WO2018001325A1 - 近眼显示***、虚拟现实设备及增强现实设备 - Google Patents

近眼显示***、虚拟现实设备及增强现实设备 Download PDF

Info

Publication number
WO2018001325A1
WO2018001325A1 PCT/CN2017/090845 CN2017090845W WO2018001325A1 WO 2018001325 A1 WO2018001325 A1 WO 2018001325A1 CN 2017090845 W CN2017090845 W CN 2017090845W WO 2018001325 A1 WO2018001325 A1 WO 2018001325A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning fiber
scanning
array
eye
display system
Prior art date
Application number
PCT/CN2017/090845
Other languages
English (en)
French (fr)
Inventor
黄琴华
Original Assignee
成都理想境界科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都理想境界科技有限公司 filed Critical 成都理想境界科技有限公司
Publication of WO2018001325A1 publication Critical patent/WO2018001325A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present invention relates to the field of visual technologies, and in particular, to a near-eye display system, a virtual reality device, and an augmented reality device.
  • Augmented reality technology is usually based on the real physical environment image obtained by the image acquisition device such as a camera.
  • the computer system recognizes and analyzes the query, and displays the virtual image generated by the virtual content such as text content, image content or image model associated with the virtual reality image.
  • the user can obtain the extended information such as the annotation, description and the like of the real object in the real physical environment, or experience the stereoscopic and highlighted enhanced visual effect of the real object in the real physical environment.
  • Virtual reality technology is a computer simulation system that can create and experience a virtual world. It uses a computer to generate a simulation environment that can simultaneously immerse users in the simulation environment through visual, auditory, tactile and other feedback methods. In the virtual world.
  • Existing augmented reality and virtual reality technologies display one pixel at a time when displaying a virtual image through a scanning fiber array.
  • the refresh rate of the human eye is required to be at least 30 Hz.
  • the switching frequency of the optical switch that controls the scanning fiber to be turned on and off in the scanning fiber array is at least 14.3 MHz, and the scanning frequency of the scanning fiber is at least 12 kHz. If an 800*600 RGB color image needs to be displayed, since the color image needs to be time-series, the required switching frequency of the optical switch is at least 43 MHz, and the scanning frequency of the scanning fiber is at least 36 kHz.
  • the switching frequency of the optical switch required is too high, and the higher the switching frequency, the more energy is wasted. It can be seen from the prior art that in the prior art, there is a problem that the switching frequency of the optical switch is too high, resulting in low energy utilization.
  • the invention provides a near-eye display system, a virtual reality device and an augmented reality device, which can effectively reduce the switching frequency of the optical switch and can effectively improve the energy utilization rate.
  • a first aspect of the present application provides a near-eye display system, including a controller, a scanning fiber array, S tunable laser sources, and S splitting components, wherein the scanning fiber is pre-stored in the controller.
  • the correspondence relationship includes area field information corresponding to each non-interference region, and the S adjustable laser light sources and the S beam splitting components are in one-to-one correspondence
  • the S splitter components are in one-to-one correspondence with the S non-interference regions, each splitter component includes a plurality of output channels, and the S splitter components comprise a total of M*N output channels, wherein S, M, and N is an integer not less than 2; the laser outputted by the S tunable laser sources is divided into M*N beams after passing through the S beam splitting components; the controller is electrically connected to the S adjustable a laser light source for controlling an output energy of each tunable laser light source according to a display field gradation of the pre-stored image information; the
  • the tunable laser light source comprises a three-color laser light source, a collimating mirror group, a combiner, a coupler and a coupling optical fiber, wherein the three-color laser light source outputs a three-color laser; the collimating mirror group And disposed on the outgoing light path of the three-color laser light source for collimating the three-color laser; the combiner is disposed on an outgoing light path of the collimating lens group, and is used to The laser beam emitted by the straight lens group is subjected to a combining process; the coupler is disposed on an outgoing light path of the combiner for coupling a laser beam emitted from the combiner to the coupling fiber; the coupling fiber Connected to the coupler for transmitting laser light coupled through the coupler.
  • each of the scanning fibers includes a scanner disposed on the scanning fiber for deflecting the scanning fiber such that a beam exiting the scanning fiber is deflected with the scanning fiber.
  • the corresponding relationship between the scanning fiber and the S non-interference regions in the scanning fiber array is that the scanning fiber in the scanning fiber array is divided into S non-interference regions by the controller according to a preset condition. And got it.
  • the controller divides the scanning fiber in the scanning fiber array into the S non-interference regions according to the size of the exit pupil diameter.
  • the near-eye display system further includes a converging lens array group, the converging lens array group includes a first group of converging lens arrays and a second group of converging lens arrays, wherein the first group of converging lens arrays are disposed on the scanning
  • the side of the optical fiber array is close to the human eye, and the second set of converging lens arrays are disposed on the scanning optical fiber array away from the human eye. side.
  • the first group of converging lens arrays and the second group of converging lens arrays are both collimating converging lens arrays, and the first group of converging lens arrays and the second converging lens array are 1:1 Telescope system.
  • the first group of converging lens arrays and the second group of converging lens arrays are both electrically controlled liquid microlens arrays, and the first group of converging lens arrays and the second converging lens array are composed of 1: 1 non-focus system.
  • the near-eye display system further includes a concentrating lens array disposed on a side of the scanning fiber array near the human eye.
  • the near-eye display system further includes a dimming structure disposed on a side of the scanning fiber array away from the human eye.
  • a second aspect of the present application provides a virtual reality device, comprising: two sets of near-eye display systems according to the first aspect, wherein the first near-eye display system corresponds to a left eye of a person, and the second near-eye display system and The right eye of the person corresponds.
  • a third aspect of the embodiments of the present application provides an augmented reality device, comprising: two sets of near-eye display systems according to the first aspect, wherein the first near-eye display system corresponds to a left eye of a person, and the second near-eye display system and The right eye of the person corresponds, and the ambient light enters the left eye of the person through the concentrated lens array group of the first near-eye display system, and enters the right eye of the person through the concentrated lens array group of the second near-eye display system.
  • a correspondence between the scanning fiber and the S non-interference regions in the scanning fiber array is pre-stored in the controller, and the corresponding relationship includes a regional field of view corresponding to each non-interference region. information.
  • the controller controls the scanning fiber in the scanning fiber array to emit the output beam to form an S according to the corresponding relationship when the output beam output from the beam splitting assembly is transmitted through the scanning fiber in the scanning fiber array.
  • Field of view light and projecting the S field of view light to the human eye.
  • the near-eye display system can display S field of view light at each moment, that is, S pixels, where S is an integer not less than 2.
  • only one pixel can be displayed at a time. In this way, the switching frequency of the channel switch can be effectively reduced, and the energy utilization rate is also increased in the case where the switching frequency is reduced per unit time.
  • FIG. 1 is a schematic structural view of a near-eye display system according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a laser light source according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing a first structure of a scanning optical fiber according to an embodiment of the present invention.
  • FIG. 4 is a schematic view showing a second structure of a scanning optical fiber according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a scanning optical fiber array and a collimating lens array group according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of an optical path of a telephoto system of 1:1 according to an embodiment of the present invention.
  • FIG. 8 is a distribution diagram of a scanning fiber array divided into S non-interference regions according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a scanning optical fiber array and an electronically controlled liquid lens array group according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural view of a scanning optical fiber array, an electronically controlled liquid lens array, and a dimming structure according to an embodiment of the present invention
  • FIG. 11 is a schematic structural diagram of a relative position of a user's pupil and a transparent substrate according to an embodiment of the present invention.
  • 10 - S adjustable laser source 11 - adjustable laser source, 12 - adjustable laser source, 101 - red laser source, 102 - green laser source, 103 - blue laser source, 104 - - collimating mirror group, 1041 - collimating mirror group, 1042 - collimating mirror group, 1043 - collimating mirror group, 105 - beam combiner, 1051 - dichroic mirror, 1052 - two-way Chromatic mirror, 1053 - dichroic mirror, 106 - coupler, 107 - coupled fiber, 20 - S splitter, 21 - splitter, 22 - S splitter, 30 - scan fiber Array, 301 - scanning fiber, 302 - PZT piezoelectric ceramic, 303 - bushing, 304 - mount, 305 - transparent substrate, 40 - controller, 50 - first collimating lens array, 51 - a second collimating lens array, 52 - a first electronically controlled liquid crystal microlens array, 53 - a
  • the invention provides a near-eye display system, a virtual reality device and an augmented reality device, which can effectively reduce the switching frequency of the optical switch and can effectively improve the energy utilization rate.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a first aspect of an embodiment of the present invention provides a near-eye display system including S tunable laser light sources 10, S splitting components 20, a scanning fiber array 30, and a controller 40.
  • a corresponding relationship between the scanning fiber and the S non-interference regions in the scanning fiber array 30 is prestored in the controller 40, and the corresponding relationship includes the area field information corresponding to each non-interference region.
  • the S tunable laser sources 10 and the S beam splitting assemblies 20 are in one-to-one correspondence.
  • S splitting The component 20 is in one-to-one correspondence with the S non-interference regions.
  • Each of the beam splitting assemblies includes a plurality of output channels, and the S beam splitting assemblies 20 collectively include M*N output channels. S, M and N are all integers not less than 2.
  • the laser light output from the S tunable laser light sources 10 is divided into M*N light beams after passing through the S beam splitting assemblies 20.
  • the controller 40 is electrically connected to the S tunable laser light sources 10 for controlling the output energy of each tunable laser light source according to the display field gradation of the pre-stored image information.
  • a scanning fiber in the scanning fiber array 30 is coupled to the M*N output channels for transmitting output beams output from the S beam splitting assemblies 20. Based on the correspondence, the controller 40 controls the scanning fiber in the scanning fiber array 30 to emit the output beam to form S field of view light, and project the S field of view light to the human eye.
  • the image information is currently playing image information, which may be read from a memory or a server connected to the controller 40, or may be directly read from the memory, and may also be a storage space of the controller 40 itself.
  • the content is not specifically limited in this application.
  • the output energy of each of the S tunable laser sources 10 can be adjusted.
  • the output energy of each tunable laser source is 0 to 10 watts (W), so that the output energy of each tunable laser source can be controlled to any one of 0 to 10 W.
  • each of the S beam splitting assemblies 20 may be an optical splitter, and each of the splitting assemblies includes a plurality of output channels.
  • a beam splitting component corresponds to a tunable laser source and a non-interference region, respectively.
  • the output energy of each of the tunable laser sources is adjusted by controller 40 to achieve gamma control for each display field of view.
  • One display field corresponds to one pixel. The greater the gray level of a display field of view, the higher the output energy of the corresponding tunable laser source. Similarly, the smaller the gray level of a display field, the lower the output energy of the corresponding tunable laser source.
  • a light splitting component may also be composed of two optical splitters, wherein the incident end of the first optical splitter is connected to the exit end of a tunable laser light source 10, and the incident end of the second optical splitter is The exit ends of the first optical splitter are connected.
  • the S splitting components are comprised of M*N output channels. Each output channel is a fiber, so that the M*N output channels are M*N fibers.
  • the tunable laser source 11 and the tunable laser source 12 included in the S tunable laser sources 10 will be described as an example.
  • the tunable laser source 11 corresponds to the beam splitting component 21 of the S beam splitting assemblies 20, and the output channel of the beam splitting component 21 can be 10*10.
  • the tunable laser source 12 corresponds to the beam splitting component 22 of the S beam splitting assemblies 20, and the output channel of the beam splitting component 22 can be 10*10.
  • the display field of view gray of the image information is the pixel point gray level corresponding to the current display field of view.
  • the gray level of each pixel in the image corresponding to the image information may be acquired according to the image information, so that the display field of view gray level may be acquired. For example, if the current display field of view is 0° field of view, the pixel point gray level corresponding to the 0° field of view is obtained, for example, one of 0 to 255. Of course, if the current display field of view is multiple fields of view, then the current display field of view is obtained. The gray level of the pixel corresponding to each field of view.
  • the controller 40 acquires pixel gradation corresponding to each display field in the corresponding image according to the display field gradation of the image information.
  • the controller 40 then controls the scanning fiber in the scanning fiber array 30 to emit the output beam at each time to form S field of view light, that is, S pixel points, according to the correspondence.
  • Each pixel is output through the scanning fiber in a time-series manner.
  • the time at which all the pixels of the image information are output through the scanning fiber is less than the refresh time of the human eye. If the refresh rate of the human eye is 30 Hz, the human eye refresh time is 1/30 second (s), and then the time of outputting all the pixel points of the image information is less than 1/30 second (s).
