WO2018003046A1 - フローコントローラ - Google Patents

フローコントローラ Download PDF

Info

Publication number
WO2018003046A1
WO2018003046A1 PCT/JP2016/069367 JP2016069367W WO2018003046A1 WO 2018003046 A1 WO2018003046 A1 WO 2018003046A1 JP 2016069367 W JP2016069367 W JP 2016069367W WO 2018003046 A1 WO2018003046 A1 WO 2018003046A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
flow
resistance
gas
channel
Prior art date
Application number
PCT/JP2016/069367
Other languages
English (en)
French (fr)
Inventor
聖規 古賀
優輝 小森
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2016/069367 priority Critical patent/WO2018003046A1/ja
Priority to JP2018524647A priority patent/JP6555419B2/ja
Priority to US16/099,234 priority patent/US10753914B2/en
Priority to CN201680083238.2A priority patent/CN109073609B/zh
Publication of WO2018003046A1 publication Critical patent/WO2018003046A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/46Flow patterns using more than one column
    • G01N30/466Flow patterns using more than one column with separation columns in parallel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/025Gas chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • G01N2030/328Control of physical parameters of the fluid carrier of pressure or speed valves, e.g. check valves of pumps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed

Definitions

  • the present invention relates to a gas chromatograph flow controller.
  • a flow controller for a gas chromatograph is generally configured by connecting a pressure control valve, a pressure sensor, and piping to a flow path assembly in which a plurality of metal plates are stacked and have a flow path inside (Patent Document). 1).
  • a resistance tube is connected to the downstream side of the flow path assembly to adjust the flow path resistance of the flow path through which the gas flows to a predetermined flow path resistance value.
  • the gas flow rate is controlled by feedback-controlling the opening of the pressure control valve based on the pressure value detected by.
  • Gas chromatograph detectors include detectors such as flame ionization detection (FID), thermal conductivity detector (TCD), flame photometric detector (FPD), and alkali thermal ionization detector (FTD).
  • FID flame ionization detection
  • TCD thermal conductivity detector
  • FPD flame photometric detector
  • FTD alkali thermal ionization detector
  • the resistance tube is fixed to a rubber plug called a septum on the downstream side of the flow path assembly. It was. Therefore, it is conceivable that the same function as that of the resistance tube is given to the flow channel inside the flow channel assembly by intentionally providing a resistance flow channel corresponding to the resistance tube inside the flow channel assembly. However, if a resistance flow path is provided in the flow path assembly, the flow path resistance cannot be adjusted by changing the external resistance tube. Therefore, the flow path assembly corresponding to the type of detector for which the flow controller is used is different. Necessary.
  • the cost is determined by how many metal plates that make up the flow path assembly can be produced in one batch, if a flow controller dedicated to a flow controller for a small lot is produced, the cost increases. In addition, it is only necessary to cut off the flow resistance for all types of flow controllers on one flow path plate, but it is necessary to provide a space for installing the pressure sensor upstream of each resistance. Installation space will increase.
  • an object of the present invention is to provide a flow controller that does not require a different flow path assembly for each type of flow controller.
  • the flow controller includes a flow path assembly, a pressure sensor, and a pressure control valve.
  • the flow path assembly is composed of a laminated substrate in which a plurality of substrates are laminated, and a gas inlet and a gas outlet are provided on the surface of the laminated substrate, and inside the laminated substrate, A plurality of resistance channels that do not communicate with each other are provided as internal channels.
  • the pressure sensor is connected to the internal flow path through a hole provided in the surface of the flow path assembly.
  • the pressure control valve is connected to the internal flow path through a hole provided in the surface of the flow path assembly.
  • the flow controller communicates from the gas inlet to the gas outlet as a flow control flow path, and the pressure sensor and the pressure control valve are mounted on the flow control flow path, and the flow control flow path At least one of the resistance channels selected so that the channel resistance becomes a desired channel resistance is connected to the flow rate control channel.
  • the flow path assembly includes a plurality of the gas inlets and the gas outlets, and the gas inlet selected according to the type of gas used in a detector to which the flow controller is applied. It is preferable that the gas outlet communicates with the gas flow path. If it does so, one flow controller can be given the function which performs flow control of a plurality of kinds of gas.
  • a flow path assembly provided with a plurality of resistance flow paths that do not communicate with each other is used, and at least one flow path resistance of the flow control flow path is selected to be a desired flow path resistance.
  • Two resistance channels are connected in the flow rate control channel. That is, the flow resistance value of the flow control flow path is adjusted by connecting a resistance flow path selected from a plurality of resistance flow paths provided in the flow path assembly. Therefore, a common flow path assembly can be used for different types of detectors, and there is no need to prepare a flow path assembly according to the type of detector. Thereby, the manufacturing cost can be reduced.
  • FIG. 1 is a plan view showing an internal configuration of a flow path assembly 1 commonly used in various flow controllers for detectors.
  • the flow path assembly 1 is configured by laminating a plurality of metal plates, and a plurality of internal flow paths are provided on the inner joint surfaces of the metal plates.
  • all the internal flow paths provided on the internal joint surface of the flow path assembly 1 are shown as if they are in the same plane (in the same joint surface). It is not necessarily provided in the same plane (in the same joint surface), and may be provided on a plurality of joint surfaces.
  • a circle drawn with a solid line separately from the internal flow path indicates a hole through which a bolt for fixing another flow path plate, a pressure control valve, a pressure sensor and the like passes through the flow path assembly 1. .
  • R A channel resistance value: R A
  • R B Channel resistance value: R B
  • R C channel resistance value: R C
  • R D channel resistance value: R D
  • R E channel resistance value: R E
  • Dashed circles 2a, 2b, 4a, 4b, 6a, 6b, 8a, 8b, 12a, 12b, 14a, 14b, 20a, 22a, 24a, 26a, 28a, 30a and 32a are at the ends of their internal channels.
  • the hole provided in the surface or back surface of the flow-path assembly 2 which leads is shown. External piping, another flow path plate, a pressure control valve, a pressure sensor, and the like are connected to the internal flow path of the flow path assembly 1 through these holes.
