WO2018001337A1 - 混合动力车辆的移动电站和混合动力车辆 - Google Patents

混合动力车辆的移动电站和混合动力车辆 Download PDF

Info

Publication number
WO2018001337A1
WO2018001337A1 PCT/CN2017/090929 CN2017090929W WO2018001337A1 WO 2018001337 A1 WO2018001337 A1 WO 2018001337A1 CN 2017090929 W CN2017090929 W CN 2017090929W WO 2018001337 A1 WO2018001337 A1 WO 2018001337A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
vehicle
power supply
battery
supply module
Prior art date
Application number
PCT/CN2017/090929
Other languages
English (en)
French (fr)
Inventor
邓林旺
王超
滕景翠
刘宇
王兴辉
罗红斌
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201620691892.9U external-priority patent/CN205890538U/zh
Priority claimed from CN201610505963.6A external-priority patent/CN107554275A/zh
Priority claimed from CN201611251912.1A external-priority patent/CN108263220A/zh
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2018001337A1 publication Critical patent/WO2018001337A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to the field of vehicle technology, and in particular, to a mobile power station of a hybrid vehicle and a hybrid vehicle.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned techniques to some extent. Accordingly, it is an object of the present invention to provide a mobile power plant for a hybrid vehicle that is capable of meeting the user's power needs while the vehicle is parked or while traveling.
  • a second object of the present invention is to provide a hybrid vehicle.
  • a first aspect of the present invention provides a mobile power station of a hybrid vehicle, including: a power battery; an in-vehicle bidirectional power supply module, wherein the in-vehicle bidirectional power supply module is connected to the power battery, the vehicle
  • the bidirectional power supply module is configured to convert the DC power provided by the power battery into a power frequency AC power, wherein the vehicle bidirectional power supply module is respectively connected to the charging port and the at least one inverter output port, and the charging port is used to pass the vehicle
  • the bidirectional power supply module charges the power battery, the charging port is further configured to output power frequency alternating current, and at least one of the inverter output ports is configured to output power frequency alternating current.
  • the vehicle bidirectional power supply module can convert the direct current power provided by the power battery into the power frequency alternating current, so that the vehicle bidirectional power supply module can be used for charging the power battery or for outputting outward.
  • the power frequency alternating current can thereby supply electric energy to the external electric appliance through the power battery of the vehicle, and the mobile power station has low noise, low pollution, high output power, and can meet the user's power demand when the vehicle is parked or when driving. , improve the quality of life of users.
  • a second aspect of the present invention provides a hybrid vehicle including a mobile power plant of a hybrid vehicle according to the first aspect of the present invention.
  • the hybrid vehicle according to the embodiment of the present invention can supply electric energy to an external electric appliance through a power battery, and has low noise and low pollution when the electric energy is supplied, and has high output power, and can satisfy the user's electricity consumption when the vehicle is parked or when driving. Demand has improved the quality of life of users.
  • FIG. 1 is a schematic structural view of a mobile power plant of a hybrid vehicle according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a hybrid vehicle according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a circuit in an in-vehicle bidirectional power supply module according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a circuit in an in-vehicle bidirectional power supply module according to another embodiment of the present invention.
  • FIG. 5 is a schematic structural view of a mobile power plant of a hybrid vehicle according to an embodiment of the present invention.
  • a mobile power plant of a hybrid vehicle includes a power battery 10 and an in-vehicle bidirectional power supply module 20.
  • the in-vehicle bidirectional power supply module 20 is connected to the power battery 10, and the in-vehicle bidirectional power supply module 20 is configured to convert the DC power provided by the power battery 10 into a power frequency alternating current.
  • the vehicle bidirectional power supply module 20 is respectively connected to the charging port and the at least one inverter output port, and the charging port is used for charging the power battery 10 through the vehicle bidirectional power supply module 20, and the charging port is also used for outputting power frequency alternating current, at least one inverter.
  • the output port is used to output power frequency AC power.
  • the in-vehicle bidirectional power supply module 20 of the embodiment of the present invention can not only rectify the AC power of the power grid but also charge the power battery 10, and can also invert the DC power of the power battery 10 to the power grid, or be an AC load such as an external electrical appliance. powered by.
  • a mobile power station including two inverter output ports is taken as an example, and a port integrated with the charging port and the charging port is further included, that is, the mobile power station may include a port capable of charging and outputting power frequency alternating current.
  • the port 23 in FIG. 1 is an integration of a charging port and an inverter output port. When the port 23 is connected to an external charging power source, the power battery can be charged, and when the port 23 is connected to an external power source, the port can be externally connected.
  • the electrical output is industrial frequency AC.
  • port 24 and port 25 are inverter output ports, which can only be used to connect to external electrical appliances, and output electrical frequency AC power to external electrical appliances.
  • the onboard bidirectional power supply module 20 can include a power supply controller 21 and a power converter 22.
  • the power converter 22 can be connected to the charging port and the at least one inverter output through the AC transmission line 26.
  • the power supply controller 21 can be used to obtain the output power of the charging power and the power frequency alternating current, and control the power converter 22 to perform power conversion according to the charging power and the output power.
  • the power supply controller 21 can be realized by an element having an input/output interface and a corresponding computing capability, such as a single chip microcomputer, a programmable logic controller (PLC), a field programmable gate array (FGPA), a complex programmable logic device (CPLD).
  • PLC programmable logic controller
  • FGPA field programmable gate array
  • CPLD complex programmable logic device