  • each of the S tunable laser sources 10 can be a monochromatic laser source or a multi-color laser source.
  • the S tunable laser sources 10 are monochromatic laser tube sources, they are used to display a monochrome image.
  • the S tunable laser light sources 10 are multicolor laser light sources, they are used to display monochrome images and multicolor images.
  • the tunable laser light source may specifically be a three-color laser light source, such as an RGB laser light source or the like.
  • the tunable laser light source 11 will be specifically described as an example.
  • the tunable laser light source 11 includes a red laser light source 101, a green laser light source 102, and a blue laser light source 103.
  • the red laser source 101 is used to emit a red laser
  • the green laser source 102 is used to emit a green laser
  • the blue laser source 103 is used to emit a blue laser.
  • the output energy of each of the red laser source 101, the green laser source 102, and the blue laser source 103 can be adjusted.
  • the tunable laser source 11 further includes a collimating mirror assembly 104, a combiner 105, a coupler 106, and a coupling fiber 107.
  • the collimating lens group 104 is disposed on the outgoing light path of the laser light source 10 for collimating the laser light emitted from the laser light source 10.
  • the collimating mirror group 104 includes a collimating mirror 1041, a collimating mirror 1042 and a collimating mirror 1043.
  • the collimating mirror 1041 is disposed on the outgoing optical path of the red laser source 101 for collimating the red laser, and collimating The mirror 1042 is disposed on the outgoing light path of the green laser light source 102 for collimating the green laser light, and the collimating mirror 1043 is disposed on the outgoing light path of the blue laser light source 103 for collimating the blue laser light.
  • the laser source 10 may also be composed of a red laser source 101, a green laser source 102, a blue laser source 103, a combiner 105, a coupler 106, and a coupling fiber 107, but does not include the collimator group 104.
  • the coupling fiber 107 can be a crystalline fiber fiber, such as a silica optical fiber.
  • the combiner 105 is disposed on the exiting optical path of the collimating lens group 104 for combining the laser light emitted by the collimating lens group 104.
  • the combiner 105 includes a dichroic mirror 1051, a dichroic mirror 1052, and a dichroic mirror 1053, wherein the dichroic mirror 1051 reflects red light and transmits green light, and the dichroic mirror 1052 transmits green light, dichroic color.
  • the mirror 1053 transmits red light, green light, and reflects blue light, thereby synthesizing the laser light emitted by the collimating lens group 104 into one light beam. I won't go into details here.
  • the coupler 106 is disposed on the exiting optical path of the combiner 105 for coupling the laser light exiting the combiner 105 into the coupling fiber 107.
  • the coupling fiber 107 is coupled to a coupler 106 for transmitting laser light coupled via the coupler 106.
  • each of the beam splitting components splits the laser light output by the corresponding tunable laser light source into a plurality of light beams of equal energy.
  • the laser light output by the tunable laser light source 11 is split into 10*10 light beams of equal energy by the beam splitting assembly 21. If the energy of the laser light output from the tunable laser light source 11 is ER, the energy emitted from the exit end of each output channel of the final fiber splitter is ER/(10*10) after being split by the beam splitting unit 21.
  • the output energy of the tunable laser source 11 the output field of view gray scale can be controlled.
  • the output energy corresponding to the unit gradation is 2/. 256W.
  • the output energy of the tunable laser light source 11 is 160*2/256W.
  • the output energy of the tunable laser light source 11 is controlled to be 160*2/256W, so that the gradation of the pixel output from the scanning fiber corresponding to the tunable laser light source 11 is 160.
  • the scanning fiber array 30 includes an M*N beam scanning fiber.
  • the light beams output by the M*N output channels are coupled into the M*N beam scanning fiber, and the light beams output by the M*N output channels are deflected by the M*N beam scanning fiber, and the beam is deflected
  • the rear beam is projected onto the human eye.
  • the scanning fiber array 30 can constitute a scanning fiber optic panel. Further, the scanning fiber array 30 may include a horizontal scanning fiber bundle and a vertical scanning fiber bundle.
  • the horizontal scanning fiber bundle is used to expand a horizontal exit beam; the vertical scanning fiber bundle is used to expand a vertical exit beam.
  • fields of view of 120°, 130°, and 140° can be displayed, so that the display field of view matches the field of view of the human eye. .
  • the horizontal scanning fiber bundles are closely arranged or spacedly arranged scanning fiber bundles.
  • the vertical scanning fiber bundles are closely arranged or spacedly arranged scanning fiber bundles.
  • the meaning of the tight arrangement is that the interval between each adjacent two bundles of fibers is not greater than a preset distance, and the interval arrangement means that the interval between each adjacent two bundles of fibers is greater than a preset distance.
  • the preset distance is set according to actual conditions.
  • the preset distance may be a value of not less than 25 micrometers (um), for example, 25 um, 30 um, and 35 um, etc., which is not specifically limited herein.
  • each of the scanning fibers includes a scanner, and the scanner is disposed on the scanning fiber for deflecting the scanning fiber, so that the beam emitted by the scanning fiber is also deflected, thereby realizing Expansion in the horizontal and vertical directions.
  • the scanner may specifically be a two-dimensional scanner such as a PZT piezoelectric ceramic or the like.
  • the scanning fiber is deflected in the horizontal and vertical directions under the PZT piezoelectric ceramic drive (two-dimensional scanning), and S tunable lasers
  • the laser light output by the light source 10 is processed into an image beam, thereby achieving the purpose of transmitting the virtual image into the eyes of the user.
  • a bundle of scanning fibers 301 in scanning fiber array 30 includes PZT piezoelectric ceramic 302.
  • the scanning fiber 301 is disposed in the sleeve 303.
  • the PTZ piezoelectric ceramic 302 is fixed in the sleeve 303 through a fixing base 304, and the PZT piezoelectric ceramic 302 is disposed on the scanning optical fiber 301.
  • Both ends of the holder 304 are connected to the inner wall of the sleeve 303 such that the holder 304 is fixed in the sleeve 303.
  • the fixing base 304 can also be connected to the inner wall of the sleeve 303 only at one end, and the fixing seat 304 is also fixed in the sleeve 303, as shown in FIG.
  • the exit end face of the scanning fiber in the scanning fiber array 30 may be a plane or a curved surface.
  • the scanning fiber can be a crystalline fiber fiber, such as a silica optical fiber. This kind of fiber can obtain a beam with a small beam waist and a large numerical aperture.
  • the exit end face of the scanning fiber is a concave curved surface having a certain curvature, the concave curved surface will gather the light beam, so that the maximum scanning angle of each scanning optical fiber is reduced, thereby increasing the frequency of the optical fiber scanning in the scanning optical fiber array 30.
  • the convex curved surface When the exit end face of the scanning fiber is a convex curved surface having a certain curvature, the convex curved surface will diverge the light beam, so that the maximum scanning angle of each scanning optical fiber is increased, thereby reducing the frequency of scanning the optical fiber in the scanning optical fiber array 30.
  • the scanning fiber array 30 may be packaged in the transparent substrate 305.
  • the scanning fiber 301 is coated with a very thin transparent protective glue, that is, a coating layer, for the outer layer of the bare fiber.
  • the gap between each adjacent two scanning fibers is filled with a material having the same or similar refractive index as the coating layer.
  • the transparent substrate 305 is a substrate having a transparency greater than a preset transparency.
  • the preset transparency has a value ranging from 75% to 100%, that is, any value between 75% and 100%, for example, 75%, 85%, 100%, and the like.
  • the near-eye display system further includes a condenser lens array group.
  • the concentrating lens array group includes a first concentrating lens array and a second concentrating lens array.
  • the first converging lens array is disposed on a side of the scanning fiber array 30 near the human eye
  • the second converging lens array is disposed on a side of the scanning fiber array 30 away from the human eye.
  • the first concentrating lens array and the second concentrating lens array may both be collimating lens arrays.
  • a first collimating lens array 50 is disposed on a side of the scanning optical fiber array 30 close to the human eye
  • a second collimating lens array 51 is disposed on a side of the scanning optical fiber array 30 away from the human eye
  • the first standard The straight lens array 50 and the second collimating lens array 51 constitute a 1:1 telescope system. Since the scanning fiber array 30 is encapsulated in the transparent substrate 305, the ambient light enters the human eye through the 1:1 telescope system, and since the ambient light enters the human eye through the 1:1 telephoto system, it will not The outside world zooms in or out, so that users can feel the external environment more realistically.
  • the optical path principle of the 1:1 telephoto system is shown in Figure 6.
  • the first collimating lens array 50 is disposed on the outgoing optical path of the scanning fiber array 30 for collimating the light beam emitted from the scanning optical fiber array 30.
  • one of the collimating lenses in the first collimating lens array 50 is specifically Give an example for explanation.
  • a collimating lens 501 is further disposed on the outgoing optical path of the scanning optical fiber 301.
  • the collimating lens 501 is used to collimate the cone beam that the PZT piezoelectric ceramic 302 scans out so that it can be projected into the human eye in an approximately parallel manner.
  • the controller 40 may be a single chip microcomputer, a processing chip, a control circuit, or the like. Further, the near-eye display system is applied to a single eye, and when applied to both eyes, two sets of the near-eye display systems are required.
  • the controller 40 controls the output energy of each tunable laser light source according to the display field gradation of the image information. Specifically, the controller 40 acquires the display field gradation of each pixel in the image corresponding to the image information, and calculates a tunable laser corresponding to each pixel according to the display field gradation of each pixel.
  • the output energy of the light source is such that the tunable laser source corresponding to each pixel is output with the calculated output energy.
  • the controller 40 prestores the correspondence between the scanning fiber and the S non-interference regions in the scanning fiber array 30.
  • the correspondence relationship includes area field information corresponding to each non-interference area, wherein one non-interference area corresponds to one area field of view, and S is an integer not less than 2.
  • the corresponding relationship is prestored in the controller 40, and when the scanning fiber in the scanning fiber array 30 outputs the output beam, the controller 40 controls the scanning in the scanning fiber array 30 according to the correspondence relationship.
  • the optical fiber is caused to exit the output beam to form S field of view light and project the S field of view light to the human eye.
  • the near-eye display system can display S field-of-view light, ie, S pixel points, at each moment.
  • only one pixel can be displayed at a time. In this way, the switching frequency of the channel switch can be effectively reduced, and the energy utilization rate is also increased in the case where the switching frequency is reduced per unit time.
  • the controller 40 may divide the scanning fiber in the scanning fiber array 30 into S non-interference regions according to a preset condition, thereby acquiring the corresponding relationship, and acquiring the corresponding relationship.
  • the corresponding relationship is stored in the storage space of the controller 40 or stored in external storage hardware.
  • the controller 40 needs to read the correspondence from the external storage hardware.
  • the external storage hardware may be, for example, a storage device such as a memory card, a hard disk, or a USB device.
  • the non-interference region indicates that the region does not overlap with any other region.
  • the scanning fiber array 30 can control the S non-interference regions at the same time to display S field lights, that is, can be displayed at each moment.
  • S field of view light wherein one field of view light corresponds to one pixel point.
  • the preset condition may be a preset dividing manner, and the preset dividing manner may be according to scanning light.
  • the number of scanning fibers in the fiber array 30 is divided into S non-interference regions.
  • H and J are integers not less than 2, and H and J may be the same or different.
  • the preset division manner may be divided according to a display field of view of the near-eye display system. The larger the field of view is, the larger the value of S is. The smaller the display field of view, the smaller the value of S.
  • This application is not specifically limited.
  • the preset division manner may also be to directly set the value of S, and then divide the scanning fiber in the scanning fiber array 30 into S non-interference regions.
  • the controller 40 may further divide the scanning fiber in the scanning fiber array 30 into the S non-interference regions according to the size of the exit pupil diameter and the display field of view of the near-eye display system.
  • the diameter of the exit pupil in the horizontal direction is denoted by B 1
  • the diameter of the exit pupil in the vertical direction is denoted by B 2
  • the display field of view of the near-eye display system in the horizontal direction is denoted by C 1
  • the near-eye display system The display field of view in the vertical direction is represented by C 2
  • the M*N scanning fibers in the scanning fiber array 30 can be divided into S non-interference regions, wherein
  • L represents the distance from the human eye to the scanning fiber array 30.
  • the M*N beam channel can be divided into
  • the horizontal direction of the scanning fiber array 30 is divided into three regions, each of which does not overlap, and the vertical direction of the scanning fiber array 30 is also divided into three regions, each of which does not overlap, thereby obtaining nine non- Interference area.
  • the nine non-interference regions are non-interference regions of A1, A2, A3, A4, A5, A6, A7, A8, and A9, and each non-interference region is not heavy.
  • A1 corresponds to the beam splitting component 21
  • the beam splitting component 21 corresponds to the adjustable laser light source 11
  • A9 corresponds to the beam splitting component 22
  • the beam splitting component 22 corresponds to the adjustable laser light source 12.
  • A1 displays a field of view of -20° to -7° in the horizontal direction
  • A1 displays a field of view of 7° to 20° in the vertical direction.
  • the area of view of the area displayed by A1 is ⁇ (-20° to -7°), (7° to 20°) ⁇ .
  • the field of view displayed by A2 is ⁇ ((-7° ⁇ 7°), (7° ⁇ 20°) ⁇ ;
  • the field of view displayed by A3 is ⁇ (7° ⁇ 20°), (7° ⁇ 20°) ⁇ ;
  • A4 shows the field of view as ⁇ (-20° ⁇ -7°), (-7° ⁇ 7°) ⁇ ;
  • A5 shows the area of view as ⁇ (-7° ⁇ 7°), (-7° ⁇ 7°) ⁇ ;
  • A6 shows the field of view as ⁇ (7° ⁇ 20°), (-7° ⁇ 7°) ⁇ ;
  • A7 shows the field of view as ⁇ (-20° ⁇ - 7°), (-20° ⁇ -7°) ⁇ ;
  • the field of view of A8 is ⁇ (-7° ⁇ 7°), (-20° ⁇ -7°) ⁇ ;
  • the field of view displayed by A9 It is ⁇ (7° ⁇ 20°), (-20° ⁇ -7°) ⁇ .
  • the near-eye display system is capable of displaying nine fields of view light at each moment, that is, displaying nine pixel points.