  • the flow path assembly 1 of this embodiment can be applied to a flow controller that simultaneously controls the flow rates of three types of gases. That is, three flow control channels independent of each other can be configured by combining the above internal channels.
  • the first flow rate control flow path is constituted by the flow path 2, the flow path 8, the flow path 10, the resistance flow path RA, and the flow path 20, and if necessary, the flow path 28, the resistance flow A path R E and a flow path 26 are added.
  • a hole 2a leading to one end of the flow path 2 is a gas inlet, and is connected to an external pipe for supplying a predetermined gas.
  • An inlet and an outlet of a pressure control valve are connected to the other end of the flow channel 2 and one end of the flow channel 8 through holes 2b and 8a, respectively, and the pressure control valve is interposed between the flow channel 2 and the flow channel 8. It is like that.
  • a pressure sensor is connected to the other end of the flow path 8 through a hole 8b.
  • the other end of the channel 8 and one end of the channel 10 are connected to each other.
  • One end of the resistance channel RA is connected to the other end of the channel 10.
  • the other end of the resistance channel RA is connected to one end of the channel 20.
  • the other end of the flow path 20 is connected to an external pipe or another flow path plate through a hole 20a.
  • the other end of the channel 20 and one end of the channel 28 are connected to each other by another channel plate as required.
  • an external pipe is connected to the other end of the flow path 20 through a hole 20a, and the hole 20a discharges gas from the first flow control flow path. It becomes a gas outlet to do.
  • One end of the resistor channel R E to the other end of the passage 28 is connected.
  • the other end of the resistor channel R E is connected to one end of the channel 26.
  • the other end of the flow path 26 is connected to an external pipe through a hole 26a.
  • a hole 26a leading to the other end of the flow path 26 is a gas outlet for discharging gas from the first flow control flow path.
  • Second flow control passage is constituted by the channel 4, channel 12, resistor channel R B and the flow path 22.
  • a hole 4a leading to one end of the flow path 4 is a gas inlet, and is connected to an external pipe for supplying a predetermined gas.
  • An inlet and an outlet of a pressure control valve are connected to the other end of the channel 4 and one end of the channel 12 through holes 4b and 12a, respectively, and the pressure control valve is interposed between the channel 4 and the channel 12. It is like that.
  • a pressure sensor is connected to the other end of the flow path 12 through a hole 12b.
  • One end of the resistor channel R B to the other end of the passage 12 is connected.
  • the other end of the resistor channel R B is connected to one end of the channel 22.
  • the other end of the flow path 22 is connected to an external pipe through a hole 22a, and the hole 20a serves as a gas outlet for discharging gas from the second flow rate control flow path.
  • the third flow rate control flow path is composed of the flow path 6, the flow path 14, the flow path 16, the resistance flow path RC, and the flow path 24. If necessary, the flow path 30 and the resistance flow A path R E and a flow path 32 are added.
  • a hole 6a leading to one end of the flow path 6 is a gas inlet, and is connected to an external pipe for supplying a predetermined gas.
  • the other end of the channel 6 and one end of the channel 14 are connected to the inlet and the outlet of the pressure control valve via holes 6b and 14a, respectively, and the pressure control valve is interposed between the channel 6 and the channel 14. It is like that.
  • a pressure sensor is connected to the other end of the flow path 14 through a hole 14b.
  • the other end of the channel 14 and one end of the channel 16 are connected to each other.
  • One end of a resistance channel RC is connected to the other end of the channel 16.
  • the other end of the resistance channel R C is connected to one end of the channel 24.
  • the other end of the flow path 24 is connected to an external pipe or another flow path plate through a hole 24a.
  • the other end of the channel 24 and one end of the channel 30 are connected to each other by another channel plate as necessary.
  • an external pipe is connected to the other end of the flow path 24 through a hole 24a, and the hole 24a discharges gas from the third flow control flow path. It becomes a gas outlet to do.
  • One end of the resistance channel R D is connected to the other end of the channel 30.
  • the other end of the resistance channel R D is connected to one end of the channel 32.
  • the other end of the channel 32 is connected to an external pipe through a hole 32a.
  • the hole 32a leading to the other end of the flow path 32 is a gas outlet for discharging gas from the third flow control flow path.
  • FIGS. 2 to 5 show a flame ionization detection (FID), a thermal conductivity detector (TCD), a flame photometric detector (FPD), and an alkali thermal ionization detector (FTD), respectively, using the flow path assembly 1.
  • FID flame ionization detection
  • TCD thermal conductivity detector
  • FPD flame photometric detector
  • FTD alkali thermal ionization detector
  • FID hydrogen gas (H 2 ), inorganic gas (MU), and air are used.
  • flow path resistances necessary for controlling the flow rates of hydrogen gas, inorganic gas, and air are R A , R B , and R C , respectively. Therefore, as shown in FIG. 2, the flow controller 100 for FID controls the flow rate of hydrogen gas using the first flow rate control flow path, and controls the inorganic gas flow using the second flow rate control flow path. The flow rate is controlled, and the air flow rate is controlled using the third flow rate control flow path.
  • pressure control valves 33, 36, and 40 are mounted at the positions of the holes 2b and 8a, the positions of the holes 4b and 12a, and the positions of the holes 6b and 14a, respectively.
  • Pressure sensors 34, 38, and 42 are mounted at the positions of the hole 8b, the hole 12b, and the hole 14b, respectively.
  • Hydrogen gas is introduced into the first flow rate control flow path from the gas inlet 2a, passes through the flow path 2, the pressure control valve 33, the flow path 8, the flow path 10, the resistance flow path R A , the flow path 20, and the gas. It is discharged from the outlet 20a.
  • a flow path resistance RA required to control the flow rate of hydrogen gas supplied to the FID is obtained.
  • the flow rate of hydrogen gas is controlled by feedback control of the pressure control valve 33 based on the value detected by the pressure sensor 34.
  • the inorganic gas is introduced into the second flow rate control flow path from the gas inlet 4a, and discharged from the gas outlet 22a through the flow path 4, the pressure control valve 36, the flow path 12, the resistance flow path R B , and the flow path 22. Is done.
  • This second flow control passage, the flow path resistance R B is obtained needed to control the flow rate of the inorganic gas supplied to the FID.
  • the flow rate of the inorganic gas is controlled by feedback control of the pressure control valve 36 based on the value detected by the pressure sensor 38.
