WO2018003886A1 - Omnidirectional movement device and orientation control method - Google Patents

Omnidirectional movement device and orientation control method Download PDF

Info

Publication number
WO2018003886A1
WO2018003886A1 PCT/JP2017/023822 JP2017023822W WO2018003886A1 WO 2018003886 A1 WO2018003886 A1 WO 2018003886A1 JP 2017023822 W JP2017023822 W JP 2017023822W WO 2018003886 A1 WO2018003886 A1 WO 2018003886A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating body
wheel
vehicle body
angular velocity
rotating
Prior art date
Application number
PCT/JP2017/023822
Other languages
French (fr)
Japanese (ja)
Inventor
祐 星野
Original Assignee
学校法人東京理科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人東京理科大学 filed Critical 学校法人東京理科大学
Priority to CN201780040317.XA priority Critical patent/CN109414956B/en
Priority to JP2018525231A priority patent/JP6951611B2/en
Publication of WO2018003886A1 publication Critical patent/WO2018003886A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B19/00Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B19/00Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group
    • B60B19/14Ball-type wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B33/00Castors in general; Anti-clogging castors
    • B60B33/08Ball castors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K1/00Unicycles

Definitions

  • the present invention relates to an omnidirectional moving device and a posture control method thereof.
  • Patent Document 1 discloses a transport device and a drive mechanism.
  • This transport device includes one spherical rotating body and three omni wheels.
  • the omni wheel is in contact with the spherical rotating body to roll the spherical rotating body, and further allows movement in a direction different from the rolling direction of the spherical rotating body.
  • the three omni wheels are arranged at equal intervals around the vertical axis (Z axis) of the spherical rotating body in the upper hemisphere of the spherical rotating body.
  • a wheel drive unit is connected to each omni wheel.
  • a loading platform is provided on the spherical rotating body via a frame portion, and the wheel driving unit is fixed to the frame unit.
  • the loading platform can be tilted, can be moved back and forth, left and right in the tilted direction, and can further turn. That is, the transport device can move with a high degree of freedom in all directions.
  • the present invention provides an omnidirectional movement device capable of moving a rotating body in a straight traveling direction with a maximum output and a posture control method for the omnidirectional movement device capable of stably maintaining the posture of a vehicle body. To do.
  • an omnidirectional moving device includes a spherical rotating body and a surface of the rotating body around an axis of a rotating shaft that rolls the rotating body and moves in a straight direction. And a wheel that rotates in the circumferential direction to transmit power to the rotating body and that allows the rotating body to roll in a direction that intersects the circumferential direction.
  • the omnidirectional moving device includes a spherical rotating body and a wheel disposed in contact with the surface of the rotating body.
  • the wheel rotates in the circumferential direction to transmit power to the rotating body, and enables the rotating body to roll in a direction intersecting the circumferential direction.
  • a plurality of wheels are arranged on the surface of the rotating body around the axis of the rotating shaft that causes the rotating body to roll and move in the straight direction. For this reason, when moving in the straight traveling direction, power is efficiently transmitted from the wheel to the rotating body, and the rotating body can be rolled in the straight traveling direction by the maximum output.
  • the omnidirectional movement device is a spherical rotating body and a surface of the upper hemisphere of the rotating body around an axis on one end side of the rotating shaft that rolls the rotating body and moves in the straight direction.
  • a first wheel that is arranged in contact with each other, rotates in the circumferential direction to transmit power to the rotating body, and allows the rotating body to roll in a direction intersecting the circumferential direction, and one end side of the rotating shaft
  • a second wheel that enables the rotating body to roll in a direction that intersects the direction.
  • the omnidirectional moving device includes a spherical rotating body, and a first wheel and a second wheel disposed in contact with the surface of the rotating body.
  • Each of the first wheel and the second wheel rotates in the circumferential direction to transmit power to the rotating body, and enables the rotating body to roll in a direction intersecting the circumferential direction.
  • a plurality of the first wheels are arranged on the surface of the upper hemisphere of the rotating body around an axis on one end side of the rotating shaft that rolls the rotating body and moves in the straight direction.
  • the second wheel is disposed on the surface of the center of symmetry of the rotating body with respect to a specific position on the surface of the lower hemisphere of the rotating body around the axis on one end side of the rotating shaft. Therefore, when moving in the straight traveling direction, power is efficiently transmitted from each of the first wheel and the second wheel to the rotating body, and the rotating body can be rolled in the straight traveling direction with the maximum output.
  • the omnidirectional movement device is a spherical rotating body and a surface of the upper hemisphere of the rotating body around an axis on one end side of the rotating shaft that rolls the rotating body and moves in the straight direction.
  • a first wheel that is arranged in contact with each other, rotates in the circumferential direction to transmit power to the rotating body, and allows the rotating body to roll in a direction intersecting the circumferential direction; and the other end of the rotating shaft Around the axis on the side, it is placed in contact with the surface of the upper hemisphere of the rotating body, rotates in the circumferential direction, transmits power to the rotating body, and can roll the rotating body in a direction intersecting the circumferential direction And a second wheel.
  • the omnidirectional moving device includes a spherical rotating body, and a first wheel and a second wheel disposed in contact with the surface of the rotating body. Both the first wheel and the second wheel rotate in the circumferential direction to transmit power to the rotating body and allow the rotating body to roll in a direction intersecting the circumferential direction.
  • a plurality of the first wheels are arranged on the surface of the upper hemisphere of the rotating body around an axis on one end side of the rotating shaft that rolls the rotating body and moves in the straight direction.
  • the second wheel is disposed on the surface of the upper hemisphere of the rotating body around the axis on the other end side of the rotating shaft. Therefore, when moving in the straight traveling direction, power is efficiently transmitted from each of the first wheel and the second wheel to the rotating body, and the rotating body can be rolled in the straight traveling direction with the maximum output.
  • the first wheel and the second wheel are an omni wheel or a mecanum wheel.
  • the rotating body can be rolled in the straight direction by the maximum output, and The rotating body can be rolled in directions other than the straight direction.
  • the omnidirectional mobile device in the omnidirectional mobile device according to the fifth embodiment of the present invention, in the omnidirectional mobile device according to the second embodiment or the third embodiment, two first wheels are arranged and one or two second wheels are arranged. Individually arranged.
  • the rotating body can be rolled in all directions.
  • the first wheel and the second wheel have a position vector of a contact point with the rotating body, Of the matrix elements of the power transmission matrix determined by the tangent vector at the contact point, the absolute values are arranged at the positions where the absolute values are equal for each column of the matrix elements of the rotation axis.
  • the first wheel is located at a position where the absolute value is equal for each column of the matrix elements of the rotating shaft that moves the rotating body in the straight traveling direction among the matrix elements of the power transmission matrix.
  • a second wheel is disposed. Therefore, when moving in the straight traveling direction, power is efficiently transmitted from each of the first wheel and the second wheel to the rotating body, and the rotating body can be rolled in the straight traveling direction with the maximum output.
  • the power transmission matrix includes a transmission matrix representing an angular velocity.
  • the power transmission matrix includes a transmission matrix representing the angular velocity.
  • the first wheel and the second wheel are respectively arranged at positions where the absolute values are equal for each column of the matrix elements in the transmission matrix representing the angular velocity of the rotating shaft that moves the rotating body in the straight traveling direction. Therefore, when moving in the straight traveling direction, power is efficiently transmitted from each of the first wheel and the second wheel to the rotating body, and the rotating body can be rolled in the straight traveling direction with the maximum output.
  • An omnidirectional movement device is the omnidirectional movement device according to the second or third embodiment, in the circumferential direction in contact with or close to the surface of the lower hemisphere of the rotating body. And an auxiliary wheel that allows the rotating body to roll in a direction that intersects the circumferential direction.
  • the omnidirectional movement device includes auxiliary wheels in contact with or close to the surface of the lower hemisphere of the rotating body.
  • the auxiliary wheel rotates in the circumferential direction and enables the rotating body to roll in a direction crossing the circumferential direction. For this reason, since the upper hemisphere of the rotating body is in contact with the first wheel and the second wheel and the auxiliary hemisphere is provided on the lower hemisphere of the rotating body, the rotating body can be rolled in all directions while preventing the rotating body from coming off. be able to.
  • a vehicle body provided on the rotating body, attached to the vehicle body, and A first driving device that rotates one wheel, a second driving device that is attached to the vehicle body and that rotates the second wheel, and a posture stabilization system that is disposed on the vehicle body and maintains the posture of the vehicle body stably.
  • a first driving device that rotates one wheel
  • a second driving device that is attached to the vehicle body and that rotates the second wheel
  • a posture stabilization system that is disposed on the vehicle body and maintains the posture of the vehicle body stably.
  • the vehicle body is provided on the rotating body.
  • a first drive device is connected to the rotation shaft of the first wheel, and the first drive device is attached to the vehicle body.
  • a second drive device is connected to the rotation shaft of the second wheel, and the second drive device is attached to the vehicle body. Both the first wheel and the second wheel are in contact with the surface of the upper hemisphere of the rotating body. For this reason, in the state where the load of the vehicle body is supported by the second wheel via the first drive device and the second drive device via the first drive device, and the posture of the vehicle body is stably maintained by the posture stabilization system, the maximum output Thus, the rotating body can roll in the straight direction.
  • the posture stabilization system is mounted on the vehicle body, and the first vehicle is attached to the vehicle body posture angle and the posture angle change. Based on the detection result of the rotation speed by the rotation speed detection section, the rotation speed detection section that detects the rotation speed of the first wheel and the second wheel, the rotation body rolls.
  • the angular velocity detector that detects the two angular velocities, the posture angle information detected by the posture angle detector, the first angular velocity information, and the second angular velocity information detected by the angular velocity detector, the first that maintains the posture of the vehicle body
  • a calculation processing unit that calculates wheel operation torques of the wheel and the second wheel and operates the first drive device and the second drive device in accordance with the wheel operation torque information.
  • the posture stabilization system includes a posture angle detection unit, a rotation speed detection unit, an angular velocity detection unit, and an arithmetic processing unit.
  • the posture angle detection unit is attached to the vehicle body and detects a posture angle of the vehicle body and a first angular velocity associated with a change in the posture angle.
  • the rotation speed detection unit detects the rotation speeds of the first wheel and the second wheel.
  • the angular velocity detection unit detects a second angular velocity at which the rotating body rolls based on the detection result of the rotation number by the rotation number detection unit.
  • the arithmetic processing unit includes a first wheel for maintaining the posture of the vehicle body based on the posture angle information detected by the posture angle detector, the first angular velocity information, and the second angular velocity information detected by the angular velocity detector.
  • the wheel operation torque of the second wheel is calculated.
  • the arithmetic processing unit operates the first drive device and the second drive device according to the wheel operation torque information. For this reason, in the posture stabilization system, the power for stably maintaining the posture of the vehicle body is transmitted from the first wheel and the second wheel to the rotating body, so that the vehicle rotates with the maximum output in a state where the posture of the vehicle body is stably maintained.
  • the body can roll in the straight direction.
  • the arithmetic processing unit is configured to operate the vehicle body based on the attitude angle information, the first angular velocity information, and the second angular velocity information.
  • the target value of angular acceleration at which the rotating body rolls and the target value of angular acceleration at which the vehicle body turns are calculated, the third angular acceleration of the rotating body that matches the target value is calculated, and the third angle is maintained.
  • a rotating body operating torque for operating the rotating body is calculated based on the acceleration, and a wheel operating torque for operating the first wheel and the second wheel is calculated based on the rotating body operating torque information.
  • the arithmetic processing unit maintains the posture of the vehicle body based on the posture angle information, the first angular velocity information, and the second angular velocity information, and the angle at which the rotating body rolls.
  • a target value of acceleration and a target value of angular acceleration at which the vehicle body turns are calculated.
  • the arithmetic processing unit further calculates a third angular acceleration of the rotating body that matches the target value, and calculates a rotating body operating torque for operating the rotating body based on the third angular acceleration. Based on the rotating body operation torque information, the arithmetic processing unit calculates wheel operation torque for operating the first wheel and the second wheel.
  • the motive power for stably maintaining the posture of the vehicle body is calculated in the arithmetic processing unit. For this reason, since the power is transmitted from the first wheel and the second wheel to the rotating body, the rotating body can roll in the straight traveling direction with the maximum output in a state where the posture of the vehicle body is stably maintained.
  • the attitude stabilization system for the omnidirectional mobile device acquires the attitude angle information, the first angular velocity information, and the second angular velocity information. Then, based on the posture angle information, the first angular velocity information, and the second angular velocity information, the target value of the angular acceleration at which the rotating body rolls and the target value of the angular acceleration at which the vehicle body turns are calculated to maintain the posture of the vehicle body.
  • the attitude stabilization system first acquires attitude angle information, first angular velocity information, and second angular velocity information. Next, based on the posture angle information, the first angular velocity information, and the second angular velocity information, the target value of the angular acceleration at which the rotating body rolls and the target value of the angular acceleration at which the vehicle body turns are calculated to maintain the posture of the vehicle body. Is done. Next, a third angular acceleration of the rotating body that matches the target value is calculated, and further, a rotating body operating torque for operating the rotating body is calculated based on the third angular acceleration. Then, wheel operation torque for operating the first wheel and the second wheel is calculated based on the rotating body operation torque information. As a result, in the posture stabilization system, the power for stably maintaining the posture of the vehicle body is calculated.
  • the omnidirectional moving device can roll the rotating body in the straight traveling direction with the maximum output and stably maintain the posture of the vehicle body. can do.
  • position control method of the omnidirectional movement apparatus which can maintain the attitude
  • FIG. 1 It is an external appearance block diagram of the omnidirectional movement apparatus which concerns on 1st Embodiment of this invention, (A) is a left view, (B) is the front view seen from the advancing direction, (C) is a rear view, (D ) Is a bottom view. It is a principal part expansion perspective view of the drive unit of the omnidirectional movement apparatus shown by FIG. It is a figure which shows the positional relationship of the rotary body of the omnidirectional movement apparatus shown by FIG. 1, and the omni wheel of the drive unit shown by FIG.
  • (A) is the side view seen from the advancing direction right side of the omnidirectional movement apparatus
  • (B) is the side view seen from the left side of the advancing direction of an omnidirectional movement device.
  • It is a block diagram explaining the attitude
  • the omnidirectional moving device according to the first embodiment of the present invention will be described with reference to FIGS.
  • the arrow X direction shown as appropriate indicates the traveling direction on the vehicle body front side of the omnidirectional moving device
  • the arrow Y direction indicates the vehicle body width direction
  • the arrow Z direction indicates an upward direction orthogonal to the arrow X direction and the arrow Y direction.
  • an omnidirectional moving device 10 As shown in FIGS. 1 (A) to 1 (D) and FIG. 2, an omnidirectional moving device 10 according to this embodiment includes a single spherical rotating body 12 and a rotating body 12 disposed on the rotating body 12.
  • the vehicle body 14 is provided.
  • the rotating body 12 is formed, for example, by using a spherical shell formed of stainless steel having a diameter of 300 mm and a thickness of 1.5 mm as a rotating body main body, and covering the surface of the rotating body with a softer material than the rotating body main body.
  • a soft material for example, a natural rubber (NR: Natural Rubber) having a thickness of 5 mm can be used practically.
  • the vehicle body 14 includes a vehicle body main body 14A and a vehicle body main body 14B disposed in a pair in the vehicle body width direction (arrow Y direction).
  • Each of the vehicle body 14A and the vehicle body 14B extends with the longitudinal direction of the vehicle body (the direction of the arrow X) as a longitudinal direction and is spaced apart in the vehicle body width direction.
  • the vehicle body 14 ⁇ / b> A and the vehicle body 14 ⁇ / b> B are disposed at positions that overlap the rotating body 12 in plan view.
  • a saddle 18 is attached to the vehicle body 14A and the vehicle body 14B via a saddle support 16 that stands upward.
  • the saddle support 16 is formed of a pipe material.
  • the saddle 18 is configured such that a passenger of the omnidirectional mobile device 10 is seated.
  • a vehicle body front portion 14C constituting the vehicle body 14 is disposed on the vehicle body front side of the vehicle body 14A and the vehicle body 14B.
  • the vehicle body front portion 14C is disposed below the upper surfaces of the vehicle body main body 14A and the vehicle body main body 14B in the vertical direction and near the center point of the rotating body 12, and is integrated with the vehicle body main body 14A and the front wall 14D of the vehicle body main body 14B. Is attached.
  • the vehicle body front portion 14C is formed by bending a pipe, and the contour of the vehicle body front portion 14C is formed in a C shape in plan view.
  • a pair of footrests 20 are disposed in the vehicle body width direction on the vehicle body front portion 14C.
  • the footrest unit 20 is used as a place for a passenger's foot.
  • a handle support 22 is disposed on the vehicle body front portion 14C so as to be inclined slightly upward toward the rear of the vehicle body, and a handle 24 is attached to an upper end portion of the handle support 22.
  • the handle 24 is formed in a bar shape protruding left and right toward the outside in the vehicle body width direction, and the occupant grips the handle 24 and causes the omnidirectional movement device 10 to travel.
  • the handle 24 is formed by a fixed type that does not turn around the vertical axis (Z axis).
  • a start switch for starting and stopping traveling of the omnidirectional moving device 10 a brake for braking the traveling speed of the omnidirectional moving device 10, and the like are mounted around the handle 24.
  • a safety part a light, a front blinker or the like can be attached to the handle 24 or the handle support 22.
  • a rear turn signal, a brake lamp, or the like as a safety part can be mounted at an appropriate location at the rear end of the vehicle body 14.
  • a ring-shaped frame portion 26 is disposed along the periphery of the rotating body 12 below the vehicle body 14A and the vehicle body 14B.
  • the frame portion 26 is attached to each of the vehicle body 14A and the vehicle body 14B via frame supports 28 provided at both ends in the vehicle width direction.
  • auxiliary wheels 32 are disposed through auxiliary wheel supports 30 at the front end portions of the vehicle body 14A and the vehicle body 14B.
  • the auxiliary wheel support 30 extends from the vehicle body 14 ⁇ / b> A and the vehicle body 14 ⁇ / b> B to a lower side than the center point of the rotating body 12, and an auxiliary wheel 32 is rotatably attached to the lower end portion of the auxiliary wheel support 30.
  • auxiliary wheels 36 are disposed via auxiliary wheel supports 34 at the rear end portions of the vehicle body 14A and the vehicle body 14B.
  • the auxiliary wheel support 34 extends from the vehicle body 14 ⁇ / b> A and the vehicle body 14 ⁇ / b> B to a lower side than the center point of the rotating body 12, and an auxiliary wheel 36 is rotatably attached to the lower end portion of the auxiliary wheel support 34.
  • Each of the auxiliary wheel 32 and the auxiliary wheel 36 is disposed at a position that wraps around the lower hemisphere 12A side of the rotating body 12, and is in contact with the surface of the lower hemisphere 12A or spaced apart (adjacent) with a certain clearance.
  • a later-described wheel here an omni wheel, is used for each of the auxiliary wheel 32 and the auxiliary wheel 36.
  • a sign is given to the vehicle body front side below the vehicle body 14A on the right side in the vehicle width direction when viewed from the passenger seated on the saddle 18.
  • the first drive unit 40 covered with the omitted exterior cover is attached.
  • a second drive unit 42 is attached to the vehicle body rear side under the vehicle body 14A.
  • the third drive unit 44 is attached to the front side of the vehicle body below the vehicle body 14B, and the fourth drive unit 46 is attached to the vehicle body rear side of the vehicle body 14B.
  • a total of four drive units of the first drive unit 40 to the fourth drive unit 46 are arranged, but a total of three of the first drive unit 40 to the third drive unit 44 is arranged.
  • the case where the drive unit is provided is included.
  • the third drive unit 44 is disposed at an intermediate portion in the vehicle body front-rear direction of the vehicle body 14B.
  • the first drive unit 40 includes an omni wheel 401 as a first omni wheel, a speed reducer 441, and an alternating current (AC) servo motor 442 (1) as a first drive device, for example. It is configured to include.
  • the omni wheel 401 is connected to a speed reducer 441 via a shaft (rotating shaft) 430.
  • the omni wheel 401 includes a first wheel 410 and a second wheel 420 that rotate around the rotation axis of the shaft 430 according to the rotation of the shaft 430 and that form two stations in the rotation axis direction.
  • a plurality of barrel-shaped rollers (barrels) 412 to 414 arranged at equal intervals are attached so as to be rotatable around a rotation shaft 415.
  • the equal interval is an interval of 120 degrees, and three rollers 412 to 414 are attached.
  • the second wheel 420 is disposed on the opposite side of the first wheel 410 from the speed reducer 441 side.
  • a plurality of barrel-shaped rollers 422 to 424 arranged at equal intervals are mounted on the circumference of the second wheel 420 so as to be rotatable about the rotation shaft 425.
  • the arrangement interval of the rollers 422 to 424 of the second wheel 420 is shifted by a half pitch, specifically 60 degrees, with respect to the arrangement interval of the rollers 412 to 414 of the first wheel 410.
  • the omni wheel 401 rotates in the circumferential direction A to transmit power to the rotating body 12, and the rotating body 12 in a direction B (in this case, a direction orthogonal) intersecting the circumferential direction A. Can be rolled.
  • a direction B in this case, a direction orthogonal
  • the configurations of the second drive unit 42, the third drive unit 44, and the fourth drive unit 46 are the same as the configuration of the first drive unit 40. That is, as shown in FIG. 2, the second drive unit 42 includes an omni wheel 402 as a first omni wheel, a speed reducer 441, and an AC servo motor 442 (2) as a first drive device. It is configured.
  • the third drive unit 44 includes an omni wheel 403 as a second omni wheel, a speed reducer 441, and an AC servo motor 442 (3) as a second drive device.
  • the fourth drive unit 46 includes an omni wheel 404 as a second omni wheel, a speed reducer 441, and an AC servo motor 442 (4) as a second drive device.
  • the omnidirectional movement device 10 it is possible to move in the front-rear direction and the left-right direction, and to turn. Of course, it is possible to move in an oblique direction, move in the front-rear direction, turn left and right, or obliquely while turning.
  • the omnidirectional mobile device 10 is configured to obtain a maximum output in the forward direction.
  • the plurality of omni wheels are arranged at equal intervals around a vertical axis (Z axis) (see FIGS. 9 and 10).
  • the omni wheels 401 and 402 are arranged on one end side of the rotating shaft 120 that causes the rotating body 12 to roll and move in the straight direction.
  • the rotating body 12 is disposed in contact with the surface of the upper hemisphere 12 ⁇ / b> B.
  • the rotating body 12 does not have a fixed rotating shaft, but the rotating shaft 120 is an effective center of rotation of the rotating body 12 when the rotating body 12 rolls in the straight direction.
  • the axial direction of the rotating shaft 120 coincides with the vehicle body width direction (arrow Y direction) because the rotating body 12 rolls in the straight direction (arrow X direction).
  • An axis 121 on one end side of the rotating shaft 120 corresponds to a latitude line when the rotating body 12 is regarded as a celestial body on the right side in the vehicle width direction when viewed from the passenger.
  • the omni wheels 403 and 404 are disposed in contact with the surface of the upper hemisphere 12B of the rotating body 12 around the axis 122 on the other end side of the rotating shaft 120, as shown in FIG.
  • the axis 122 on the other end side of the rotating shaft 120 corresponds to a latitude line when the rotating body 12 is regarded as a celestial body on the left side in the vehicle body width direction when viewed from the passenger.
  • the arrangement positions of the omni wheels 403 and 404 are the centers of the rotating body 12 with respect to the specific positions 403P and 404P on the surface of the lower hemisphere 12A of the rotating body 12 around the axis 121 on one end side of the rotating shaft 120 shown in FIG. Symmetric position.
  • the omni wheel 403 is arranged in the lower hemisphere 12A around the axis 121
  • the omni wheel 404 is arranged in the lower hemisphere 12A around the axis 121.
  • the specific position 403P is a position suitable for the arrangement of the omni wheel 403 in the lower hemisphere 12A around the axis 121 when obtaining the maximum output in the traveling direction.
  • the specific position 404P is a position suitable for the arrangement of the omni wheel 404 in the lower hemisphere 12A around the axis 121.
  • omni wheels 403 and 404 are disposed on the upper hemisphere 12B side of the rotating body 12 around the axis 122. ing.
  • the omni wheels 401 and 402 are disposed in contact with the upper hemisphere 12B of the rotating body 12 around the axis 121 on one end side of the rotating shaft 120. (See FIG. 3A).
  • the omni wheel 403 is disposed in contact with the upper hemisphere 12B of the rotating body 12 around the axis 122 on the other end side of the rotating shaft 120 (see FIG. 3B).
  • the omni wheel 403 when viewed from the axial direction of the rotating shaft 120, the omni wheel 403 is disposed at an intermediate portion between the omni wheel 403 and the omni wheel 404 shown in FIG.
  • a sensor unit 50 is disposed on the vehicle body 14 and below the saddle 18 of the omnidirectional mobile device 10.
  • a control unit 60 is disposed on the rear side of the vehicle body 14.
  • the sensor unit 50 and the control unit 60 construct an attitude stabilization system 600 shown in FIG. 4, and the attitude stabilization system 600 maintains the attitude of the vehicle body 14 stably and also maintains the attitude of the vehicle body 14 stably.
  • the vehicle body 14 is caused to travel.
  • the posture stabilization system 600 of the omnidirectional movement apparatus 10 includes a sensor unit 50 and a control unit 60.
  • the sensor unit 50 includes a posture angle detection unit 501.
  • an inertial measurement unit (IMU) is used for the posture angle detection unit 501.
  • the posture angle detection unit 501 detects an angular velocity as a first angular velocity associated with a change in the posture angle of the vehicle body 14 and the posture angle around each axis of the vehicle body 14.
  • the posture angle detection unit 501 outputs the posture angle as posture angle information and the angular velocity as first angular velocity information.
  • the control unit 60 includes an operation display unit 601, an arithmetic processing unit (controller) 602, a digital-analog converter (D / A converter) 603, an angular velocity detection unit 604, and servo amplifiers 605 (1) to 605. (4) and a power source 606 are provided.
  • the AC servo motor 422 (1) of the first drive unit 40 to the AC servo motor 422 (4) of the fourth drive unit 46 are incorporated as the rotation speed detection unit 607.
  • an encoder (not shown) is attached to each of the AC servo motors 422 (1) to AC servo motors 422 (4), and the rotation speeds of the omni wheels 401 to omni wheels 404 are detected using the encoders.