  • the mobile power station may further include a battery management system 30, which is respectively connected to the power battery 10 and the vehicle-mounted bidirectional power supply module 20, and the battery management system 30 is configured to monitor the state of charge of the power battery 10. And controlling the on-vehicle bidirectional power supply module 20 to output the power frequency alternating current according to the state of charge of the power battery 10. Specifically, when the state of charge of the power battery 10 is high, the in-vehicle bidirectional power supply module 20 can be allowed to convert the direct current power of the power battery 10 into a power frequency alternating current.
  • FIG. 3 is a schematic structural diagram of a circuit in an in-vehicle bidirectional power supply module according to an embodiment of the present invention.
  • the circuit in the in-vehicle bidirectional power supply module may include a first bridge unit and controllable switches K1, K2, K3, and K4 (eg, may be implemented by a relay), and the first bridge unit 221 includes four bridge arms.
  • Each of the bridge arm branches includes a switch tube, that is, the first bridge unit includes four switch tubes Q1, Q2, Q3 and Q4, and the switch tubes Q1 to Q4 can be controlled by a pulse width modulation signal (PWM signal).
  • PWM signal pulse width modulation signal
  • the control electrode (gate) of each switch is connected to a control signal such as PWM1, PWM2, PWM3 or PWM4, and the source and drain are connected to the arm branch.
  • the first bridge unit can implement a corresponding rectification or inverter function under the action of the control signal.
  • a diode and a capacitor can be further connected in parallel between the source and the drain of each of the switching transistors.
  • the first bridge unit can convert the DC power provided by the power battery 10 into AC power when outputting the power frequency AC power, or convert the AC power of the charging power source into DC power during charging.
  • the charging port and the at least one inverter output port can send the connection confirmation signals CC1, CC2, CC3 and CP to the power supply controller 21, and the power supply controller 21 can be configured according to
  • the collected CC1-CC3 and CP judge whether to charge or output the commercial frequency alternating current, and can confirm the charging power or the output power of the commercial frequency alternating current by the connection confirmation signal, and the power supply controller 21 communicates with the battery management system 30 to obtain whether or not the vehicle is allowed.
  • the bidirectional power supply module 20 converts the DC power of the power battery 10 into the information of the power frequency AC.
  • the power supply controller 21 sends a control signal to the controllable switches K1-K4 to close the controllable switches K1-K4 to turn on the circuit.
  • the power supply controller 21 can calculate the duty ratio to the switching transistors Q1 ⁇ Q4 by voltage and current, for example, by providing corresponding PWM control signals PWM1 ⁇ PWM4, to control the first bridge unit to achieve power conversion.
  • the circuit may further include a first capacitor C1 connected to the DC side of the first bridge unit and a first inductor L1, a second inductor L2 and a second capacitor C2 connected to the AC side of the first bridge unit.
  • the circuit in the in-vehicle bidirectional power supply module may include a second bridge unit 222, a third bridge unit 223, a fourth bridge unit 224, and a transformer T1.
  • each bridge unit comprises 4 controllable switch tubes
  • the second bridge unit comprises switch tubes Q5, Q6, Q7 and Q8
  • the third bridge unit comprises switch tubes Q9, Q10, Q11 and Q12
  • the fourth bridge includes switching tubes Q13, Q14, Q15 and Q16.
  • the circuit may further include a third capacitor C3 connected to the DC side of the second bridge unit, a fourth capacitor C4 connected to the DC side of the fourth bridge unit, and a third inductor connected to the AC side of the fourth bridge unit.
  • L3 and fifth capacitor C5. The circuit can be controlled in a similar manner to the embodiment shown in FIG. 3, and details are not described herein again.
  • the charging port may be located outside the vehicle, the charging port may be used to output the power frequency alternating current after the vehicle stops driving, at least one inverter output port may be located inside the vehicle, and at least one inverter output port may be used in the The power frequency AC is output after the vehicle stops driving or while the vehicle is running. Taking into account the safety factor, during the running of the vehicle, the charging port located outside the vehicle can be prohibited from outputting the power frequency alternating current. Inverter output inside the vehicle The port can not only output the power frequency AC after the vehicle stops driving, but also output the power frequency AC power during the running of the vehicle to better meet the user's power demand.
  • the mobile power plant of the hybrid vehicle of the embodiment of the present invention may further include: a first motor 40, a fuel engine 50, an engine controller 60, and a first motor controller 70.
  • the engine controller 60 can be coupled to the battery management system 30.
  • the engine controller 60 can control the startup of the fuel engine 50 to drive the first motor 40 when the state of charge of the power battery 10 is low.
  • the first motor controller 70 is for controlling the driven first motor 40 to charge the power battery 10.
  • the power battery 10 can be charged by the fuel power system of the vehicle to further output the power frequency alternating current through the vehicle bidirectional power supply module 20.
  • the hybrid vehicle may include a second motor 41 and a second motor controller 71.
  • the second motor 41 and the second motor controller 71 can be used to drive the vehicle so that the power performance of the vehicle is not greatly affected.
  • the in-vehicle bidirectional power supply module 20, the battery management system 30, the engine controller 60, and the first motor controller 70 are all connected to the CAN bus network of the hybrid vehicle, Information exchange via the CAN bus network.
  • the operating mode of the hybrid vehicle can be divided according to the power source, the running state, and the like of the hybrid vehicle.
  • the working mode of the vehicle is a pure electric power conversion mode.
  • the vehicle can be connected to the socket trigger signal, and the power supply controller 21 of the vehicle bidirectional power supply module 20 determines whether to charge or output the power frequency AC power, and then sends a request to the battery management system 30, and the battery management system 30 determines the power battery 10
  • the power of the power battery 10 is converted and output by the on-vehicle bidirectional power supply module 20 to output the power frequency alternating current.
  • the working mode of the vehicle is a pure electric driving power conversion mode.