  • Air is introduced from the gas inlet 6a to the third flow rate control flow path, passes through the flow path 6, the pressure control valve 40, the flow path 14, the flow path 16, the resistance flow path R C , and the flow path 24, and then the gas outlet. It is discharged from 24a.
  • a flow path resistance R C required to control the flow rate of air supplied to the FID is obtained.
  • the air flow rate is controlled by feedback control of the pressure control valve 40 based on the value detected by the pressure sensor 42.
  • TCD uses only inorganic gas.
  • the flow path resistance required for controlling the flow rate of the inorganic gas is R A. Therefore, in the TCD flow controller 200, as shown in FIG. 3, the flow rate of the inorganic gas is controlled using the first flow rate control flow path.
  • a pressure control valve 33 is mounted at the positions of the holes 2b and 8a, and a pressure sensor 34 is mounted at the position of the hole 8b to constitute a first flow rate control flow path.
  • the inorganic gas is introduced into the first flow rate control flow path from the gas inlet 2a, passes through the flow path 2, the pressure control valve 33, the flow path 8, the flow path 10, the resistance flow path R A , the flow path 20, and the gas. It is discharged from the outlet 20a.
  • a flow path resistance RA required for controlling the flow rate of the inorganic gas supplied to the TCD is obtained.
  • the flow rate of the inorganic gas is controlled by feedback control of the pressure control valve 33 based on the value detected by the pressure sensor 34.
  • FPD hydrogen gas and air are used.
  • flow path resistances for controlling the flow rates of hydrogen gas and air are R A and R C + R D , respectively. Therefore, as shown in FIG. 4, the flow controller 300 for FID controls the flow rate of hydrogen gas using the first flow rate control flow path, and the air flow rate using the third flow rate control flow path.
  • pressure control valves 33 and 40 are mounted at the positions of the holes 2b and 8a and the positions of the holes 6b and 14a, respectively, and the position of the hole 8b.
  • Pressure sensors 34 and 42 are mounted at the positions of the holes 14b, respectively.
  • the flow path plate 44 including the bypass flow path 46 that communicates between the hole 24 a and the hole 30 a is provided in the flow path assembly 1. It is mounted on.
  • Hydrogen gas is introduced into the first flow rate control flow path from the gas inlet 2a, passes through the flow path 2, the pressure control valve 33, the flow path 8, the flow path 10, the resistance flow path R A , the flow path 20, and the gas. It is discharged from the outlet 20a.
  • a flow path resistance RA required to control the flow rate of hydrogen gas supplied to the FID is obtained.
  • the flow rate of hydrogen gas is controlled by feedback control of the pressure control valve 33 based on the value detected by the pressure sensor 34.
  • Air is introduced from the gas inlet 6a into the third flow control flow path, and the flow path 6, the pressure control valve 40, the flow path 14, the flow path 16, the resistance flow path RC , the flow path 24, the bypass flow path 46,
  • the gas is discharged from the gas outlet 32 a through the flow path 30, the resistance flow path R D , and the flow path 32.
  • This third flow rate control flow path provides a flow path resistance R C + R D necessary for controlling the flow rate of air supplied to the FPD.
  • the air flow rate is controlled by feedback control of the pressure control valve 40 based on the value detected by the pressure sensor 42.
  • FTD hydrogen gas (H 2 ), inorganic gas (MU), and air are used.
  • flow path resistances necessary for controlling the flow rates of hydrogen gas, inorganic gas, and air are R A + R E , R B , and R C + R D , respectively. Therefore, as shown in FIG. 5, the flow controller 400 for FTD controls the flow rate of hydrogen gas using the first flow rate control flow path, and controls the inorganic gas flow using the second flow rate control flow path. The flow rate is controlled, and the air flow rate is controlled using the third flow rate control flow path.
  • pressure control valves 33, 36, and 40 are mounted at the positions of the holes 2b and 8a, the positions of the holes 4b and 12a, and the positions of the holes 6b and 14a, respectively.
  • Pressure sensors 34, 38, and 42 are mounted at the positions of the hole 8b, the hole 12b, and the hole 14b, respectively.
  • a flow path plate 48 including a bypass flow path 50 that communicates between the holes 20 a and 28 a is mounted on the flow path assembly 1. ing.
  • the flow path plate 44 including the bypass flow path 46 that communicates between the hole 24 a and the hole 30 a is provided in the flow path assembly 1. It is mounted on.
  • Hydrogen gas is introduced into the first flow rate control flow path from the gas inlet 2a, and the flow path 2, the pressure control valve 33, the flow path 8, the flow path 10, the resistance flow path RA , the flow path 20, and the bypass flow path 50. , The flow path 28, the resistance flow path R E , and the flow path 26 are discharged from the gas outlet 26a.
  • This first flow rate control flow path provides the flow path resistance R A + R E necessary for controlling the flow rate of the hydrogen gas supplied to the FTD.
  • the flow rate of hydrogen gas is controlled by feedback control of the pressure control valve 33 based on the value detected by the pressure sensor 34.
  • the inorganic gas is introduced into the second flow rate control flow path from the gas inlet 4a, and discharged from the gas outlet 22a through the flow path 4, the pressure control valve 36, the flow path 12, the resistance flow path R B , and the flow path 22. Is done.
  • This second flow control passage, the flow path resistance R B is obtained needed to control the flow rate of the inorganic gas supplied to the FID.
  • the flow rate of the inorganic gas is controlled by feedback control of the pressure control valve 36 based on the value detected by the pressure sensor 38.
  • Air is introduced from the gas inlet 6a into the third flow control flow path, and the flow path 6, the pressure control valve 40, the flow path 14, the flow path 16, the resistance flow path RC , the flow path 24, the bypass flow path 46,
  • the gas is discharged from the gas outlet 32 a through the flow path 30, the resistance flow path R D , and the flow path 32.
  • This third flow rate control flow path provides a flow path resistance R C + R D necessary for controlling the flow rate of air supplied to the FPD.
  • the air flow rate is controlled by feedback control of the pressure control valve 40 based on the value detected by the pressure sensor 42.
  • the flow path assembly 1 includes a plurality of resistance flow path resistance flow paths R A (flow path resistance value: R A ), R that are not in communication with each other within the flow path assembly 1.
  • B channel resistance value: R B
  • R C channel resistance value: R C
  • R D channel resistance value: R D
  • R E channel resistance value: R E
  • the required resistance flow path is additionally built in the flow control flow path according to the type of flow controller (the type of detector in which it is used), so a common flow path assembly is used.
  • Various flow controllers can be configured.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Flow Control (AREA)
  • Measuring Volume Flow (AREA)