  • the rotation speed detection unit 607 includes AC servo motors 422 (1) to AC servo motors 422 (4) and servo amplifiers 605 (1) to servo amplifiers 605 (4).
  • the operation display unit 601 performs operations for starting and ending the posture stabilization system 600, displaying an operation state of the posture stabilization system 600, and the like.
  • the arithmetic processing unit 602 executes at least the following processing (A) to processing (D).
  • A) Posture angle information obtained by detecting the posture angle of the vehicle body 14 and first angular velocity information obtained by detecting an angular velocity associated with a change in the posture angle are acquired from the posture angle detection unit 501.
  • B) The rotation speed detector 607 detects the rotation speeds of the omni wheels 401 to 404. The rotation speed detection result is acquired from the rotation speed detection unit 607, and the angular velocity as the second angular velocity at which the rotating body 12 rolls is calculated based on the detection result.
  • This second angular velocity is acquired as second angular velocity information.
  • C Based on the posture angle information, the first angular velocity information, and the second angular velocity information, the wheel operation torques of the omni wheel 401 to the omni wheel 404 that stably maintain the posture of the vehicle body 14 are calculated.
  • D The first drive unit 40 to the fourth drive unit 46 are operated according to the wheel operation torque information.
  • processing unit 602 the following processing (a) to processing (d) are executed in processing (D).
  • A) Based on the posture angle information, the first angular velocity information, and the second angular velocity information, the target value of the angular acceleration at which the rotating body 12 rolls and the angular acceleration at which the vehicle body 14 turns to maintain the posture of the vehicle body 14 stably. The target value is calculated.
  • B) The angular acceleration as the third angular acceleration of the rotating body 12 to be matched with the target value is calculated.
  • a rotating body operating torque for operating the rotating body 12 is calculated based on the third angular acceleration information.
  • a wheel operation torque for operating the omni wheel 401 to the omni wheel 404 is calculated based on the rotating body operation torque information.
  • the wheel operation torque information (digital information) output from the arithmetic processing unit 602 is output to the digital / analog converter 603 as a torque command.
  • the digital / analog converter 603 converts the torque command into analog information, and the torque command converted into analog information is output from the digital / analog converter 603 to each of the servo amplifiers 605 (1) to 605 (4).
  • a sequence command is output from the arithmetic processing unit 602 to the servo amplifiers 605 (1) to 605 (4).
  • Servo amplifier 605 (1) to servo amplifier 605 (4) control each of AC servo motor 422 (1) to AC servo motor 422 (4) in accordance with a torque command.
  • the rotation speed detection unit 607 detects the rotation speed of each of the AC servomotors 422 (1) to AC servomotor 422 (4)
  • the detection result is the servo amplifier 605 (1) to servo amplifier 605 (4).
  • the angular velocity detection unit 604 is configured by a pulse counter, and counts the number of rotations per unit time to generate angular velocity information.
  • the angular velocity information is output to the arithmetic processing unit 602.
  • the posture stabilization system 600 is equipped with a power source 606 that is detachable.
  • a secondary battery specifically a battery, is used for the power source 606.
  • the power source 606 includes a secondary battery that supplies power to the control system and a secondary battery that supplies power to the power system.
  • the control system includes a posture angle detection unit 501, an operation display unit 601, a calculation processing unit 602, a digital / analog converter 603, and an angular velocity detection unit 604.
  • the power system includes servo amplifiers 605 (1) to 605 (4) and AC servo motors 422 (1) to AC servo motors 422 (4).
  • FIG. 5 is a flowchart for explaining the attitude control method.
  • FIG. 6 shows an algorithm for realizing the attitude control method. In the description of the attitude control method, FIGS. 1 to 4 are taken into consideration as appropriate.
  • Attitude control method of omnidirectional mobile device having three omni wheels (1) Acquisition of attitude angle and first angular velocity of vehicle body First, an attitude angle detector 501 shown in FIGS. 4 and 6 is used. Then, the attitude angle ⁇ b of the vehicle body 14 and the first angular velocity of the vehicle body 14 (a first derivative of ⁇ b ) associated with the change in the attitude angle are detected. As shown in FIGS. 4 to 6, the arithmetic processing unit 602 acquires posture angle information and first angular velocity information from the posture angle detection unit 501 (S10).
  • rotation of the omni wheels 401 to 403 is performed using the AC servo motors 422 (1) to AC servo motor 422 (3) of the rotation speed detection unit 607 shown in FIG. A number is detected.
  • the detected number of rotations is output to the angular velocity detection unit 604 via the servo amplifier 605 (1) to the servo amplifier 605 (3).
  • the angular velocity detection unit 604 acquires the number of rotations of the omni wheels 401 to 403 as the angular velocity information ⁇ 0 .
  • the arithmetic processing unit 602 acquires angular velocity information ⁇ 0 from the angular velocity detecting unit 604 (S11).
  • FIG. 7 shows an X 0 axis in which the arrangement positions of the three omni wheels 401 to 403 with respect to the rotating body 12 of the omnidirectional moving device 10 are the origin O 0 ,
  • a schematic diagram represented by a three-dimensional coordinate system including the Y 0 axis and the Z 0 axis is shown.
  • the arrangement position and driving force of each of the omni wheels 401 to 403 with respect to the rotating body 12 are represented by the position vector p k of the contact point between the rotating body 12 and each of the omni wheels 401 to 403 and the tangent vector t k at the contact point. .
  • the position vector p 1 is a position vector from the center Ob of the rotating body 12 to the contact point between the rotating body 12 and the omni wheel 401.
  • the position vector of the position vector of the position vector p 2 from the center O b to the contact point of the rotating body 12 and the omni-wheel 402, the position vector p 3 from the center O b to the contact point of the rotating body 12 and the omni-wheel 403 It is.
  • the tangent vector t 1 is a unit tangent vector at the contact point between the rotating body 12 and the omni wheel 401.
  • the tangent vector t 2 is a unit tangent vector at the contact point between the rotating body 12 and the omni wheel 402
  • the tangent vector t 3 is a unit tangent vector at the contact point between the rotator 12 and the omni wheel 403.
  • the angular velocity vector ⁇ s of the rotator 12 is set such that the angular velocity around the axis of the rotator 12 in the longitudinal direction of the vehicle body is ⁇ x , the angular velocity around the axis of the rotator 12 in the vehicle body width direction is ⁇ y ,
  • the angular velocity around the direction axis is ⁇ z , it is expressed by the following formula (1) (see FIG. 6).
  • the power transmission matrix T is expressed by the following equation (3) from the position vectors p 1, p 2, p 3 , the tangent vectors t 1, t 2, t 3 and the radius r 0 of the omni wheels 401 to 403.
  • Formula (4) is represented by the following Formula (5) using a generalized inverse matrix of the power transmission matrix T (see FIG. 6).
  • the second angular velocity of the rotating body 12 is calculated from the angular velocities of the omni wheel 401 to the omni wheel 403.
  • the second angular velocity is calculated using the arithmetic processing unit 602, and as shown in FIG. 5, the arithmetic processing unit 602 acquires the second angular velocity as second angular velocity information (S12).
  • the rotating body corrects the posture of the vehicle body 14 based on the posture angle of the vehicle body 14 and the first angular velocity of the vehicle body 14.
  • the target value of the angular acceleration at the time of rolling 12 and the target value of the angular acceleration at the time of turning of the vehicle body 14 are required. If the target value is u, the target value u is calculated by the following equation (6) (see FIG. 6).
  • the target value u is a target angular acceleration u 1 for turning the vehicle body 14, a target angular acceleration u 2 about the axis of the rotating body 12 in the longitudinal direction of the vehicle body, and This is a vector that summarizes the target angular acceleration u 3 around the vehicle width direction axis.
  • K d is a feedback gain matrix, and is determined based on the masses of the vehicle body 14 and the rotating body 12, the position of the center of gravity, the moment of inertia, and the like.
  • the target value u that is, the target value of the angular acceleration at which the rotating body 12 rolls and the target value of the angular acceleration at which the vehicle body 14 turns are calculated using the arithmetic processing unit 602. (S13).
  • PID control Proportional Integral Differential Controller
  • ⁇ xd is a target angular velocity around the axis of the rotating body 12 in the longitudinal direction of the vehicle body, and the target angular velocity ⁇ xd is expressed by the following equation (10).
  • ⁇ xd is a target angle around the axis of the rotator 12 in the longitudinal direction of the vehicle body, and this target angle ⁇ xd is expressed by the following equation (11).
  • ⁇ x is an angle around the axis of the rotating body 12 in the longitudinal direction of the vehicle body, and the angle ⁇ x is expressed by the following formula (12) from an angular velocity ⁇ x around the axis of the rotating body 12 in the longitudinal direction of the vehicle body.
  • ⁇ yd is a target angular velocity around the axis of the rotating body 12 in the vehicle body width direction, and the target angular velocity ⁇ yd is expressed by the following equation (13).
  • ⁇ yd is a target angle around the axis of the rotator 12 in the vehicle body width direction, and the target angle ⁇ yd is expressed by the following equation (14).
  • ⁇ y is an angle around the axis of the rotator 12 in the vehicle width direction
  • the angle ⁇ y is expressed by the following equation (15) from an angular velocity ⁇ y around the axis of the rotator 12 in the vehicle width direction.
  • the operation angular acceleration of the rotating body 12 is calculated as the third angular acceleration using the arithmetic processing unit 602 as shown in FIGS. 5 and 6 (S14).
  • the partial matrix of the inertia matrix is expressed by the following formulas (17), (18), and (19).
  • the gravity term is expressed by the following formula (20).
  • the following equation (21) is a matrix representing the replacement of the input axis.
  • I s is the moment of inertia of the rotating body 12 about the contact with the ground and the rotor 12.
  • Moment of inertia I s is represented by the following formula (22).
  • I bxx , I bxy , I bxz , I byy , I byz , and I bzz are the inertia moment and inertia product of the vehicle body 14.
  • m b is the mass of the vehicle body 14.
  • s z is the distance from the center O b of the rotor 12 to the center of gravity of the vehicle body 14.
  • r s is the radius of the rotating body 12.
  • g is the gravitational acceleration constant.
  • m s is the mass of the rotating body 12.
  • the operating torque of the rotating body 12 is calculated using the arithmetic processing unit 602 as shown in FIGS. 5 and 6 (S15).
  • the operation torque ⁇ o of the omni wheels 401 to 403 is calculated using the arithmetic processing unit 602 as shown in FIGS. 5 and 6 (S16). This operation torque ⁇ o is transmitted as wheel operation torque to the omni wheels 401 to 403 via the AC servo motor 422 (1) to AC servo motor 422 (3).
  • the omnidirectional mobile device 10 can stably maintain the attitude of the vehicle body 14 on the rotating body 12. And the omnidirectional movement apparatus 10 can be drive
  • Attitude control method of omnidirectional mobile device having four omni wheels Basically, the attitude control method of omnidirectional mobile device 10 having four omni wheels 401 to 404 is basically three omni wheels 401 to 403. This is almost the same as the attitude control method of the omnidirectional mobile device 10 having In the explanation of the attitude control method here, only different procedures will be briefly explained using FIGS. 4 to 6 while omitting overlapping explanations as much as possible.
  • (1) Acquisition of posture angle and first angular velocity of the vehicle body The posture angle of the vehicle body 14 and the first angular velocity of the vehicle body 14 are detected using the posture angle detection unit 501 shown in FIGS. As shown in FIGS. 4 to 6, the arithmetic processing unit 602 acquires posture angle information and first angular velocity information from the posture angle detection unit 501 (S10).
  • FIG. 8 is a schematic diagram showing the arrangement positions of the four omni wheels 401 to 404 with respect to the rotating body 12 of the omnidirectional moving device 10 in a three-dimensional coordinate system. It is shown.
  • the arrangement position and driving force of each of the omni wheels 401 to 404 with respect to the rotating body 12 are represented by a position vector p k of a contact point between the rotating body 12 and each of the omni wheels 401 to 404 and a tangent vector t k at the contact point.
  • the position vector p 1 is a position vector from the center Ob of the rotating body 12 to the contact point between the rotating body 12 and the omni wheel 401.
  • the position vector p 4 is the position vector from the center O b to the contact point of the rotating body 12 and the omni-wheel 404.
  • the tangent vector t 1 is a unit tangent vector at the contact point between the rotating body 12 and the omni wheel 401.
  • the tangent vector t 2 is a unit tangent vector at the contact point between the rotating body 12 and the omni wheel 402
  • the tangent vector t 3 is a unit tangent vector at the contact point between the rotator 12 and the omni wheel 403.
  • the tangent vector t 4 is a unit tangent vector at the contact point between the rotating body 12 and the omni wheel 404.
  • the angular velocity vector ⁇ s of the rotator 12 is the angular velocity around the axis of the rotator 12 in the longitudinal direction of the vehicle body is ⁇ x, and the angular velocity around the axis of the rotator 12 in the longitudinal direction of the vehicle body is ⁇ y.
  • the angular velocity around the direction axis is ⁇ z , it is expressed by the above-described formula (1).
  • the power transmission matrix T is expressed by the following equation (25) from the position vectors p 1, p 2, p 3, p 4 , the tangent vectors t 1, t 2, t 3, t 4 and the radius r 0 of the omni wheels 401 to 404. It is represented by Using the generalized inverse matrix of the power transmission matrix T 1 expressed by the equation (25) based on the above equation (4), the above equation (5) is obtained, and the angular velocities of the omni wheel 401 to the omni wheel 404 are obtained. From this, the second angular velocity of the rotating body 12 is calculated. As shown in FIG. 6, the second angular velocity is calculated using the arithmetic processing unit 602, and as shown in FIG. 5, the arithmetic processing unit 602 acquires the second angular velocity information (S12).
  • an omnidirectional moving device 10 shown in FIGS. 1A to 1D includes a spherical rotating body 12 and a rotating body.
  • the omni wheels 401 and 402 or the omni wheels 403 and 404 are provided as wheels disposed in contact with the surface of the twelve.
  • the omni wheels 401 to 404 rotate in the circumferential direction A to transmit power to the rotating body 12 and allow the rotating body 12 to roll in a direction B intersecting the circumferential direction A.
  • a plurality of omni wheels 401 and 402 are disposed on the surface of the rotating body 12 around the axis 121 of the rotating shaft 120 that causes the rotating body 12 to roll and move in the straight direction.
  • a plurality of omni wheels 403 and 404 are disposed on the surface of the rotating body 12 around the axis 122 of the rotating shaft 120 that causes the rotating body 12 to roll and move in the straight direction. For this reason, during the movement in the straight traveling direction, power is efficiently transmitted from the omni wheels 401 and 402 or the omni wheels 403 and 404 to the rotating body 12, and the rotating body 12 can be rolled in the straight traveling direction with the maximum output.
  • the omnidirectional moving device 10 shown in FIGS. 1 (A) to 1 (D) includes, as shown in FIGS. 2, 3 (A) and 3 (B), a spherical rotating body 12, Omni wheels 401 and 402 serving as first omni wheels and omni wheels 403 and 404 serving as second omni wheels are provided in contact with the surface of the rotating body 12. All of the omni wheels 401 to 404 rotate in the circumferential direction A to transmit power to the rotating body 12 and can roll the rotating body 12 in a direction B intersecting the circumferential direction A.
  • the omni wheels 401 and 402 are arranged on the rotating body 12 around the axis 121 on one end side of the rotating shaft 120 that causes the rotating body 12 to roll and move in the straight direction.
  • a plurality of hemispheres 12B are arranged on the surface.
  • the omni wheels 403 and 404 are disposed on the surface of the center of symmetry of the rotating body 12 with respect to the specific positions 403P and 404P of the surface of the lower hemisphere 12A of the rotating body 12 around the axis 121 on one end side of the rotating shaft 120.
  • the omni wheels 403 and 404 are disposed on the surface of the upper hemisphere 12 ⁇ / b> B of the rotating body 12 around the axis 122 on the other end side of the rotating shaft 120.
  • FIG. 9 shows the positional relationship between the rotating body Rb and the three omni wheels Oh 1 to Oh 3 according to the comparative example.
  • Parameters relating to the arrangement of the omni wheels Oh 1 to Oh 3 for driving the rotator R b are the position vector p k and the unit tangent vector t k .
  • the position vector p k is starting from the center O b of the rotating body R b, is the position vector of the point of contact with the rotating body R b of the k-th omniwheel Oh k.
  • k is an integer of 1 or more.
  • the unit tangent vector t k is the unit tangent vector of the k-th omni wheel Oh k at the contact point.
  • r s is the radius of the rotator R b .
  • the unit tangent vector t k is expressed by the following equation (27).
  • T is a power transmission matrix
  • FIG. 7 shows the positional relationship between the rotating body 12 according to the present embodiment and the three omni wheels 401 to 403 with respect to the comparative example.
  • Two omni wheels 401 and 402 are arranged on the upper hemisphere 12B around the axis 121 on one end side of the rotating shaft 120 (see FIG. 3A), and the upper hemisphere 12B around the axis on the other end side of the rotating shaft 120.
  • One omni wheel 403 is disposed in the middle (see FIG. 3B).
  • the unit tangent vector t k is expressed by the following equation (30).
  • FIG. 10 shows the positional relationship between the rotating body Rb according to the comparative example and the four omni wheels Oh 1 to Oh 4 .
  • the unit tangent vector t k is expressed by the following equation (33).
  • FIG. 8 shows the positional relationship between the rotating body 12 according to the present embodiment and the four omni wheels 401 to 404 with respect to the comparative example.
  • Two omni wheels 401 and 402 are arranged on the upper hemisphere 12B around the axis 121 on one end side of the rotating shaft 120 (see FIG. 3A), and the upper hemisphere 12B around the axis on the other end side of the rotating shaft 120.
  • Two omni wheels 403 and 404 are arranged on the front (see FIG. 3B).
  • the unit tangent vector t k is expressed by the following equation (36).
  • the wheels are omni wheels 401 to 404.
  • the rotating body 12 can be rolled in the straight traveling direction by the maximum output, and also in directions other than the straight traveling direction.
  • the rotating body 12 can be rolled.
  • the two omni wheels 401 and 402 are arrange
  • An omni wheel 403 or two omni wheels 403 and 404 are arranged. For this reason, with the minimum number of wheels, the number of parts and the weight can be minimized, and the rotating body 12 can be rolled in all directions.
  • the absolute value is equal for each column of the matrix elements of the rotating shaft 120 that moves the rotating body 12 in the straight traveling direction among the matrix elements of the power transmission matrix T.
  • Omni wheels 401 to 404 (or 401 to 403) are arranged at the positions. Therefore, when moving in the straight traveling direction, power is efficiently transmitted from each of the omni wheels 401 to 404 to the rotating body 12, and the rotating body 12 can be rolled in the straight traveling direction by the maximum output.
  • the power transmission matrix T includes a transmission matrix representing an angular velocity.
  • Omni wheels 401 to 404 (or 401 to 403) are arranged at positions where the absolute values are equal for each column of the matrix elements in the transfer matrix representing the angular velocity of the rotating shaft 120 that moves the rotating body 12 in the straight traveling direction. . For this reason, during the movement in the straight traveling direction, power is efficiently transmitted from the omni wheels 401 to 404 to the rotating body 12, and the rotating body 12 can be rolled in the straight traveling direction by the maximum output.
  • the omnidirectional moving device 10 includes auxiliary wheels 32 and 36 in contact with or close to the surface of the lower hemisphere 12A of the rotating body 12. .
  • the auxiliary wheels 32 and 36 rotate in the circumferential direction A and allow the rotating body 12 to roll in a direction crossing the circumferential direction A.
  • the rotating body 12 can roll in all directions. It is possible to prevent the rotating body 12 from coming off.
  • a vehicle body 14 is provided on the rotating body 12.
  • AC servomotors 422 (1) and 422 (2) are connected to the shaft 430 of the omni wheels 401 and 402, and the AC servomotors 422 (1) and 422 (2) are attached to the vehicle body 14.
  • AC servomotors 422 (3) and 422 (4) are connected to the shaft 430 of the omni wheels 403 and 404, and the AC servomotors 422 (3) and 422 (4) are attached to the vehicle body 14.
  • the omni wheels 401 to 404 are all in contact with the surface of the upper hemisphere 12B of the rotating body 12.
  • the load of the vehicle body 14 is supported by the omni wheels 401 to 404 via the AC servo motors 422 (1) to 422 (4), and the posture of the vehicle body 14 is adjusted by the posture stabilization system 600 shown in FIGS.
  • the rotary body 12 can be rolled in the straight traveling direction by the maximum output.
  • the posture stabilization system 600 includes a posture angle detection unit 501, a rotation number detection unit 607, an angular velocity detection unit 604, and an arithmetic processing unit 602. Is provided.
  • the posture angle detection unit 501 is attached to the vehicle body 14 shown in FIG. 1 and detects the posture angle of the vehicle body 14 and the first angular velocity associated with the change in the posture angle.
  • the rotation speed detection unit 607 detects the rotation speeds of the omni wheel 401 to the omni wheel 404.
  • the angular velocity detection unit 604 detects the second angular velocity at which the rotating body 12 rolls based on the detection result of the rotation number by the rotation number detection unit 607.
  • the arithmetic processing unit 602 calculates the wheel operation torque of the omni wheels 401 to 404 for maintaining the posture of the vehicle body 14 (S16).
  • the wheel operation torque is calculated based on the posture angle information detected by the posture angle detector 501, the first angular velocity information (S 10), and the second angular velocity information (S 12) detected by the angular velocity detector 604.
  • the arithmetic processing unit 602 operates the AC servo motors 422 (1) to AC servo motor 422 (4) shown in FIGS. 2 and 4 according to the wheel operation torque information.
  • the power for stably maintaining the posture of the vehicle body 14 is transmitted from the omni wheels 401 to 404 to the rotating body 12, so that the maximum output can be obtained in the state where the posture of the vehicle body 14 is stably maintained.
  • the rotating body 12 can be rolled in the straight direction.
  • the arithmetic processing unit 602 maintains the posture of the vehicle body 14, the target value of the angular acceleration at which the rotating body 12 rolls, and the vehicle body A target value of angular acceleration at which the 14 turns is calculated (S13).
  • the target value is calculated based on the posture angle information, the first angular velocity information (S10), and the second angular velocity information (S12).
  • the arithmetic processing unit 602 further calculates the third angular acceleration of the rotating body 12 to be matched with the target value (S14), and calculates the rotating body operating torque for operating the rotating body 12 based on the third angular acceleration (S15). ).
  • the arithmetic processing unit 602 calculates wheel operating torque for operating the omni wheels 401 to 404 (S16). As a result, in the arithmetic processing unit 602, power for stably maintaining the posture of the vehicle body 14 is calculated. Therefore, power is transmitted from the omni wheels 401 to 404 to the rotator 12, so that the rotator 12 can roll in the straight traveling direction with the maximum output in a state where the posture of the vehicle body 14 is stably maintained.
  • the attitude stabilization system 600 first acquires attitude angle information, first angular acceleration information, and second angular velocity information. (S10, S12). Next, based on the attitude angle information, the first angular velocity information, and the second angular velocity information, the target value of the angular acceleration at which the rotating body 12 rolls and the target of the angular acceleration at which the vehicle body 14 turns are maintained to maintain the attitude of the vehicle body 14. A value is calculated (S13). Next, the third angular acceleration of the rotating body 12 to be matched with the target value is calculated (S14), and further, the rotating body operating torque for operating the rotating body 12 is calculated based on the third angular acceleration information (S15). Then, wheel operation torque for operating the omni wheels 401 to 404 is calculated based on the rotating body operation torque information.
  • the power for maintaining the posture of the vehicle body 14 stably in the posture stabilization system 600 is calculated. Therefore, power is transmitted from the omni wheels 401 to 404 to the rotator 12, so that the omnidirectional movement device 10 can roll the rotator 12 in the straight direction with the maximum output, and the posture of the vehicle body 14 can be changed. It can be kept stable.
  • the attitude of the vehicle body 14 is controlled based on the power transmission matrix T 1. More specifically, at the input stage of the arithmetic processing of the arithmetic processing unit 602, the angular velocity vector ⁇ s of the rotating body 12 is calculated from the generalized inverse matrix of the power transmission matrix T based on the above-described equation (5) (FIG. 5 S12). On the other hand, at the output stage of the arithmetic processing of the arithmetic processing unit 602, the wheel operation torque of the omni wheels 401 to 404 transmitted from the generalized inverse matrix of the power transmission matrix T 1 to the rotating body 12 based on the above-described equation (23).
  • the attitude control method according to the present embodiment is a method suitable for attitude control of the omnidirectional mobile device 10 according to the present embodiment, and can also be applied to attitude control of other devices. .
  • the omnidirectional moving device 10 has basically the same configuration as that of the omnidirectional moving device 10 according to the first embodiment, but the wheels include Mecanum wheels 405 to 408 (see FIG. 11). Is used. Here, an example in which four mecanum wheels 405 to 408 are disposed will be described. However, as with the omnidirectional moving device 10 according to the first embodiment, the number of mecanum wheels may be three. . Although the detailed structure is omitted, like the omni wheels 401 to 404 shown in FIG. 2, the mecanum wheels 405 to 408 rotate in the circumferential direction A to transmit the driving force to the rotating body 12, and The rotating body 12 can roll in a direction B intersecting the circumferential direction A.
  • FIG. 11 shows the positional relationship between the rotating body 12 and the four Mecanum wheels 405 to 408 according to the present embodiment.
  • Two mecanum wheels 405 and 406 are arranged on the upper hemisphere 12B around the axis on one end side of the rotating shaft 120, and two mecanum wheels are arranged on the upper hemisphere 12B around the axis on the other end side of the rotating shaft 120.
  • 407 and 408 are arranged.
  • the unit tangent vector t k at the contacts p 1 to p 4 with the rotating body 12 is 45 degrees with respect to the tangent on the circumference.
  • the position vector p k is represented by Expression (38)
  • the unit tangent vector t k is represented by Expression (39).
  • the power transmission matrix T is expressed by the following equation (40).
  • the absolute values are all equal for each column of the first to third matrix elements of the power transmission matrix T 1 of the above equation (40).
  • the torque transmission matrix T (T T T) ⁇ 1 is expressed by the following equation (41). The absolute values are all equal for each column of the first to third matrix elements of the torque transmission matrix T (T T T) ⁇ 1 .
  • the output of the rotating shaft 120 (horizontal axis Y b ) is maximized even when the Mecanum wheels 405 to 408 are employed as wheels.
  • the outputs of the left and right rotation axes (horizontal axis X b ) and the turning axis (vertical axis Z b ) are also maximized. In this way, when moving in the straight direction, power is efficiently transmitted from each of the mecanum wheels 405 to 408 to the rotating body 12, and the rotating body 12 can be rolled in the straight direction with the maximum output.
  • the same operational effects as those obtained by the omnidirectional movement apparatus 10 and its attitude control method according to the first embodiment are obtained. Obtainable.
  • the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the invention.
  • the present invention in the case of the three omni wheels 401 to 403, one end side and the other end side of the rotating shaft 120 of the rotating body 12 may be interchanged.
  • the present invention may include five or more omni wheels. In order to reduce the size and weight of the omnidirectional moving device, it is preferable to use three or four omni wheels.
  • three omni wheels 401 to 403 or four omni wheels 401 to 404 are arranged at equal intervals.
  • the distance between the omni wheels 401 to 404 is the position where the absolute values are equal for each column of the matrix elements of the rotating shaft 120 that rolls the rotating body 12 in the straight direction.
  • the omni wheels 401 to 404 are constituted by two wheels 410 and 420, but in the present invention, the omni wheels 401 to 404 are constituted by one or three or more wheels. Also good.
  • four or more rollers may be disposed on the wheel 410, and four or more rollers may be disposed on the wheel 420.
  • the omni wheels 401 to 404 are arranged on one end side and the other end side of the rotating shaft 120 that rolls the rotating body 12 in the straight traveling direction.
  • omni wheels 401 to 404 for transmitting power around one axis on the other end side may be provided. It is preferable to arrange an auxiliary wheel around the shaft on the other end side. Further, the above modification is the same for the Mecanum wheels 405 to 408.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Motorcycle And Bicycle Frame (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