  • the vehicle can be connected to the socket trigger signal, and the power supply controller 21 of the vehicle bidirectional power supply module 20 determines whether it is charging or outputting power frequency alternating current. If it is charging, the circuit is prohibited from being turned on. If it is outputting power frequency alternating current, Then, the battery management system 30 sends a request to the battery management system 30. The battery management system 30 determines the state of charge of the power battery 10. After confirming that the power frequency AC power is allowed to be output, the power of the power battery 10 is converted and output by the vehicle bidirectional power supply module 20.
  • the working mode of the vehicle is the fuel in-situ electric energy conversion mode.
  • the vehicle can be connected to the socket trigger signal, and the power supply controller 21 of the vehicle bidirectional power supply module 20 determines whether to charge or output the power frequency AC power, and then sends a request to the battery management system 30, and the battery management system 30 determines the power battery 10
  • the engine controller 60 confirms that the fuel engine 50 is started, the dual clutch control is disconnected from the entire vehicle, and all power is passed.
  • the first motor controller 70 drives the first motor 40 to charge the power battery 10, and after the power battery 10 is charged and confirmed, the power frequency AC power is allowed to be output, and the power of the power battery 10 is converted and outputted by the vehicle bidirectional power supply module 20.
  • the working mode of the vehicle is the fuel driving power conversion mode.
  • the vehicle can be connected to the socket trigger signal, and the power supply controller 21 of the vehicle bidirectional power supply module 20 determines whether it is charging or outputting power frequency alternating current. If it is charging, the circuit is prohibited from being turned on. If it is outputting power frequency alternating current, Then, a request is sent to the battery management system 30, and the battery management system 30 determines the state of charge of the power battery 10. If the state of charge of the power battery 10 is low, a command to start the fuel engine 50 is sent, and the engine controller 60 confirms the control of the fuel.
  • the engine 50 is started to drive the vehicle on the one hand, and the first motor 40 is driven to charge the power battery 10 by the first motor controller 70 on the other hand.
  • the power frequency alternating current can be allowed to be output, and the power battery 10 is allowed.
  • the electric energy is converted and outputted by the vehicle bidirectional power supply module 20 to output power frequency alternating current.
  • the vehicle in order to avoid affecting the power performance of the vehicle, when the first motor 40 is driven by the first motor controller 70 to charge the power battery 10, the vehicle may also be driven by the second motor.
  • the vehicle's working mode is the charging power conversion mode.
  • the charging port cannot simultaneously output the power frequency AC power during the charging process, but the inverter output port can output the power frequency. AC power.
  • the in-vehicle bidirectional power supply module 20 can simultaneously perform charging and outputting power frequency alternating current.
  • the output power of the power frequency alternating current plus the charging power can be less than or equal to the charging power of the external charging power source, and the power is also limited by the current capability of the charging harness itself.
  • the mobile power station of the embodiment of the present invention may further include: an in-vehicle air detecting module 80, an outside air detecting module 90, and a reminding module 100.
  • the in-vehicle air detection module 80 is coupled to the battery management system 30 for detecting air quality inside the vehicle;
  • the off-board air detection module 90 is coupled to the battery management system for detecting air quality outside the vehicle.
  • the in-vehicle air detection module 80 and the off-board air detection module 90 may be primarily used to detect the concentration of PM2.5.
  • the reminder module 100 is connected to the battery management system 30, wherein when the air quality inside the vehicle is not up to standard and the air quality outside the vehicle reaches the standard, the reminder module 100 issues a reminder of the window ventilation; the air quality inside the vehicle and the air outside the vehicle
  • the engine controller 60 controls the fuel engine 50 to stop, so as to prevent the PM2.5 generated by the fuel engine 50 from affecting personal safety; when the air quality inside the vehicle reaches the standard and the air quality outside the vehicle fails to meet the standard, the engine control The controller 60 controls the fuel engine 50 to stop. If the air quality outside the vehicle is still not up to standard after the preset time, indicating that the external pollution is serious, the reminder module 100 issues a reminder that the vehicle leaves.
  • an air filter module may also be provided to filter the outside air when the air quality outside the vehicle is not up to standard.
  • the vehicle bidirectional power supply module can convert the direct current power provided by the power battery into the power frequency alternating current, so that the vehicle bidirectional power supply module can be used for charging the power battery or for outputting outward.
  • the power frequency alternating current can thereby supply electric energy to the external electric appliance through the power battery of the vehicle, and the mobile power station has low noise, low pollution, high output power, and can meet the user's power demand when the vehicle is parked or when driving. , improve the quality of life of users.
  • the present invention also proposes a hybrid vehicle.
  • the hybrid vehicle of the embodiment of the present invention includes the mobile power station of the hybrid vehicle according to the above-mentioned embodiments of the present invention.
  • the hybrid vehicle of the embodiment of the present invention includes the mobile power station of the hybrid vehicle according to the above-mentioned embodiments of the present invention.
  • a hybrid vehicle is capable of supplying electric power to an external electric appliance through a power battery, and Moreover, when the electric energy is supplied, the noise is low, the pollution is small, and the output power is high, and the user's power demand can be satisfied when the vehicle is parked or when driving, thereby improving the quality of life of the user.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical connection, or can be electrical connection; can be directly connected, or can be indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements.
  • installation can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种混合动力车辆的移动电站和混合动力汽车,该移动电站包括:动力电池(10);车载双向供电模块(20),车载双向供电模块(20)与动力电池(10)相连,车载双向供电模块(20)用于将动力电池(10)提供的直流电转换为工频交流电,其中,车载双向供电模块(20)分别与充电口(23)和至少一个逆变输出口(23、24、25)相连,充电口(23)用于通过车载双向供电模块(20)为动力电池(10)充电,充电口(23)还用于输出工频交流电,至少一个逆变输出口(23、24、25)用于输出工频交流电。所述混合动力车辆的移动电站,能够在车辆停靠时或行驶时对外供电。

