019184301A1 (zh) 触控面板及其驱动方法、触控装置
KR20150103455A (ko) 터치스크린 장치 및 터치 감지 방법
US9244582B2 (en) Touch panel
KR20150022215A (ko) 터치 패널 및 그의 제조방법
US20160132180A1 (en) Capacitive Touch Circuit and Touch Sensor and Capacitive Touch System Using The Same
CN102855043B (zh) 一种单导电层多点识别电容屏
TWM483478U (zh) 觸控面板及其觸控電極結構
TWI467456B (zh) 觸控面板
KR20130005093A (ko) 단일 금속박막 터치패널 및 제조방법
TWI607359B (zh) 三維觸控總成
CN104978086A (zh) 触摸屏
CN202838290U (zh) 多触点电容式触摸屏

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908004

Country of ref document: EP

Kind code of ref document: A1