  • the example of displaying an image of 800*600 is taken as an example, wherein the refresh rate of the human eye is required to be at least 30 Hz. If the displayed image is an RGB color image, the required switching frequency of the channel switch is at least Scanning fiber has the lowest scanning frequency
  • the switching frequency of the channel switch is at least Scanning fiber has the lowest scanning frequency If RGB color images are to be displayed, the color image needs to be time-series. Therefore, the switching frequency of the channel switch required in the prior art is the lowest. Scanning fiber has the lowest scanning frequency
  • the above embodiment of the present application can solve the technical problem of high switching frequency of the channel switch in the prior art, and achieve the effect of effectively reducing the switching frequency of the channel switch, and When the switching frequency is reduced per unit time, the energy utilization rate will also increase.
  • the maximum scanning angle of the scanning fiber in one non-interference region is the scan angle corresponding to the field of view of the region.
  • each fiber in the scanning fiber array needs to correspond to the total display field of view of the near-eye display system such that the maximum scanning angle of each fiber is the scanning angle corresponding to the total display field of view. Since an area field of view is only a part of the total display field of view, it is inevitable that the scan angle corresponding to any one of the field fields is smaller than the scan angle corresponding to the total display field of view. Therefore, In the embodiment of the present application, the maximum scanning angle required for scanning the optical fiber is reduced, so that the scanning frequency of the scanning optical fiber can be improved.
  • each non-interference region can display all gray levels of the image corresponding to the image information.
  • the gradation level of the image corresponding to the image information is 8 bits, that is, there are 256 gradation levels, then A1 and A9 are taken as an example. Since the maximum energy of the A1 output is 2W, the output energy corresponding to the unit gradation is 2/256W. If the display field of view that A1 currently needs to display is ⁇ -20°, 7° ⁇ , and the gray point of the pixel corresponding to ⁇ -20°, 7° ⁇ is obtained from the image corresponding to the image information is 180, The output energy of the tunable laser source can be obtained as 180*2/256W, and the controller 40 controls the output energy of the tunable laser source 11 to be 180*2/256W, and controls the deflection angle of each scanning fiber in A1 to pass through A1. The output shows a pixel with a field of view of ⁇ -20°, 7° ⁇ and a grayscale value of 180.
  • the display field of view that A9 currently needs to display is ⁇ 7°, -10° ⁇ , and the gradation of the pixel corresponding to ⁇ 7°, -10° ⁇ is obtained from the image corresponding to the image information.
  • the output energy of the tunable laser light source is 140*2/256W
  • the controller 40 controls the output energy of the tunable laser light source 12 to be 140*2/256W, and controls the deflection of each scanning fiber in the A9.
  • the angle is to display a pixel with a field of view of ⁇ 7°, -10° ⁇ and a gray value of 140 through the A9 output.
  • A2-A8 are controlled to output corresponding pixel points at the same time. In this way, by sequentially outputting 9 pixels at each time to output all the pixels in the corresponding image to the human eye, the image corresponding to the image information is projected to the human eye.
  • the first converging lens array and the second converging lens array may also be electrically controlled liquid microlens arrays.
  • the electrically controlled liquid microlens array can be, for example, an electrically controlled liquid crystal microlens array.
  • a first electronically controlled liquid crystal microlens array 52 is disposed on a side of the scanning fiber array 30 near the human eye
  • a second electronically controlled liquid crystal microlens array 53 is disposed on a side of the scanning fiber array 30 away from the human eye.
  • the first electrically controlled liquid crystal microlens array 52 and the second electrically controlled liquid crystal microlens array 53 constitute a 1:1 afocal system.
  • the scanning fiber array 30 is encapsulated in the transparent substrate 305, the ambient light enters the human eye through the 1:1 afocal system, and since the ambient light enters the human eye through the 1:1 afocal system, the The outside world zooms in or out, so that users can feel the external environment more realistically.
  • the first electrically controlled liquid crystal microlens array 52 is disposed on the outgoing optical path of the scanning fiber array 30 for collimating the light beam emitted from the scanning optical fiber array 30.
  • the first electronically controlled liquid crystal microlens array 52 and the second electronically controlled liquid crystal microlens array 53 do not operate without voltage, the first electrically controlled liquid crystal microlens array 52 and the second electrically controlled liquid crystal microlens array 53 have no light convergence or divergence. The function is that it does not exhibit the effect of light deflection, and does not have a light transition to the ambient light. In this way, the ambient light can pass through the first electrically controlled liquid crystal microlens array 52 and the transparent substrate 305 and then enter the human eye through the second electrically controlled liquid crystal microlens array 53 to realize the observation of the actual external environment.
  • the near-eye display system may further include a concentrating lens array disposed on a side of the scanning fiber array 30 close to the human eye, and the concentrating lens array is disposed on the scanning fiber
  • the outgoing light path of the array 30 is used to collimate the light beam exiting the scanning fiber array 30.
  • the concentrating lens array may be a collimating lens array or an electrically controlled liquid microlens array. The following is specifically described by taking the condensing lens array as an electrically controlled liquid crystal microlens array as an example.
  • a first electrically controlled liquid crystal microlens array 52 is disposed on the side of the scanning fiber array 30 near the human eye for collimating the light beam emitted from the scanning fiber array 30 to display a virtual image.
  • the dimming structure 54 when the near-eye display system including the first electronically controlled liquid crystal microlens array 52 is used for performing augmented reality display, the dimming structure 54 needs to be disposed on the side of the scanning fiber array 30 away from the human eye.
  • the dimming structure 54 may specifically be a PDLC film layer with an optical switch.
  • the virtual image and the real environment are displayed in a time-division manner. It is assumed that the refresh rate of the human eye is 30 Hz, and the time period corresponding to the refresh rate is divided into two segments. For a period of time, the virtual image is displayed, and the optical switch of the PDLC film layer is disconnected during this period, so that the PDLC film layer is opaque. Another period of time is used to observe the actual external environment.
  • the optical switch of the PDLC film layer is turned on, thereby applying a voltage to the PDLC film layer to make it transparent, so that the ambient light can pass through the PDLC film layer and the transparent substrate 305. .
  • no voltage is applied to the first electrically controlled liquid crystal microlens array 52. Since the first electronically controlled liquid crystal microlens array 52 does not operate without voltage application, the first electronically controlled liquid crystal microlens array 52 has no light converging or diverging function, that is, does not exhibit the effect of light deflection, and does not have a light transition to the external ambient light. In this way, external ambient light can pass through the PDLC film layer and the transparent substrate 305 and then enter the human eye through the first electronically controlled liquid crystal microlens array 52, thereby realizing the observation of the actual external environment.
  • time period corresponding to the refresh rate may also be divided into at least three segments, one or more of which are used to display the virtual image, and the remaining at least one time is used to observe the actual external environment.
  • the corresponding relationship between the scanning fiber and the S non-interference regions in the scanning fiber array is pre-stored in the controller, and the corresponding relationship includes the area field information corresponding to each non-interference region.
  • the controller controls the scanning fiber in the scanning fiber array to emit the output beam to form an S according to the corresponding relationship when the output beam output from the beam splitting assembly is transmitted through the scanning fiber in the scanning fiber array.
  • Field of view light and The S field of view light is projected onto the human eye.
  • the near-eye display system can display S field-of-view light, that is, S pixels, at each moment, where S is an integer not less than 2.
  • only one pixel can be displayed at a time. In this way, the switching frequency of the channel switch can be effectively reduced, and the energy utilization rate is also increased in the case where the switching frequency is reduced per unit time.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a second aspect of the embodiments of the present invention further provides a virtual reality device, comprising two sets of near-eye display systems as described in the first aspect, wherein the first near-eye display system corresponds to a person's left eye, and the second near-eye display system and a person The right eye corresponds.
  • the virtual reality device may further include a housing, and the first near-eye display system and the second near-eye display system are both disposed in the housing.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • a third aspect of the embodiments of the present invention further provides an augmented reality device, comprising two sets of near-eye display systems as described in the first aspect, wherein the first near-eye display system corresponds to a person's left eye, and the second near-eye display system and a person The right eye corresponds.
  • Ambient ambient light enters the left eye of the person through the set of converging lens arrays of the first near-eye display system and enters the right eye of the person through the group of converging lens arrays of the second near-eye display system.
  • the augmented reality device may further include a housing, and the first near-eye display system and the second near-eye display system are both disposed in the housing.
  • the concentrating lens array group includes a first concentrating lens array and a second concentrating lens array, the first concentrating lens array is disposed on a side of the scanning fiber array 30 near the human eye, and the second concentrating lens array is disposed. The side of the optical fiber array 30 that is away from the human eye is scanned.
  • the first concentrating lens array and the second concentrating lens array may both be collimating lens arrays.
  • a first collimating lens array 50 is disposed on a side of the scanning optical fiber array 30 close to the human eye
  • a second collimating lens array 51 is disposed on a side of the scanning optical fiber array 30 away from the human eye
  • the straight lens array 50 and the second collimating lens array 51 constitute a 1:1 telescope system. Since the scanning fiber array 30 is encapsulated in the transparent substrate 305, the ambient light enters the human eye through the 1:1 telescope system, and the external ambient light enters the human eye through the 1:1 telescope system. It will not enlarge or reduce the outside world, so that users can feel the external environment more realistically.
  • the optical path principle of the 1:1 telephoto system is shown in Figure 6.
  • the first converging lens array and the second converging lens array may also be electrically controlled liquid microlens arrays.
  • the electrically controlled liquid microlens array can be, for example, an electrically controlled liquid crystal microlens array.
  • a first electronically controlled liquid crystal microlens array 52 is disposed on a side of the scanning fiber array 30 near the human eye
  • a second electronically controlled liquid crystal microlens array 53 is disposed on a side of the scanning fiber array 30 away from the human eye.
  • the first electrically controlled liquid crystal microlens array 52 and the second electrically controlled liquid crystal microlens array 53 constitute a 1:1 afocal system.
  • the scanning fiber array 30 is encapsulated in the transparent substrate 305, the ambient light enters the human eye through the 1:1 afocal system, and since the ambient light enters the human eye through the 1:1 afocal system, the The outside world zooms in or out, so that users can feel the external environment more realistically.
  • the concentrating lens array group may further be a first electronically controlled liquid crystal microlens array 52 and a light modulating structure 54.
  • a near-eye display system including the first electronically controlled liquid crystal microlens array 52 is used for augmented reality display, it is necessary to provide a dimming structure 54 on the side of the scanning fiber array 30 that is away from the human eye.
  • the dimming structure 54 may specifically be a PDLC film layer with an optical switch.
  • the virtual image and the real environment are displayed in a time-division manner. It is assumed that the refresh rate of the human eye is 30 Hz, and the time period corresponding to the refresh rate is divided into two segments.
  • the virtual image is displayed, and the optical switch of the PDLC film layer is disconnected during this period, so that the PDLC film layer is opaque.
  • Another period of time is used to observe the actual external environment.
  • the optical switch of the PDLC film layer is turned on, thereby applying a voltage to the PDLC film layer to make it transparent, so that the ambient light can pass through the PDLC film layer and the transparent substrate. 305.
  • no voltage is applied to the first electrically controlled liquid crystal microlens array 52.
  • the first electronically controlled liquid crystal microlens array 52 Since the first electronically controlled liquid crystal microlens array 52 does not operate without voltage application, the first electronically controlled liquid crystal microlens array 52 has no light converging or diverging function, that is, does not exhibit the effect of light deflection, and does not have a light transition to the external ambient light. In this way, external ambient light can pass through the PDLC film layer and the transparent substrate 305 and then enter the human eye through the first electronically controlled liquid crystal microlens array 52, thereby realizing the observation of the actual external environment.
  • time period corresponding to the refresh rate may also be divided into at least three segments, one or more of which are used to display the virtual image, and the remaining at least one time is used to observe the actual external environment.
  • the corresponding relationship between the scanning fiber and the S non-interference regions in the scanning fiber array is pre-stored in the controller of the embodiment of the present application, and the corresponding relationship includes the area field information corresponding to each non-interference region.
  • the controller controls the scanning fiber in the scanning fiber array to emit the output beam to form an S according to the corresponding relationship when the output beam output from the beam splitting assembly is transmitted through the scanning fiber in the scanning fiber array.
  • the near-eye display system can display S field of view light at each moment. That is, S pixels, where S is an integer not less than 2.
  • only one pixel can be displayed at a time. In this way, the switching frequency of the channel switch can be effectively reduced, and the energy utilization rate is also increased in the case where the switching frequency is reduced per unit time.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