Description

混合动力车辆的移动电站和混合动力车辆 技术领域
本发明涉及车辆技术领域,特别涉及一种混合动力车辆的移动电站和一种混合动力车辆。
背景技术
随着时代的进步,汽车日益普及,而人们在车上的时间越来越长,对于汽车的舒适性要求越来越高。开车旅行,可以随意停靠在远离城市的沙滩、湖岸、草地、山坡和森林中,由于车辆停靠的地点远离市电供电电网,使得人们难以维持在城市中的生活方式。
目前,汽车大多采用点烟器对外接用电器进行供电,但点烟器的负载能力较低,难以满足人们日常生活中所用的电烹饪器、电视机和热水器等电器的用电需求。还有在房车中普遍应用的燃油发电技术,通过燃油发动机进行发电,但其燃油发动机的噪音大,污染严重,另外房车的价格一般高于普通汽车。
发明内容
本发明旨在至少在一定程度上解决上述技术中的技术问题之一。为此,本发明的一个目的在于提出一种混合动力车辆的移动电站,以能够在车辆停靠时或行驶时满足用户的用电需求。
本发明的第二个目的在于提出一种混合动力车辆。
为达到上述目的,本发明第一方面实施例提出了一种混合动力车辆的移动电站,其包括:动力电池;车载双向供电模块,所述车载双向供电模块与所述动力电池相连,所述车载双向供电模块用于将所述动力电池提供的直流电转换为工频交流电,其中,所述车载双向供电模块分别与充电口和至少一个逆变输出口相连,所述充电口用于通过所述车载双向供电模块为所述动力电池充电,所述充电口还用于输出工频交流电,至少一个所述逆变输出口用于输出工频交流电。
根据本发明实施例的混合动力车辆的移动电站,车载双向供电模块可将动力电池提供的直流电转换为工频交流电,从而车载双向供电模块既可用于对动力电池进行充电,也可用于向外输出工频交流电,由此,能够通过车辆的动力电池为外接用电器提供电能,而且该移动电站的噪音低且污染小,输出功率较高,能够在车辆停靠时或行驶时满足用户的用电需求,提高了用户的生活质量。
为达到上述目的,本发明第二方面实施例提出了一种混合动力车辆,该车辆包括本发明第一方面实施例提出的混合动力车辆的移动电站。
根据本发明实施例的混合动力车辆,能够通过动力电池为外接用电器提供电能,而且提供电能时其噪音低且污染小,输出功率较高,能够在车辆停靠时或行驶时满足用户的用电需求,提高了用户的生活质量。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1为根据本发明实施例的混合动力车辆的移动电站的结构示意图。
图2为根据本发明一个实施例的混合动力车辆的结构示意图。
图3为根据本发明一个实施例中的车载双向供电模块中的电路结构示意图。
图4为根据本发明另一个实施例中的车载双向供电模块中的电路结构示意图。
图5为根据本发明一个实施例的混合动力车辆的移动电站的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面结合附图来描述本发明实施例的混合动力车辆的移动电站和混合动力车辆。
图1为根据本发明实施例的混合动力车辆的移动电站的结构示意图。如图1所示,本发明实施例的混合动力车辆的移动电站,包括动力电池10和车载双向供电模块20。
其中,车载双向供电模块20与动力电池10相连,车载双向供电模块20用于将动力电池10提供的直流电转换为工频交流电。其中,车载双向供电模块20分别与充电口和至少一个逆变输出口相连,充电口用于通过车载双向供电模块20为动力电池10充电,充电口还用于输出工频交流电,至少一个逆变输出口用于输出工频交流电。
具体地,本发明实施例的车载双向供电模块20不仅能够将电网的交流电整流后为动力电池10充电,还能够将动力电池10的直流电逆变后供向电网,或为外接用电器等交流负载供电。
图1中以包括两个逆变输出口的移动电站为例,还包括一个逆变输出口与充电口集成设置的端口,即该移动电站可包括一个既能够充电又能够输出工频交流电的端口。例如,在图1中的端口23为充电口和逆变输出口的集成,当端口23连接到外接充电电源时,可为动力电池充电,在端口23连接到外接用电器时,可向外接用电器输出工频交流电。而相对来说,端口24和端口25为逆变输出口,仅可用于连接到外接用电器,并向外接用电器输出工频交流电。
如图1所示,车载双向供电模块20可包括供电控制器21和功率转换器22。其中,功率转换器22可与充电口和至少一个逆变输出口通过交流传输线26相连。供电控制器21可用于获取充电功率和工频交流电的输出功率,并根据充电功率和输出功率控制功率转换器22进行功率转换。供电控制器21可由单片机,可编程逻辑控制器(PLC),现场可编程门阵列(FGPA),复杂可编程逻辑器件(CPLD)等具有输入输出接口和相应运算能力的元件实现。