This omnidirectional movement device is provided with a spherical rotational solid (12), and omni-wheels (401)-(404) serving as wheels. A plurality of wheels are disposed in contact with a surface of the rotational solid (12) about an axis (121) of a rotating shaft (120) that causes the rotational solid (12) to roll and move along a straight line, the wheels rotate in a circumferential direction to transfer motive power to the rotational solid (12), and the wheels are capable of rolling the rotational solid (12) in a direction intersecting the circumferential direction.

Description

全方向移動装置及びその姿勢制御方法Omni-directional moving device and attitude control method thereof
 本発明は、全方向移動装置及びその姿勢制御方法に関する。 The present invention relates to an omnidirectional moving device and a posture control method thereof.
 特許文献1には、搬送装置及び駆動機構が開示されている。この搬送装置は、1つの球状回転体と、3個のオムニホイールとを備えている。オムニホイールは、球状回転体に接して球状回転体を転動させ、更に球状回転体を転動する方向と異なる方向への移動を可能としている。3個のオムニホイールは、球状回転体の上半球において球状回転体の垂直軸(Z 軸)周りに等間隔で配置されている。オムニホイールのそれぞれにはホイール駆動部が接続されている。球状回転体上にはフレーム部を介して荷台が設けられ、ホイール駆動部はフレーム部に固定されている。 Patent Document 1 discloses a transport device and a drive mechanism. This transport device includes one spherical rotating body and three omni wheels. The omni wheel is in contact with the spherical rotating body to roll the spherical rotating body, and further allows movement in a direction different from the rolling direction of the spherical rotating body. The three omni wheels are arranged at equal intervals around the vertical axis (Z axis) of the spherical rotating body in the upper hemisphere of the spherical rotating body. A wheel drive unit is connected to each omni wheel. A loading platform is provided on the spherical rotating body via a frame portion, and the wheel driving unit is fixed to the frame unit.
 上記搬送装置では、荷台の姿勢を傾けて、傾けた方向へ前後左右に移動することができ、更に旋回することができる。すなわち、搬送装置は、全方向へ自由度の高い動きを可能としている。 In the above conveying device, the loading platform can be tilted, can be moved back and forth, left and right in the tilted direction, and can further turn. That is, the transport device can move with a high degree of freedom in all directions.
特開2009-234524号公報JP 2009-234524 A
 ところで、上記搬送装置では、すべてのホイール駆動部の出力が同一の場合、旋回のときに最大出力が得られるものの、本来、搬送装置として出力が必要とされる前進や左右の移動のときに最大出力を得ることができない。例えば、前進の移動では、旋回のときの約半分の出力しか得ることができない。このため、改善の余地があった。 By the way, in the said conveying apparatus, when the output of all the wheel drive parts is the same, although the maximum output is obtained at the time of turning, it is the maximum at the time of the forward movement and the right-and-left movement which originally needs output as a conveying apparatus. Unable to get output. For example, in forward movement, only about half of the output during turning can be obtained. For this reason, there was room for improvement.
 本発明は、上記課題を考慮し、最大出力により回転体を直進方向へ移動させることができる全方向移動装置及び車体の姿勢を安定に維持することができる全方向移動装置の姿勢制御方法を提供する。 In consideration of the above problems, the present invention provides an omnidirectional movement device capable of moving a rotating body in a straight traveling direction with a maximum output and a posture control method for the omnidirectional movement device capable of stably maintaining the posture of a vehicle body. To do.
 上記課題を解決するため、本発明の第1実施態様に係る全方向移動装置は、球状の回転体と、回転体を転動させて直進方向に移動させる回転軸の軸周りにおいて回転体の表面に接して複数配設され、円周方向に回転して回転体に動力を伝達し、かつ、円周方向とは交差する方向に回転体を転動可能とするホイールと、を備えている。 In order to solve the above-described problem, an omnidirectional moving device according to a first embodiment of the present invention includes a spherical rotating body and a surface of the rotating body around an axis of a rotating shaft that rolls the rotating body and moves in a straight direction. And a wheel that rotates in the circumferential direction to transmit power to the rotating body and that allows the rotating body to roll in a direction that intersects the circumferential direction.
 第1実施態様に係る全方向移動装置は、球状の回転体と、回転体の表面に接して配設されたホイールとを備える。ホイールは、円周方向に回転して回転体に動力を伝達し、かつ、円周方向とは交差する方向に回転体を転動可能とする。 The omnidirectional moving device according to the first embodiment includes a spherical rotating body and a wheel disposed in contact with the surface of the rotating body. The wheel rotates in the circumferential direction to transmit power to the rotating body, and enables the rotating body to roll in a direction intersecting the circumferential direction.
 ここで、ホイールは、回転体を転動させて直進方向に移動させる回転軸の軸周りにおいて回転体の表面に複数配設される。このため、直進方向の移動に際して、ホイールから回転体へ動力が効率良く伝達され、最大出力により回転体を直進方向へ転動させることができる。 Here, a plurality of wheels are arranged on the surface of the rotating body around the axis of the rotating shaft that causes the rotating body to roll and move in the straight direction. For this reason, when moving in the straight traveling direction, power is efficiently transmitted from the wheel to the rotating body, and the rotating body can be rolled in the straight traveling direction by the maximum output.
 本発明の第2実施態様に係る全方向移動装置は、球状の回転体と、回転体を転動させて直進方向に移動させる回転軸の一端側の軸周りにおいて回転体の上半球の表面に接して複数配設され、円周方向に回転して回転体に動力を伝達し、かつ、円周方向と交差する方向に回転体を転動可能とする第1ホイールと、回転軸の一端側の軸周りにおいて回転体の下半球の表面の特定位置に対する、回転体の中心対称位置の表面に接して配設され、円周方向に回転して回転体に動力を伝達し、かつ、円周方向と交差する方向に回転体を転動可能とする第2ホイールと、を備えている。 The omnidirectional movement device according to the second embodiment of the present invention is a spherical rotating body and a surface of the upper hemisphere of the rotating body around an axis on one end side of the rotating shaft that rolls the rotating body and moves in the straight direction. A first wheel that is arranged in contact with each other, rotates in the circumferential direction to transmit power to the rotating body, and allows the rotating body to roll in a direction intersecting the circumferential direction, and one end side of the rotating shaft Around the axis of the rotating body, in contact with the surface of the center of symmetry of the rotating body with respect to a specific position of the surface of the lower hemisphere, rotating in the circumferential direction to transmit power to the rotating body, and A second wheel that enables the rotating body to roll in a direction that intersects the direction.
 第2実施態様に係る全方向移動装置は、球状の回転体と、回転体の表面に接して配設された第1ホイール及び第2ホイールとを備える。第1ホイール及び第2ホイールは、いずれも、円周方向に回転して回転体に動力を伝達し、円周方向と交差する方向に回転体を転動可能とする。 The omnidirectional moving device according to the second embodiment includes a spherical rotating body, and a first wheel and a second wheel disposed in contact with the surface of the rotating body. Each of the first wheel and the second wheel rotates in the circumferential direction to transmit power to the rotating body, and enables the rotating body to roll in a direction intersecting the circumferential direction.
 ここで、第1ホイールは、回転体を転動させて直進方向に移動させる回転軸の一端側の軸周りにおいて回転体の上半球の表面に複数配設される。一方、第2ホイールは、回転軸の一端側の軸周りにおいて回転体の下半球の表面の特定位置に対する、回転体の中心対称位置の表面に配設される。このため、直進方向の移動に際して、第1ホイール、第2ホイールのそれぞれから回転体へ動力が効率良く伝達され、最大出力により回転体を直進方向へ転動させることができる。 Here, a plurality of the first wheels are arranged on the surface of the upper hemisphere of the rotating body around an axis on one end side of the rotating shaft that rolls the rotating body and moves in the straight direction. On the other hand, the second wheel is disposed on the surface of the center of symmetry of the rotating body with respect to a specific position on the surface of the lower hemisphere of the rotating body around the axis on one end side of the rotating shaft. Therefore, when moving in the straight traveling direction, power is efficiently transmitted from each of the first wheel and the second wheel to the rotating body, and the rotating body can be rolled in the straight traveling direction with the maximum output.
 本発明の第3実施態様に係る全方向移動装置は、球状の回転体と、回転体を転動させて直進方向に移動させる回転軸の一端側の軸周りにおいて回転体の上半球の表面に接して複数配設され、円周方向に回転して回転体に動力を伝達し、かつ、円周方向と交差する方向に回転体を転動可能とする第1ホイールと、回転軸の他端側の軸周りにおいて回転体の上半球の表面に接して配設され、円周方向に回転して回転体に動力を伝達し、かつ、円周方向と交差する方向に回転体を転動可能とする第2ホイールと、を備えている。 The omnidirectional movement device according to the third embodiment of the present invention is a spherical rotating body and a surface of the upper hemisphere of the rotating body around an axis on one end side of the rotating shaft that rolls the rotating body and moves in the straight direction. A first wheel that is arranged in contact with each other, rotates in the circumferential direction to transmit power to the rotating body, and allows the rotating body to roll in a direction intersecting the circumferential direction; and the other end of the rotating shaft Around the axis on the side, it is placed in contact with the surface of the upper hemisphere of the rotating body, rotates in the circumferential direction, transmits power to the rotating body, and can roll the rotating body in a direction intersecting the circumferential direction And a second wheel.
 第3実施態様に係る全方向移動装置は、球状の回転体と、回転体の表面に接して配設された第1ホイール及び第2ホイールとを備える。第1ホイール及び第2ホイールは、いずれも、円周方向に回転して回転体に動力を伝達し、かつ、円周方向と交差する方向に回転体を転動可能とする。 The omnidirectional moving device according to the third embodiment includes a spherical rotating body, and a first wheel and a second wheel disposed in contact with the surface of the rotating body. Both the first wheel and the second wheel rotate in the circumferential direction to transmit power to the rotating body and allow the rotating body to roll in a direction intersecting the circumferential direction.
 ここで、第1ホイールは、回転体を転動させて直進方向に移動させる回転軸の一端側の軸周りにおいて回転体の上半球の表面に複数配設される。一方、第2ホイールは、回転軸の他端側の軸周りにおいて回転体の上半球の表面に配設される。このため、直進方向の移動に際して、第1ホイール、第2ホイールのそれぞれから回転体へ動力が効率良く伝達され、最大出力により回転体を直進方向へ転動させることができる。 Here, a plurality of the first wheels are arranged on the surface of the upper hemisphere of the rotating body around an axis on one end side of the rotating shaft that rolls the rotating body and moves in the straight direction. On the other hand, the second wheel is disposed on the surface of the upper hemisphere of the rotating body around the axis on the other end side of the rotating shaft. Therefore, when moving in the straight traveling direction, power is efficiently transmitted from each of the first wheel and the second wheel to the rotating body, and the rotating body can be rolled in the straight traveling direction with the maximum output.
 本発明の第4実施態様に係る全方向移動装置では、第2実施態様又は第3実施態様に係る全方向移動装置において、第1ホイール及び第2ホイールは、オムニホイール又はメカナムホイールである。 In the omnidirectional moving device according to the fourth embodiment of the present invention, in the omnidirectional moving device according to the second or third embodiment, the first wheel and the second wheel are an omni wheel or a mecanum wheel.
 第4実施態様に係る全方向移動装置によれば、第1ホイール及び第2ホイールがオムニホイール又はメカナムホイールとされるので、最大出力により回転体を直進方向へ転動させることができ、かつ、直進方向以外の方向へも回転体を転動させることができる。 According to the omnidirectional movement device according to the fourth embodiment, since the first wheel and the second wheel are omni wheels or mecanum wheels, the rotating body can be rolled in the straight direction by the maximum output, and The rotating body can be rolled in directions other than the straight direction.
 本発明の第5実施態様に係る全方向移動装置では、第2実施態様又は第3実施態様に係る全方向移動装置において、第1ホイールは2個配設され、第2ホイールは1個又は2個配設されている。 In the omnidirectional mobile device according to the fifth embodiment of the present invention, in the omnidirectional mobile device according to the second embodiment or the third embodiment, two first wheels are arranged and one or two second wheels are arranged. Individually arranged.
 第5実施態様に係る全方向移動装置によれば、第1ホイールは2個、第2ホイールは1個又は2個配設されるので、最小限のホイール数により、部品点数並びに重量を最小限として、回転体を全方向へ転動させることができる。 According to the omnidirectional moving device according to the fifth embodiment, two first wheels and one or two second wheels are arranged, so the number of parts and the weight are minimized by the minimum number of wheels. As described above, the rotating body can be rolled in all directions.
 本発明の第6実施態様に係る全方向移動装置では、第2実施態様又は第3実施態様に係る全方向移動装置において、第1ホイール及び第2ホイールは、回転体との接点の位置ベクトルと接点における接線ベクトルとで決まる動力伝達行列の行列要素のうち、回転軸の行列要素の列毎に絶対値が等しくなる位置に配設されている。 In the omnidirectional movement device according to the sixth embodiment of the present invention, in the omnidirectional movement device according to the second embodiment or the third embodiment, the first wheel and the second wheel have a position vector of a contact point with the rotating body, Of the matrix elements of the power transmission matrix determined by the tangent vector at the contact point, the absolute values are arranged at the positions where the absolute values are equal for each column of the matrix elements of the rotation axis.
 第6実施態様に係る全方向移動装置によれば、動力伝達行列の行列要素のうち、回転体を直進方向に移動させる回転軸の行列要素の列毎に絶対値が等しくなる位置に第1ホイール及び第2ホイールが配設される。このため、直進方向の移動に際して、第1ホイール、第2ホイールのそれぞれから回転体へ動力が効率良く伝達され、最大出力により回転体を直進方向へ転動させることができる。 According to the omnidirectional movement device according to the sixth embodiment, the first wheel is located at a position where the absolute value is equal for each column of the matrix elements of the rotating shaft that moves the rotating body in the straight traveling direction among the matrix elements of the power transmission matrix. And a second wheel is disposed. Therefore, when moving in the straight traveling direction, power is efficiently transmitted from each of the first wheel and the second wheel to the rotating body, and the rotating body can be rolled in the straight traveling direction with the maximum output.
 本発明の第7実施態様に係る全方向移動装置では、第6実施態様に係る全方向移動装置において、動力伝達行列は、角速度を表す伝達行列を含んでいる。 In the omnidirectional mobile device according to the seventh embodiment of the present invention, in the omnidirectional mobile device according to the sixth embodiment, the power transmission matrix includes a transmission matrix representing an angular velocity.
 第7実施態様に係る全方向移動装置によれば、動力伝達行列は角速度を表す伝達行列を含む。回転体を直進方向に移動させる回転軸の角速度を表す伝達行列において行列要素の列毎に絶対値が等しくなる位置に、第1ホイール、第2ホイールがそれぞれ配設される。このため、直進方向の移動に際して、第1ホイール、第2ホイールのそれぞれから回転体へ動力が効率良く伝達され、最大出力により回転体を直進方向へ転動させることができる。 According to the omnidirectional mobile device according to the seventh embodiment, the power transmission matrix includes a transmission matrix representing the angular velocity. The first wheel and the second wheel are respectively arranged at positions where the absolute values are equal for each column of the matrix elements in the transmission matrix representing the angular velocity of the rotating shaft that moves the rotating body in the straight traveling direction. Therefore, when moving in the straight traveling direction, power is efficiently transmitted from each of the first wheel and the second wheel to the rotating body, and the rotating body can be rolled in the straight traveling direction with the maximum output.
 本発明の第8実施態様に係る全方向移動装置は、第2実施態様又は第3実施態様に係る全方向移動装置において、回転体の下半球の表面に接して又は近接させて、円周方向に回転し、かつ、円周方向と交差する方向に回転体を転動可能とする補助輪を更に備えている。 An omnidirectional movement device according to an eighth embodiment of the present invention is the omnidirectional movement device according to the second or third embodiment, in the circumferential direction in contact with or close to the surface of the lower hemisphere of the rotating body. And an auxiliary wheel that allows the rotating body to roll in a direction that intersects the circumferential direction.
 第8実施態様に係る全方向移動装置は、回転体の下半球の表面に接して又は近接させて補助輪を備える。補助輪は、円周方向に回転し、かつ、円周方向と交差する方向に回転体を転動可能とする。このため、回転体の上半球が第1ホイール及び第2ホイールに接し、回転体の下半球に補助輪が設けられるので、回転体を全方向へ転動可能としつつ、回転体の抜けを防ぐことができる。 The omnidirectional movement device according to the eighth embodiment includes auxiliary wheels in contact with or close to the surface of the lower hemisphere of the rotating body. The auxiliary wheel rotates in the circumferential direction and enables the rotating body to roll in a direction crossing the circumferential direction. For this reason, since the upper hemisphere of the rotating body is in contact with the first wheel and the second wheel and the auxiliary hemisphere is provided on the lower hemisphere of the rotating body, the rotating body can be rolled in all directions while preventing the rotating body from coming off. be able to.
 本発明の第9実施態様に係る全方向移動装置では、第2実施態様又は第3実施態様に係る全方向移動装置において、回転体上に設けられた車体と、車体に取り付けられ、かつ、第1ホイールを回転させる第1駆動装置と、車体に取り付けられ、かつ、第2ホイールを回転させる第2駆動装置と、車体に配設され、車体の姿勢を安定に維持する姿勢安定システムと、を更に備えている。 In the omnidirectional movement device according to the ninth embodiment of the present invention, in the omnidirectional movement device according to the second embodiment or the third embodiment, a vehicle body provided on the rotating body, attached to the vehicle body, and A first driving device that rotates one wheel, a second driving device that is attached to the vehicle body and that rotates the second wheel, and a posture stabilization system that is disposed on the vehicle body and maintains the posture of the vehicle body stably. In addition.
 第9実施態様に係る全方向移動装置によれば、回転体上には車体が設けられる。第1ホイールの回転軸には第1駆動装置が接続され、第1駆動装置は車体に取り付けられる。また、第2ホイールの回転軸には第2駆動装置が接続され、第2駆動装置は車体に取り付けられる。第1ホイール、第2ホイールはいずれも回転体の上半球の表面に接する。このため、車体の荷重が第1駆動装置を介して第1ホイール及び第2駆動装置を介して第2ホイールにより支えられ、姿勢安定システムにより車体の姿勢が安定に維持された状態において、最大出力により回転体を直進方向へ転動させることができる。 According to the omnidirectional movement apparatus according to the ninth embodiment, the vehicle body is provided on the rotating body. A first drive device is connected to the rotation shaft of the first wheel, and the first drive device is attached to the vehicle body. A second drive device is connected to the rotation shaft of the second wheel, and the second drive device is attached to the vehicle body. Both the first wheel and the second wheel are in contact with the surface of the upper hemisphere of the rotating body. For this reason, in the state where the load of the vehicle body is supported by the second wheel via the first drive device and the second drive device via the first drive device, and the posture of the vehicle body is stably maintained by the posture stabilization system, the maximum output Thus, the rotating body can roll in the straight direction.
 本発明の第10実施態様に係る全方向移動装置では、第9実施態様に係る全方向移動装置において、姿勢安定システムは、車体に装着され、車体の姿勢角度及び姿勢角度の変化に伴う第1角速度を検出する姿勢角度検出部と、第1ホイール及び第2ホイールの回転数を検出する回転数検出部と、回転数検出部による回転数の検出結果に基づいて、回転体が転動する第2角速度を検出する角速度検出部と、姿勢角度検出部により検出される姿勢角度情報、第1角速度情報及び角速度検出部により検出される第2角速度情報に基づいて、車体の姿勢を維持する第1ホイール及び第2ホイールのホイール操作トルクを算出し、このホイール操作トルク情報に従って第1駆動装置及び第2駆動装置を作動させる演算処理部と、を備えている。 In the omnidirectional mobile device according to the tenth embodiment of the present invention, in the omnidirectional mobile device according to the ninth embodiment, the posture stabilization system is mounted on the vehicle body, and the first vehicle is attached to the vehicle body posture angle and the posture angle change. Based on the detection result of the rotation speed by the rotation speed detection section, the rotation speed detection section that detects the rotation speed of the first wheel and the second wheel, the rotation body rolls. Based on the angular velocity detector that detects the two angular velocities, the posture angle information detected by the posture angle detector, the first angular velocity information, and the second angular velocity information detected by the angular velocity detector, the first that maintains the posture of the vehicle body A calculation processing unit that calculates wheel operation torques of the wheel and the second wheel and operates the first drive device and the second drive device in accordance with the wheel operation torque information.
 第10実施態様に係る全方向移動装置によれば、姿勢安定システムは、姿勢角度検出部と、回転数検出部と、角速度検出部と、演算処理部とを備える。姿勢角度検出部は、車体に装着され、車体の姿勢角度及び姿勢角度の変化に伴う第1角速度を検出する。回転数検出部は、第1ホイール及び第2ホイールの回転数を検出する。角速度検出部は、回転数検出部による回転数の検出結果に基づいて、回転体が転動する第2角速度を検出する。 According to the omnidirectional movement apparatus according to the tenth embodiment, the posture stabilization system includes a posture angle detection unit, a rotation speed detection unit, an angular velocity detection unit, and an arithmetic processing unit. The posture angle detection unit is attached to the vehicle body and detects a posture angle of the vehicle body and a first angular velocity associated with a change in the posture angle. The rotation speed detection unit detects the rotation speeds of the first wheel and the second wheel. The angular velocity detection unit detects a second angular velocity at which the rotating body rolls based on the detection result of the rotation number by the rotation number detection unit.
 ここで、演算処理部は、姿勢角度検出部により検出される姿勢角度情報、第1角速度情報及び角速度検出部により検出される第2角速度情報に基づいて、車体の姿勢を維持する第1ホイール及び第2ホイールのホイール操作トルクを算出する。そして、演算処理部は、このホイール操作トルク情報に従って第1駆動装置及び第2駆動装置を作動させる。このため、姿勢安定システムでは、車体の姿勢を安定に維持する動力が第1ホイール及び第2ホイールから回転体へ伝達されるので、車体の姿勢が安定に維持された状態において、最大出力により回転体を直進方向へ転動させることができる。 Here, the arithmetic processing unit includes a first wheel for maintaining the posture of the vehicle body based on the posture angle information detected by the posture angle detector, the first angular velocity information, and the second angular velocity information detected by the angular velocity detector. The wheel operation torque of the second wheel is calculated. Then, the arithmetic processing unit operates the first drive device and the second drive device according to the wheel operation torque information. For this reason, in the posture stabilization system, the power for stably maintaining the posture of the vehicle body is transmitted from the first wheel and the second wheel to the rotating body, so that the vehicle rotates with the maximum output in a state where the posture of the vehicle body is stably maintained. The body can roll in the straight direction.
 本発明の第11実施態様に係る全方向移動装置では、第10実施態様に係る全方向移動装置において、演算処理部は、姿勢角度情報、第1角速度情報及び第2角速度情報に基づいて、車体の姿勢を維持させる、回転体が転動する角加速度の目標値及び車体が旋回する角加速度の目標値を算出し、目標値に一致させる回転体の第3角加速度を算出し、第3角加速度に基づいて回転体を操作する回転体操作トルクを算出し、回転体操作トルク情報に基づいて、第1ホイール及び第2ホイールを操作するホイール操作トルクを算出する。 In the omnidirectional mobile device according to the eleventh embodiment of the present invention, in the omnidirectional mobile device according to the tenth embodiment, the arithmetic processing unit is configured to operate the vehicle body based on the attitude angle information, the first angular velocity information, and the second angular velocity information. The target value of angular acceleration at which the rotating body rolls and the target value of angular acceleration at which the vehicle body turns are calculated, the third angular acceleration of the rotating body that matches the target value is calculated, and the third angle is maintained. A rotating body operating torque for operating the rotating body is calculated based on the acceleration, and a wheel operating torque for operating the first wheel and the second wheel is calculated based on the rotating body operating torque information.
 第11実施態様に係る全方向移動装置によれば、演算処理部では、姿勢角度情報、第1角速度情報及び第2角速度情報に基づいて、車体の姿勢を維持させる、回転体が転動する角加速度の目標値及び車体が旋回する角加速度の目標値が算出される。演算処理部では、更に目標値に一致させる回転体の第3角加速度が算出され、第3角加速度に基づいて回転体を操作する回転体操作トルクが算出される。この回転体操作トルク情報に基づいて、演算処理部では、第1ホイール及び第2ホイールを操作するホイール操作トルクが算出される。この結果、演算処理部において、車体の姿勢を安定に維持する動力が算出される。このため、動力が第1ホイール及び第2ホイールから回転体へ伝達されるので、車体の姿勢が安定に維持された状態において、最大出力により回転体を直進方向へ転動させることができる。 According to the omnidirectional mobile device according to the eleventh embodiment, the arithmetic processing unit maintains the posture of the vehicle body based on the posture angle information, the first angular velocity information, and the second angular velocity information, and the angle at which the rotating body rolls. A target value of acceleration and a target value of angular acceleration at which the vehicle body turns are calculated. The arithmetic processing unit further calculates a third angular acceleration of the rotating body that matches the target value, and calculates a rotating body operating torque for operating the rotating body based on the third angular acceleration. Based on the rotating body operation torque information, the arithmetic processing unit calculates wheel operation torque for operating the first wheel and the second wheel. As a result, the motive power for stably maintaining the posture of the vehicle body is calculated in the arithmetic processing unit. For this reason, since the power is transmitted from the first wheel and the second wheel to the rotating body, the rotating body can roll in the straight traveling direction with the maximum output in a state where the posture of the vehicle body is stably maintained.
 本発明の第12実施態様に係る全方向移動装置の姿勢制御方法では、第10実施態様に係る全方向移動装置の姿勢安定システムが、姿勢角度情報、第1角速度情報及び第2角速度情報を取得し、姿勢角度情報、第1角速度情報及び第2角速度情報に基づいて、車体の姿勢を維持させる、回転体が転動する角加速度の目標値及び車体が旋回する角加速度の目標値を算出し、目標値に一致させる回転体の第3角加速度を算出し、第3角加速度に基づいて回転体を操作する回転体操作トルクを算出し、回転体操作トルク情報に基づいて、第1ホイール及び第2ホイールを操作するホイール操作トルクを算出する。 In the attitude control method for the omnidirectional mobile device according to the twelfth embodiment of the present invention, the attitude stabilization system for the omnidirectional mobile device according to the tenth embodiment acquires the attitude angle information, the first angular velocity information, and the second angular velocity information. Then, based on the posture angle information, the first angular velocity information, and the second angular velocity information, the target value of the angular acceleration at which the rotating body rolls and the target value of the angular acceleration at which the vehicle body turns are calculated to maintain the posture of the vehicle body. Calculating a third angular acceleration of the rotating body that matches the target value, calculating a rotating body operating torque for operating the rotating body based on the third angular acceleration, and based on the rotating body operating torque information, A wheel operation torque for operating the second wheel is calculated.
 第12実施態様に係る全方向移動装置の姿勢制御方法によれば、姿勢安定システムが、まず最初に、姿勢角度情報、第1角速度情報及び第2角速度情報を取得する。次に、姿勢角度情報、第1角速度情報及び第2角速度情報に基づいて、車体の姿勢を維持させる、回転体が転動する角加速度の目標値及び車体が旋回する角加速度の目標値が算出される。次に、目標値に一致させる回転体の第3角加速度が算出され、更に第3角加速度に基づいて回転体を操作する回転体操作トルクが算出される。そして、回転体操作トルク情報に基づいて、第1ホイール及び第2ホイールを操作するホイール操作トルクが算出される。この結果、姿勢安定システムにおいて、車体の姿勢を安定に維持する動力が算出される。 According to the attitude control method of the omnidirectional mobile device according to the twelfth embodiment, the attitude stabilization system first acquires attitude angle information, first angular velocity information, and second angular velocity information. Next, based on the posture angle information, the first angular velocity information, and the second angular velocity information, the target value of the angular acceleration at which the rotating body rolls and the target value of the angular acceleration at which the vehicle body turns are calculated to maintain the posture of the vehicle body. Is done. Next, a third angular acceleration of the rotating body that matches the target value is calculated, and further, a rotating body operating torque for operating the rotating body is calculated based on the third angular acceleration. Then, wheel operation torque for operating the first wheel and the second wheel is calculated based on the rotating body operation torque information. As a result, in the posture stabilization system, the power for stably maintaining the posture of the vehicle body is calculated.
 このため、動力が第1ホイール及び第2ホイールから回転体へ伝達されるので、全方向移動装置では、最大出力により回転体を直進方向へ転動させることができ、車体の姿勢を安定に維持することができる。 For this reason, since the power is transmitted from the first wheel and the second wheel to the rotating body, the omnidirectional moving device can roll the rotating body in the straight traveling direction with the maximum output and stably maintain the posture of the vehicle body. can do.
 本発明によれば、最大出力により回転体を直進方向へ移動させることができる全方向移動装置及び車体の姿勢を安定に維持することができる全方向移動装置の姿勢制御方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the attitude | position control method of the omnidirectional movement apparatus which can maintain the attitude | position of the omnidirectional movement apparatus which can move a rotary body to a straight ahead direction with a maximum output, and a vehicle body stably can be provided. .
本発明の第1実施の形態に係る全方向移動装置の外観構成図であり、(A)は左側面図、(B)は進行方向から見た正面図、(C)は背面図、(D)は底面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is an external appearance block diagram of the omnidirectional movement apparatus which concerns on 1st Embodiment of this invention, (A) is a left view, (B) is the front view seen from the advancing direction, (C) is a rear view, (D ) Is a bottom view. 図1に示される全方向移動装置の駆動ユニットの要部拡大斜視図である。It is a principal part expansion perspective view of the drive unit of the omnidirectional movement apparatus shown by FIG. 図1に示される全方向移動装置の回転体と図2に示される駆動ユニットのオムニホイールとの位置関係を示す図であり、(A)は全方向移動装置の進行方向右側から見た側面図、(B)は全方向移動装置の進行方向左側から見た側面図である。It is a figure which shows the positional relationship of the rotary body of the omnidirectional movement apparatus shown by FIG. 1, and the omni wheel of the drive unit shown by FIG. 2, (A) is the side view seen from the advancing direction right side of the omnidirectional movement apparatus (B) is the side view seen from the left side of the advancing direction of an omnidirectional movement device. 図1に示される全方向移動装置に組み込まれる姿勢安定システムを説明するブロック図である。It is a block diagram explaining the attitude | position stabilization system integrated in the omnidirectional movement apparatus shown by FIG. 図4に示される姿勢安定システムの姿勢制御方法を説明するフローチャートである。It is a flowchart explaining the attitude | position control method of the attitude | position stabilization system shown by FIG. 図4に示される姿勢安定システムのアルゴリズムを説明する図である。It is a figure explaining the algorithm of the attitude | position stabilization system shown by FIG. 第1実施の形態に係る動力伝達行列を説明する回転体及び3個のオムニホイールを示す概略図である。It is the schematic which shows the rotary body and three omni wheel explaining the power transmission matrix which concerns on 1st Embodiment. 第1実施の形態に係る動力伝達行列を説明する回転体及び4個のオムニホイールを示す概略図である。It is the schematic which shows the rotary body and four omni wheels explaining the power transmission matrix which concerns on 1st Embodiment. 比較例に係る動力伝達行列を説明する回転体及び3個のオムニホイールを示す概略図である。It is the schematic which shows the rotary body and three omni wheel explaining the power transmission matrix which concerns on a comparative example. 比較例に係る動力伝達行列を説明する回転体及び4個のオムニホイールを示す概略図である。It is the schematic which shows the rotary body and four omni wheels explaining the power transmission matrix which concerns on a comparative example. 本発明の第2実施の形態に係る全方向移動装置の動力伝達行列を説明する回転体及び4個のメカナムホイールを示す概略図である。It is the schematic which shows the rotary body and four mecanum wheels explaining the power transmission matrix of the omnidirectional movement apparatus which concerns on 2nd Embodiment of this invention.
 (第1実施の形態)
 以下、図1~図10を用いて、本発明の第1実施の形態に係る全方向移動装置を説明する。なお、図中、適宜示される矢印X 方向は全方向移動装置の車体前方側であって進行方向を示し、矢印Y 方向は車体幅方向を示している。また、矢印Z 方向は、矢印X 方向及び矢印Y 方向に対して直交する上方向を示している。
(First embodiment)
Hereinafter, the omnidirectional moving device according to the first embodiment of the present invention will be described with reference to FIGS. In the figure, the arrow X direction shown as appropriate indicates the traveling direction on the vehicle body front side of the omnidirectional moving device, and the arrow Y direction indicates the vehicle body width direction. Further, the arrow Z direction indicates an upward direction orthogonal to the arrow X direction and the arrow Y direction.