Abstract

流路アセンブリ、圧力センサ及び圧力制御バルブを備えている。流路アセンブリは、複数枚の基板が積層されてなる積層基板からなり、前記積層基板の表面にガス入口及びガス出口が設けられているとともに、前記積層基板の内部に、前記積層基板の内部では互いに連通しない複数の抵抗流路が内部流路として設けられている。当該フローコントローラは、前記ガス入口から前記ガス出口までが流量制御流路として連通し、その流量制御流路上に圧力センサ及び圧力制御バルブが搭載されているとともに、該流量制御流路の流路抵抗が所望の流路抵抗となるように選択された少なくとも1つの前記抵抗流路が該流量制御流路内に接続されている。

Description

フローコントローラ
 本発明は、ガスクロマトグラフ用フローコントローラに関するものである。
 ガスクロマトグラフでは、キャリアガス等のガスの流量をフローコントローラを用いて制御する。ガスクロマトグラフ用のフローコントローラは、複数枚の金属板が積層され内部に流路を有する流路アセンブリに、圧力制御バルブ、圧力センサ及び配管を接続して構成することが一般的である(特許文献1参照。)。このように圧力センサを用いてガス流量を制御する場合、流路アセンブリの下流側に抵抗管を接続してガスの流れる流路の流路抵抗を所定の流路抵抗値に調整し、圧力センサが検出する圧力値に基づいて圧力制御バルブの開度をフィードバック制御することで、ガス流量を制御する。
 ガスクロマトグラフの検出器には、水素炎イオン化検出(FID)、熱伝導度検出器(TCD)、炎光光度検出器(FPD)、アルカリ熱イオン化検出器(FTD)などの検出器がある。検出器の種類によって流量を制御しなければならないガスの種類と数が異なる上、検出器の種類によってフローコントローラに必要な流路抵抗が異なる。そのため、各検出器用のフローコントローラが必要となるが、検出器の種類ごとに専用のフローコントローラを用意するとコストが高くなるため、フローコントローラの基本構成は同じで、検出器の種類に応じて抵抗管の種類を変えて所定の圧力と流量の関係にすることで、各検出器に応じたフローコントローラを構成していた。
特開2005-156214号公報
 従来のフローコントローラでは、流路アセンブリの下流側において、抵抗管をセプタムと呼ばれるゴム栓に抵抗管をつけて固定していたが、ゴム栓からの揮発成分が分析に悪影響を与えるという問題があった。そこで、流路アセンブリの内部に抵抗管相当の抵抗流路を意図的に設けることで、抵抗管と同様の機能を流路アセンブリ内部の流路に与えることが考えられる。しかし、流路アセンブリ内に抵抗流路を設けると、外付けの抵抗管を変えることで流路抵抗を調整することができないため、フローコントローラが用いられる検出器の種類に応じた流路アセンブリが必要となる。
 流路アセンブリを構成する金属板は1バッチに何枚生産できるかでコストが決まるので、小ロット向けのフローコントローラの場合にそれ専用の流路板を生産するとコスト高になってしまう。また、1つの流路板に全フローコントローラ種類分の流路抵抗を切っておけばよいが、各抵抗の上流に圧力センサを設置するスペースを設ける必要があるため、流路アセンブリが大きくなって設置スペースが増大してしまう。
 そこで、本発明は、フローコントローラの種類ごとに異なる流路アセンブリを用意する必要のないフローコントローラを提供することを目的とするものである。
 本発明に係るフローコントローラは、流路アセンブリ、圧力センサ及び圧力制御バルブを備えている。流路アセンブリは、複数枚の基板が積層されてなる積層基板からなり、前記積層基板の表面にガス入口及びガス出口が設けられているとともに、前記積層基板の内部に、前記積層基板の内部では互いに連通しない複数の抵抗流路が内部流路として設けられている。圧力センサは、前記流路アセンブリの表面に設けられた穴を介して前記内部流路に接続されている。圧力制御バルブは、前記流路アセンブリの表面に設けられた穴を介して前記内部流路に接続されている。そして、当該フローコントローラは、前記ガス入口から前記ガス出口までが流量制御流路として連通し、その流量制御流路上に前記圧力センサ及び前記圧力制御バルブが搭載されているとともに、該流量制御流路の流路抵抗が所望の流路抵抗となるように選択された少なくとも1つの前記抵抗流路が該流量制御流路内に接続されている。
 本発明のフローコントローラにおいて、前記流路アセンブリは、前記ガス入口及び前記ガス出口をそれぞれ複数備え、該フローコントローラが適用される検出器で使用するガスの種類に応じて選択された前記ガス入口と前記ガス出口との間が前記流量制御流路として連通していることが好ましい。そうすれば、複数種類のガスの流量制御を行なう機能を1つのフローコントローラにもたせることができる。
 本発明のフローコントローラでは、内部では互いに連通しない複数の抵抗流路が設けられた流路アセンブリを用い、流量制御流路の流路抵抗が所望の流路抵抗となるように選択された少なくとも1つの抵抗流路が該流量制御流路内に接続されている。すなわち、流量制御流路の流路抵抗値は、流路アセンブリ内に設けられた複数の抵抗流路のうちから選択された抵抗流路が接続されることによって調節されるようになっている。したがって、種類の異なる検出器に共通の流路アセンブリを使用することができ、検出器の種類に応じて流路アセンブリを用意する必要がない。これにより、製造コストの低減が図られる。
フローセンサに使用される流路アセンブリの構造の一例を示す概略平面構成図である。 同流路アセンブリを用いたFID用フローコントローラの構成を示す概略平面構成図である。 同流路アセンブリを用いたTCD用フローコントローラの構成を示す概略平面構成図である。 同流路アセンブリを用いたFPD用フローコントローラの構成を示す概略平面構成図である。 同流路アセンブリを用いたFTD用フローコントローラの構成を示す概略平面構成図である。
 以下、本発明に係るフローコントローラの実施形態を図面を参照して説明する。
 図1は種々の検出器用のフローコントローラに共通で用いられる流路アセンブリ1の内部構成を示す平面図である。この流路アセンブリ1は複数の金属板が積層されて構成されるものであり、それらの金属板の内部接合面に複数の内部流路が設けられている。図1においては、流路アセンブリ1の内部接合面に設けられている内部流路のすべてを同一平面内(同一接合面内)にあるかのように示しているが、これらの内部流路は必ずしも同一平面内(同一接合面内)に設けられている必要はなく、複数の接合面に設けられていてもよい。また、内部流路とは別に実線で描かれている円は、この流路アセンブリ1に別の流路板、圧力制御バルブ、圧力センサなどを固定するためのボルトを貫通させる穴を示している。