参见图2,本发明实施例的移动电站还可包括电池管理***30,电池管理***30与动力电池10和车载双向供电模块20分别相连,电池管理***30用于监测动力电池10的荷电状态,并根据动力电池10的荷电状态控制车载双向供电模块20输出工频交流电。具体地,在动力电池10的荷电状态较高时,可允许车载双向供电模块20将动力电池10的直流电转换为工频交流电。
图3为根据本发明一个实施例中的车载双向供电模块中的电路结构示意图。如图3所示,车载双向供电模块中的电路可包括第一桥式单元和可控开关K1、K2、K3及K4(例如可由继电器实现),第一桥式单元221包括四个桥臂支路,每个桥臂支路包括一开关管,即第一桥式单元包括4个开关管Q1、Q2、Q3及Q4,开关管Q1~Q4可由脉宽调制信号(PWM信号)进行控制。即每个开关管的控制极(栅极)连接控制信号,如PWM1、PWM2、PWM3或PWM4信号,源极和漏极接入桥臂支路。从而第一桥式单元可在控制信号的作用下实现相应的整流或逆变功能。且在每个开关管的源极和漏极之间可进一步并联二极管和电容。第一桥式单元可在输出工频交流电时将动力电池10提供的直流电转换为交流电,也可在充电时将充电电源的交流电转换为直流电。在外接充电电源或外接用电器与车载双向供电模块相连时,充电口和至少一个逆变输出口可将连接确认信号CC1、CC2、CC3以及CP发送至供电控制器21,供电控制器21可根据采集的CC1-CC3和CP判断充电或输出工频交流电,并可通过连接确认信号确认充电功率或工频交流电的输出功率,并且供电控制器21通过与电池管理***30的通信以获取是否允许车载双向供电模块20将动力电池10的直流电转换为工频交流电的信息,如果允许,则供电控制器21发送控制信号至可控开关K1-K4,使可控开关K1-K4闭合以导通电路。同时,供电控制器21可通过电压和电流计算出占空比给到开关管Q1~Q4,例如,通过提供相应的PWM控制信号PWM1~PWM4,控制第一桥式单元实现功率转换。此外,该电路还可包括连接在第一桥式单元直流侧的第一电容C1以及连接在第一桥式单元交流侧第一电感L1、第二电感L2和第二电容C2。
图4为根据本发明另一个实施例的车载双向供电模块中的电路结构示意图。如图4所示,车载双向供电模块中的电路可包括第二桥式单元222、第三桥式单元223、第四桥式单元224和变压器T1。其中,每个桥式单元包括4个可控开关管,第二桥式单元包括开关管Q5、Q6、Q7及Q8;第三桥式单元包括开关管Q9、Q10、Q11及Q12;第四桥式单元包括开关管Q13、Q14、Q15及Q16。另外,该电路还可包括连接在第二桥式单元直流侧的第三电容C3、连接在第四桥式单元直流侧的第四电容C4以及连接在第四桥式单元交流侧的第三电感L3和第五电容C5。该电路可以采用与图3所示实施例类似的方式进行控制,在此不再赘述。
在本发明的一个实施例中,充电口可位于车辆外部,充电口可用于在车辆停止行驶后输出工频交流电,至少一个逆变输出口可位于车辆内部,至少一个逆变输出口可用于在车辆停止行驶后或车辆行驶过程中输出工频交流电。考虑到安全的因素,在车辆行驶的过程中,可禁止位于车辆外部的充电口输出工频交流电。而位于车辆内部的逆变输出 口不仅可以在车辆停止行驶后输出工频交流电,还可以在车辆行驶过程中输出工频交流电,更好地满足了用户的用电需求。
如图2所示,本发明实施例的混合动力车辆的移动电站还可包括:第一电机40、燃油发动机50、发动机控制器60和第一电机控制器70。其中,发动机控制器60可与电池管理***30相连,发动机控制器60在动力电池10的荷电状态偏低时,可控制燃油发动机50启动,以驱动第一电机40。第一电机控制器70用于控制被驱动的第一电机40为动力电池10充电。由此,在动力电池10的荷电状态较低时,可通过车辆的燃油动力***为动力电池10充电,以便进一步通过车载双向供电模块20输出工频交流电。
在本发明的一个实施例中,混合动力车辆可包括:第二电机41和第二电机控制器71。在第一电机40用于为动力电池10充电时,第二电机41和第二电机控制器71可用于驱动车辆,从而车辆的动力性能不会受到太大影响。
此外,如图2所示,在本发明的实施例中,车载双向供电模块20、电池管理***30、发动机控制器60和第一电机控制器70均接入混合动力车辆的CAN总线网络,以通过CAN总线网络进行信息交互。
在本发明的一个实施例中,可根据混合动力车辆的动力源和行驶状态等划分混合动力车辆的工作模式。
具体地,在燃油发动机未启动,仅动力电池工作,即动力源为动力电池时,如果车辆停止行驶,则车辆的工作模式为纯电原地电能转换模式。在该模式下,车辆可接到插座触发信号,由车载双向供电模块20的供电控制器21判断充电或输出工频交流电,然后发送请求给电池管理***30,电池管理单***30判断动力电池10的荷电状态,确认允许输出工频交流电后,动力电池10的电能由车载双向供电模块20转换输出工频交流电。