[全方向移動装置の構成]
 図1(A)~図1(D)及び図2に示されるように、本実施の形態に係る全方向移動装置10は、単一の球状の回転体12と、この回転体12上に配設された車体14とを含んで構成されている。
[Configuration of omnidirectional mobile device]
As shown in FIGS. 1 (A) to 1 (D) and FIG. 2, an omnidirectional moving device 10 according to this embodiment includes a single spherical rotating body 12 and a rotating body 12 disposed on the rotating body 12. The vehicle body 14 is provided.
 回転体12は、例えば、直径300mm、厚さ1.5mmのステンレス鋼を用いて形成された球殻を回転体本体とし、回転体本体の表面を回転体本体よりも軟質材料により被覆して形成されている。軟質材料として、例えば、厚さ5mmの天然ゴム(NR:Natural Rubber)を実用的に使用することができる。 The rotating body 12 is formed, for example, by using a spherical shell formed of stainless steel having a diameter of 300 mm and a thickness of 1.5 mm as a rotating body main body, and covering the surface of the rotating body with a softer material than the rotating body main body. Has been. As the soft material, for example, a natural rubber (NR: Natural Rubber) having a thickness of 5 mm can be used practically.
 図1(A)~図1(D)に示されるように、車体14は車体幅方向(矢印Y 方向)に一対に配設された車体本体14A及び車体本体14Bを備えている。車体本体14A及び車体本体14Bは、各々、車体前後方向(矢印X 方向)を長手方向として延在し、車体幅方向に離間して配置されている。車体本体14A及び車体本体14Bは、平面視において、回転体12と重なる位置に配設されている。車体本体14A及び車体本体14Bには、上方向へ立設されたサドルサポート16を介してサドル18が取り付けられている。サドルサポート16は管材により形成されている。サドル18は全方向移動装置10の搭乗者が着座する構成とされている。 As shown in FIGS. 1 (A) to 1 (D), the vehicle body 14 includes a vehicle body main body 14A and a vehicle body main body 14B disposed in a pair in the vehicle body width direction (arrow Y direction). Each of the vehicle body 14A and the vehicle body 14B extends with the longitudinal direction of the vehicle body (the direction of the arrow X) as a longitudinal direction and is spaced apart in the vehicle body width direction. The vehicle body 14 </ b> A and the vehicle body 14 </ b> B are disposed at positions that overlap the rotating body 12 in plan view. A saddle 18 is attached to the vehicle body 14A and the vehicle body 14B via a saddle support 16 that stands upward. The saddle support 16 is formed of a pipe material. The saddle 18 is configured such that a passenger of the omnidirectional mobile device 10 is seated.
 車体本体14A及び車体本体14Bの車体前方側には、車体14を構成する車体前部14Cが配設されている。車体前部14Cは、上下方向において車体本体14A及び車体本体14Bの上面よりも下方向であって回転体12の中心点付近に配置され、車体本体14A及び車体本体14Bの前壁14Dに一体的に取り付けられている。車体前部14Cは管材を折り曲げて形成され、車体前部14Cの輪郭が平面視においてC字状に形成されている。 A vehicle body front portion 14C constituting the vehicle body 14 is disposed on the vehicle body front side of the vehicle body 14A and the vehicle body 14B. The vehicle body front portion 14C is disposed below the upper surfaces of the vehicle body main body 14A and the vehicle body main body 14B in the vertical direction and near the center point of the rotating body 12, and is integrated with the vehicle body main body 14A and the front wall 14D of the vehicle body main body 14B. Is attached. The vehicle body front portion 14C is formed by bending a pipe, and the contour of the vehicle body front portion 14C is formed in a C shape in plan view.
 車体前部14C上には足置き部20が車体幅方向に一対に配設されている。足置き部20は搭乗者の足の置き場として使用される。また、車体前部14Cには、上方向に向けてやや車体後方側に傾斜して立設されたハンドルサポート22が配設され、ハンドルサポート22の上端部にはハンドル24が取り付けられている。ハンドル24は車体幅方向外側へ向かって左右にそれぞれ突出された棒状に形成され、搭乗者はハンドル24を把持して全方向移動装置10を走行させる。ハンドル24は、ここでは垂直軸(Z 軸)周りに旋回しない固定式により形成されている。図示を省略しているが、全方向移動装置10の走行の開始や停止を行う始動スイッチ、全方向移動装置10の走行中の速度を制動するブレーキ等はハンドル24周りに装着されている。また、保安部品として、ライト、フロントウインカ等が、ハンドル24又はハンドルサポート22に装着可能である。さらに、保安部品としてのリアウインカ、ブレーキランプ等が、車体14の車体後端部の適正箇所に装着可能である。 A pair of footrests 20 are disposed in the vehicle body width direction on the vehicle body front portion 14C. The footrest unit 20 is used as a place for a passenger's foot. In addition, a handle support 22 is disposed on the vehicle body front portion 14C so as to be inclined slightly upward toward the rear of the vehicle body, and a handle 24 is attached to an upper end portion of the handle support 22. The handle 24 is formed in a bar shape protruding left and right toward the outside in the vehicle body width direction, and the occupant grips the handle 24 and causes the omnidirectional movement device 10 to travel. Here, the handle 24 is formed by a fixed type that does not turn around the vertical axis (Z axis). Although not shown, a start switch for starting and stopping traveling of the omnidirectional moving device 10, a brake for braking the traveling speed of the omnidirectional moving device 10, and the like are mounted around the handle 24. Further, as a safety part, a light, a front blinker or the like can be attached to the handle 24 or the handle support 22. Furthermore, a rear turn signal, a brake lamp, or the like as a safety part can be mounted at an appropriate location at the rear end of the vehicle body 14.
 車体本体14A及び車体本体14B下において、回転体12の周囲に沿ってリング状の枠部26が配設されている。この枠部26は車体幅方向両端部にそれぞれ設けられた枠サポート28を介して車体本体14A、車体本体14Bのそれぞれに取り付けられている。 A ring-shaped frame portion 26 is disposed along the periphery of the rotating body 12 below the vehicle body 14A and the vehicle body 14B. The frame portion 26 is attached to each of the vehicle body 14A and the vehicle body 14B via frame supports 28 provided at both ends in the vehicle width direction.
 また、車体本体14A及び車体本体14Bの車体前端部には、補助輪サポート30を介して補助輪32が配設されている。補助輪サポート30は車体本体14A及び車体本体14Bから回転体12の中心点よりも下方側まで延設され、補助輪サポート30の下端部に補助輪32が回転自在に取り付けられている。同様に、車体本体14A及び車体本体14Bの車体後端部には、補助輪サポート34を介して補助輪36が配設されている。補助輪サポート34は車体本体14A及び車体本体14Bから回転体12の中心点よりも下方側まで延設され、補助輪サポート34の下端部に補助輪36が回転自在に取り付けられている。補助輪32、補助輪36は、いずれも回転体12の下半球12A側に回り込む位置に配置され、下半球12Aの表面に接するか、或いは一定のクリアランスを持って離間(近接)されている。補助輪32及び補助輪36を備えることにより、車体14からの回転体12の抜けが防止されている。本実施の形態では、補助輪32、補助輪36のそれぞれに、後述するホイール、ここではオムニホイールが使用されている。 Further, auxiliary wheels 32 are disposed through auxiliary wheel supports 30 at the front end portions of the vehicle body 14A and the vehicle body 14B. The auxiliary wheel support 30 extends from the vehicle body 14 </ b> A and the vehicle body 14 </ b> B to a lower side than the center point of the rotating body 12, and an auxiliary wheel 32 is rotatably attached to the lower end portion of the auxiliary wheel support 30. Similarly, auxiliary wheels 36 are disposed via auxiliary wheel supports 34 at the rear end portions of the vehicle body 14A and the vehicle body 14B. The auxiliary wheel support 34 extends from the vehicle body 14 </ b> A and the vehicle body 14 </ b> B to a lower side than the center point of the rotating body 12, and an auxiliary wheel 36 is rotatably attached to the lower end portion of the auxiliary wheel support 34. Each of the auxiliary wheel 32 and the auxiliary wheel 36 is disposed at a position that wraps around the lower hemisphere 12A side of the rotating body 12, and is in contact with the surface of the lower hemisphere 12A or spaced apart (adjacent) with a certain clearance. By providing the auxiliary wheel 32 and the auxiliary wheel 36, the rotator 12 is prevented from coming off from the vehicle body 14. In the present embodiment, a later-described wheel, here an omni wheel, is used for each of the auxiliary wheel 32 and the auxiliary wheel 36.
 図1(A)~図1(D)に示される全方向移動装置10では、サドル18に着座状態の搭乗者から見て車体幅方向右側において、車体本体14A下の車体前方側に、符号を省略した外装カバーにより被覆された第1駆動ユニット40が取り付けられている。車体本体14A下の車体後方側には第2駆動ユニット42が取り付けられている。一方、車体幅方向左側において、車体本体14B下の車体前方側に第3駆動ユニット44が取り付けられ、車体本体14Bの車体後方側に第4駆動ユニット46が取り付けられている。 In the omnidirectional mobile device 10 shown in FIGS. 1 (A) to 1 (D), a sign is given to the vehicle body front side below the vehicle body 14A on the right side in the vehicle width direction when viewed from the passenger seated on the saddle 18. The first drive unit 40 covered with the omitted exterior cover is attached. A second drive unit 42 is attached to the vehicle body rear side under the vehicle body 14A. On the other hand, on the left side in the vehicle body width direction, the third drive unit 44 is attached to the front side of the vehicle body below the vehicle body 14B, and the fourth drive unit 46 is attached to the vehicle body rear side of the vehicle body 14B.
 ここで、本実施の形態では、第1駆動ユニット40~第4駆動ユニット46の合計4個の駆動ユニットが配設されているが、第1駆動ユニット40~第3駆動ユニット44の合計3個の駆動ユニットが配設される場合が含まれる。3個の駆動ユニットが配設される場合、第3駆動ユニット44は車体本体14Bの車体前後方向の中間部に配設される。 Here, in the present embodiment, a total of four drive units of the first drive unit 40 to the fourth drive unit 46 are arranged, but a total of three of the first drive unit 40 to the third drive unit 44 is arranged. The case where the drive unit is provided is included. When three drive units are disposed, the third drive unit 44 is disposed at an intermediate portion in the vehicle body front-rear direction of the vehicle body 14B.
[オムニホイールの構成]
 図2に示されるように、第1駆動ユニット40は、第1オムニホイールとしてのオムニホイール401と、減速機441と、第1駆動装置としての例えば交流(AC)サーボモータ442(1)とを含んで構成されている。オムニホイール401は、シャフト(回転軸)430を介して減速機441に連結されている。
[Configuration of Omni Wheel]
As shown in FIG. 2, the first drive unit 40 includes an omni wheel 401 as a first omni wheel, a speed reducer 441, and an alternating current (AC) servo motor 442 (1) as a first drive device, for example. It is configured to include. The omni wheel 401 is connected to a speed reducer 441 via a shaft (rotating shaft) 430.
 オムニホイール401は、シャフト430の回転に従ってシャフト430の回転軸周りに回転し、かつ、回転軸方向に2連をなす第1ホイール410及び第2ホイール420を備えている。第1ホイール410の円周上には、等間隔に配設された複数の樽状のローラ(バレル)412~414が回転軸415を中心に回転自在に取り付けられている。ここで、等間隔とは120度間隔であり、3つのローラ412~414が取り付けられている。第2ホイール420は第1ホイール410の減速機441側とは反対側に配設されている。第2ホイール420の円周上には、同様に、等間隔に配設された複数の樽状のローラ422~424が回転軸425を中心として回転自在に取り付けられている。第2ホイール420のローラ422~424の配置間隔は、第1ホイール410のローラ412~414の配置間隔に対して、半ピッチ、具体的には60度ずれている。このような構成により、オムニホイール401は、円周方向Aに回転して回転体12に動力を伝達し、かつ、円周方向Aと交差する方向(ここでは直交する方向)Bに回転体12を転動可能としている。
 ここで、図2に示されるように、オムニホイール401のシャフト430の回転軸をaとし、ローラ412~414の回転軸415をbとすれば、回転軸bは回転軸aに対してねじれの位置において直交している。
The omni wheel 401 includes a first wheel 410 and a second wheel 420 that rotate around the rotation axis of the shaft 430 according to the rotation of the shaft 430 and that form two stations in the rotation axis direction. On the circumference of the first wheel 410, a plurality of barrel-shaped rollers (barrels) 412 to 414 arranged at equal intervals are attached so as to be rotatable around a rotation shaft 415. Here, the equal interval is an interval of 120 degrees, and three rollers 412 to 414 are attached. The second wheel 420 is disposed on the opposite side of the first wheel 410 from the speed reducer 441 side. Similarly, a plurality of barrel-shaped rollers 422 to 424 arranged at equal intervals are mounted on the circumference of the second wheel 420 so as to be rotatable about the rotation shaft 425. The arrangement interval of the rollers 422 to 424 of the second wheel 420 is shifted by a half pitch, specifically 60 degrees, with respect to the arrangement interval of the rollers 412 to 414 of the first wheel 410. With such a configuration, the omni wheel 401 rotates in the circumferential direction A to transmit power to the rotating body 12, and the rotating body 12 in a direction B (in this case, a direction orthogonal) intersecting the circumferential direction A. Can be rolled.
Here, as shown in FIG. 2, if the rotational axis of the shaft 430 of the omni wheel 401 is a and the rotational axis 415 of the rollers 412 to 414 is b, the rotational axis b is twisted relative to the rotational axis a. It is orthogonal in position.
 第2駆動ユニット42、第3駆動ユニット44、第4駆動ユニット46のそれぞれの構成は、第1駆動ユニット40の構成と同一である。すなわち、図2に示されるように、第2駆動ユニット42は、第1オムニホイールとしてのオムニホイール402と、減速機441と、第1駆動装置としてのACサーボモータ442(2)とを含んで構成されている。第3駆動ユニット44は、第2オムニホイールとしてのオムニホイール403と、減速機441と、第2駆動装置としてのACサーボモータ442(3)とを含んで構成されている。第4駆動ユニット46は、第2オムニホイールとしてのオムニホイール404と、減速機441と、第2駆動装置としてのACサーボモータ442(4)とを含んで構成されている。 The configurations of the second drive unit 42, the third drive unit 44, and the fourth drive unit 46 are the same as the configuration of the first drive unit 40. That is, as shown in FIG. 2, the second drive unit 42 includes an omni wheel 402 as a first omni wheel, a speed reducer 441, and an AC servo motor 442 (2) as a first drive device. It is configured. The third drive unit 44 includes an omni wheel 403 as a second omni wheel, a speed reducer 441, and an AC servo motor 442 (3) as a second drive device. The fourth drive unit 46 includes an omni wheel 404 as a second omni wheel, a speed reducer 441, and an AC servo motor 442 (4) as a second drive device.
 本実施の形態に係る全方向移動装置10では、前後方向及び左右方向への移動が可能とされ、かつ、旋回が可能とされている。勿論、斜め方向への移動、旋回しながらの前後方向、左右方向又は斜め方向の移動が可能である。そして、全方向移動装置10では、前進方向に最大出力が得られる構成とされている。 In the omnidirectional movement device 10 according to the present embodiment, it is possible to move in the front-rear direction and the left-right direction, and to turn. Of course, it is possible to move in an oblique direction, move in the front-rear direction, turn left and right, or obliquely while turning. The omnidirectional mobile device 10 is configured to obtain a maximum output in the forward direction.
[オムニホイールの配置]
 一般的に、複数のオムニホイールは垂直軸(Z 軸)の軸周りに等間隔に配置されている(図9及び図10参照)。これに対して、図3(A)に示されるように、全方向移動装置10では、オムニホイール401及び402が、回転体12を転動させて直進方向に移動させる回転軸120の一端側の軸周り121において、回転体12の上半球12Bの表面に接して配設されている。ここで、回転体12には固定された回転軸が存在するのではなく、回転軸120は直進方向に回転体12が転動された際の回転体12の実効的な回転中心である。回転軸120の軸方向は、回転体12が直進方向(矢印X 方向)に転動するので、車体幅方向(矢印Y 方向)に一致する。また、回転軸120の一端側の軸周り121は、搭乗者から見て車体幅方向右側において、回転体12を天体と見なしたときの緯線に相当する。
[Omni Wheel Arrangement]
In general, the plurality of omni wheels are arranged at equal intervals around a vertical axis (Z axis) (see FIGS. 9 and 10). On the other hand, as shown in FIG. 3A, in the omnidirectional moving device 10, the omni wheels 401 and 402 are arranged on one end side of the rotating shaft 120 that causes the rotating body 12 to roll and move in the straight direction. Around the axis 121, the rotating body 12 is disposed in contact with the surface of the upper hemisphere 12 </ b> B. Here, the rotating body 12 does not have a fixed rotating shaft, but the rotating shaft 120 is an effective center of rotation of the rotating body 12 when the rotating body 12 rolls in the straight direction. The axial direction of the rotating shaft 120 coincides with the vehicle body width direction (arrow Y direction) because the rotating body 12 rolls in the straight direction (arrow X direction). An axis 121 on one end side of the rotating shaft 120 corresponds to a latitude line when the rotating body 12 is regarded as a celestial body on the right side in the vehicle width direction when viewed from the passenger.
 オムニホイール403及び404は、図3(B)に示されるように、回転軸120の他端側の軸周り122において回転体12の上半球12Bの表面に接して配設されている。回転軸120の他端側の軸周り122は、搭乗者から見て車体幅方向左側において、回転体12を天体と見なしたときの緯線に相当する。オムニホイール403及び404の配置位置は、図3(A)に示される回転軸120の一端側の軸周り121において回転体12の下半球12Aの表面の特定位置403P及び404Pに対する回転体12の中心対称位置である。 The omni wheels 403 and 404 are disposed in contact with the surface of the upper hemisphere 12B of the rotating body 12 around the axis 122 on the other end side of the rotating shaft 120, as shown in FIG. The axis 122 on the other end side of the rotating shaft 120 corresponds to a latitude line when the rotating body 12 is regarded as a celestial body on the left side in the vehicle body width direction when viewed from the passenger. The arrangement positions of the omni wheels 403 and 404 are the centers of the rotating body 12 with respect to the specific positions 403P and 404P on the surface of the lower hemisphere 12A of the rotating body 12 around the axis 121 on one end side of the rotating shaft 120 shown in FIG. Symmetric position.
 本来、オムニホイール403は軸周り121において下半球12Aに配置され、オムニホイール404は軸周り121において下半球12Aに配置される。特定位置403Pは、進行方向に最大出力を得る際に、軸周り121の下半球12Aにおいてオムニホイール403の配置に適した位置である。また、同様に、特定位置404Pは軸周り121の下半球12Aにおいてオムニホイール404の配置に適した位置である。本実施の形態では、下半球12A側に第3駆動ユニット44及び第4駆動ユニット46が装着し難いので、軸周り122において回転体12の上半球12B側にオムニホイール403及び404が配設されている。 Originally, the omni wheel 403 is arranged in the lower hemisphere 12A around the axis 121, and the omni wheel 404 is arranged in the lower hemisphere 12A around the axis 121. The specific position 403P is a position suitable for the arrangement of the omni wheel 403 in the lower hemisphere 12A around the axis 121 when obtaining the maximum output in the traveling direction. Similarly, the specific position 404P is a position suitable for the arrangement of the omni wheel 404 in the lower hemisphere 12A around the axis 121. In the present embodiment, since it is difficult to mount the third drive unit 44 and the fourth drive unit 46 on the lower hemisphere 12A side, omni wheels 403 and 404 are disposed on the upper hemisphere 12B side of the rotating body 12 around the axis 122. ing.
 なお、第1駆動ユニット40~第3駆動ユニット44を備える場合には、回転軸120の一端側の軸周り121において回転体12の上半球12Bに接してオムニホイール401及び402が配設される(図3(A)参照)。そして、オムニホイール403は、回転軸120の他端側の軸周り122において回転体12の上半球12Bに接してオムニホイール403が配設される(図3(B)参照)。この場合、回転軸120の軸方向から見て、オムニホイール403は、図3(B)に示されるオムニホイール403とオムニホイール404との中間部に配設される。 When the first drive unit 40 to the third drive unit 44 are provided, the omni wheels 401 and 402 are disposed in contact with the upper hemisphere 12B of the rotating body 12 around the axis 121 on one end side of the rotating shaft 120. (See FIG. 3A). The omni wheel 403 is disposed in contact with the upper hemisphere 12B of the rotating body 12 around the axis 122 on the other end side of the rotating shaft 120 (see FIG. 3B). In this case, when viewed from the axial direction of the rotating shaft 120, the omni wheel 403 is disposed at an intermediate portion between the omni wheel 403 and the omni wheel 404 shown in FIG.
 図1(A)~図1(D)に戻って、全方向移動装置10の車体14上であってサドル18下にはセンサユニット50が配設されている。また、車体14上の車体後方側には、制御ユニット60が配設されている。センサユニット50及び制御ユニット60は図4に示される姿勢安定システム600を構築し、この姿勢安定システム600は、車体14の姿勢を安定に維持し、又車体14の姿勢を安定に維持した状態において車体14を走行させる。 1A to 1D, a sensor unit 50 is disposed on the vehicle body 14 and below the saddle 18 of the omnidirectional mobile device 10. A control unit 60 is disposed on the rear side of the vehicle body 14. The sensor unit 50 and the control unit 60 construct an attitude stabilization system 600 shown in FIG. 4, and the attitude stabilization system 600 maintains the attitude of the vehicle body 14 stably and also maintains the attitude of the vehicle body 14 stably. The vehicle body 14 is caused to travel.
[姿勢安定システムの構成]
 図4に示されるように、全方向移動装置10の姿勢安定システム600は、センサユニット50及び制御ユニット60を含んで構成されている。
 センサユニット50には姿勢角度検出部501が含まれている。姿勢角度検出部501には例えば慣性計測装置(IMU:Inertial Measurement Unit)が使用されている。この姿勢角度検出部501では、車体14の姿勢角度及び車体14の各軸周りの姿勢角度の変化に伴う第1角速度としての角速度が検出される。姿勢角度は姿勢角度情報として、角速度は第1角速度情報として、姿勢角度検出部501から出力される。
[Configuration of posture stabilization system]
As shown in FIG. 4, the posture stabilization system 600 of the omnidirectional movement apparatus 10 includes a sensor unit 50 and a control unit 60.
The sensor unit 50 includes a posture angle detection unit 501. For example, an inertial measurement unit (IMU) is used for the posture angle detection unit 501. The posture angle detection unit 501 detects an angular velocity as a first angular velocity associated with a change in the posture angle of the vehicle body 14 and the posture angle around each axis of the vehicle body 14. The posture angle detection unit 501 outputs the posture angle as posture angle information and the angular velocity as first angular velocity information.
 制御ユニット60は、操作表示部601と、演算処理部(コントローラ)602と、デジタルアナログ変換器(D/A変換器)603と、角速度検出部604と、サーボアンプ605(1)~サーボアンプ605(4)と、電源606とを備えている。ここで、姿勢安定システム600には、第1駆動ユニット40のACサーボモータ422(1)~第4駆動ユニット46のACサーボモータ422(4)が回転数検出部607として組み込まれている。ACサーボモータ422(1)~ACサーボモータ422(4)の各々には図示を省略した例えばエンコーダが装着され、エンコーダを用いてオムニホイール401~オムニホイール404の回転数が検出される。回転数検出部607は、ACサーボモータ422(1)~ACサーボモータ422(4)と、サーボアンプ605(1)~サーボアンプ605(4)とを含んで構成されている。 The control unit 60 includes an operation display unit 601, an arithmetic processing unit (controller) 602, a digital-analog converter (D / A converter) 603, an angular velocity detection unit 604, and servo amplifiers 605 (1) to 605. (4) and a power source 606 are provided. Here, in the posture stabilization system 600, the AC servo motor 422 (1) of the first drive unit 40 to the AC servo motor 422 (4) of the fourth drive unit 46 are incorporated as the rotation speed detection unit 607. For example, an encoder (not shown) is attached to each of the AC servo motors 422 (1) to AC servo motors 422 (4), and the rotation speeds of the omni wheels 401 to omni wheels 404 are detected using the encoders. The rotation speed detection unit 607 includes AC servo motors 422 (1) to AC servo motors 422 (4) and servo amplifiers 605 (1) to servo amplifiers 605 (4).
 操作表示部601は、姿勢安定システム600の起動及び終了の操作、姿勢安定システム600の動作状態の表示等を行う。 The operation display unit 601 performs operations for starting and ending the posture stabilization system 600, displaying an operation state of the posture stabilization system 600, and the like.
 演算処理部602には、例えばmini-ITX規格準拠の組込み用パーソナルコンピュータが使用されている。演算処理部602では、少なくとも下記処理(A)~処理(D)が実行される。
(A)車体14の姿勢角度を検出して得られる姿勢角度情報及び姿勢角度の変化に伴う角速度を検出して得られる第1角速度情報が姿勢角度検出部501から取得される。
(B)回転数検出部607ではオムニホイール401~404の回転数が検出される。この回転数の検出結果が回転数検出部607から取得され、この検出結果に基づいて、回転体12が転動する第2角速度としての角速度が算出される。この第2角速度は第2角速度情報として取得される。
(C)姿勢角度情報、第1角速度情報及び第2角速度情報に基づいて、車体14の姿勢を安定に維持するオムニホイール401~オムニホイール404のホイール操作トルクが算出される。
(D)ホイール操作トルク情報に従って第1駆動ユニット40~第4駆動ユニット46が作動される。
For the arithmetic processing unit 602, for example, an embedded personal computer compliant with the mini-ITX standard is used. The arithmetic processing unit 602 executes at least the following processing (A) to processing (D).
(A) Posture angle information obtained by detecting the posture angle of the vehicle body 14 and first angular velocity information obtained by detecting an angular velocity associated with a change in the posture angle are acquired from the posture angle detection unit 501.
(B) The rotation speed detector 607 detects the rotation speeds of the omni wheels 401 to 404. The rotation speed detection result is acquired from the rotation speed detection unit 607, and the angular velocity as the second angular velocity at which the rotating body 12 rolls is calculated based on the detection result. This second angular velocity is acquired as second angular velocity information.
(C) Based on the posture angle information, the first angular velocity information, and the second angular velocity information, the wheel operation torques of the omni wheel 401 to the omni wheel 404 that stably maintain the posture of the vehicle body 14 are calculated.
(D) The first drive unit 40 to the fourth drive unit 46 are operated according to the wheel operation torque information.
 さらに、演算処理部602では、処理(D)において、下記処理(a)~処理(d)が実行される。
(a)姿勢角度情報、第1角速度情報及び第2角速度情報に基づいて、車体14の姿勢を安定に維持させる、回転体12が転動する角加速度の目標値及び車体14が旋回する角加速度の目標値が算出される。
(b)目標値に一致させる回転体12の第3角加速度としての角加速度が算出される。
(c)第3角加速度情報に基づいて、回転体12を操作する回転体操作トルクが算出される。
(d)回転体操作トルク情報に基づいて、オムニホイール401~オムニホイール404を操作するホイール操作トルクが算出される。
Further, in the processing unit 602, the following processing (a) to processing (d) are executed in processing (D).
(A) Based on the posture angle information, the first angular velocity information, and the second angular velocity information, the target value of the angular acceleration at which the rotating body 12 rolls and the angular acceleration at which the vehicle body 14 turns to maintain the posture of the vehicle body 14 stably. The target value is calculated.
(B) The angular acceleration as the third angular acceleration of the rotating body 12 to be matched with the target value is calculated.
(C) A rotating body operating torque for operating the rotating body 12 is calculated based on the third angular acceleration information.
(D) A wheel operation torque for operating the omni wheel 401 to the omni wheel 404 is calculated based on the rotating body operation torque information.
 演算処理部602から出力されるホイール操作トルク情報(デジタル情報)はトルク指令としてデジタルアナログ変換器603へ出力される。デジタルアナログ変換器603ではトルク指令がアナログ情報に変換され、アナログ情報に変換されたトルク指令はデジタルアナログ変換器603からサーボアンプ605(1)~サーボアンプ605(4)の各々へ出力される。また、サーボアンプ605(1)~サーボアンプ605(4)には演算処理部602からシーケンス指令が出力される。サーボアンプ605(1)~サーボアンプ605(4)は、トルク指令に従ってACサーボモータ422(1)~ACサーボモータ422(4)のそれぞれを制御する。 The wheel operation torque information (digital information) output from the arithmetic processing unit 602 is output to the digital / analog converter 603 as a torque command. The digital / analog converter 603 converts the torque command into analog information, and the torque command converted into analog information is output from the digital / analog converter 603 to each of the servo amplifiers 605 (1) to 605 (4). A sequence command is output from the arithmetic processing unit 602 to the servo amplifiers 605 (1) to 605 (4). Servo amplifier 605 (1) to servo amplifier 605 (4) control each of AC servo motor 422 (1) to AC servo motor 422 (4) in accordance with a torque command.
 一方、回転数検出部607においてACサーボモータ422(1)~ACサーボモータ422(4)の各々の回転数が検出されると、この検出結果はサーボアンプ605(1)~サーボアンプ605(4)のそれぞれを介して角速度検出部604へ出力される。角速度検出部604は、ここではパルスカウンタにより構成され、単位時間当たりの回転数をカウントして角速度情報を生成する。この角速度情報は演算処理部602へ出力される。 On the other hand, when the rotation speed detection unit 607 detects the rotation speed of each of the AC servomotors 422 (1) to AC servomotor 422 (4), the detection result is the servo amplifier 605 (1) to servo amplifier 605 (4). ) To the angular velocity detection unit 604. Here, the angular velocity detection unit 604 is configured by a pulse counter, and counts the number of rotations per unit time to generate angular velocity information. The angular velocity information is output to the arithmetic processing unit 602.
 そして、姿勢安定システム600には着脱自在とされる電源606が搭載されている。電源606には二次電池、具体的にはバッテリが使用されている。また、電源606は、制御系に電源を供給する二次電池と、動力系に電源を供給する二次電池とを含んで構成されている。詳しく説明すると、制御系には、姿勢角度検出部501、操作表示部601、演算処理部602、デジタルアナログ変換器603及び角速度検出部604が含まれている。一方、動力系には、サーボアンプ605(1)~サーボアンプ605(4)及びACサーボモータ422(1)~ACサーボモータ422(4)が含まれている。 The posture stabilization system 600 is equipped with a power source 606 that is detachable. A secondary battery, specifically a battery, is used for the power source 606. The power source 606 includes a secondary battery that supplies power to the control system and a secondary battery that supplies power to the power system. More specifically, the control system includes a posture angle detection unit 501, an operation display unit 601, a calculation processing unit 602, a digital / analog converter 603, and an angular velocity detection unit 604. On the other hand, the power system includes servo amplifiers 605 (1) to 605 (4) and AC servo motors 422 (1) to AC servo motors 422 (4).
[全方向移動装置の姿勢制御方法]
 前述の全方向移動装置10の姿勢制御方法は以下の通りである。ここで、図5は姿勢制御方法を説明するフローチャートである。図6は姿勢制御方法を実現するアルゴリズムである。また、姿勢制御方法の説明では、適宜、図1~図4が参酌される。
[Attitude control method for omnidirectional mobile device]
The attitude control method of the above-described omnidirectional movement apparatus 10 is as follows. Here, FIG. 5 is a flowchart for explaining the attitude control method. FIG. 6 shows an algorithm for realizing the attitude control method. In the description of the attitude control method, FIGS. 1 to 4 are taken into consideration as appropriate.
1.3個のオムニホイールを有する全方向移動装置の姿勢制御方法
(1)車体の姿勢角度及び第1角速度の取得
 まず最初に、図4及び図6に示される姿勢角度検出部501を用いて、車体14の姿勢角度θ及び姿勢角度の変化に伴う車体14の第1角速度(θの1回微分)が検出される。図4~図6に示されるように、演算処理部602は、姿勢角度検出部501から姿勢角度情報及び第1角速度情報を取得する(S10)。
1. Attitude control method of omnidirectional mobile device having three omni wheels (1) Acquisition of attitude angle and first angular velocity of vehicle body First, an attitude angle detector 501 shown in FIGS. 4 and 6 is used. Then, the attitude angle θ b of the vehicle body 14 and the first angular velocity of the vehicle body 14 (a first derivative of θ b ) associated with the change in the attitude angle are detected. As shown in FIGS. 4 to 6, the arithmetic processing unit 602 acquires posture angle information and first angular velocity information from the posture angle detection unit 501 (S10).
(2)オムニホイールの回転数の取得
 次に、図4に示される回転数検出部607のACサーボモータ422(1)~ACサーボモータ422(3)を用いて、オムニホイール401~403の回転数が検出される。検出された回転数は、図4及び図6に示されるように、サーボアンプ605(1)~サーボアンプ605(3)を介して角速度検出部604に出力される。角速度検出部604では、角速度情報θとしてオムニホイール401~403の回転数を取得する。図5に示されるように、演算処理部602は、角速度検出部604から角速度情報θを取得する(S11)。
(2) Acquisition of Omni Wheel Rotation Speed Next, rotation of the omni wheels 401 to 403 is performed using the AC servo motors 422 (1) to AC servo motor 422 (3) of the rotation speed detection unit 607 shown in FIG. A number is detected. As shown in FIGS. 4 and 6, the detected number of rotations is output to the angular velocity detection unit 604 via the servo amplifier 605 (1) to the servo amplifier 605 (3). The angular velocity detection unit 604 acquires the number of rotations of the omni wheels 401 to 403 as the angular velocity information θ 0 . As shown in FIG. 5, the arithmetic processing unit 602 acquires angular velocity information θ 0 from the angular velocity detecting unit 604 (S11).
(3)回転体の第2角速度の取得
 ここで、図7に、全方向移動装置10の回転体12に対する3個のオムニホイール401~403の配置位置を、原点O0とするX0軸、Y軸及びZ軸を含む3次元座標系により表した概略図が示されている。
 回転体12に対するオムニホイール401~403の各々の配置位置及び駆動力は、回転体12とオムニホイール401~403の各々との接点の位置ベクトルpと、接点における接線ベクトルtにより表される。n をオムニホイールの数として、k は1からn の整数である。位置ベクトルpは、回転体12の中心Oから回転体12とオムニホイール401との接点までの位置ベクトルである。同様に、位置ベクトルpは中心Oから回転体12とオムニホイール402との接点までの位置ベクトル、位置ベクトルpは中心Oから回転体12とオムニホイール403との接点までの位置ベクトルである。
 接線ベクトルtは、回転体12とオムニホイール401との接点における単位接線ベクトルである。同様に、接線ベクトルtは回転体12とオムニホイール402との接点における単位接線ベクトル、接線ベクトルtは回転体12とオムニホイール403との接点における単位接線ベクトルである。
(3) Acquisition of Second Angular Velocity of Rotating Body Here, FIG. 7 shows an X 0 axis in which the arrangement positions of the three omni wheels 401 to 403 with respect to the rotating body 12 of the omnidirectional moving device 10 are the origin O 0 , A schematic diagram represented by a three-dimensional coordinate system including the Y 0 axis and the Z 0 axis is shown.
The arrangement position and driving force of each of the omni wheels 401 to 403 with respect to the rotating body 12 are represented by the position vector p k of the contact point between the rotating body 12 and each of the omni wheels 401 to 403 and the tangent vector t k at the contact point. . k is an integer from 1 to n, where n is the number of omni wheels. The position vector p 1 is a position vector from the center Ob of the rotating body 12 to the contact point between the rotating body 12 and the omni wheel 401. Similarly, the position vector of the position vector of the position vector p 2 from the center O b to the contact point of the rotating body 12 and the omni-wheel 402, the position vector p 3 from the center O b to the contact point of the rotating body 12 and the omni-wheel 403 It is.
The tangent vector t 1 is a unit tangent vector at the contact point between the rotating body 12 and the omni wheel 401. Similarly, the tangent vector t 2 is a unit tangent vector at the contact point between the rotating body 12 and the omni wheel 402, and the tangent vector t 3 is a unit tangent vector at the contact point between the rotator 12 and the omni wheel 403.
 回転体12の角速度ベクトルωsは、回転体12の車体前後方向の軸周りの角速度をωとし、回転体12の車体幅方向の軸周りの角速度をωとし、回転体12の車体上下方向の軸周りの角速度をωとすると、下記式(1)により表される(図6参照)。
Figure JPOXMLDOC01-appb-M000001