 流路2、4、6、8、10、12、14、16、20、22、24、26、28、30及び32と、抵抗流路RA(流路抵抗値:RA)、RB(流路抵抗値:RB)、RC(流路抵抗値:RC)、RD(流路抵抗値:RD)及びRE(流路抵抗値:RE)が、内部流路として設けられている。破線円2a、2b、4a、4b、6a、6b、8a、8b、12a、12b、14a、14b、20a、22a、24a、26a、28a、30a及び32aは、それらの内部流路の端部に通じる流路アセンブリ2の表面又は裏面に設けられた穴を示している。外部の配管、別の流路板、圧力制御バルブ、圧力センサなどは、これらの穴を通じて流路アセンブリ1の内部流路と接続される。
 この実施例の流路アセンブリ1は3種類のガスの流量を同時に制御するフローコントローラに適用することができる。すなわち、上記の内部流路を組み合わせて互いに独立した3つの流量制御流路を構成することができる。
 第1の流量制御流路は、流路2、流路8、流路10、抵抗流路RA及び流路20によって構成され、必要に応じて、それらの流路に流路28、抵抗流路RE及び流路26が追加される。流路2の一端に通じる穴2aはガス入口であり、所定のガスを供給する外部配管が接続される。
 流路2の他端と流路8の一端にはそれぞれ穴2b、8aを介して圧力制御バルブの入口及び出口が接続され、流路2と流路8との間に圧力制御バルブが介在するようになっている。流路8の他端には、穴8bを介して圧力センサが接続されるようになっている。流路8の他端と流路10の一端は互いに接続されている。流路10の他端に抵抗流路RAの一端が接続されている。
 抵抗流路RAの他端は流路20の一端と接続されている。流路20の他端は穴20aを介して外部の配管又は別の流路板が接続されるようになっている。流路20の他端と流路28の一端は、必要に応じて別の流路板によって互いに接続されるようになっている。流路20の他端と流路28の一端が接続されない場合、流路20の他端には穴20aを介して外部配管が接続され、穴20aは第1の流量制御流路からガスを排出するためのガス出口となる。
 流路28の他端に抵抗流路REの一端が接続されている。抵抗流路REの他端は流路26の一端に接続されている。流路26の他端は穴26aを介して外部配管が接続されるようになっている。流路20の他端と流路28の一端が接続されている場合には、流路26の他端に通じる穴26aが、第1の流量制御流路からガスを排出するためのガス出口となる。
 第2の流量制御流路は、流路4、流路12、抵抗流路RB及び流路22によって構成される。流路4の一端に通じる穴4aはガス入口であり、所定のガスを供給する外部配管が接続される。
 流路4の他端と流路12の一端にはそれぞれ穴4b、12aを介して圧力制御バルブの入口及び出口が接続され、流路4と流路12との間に圧力制御バルブが介在するようになっている。流路12の他端には、穴12bを介して圧力センサが接続されるようになっている。流路12の他端に抵抗流路RBの一端が接続されている。
 抵抗流路RBの他端は流路22の一端と接続されている。流路22の他端は穴22aを介して外部の配管が接続されるようになっており、穴20aは第2の流量制御流路からガスを排出するためのガス出口となる。
 第3の流量制御流路は、流路6、流路14、流路16、抵抗流路RC及び流路24によって構成され、必要に応じて、それらの流路に流路30、抵抗流路RE及び流路32が追加される。流路6の一端に通じる穴6aはガス入口であり、所定のガスを供給する外部配管が接続される。
 流路6の他端と流路14の一端にはそれぞれ穴6b、14aを介して圧力制御バルブの入口及び出口が接続され、流路6と流路14との間に圧力制御バルブが介在するようになっている。流路14の他端には、穴14bを介して圧力センサが接続されるようになっている。流路14の他端と流路16の一端は互いに接続されている。流路16の他端に抵抗流路RCの一端が接続されている。
 抵抗流路RCの他端は流路24の一端と接続されている。流路24の他端は穴24aを介して外部の配管又は別の流路板が接続されるようになっている。流路24の他端と流路30の一端は、必要に応じて別の流路板によって互いに接続されるようになっている。流路24の他端と流路30の一端が接続されない場合、流路24の他端には穴24aを介して外部配管が接続され、穴24aは第3の流量制御流路からガスを排出するためのガス出口となる。
 流路30の他端に抵抗流路RDの一端が接続されている。抵抗流路RDの他端は流路32の一端に接続されている。流路32の他端は穴32aを介して外部配管が接続されるようになっている。流路24の他端と流路30の一端が接続されている場合には、流路32の他端に通じる穴32aが、第3の流量制御流路からガスを排出するためのガス出口となる。
 図2から図5は、それぞれ上記流路アセンブリ1を用いて水素炎イオン化検出(FID)、熱伝導度検出器(TCD)、炎光光度検出器(FPD)、アルカリ熱イオン化検出器(FTD)のためのフローコントローラを構成する場合の流路構成図である。以下、検出器ごとに説明する。
 <FID>
 FIDでは水素ガス(H2)、無機ガス(MU)、エアーを用いる。FIDにおいて、水素ガス、無機ガス、エアーの流量を制御するために必要な流路抵抗は、それぞれRA、RB、RCである。そのため、図2に示されているように、FID用のフローコントローラ100は第1の流量制御流路を用いて水素ガスの流量を制御し、第2の流量制御流路を用いて無機ガスの流量を制御し、第3の流量制御流路を用いてエアーの流量を制御する。第1から第3の流量制御流路を構成するために、穴2bと8aの位置、穴4bと12aの位置、穴6bと14aの位置にそれぞれ圧力制御バルブ33、36、40が搭載され、穴8bの位置、穴12bの位置、穴14bの位置にそれぞれ圧力センサ34、38、42が搭載されている。
 水素ガスは、ガス入口2aから第1の流量制御流路に導入され、流路2、圧力制御バルブ33、流路8、流路10、抵抗流路RA、流路20を通って、ガス出口20aから排出される。この第1の流量制御流路により、FIDに供給される水素ガスの流量を制御するために必要な流路抵抗RAが得られる。水素ガスの流量は、圧力センサ34による検出値に基づいた圧力制御バルブ33のフィードバック制御により制御される。
 無機ガスは、ガス入口4aから第2の流量制御流路に導入され、流路4、圧力制御バルブ36、流路12、抵抗流路RB、流路22を通って、ガス出口22aから排出される。この第2の流量制御流路により、FIDに供給される無機ガスの流量を制御するために必要な流路抵抗RBが得られる。無機ガスの流量は、圧力センサ38による検出値に基づいた圧力制御バルブ36のフィードバック制御により制御される。