在动力源为动力电池时,如果车辆处于行驶过程中,则车辆的工作模式为纯电行车电能转换模式。在该模式下,车辆可接到插座触发信号,由车载双向供电模块20的供电控制器21判断是充电或输出工频交流电,如果是充电,则禁止电路接通,如果是输出工频交流电,则发送请求给电池管理***30,电池管理***30判断动力电池10的荷电状态,确认允许输出工频交流电后,动力电池10的电能由车载双向供电模块20转换输出工频交流电。
在燃油发动机启动,发动机与动力电池均工作,即动力源为燃油和动力电池时,如果车辆停止行驶,则车辆的工作模式为燃油原地电能转换模式。在该模式下,车辆可接到插座触发信号,由车载双向供电模块20的供电控制器21判断是充电或输出工频交流电,然后发送请求给电池管理***30,电池管理***30判断动力电池10的荷电状态,如果动力电池10的荷电状态偏低,则发送启动燃油发动机50的命令,发动机控制器60确认后控制燃油发动机50启动,双离合器控制与整车驱动断开,全部动力通过第一电机控制器70驱动第一电机40给动力电池10充电,在动力电池10充电连接确认后,可允许输出工频交流电,动力电池10的电能由车载双向供电模块20转换输出工频交流电。
在动力源为燃油和动力电池时,如果车辆处于行驶过程中,则车辆的工作模式为燃油行车电能转换模式。在该模式下,车辆可接到插座触发信号,由车载双向供电模块20的供电控制器21判断是充电或输出工频交流电,如果是充电,则禁止电路接通,如果是输出工频交流电,则发送请求给电池管理***30,电池管理***30判断动力电池10的荷电状态,如果动力电池10的荷电状态偏低,则发送启动燃油发动机50的命令,发动机控制器60确认后控制燃油发动机50启动,一方面驱动车辆行驶,另一方面通过第一电机控制器70驱动第一电机40给动力电池10充电,在动力电池10充电连接确认后,可允许输出工频交流电,动力电池10的电能由车载双向供电模块20转换输出工频交流电。在本发明的一个实施例中,为避免影响车辆的动力性能,在通过第一电机控制器70驱动第一电机40给动力电池10充电时,还可通过第二电机来驱动车辆行驶。
在没有动力源,车辆进行充电的过程中,车辆的工作模式为充电电能转换模式,在该模式下,充电口无法在充电的过程中同时输出工频交流电,但逆变输出口可以输出工频交流电。由此,车载双向供电模块20可同时进行充电和输出工频交流电的过程。在功率方面,工频交流电的输出功率加上充电功率可小于等于外接充电电源的充电功率,并且功率还受充电线束自身耐电流能力的限制。
此外,如图5所示,本发明实施例的移动电站还可包括:车内空气检测模块80、车外空气检测模块90和提醒模块100。车内空气检测模块80与电池管理***30相连,用于检测车辆内部的空气质量;车外空气检测模块90与所述电池管理***相连,用于检测车辆外部的空气质量。在本发明的一个实施例中,车内空气检测模块80和车外空气检测模块90可主要用于检测PM2.5的浓度。提醒模块100与电池管理***30相连,其中,在车辆内部的空气质量未达标而车辆外部的空气质量达标时,提醒模块100发出开窗通风的提醒;在车辆内部的空气质量和车辆外部的空气质量均未达标时,发动机控制器60控制燃油发动机50停止,以免燃油发动机50产生的PM2.5对人身安全造成影响;在车辆内部的空气质量达标而车辆外部的空气质量未达标时,发动机控制器60控制燃油发动机50停止,如果在预设时间后车辆外部的空气质量仍未达标,说明外界污染严重,则提醒模块100发出车辆离开的提醒。在本发明的一个实施例中,还可设置空气过滤模块,在车辆外部的空气质量未达标时,可对车外空气进行过滤。
根据本发明实施例的混合动力车辆的移动电站,车载双向供电模块可将动力电池提供的直流电转换为工频交流电,从而车载双向供电模块既可用于对动力电池进行充电,也可用于向外输出工频交流电,由此,能够通过车辆的动力电池为外接用电器提供电能,而且该移动电站的噪音低且污染小,输出功率较高,能够在车辆停靠时或行驶时满足用户的用电需求,提高了用户的生活质量。
对应上述实施例,本发明还提出一种混合动力车辆。
本发明实施例的混合动力车辆,包括本发明上述实施例提出的混合动力车辆的移动电站,其具体的实施方式可参照上述实施例,为避免冗余,在此不再赘述。
根据本发明实施例的混合动力车辆,能够通过动力电池为外接用电器提供电能,而 且提供电能时其噪音低、污染小,输出功率较高,能够在车辆停靠时或行驶时满足用户的用电需求,提高了用户的生活质量。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (11)