Figure JPOXMLDOC01-appb-M000002
The angular velocity vector ω s of the rotator 12 is set such that the angular velocity around the axis of the rotator 12 in the longitudinal direction of the vehicle body is ω x , the angular velocity around the axis of the rotator 12 in the vehicle body width direction is ω y , When the angular velocity around the direction axis is ω z , it is expressed by the following formula (1) (see FIG. 6).
Figure JPOXMLDOC01-appb-M000001

Figure JPOXMLDOC01-appb-M000002
 動力伝達行列T は、位置ベクトルp1 ,p2 ,p3、接線ベクトルt1 ,t2 ,t及びオムニホイール401~403の半径r0 から、下記式(3)により表される。
Figure JPOXMLDOC01-appb-M000003

Figure JPOXMLDOC01-appb-M000004
The power transmission matrix T is expressed by the following equation (3) from the position vectors p 1, p 2, p 3 , the tangent vectors t 1, t 2, t 3 and the radius r 0 of the omni wheels 401 to 403.
Figure JPOXMLDOC01-appb-M000003

Figure JPOXMLDOC01-appb-M000004
 また、式(4)は、動力伝達行列T の一般化逆行列を用いると、下記式(5)により表される(図6参照)。
Figure JPOXMLDOC01-appb-M000005

 上記式(5)により、オムニホイール401~オムニホイール403の角速度から回転体12の第2角速度が算出される。図6に示されるように、第2角速度は演算処理部602を用いて算出され、図5に示されるように、演算処理部602は第2角速度を第2角速度情報として取得する(S12)。
Moreover, Formula (4) is represented by the following Formula (5) using a generalized inverse matrix of the power transmission matrix T (see FIG. 6).
Figure JPOXMLDOC01-appb-M000005

From the above equation (5), the second angular velocity of the rotating body 12 is calculated from the angular velocities of the omni wheel 401 to the omni wheel 403. As shown in FIG. 6, the second angular velocity is calculated using the arithmetic processing unit 602, and as shown in FIG. 5, the arithmetic processing unit 602 acquires the second angular velocity as second angular velocity information (S12).
(4)目標値の算出
 車体14の姿勢を回転体12上において安定に維持するには、車体14の姿勢角度と車体14の第1角速度とに基づいて、車体14の姿勢を補正する回転体12の転動の際の角加速度の目標値及び車体14の旋回の際の角加速度の目標値が必要になる。目標値をu とすれば、目標値u は下記式(6)により算出される(図6参照)。
Figure JPOXMLDOC01-appb-M000006
(4) Calculation of target value In order to stably maintain the posture of the vehicle body 14 on the rotating body 12, the rotating body corrects the posture of the vehicle body 14 based on the posture angle of the vehicle body 14 and the first angular velocity of the vehicle body 14. The target value of the angular acceleration at the time of rolling 12 and the target value of the angular acceleration at the time of turning of the vehicle body 14 are required. If the target value is u, the target value u is calculated by the following equation (6) (see FIG. 6).
Figure JPOXMLDOC01-appb-M000006
 目標値u は、下記式(7)に示されるように、車体14の旋回の目標角加速度uと、回転体12の車体前後方向の軸周りの目標角加速度uと、回転体12の車体幅方向の軸周りの目標角加速度uとを纏めたベクトルである。
Figure JPOXMLDOC01-appb-M000007
The target value u is a target angular acceleration u 1 for turning the vehicle body 14, a target angular acceleration u 2 about the axis of the rotating body 12 in the longitudinal direction of the vehicle body, and This is a vector that summarizes the target angular acceleration u 3 around the vehicle width direction axis.
Figure JPOXMLDOC01-appb-M000007
 ロール角をγ、ピッチ角をβ、ヨー角をαとすると、式(6)のxは下記式(8)により表される。
Figure JPOXMLDOC01-appb-M000008
When the roll angle is γ, the pitch angle is β, and the yaw angle is α, x d in Expression (6) is expressed by Expression (8) below.
Figure JPOXMLDOC01-appb-M000008
 また、Kは、フィードバックゲイン行列であり、車体14と回転体12の質量、重心位置、慣性モーメント等に基づいて決定される。
 図5及び図6に示されるように、目標値u 、すなわち回転体12が転動する角加速度の目標値及び車体14が旋回する角加速度の目標値は演算処理部602を用いて算出される(S13)。
K d is a feedback gain matrix, and is determined based on the masses of the vehicle body 14 and the rotating body 12, the position of the center of gravity, the moment of inertia, and the like.
As shown in FIGS. 5 and 6, the target value u, that is, the target value of the angular acceleration at which the rotating body 12 rolls and the target value of the angular acceleration at which the vehicle body 14 turns are calculated using the arithmetic processing unit 602. (S13).
(5)回転体の操作角加速度の算出 (5) Calculation of operating angular acceleration of rotating body
車体14の姿勢を回転体12上で安定化する際に外乱の影響を低減する必要がある。このため、目標値u にPID 制御(Proportional Integral Differential Controller)が付加され、新たな角加速度の操作量が算出される(図6参照)。
 
Figure JPOXMLDOC01-appb-M000009
When the posture of the vehicle body 14 is stabilized on the rotating body 12, it is necessary to reduce the influence of disturbance. Therefore, PID control (Proportional Integral Differential Controller) is added to the target value u, and a new manipulated variable of angular acceleration is calculated (see FIG. 6).