 エアーは、ガス入口6aから第3の流量制御流路に導入され、流路6、圧力制御バルブ40、流路14、流路16、抵抗流路RC、流路24を通って、ガス出口24aから排出される。この第3の流量制御流路により、FIDに供給されるエアーの流量を制御するために必要な流路抵抗RCが得られる。エアーの流量は、圧力センサ42による検出値に基づいた圧力制御バルブ40のフィードバック制御により制御される。
 <TCD>
 TCDは無機ガスのみを用いる。無機ガスの流量を制御するために必要な流路抵抗はRAである。そのため、TCD用のフローコントローラ200では、図3に示されているように、第1の流量制御流路を用いて無機ガスの流量を制御する。穴2bと8aの位置に圧力制御バルブ33が搭載され、穴8bの位置に圧力センサ34が搭載されて第1の流量制御流路が構成されている。
 無機ガスは、ガス入口2aから第1の流量制御流路に導入され、流路2、圧力制御バルブ33、流路8、流路10、抵抗流路RA、流路20を通って、ガス出口20aから排出される。この第1の流量制御流路により、TCDに供給される無機ガスの流量を制御するために必要な流路抵抗RAが得られる。無機ガスの流量は、圧力センサ34による検出値に基づいた圧力制御バルブ33のフィードバック制御により制御される。
 <FPD>
 FPDでは水素ガスとエアーを用いる。FPDにおいて、水素ガス、エアーの流量を制御するための流路抵抗は、それぞれRA、RC+RDである。そのため、図4に示されているように、FID用のフローコントローラ300は第1の流量制御流路を用いて水素ガスの流量を制御し、第3の流量制御流路を用いてエアーの流量を制御する。第1の流量制御流路と第3の流量制御流路を構成するために、穴2bと8aの位置と穴6bと14aの位置にそれぞれ圧力制御バルブ33と40が搭載され、穴8bの位置と穴14bの位置にそれぞれ圧力センサ34と42が搭載されている。さらに、第3の流量制御流路の流路抵抗をRC+RDとするために、穴24aと穴30aとの間を連通させるバイパス流路46を備えた流路板44が流路アセンブリ1に搭載されている。
 水素ガスは、ガス入口2aから第1の流量制御流路に導入され、流路2、圧力制御バルブ33、流路8、流路10、抵抗流路RA、流路20を通って、ガス出口20aから排出される。この第1の流量制御流路により、FIDに供給される水素ガスの流量を制御するために必要な流路抵抗RAが得られる。水素ガスの流量は、圧力センサ34による検出値に基づいた圧力制御バルブ33のフィードバック制御により制御される。
 エアーは、ガス入口6aから第3の流量制御流路に導入され、流路6、圧力制御バルブ40、流路14、流路16、抵抗流路RC、流路24、バイパス流路46、流路30、抵抗流路RD、流路32を通ってガス出口32aから排出される。この第3の流量制御流路により、FPDに供給されるエアーの流量を制御するために必要な流路抵抗RC+RDが得られる。エアーの流量は、圧力センサ42による検出値に基づいた圧力制御バルブ40のフィードバック制御により制御される。
 <FTD>
 FTDでは水素ガス(H2)、無機ガス(MU)、エアーを用いる。FTDにおいて、水素ガス、無機ガス、エアーの流量を制御するために必要な流路抵抗は、それぞれRA+RE、RB、RC+RDである。そのため、図5に示されているように、FTD用のフローコントローラ400は第1の流量制御流路を用いて水素ガスの流量を制御し、第2の流量制御流路を用いて無機ガスの流量を制御し、第3の流量制御流路を用いてエアーの流量を制御する。第1から第3の流量制御流路を構成するために、穴2bと8aの位置、穴4bと12aの位置、穴6bと14aの位置にそれぞれ圧力制御バルブ33、36、40が搭載され、穴8bの位置、穴12bの位置、穴14bの位置にそれぞれ圧力センサ34、38、42が搭載されている。さらに、第1の流量制御流路の流路抵抗をRA+REとするため、穴20aと28aの間を連通させるバイパス流路50を備えた流路板48が流路アセンブリ1に搭載されている。さらに、第3の流量制御流路の流路抵抗をRC+RDとするために、穴24aと穴30aとの間を連通させるバイパス流路46を備えた流路板44が流路アセンブリ1に搭載されている。
 水素ガスは、ガス入口2aから第1の流量制御流路に導入され、流路2、圧力制御バルブ33、流路8、流路10、抵抗流路RA、流路20、バイパス流路50、流路28、抵抗流路RE、流路26を通って、ガス出口26aから排出される。この第1の流量制御流路により、FTDに供給される水素ガスの流量を制御するために必要な流路抵抗RA+REが得られる。水素ガスの流量は、圧力センサ34による検出値に基づいた圧力制御バルブ33のフィードバック制御により制御される。
 無機ガスは、ガス入口4aから第2の流量制御流路に導入され、流路4、圧力制御バルブ36、流路12、抵抗流路RB、流路22を通って、ガス出口22aから排出される。この第2の流量制御流路により、FIDに供給される無機ガスの流量を制御するために必要な流路抵抗RBが得られる。無機ガスの流量は、圧力センサ38による検出値に基づいた圧力制御バルブ36のフィードバック制御により制御される。
 エアーは、ガス入口6aから第3の流量制御流路に導入され、流路6、圧力制御バルブ40、流路14、流路16、抵抗流路RC、流路24、バイパス流路46、流路30、抵抗流路RD、流路32を通ってガス出口32aから排出される。この第3の流量制御流路により、FPDに供給されるエアーの流量を制御するために必要な流路抵抗RC+RDが得られる。エアーの流量は、圧力センサ42による検出値に基づいた圧力制御バルブ40のフィードバック制御により制御される。
 以上において説明したように、流路アセンブリ1内には、該流路アセンブリ1の内部においては互いに連通していない複数の抵抗流路抵抗流路RA(流路抵抗値:RA)、RB(流路抵抗値:RB)、RC(流路抵抗値:RC)、RD(流路抵抗値:RD)及びRE(流路抵抗値:RE)が設けられており、フローコントローラの種類(それが用いられる検出器の種類)に応じて必要な抵抗流路が追加的に流量制御流路内に組み込まれるようになっているので、共通の流路アセンブリを用いて各種フローコントローラを構成することができる。
   1   流路アセンブリ
   2,4,6,8,10,12,14,16,20,22,24,26,28,30,32   流路
   RA~RE   抵抗流路
   33,36,40   圧力制御バルブ
   34,38,42   圧力センサ
   44,48   流路板
   46,50   バイパス流路