近眼显示***、虚拟现实设备及增强现实设备。近眼显示***包括控制器(40)、扫描光纤阵列(30)、S个可调激光光源(10)和S个分光组件(20),S个可调激光光源(10)和S个分光组件(20)一一对应,S个分光组件(20)与S个非干涉区域一一对应,S个分光组件(20)包括M*N个输出通道,S、M和N均为不小于2的整数;S个可调激光光源(10)输出的激光经过S个分光组件(20)后,被分成M*N个光束;控制器(40)电性连接S个可调激光光源(10),用于根据预先存储的影像信息的显示视场灰度,控制每个可调激光光源(10)的输出能量;扫描光纤阵列(30)用于传输从S个分光组件(20)输出的输出光束;控制器(40)根据所述对应关系,控制扫描光纤阵列(30)中的扫描光纤(301),使其出射输出光束以形成S个视场光,并将S个视场光投射至人眼。

Description

近眼显示***、虚拟现实设备及增强现实设备
本申请要求享有2016年7月1日提交的名称为“近眼显示***、虚拟现实设备及增强现实设备”的中国专利申请CN201610513731.5的优先权,其全部内容通过引用并入本文中。
技术领域
本发明涉及视觉技术领域,尤其涉及一种近眼显示***、虚拟现实设备及增强现实设备。
背景技术
随着计算机视觉技术的飞速发展,增强现实技术和虚拟现实技术也随之飞速发展。增强现实技术通常基于摄像头等图像采集设备获得的真实物理环境影像,通过计算机***识别分析及查询检索,将与之存在关联的文本内容、图像内容或图像模型等虚拟生成的虚拟图像显示在真实物理环境影像中,从而使用户能够获得身处的现实物理环境中的真实物体的标注、说明等相关扩展信息,或者体验到现实物理环境中真实物体的立体的、突出强调的增强视觉效果。而虚拟现实技术是一种可以创建和体验虚拟世界的计算机仿真***,它利用计算机生成一种模拟环境,该模拟环境能够同时通过视觉、听觉、触觉等反馈方式,使得用户沉浸到模拟环境展示出的虚拟世界中。
现有的增强现实技术和虚拟现实技术在通过扫描光纤阵列显示虚拟图像时,每一时刻显示一个像素点。例如以显示一幅800*600的单色图像为例,人眼的刷新率取最低要求30Hz。为了使得人眼能够看到显示的虚拟图像,则控制扫描光纤阵列中扫描光纤开通和断开的光开关的开关频率最低为14.3MHz,扫描光纤的扫描频率最低为12KHz。若需显示一幅800*600的RGB彩色图像,由于显示彩色图像需采用时序的方法,故需要的光开关的开关频率最低为43MHz,扫描光纤的扫描频率最低为36kHz。不管显示单色图像还是彩色图像,所需要的光开关的开关频率都过高,且开关频率越高使得浪费的能量越多。由此可知,现有技术中存在光开关的开关频率过高导致能量利用率低的问题。
发明内容
本发明提供一种近眼显示***、虚拟现实设备及增强现实设备,其能够有效降低光开关的开关频率,且能够有效提高能量利用率。
本申请实施例第一方面提供了一种近眼显示***,其特征在于,包括控制器、扫描光纤阵列、S个可调激光光源和S个分光组件,所述控制器中预存有所述扫描光纤阵列中的扫描光纤和S个非干涉区域的对应关系,所述对应关系包括每个非干涉区域对应的区域视场信息,所述S个可调激光光源和所述S个分光组件一一对应,所述S个分光组件与所述S个非干涉区域一一对应,每个分光组件包括多个输出通道,且所述S个分光组件一共包括M*N个输出通道,其中S、M和N均为不小于2的整数;所述S个可调激光光源输出的激光经过所述S个分光组件后,被分成M*N个光束;所述控制器电性连接所述S个可调激光光源,用于根据预先存储的影像信息的显示视场灰度,控制每个可调激光光源的输出能量;所述扫描光纤阵列中的扫描光纤与所述M*N个输出通道耦合,用于传输从所述S个分光组件输出的输出光束;所述控制器根据所述对应关系,控制所述扫描光纤阵列中的扫描光纤,使其出射所述输出光束以形成S个视场光,并将所述S个视场光投射至人眼。
可选地,所述可调激光光源包括三色激光光源、准直镜组、合束器、耦合器和耦合光纤,其中,所述三色激光光源输出三色激光;所述准直镜组设置于所述三色激光光源的出射光路上,用于对所述三色激光进行准直处理;所述合束器设置于所述准直镜组的出射光路上,用于将所述准直镜组出射的激光进行合束处理;所述耦合器设置于所述合束器的出射光路上,用于将所述合束器出射的激光耦合到所述耦合光纤中;所述耦合光纤与所述耦合器相连,用于传输经所述耦合器耦合的激光。
可选地,每束扫描光纤均包括扫描器,所述扫描器设置在所述扫描光纤上,用于将所述扫描光纤进行偏转,使得所述扫描光纤出射的光束随所述扫描光纤偏转。
可选地,所述扫描光纤阵列中的扫描光纤和S个非干涉区域的对应关系是通过由所述控制器根据预设条件将所述扫描光纤阵列中的扫描光纤划分成S个非干涉区域而获得的。
可选地,所述控制器根据出瞳直径的大小,将所述扫描光纤阵列中的扫描光纤划分成所述S个非干涉区域。
可选地,所述近眼显示***还包括会聚透镜阵列组,所述会聚透镜阵列组包括第一组会聚透镜阵列和第二组会聚透镜阵列,所述第一组会聚透镜阵列设置于所述扫描光纤阵列的靠近人眼一侧,所述第二组会聚透镜阵列设置于所述扫描光纤阵列的远离人眼一 侧。
可选地,所述第一组会聚透镜阵列和所述第二组会聚透镜阵列均为准直会聚透镜阵列,且所述第一组会聚透镜阵列和所述第二会聚透镜阵列组成1:1的望远***。
可选地,所述第一组会聚透镜阵列和所述第二组会聚透镜阵列均为电控液体微透镜阵列,且所述第一组会聚透镜阵列和所述第二会聚透镜阵列组成1:1的无焦***。
可选地,所述近眼显示***还包括会聚透镜阵列,所述会聚透镜阵列设置于所述扫描光纤阵列的靠近人眼一侧。
可选地,所述近眼显示***还包括调光结构,所述调光结构设置于所述扫描光纤阵列的远离人眼一侧。
本申请实施例第二方面提供了一种虚拟现实设备,其特征在于,包括两套如第一方面的近眼显示***,其中第一近眼显示***与人的左眼对应,第二近眼显示***与人的右眼对应。
本申请实施例第三方面提供了一种增强现实设备,其特征在于,包括两套如第一方面的近眼显示***,其中第一近眼显示***与人的左眼对应,第二近眼显示***与人的右眼对应,并且,外界环境光通过所述第一近眼显示***的会聚透镜阵列组进入人的左眼,并通过所述第二近眼显示***的会聚透镜阵列组进入人的右眼。
本发明的有益效果如下:
基于上述技术方案,本发明实施例中控制器中预存有所述扫描光纤阵列中的扫描光纤和S个非干涉区域的对应关系,且所述对应关系包括每个非干涉区域对应的区域视场信息。在通过扫描光纤阵列中的扫描光纤传输从分光组件输出的输出光束时,所述控制器根据所述对应关系,控制所述扫描光纤阵列中的扫描光纤,使其出射所述输出光束以形成S个视场光,并将所述S个视场光投射至人眼。如此,使得每一时刻所述近眼显示***能够显示S个视场光,即S个像素点,其中S为不小于2的整数。而现有技术中每一时刻仅能显示一个像素点。如此,能够有效降低通道开关的开关频率,并且,在单位时间内开关频率降低的情况下,其能量利用率也会随之提高。
附图说明
图1为本发明实施例中近眼显示***的结构示意图;
图2为本发明实施例中激光光源的结构示意图;
图3为本发明实施例中扫描光纤的第一种结构示意图;
图4为本发明实施例中扫描光纤的第二种结构示意图;
图5为本发明实施例中扫描光纤阵列和准直透镜阵列组的结构示意图;
图6为本发明实施例中1:1的望远***的光路原理图;
图7为本发明实施例中M行N列扫描光纤的排列图;
图8为本发明实施例中扫描光纤阵列划分成S个非干涉区域的分布图;
图9为本发明实施例中扫描光纤阵列和电控液体透镜阵列组的结构示意图;
图10为本发明实施例中扫描光纤阵列、电控液体透镜阵列和调光结构的结构示意图;
图11为本发明实施例中用户瞳孔与透明基板的相对位置的结构示意图。
附图中有关标记如下:
10——S个可调激光光源,11——可调激光光源,12——可调激光光源,101——红色激光光源,102——绿色激光光源,103——蓝色激光光源,104——准直镜组,1041——准直镜组,1042——准直镜组,1043——准直镜组,105——合束器,1051——二向色镜,1052——二向色镜,1053——二向色镜,106——耦合器,107——耦合光纤,20——S个分光组件,21——分光组件,22——S个分光组件,30——扫描光纤阵列,301——扫描光纤,302——PZT压电陶瓷,303——套管,304——固定座,305——透明基板,40——控制器,50——第一准直透镜阵列,51——第二准直透镜阵列,52——第一电控液晶微透镜阵列,53——第二电控液晶微透镜阵列,54——调光结构。
具体实施方式
本发明提供一种近眼显示***、虚拟现实设备及增强现实设备,其能够有效降低光开关的开关频率,且能够有效提高能量利用率。
下面结合附图对本发明优选的实施方式进行详细说明。
实施例一:
如图1所示,本发明实施例第一方面提供了一种近眼显示***,其包括S个可调激光光源10、S个分光组件20、扫描光纤阵列30和控制器40。控制器40中预存有扫描光纤阵列30中的扫描光纤和S个非干涉区域的对应关系,且所述对应关系包括每个非干涉区域对应的区域视场信息。S个可调激光光源10和S个分光组件20一一对应。S个分光 组件20与所述S个非干涉区域一一对应。每个分光组件包括多个输出通道,且S个分光组件20一共包括M*N个输出通道。S、M和N均为不小于2的整数。
S个可调激光光10源输出的激光经过S个分光组件20后,被分成M*N个光束。控制器40电性连接S个可调激光光源10,用于根据预先存储的影像信息的显示视场灰度,控制每个可调激光光源的输出能量。扫描光纤阵列30中的扫描光纤与所述M*N个输出通道耦合,用于传输从S个分光组件20输出的输出光束。控制器40根据所述对应关系,控制扫描光纤阵列30中的扫描光纤,使其出射所述输出光束以形成S个视场光,并将所述S个视场光投射至人眼。
所述影像信息为当前播放的影像信息,其可以从与控制器40相连的存储器或服务器中读取,也可以是直接从内存中读取的,当然还可以是从控制器40自身的存储空间中读取的,本申请不作具体限制。进一步地,S个可调激光光源10中的每个可调激光光源的输出能量可以调节。例如每个可调激光光源的输出能量为0~10瓦(W),于是可以控制每个可调激光光源的输出能量为0~10W中的任意一个值。
具体地,S个分光组件20中的每个分光组件可以为光分路器,且每个分光组件包括多个输出通道。一个分光组件分别与一个可调激光光源和一个非干涉区域对应。通过控制器40调节每个可调激光光源的输出能量,以实现对每个显示视场的灰度控制。一个显示视场对应一个像素点。一个显示视场的灰度越大,其对应的可调激光光源的输出能量就越高。同理,一个显示视场的灰度越小,其对应的可调激光光源的输出能量就越低。
当然,一个分光组件还可以是由两个光分路器组成,其中第一光分路器的入射端与一个可调激光光源10的出射端相连,第二光分路器的入射端与所述第一光分路器的出射端相连。如此,使得S个分光组件包括M*N个输出通道。每个输出通道均为一根光纤,使得所述M*N个输出通道即为M*N根光纤。
参见图1,以S个可调激光光源10包括的可调激光光源11和可调激光光源12为例进行说明。可调激光光源11与S个分光组件20中的分光组件21对应,且分光组件21的输出通道可以为10*10个。可调激光光源12与S个分光组件20中的分光组件22对应,且分光组件22的输出通道可以为10*10个。
本申请实施例中,所述影像信息的显示视场灰度为当前显示视场对应的像素点灰度。根据所述影像信息可以获取到所述影像信息对应的图像中每一个像素的灰度,从而可以获取所述显示视场灰度。例如当前显示视场为0°视场,则获取0°视场对应的像素点灰度,例如为0~255中的一个值。当然,若当前显示视场为多个视场,则获取当前显示视场中 每个视场对应的像素点灰度。
具体来讲,控制器40根据所述影像信息的显示视场灰度,获取对应的图像中与每个显示视场对应的像素点灰度。控制器40再根据所述对应关系,控制扫描光纤阵列30中的扫描光纤每一时刻出射所述输出光束以形成S个视场光,即S个像素点。通过时序的方式将每个像素点通过扫描光纤输出。通过此种方式将所述影像信息对应的图像输出到人眼。其中,所述影像信息的所有像素点通过扫描光纤输出的时间小于人眼刷新时间。若人眼的刷新率为30Hz,则人眼刷新时间为1/30秒(s),于是所述影像信息的所有像素点输出的时间小于1/30秒(s)。