Figure JPOXMLDOC01-appb-M000009
 ωxdは回転体12の車体前後方向の軸周りの目標角速度であり、目標角速度ωxd は下記式(10)により表される。
Figure JPOXMLDOC01-appb-M000010
ω xd is a target angular velocity around the axis of the rotating body 12 in the longitudinal direction of the vehicle body, and the target angular velocity ω xd is expressed by the following equation (10).
Figure JPOXMLDOC01-appb-M000010
 θxdは回転体12の車体前後方向の軸周りの目標角度であり、この目標角度θxd は下記式(11)により表される。
Figure JPOXMLDOC01-appb-M000011

 θxは回転体12の車体前後方向の軸周りの角度であり、角度θは回転体12の車体前後方向の軸周りの角速度ωから下記式(12)により表される。
Figure JPOXMLDOC01-appb-M000012
θ xd is a target angle around the axis of the rotator 12 in the longitudinal direction of the vehicle body, and this target angle θ xd is expressed by the following equation (11).
Figure JPOXMLDOC01-appb-M000011

θ x is an angle around the axis of the rotating body 12 in the longitudinal direction of the vehicle body, and the angle θ x is expressed by the following formula (12) from an angular velocity ω x around the axis of the rotating body 12 in the longitudinal direction of the vehicle body.
Figure JPOXMLDOC01-appb-M000012
 ωydは回転体12の車体幅方向の軸周りの目標角速度であり、目標角速度ωyd は下記式(13)により表される。
Figure JPOXMLDOC01-appb-M000013

 θydは回転体12の車体幅方向の軸周りの目標角度であり、この目標角度θyd は下記式(14)により表される。
Figure JPOXMLDOC01-appb-M000014
ω yd is a target angular velocity around the axis of the rotating body 12 in the vehicle body width direction, and the target angular velocity ω yd is expressed by the following equation (13).
Figure JPOXMLDOC01-appb-M000013

θ yd is a target angle around the axis of the rotator 12 in the vehicle body width direction, and the target angle θ yd is expressed by the following equation (14).
Figure JPOXMLDOC01-appb-M000014
 θyは回転体12の車体幅方向の軸周りの角度であり、角度θは回転体12の車体幅方向の軸周りの角速度ωから下記式(15)により表される。
Figure JPOXMLDOC01-appb-M000015

 回転体12の操作角加速度は、第3角加速度として、図5及び図6に示されるように、演算処理部602を用いて算出される(S14)。
θ y is an angle around the axis of the rotator 12 in the vehicle width direction, and the angle θ y is expressed by the following equation (15) from an angular velocity ω y around the axis of the rotator 12 in the vehicle width direction.
Figure JPOXMLDOC01-appb-M000015

The operation angular acceleration of the rotating body 12 is calculated as the third angular acceleration using the arithmetic processing unit 602 as shown in FIGS. 5 and 6 (S14).
(6)回転体の操作トルクの算出
Figure JPOXMLDOC01-appb-M000016
(6) Calculation of operating torque of rotating body
Figure JPOXMLDOC01-appb-M000016
 ここで、慣性行列の部分行列は、下記式(17)、式(18)及び式(19)により表される。
Figure JPOXMLDOC01-appb-M000017

Figure JPOXMLDOC01-appb-M000018

Figure JPOXMLDOC01-appb-M000019
Here, the partial matrix of the inertia matrix is expressed by the following formulas (17), (18), and (19).
Figure JPOXMLDOC01-appb-M000017

Figure JPOXMLDOC01-appb-M000018

Figure JPOXMLDOC01-appb-M000019
 また、重力項は下記式(20)により表される。下記式(21)は入力軸の入れ替えを表す行列である。
Figure JPOXMLDOC01-appb-M000020

Figure JPOXMLDOC01-appb-M000021
Further, the gravity term is expressed by the following formula (20). The following equation (21) is a matrix representing the replacement of the input axis.
Figure JPOXMLDOC01-appb-M000020

Figure JPOXMLDOC01-appb-M000021
 上記式(17)、式(18)において、Iは回転体12と地面との接点周りの回転体12の慣性モーメントである。慣性モーメントIは下記式(22)により表される。
Figure JPOXMLDOC01-appb-M000022

 
 ここで、Ibxx ,Ibxy ,Ibxz ,Ibyy ,Ibyz ,Ibzz は車体14の慣性モーメントと慣性乗積である。mは車体14の質量である。sは回転体12の中心Oから車体14の重心までの距離である。rは回転体12の半径である。g は重力加速度定数である。mは回転体12の質量である。
Figure JPOXMLDOC01-appb-M000023
The formula (17), in equation (18), I s is the moment of inertia of the rotating body 12 about the contact with the ground and the rotor 12. Moment of inertia I s is represented by the following formula (22).
Figure JPOXMLDOC01-appb-M000022


Here, I bxx , I bxy , I bxz , I byy , I byz , and I bzz are the inertia moment and inertia product of the vehicle body 14. m b is the mass of the vehicle body 14. s z is the distance from the center O b of the rotor 12 to the center of gravity of the vehicle body 14. r s is the radius of the rotating body 12. g is the gravitational acceleration constant. m s is the mass of the rotating body 12.
Figure JPOXMLDOC01-appb-M000023
 回転体12の操作トルクは、図5及び図6に示されるように、演算処理部602を用いて算出される(S15)。 The operating torque of the rotating body 12 is calculated using the arithmetic processing unit 602 as shown in FIGS. 5 and 6 (S15).
(7)オムニホイールの操作トルクの算出
 回転体12にトルクを生じさせるために、各オムニホイール401~403が発生すべき操作トルクτは下記式(23)により算出される。
Figure JPOXMLDOC01-appb-M000024
(7) Calculation of operation torque of omni wheel In order to generate torque in the rotating body 12, the operation torque τ o to be generated by each of the omni wheels 401 to 403 is calculated by the following equation (23).
Figure JPOXMLDOC01-appb-M000024
 オムニホイール401~403の操作トルクτoは、図5及び図6に示されるように、演算処理部602を用いて算出される(S16)。この操作トルクτoは、ホイール操作トルクとして、ACサーボモータ422(1)~ACサーボモータ422(3)を介してオムニホイール401~403に伝達される。
 以上説明した姿勢制御方法の手順が実行されると、全方向移動装置10では、車体14の姿勢を回転体12上において安定に維持することができる。そして、車体14の姿勢を安定に維持した状態において、全方向移動装置10を走行させることができる。
The operation torque τ o of the omni wheels 401 to 403 is calculated using the arithmetic processing unit 602 as shown in FIGS. 5 and 6 (S16). This operation torque τ o is transmitted as wheel operation torque to the omni wheels 401 to 403 via the AC servo motor 422 (1) to AC servo motor 422 (3).
When the procedure of the attitude control method described above is executed, the omnidirectional mobile device 10 can stably maintain the attitude of the vehicle body 14 on the rotating body 12. And the omnidirectional movement apparatus 10 can be drive | worked in the state which maintained the attitude | position of the vehicle body 14 stably.
2.4個のオムニホイールを有する全方向移動装置の姿勢制御方法
 4個のオムニホイール401~404を有する全方向移動装置10の姿勢制御方法は、基本的には3個のオムニホイール401~403を有する全方向移動装置10の姿勢制御方法とほぼ同一である。ここでの姿勢制御方法の説明は、図4~図6を用いて、重複する説明を極力省略しつつ、異なる手順だけを簡潔に説明する。
2. Attitude control method of omnidirectional mobile device having four omni wheels Basically, the attitude control method of omnidirectional mobile device 10 having four omni wheels 401 to 404 is basically three omni wheels 401 to 403. This is almost the same as the attitude control method of the omnidirectional mobile device 10 having In the explanation of the attitude control method here, only different procedures will be briefly explained using FIGS. 4 to 6 while omitting overlapping explanations as much as possible.
(1)車体の姿勢角度及び第1角速度の取得
 図4及び図6に示される姿勢角度検出部501を用いて、車体14の姿勢角度及び車体14の第1角速度が検出される。図4~図6に示されるように、演算処理部602は、姿勢角度検出部501から姿勢角度情報及び第1角速度情報を取得する(S10)。
(1) Acquisition of posture angle and first angular velocity of the vehicle body The posture angle of the vehicle body 14 and the first angular velocity of the vehicle body 14 are detected using the posture angle detection unit 501 shown in FIGS. As shown in FIGS. 4 to 6, the arithmetic processing unit 602 acquires posture angle information and first angular velocity information from the posture angle detection unit 501 (S10).
(2)オムニホイールの回転数の取得
 次に、図4に示される回転数検出部607のACサーボモータ422(1)~ACサーボモータ422(4)を用いて、オムニホイール401~404の回転数が検出される。検出された回転数は、図4及び図6に示されるように、サーボアンプ605(1)~サーボアンプ605(4)を介して角速度検出部604に出力される。図5に示されるように、演算処理部602は角速度検出部604から角速度情報θを取得する(S11)。
(2) Acquisition of Omni Wheel Rotation Speed Next, rotation of the omni wheels 401 to 404 is performed using the AC servo motors 422 (1) to AC servo motor 422 (4) of the rotation speed detection unit 607 shown in FIG. A number is detected. The detected number of revolutions is output to the angular velocity detection unit 604 via the servo amplifiers 605 (1) to 605 (4) as shown in FIGS. As shown in FIG. 5, the arithmetic processing unit 602 acquires angular velocity information θ 0 from the angular velocity detection unit 604 (S11).
(3)回転体の第2角速度の取得
 ここで、図8に、全方向移動装置10の回転体12に対する4個のオムニホイール401~404の配置位置を3次元座標系により表した概略図が示されている。
 回転体12に対するオムニホイール401~404の各々の配置位置及び駆動力は、回転体12とオムニホイール401~404の各々との接点の位置ベクトルpk と、接点における接線ベクトルtk により表される。位置ベクトルpは、回転体12の中心Obから回転体12とオムニホイール401との接点までの位置ベクトルである。同様に、位置ベクトルpは中心Obから回転体12とオムニホイール402との接点までの位置ベクトル、位置ベクトルpは中心Obから回転体12とオムニホイール403との接点までの位置ベクトルである。そして、位置ベクトルpは中心Obから回転体12とオムニホイール404との接点までの位置ベクトルである。
 接線ベクトルtは、回転体12とオムニホイール401との接点における単位接線ベクトルである。同様に、接線ベクトルtは回転体12とオムニホイール402との接点における単位接線ベクトル、接線ベクトルtは回転体12とオムニホイール403との接点における単位接線ベクトルである。そして、接線ベクトルtは回転体12とオムニホイール404との接点における単位接線ベクトルである。
(3) Acquisition of Second Angular Velocity of Rotating Body Here, FIG. 8 is a schematic diagram showing the arrangement positions of the four omni wheels 401 to 404 with respect to the rotating body 12 of the omnidirectional moving device 10 in a three-dimensional coordinate system. It is shown.
The arrangement position and driving force of each of the omni wheels 401 to 404 with respect to the rotating body 12 are represented by a position vector p k of a contact point between the rotating body 12 and each of the omni wheels 401 to 404 and a tangent vector t k at the contact point. . The position vector p 1 is a position vector from the center Ob of the rotating body 12 to the contact point between the rotating body 12 and the omni wheel 401. Similarly, the position vector of the position vector of the position vector p 2 from the center O b to the contact point of the rotating body 12 and the omni-wheel 402, the position vector p 3 from the center O b to the contact point of the rotating body 12 and the omni-wheel 403 It is. The position vector p 4 is the position vector from the center O b to the contact point of the rotating body 12 and the omni-wheel 404.
The tangent vector t 1 is a unit tangent vector at the contact point between the rotating body 12 and the omni wheel 401. Similarly, the tangent vector t 2 is a unit tangent vector at the contact point between the rotating body 12 and the omni wheel 402, and the tangent vector t 3 is a unit tangent vector at the contact point between the rotator 12 and the omni wheel 403. The tangent vector t 4 is a unit tangent vector at the contact point between the rotating body 12 and the omni wheel 404.
 回転体12の角速度ベクトルωsは、回転体12の車体前後方向の軸周りの角速度をωとし、回転体12の車体前後方向の軸周りの角速度をωとし、回転体12の車体前後方向の軸周りの角速度をωとすると、前述の式(1)により表される。
Figure JPOXMLDOC01-appb-M000025
The angular velocity vector ω s of the rotator 12 is the angular velocity around the axis of the rotator 12 in the longitudinal direction of the vehicle body is ω x, and the angular velocity around the axis of the rotator 12 in the longitudinal direction of the vehicle body is ω y. When the angular velocity around the direction axis is ω z , it is expressed by the above-described formula (1).
Figure JPOXMLDOC01-appb-M000025
 動力伝達行列T は、位置ベクトルp1 ,p2 ,p3,p4、接線ベクトルt1 ,t2 ,t3 ,t及びオムニホイール401~404の半径r0から、下記式(25)により表される。
Figure JPOXMLDOC01-appb-M000026

 前述の式(4)に基づいて、式(25)に表される動力伝達行列T の一般化逆行列を用いると、前述の式(5)が得られ、オムニホイール401~オムニホイール404の角速度から回転体12の第2角速度が算出される。図6に示されるように、第2角速度は演算処理部602を用いて算出され、図5に示されるように、演算処理部602は第2角速度情報を取得する(S12)。
The power transmission matrix T is expressed by the following equation (25) from the position vectors p 1, p 2, p 3, p 4 , the tangent vectors t 1, t 2, t 3, t 4 and the radius r 0 of the omni wheels 401 to 404. It is represented by
Figure JPOXMLDOC01-appb-M000026

Using the generalized inverse matrix of the power transmission matrix T 1 expressed by the equation (25) based on the above equation (4), the above equation (5) is obtained, and the angular velocities of the omni wheel 401 to the omni wheel 404 are obtained. From this, the second angular velocity of the rotating body 12 is calculated. As shown in FIG. 6, the second angular velocity is calculated using the arithmetic processing unit 602, and as shown in FIG. 5, the arithmetic processing unit 602 acquires the second angular velocity information (S12).
(4)目標値の算出
 車体14の姿勢角度と車体14の第1角速度とに基づいて、回転体12の転動の際の角加速度の目標値及び車体14の旋回の際の角加速度の目標値が算出される。目標値はu とされる。図5及び図6に示されるように、目標値uは、演算処理部602を用いて前述の式(6)により算出される(S13)。
(4) Calculation of target value Based on the attitude angle of the vehicle body 14 and the first angular velocity of the vehicle body 14, the target value of the angular acceleration when the rotating body 12 rolls and the target of the angular acceleration when the vehicle body 14 turns A value is calculated. The target value is u. As shown in FIGS. 5 and 6, the target value u is calculated by the above-described equation (6) using the arithmetic processing unit 602 (S13).
(5)回転体の操作角加速度の算出
 目標値u にPID 制御が付加され、新たな角加速度の操作量が算出される(図6参照)。回転体12の操作角加速度は、第3角加速度として、図5及び図6に示されるように、演算処理部602を用いて算出される(S14)。
(5) Calculation of operation angular acceleration of rotating body PID control is added to the target value u, and a new operation amount of angular acceleration is calculated (see FIG. 6). The operation angular acceleration of the rotating body 12 is calculated as the third angular acceleration using the arithmetic processing unit 602 as shown in FIGS. 5 and 6 (S14).
(6)回転体の操作トルクの算出
 回転体12のトルクτは前述の式(16)を用いて算出される(図6参照)。ここで、慣性行列の部分行列は前述の式(17)、式(18)及び式(19)により表され、又重力項は前述の式(20)、式(21)により表される。
 回転体12の操作トルクは、図5及び図6に示されるように、演算処理部602を用いて算出される(S15)。
(6) Calculation of operation torque of rotating body The torque τ s of the rotating body 12 is calculated using the above-described equation (16) (see FIG. 6). Here, the submatrix of the inertia matrix is expressed by the above-described equations (17), (18), and (19), and the gravity term is expressed by the above-described equations (20) and (21).
The operation torque of the rotating body 12 is calculated using the arithmetic processing unit 602 as shown in FIGS. 5 and 6 (S15).
(7)オムニホイールの操作トルクの算出
 各オムニホイール401~404が発生すべき操作トルクτoは前述の式(23)により算出される。操作トルクτoは、図5及び図6に示されるように、演算処理部602を用いて算出される(S16)。この操作トルクτoは、ホイール操作トルクとして、ACサーボモータ422(1)~ACサーボモータ422(4)を介してオムニホイール401~404に伝達される。
 以上説明した姿勢制御方法の手順が実行されると、全方向移動装置10では、車体14の姿勢を回転体12上において安定に維持することができる。そして、車体14の姿勢を安定に維持した状態において、全方向移動装置10を走行させることができる。
(7) Calculation of operation torque of omni wheel The operation torque τ o to be generated by each of the omni wheels 401 to 404 is calculated by the above equation (23). The operation torque τ o is calculated using the arithmetic processing unit 602 as shown in FIGS. 5 and 6 (S16). This operation torque τ o is transmitted as wheel operation torque to the omni wheels 401 to 404 via the AC servomotor 422 (1) to AC servomotor 422 (4).
When the procedure of the attitude control method described above is executed, the omnidirectional mobile device 10 can stably maintain the attitude of the vehicle body 14 on the rotating body 12. And the omnidirectional movement apparatus 10 can be drive | worked in the state which maintained the attitude | position of the vehicle body 14 stably.
(本実施の形態の作用及び効果)
 図1(A)~図1(D)に示される全方向移動装置10は、図2、図3(A)及び図3(B)に示されるように、球状の回転体12と、回転体12の表面に接して配設されたホイールとしてのオムニホイール401及び402、又はオムニホイール403及び404とを備える。オムニホイール401~404は、円周方向Aに回転して回転体12に動力を伝達し、かつ、円周方向Aとは交差する方向Bに回転体12を転動可能とする。
(Operation and effect of the present embodiment)
As shown in FIGS. 2, 3A and 3B, an omnidirectional moving device 10 shown in FIGS. 1A to 1D includes a spherical rotating body 12 and a rotating body. The omni wheels 401 and 402 or the omni wheels 403 and 404 are provided as wheels disposed in contact with the surface of the twelve. The omni wheels 401 to 404 rotate in the circumferential direction A to transmit power to the rotating body 12 and allow the rotating body 12 to roll in a direction B intersecting the circumferential direction A.
 ここで、オムニホイール401及び402は、回転体12を転動させて直進方向に移動させる回転軸120の軸周り121において回転体12の表面に複数配設される。また、オムニホイール403及び404は、回転体12を転動させて直進方向に移動させる回転軸120の軸周り122において回転体12の表面に複数配設される。
 このため、直進方向の移動に際して、オムニホイール401及び402、又はオムニホイール403及び404から回転体12へ動力が効率良く伝達され、最大出力により回転体12を直進方向へ転動させることができる。
Here, a plurality of omni wheels 401 and 402 are disposed on the surface of the rotating body 12 around the axis 121 of the rotating shaft 120 that causes the rotating body 12 to roll and move in the straight direction. A plurality of omni wheels 403 and 404 are disposed on the surface of the rotating body 12 around the axis 122 of the rotating shaft 120 that causes the rotating body 12 to roll and move in the straight direction.
For this reason, during the movement in the straight traveling direction, power is efficiently transmitted from the omni wheels 401 and 402 or the omni wheels 403 and 404 to the rotating body 12, and the rotating body 12 can be rolled in the straight traveling direction with the maximum output.
 また、図1(A)~図1(D)に示される全方向移動装置10は、図2、図3(A)及び図3(B)に示されるように、球状の回転体12と、回転体12の表面に接して配設された第1オムニホイールとしてのオムニホイール401及び402と第2オムニホイールとしてのオムニホイール403及び404とを備える。オムニホイール401~404は、いずれも、円周方向Aに回転して回転体12に動力を伝達し、円周方向Aと交差する方向Bに回転体12を転動可能する。 Further, the omnidirectional moving device 10 shown in FIGS. 1 (A) to 1 (D) includes, as shown in FIGS. 2, 3 (A) and 3 (B), a spherical rotating body 12, Omni wheels 401 and 402 serving as first omni wheels and omni wheels 403 and 404 serving as second omni wheels are provided in contact with the surface of the rotating body 12. All of the omni wheels 401 to 404 rotate in the circumferential direction A to transmit power to the rotating body 12 and can roll the rotating body 12 in a direction B intersecting the circumferential direction A.
 ここで、図3(A)に示されるように、オムニホイール401及び402は、回転体12を転動させて直進方向に移動させる回転軸120の一端側の軸周り121において回転体12の上半球12Bの表面に複数配設される。一方、オムニホイール403及び404は、回転軸120の一端側の軸周り121において回転体12の下半球12Aの表面の特定位置403P、404Pに対する、回転体12の中心対称位置の表面に配設される。また、オムニホイール403及び404は、回転軸120の他端側の軸周り122において回転体12の上半球12Bの表面に配設される。 Here, as shown in FIG. 3A, the omni wheels 401 and 402 are arranged on the rotating body 12 around the axis 121 on one end side of the rotating shaft 120 that causes the rotating body 12 to roll and move in the straight direction. A plurality of hemispheres 12B are arranged on the surface. On the other hand, the omni wheels 403 and 404 are disposed on the surface of the center of symmetry of the rotating body 12 with respect to the specific positions 403P and 404P of the surface of the lower hemisphere 12A of the rotating body 12 around the axis 121 on one end side of the rotating shaft 120. The The omni wheels 403 and 404 are disposed on the surface of the upper hemisphere 12 </ b> B of the rotating body 12 around the axis 122 on the other end side of the rotating shaft 120.
 図9に、比較例に係る回転体Rと3個のオムニホイールOh~Ohとの配置関係が示されている。回転体Rbを駆動するオムニホイールOh~Ohの配置に関するパラメータは位置ベクトルpk 及び単位接線ベクトルtである。ここで、位置ベクトルpkは、回転体Rbの中心Oを始点とする、k 番目のオムニホイールOhkの回転体Rbとの接点の位置ベクトルである。k は1以上の整数である。単位接線ベクトルtkは、接点におけるk 番目のオムニホイールOhkの単位接線ベクトルである。 FIG. 9 shows the positional relationship between the rotating body Rb and the three omni wheels Oh 1 to Oh 3 according to the comparative example. Parameters relating to the arrangement of the omni wheels Oh 1 to Oh 3 for driving the rotator R b are the position vector p k and the unit tangent vector t k . Here, the position vector p k is starting from the center O b of the rotating body R b, is the position vector of the point of contact with the rotating body R b of the k-th omniwheel Oh k. k is an integer of 1 or more. The unit tangent vector t k is the unit tangent vector of the k-th omni wheel Oh k at the contact point.
 垂直軸Zb周りおいて回転体Rbの上半球Rbuに3個のオムニホイールOh~Ohが等配されたときの位置ベクトルpk は、垂直軸Zbに対して位置ベクトルpkが45度の傾きに設定されたとき、下記式(26)により表される。
Figure JPOXMLDOC01-appb-M000027