  1. 一种混合动力车辆的移动电站,包括:
    动力电池;
    车载双向供电模块,与所述动力电池相连,所述车载双向供电模块用于将所述动力电池提供的直流电转换为工频交流电;
    充电口,用于通过所述车载双向供电模块为所述动力电池充电,以及用于输出所述双向供电模块转换的工频交流电;
    至少一个逆变输出口,用于输出所述双向供电模块转换的工频交流电;
    其中,所述车载双向供电模块分别与所述充电口和所述至少一个逆变输出口相连。
  2. 根据权利要求1所述的混合动力车辆的移动电站,其特征在于,所述车载双向供电模块包括供电控制器和功率转换器,所述功率转换器用于进行直流-交流/交流-直流双向转换;所述供电控制器用于获取充电功率和所述工频交流电的输出功率,并根据所述充电功率和所述输出功率控制所述功率转换器进行功率转换。
  3. 根据权利要求2所述的混合动力车辆的移动电站,其特征在于,所述车载双向供电模块的功率转换器包括一桥式单元,该桥式单元在控制信号的作用下实现相应的整流或逆变功能;且该桥式单元在控制信号由所述供电控制器提供。
  4. 根据权利要求1-3中任一项所述的混合动力车辆的移动电站,其特征在于,所述充电口位于所述车辆外部,所述充电口用于在所述车辆停止行驶后输出工频交流电,至少一个所述逆变输出口位于所述车辆内部,至少一个所述逆变输出口用于在所述车辆停止行驶后或所述车辆行驶过程中输出工频交流电。
  5. 根据权利要求1-4中任一项所述的混合动力车辆的移动电站,其特征在于,还包括:
    电池管理***,所述电池管理***与所述动力电池和所述车载双向供电模块分别相连,所述电池管理***用于监测所述动力电池的荷电状态,并根据所述动力电池的荷电状态控制所述车载双向供电模块输出工频交流电。
  6. 根据权利要求5所述的混合动力车辆的移动电站,其特征在于,还包括:
    车内空气检测模块,所述车内空气检测模块与所述电池管理***相连,用于检测所述车辆内部的空气质量;
    车外空气检测模块,所述车外空气检测模块与所述电池管理***相连,用于检测所述车辆外部的空气质量。
  7. 根据权利要求6所述的混合动力车辆的移动电站,其特征在于,还包括:
    提醒模块,所述提醒模块与所述电池管理***相连,
    其中,在所述车辆内部的空气质量未达标而所述车辆外部的空气质量达标时,所述提醒模块发出开窗通风的提醒;
    在所述车辆内部的空气质量和所述车辆外部的空气质量均未达标时,所述发动机控制器控制所述燃油发动机停止;
    在所述车辆内部的空气质量达标而所述车辆外部的空气质量未达标时,所述发动机控制器控制所述燃油发动机停止,如果在预设时间后所述车辆外部的空气质量仍未达标,则所述提醒模块发出车辆离开的提醒。
  8. 一种混合动力车辆,其特征在于,包括根据权利要求1-7中任一项所述的混合动力车辆的移动电站。
  9. 根据权利要求8所示的车辆,其特征在于,还包括:
    第一电机;
    燃油发动机;
    发动机控制器,所述发动机控制器与电池管理***相连,所述发动机控制器在所述动力电池的荷电状态偏低时,控制所述燃油发动机启动,以驱动所述第一电机;
    第一电机控制器,所述第一电机控制器用于控制被驱动的所述第一电机为所述动力电池充电。
  10. 根据权利要求9所述的车辆,其特征在于,所述车辆包括:
    第二电机和第二电机控制器,所述第二电机和所述第二电机控制器用于在第一电机为动力电池充电时驱动所述车辆。
  11. 根据权利要求8-10中任一项所述的车辆,其特征在于,所述车载双向供电模块、所述电池管理***、所述发动机控制器和所述第一电机控制器均接入所述车辆的CAN总线网络。
PCT/CN2017/090929 2016-06-30 2017-06-29 混合动力车辆的移动电站和混合动力车辆 WO2018001337A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201620691892.9U CN205890538U (zh) 2016-06-30 2016-06-30 混合动力车辆的移动电站和混合动力车辆
CN201610505963.6A CN107554275A (zh) 2016-06-30 2016-06-30 混合动力车辆的移动电站和混合动力车辆
CN201620691892.9 2016-06-30
CN201610505963.6 2016-06-30
CN201621481394 2016-12-30
CN201611251912.1 2016-12-30
CN201611251912.1A CN108263220A (zh) 2016-12-30 2016-12-30 纯电动车辆的移动电站和纯电动车辆
CN201621481394.8 2016-12-30