进一步地,S个可调激光光源10中的每个可调激光光源均可以为单色激光光源或多色激光光源。在S个可调激光光源10为单色激光管光源时,其用于显示单色图像。在S个可调激光光源10为多色激光光源时,其用于显示单色图像和多色图像。进一步地,可调激光光源具体可以为三色激光光源,例如为RGB激光光源等。下面具体以可调激光光源11为例进行说明。
具体地,参见图2,可调激光光源11包括红色激光光源101、绿色激光光源102和蓝色激光光源103。其中,红色激光光源101用于发射红色激光,绿色激光光源102用于发射绿色激光,蓝色激光光源103用于发射蓝色激光。其中,红色激光光源101、绿色激光光源102和蓝色激光光源103中每个激光光源的输出能量都可以调节。
继续参见图2,可调激光光源11还包括准直镜组104、合束器105、耦合器106和耦合光纤107。准直镜组104设置于激光光源10的出射光路上,用于对激光光源10发射的激光进行准直处理。准直镜组104包括准直镜1041、准直镜1042和准直镜1043,其中,准直镜1041设置于红色激光光源101的出射光路上,用于对红色激光进行准直处理,准直镜1042设置于绿色激光光源102的出射光路上,用于对绿色激光进行准直处理,并且准直镜1043设置于蓝色激光光源103的出射光路上,用于对蓝色激光进行准直处理。当然,激光光源10还可以是由红色激光光源101、绿色激光光源102、蓝色激光光源103、合束器105、耦合器106和耦合光纤107组成,而未包含准直镜组104。耦合光纤107可以是晶状体纤维光纤,例如二氧化硅光导纤维。
继续参见图2,合束器105设置于准直镜组104的出射光路上,用于将准直镜组104出射的激光进行合束处理。合束器105包括二向色镜1051、二向色镜1052和二向色镜1053,其中,二向色镜1051反射红光并且透射绿光,二向色镜1052透射绿光,二向色镜1053透射红光、绿光并且反射蓝光,从而将准直镜组104发出的激光合成为一个光束, 在此就不再赘述了。
继续参见图2,耦合器106设置于合束器105的出射光路上,用于将合束器105出射的激光耦合到耦合光纤107中。耦合光纤107与耦合器106相连,耦合光纤107用于传输经耦合器106耦合的激光。
具体来讲,每个分光组件将对应的可调激光光源输出的激光分成能量相等的多个光束,例如可调激光光源11输出的激光经分光组件21分成能量相等的10*10个光束。若可调激光光源11输出的激光的能量为ER,则经分光组件21分束后,最终光纤分束器的每一输出通道的出射端出射的能量为ER/(10*10)。通过调节可调激光光源11的输出能量,可以控制输出的显示视场灰度。例如,若可调激光光源11输出的最大能量为2W,而所述影像信息对应的图像的灰度等级为8位,即有256个灰度等级,则单位灰度对应的输出能量为2/256W。若可调激光光源11对应的显示视场灰度为160,则可调激光光源11的输出能量为160*2/256W。如此,将可调激光光源11的输出能量控制为160*2/256W,可以使得与可调激光光源11对应的扫描光纤输出的像素点的灰度为160。
具体地,扫描光纤阵列30包括M*N束扫描光纤。所述M*N个输出通道输出的光束耦合进所述M*N束扫描光纤,再通过所述M*N束扫描光纤将所述M*N个输出通道输出的光束进行偏转,并且将偏转后的光束投射至人眼。
具体地,参见图1,扫描光纤阵列30可以组成一个扫描光纤面板。进一步地,扫描光纤阵列30可以包括水平方向扫描光纤束和垂直方向扫描光纤束。所述水平方向扫描光纤束用于对水平出射光束进行扩束;所述垂直方向扫描光纤束用于对垂直出射光束进行扩束。如此,通过水平和垂直方向的扩束,以提高所述近眼显示***的显示视场,例如可以显示120°、130°和140°的视场,使得显示视场与人眼的视场更匹配。
所述水平方向扫描光纤束为紧密排布或间隔排布的扫描光纤束。所述垂直方向扫描光纤束为紧密排布或间隔排布的扫描光纤束。所述紧密排布的含义为每相邻两束光纤之间的间隔不大于预设距离,所述间隔排布的含义为每相邻两束光纤之间的间隔大于预设距离。所述预设距离根据实际情况来设定。所述预设距离可以为不小于25微米(um)的值,例如为25um、30um和35um等,本申请不作具体限制。
具体地,每束扫描光纤均包括扫描器,所述扫描器设置在所述扫描光纤上,用于将所述扫描光纤进行偏转,使得所述扫描光纤出射的光束也随之偏转,从而实现了水平和垂直方向上的扩束。所述扫描器具体可以为二维扫描器,如PZT压电陶瓷等。扫描光纤在PZT压电陶瓷驱动下在水平方向和垂直方向进行偏转(二维扫描),将S个可调激光 光源10输出的激光处理为图像光束,从而实现将虚拟图像发送到用户眼睛中的目的。
具体来讲,参见图3,扫描光纤阵列30中的一束扫描光纤301包括PZT压电陶瓷302。扫描光纤301设置在套管303中。PTZ压电陶瓷302通过固定座304固定在套管303中,且PZT压电陶瓷302设置在扫描光纤301上。固定座304的两端均与套管303的内壁连接,以使得固定座304固定在套管303中。当然,固定座304还可以仅一端与套管303的内壁连接,同样使得固定座304固定在套管303中,具体参见图4。
本申请实施例中,扫描光纤阵列30中的扫描光纤的出射端面可以是平面,也可以是曲面。扫描光纤可以是晶状体纤维光纤,例如二氧化硅光导纤维。该种光纤可以获得出射光斑束腰极小和大数值孔径的光束。在扫描光纤的出射端面是具有一定弧度的凹曲面时,凹曲面将会聚光束,使得每一根扫描光纤的最大扫描角度减小,进而提高扫描光纤阵列30中光纤扫描的频率。在扫描光纤的出射端面是具有一定弧度的凸曲面时,凸曲面将发散光束,使得每一根扫描光纤的最大扫描角度增大,进而降低扫描光纤阵列30中光纤扫描的频率。
本申请实施例中,参见图5,扫描光纤阵列30可以封装在透明基板305中。扫描光纤301为裸光纤外层涂覆一层极薄的透明保护胶,即涂覆层。每相邻两根扫描光纤之间的空隙用与所述涂覆层折射率相同或近似的材料填充。透明基板305为透明度大于预设透明度的基板。所述预设透明度的取值范围为75%-100%,即可以为75%-100%之间的任意一个值,例如为75%、85%和100%等。
本申请另一实施例中,所述近眼显示***还包括会聚透镜阵列组。所述会聚透镜阵列组包括第一会聚透镜阵列和第二会聚透镜阵列。所述第一会聚透镜阵列设置于扫描光纤阵列30的靠近人眼一侧,所述第二会聚透镜阵列设置于扫描光纤阵列30的远离人眼一侧。
具体地,所述第一会聚透镜阵列和所述第二会聚透镜阵列可以均为准直透镜阵列。如图5所示,在扫描光纤阵列30的靠近人眼一侧设置第一准直透镜阵列50,在扫描光纤阵列30的远离人眼一侧设置第二准直透镜阵列51,且第一准直透镜阵列50和第二准直透镜阵列51组成1:1的望远***。由于扫描光纤阵列30封装在透明基板305中,使得外界环境光通过1:1的望远***进入人眼,且由于外界环境光是通过1:1的望远***进入人眼的,不会对外界进行放大或缩小,使得用户能够更真实的感受外界环境。1:1的望远***的光路原理具体如图6所示。
具体地,第一准直透镜阵列50设置在扫描光纤阵列30的出射光路上,用于对扫描光纤阵列30出射的光束进行准直处理。下面具体以第一准直透镜阵列50中的一个准直透镜 为例进行说明。
参见图3和图4,在本申请实施例中,扫描光纤301的出射光路上还设置有准直透镜501。准直透镜501用于将PZT压电陶瓷302扫描出射的锥形光束进行准直处理,使得其能够以近似平行的方式投射到人眼中。
本申请实施例中,控制器40可以是单片机、处理芯片和控制电路等。进一步地,所述近眼显示***应用于单眼,而应用于双眼时需要使用两套所述近眼显示***。
本申请实施例中,控制器40根据所述影像信息的显示视场灰度,控制每个可调激光光源的输出能量。具体为:控制器40获取所述影像信息对应的图像中每个像素点的显示视场灰度,并且根据每个像素点的显示视场灰度,计算出每个像素点对应的可调激光光源的输出能量,使得每个像素点对应的可调激光光源以计算出的输出能量进行输出。
本申请实施例中,控制器40中预存扫描光纤阵列30中的扫描光纤和S个非干涉区域的对应关系。所述对应关系包括每个非干涉区域对应的区域视场信息,其中,一个非干涉区域对应一个区域视场,S为不小于2的整数。
具体来讲,控制器40中预存有所述对应关系,并且,在扫描光纤阵列30中的扫描光纤输出所述输出光束时,控制器40根据所述对应关系,控制扫描光纤阵列30中的扫描光纤,使其出射所述输出光束以形成S个视场光,并将所述S个视场光投射至人眼。如此,使得每一时刻所述近眼显示***能够显示S个视场光,即S个像素点。而现有技术中每一时刻仅能显示一个像素点。如此,能够有效降低通道开关的开关频率,并且,在单位时间内开关频率降低的情况下,其能量利用率也会随之提高。
具体来讲,在获取所述对应关系时,控制器40可以根据预设条件,将扫描光纤阵列30中的扫描光纤划分成S个非干涉区域,从而获取到所述对应关系,并将获取到的所述对应关系存储到控制器40的存储空间中,或存储在外部存储硬件中。所述对应关系被存储在外部存储硬件中时,控制器40需要从所述外部存储硬件中读取所述对应关系。所述外部存储硬件例如可以是存储卡、硬盘、USB设备等存储设备。
本申请实施例中,所述非干涉区域表征该区域与任何一个其它区域均不重叠。
由于扫描光纤阵列30中的扫描光纤被划分成了S个非干涉区域,使得扫描光纤阵列30能够在同一时刻控制所述S个非干涉区域以显示S个视场光,即每一时刻可以显示S个视场光,其中,一个视场光对应一个像素点。
具体地,所述预设条件可以是预设划分方式,所述预设划分方式可以是根据扫描光 纤阵列30中的扫描光纤的数量来将其划分成S个非干涉区域。在所述扫描光纤的数量大于预设数量时,将扫描光纤阵列30中的扫描光纤划分成H个非干涉区域,这时S=H。在所述扫描光纤的数量不大于预设数量时,将扫描光纤阵列30中的扫描光纤划分成J个非干涉区域,这时S=J。其中,H和J均为不小于2的整数,且H和J可以相同或不同。
当然,所述预设划分方式可以根据所述近眼显示***的显示视场来划分。显示视场越大,其S的取值也越大。显示视场越小,其S的取值也越小。本申请不作具体限制。当然,所述预设划分方式还可以是直接设置S的取值,然后将扫描光纤阵列30中的扫描光纤划分成S个非干涉区域。
具体地,控制器40根据预设条件,将扫描光纤阵列30中的扫描光纤划分成S个非干涉区域。具体为:控制器40还可以根据出瞳直径的大小,将扫描光纤阵列30中的扫描光纤划分成所述S个非干涉区域。其中,所述出瞳直径越大时,S的取值越大;所述出瞳直径越小时,S的取值越小。例如,若所述出瞳在水平和垂直方向的直径为10*8mm,则S=8;若所述出瞳在水平和垂直方向的直径为10*10mm,则S取大于8的整数,例如为10。
本申请实施例中,控制器40还可以根据出瞳直径的大小和所述近眼显示***的显示视场,将扫描光纤阵列30中的扫描光纤划分成所述S个非干涉区域。
具体来讲,出瞳在水平方向的直径用B1表示,出瞳在垂直方向的直径用B2表示,所述近眼显示***在水平方向的显示视场用C1表示,所述近眼显示***在垂直方向的显示视场用C2表示,则可以将扫描光纤阵列30中M*N根扫描光纤划分成S个非干涉区域,其中,
S=[(2L*tan(C1/2)+B1)/B1]*[(2L*tan(C2/2)+B2)/B2]。    公式1
其中,L表示人眼到扫描光纤阵列30的距离。
例如设定出瞳在水平和垂直方向的直径为8*8mm,所述近眼显示***的在水平和垂直方向的显示视场为40*40度,则,M*N束光通道可以分成
S=[(2L*tan(40°/2)+8)/8]*[(2L*tan(40°/2)+8)/8]个非干涉区域。
具体地,所述近眼显示***每一时刻可同时显示S个视场光,并且每一非干涉区域分别对应一个区域视场。取L=20mm,则计算出S=9。如此,将扫描光纤阵列30的水平方向分成3个区域,每个区域均不重叠,并且将扫描光纤阵列30的垂直方向也分成3个区域,每个区域均不重叠,从而获取到9个非干涉区域。如图8所示,所述9个非干涉区域为A1、A2、A3、A4、A5、A6、A7、A8和A9非干涉区域,且每个非干涉区域均不重 叠。其中,A1对应分光组件21,分光组件21对应可调节激光光源11;A9对应分光组件22,分光组件22对应可调节激光光源12。