 ここで、rは回転体Rbの半径である。
The position vector p k when the three omni-wheel Oh 1 ~ Oh 3 was arranged like a hemispherical R bu on the rotator R b keep about the vertical axis Z b, the position vector p with respect to a vertical axis Z b When k is set to an inclination of 45 degrees, it is expressed by the following equation (26).
Figure JPOXMLDOC01-appb-M000027

Here, r s is the radius of the rotator R b .
 また、単位接線ベクトルtkは下記式(27)により表される。
Figure JPOXMLDOC01-appb-M000028
The unit tangent vector t k is expressed by the following equation (27).
Figure JPOXMLDOC01-appb-M000028
 回転体Rbの角速度とオムニホイールOh~Ohの角速度との関係は下記式(28)により表される。
Figure JPOXMLDOC01-appb-M000029

 ここで、rはオムニホイールOh~Oh3の半径である。
The relationship between the angular velocity of the rotating body Rb and the angular velocities of the omni wheels Oh 1 to Oh 3 is expressed by the following equation (28).
Figure JPOXMLDOC01-appb-M000029

Here, r 0 is the radius of the omni wheels Oh 1 to Oh 3 .
Figure JPOXMLDOC01-appb-M000030

 T は動力伝達行列である。
Figure JPOXMLDOC01-appb-M000030

T is a power transmission matrix.
 図9に示される比較例では、上記式(28)の動力伝達行列T の3列目の行列要素の絶対値が等しくなるので、旋回軸(垂直軸Zb)の出力が最大になる。進行方向の出力は半減されている。 In the comparative example shown in FIG. 9, since the absolute values of the matrix elements in the third column of the power transmission matrix T of the above equation (28) are equal, the output of the turning axis (vertical axis Z b ) is maximized. The output in the direction of travel is halved.
 上記比較例に対して、図7に、本実施の形態に係る回転体12と3個のオムニホイール401~403との配置関係が示されている。回転軸120の一端側の軸周り121の上半球12Bに2個のオムニホイール401及び402が配置され(図3(A)参照)、回転軸120の他端側の軸周り122の上半球12Bに1個のオムニホイール403が配置されている(図3(B)参照)。
 このときの位置ベクトルpkは、回転軸120に対して位置ベクトルpkが45度の傾きに設定されたとき、下記式(29)により表される。
Figure JPOXMLDOC01-appb-M000031

 また、単位接線ベクトルtkは下記式(30)により表される。
Figure JPOXMLDOC01-appb-M000032
FIG. 7 shows the positional relationship between the rotating body 12 according to the present embodiment and the three omni wheels 401 to 403 with respect to the comparative example. Two omni wheels 401 and 402 are arranged on the upper hemisphere 12B around the axis 121 on one end side of the rotating shaft 120 (see FIG. 3A), and the upper hemisphere 12B around the axis on the other end side of the rotating shaft 120. One omni wheel 403 is disposed in the middle (see FIG. 3B).
Position vector p k at this time, when the position vector p k with respect to the rotating shaft 120 is set to the inclination of 45 degrees, as represented by the following formula (29).
Figure JPOXMLDOC01-appb-M000031

The unit tangent vector t k is expressed by the following equation (30).
Figure JPOXMLDOC01-appb-M000032
 そして、回転体12の角速度とオムニホイール401~403の角速度との関係は下記式(31)により表される。
Figure JPOXMLDOC01-appb-M000033
The relationship between the angular velocity of the rotating body 12 and the angular velocities of the omni wheels 401 to 403 is expressed by the following equation (31).
Figure JPOXMLDOC01-appb-M000033
 図7に示される本実施の形態では、上記式(31)の動力伝達行列T の2列目の行列要素の絶対値が等しくなるので、回転軸120(水平軸Y)の出力が最大になる。すなわち、進行方向の出力が最大となる。このように、直進方向の移動に際して、オムニホイール401~403のそれぞれから回転体12へ動力が効率良く伝達され、最大出力により回転体12を直進方向へ転動させることができる。 In the present embodiment shown in FIG. 7, since the absolute values of the matrix elements in the second column of the power transmission matrix T 1 in the equation (31) are equal, the output of the rotating shaft 120 (horizontal axis Y b ) is maximized. Become. That is, the output in the traveling direction is maximized. Thus, when moving in the straight direction, power is efficiently transmitted from each of the omni wheels 401 to 403 to the rotator 12, and the rotator 12 can be rolled in the straight direction with the maximum output.
 また、図10に、比較例に係る回転体Rと4個のオムニホイールOh~Ohとの配置関係が示されている。垂直軸Zb 周りおいて回転体Rbの上半球Rbuに4個のオムニホイールOh~Ohが等配されたときの位置ベクトルpk は、垂直軸Zbに対して位置ベクトルpkが45度の傾きに設定されたとき、下記式(32)により表される。単位接線ベクトルtkは、下記式(33)により表される。
Figure JPOXMLDOC01-appb-M000034

Figure JPOXMLDOC01-appb-M000035
FIG. 10 shows the positional relationship between the rotating body Rb according to the comparative example and the four omni wheels Oh 1 to Oh 4 . The position vector p k when the four omni-wheel Oh 1 ~ Oh 4 was arranged like a hemispherical R bu on the rotator R b keep about the vertical axis Z b, the position vector p with respect to a vertical axis Z b When k is set to an inclination of 45 degrees, it is expressed by the following equation (32). The unit tangent vector t k is expressed by the following equation (33).
Figure JPOXMLDOC01-appb-M000034

Figure JPOXMLDOC01-appb-M000035
 回転体Rbの角速度とオムニホイールOh~Ohの角速度との関係は下記式(34)により表される。
Figure JPOXMLDOC01-appb-M000036

 図10に示される比較例では、上記式(34)の動力伝達行列の1列目~3列目の行列要素の列毎に絶対値が等しくなるので、左右方向への回転軸(水平軸X)、前進方向への回転軸(水平軸Y)、旋回軸(垂直軸Z)のそれぞれの出力が最大になる。
The relationship between the angular velocity of the rotating body Rb and the angular velocities of the omni wheels Oh 1 to Oh 4 is expressed by the following equation (34).
Figure JPOXMLDOC01-appb-M000036

In the comparative example shown in FIG. 10, since the absolute values are equal for each of the first to third matrix elements of the power transmission matrix of the above equation (34), the rotation axis (horizontal axis X b ) The output of the rotation axis in the forward direction (horizontal axis Y b ) and the turning axis (vertical axis Z b ) are maximized.
 上記比較例に対して、図8に、本実施の形態に係る回転体12と4個のオムニホイール401~404との配置関係が示されている。回転軸120の一端側の軸周り121の上半球12Bに2個のオムニホイール401及び402が配置され(図3(A)参照)、回転軸120の他端側の軸周り122の上半球12Bに2個のオムニホイール403及び404が配置されている(図3(B)参照)。
 このときの位置ベクトルpkは、回転軸120に対して位置ベクトルpkが45度の傾きに設定されたとき、下記式(35)により表される。
Figure JPOXMLDOC01-appb-M000037

 また、単位接線ベクトルtkは下記式(36)により表される。
Figure JPOXMLDOC01-appb-M000038
FIG. 8 shows the positional relationship between the rotating body 12 according to the present embodiment and the four omni wheels 401 to 404 with respect to the comparative example. Two omni wheels 401 and 402 are arranged on the upper hemisphere 12B around the axis 121 on one end side of the rotating shaft 120 (see FIG. 3A), and the upper hemisphere 12B around the axis on the other end side of the rotating shaft 120. Two omni wheels 403 and 404 are arranged on the front (see FIG. 3B).
Position vector p k at this time, when the position vector p k with respect to the rotating shaft 120 is set to the inclination of 45 degrees, as represented by the following formula (35).
Figure JPOXMLDOC01-appb-M000037

The unit tangent vector t k is expressed by the following equation (36).
Figure JPOXMLDOC01-appb-M000038
 そして、回転体12の角速度とオムニホイール401~404の角速度との関係は下記式(37)により表される。
Figure JPOXMLDOC01-appb-M000039
The relationship between the angular velocity of the rotating body 12 and the angular velocities of the omni wheels 401 to 404 is expressed by the following equation (37).
Figure JPOXMLDOC01-appb-M000039
 図8に示される本実施の形態では、上記式(37)の動力伝達行列T の1列目~3列目の行列要素の列毎に絶対値がすべて等しくなるので、回転軸120(水平軸Y)の出力が最大になるばかりか、左右方向の回転軸(水平軸X)及び旋回軸(垂直軸Z)の出力も最大になる。このように、直進方向の移動に際して、オムニホイール401~404のそれぞれから回転体12へ動力が効率良く伝達され、最大出力により回転体12を直進方向へ転動させることができる。 In the present embodiment shown in FIG. 8, since the absolute values are all equal for each column of the first to third matrix elements of the power transmission matrix T 1 of the equation (37), the rotation axis 120 (horizontal axis Not only will the output of Y b ) be maximized, but the outputs of the left and right rotation axes (horizontal axis X b ) and swivel axis (vertical axis Z b ) will also be maximized. As described above, when moving in the straight direction, power is efficiently transmitted from each of the omni wheels 401 to 404 to the rotating body 12, and the rotating body 12 can be rolled in the straight direction by the maximum output.
 さらに、本実施の形態に係る全方向移動装置10では、図2に示されるように、ホイールはオムニホイール401~404とされる。オムニホイール401~404では、図3(A)及び図3(B)に示されるように、最大出力により回転体12を直進方向へ転動させることができ、かつ、直進方向以外の方向へも回転体12を転動させることができる。 Furthermore, in the omnidirectional moving device 10 according to the present embodiment, as shown in FIG. 2, the wheels are omni wheels 401 to 404. In the omni wheels 401 to 404, as shown in FIGS. 3A and 3B, the rotating body 12 can be rolled in the straight traveling direction by the maximum output, and also in directions other than the straight traveling direction. The rotating body 12 can be rolled.
 また、本実施の形態に係る全方向移動装置10では、図7及び図8に示されるように、第1ホイールとして2個のオムニホイール401及び402が配設され、第2ホイールとして1個のオムニホイール403、或いは2個のオムニホイール403及び404が配設される。このため、最小限のホイール数により、部品点数並びに重量を最小限として、回転体12を全方向へ転動させることができる。 Moreover, in the omnidirectional movement apparatus 10 which concerns on this Embodiment, as FIG.7 and FIG.8 shows, the two omni wheels 401 and 402 are arrange | positioned as a 1st wheel, and one piece is used as a 2nd wheel. An omni wheel 403 or two omni wheels 403 and 404 are arranged. For this reason, with the minimum number of wheels, the number of parts and the weight can be minimized, and the rotating body 12 can be rolled in all directions.
 さらに、本実施の形態に係る全方向移動装置10によれば、動力伝達行列T の行列要素のうち、回転体12を直進方向に移動させる回転軸120の行列要素の列毎に絶対値が等しくなる位置にオムニホイール401~404(又は401~403)が配設される。このため、直進方向の移動に際して、オムニホイール401~404のそれぞれから回転体12へ動力が効率良く伝達され、最大出力により回転体12を直進方向へ転動させることができる。 Furthermore, according to the omnidirectional moving device 10 according to the present embodiment, the absolute value is equal for each column of the matrix elements of the rotating shaft 120 that moves the rotating body 12 in the straight traveling direction among the matrix elements of the power transmission matrix T. Omni wheels 401 to 404 (or 401 to 403) are arranged at the positions. Therefore, when moving in the straight traveling direction, power is efficiently transmitted from each of the omni wheels 401 to 404 to the rotating body 12, and the rotating body 12 can be rolled in the straight traveling direction by the maximum output.
 また、全方向移動装置10によれば、動力伝達行列T は角速度を表す伝達行列を含む。回転体12を直進方向に移動させる回転軸120の角速度を表す伝達行列において行列要素の列毎に絶対値が等しくなる位置に、オムニホイール401~404(又は401~403)がそれぞれ配設される。このため、直進方向の移動に際して、オムニホイール401~404から回転体12へ動力が効率良く伝達され、最大出力により回転体12を直進方向へ転動させることができる。 Further, according to the omnidirectional mobile device 10, the power transmission matrix T includes a transmission matrix representing an angular velocity. Omni wheels 401 to 404 (or 401 to 403) are arranged at positions where the absolute values are equal for each column of the matrix elements in the transfer matrix representing the angular velocity of the rotating shaft 120 that moves the rotating body 12 in the straight traveling direction. . For this reason, during the movement in the straight traveling direction, power is efficiently transmitted from the omni wheels 401 to 404 to the rotating body 12, and the rotating body 12 can be rolled in the straight traveling direction by the maximum output.
 さらに、全方向移動装置10は、図1(A)~図1(D)に示されるように、回転体12の下半球12Aの表面に接して、又は近接させて補助輪32及び36を備える。補助輪32及び36は、図2に示されるオムニホイール401~404と同様に、円周方向Aに回転し、かつ、円周方向Aと交差する方向に回転体12を転動可能とする。このため、回転体12の上半球12Bがオムニホイール401~404に接し、回転体12の下半球12Aに補助輪32及び36が設けられるので、回転体12を全方向へ転動可能としつつ、回転体12の抜けを防ぐことができる。 Further, as shown in FIGS. 1 (A) to 1 (D), the omnidirectional moving device 10 includes auxiliary wheels 32 and 36 in contact with or close to the surface of the lower hemisphere 12A of the rotating body 12. . As with the omni wheels 401 to 404 shown in FIG. 2, the auxiliary wheels 32 and 36 rotate in the circumferential direction A and allow the rotating body 12 to roll in a direction crossing the circumferential direction A. For this reason, since the upper hemisphere 12B of the rotating body 12 is in contact with the omni wheels 401 to 404 and the auxiliary wheels 32 and 36 are provided on the lower hemisphere 12A of the rotating body 12, the rotating body 12 can roll in all directions. It is possible to prevent the rotating body 12 from coming off.
 また、図1及び図2に示されるように、全方向移動装置10によれば、回転体12上には車体14が設けられる。オムニホイール401及び402のシャフト430にはACサーボモータ422(1)及び422(2)が接続され、ACサーボモータ422(1)及び422(2)は車体14に取り付けられる。また、オムニホイール403及び404のシャフト430にはACサーボモータ422(3)及び422(4)が接続され、ACサーボモータ422(3)及び422(4)は車体14に取り付けられる。オムニホイール401~404はいずれも回転体12の上半球12Bの表面に接する。このため、車体14の荷重がACサーボモータ422(1)~422(4)を介してオムニホイール401~404により支えられ、図4及び図6に示される姿勢安定システム600により車体14の姿勢が安定に維持された状態において、最大出力により回転体12を直進方向へ転動させることができる。 Further, as shown in FIGS. 1 and 2, according to the omnidirectional moving device 10, a vehicle body 14 is provided on the rotating body 12. AC servomotors 422 (1) and 422 (2) are connected to the shaft 430 of the omni wheels 401 and 402, and the AC servomotors 422 (1) and 422 (2) are attached to the vehicle body 14. AC servomotors 422 (3) and 422 (4) are connected to the shaft 430 of the omni wheels 403 and 404, and the AC servomotors 422 (3) and 422 (4) are attached to the vehicle body 14. The omni wheels 401 to 404 are all in contact with the surface of the upper hemisphere 12B of the rotating body 12. Therefore, the load of the vehicle body 14 is supported by the omni wheels 401 to 404 via the AC servo motors 422 (1) to 422 (4), and the posture of the vehicle body 14 is adjusted by the posture stabilization system 600 shown in FIGS. In the state maintained stably, the rotary body 12 can be rolled in the straight traveling direction by the maximum output.
 さらに、図4に示されるように、全方向移動装置10によれば、姿勢安定システム600は、姿勢角度検出部501と、回転数検出部607と、角速度検出部604と、演算処理部602とを備える。姿勢角度検出部501は、図1に示される車体14に装着され、車体14の姿勢角度及び姿勢角度の変化に伴う第1角速度を検出する。回転数検出部607は、オムニホイール401~オムニホイール404の回転数を検出する。角速度検出部604は、回転数検出部607による回転数の検出結果に基づいて、回転体12が転動する第2角速度を検出する。 Further, as shown in FIG. 4, according to the omnidirectional movement device 10, the posture stabilization system 600 includes a posture angle detection unit 501, a rotation number detection unit 607, an angular velocity detection unit 604, and an arithmetic processing unit 602. Is provided. The posture angle detection unit 501 is attached to the vehicle body 14 shown in FIG. 1 and detects the posture angle of the vehicle body 14 and the first angular velocity associated with the change in the posture angle. The rotation speed detection unit 607 detects the rotation speeds of the omni wheel 401 to the omni wheel 404. The angular velocity detection unit 604 detects the second angular velocity at which the rotating body 12 rolls based on the detection result of the rotation number by the rotation number detection unit 607.
 ここで、演算処理部602は、図4~図6に示されるように、車体14の姿勢を維持するオムニホイール401~404のホイール操作トルクを算出する(S16)。このホイール操作トルクは、姿勢角度検出部501により検出される姿勢角度情報、第1角速度情報(S10)及び角速度検出部604により検出される第2角速度情報(S12)に基づいて、算出される。演算処理部602は、このホイール操作トルク情報に従って、図2及び図4に示されるACサーボモータ422(1)~ACサーボモータ422(4)を作動させる。
 このため、姿勢安定システム600では車体14の姿勢を安定に維持する動力がオムニホイール401~404から回転体12へ伝達されるので、車体14の姿勢が安定に維持された状態において、最大出力により回転体12を直進方向へ転動させることができる。
Here, as shown in FIGS. 4 to 6, the arithmetic processing unit 602 calculates the wheel operation torque of the omni wheels 401 to 404 for maintaining the posture of the vehicle body 14 (S16). The wheel operation torque is calculated based on the posture angle information detected by the posture angle detector 501, the first angular velocity information (S 10), and the second angular velocity information (S 12) detected by the angular velocity detector 604. The arithmetic processing unit 602 operates the AC servo motors 422 (1) to AC servo motor 422 (4) shown in FIGS. 2 and 4 according to the wheel operation torque information.
For this reason, in the posture stabilization system 600, the power for stably maintaining the posture of the vehicle body 14 is transmitted from the omni wheels 401 to 404 to the rotating body 12, so that the maximum output can be obtained in the state where the posture of the vehicle body 14 is stably maintained. The rotating body 12 can be rolled in the straight direction.
 また、図4~図6に示されるように、全方向移動装置10によれば、演算処理部602では、車体14の姿勢を維持させる、回転体12が転動する角加速度の目標値及び車体14が旋回する角加速度の目標値が算出される(S13)。目標値は姿勢角度情報、第1角速度情報(S10)及び第2角速度情報(S12)に基づいて算出される。演算処理部602では、更に目標値に一致させる回転体12の第3角加速度が算出され(S14)、第3角加速度に基づいて回転体12を操作する回転体操作トルクが算出される(S15)。この回転体操作トルクに基づいて、演算処理部602では、オムニホイール401~404を操作するホイール操作トルクが算出される(S16)。
 この結果、演算処理部602において、車体14の姿勢を安定に維持する動力が算出される。このため、動力がオムニホイール401~404から回転体12へ伝達されるので、車体14の姿勢が安定に維持された状態において、最大出力により回転体12を直進方向へ転動させることができる。
Also, as shown in FIGS. 4 to 6, according to the omnidirectional moving device 10, the arithmetic processing unit 602 maintains the posture of the vehicle body 14, the target value of the angular acceleration at which the rotating body 12 rolls, and the vehicle body A target value of angular acceleration at which the 14 turns is calculated (S13). The target value is calculated based on the posture angle information, the first angular velocity information (S10), and the second angular velocity information (S12). The arithmetic processing unit 602 further calculates the third angular acceleration of the rotating body 12 to be matched with the target value (S14), and calculates the rotating body operating torque for operating the rotating body 12 based on the third angular acceleration (S15). ). Based on the rotating body operating torque, the arithmetic processing unit 602 calculates wheel operating torque for operating the omni wheels 401 to 404 (S16).
As a result, in the arithmetic processing unit 602, power for stably maintaining the posture of the vehicle body 14 is calculated. Therefore, power is transmitted from the omni wheels 401 to 404 to the rotator 12, so that the rotator 12 can roll in the straight traveling direction with the maximum output in a state where the posture of the vehicle body 14 is stably maintained.
 さらに、全方向移動装置10の姿勢制御方法によれば、図5に示されるように、姿勢安定システム600が、まず最初に、姿勢角度情報、第1角加速度情報及び第2角速度情報を取得する(S10、S12)。次に、姿勢角度情報、第1角速度情報及び第2角速度情報に基づいて、車体14の姿勢を維持させる、回転体12が転動する角加速度の目標値及び車体14が旋回する角加速度の目標値が算出される(S13)。次に、目標値に一致させる回転体12の第3角加速度が算出され(S14)、更に第3角加速度情報に基づいて回転体12を操作する回転体操作トルクが算出される(S15)。そして、回転体操作トルク情報に基づいて、オムニホイール401~404を操作するホイール操作トルクが算出される。 Further, according to the attitude control method of the omnidirectional mobile device 10, as shown in FIG. 5, the attitude stabilization system 600 first acquires attitude angle information, first angular acceleration information, and second angular velocity information. (S10, S12). Next, based on the attitude angle information, the first angular velocity information, and the second angular velocity information, the target value of the angular acceleration at which the rotating body 12 rolls and the target of the angular acceleration at which the vehicle body 14 turns are maintained to maintain the attitude of the vehicle body 14. A value is calculated (S13). Next, the third angular acceleration of the rotating body 12 to be matched with the target value is calculated (S14), and further, the rotating body operating torque for operating the rotating body 12 is calculated based on the third angular acceleration information (S15). Then, wheel operation torque for operating the omni wheels 401 to 404 is calculated based on the rotating body operation torque information.
 この結果、姿勢安定システム600において、車体14の姿勢を安定に維持する動力が算出される。このため、動力がオムニホイール401~404から回転体12へ伝達されるので、全方向移動装置10では、最大出力により回転体12を直進方向へ転動させることができ、しかも車体14の姿勢を安定に維持することができる。 As a result, the power for maintaining the posture of the vehicle body 14 stably in the posture stabilization system 600 is calculated. Therefore, power is transmitted from the omni wheels 401 to 404 to the rotator 12, so that the omnidirectional movement device 10 can roll the rotator 12 in the straight direction with the maximum output, and the posture of the vehicle body 14 can be changed. It can be kept stable.
 加えて、全方向移動装置10の姿勢制御方法では、図6に示されるように、動力伝達行列T に基づいて、車体14の姿勢が制御される。詳しく説明すると、演算処理部602の演算処理の入力段では、前述の式(5)に基づいて、動力伝達行列T の一般化逆行列から回転体12の角速度ベクトルωs が算出される(図5のS12)。一方、演算処理部602の演算処理の出力段では、前述の式(23)に基づいて、動力伝達行列T の一般化逆行列から回転体12に伝達するオムニホイール401~404のホイール操作トルクとしての操作トルクτoが算出される(図5のS16)。
 このため、オムニホイール401~404の配置間隔、回転体12の表面に対するオムニホイール401~404の接触角度等に関係なく、車体14の姿勢を安定に維持することができる。表現を代えれば、本実施の形態に係る姿勢制御方法は、本実施の形態に係る全方向移動装置10の姿勢制御に適切な方法であると共に、他の装置の姿勢制御にも適用可能である。
In addition, in the attitude control method of the omnidirectional mobile device 10, as shown in FIG. 6, the attitude of the vehicle body 14 is controlled based on the power transmission matrix T 1. More specifically, at the input stage of the arithmetic processing of the arithmetic processing unit 602, the angular velocity vector ω s of the rotating body 12 is calculated from the generalized inverse matrix of the power transmission matrix T based on the above-described equation (5) (FIG. 5 S12). On the other hand, at the output stage of the arithmetic processing of the arithmetic processing unit 602, the wheel operation torque of the omni wheels 401 to 404 transmitted from the generalized inverse matrix of the power transmission matrix T 1 to the rotating body 12 based on the above-described equation (23). operating torque tau o is calculated in (S16 in Fig. 5).
Therefore, the posture of the vehicle body 14 can be stably maintained regardless of the arrangement interval of the omni wheels 401 to 404, the contact angle of the omni wheels 401 to 404 with the surface of the rotating body 12, and the like. In other words, the attitude control method according to the present embodiment is a method suitable for attitude control of the omnidirectional mobile device 10 according to the present embodiment, and can also be applied to attitude control of other devices. .
 (第2実施の形態)
 図11を用いて、本発明の第2実施の形態に係る全方向移動装置10を説明する。ここで、本実施の形態の説明において、第1実施の形態に係る全方向移動装置10の構成要素と同一又は実質的に同一の構成要素には同一符号を付し、重複する説明は省略する。
(Second Embodiment)
The omnidirectional movement apparatus 10 which concerns on 2nd Embodiment of this invention is demonstrated using FIG. Here, in the description of the present embodiment, the same or substantially the same components as those of the omnidirectional mobile device 10 according to the first embodiment are denoted by the same reference numerals, and redundant descriptions are omitted. .
 本実施の形態に係る全方向移動装置10では、基本的に第1実施の形態に係る全方向移動装置10と同一構成とされているが、ホイールにメカナムホイール405~408(図11参照)が使用されている。ここでは、4個のメカナムホイール405~408が配設される例を説明するが、第1実施の形態に係る全方向移動装置10と同様に、メカナムホイールは3個とされてもよい。
 詳細な構造は省略するが、図2に示されるオムニホイール401~404と同様に、メカナムホイール405~408は、円周方向Aに回転して回転体12に駆動力を伝達し、かつ、円周方向Aと交差する方向Bに回転体12を転動可能とする。
The omnidirectional moving device 10 according to the present embodiment has basically the same configuration as that of the omnidirectional moving device 10 according to the first embodiment, but the wheels include Mecanum wheels 405 to 408 (see FIG. 11). Is used. Here, an example in which four mecanum wheels 405 to 408 are disposed will be described. However, as with the omnidirectional moving device 10 according to the first embodiment, the number of mecanum wheels may be three. .
Although the detailed structure is omitted, like the omni wheels 401 to 404 shown in FIG. 2, the mecanum wheels 405 to 408 rotate in the circumferential direction A to transmit the driving force to the rotating body 12, and The rotating body 12 can roll in a direction B intersecting the circumferential direction A.
 図11に、本実施の形態に係る回転体12と4個のメカナムホイール405~408との配置関係が示されている。回転軸120の一端側の軸周り121の上半球12Bに2個のメカナムホイール405及び406が配置され、回転軸120の他端側の軸周り122の上半球12Bに2個のメカナムホイール407及び408が配置されている。 FIG. 11 shows the positional relationship between the rotating body 12 and the four Mecanum wheels 405 to 408 according to the present embodiment. Two mecanum wheels 405 and 406 are arranged on the upper hemisphere 12B around the axis on one end side of the rotating shaft 120, and two mecanum wheels are arranged on the upper hemisphere 12B around the axis on the other end side of the rotating shaft 120. 407 and 408 are arranged.
 メカナムホイール405~408では、回転体12との接点p~pにおける単位接線ベクトルtkが、円周上の接線に対して、ここでは45度をなす。回転体12の半径をrとすると、位置ベクトルpは式(38)により表され、単位接線ベクトルtは式(39)により表される。
Figure JPOXMLDOC01-appb-M000040