Claims (2)

  1.  複数枚の基板が積層されてなる積層基板からなり、前記積層基板の表面にガス入口及びガス出口が設けられているとともに、前記積層基板の内部に、前記積層基板の内部では互いに連通しない複数の抵抗流路が内部流路として設けられている流路アセンブリと、
     前記流路アセンブリの表面に設けられた穴を介して前記内部流路と接続された圧力センサと、
     前記流路アセンブリの表面に設けられた穴を介して前記内部流路に接続された圧力制御バルブと、を備え、
     前記ガス入口から前記ガス出口までが流量制御流路として連通し、その流量制御流路上に前記圧力センサ及び前記圧力制御バルブが搭載されているとともに、該流量制御流路の流路抵抗が所望の流路抵抗となるように選択された少なくとも1つの前記抵抗流路が該流量制御流路内に接続されているフローコントローラ。
  2.  前記流路アセンブリは、前記ガス入口及び前記ガス出口をそれぞれ複数備え、該フローコントローラが適用される検出器で使用するガスの種類に応じて選択された前記ガス入口と前記ガス出口との間が前記流量制御流路として連通している請求項1に記載のフローコントローラ。
PCT/JP2016/069367 2016-06-30 2016-06-30 フローコントローラ WO2018003046A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2016/069367 WO2018003046A1 (ja) 2016-06-30 2016-06-30 フローコントローラ
JP2018524647A JP6555419B2 (ja) 2016-06-30 2016-06-30 フローコントローラ
US16/099,234 US10753914B2 (en) 2016-06-30 2016-06-30 Flow controller
CN201680083238.2A CN109073609B (zh) 2016-06-30 2016-06-30 流量控制器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/069367 WO2018003046A1 (ja) 2016-06-30 2016-06-30 フローコントローラ