参见图8,A1在水平方向显示的视场为-20°~-7°,A1在垂直方向显示的视场为7°~20°。如此可知,A1显示的区域视场为{(-20°~-7°),(7°~20°)}。同理,A2显示的区域视场为{((-7°~7°),(7°~20°)};A3显示的区域视场为{(7°~20°),(7°~20°)};A4显示的区域视场为{(-20°~-7°),(-7°~7°)};A5显示的区域视场为{(-7°~7°),(-7°~7°)};A6显示的区域视场为{(7°~20°),(-7°~7°)};A7显示的区域视场为{(-20°~-7°),(-20°~-7°)};A8显示的区域视场为{(-7°~7°),(-20°~-7°)};并且A9显示的区域视场为{(7°~20°),(-20°~-7°)}。
在实际应用中,在每一时刻所述近眼显示***能够显示9个视场光,即显示9个像素点。以显示一幅800*600的图像为例进行说明,其中人眼的刷新率取最低要求30Hz。若显示的图像为RGB彩色图像,则需要的通道开关的开关频率最低为
Figure PCTCN2017090845-appb-000001
扫描光纤的扫描频率最低为
Figure PCTCN2017090845-appb-000002
现有技术中每一时刻仅能显示一个视场光,即一个像素点。同样以显示一幅800*600的单色图像为例进行说明,其中人眼的刷新率取最低要求30Hz。则现有技术中通道开关的开关频率最低为
Figure PCTCN2017090845-appb-000003
扫描光纤的扫描频率最低为
Figure PCTCN2017090845-appb-000004
若需显示RGB彩色图像,显示彩色图像需采用时序的方法,故现有技术中需要的通道开关的开关频率最低为
Figure PCTCN2017090845-appb-000005
扫描光纤的扫描频率最低为
Figure PCTCN2017090845-appb-000006
4.8MHz远远小于43MHz,因此,与现有技术相比,采用本申请上述实施例能够解决现有技术中通道开关的开关频率高的技术问题,实现有效降低通道开关的开关频率的效果,并且,在单位时间内开关频率降低的情况下,其能量利用率也会随之提高。
进一步地,由于本申请实施例中的一个非干涉区域仅对应一个区域视场,使得一个非干涉区域中的扫描光纤的最大扫描角为该区域视场对应的扫描角。而现有技术中扫描光纤阵列中的每根光纤需要对应所述近眼显示***的总显示视场,使得每根光纤的最大扫描角为与所述总显示视场对应的扫描角。由于一个区域视场仅是所述总显示视场中的一部分,必然使得任何一个区域视场对应的扫描角小于所述总显示视场对应的扫描角。因此, 本申请实施例中扫描光纤所需的最大扫描角减小了,从而能够提高扫描光纤的扫描频率。
本申请实施例中,扫描光纤阵列30中的扫描光纤被划分为S个非干涉区域之后,每个非干涉区域均能够显示所述影像信息对应的图像的所有灰度等级。
例如,如图8所示,以30*30根扫描光纤为例,将30*30根扫描光纤划分成9个非干涉区域,则每一个非干涉区域具有的扫描光纤的数量为30*30/9=100。
若所述影像信息对应的图像的灰度等级为8位,即有256个灰度等级,则以A1和A9为例,由于A1输出的最大能量为2W,则单位灰度对应的输出能量为2/256W。若A1当前需要显示的显示视场为{-20°,7°},并且从所述影像信息对应的图像中获取{-20°,7°}对应的像素点的灰度为180,通过计算可以得到可调激光光源的输出能量为180*2/256W,则控制器40控制可调激光光源11的输出能量为180*2/256W,并控制A1中每根扫描光纤的偏转角度以通过A1输出显示视场为{-20°,7°}和灰度值为180的像素点。
在同一时刻,若A9当前需要显示的显示视场为{7°,-10°},并且从所述影像信息对应的图像中获取{7°,-10°}对应的像素点的灰度为140,通过计算可以得到可调激光光源的输出能量为140*2/256W,则控制器40控制可调激光光源12的输出能量为140*2/256W,并控制A9中每根扫描光纤的偏转角度以通过A9输出显示视场为{7°,-10°}和灰度值为140的像素点。采用相同的方式,在同一时刻控制A2-A8各自输出相应的像素点。如此,通过时序的方式,采用每一时刻输出9个像素点来将对应的图像中的所有的像素点输出至人眼,从而将所述影像信息对应的图像投射至人眼。
在本申请另一实施例中,所述第一会聚透镜阵列和所述第二会聚透镜阵列还可以均为电控液体微透镜阵列。所述电控液体微透镜阵列例如可以为电控液晶微透镜阵列。如图9所示,在扫描光纤阵列30的靠近人眼一侧设置第一电控液晶微透镜阵列52,在扫描光纤阵列30的远离人眼一侧设置第二电控液晶微透镜阵列53,且第一电控液晶微透镜阵列52和第二电控液晶微透镜阵列53组成1:1的无焦***。由于扫描光纤阵列30封装在透明基板305中,使得外界环境光通过1:1的无焦***进入人眼,且由于外界环境光是通过1:1的无焦***进入人眼的,不会对外界进行放大或缩小,使得用户能够更真实的感受外界环境。
具体地,第一电控液晶微透镜阵列52设置在扫描光纤阵列30的出射光路上,用于对扫描光纤阵列30出射的光束进行准直处理。
由于第一电控液晶微透镜阵列52和第二电控液晶微透镜阵列53不加电压不工作,第一电控液晶微透镜阵列52和第二电控液晶微透镜阵列53无光会聚或发散的功能,即不呈现光偏折的作用,不对外界环境光有光转折。如此,使得外界环境光能够通过第一电控液晶微透镜阵列52和透明基板305之后通过第二电控液晶微透镜阵列53进入人眼,实现观察到现实外界环境。
在本申请的另一实施例中,所述近眼显示***还可以包括会聚透镜阵列,所述会聚透镜阵列设置于扫描光纤阵列30的靠近人眼一侧,且所述会聚透镜阵列设置在扫描光纤阵列30的出射光路上,用于对扫描光纤阵列30出射的光束进行准直处理。所述会聚透镜阵列可以为准直透镜阵列或电控液体微透镜阵列,下面具体以所述会聚透镜阵列为电控液晶微透镜阵列为例进行说明。
如图10所示,在扫描光纤阵列30的靠近人眼一侧设置第一电控液晶微透镜阵列52,用于对扫描光纤阵列30出射的光束进行准直处理,从而显示虚拟图像。
本申请实施例中,在使用包含第一电控液晶微透镜阵列52的近眼显示***用于进行增强现实显示时,需要在扫描光纤阵列30的远离人眼一侧设置调光结构54。调光结构54具体可以是带有光开关的PDLC膜层。采用分时段方式显示虚拟图像和现实外界环境。假设人眼的刷新率为30Hz,将该刷新率对应的时间段分成2段。一段时间用于显示虚拟图像,此段时间内使PDLC膜层的光开关断开,使得PDLC膜层呈不透明状态。另一段时间用于观察现实外界环境,此段时间内使PDLC膜层的光开关开通,从而对PDLC膜层施加电压,使其呈透明状态,使得外界环境光能够通过PDLC膜层和透明基板305。同时,不施加电压给第一电控液晶微透镜阵列52。由于第一电控液晶微透镜阵列52不加电压不工作,第一电控液晶微透镜阵列52无光会聚或发散的功能,即不呈现光偏折的作用,不对外界环境光有光转折。如此,使得外界环境光能够通过PDLC膜层和透明基板305之后通过第一电控液晶微透镜阵列52进入人眼,实现观察到现实外界环境。
当然,还可以将所述刷新率对应的时间段分成至少3段,其中的一段或多段时间用于显示虚拟图像,剩下的至少一段时间用于观察现实外界环境。
本发明的有益效果如下:
本发明实施例中控制器中预存有所述扫描光纤阵列中的扫描光纤和S个非干涉区域的对应关系,且所述对应关系包括每个非干涉区域对应的区域视场信息。在通过扫描光纤阵列中的扫描光纤传输从分光组件输出的输出光束时,所述控制器根据所述对应关系,控制所述扫描光纤阵列中的扫描光纤,使其出射所述输出光束以形成S个视场光,并将 所述S个视场光投射至人眼。如此,使得每一时刻所述近眼显示***能够显示S个视场光即S个像素点,其中S为不小于2的整数。而现有技术中每一时刻仅能显示一个像素点。如此,能够有效降低通道开关的开关频率,并且,在单位时间内开关频率降低的情况下,其能量利用率也会随之提高。
实施例二:
本发明实施例第二方面还提供了一种虚拟现实设备,其包括两套如第一方面介绍的近眼显示***,其中第一近眼显示***与人的左眼对应,第二近眼显示***与人的右眼对应。
在第一方面中已经详细介绍了近眼显示***的具体结构以及运行过程,在此就不再赘述了。
具体地,所述虚拟现实设备还可以包括外壳,所述第一近眼显示***和所述第二近眼显示***均设置在所述外壳中。
实施例三:
本发明实施例第三方面还提供了一种增强现实设备,其包括两套如第一方面介绍的近眼显示***,其中第一近眼显示***与人的左眼对应,第二近眼显示***与人的右眼对应。外界环境光通过所述第一近眼显示***的会聚透镜阵列组进入人的左眼,并通过所述第二近眼显示***的会聚透镜阵列组进入人的右眼。
在第一方面中已经详细介绍了近眼显示***的具体结构以及运行过程,在此就不再赘述了。
具体地,所述增强现实设备还可以包括外壳,所述第一近眼显示***和所述第二近眼显示***均设置在所述外壳中。
具体地,所述会聚透镜阵列组包括第一会聚透镜阵列和第二会聚透镜阵列,所述第一会聚透镜阵列设置于扫描光纤阵列30的靠近人眼一侧,所述第二会聚透镜阵列设置于扫描光纤阵列30的远离人眼一侧。
具体地,所述第一会聚透镜阵列和所述第二会聚透镜阵列可以均为准直透镜阵列。如图5所示,在扫描光纤阵列30的靠近人眼一侧设置第一准直透镜阵列50,在扫描光纤阵列30的远离人眼一侧设置第二准直透镜阵列51,且第一准直透镜阵列50和第二准直透镜阵列51组成1:1的望远***。由于扫描光纤阵列30封装在透明基板305中,使得外界环境光通过1:1的望远***进入人眼,且由于外界环境光是通过1:1的望远***进入人眼 的,不会对外界进行放大或缩小,使得用户能够更真实的感受外界环境。1:1的望远***的光路原理具体如图6所示。
在本申请另一实施例中,所述第一会聚透镜阵列和所述第二会聚透镜阵列还可以均为电控液体微透镜阵列。所述电控液体微透镜阵列例如可以为电控液晶微透镜阵列。如图9所示,在扫描光纤阵列30的靠近人眼一侧设置第一电控液晶微透镜阵列52,在扫描光纤阵列30的远离人眼一侧设置第二电控液晶微透镜阵列53,且第一电控液晶微透镜阵列52和第二电控液晶微透镜阵列53组成1:1的无焦***。由于扫描光纤阵列30封装在透明基板305中,使得外界环境光通过1:1的无焦***进入人眼,且由于外界环境光是通过1:1的无焦***进入人眼的,不会对外界进行放大或缩小,使得用户能够更真实的感受外界环境。
在本申请另一实施例中,所述会聚透镜阵列组还可以为第一电控液晶微透镜阵列52和调光结构54。在使用包含第一电控液晶微透镜阵列52的近眼显示***用于进行增强现实显示时,需要在扫描光纤阵列30的远离人眼一侧设置调光结构54。调光结构54具体可以是带有光开关的PDLC膜层。采用分时段方式显示虚拟图像和现实外界环境。假设人眼的刷新率为30Hz,将该刷新率对应的时间段分成2段。一段时间用于显示虚拟图像,此段时间内使PDLC膜层的光开关断开,使得PDLC膜层呈不透明状态。另一段时间用于观察到现实外界环境,此段时间内使PDLC膜层的光开关开通,从而对PDLC膜层施加电压,使其呈透明状态,使得外界环境光能够通过PDLC膜层和透明基板305。同时,不施加电压给第一电控液晶微透镜阵列52。由于第一电控液晶微透镜阵列52不加电压不工作,第一电控液晶微透镜阵列52无光会聚或发散的功能,即不呈现光偏折的作用,不对外界环境光有光转折。如此,使得外界环境光能够通过PDLC膜层和透明基板305之后通过第一电控液晶微透镜阵列52进入人眼,实现观察到现实外界环境。
当然,还可以将所述刷新率对应的时间段分成至少3段,其中的一段或多段时间用于显示虚拟图像,剩下的至少一段时间用于观察现实外界环境。
本发明的有益效果如下:
本申请实施例控制器中预存有所述扫描光纤阵列中的扫描光纤和S个非干涉区域的对应关系,且所述对应关系包括每个非干涉区域对应的区域视场信息。在通过扫描光纤阵列中的扫描光纤传输从分光组件输出的输出光束时,所述控制器根据所述对应关系,控制所述扫描光纤阵列中的扫描光纤,使其出射所述输出光束以形成S个视场光,并将所述S个视场光投射至人眼。如此,使得每一时刻所述近眼显示***能够显示S个视场光 即S个像素点,其中S为不小于2的整数。而现有技术中每一时刻仅能显示一个像素点。如此,能够有效降低通道开关的开关频率,并且,在单位时间内开关频率降低的情况下,其能量利用率也会随之提高。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (12)