Figure JPOXMLDOC01-appb-M000041
In the mecanum wheels 405 to 408, the unit tangent vector t k at the contacts p 1 to p 4 with the rotating body 12 is 45 degrees with respect to the tangent on the circumference. Assuming that the radius of the rotating body 12 is r s , the position vector p k is represented by Expression (38), and the unit tangent vector t k is represented by Expression (39).
Figure JPOXMLDOC01-appb-M000040

Figure JPOXMLDOC01-appb-M000041
 そして、メカナムホイール405~408の半径をrとすると、動力伝達行列T は下記式(40)により表される。
Figure JPOXMLDOC01-appb-M000042

 図11に示される本実施の形態では、上記式(40)の動力伝達行列T の1列目~3列目の行列要素の列毎に絶対値がすべて等しくなる。
When the radius of Mecanum wheel 405-408 and r m, the power transmission matrix T is expressed by the following equation (40).
Figure JPOXMLDOC01-appb-M000042

In the present embodiment shown in FIG. 11, the absolute values are all equal for each column of the first to third matrix elements of the power transmission matrix T 1 of the above equation (40).
 また、トルク伝達行列T (TT )-1は、下記式(41)により表される。
Figure JPOXMLDOC01-appb-M000043

 トルク伝達行列T (TT )-1の1列目~3列目の行列要素の列毎に絶対値がすべて等しくなる。
The torque transmission matrix T (T T T) −1 is expressed by the following equation (41).
Figure JPOXMLDOC01-appb-M000043

The absolute values are all equal for each column of the first to third matrix elements of the torque transmission matrix T (T T T) −1 .
 以上説明したように、本実施の形態に係る全方向移動装置10では、ホイールとしてメカナムホイール405~408が採用されても、回転軸120(水平軸Y)の出力が最大になるばかりか、左右方向の回転軸(水平軸X)及び旋回軸(垂直軸Z)の出力も最大になる。このように、直進方向の移動に際して、メカナムホイール405~408のそれぞれから回転体12へ動力が効率良く伝達され、最大出力により回転体12を直進方向へ転動させることができる。 As described above, in the omnidirectional moving device 10 according to the present embodiment, not only the output of the rotating shaft 120 (horizontal axis Y b ) is maximized even when the Mecanum wheels 405 to 408 are employed as wheels. In addition, the outputs of the left and right rotation axes (horizontal axis X b ) and the turning axis (vertical axis Z b ) are also maximized. In this way, when moving in the straight direction, power is efficiently transmitted from each of the mecanum wheels 405 to 408 to the rotating body 12, and the rotating body 12 can be rolled in the straight direction with the maximum output.
 また、本実施の形態に係る全方向移動装置10及びその姿勢制御方法によれば、第1実施の形態に係る全方向移動装置10及びその姿勢制御方法により得られる作用効果と同様の作用効果を得ることができる。 Moreover, according to the omnidirectional movement apparatus 10 and its attitude control method according to the present embodiment, the same operational effects as those obtained by the omnidirectional movement apparatus 10 and its attitude control method according to the first embodiment are obtained. Obtainable.
(その他の実施の形態)
 本発明は、上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において、種々変形可能である。例えば、本発明は、3個のオムニホイール401~403の場合、回転体12の回転軸120の一端側と他端側とを入れ替えてもよい。また、本発明は、5以上のオムニホイールを備えてもよい。なお、全方向移動装置の小型化並びに軽量化を図るためにはオムニホイールは3個又は4個とすることが好ましい。
(Other embodiments)
The present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the invention. For example, in the present invention, in the case of the three omni wheels 401 to 403, one end side and the other end side of the rotating shaft 120 of the rotating body 12 may be interchanged. Further, the present invention may include five or more omni wheels. In order to reduce the size and weight of the omnidirectional moving device, it is preferable to use three or four omni wheels.
 また、上記実施の形態では、3個のオムニホイール401~403或いは4個のオムニホイール401~404が等間隔において配置されている。本発明では、動力伝達行列の行列要素のうち、回転体12を直進方向に転動させる回転軸120の行列要素の列毎に絶対値が等しくなる位置であれば、オムニホイール401~404の間隔は等間隔に限らない。 In the above embodiment, three omni wheels 401 to 403 or four omni wheels 401 to 404 are arranged at equal intervals. In the present invention, among the matrix elements of the power transmission matrix, the distance between the omni wheels 401 to 404 is the position where the absolute values are equal for each column of the matrix elements of the rotating shaft 120 that rolls the rotating body 12 in the straight direction. Are not limited to equal intervals.
 さらに、上記実施の形態では、オムニホイール401~404は2連のホイール410及び420により構成されているが、本発明では、1連又は3連以上のホイールによりオムニホイール401~404が構成されてもよい。加えて、本発明では、ホイール410に4個以上のローラが配設され、ホイール420に4個以上のローラが配設されてもよい。 Furthermore, in the above embodiment, the omni wheels 401 to 404 are constituted by two wheels 410 and 420, but in the present invention, the omni wheels 401 to 404 are constituted by one or three or more wheels. Also good. In addition, in the present invention, four or more rollers may be disposed on the wheel 410, and four or more rollers may be disposed on the wheel 420.
 また、上記実施の形態では、回転体12を直進方向に転動させる回転軸120の一端側、他端側のそれぞれにオムニホイール401~404が配設されているが、回転軸120の一端側或いは他端側の一方の軸周りに動力を伝達するオムニホイール401~404が配設されてもよい。他端側の軸周りには、補助輪を配設することが好ましい。
 さらに、上記変形例は、メカナムホイール405~408についても同様である。
In the above embodiment, the omni wheels 401 to 404 are arranged on one end side and the other end side of the rotating shaft 120 that rolls the rotating body 12 in the straight traveling direction. Alternatively, omni wheels 401 to 404 for transmitting power around one axis on the other end side may be provided. It is preferable to arrange an auxiliary wheel around the shaft on the other end side.
Further, the above modification is the same for the Mecanum wheels 405 to 408.
 10 全方向移動装置
 12 回転体
 14 車体
 40、42、44、46 駆動ユニット
 401、402 オムニホイール(第1オムニホイール)
 403、404 オムニホイール(第2オムニホイール)
 405~408 メカナムホイール
 442(1)~442(4) ACサーボモータ(駆動装置)
 501 姿勢角度検出部
 600 姿勢安定システム
 602 演算処理部
 604 角速度検出部
 605、605(1)~605(4) サーボアンプ
 607 回転数検出部
DESCRIPTION OF SYMBOLS 10 Omnidirectional moving device 12 Rotating body 14 Vehicle body 40, 42, 44, 46 Drive unit 401, 402 Omni wheel (1st omni wheel)
403, 404 Omni wheel (second omni wheel)
405 to 408 Mecanum wheel 442 (1) to 442 (4) AC servo motor (drive device)
501 Attitude angle detection unit 600 Attitude stabilization system 602 Arithmetic processing unit 604 Angular velocity detection unit 605, 605 (1) to 605 (4) Servo amplifier 607 Rotation number detection unit

Claims (12)

  1.  球状の回転体と、
     前記回転体を転動させて直進方向に移動させる回転軸の軸周りにおいて前記回転体の表面に接して複数配設され、円周方向に回転して前記回転体に動力を伝達し、かつ、円周方向と交差する方向に前記回転体を転動可能とするホイールと、
     を備えた全方向移動装置。
    A spherical rotating body,
    A plurality of rotating shafts that are arranged in contact with the surface of the rotating body around the axis of the rotating shaft that rolls the rotating body and moves in the straight direction, rotates in a circumferential direction and transmits power to the rotating body; and A wheel capable of rolling the rotating body in a direction intersecting the circumferential direction;
    An omnidirectional mobile device.
  2.  球状の回転体と、
     前記回転体を転動させて直進方向に移動させる回転軸の一端側の軸周りにおいて前記回転体の上半球の表面に接して複数配設され、円周方向に回転して前記回転体に動力を伝達し、かつ、円周方向と交差する方向に前記回転体を転動可能とする第1ホイールと、
     前記回転軸の一端側の軸周りにおいて前記回転体の下半球の表面の特定位置に対する、前記回転体の中心対称位置の表面に接して配設され、円周方向に回転して前記回転体に動力を伝達し、かつ、円周方向と交差する方向に前記回転体を転動可能とする第2ホイールと、
     を備えた全方向移動装置。
    A spherical rotating body,
    Around the axis on one end side of the rotating shaft that rolls the rotating body and moves in the straight direction, a plurality of the rotating bodies are disposed in contact with the surface of the upper hemisphere of the rotating body, and rotate in the circumferential direction to power the rotating body. And a first wheel that enables the rotating body to roll in a direction intersecting the circumferential direction;
    Around the axis on one end side of the rotating shaft, it is arranged in contact with the surface of the center symmetrical position of the rotating body with respect to a specific position of the surface of the lower hemisphere of the rotating body, and rotates in the circumferential direction to the rotating body. A second wheel for transmitting power and enabling the rotating body to roll in a direction intersecting the circumferential direction;
    An omnidirectional mobile device.
  3.  球状の回転体と、
     前記回転体を転動させて直進方向に移動させる回転軸の一端側の軸周りにおいて前記回転体の上半球の表面に接して複数配設され、円周方向に回転して前記回転体に動力を伝達し、かつ、円周方向と交差する方向に前記回転体を転動可能とする第1ホイールと、
     前記回転軸の他端側の軸周りにおいて前記回転体の上半球の表面に接して配設され、円周方向に回転して前記回転体に動力を伝達し、かつ、円周方向と交差する方向に前記回転体を転動可能とする第2ホイールと、
     を備えた全方向移動装置。
    A spherical rotating body,
    Around the axis on one end side of the rotating shaft that rolls the rotating body and moves in the straight direction, a plurality of the rotating bodies are disposed in contact with the surface of the upper hemisphere of the rotating body, and rotate in the circumferential direction to power the rotating body. And a first wheel that enables the rotating body to roll in a direction intersecting the circumferential direction;
    Around the axis on the other end side of the rotating shaft, it is disposed in contact with the surface of the upper hemisphere of the rotating body, rotates in the circumferential direction to transmit power to the rotating body, and intersects the circumferential direction. A second wheel capable of rolling the rotating body in a direction;
    An omnidirectional mobile device.
  4.  前記第1ホイール及び前記第2ホイールは、オムニホイール又はメカナムホイールである請求項2又は請求項3に記載の全方向移動装置。 The omnidirectional movement device according to claim 2 or 3, wherein the first wheel and the second wheel are omni wheels or mecanum wheels.
  5.  前記第1ホイールは2個配設され、前記第2ホイールは1個又は2個配設されている請求項2又は請求項3に記載の全方向移動装置。 The omnidirectional movement device according to claim 2 or 3, wherein two first wheels are arranged and one or two second wheels are arranged.
  6.  前記第1ホイール及び前記第2ホイールは、前記回転体との接点の位置ベクトルと前記接点における接線ベクトルとで決まる動力伝達行列の行列要素のうち、前記回転軸の行列要素の列毎に絶対値が等しくなる位置に配設されている請求項2又は請求項3に記載の全方向移動装置。 The first wheel and the second wheel have an absolute value for each column of matrix elements of the rotation axis among matrix elements of a power transmission matrix determined by a position vector of a contact point with the rotating body and a tangential vector at the contact point. The omnidirectional movement apparatus of Claim 2 or Claim 3 arrange | positioned in the position where becomes equal.
  7.  前記動力伝達行列は、角速度を表す伝達行列を含んでいる請求項6に記載の全方向移動装置。 The omnidirectional movement device according to claim 6, wherein the power transmission matrix includes a transmission matrix representing an angular velocity.
  8.  前記回転体の下半球の表面に接して又は近接させて、円周方向に回転し、かつ、円周方向とは交差する方向に前記回転体を転動可能とする補助輪を更に備えている請求項2又は請求項3に記載の全方向移動装置。 An auxiliary wheel that rotates in the circumferential direction in contact with or close to the surface of the lower hemisphere of the rotating body and that allows the rotating body to roll in a direction intersecting the circumferential direction is further provided. The omnidirectional movement apparatus of Claim 2 or Claim 3.
  9.  前記回転体上に設けられた車体と、
     前記車体に取り付けられ、かつ、前記第1ホイールを回転させる第1駆動装置と、
     前記車体に取り付けられ、かつ、前記第2ホイールを回転させる第2駆動装置と、
     前記車体に配設され、前記車体の姿勢を安定に維持する姿勢安定システムと、
     を更に備えた請求項2又は請求項3に記載の全方向移動装置。
    A vehicle body provided on the rotating body;
    A first drive device attached to the vehicle body and rotating the first wheel;
    A second drive device attached to the vehicle body and rotating the second wheel;
    A posture stabilization system disposed on the vehicle body and stably maintaining the posture of the vehicle body;
    The omnidirectional movement apparatus according to claim 2 or 3, further comprising:
  10.  前記姿勢安定システムは、
     前記車体に装着され、前記車体の姿勢角度及び当該姿勢角度の変化に伴う第1角速度を検出する姿勢角度検出部と、
     前記第1ホイール及び前記第2ホイールの回転数を検出する回転数検出部と、
     前記回転数検出部による回転数の検出結果に基づいて、前記回転体が転動する第2角速度を検出する角速度検出部と、
     前記姿勢角度検出部により検出される姿勢角度情報、第1角速度情報及び前記角速度検出部により検出される第2角速度情報に基づいて、前記車体の姿勢を維持する前記第1ホイール及び前記第2ホイールのホイール操作トルクを算出し、このホイール操作トルク情報に従って前記第1駆動装置及び前記第2駆動装置を作動させる演算処理部と、
     を備えた請求項9に記載の全方向移動装置。
    The posture stabilization system includes:
    A posture angle detector that is mounted on the vehicle body and detects a posture angle of the vehicle body and a first angular velocity associated with a change in the posture angle;
    A rotational speed detector for detecting rotational speeds of the first wheel and the second wheel;
    An angular velocity detection unit that detects a second angular velocity at which the rotating body rolls based on a detection result of the rotation number by the rotation number detection unit;
    The first wheel and the second wheel that maintain the posture of the vehicle body based on posture angle information detected by the posture angle detection unit, first angular velocity information, and second angular velocity information detected by the angular velocity detection unit. An arithmetic processing unit that calculates the wheel operation torque of the first drive device and operates the first drive device and the second drive device according to the wheel operation torque information;
    An omnidirectional movement device according to claim 9.
  11.  前記演算処理部は、
     前記姿勢角度情報、前記第1角速度情報及び前記第2角速度情報に基づいて、前記車体の姿勢を維持させる、前記回転体が転動する角加速度の目標値及び前記車体が旋回する角加速度の目標値を算出し、
     前記目標値に一致させる前記回転体の第3角加速度を算出し、
     当該第3角加速度に基づいて前記回転体を操作する回転体操作トルクを算出し、
     前記回転体操作トルク情報に基づいて、前記第1ホイール及び前記第2ホイールを操作する前記ホイール操作トルクを算出する
     請求項10に記載の全方向移動装置。
    The arithmetic processing unit includes:
    Based on the posture angle information, the first angular velocity information, and the second angular velocity information, a target value of angular acceleration at which the rotating body rolls and a target value of angular acceleration at which the vehicle body turns are maintained to maintain the posture of the vehicle body. Calculate the value,
    Calculating a third angular acceleration of the rotating body to be matched with the target value;
    Calculate a rotating body operating torque for operating the rotating body based on the third angular acceleration,
    The omnidirectional movement device according to claim 10, wherein the wheel operation torque for operating the first wheel and the second wheel is calculated based on the rotating body operation torque information.
  12.  前記請求項10に記載された全方向移動装置の姿勢安定システムが、
     前記姿勢角度情報、前記第1角速度情報及び前記第2角速度情報を取得し、
     前記姿勢角度情報、前記第1角速度情報及び前記第2角速度情報に基づいて、前記車体の姿勢を維持させる、前記回転体が転動する角加速度の目標値及び前記車体が旋回する角加速度の目標値を算出し、
     前記目標値に一致させる前記回転体の第3角加速度を算出し、
     当該第3角加速度に基づいて前記回転体を操作する回転体操作トルクを算出し、
     前記回転体操作トルク情報に基づいて、前記第1ホイール及び前記第2ホイールを操作する前記ホイール操作トルクを算出する
     全方向移動装置の姿勢制御方法。
    An attitude stabilization system for an omnidirectional mobile device according to claim 10,
    Obtaining the posture angle information, the first angular velocity information, and the second angular velocity information;
    Based on the posture angle information, the first angular velocity information, and the second angular velocity information, a target value of angular acceleration at which the rotating body rolls and a target value of angular acceleration at which the vehicle body turns are maintained to maintain the posture of the vehicle body. Calculate the value,
    Calculating a third angular acceleration of the rotating body to be matched with the target value;
    Calculate a rotating body operating torque for operating the rotating body based on the third angular acceleration,
    An attitude control method for an omnidirectional mobile device that calculates the wheel operation torque for operating the first wheel and the second wheel based on the rotating body operation torque information.
PCT/JP2017/023822 2016-07-01 2017-06-28 Omnidirectional movement device and orientation control method WO2018003886A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780040317.XA CN109414956B (en) 2016-07-01 2017-06-28 Omnidirectional mobile device and posture control method thereof
JP2018525231A JP6951611B2 (en) 2016-07-01 2017-06-28 Omnidirectional moving device and its attitude control method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016132090 2016-07-01
JP2016-132090 2016-07-01
JP2016-170938 2016-09-01
JP2016170938 2016-09-01

Publications (1)

Publication Number Publication Date
WO2018003886A1 true WO2018003886A1 (en) 2018-01-04

Family

ID=60786689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023822 WO2018003886A1 (en) 2016-07-01 2017-06-28 Omnidirectional movement device and orientation control method

Country Status (4)

Country Link
JP (1) JP6951611B2 (en)
CN (1) CN109414956B (en)
TW (1) TWI761354B (en)
WO (1) WO2018003886A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023152085A1 (en) * 2022-02-08 2023-08-17 Innovated Transport Systems Ug (Haftungsbeschränkt) Vehicle for one rider, having a ball rolling on the ground

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112154388A (en) * 2019-08-06 2020-12-29 深圳市大疆创新科技有限公司 Control method, control apparatus, removable platform, and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234524A (en) * 2008-03-28 2009-10-15 Sony Corp Transporting device and drive mechanism
US8459383B1 (en) * 2010-07-09 2013-06-11 Daniel Burget Spherical drive system
US20130257138A1 (en) * 2012-03-29 2013-10-03 Feng-Jung Chang Multi-directional driving mechanism of a spheric wheel
JP2013255673A (en) * 2012-06-13 2013-12-26 Panasonic Corp Traveling method of traveling vehicle
JP2014161991A (en) * 2013-02-28 2014-09-08 Nsk Ltd Robot movement mechanism and robot comprising the same
JP2016049921A (en) * 2014-09-02 2016-04-11 トヨタ自動車株式会社 Wheel driving device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2695447A1 (en) * 1992-09-09 1994-03-11 Courty Claude Hubless wheel in form of sphere contained in envelope - includes roller driven body, turning in interior of envelope which has opening in its lower part permitting this body to contact ground, with body maintained at distance from envelope walls by rollers or ball bearings
JP3741432B2 (en) * 2003-04-28 2006-02-01 財団法人理工学振興会 Omni-directional wheels and moving vehicles
CN100469599C (en) * 2006-01-21 2009-03-18 白云山 Bobbin type universal wheel
JP5057130B2 (en) * 2006-02-07 2012-10-24 建二郎 多田隈 Spherical wheel for omnidirectional mobile body and omnidirectional mobile body
WO2008132779A1 (en) * 2007-04-20 2008-11-06 Honda Motor Co., Ltd. Omnidirectional driver and omnidirectional vehicle employing it
WO2008132778A1 (en) * 2007-04-20 2008-11-06 Honda Motor Co., Ltd. Omnidirectional driver and omnidirectional vehicle employing it
KR101245797B1 (en) * 2008-11-04 2013-03-20 혼다 기켄 고교 가부시키가이샤 Friction-type drive device and omnidirectional movable body using same
TW201024114A (en) * 2008-12-26 2010-07-01 Univ Chung Hua Omnidirectional wheel transmission device
CN102700358A (en) * 2012-06-19 2012-10-03 杭州电子科技大学 Multi-row type omnidirectional wheel
CN104494721B (en) * 2014-12-02 2017-01-25 中国矿业大学 Mecanum wheel-based rocker omnidirectional mobile platform
KR101626862B1 (en) * 2015-07-28 2016-06-03 계룡환경주식회사 A ball drive unit and a ball drive vehicle comprising the same
CN105058398B (en) * 2015-08-04 2017-03-22 北京理工大学 Spherical-wheel mobile robot and speed measuring method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234524A (en) * 2008-03-28 2009-10-15 Sony Corp Transporting device and drive mechanism
US8459383B1 (en) * 2010-07-09 2013-06-11 Daniel Burget Spherical drive system
US20130257138A1 (en) * 2012-03-29 2013-10-03 Feng-Jung Chang Multi-directional driving mechanism of a spheric wheel
JP2013255673A (en) * 2012-06-13 2013-12-26 Panasonic Corp Traveling method of traveling vehicle
JP2014161991A (en) * 2013-02-28 2014-09-08 Nsk Ltd Robot movement mechanism and robot comprising the same
JP2016049921A (en) * 2014-09-02 2016-04-11 トヨタ自動車株式会社 Wheel driving device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023152085A1 (en) * 2022-02-08 2023-08-17 Innovated Transport Systems Ug (Haftungsbeschränkt) Vehicle for one rider, having a ball rolling on the ground

Also Published As

Publication number Publication date
TW201801953A (en) 2018-01-16
CN109414956A (en) 2019-03-01
TWI761354B (en) 2022-04-21
CN109414956B (en) 2022-01-11
JP6951611B2 (en) 2021-10-20
JPWO2018003886A1 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
JP4779982B2 (en) MOBILE BODY AND METHOD FOR CONTROLLING MOBILE BODY
JP5358374B2 (en) vehicle
JP5398446B2 (en) Drive device
CN110709316B (en) Omnidirectional mobile device and attitude control method thereof
KR101429444B1 (en) Omnidirectional vehicle
JP2001199356A (en) Omni-directional moving vehicle and method for controlling it
JP4556418B2 (en) Traveling apparatus and control method thereof
JP2008052362A (en) Autonomously moving apparatus
JP2004215350A (en) Drive controller, controlling method and two-wheeled vehicle
WO2018003886A1 (en) Omnidirectional movement device and orientation control method
JP4442319B2 (en) Traveling device
KR101626862B1 (en) A ball drive unit and a ball drive vehicle comprising the same
JPH09164968A (en) Omnidirectional moving vehicle and its control method
JP5270307B2 (en) Moving body
JP6471715B2 (en) Standing type mobile device
JP4789061B2 (en) vehicle
KR20170107197A (en) Boarding type mobile device using the Ball-Robot
JP2017169981A (en) Standing ride type movement device
JP2016154680A (en) Balance training system
JP2011063182A (en) Inverted-pendulum mobile body
KR20170099683A (en) Ball robot tmaintaining stable posture
JP5337650B2 (en) Inverted pendulum type moving body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820240

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018525231

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820240

Country of ref document: EP

Kind code of ref document: A1