Publications (1)

Publication Number Publication Date
WO2018003046A1 true WO2018003046A1 (ja) 2018-01-04

Family

ID=60786252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069367 WO2018003046A1 (ja) 2016-06-30 2016-06-30 フローコントローラ

Country Status (4)

Country Link
US (1) US10753914B2 (ja)
JP (1) JP6555419B2 (ja)
CN (1) CN109073609B (ja)
WO (1) WO2018003046A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11218528A (ja) * 1997-11-27 1999-08-10 Shimadzu Corp ガスクロマトグラフ装置およびガスクロマトグラフ装置用キャリアガス供給流路構成体
JP2005156214A (ja) * 2003-11-21 2005-06-16 Shimadzu Corp ガスクロマトグラフ
JP2006509996A (ja) * 2002-04-02 2006-03-23 カリパー・ライフ・サイエンシズ・インコーポレーテッド サンプル生体材料の1種以上のサンプル成分を分離及び単離するための方法、システム及び装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935040A (en) * 1989-03-29 1990-06-19 The Perkin-Elmer Corporation Miniature devices useful for gas chromatography
US5534328A (en) * 1993-12-02 1996-07-09 E. I. Du Pont De Nemours And Company Integrated chemical processing apparatus and processes for the preparation thereof
US5872010A (en) * 1995-07-21 1999-02-16 Northeastern University Microscale fluid handling system
DE59905582D1 (de) * 1998-11-20 2003-06-18 Sepiatec Gmbh Verfahren und vorrichtung zur regelung einzelner teilströme eines fördersystems für fluide medien
JP4168417B2 (ja) * 2002-11-18 2008-10-22 株式会社山武 流体検出装置
WO2005088296A1 (en) * 2004-03-04 2005-09-22 Perkinelmer Las, Inc. Methods and systems for characterizing a sorbent tube
JPWO2008105197A1 (ja) * 2007-02-28 2010-06-03 株式会社山武 フローセンサ
JP4826570B2 (ja) * 2007-10-19 2011-11-30 株式会社島津製作所 ガス流路切替装置
JP2012237600A (ja) * 2011-05-10 2012-12-06 Shimadzu Corp ガスクロマトグラフ装置
KR101940325B1 (ko) * 2011-10-05 2019-01-18 가부시키가이샤 호리바 에스텍 유체 기구 및 상기 유체 기구를 구성하는 지지 부재 및 유체 제어 시스템
JP5845966B2 (ja) * 2012-02-24 2016-01-20 株式会社島津製作所 ガスクロマトグラフ装置
WO2014115331A1 (ja) * 2013-01-28 2014-07-31 株式会社島津製作所 ガス圧力コントローラ
US20140260540A1 (en) * 2013-03-15 2014-09-18 Agilent Technologies, Inc. Sample inlet with multi-capillary liner for gas chromatography
CN204989124U (zh) * 2015-10-12 2016-01-20 中科天融(北京)科技有限公司 一种适用于挥发性有机物的测量流路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11218528A (ja) * 1997-11-27 1999-08-10 Shimadzu Corp ガスクロマトグラフ装置およびガスクロマトグラフ装置用キャリアガス供給流路構成体
JP2006509996A (ja) * 2002-04-02 2006-03-23 カリパー・ライフ・サイエンシズ・インコーポレーテッド サンプル生体材料の1種以上のサンプル成分を分離及び単離するための方法、システム及び装置
JP2005156214A (ja) * 2003-11-21 2005-06-16 Shimadzu Corp ガスクロマトグラフ

Also Published As

Publication number Publication date
JP6555419B2 (ja) 2019-08-07
CN109073609B (zh) 2020-10-09
CN109073609A (zh) 2018-12-21
JPWO2018003046A1 (ja) 2018-11-01
US20190212308A1 (en) 2019-07-11
US10753914B2 (en) 2020-08-25

Similar Documents

Publication Publication Date Title
US9169558B2 (en) Fluid control apparatus
US9556966B2 (en) Gas supplying apparatus
US9702481B2 (en) Pilot-operated spool valve
TWI683195B (zh) 分流系統、使用該分流系統的流體控制系統、及流體控制系統的製造方法
WO2015060176A1 (ja) 流体制御弁
JP7054207B2 (ja) 流体制御装置
US8905074B2 (en) Apparatus for controlling gas distribution using orifice ratio conductance control
US10782710B2 (en) Flow control system, method, and apparatus
TWI564502B (zh) Integrated gas supply device
WO2013161187A1 (ja) 半導体製造装置のガス分流供給装置
CA2953844A1 (en) Economical environmental control system (ecs) smart venturi
JP6555419B2 (ja) フローコントローラ
US20140208827A1 (en) Hermetic manifold for analytical instruments
JP7335977B2 (ja) パイロット操作圧力調整器
JP2008292484A (ja) 集積タイプのマスフローコントローラを用いた流体供給機構
JP5669583B2 (ja) 流量算出システム、集積型ガスパネル装置及びベースプレート
WO2009152103A2 (en) Method and apparatus for dampening pressure fluctuations in a fluid delivery system
US20230266280A1 (en) Unitary distribution plate and configurable diaphragm
US11537150B2 (en) Fluid control apparatus
KR20230173199A (ko) 유체 전달 장착 패널 및 시스템
TW202244657A (zh) 包含有歧管構件的流體流動控制系統
JPH10160016A (ja) 圧力補償弁

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018524647

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16907279

Country of ref document: EP

Kind code of ref document: A1