  1. 一种近眼显示***,其特征在于,包括控制器、扫描光纤阵列、S个可调激光光源和S个分光组件,所述控制器中预存有所述扫描光纤阵列中的扫描光纤和S个非干涉区域的对应关系,所述对应关系包括每个非干涉区域对应的区域视场信息,所述S个可调激光光源和所述S个分光组件一一对应,所述S个分光组件与所述S个非干涉区域一一对应,每个分光组件包括多个输出通道,且所述S个分光组件一共包括M*N个输出通道,其中S、M和N均为不小于2的整数;
    所述S个可调激光光源输出的激光经过所述S个分光组件后,被分成M*N个光束;所述控制器电性连接所述S个可调激光光源,用于根据预先存储的影像信息的显示视场灰度,控制每个可调激光光源的输出能量;所述扫描光纤阵列中的扫描光纤与所述M*N个输出通道耦合,用于传输从所述S个分光组件输出的输出光束;所述控制器根据所述对应关系,控制所述扫描光纤阵列中的扫描光纤,使其出射所述输出光束以形成S个视场光,并将所述S个视场光投射至人眼。
  2. 如权利要求1所述的***,其特征在于,所述可调激光光源包括三色激光光源、准直镜组、合束器、耦合器和耦合光纤,其中,所述三色激光光源输出三色激光;所述准直镜组设置于所述三色激光光源的出射光路上,用于对所述三色激光进行准直处理;所述合束器设置于所述准直镜组的出射光路上,用于将所述准直镜组出射的激光进行合束处理;所述耦合器设置于所述合束器的出射光路上,用于将所述合束器出射的激光耦合到所述耦合光纤中;所述耦合光纤与所述耦合器相连,用于传输经所述耦合器耦合的激光。
  3. 如权利要求1所述的***,其特征在于,每束扫描光纤均包括扫描器,所述扫描器设置在所述扫描光纤上,用于将所述扫描光纤进行偏转,使得所述扫描光纤出射的光束随所述扫描光纤偏转。
  4. 如权利要求1所述的***,其特征在于,所述扫描光纤阵列中的扫描光纤和S个非干涉区域的对应关系是通过由所述控制器根据预设条件将所述扫描光纤阵列中的扫描光纤划分成S个非干涉区域而获得的。
  5. 如权利要求1所述的***,其特征在于,所述控制器根据出瞳直径的大小,将所述扫描光纤阵列中的扫描光纤划分成所述S个非干涉区域。
  6. 如权利要求1-5中任一项所述的***,其特征在于,所述近眼显示***还包括会聚透镜阵列组,所述会聚透镜阵列组包括第一组会聚透镜阵列和第二组会聚透镜阵列, 所述第一组会聚透镜阵列设置于所述扫描光纤阵列的靠近人眼一侧,所述第二组会聚透镜阵列设置于所述扫描光纤阵列的远离人眼一侧。
  7. 如权利要求6所述的***,其特征在于,所述第一组会聚透镜阵列和所述第二组会聚透镜阵列均为准直会聚透镜阵列,且所述第一组会聚透镜阵列和所述第二会聚透镜阵列组成1:1的望远***。
  8. 如权利要求6所述的***,其特征在于,所述第一组会聚透镜阵列和所述第二组会聚透镜阵列均为电控液体微透镜阵列,且所述第一组会聚透镜阵列和所述第二会聚透镜阵列组成1:1的无焦***。
  9. 如权利要求1-5中任一项所述的***,其特征在于,所述近眼显示***还包括会聚透镜阵列,所述会聚透镜阵列设置于所述扫描光纤阵列的靠近人眼一侧。
  10. 如权利要求1所述的***,其特征在于,所述近眼显示***还包括调光结构,所述调光结构设置于所述扫描光纤阵列的远离人眼一侧。
  11. 一种虚拟现实设备,其特征在于,包括两套如权利要求1-10中任一项所述的近眼显示***,其中第一近眼显示***与人的左眼对应,第二近眼显示***与人的右眼对应。
  12. 一种增强现实设备,其特征在于,包括两套如权利要求6-8中任一项所述的近眼显示***,其中第一近眼显示***与人的左眼对应,第二近眼显示***与人的右眼对应,并且,外界环境光通过所述第一近眼显示***的会聚透镜阵列组进入人的左眼,并通过所述第二近眼显示***的会聚透镜阵列组进入人的右眼。
PCT/CN2017/090845 2016-07-01 2017-06-29 近眼显示***、虚拟现实设备及增强现实设备 WO2018001325A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610513731.5A CN107561697B (zh) 2016-07-01 2016-07-01 近眼显示***、虚拟现实设备及增强现实设备
CN201610513731.5 2016-07-01