Publications (1)

Publication Number Publication Date
WO2018001337A1 true WO2018001337A1 (zh) 2018-01-04

Family

ID=60785896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090929 WO2018001337A1 (zh) 2016-06-30 2017-06-29 混合动力车辆的移动电站和混合动力车辆

Country Status (1)

Country Link
WO (1) WO2018001337A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109129519A (zh) * 2018-10-23 2019-01-04 深圳市施罗德工业测控设备有限公司 一种分离式搭接车
CN110001445A (zh) * 2019-05-28 2019-07-12 北京有感科技有限责任公司 车辆充电方法及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007252117A (ja) * 2006-03-16 2007-09-27 Chugoku Electric Power Co Inc:The 電力供給システムおよび電力供給方法
CN102756637A (zh) * 2011-04-27 2012-10-31 上海汽车集团股份有限公司 混合动力充电车及其充电控制方法
CN103580100A (zh) * 2012-07-31 2014-02-12 三菱自动车工业株式会社 电动车辆的外部供电设备
CN205890538U (zh) * 2016-06-30 2017-01-18 比亚迪股份有限公司 混合动力车辆的移动电站和混合动力车辆
CN106611886A (zh) * 2015-10-26 2017-05-03 比亚迪股份有限公司 混合动力汽车的放电方法和***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007252117A (ja) * 2006-03-16 2007-09-27 Chugoku Electric Power Co Inc:The 電力供給システムおよび電力供給方法
CN102756637A (zh) * 2011-04-27 2012-10-31 上海汽车集团股份有限公司 混合动力充电车及其充电控制方法
CN103580100A (zh) * 2012-07-31 2014-02-12 三菱自动车工业株式会社 电动车辆的外部供电设备
CN106611886A (zh) * 2015-10-26 2017-05-03 比亚迪股份有限公司 混合动力汽车的放电方法和***
CN205890538U (zh) * 2016-06-30 2017-01-18 比亚迪股份有限公司 混合动力车辆的移动电站和混合动力车辆

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109129519A (zh) * 2018-10-23 2019-01-04 深圳市施罗德工业测控设备有限公司 一种分离式搭接车
CN110001445A (zh) * 2019-05-28 2019-07-12 北京有感科技有限责任公司 车辆充电方法及设备
CN110001445B (zh) * 2019-05-28 2024-02-09 北京有感科技有限责任公司 车辆充电方法及设备

Similar Documents

Publication Publication Date Title
JP5682702B2 (ja) 電力変換設備、電動車両および電動車両の充電システム
WO2018019148A1 (zh) 电动汽车、电动汽车的多功能车载充电器及其控制方法
JP5267740B1 (ja) 車両の電源システム
US9493086B2 (en) Charging system and charging reservation method
CN103187759B (zh) 电动汽车之间相互充电的***及充电连接器
JP4466772B2 (ja) 車両の制御装置
CN102089177B (zh) 电动车辆
JPWO2014033915A1 (ja) 車両および車両の制御方法
WO2013097820A1 (zh) 电动汽车及其的充电控制***
CN110014977B (zh) 车辆和车辆的车载充电***及其控制方法
JP5776482B2 (ja) 電動車両
WO2018157599A1 (zh) 车辆太阳能充电装置、***、控制方法以及车辆
US20130030637A1 (en) Hybrid plug-in vehicle control device
CN105790340A (zh) 车载充电***及车辆
CN105790337A (zh) 车载充电***及车辆
CN105762918A (zh) 一种房车能源控制***
CN107539146B (zh) 一种车载充电供电***
JP6183709B2 (ja) 電動車両の充放電システム
WO2022160544A1 (zh) 车载充电机v2v快充***及其控制方法
WO2014026460A1 (zh) 一种集成开关磁阻电机驱动与低压电池充电的变换装置
JP2010213373A (ja) 制御装置及び制御方法
JP2006333552A (ja) 電源システム
CN106042885A (zh) 一种插电式混合动力汽车用双向供电***
WO2018001337A1 (zh) 混合动力车辆的移动电站和混合动力车辆
JP5757262B2 (ja) 空調装置およびそれを備える車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17819334

Country of ref document: EP

Kind code of ref document: A1