Publications (1)

Publication Number Publication Date
WO2018001325A1 true WO2018001325A1 (zh) 2018-01-04

Family

ID=60785973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090845 WO2018001325A1 (zh) 2016-07-01 2017-06-29 近眼显示***、虚拟现实设备及增强现实设备

Country Status (2)

Country Link
CN (1) CN107561697B (zh)
WO (1) WO2018001325A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200127023A (ko) * 2018-03-01 2020-11-09 에이치이에스 아이피 홀딩스, 엘엘씨 다중 피사계 심도 촬영이 가능한 근안 디스플레이 방법
CN108873392A (zh) * 2018-05-31 2018-11-23 成都理想境界科技有限公司 一种减小调制器调制频率的调制***及成像装置
CN111007589A (zh) * 2018-10-08 2020-04-14 成都理想境界科技有限公司 一种波导模组、基于波导的显示模组及近眼显示设备
CN111505841B (zh) * 2019-01-31 2023-06-23 成都理想境界科技有限公司 一种激光调制方法、激光扫描装置及***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319490A (en) * 1992-09-16 1994-06-07 Hughes Training, Inc. Helmet mounted display including synchronously moving tilted mechanisms
US6215593B1 (en) * 1996-11-13 2001-04-10 Ian A. Bruce Portable wide-field optical system with microlenses and fiber-optic image transfer element
CN102156378A (zh) * 2010-02-11 2011-08-17 北京中视中科光电技术有限公司 一种大屏幕投影***
CN202083837U (zh) * 2010-11-03 2011-12-21 中航华东光电有限公司 激光投影显示***
US20150077312A1 (en) * 2011-05-13 2015-03-19 Google Inc. Near-to-eye display having adaptive optics
WO2015081313A2 (en) * 2013-11-27 2015-06-04 Magic Leap, Inc. Virtual and augmented reality systems and methods
CN105629474A (zh) * 2016-03-07 2016-06-01 成都理想境界科技有限公司 一种近眼显示***及头戴显示设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201654428U (zh) * 2010-02-11 2010-11-24 北京中视中科光电技术有限公司 一种大屏幕投影***
CN102436073A (zh) * 2011-09-28 2012-05-02 中国科学院半导体研究所 基于半导体激光器阵列的投影照明光路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319490A (en) * 1992-09-16 1994-06-07 Hughes Training, Inc. Helmet mounted display including synchronously moving tilted mechanisms
US6215593B1 (en) * 1996-11-13 2001-04-10 Ian A. Bruce Portable wide-field optical system with microlenses and fiber-optic image transfer element
CN102156378A (zh) * 2010-02-11 2011-08-17 北京中视中科光电技术有限公司 一种大屏幕投影***
CN202083837U (zh) * 2010-11-03 2011-12-21 中航华东光电有限公司 激光投影显示***
US20150077312A1 (en) * 2011-05-13 2015-03-19 Google Inc. Near-to-eye display having adaptive optics
WO2015081313A2 (en) * 2013-11-27 2015-06-04 Magic Leap, Inc. Virtual and augmented reality systems and methods
CN105629474A (zh) * 2016-03-07 2016-06-01 成都理想境界科技有限公司 一种近眼显示***及头戴显示设备

Also Published As

Publication number Publication date
CN107561697B (zh) 2019-04-30
CN107561697A (zh) 2018-01-09

Similar Documents

Publication Publication Date Title
WO2018001323A1 (zh) 近眼显示***、虚拟现实设备及增强现实设备
JP3435160B2 (ja) 仮想網膜表示装置
US10539789B2 (en) Eye projection system
US9076368B2 (en) Image generation systems and image generation methods
US6639570B2 (en) Retinal display scanning of image with plurality of image sectors
JP2650878B2 (ja) ヘルメットに装着可能なカラーの表示装置
US5596339A (en) Virtual retinal display with fiber optic point source
WO2018001325A1 (zh) 近眼显示***、虚拟现实设备及增强现实设备
WO2018001322A1 (zh) 一种近眼显示***、虚拟现实设备和增强现实设备
WO1994009472A9 (en) Virtual retinal display
US6517206B2 (en) Display device
WO2018001324A1 (zh) 近眼显示***、虚拟现实设备及增强现实设备
CN108628087B (zh) 一种投影装置及空间成像方法
WO2019214366A1 (zh) 近眼显示装置和近眼显示方法
WO2018001321A1 (zh) 一种近眼显示***、虚拟现实设备和增强现实设备
US20220121027A1 (en) Display system having 1-dimensional pixel array with scanning mirror
WO2019164241A1 (ko) 접안 디스플레이 장치
JP2019049724A (ja) 目用投影システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17819322

Country of ref document: EP

Kind code of ref document: A1