WO2018000939A1 - 一种滤波器及电子设备 - Google Patents

一种滤波器及电子设备 Download PDF

Info

Publication number
WO2018000939A1
WO2018000939A1 PCT/CN2017/083454 CN2017083454W WO2018000939A1 WO 2018000939 A1 WO2018000939 A1 WO 2018000939A1 CN 2017083454 W CN2017083454 W CN 2017083454W WO 2018000939 A1 WO2018000939 A1 WO 2018000939A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstrip line
capacitor
inductor
filter
microstrip
Prior art date
Application number
PCT/CN2017/083454
Other languages
English (en)
French (fr)
Inventor
程树青
Original Assignee
深圳市九洲电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市九洲电器有限公司 filed Critical 深圳市九洲电器有限公司
Publication of WO2018000939A1 publication Critical patent/WO2018000939A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H5/00One-port networks comprising only passive electrical elements as network components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters

Definitions

  • the present application relates to the field of filters, and in particular, to a filter and an electronic device.
  • the frequency band of a television signal transmitted over a cable is usually within 1 GHz, but with the development of multimedia, especially the Multimedia over Coax Alliance (MoCA), it is transmitted by using a common wired cable.
  • Signals above 1 GHz the signal of the frequency band above 1 GHz needs to be sent from the device itself, and its power is often several orders of magnitude stronger than the signal sent by the cable television, for example, forty-eight dB, and the frequency interval is at least 100 MHz, which affects the normal reception of the cable signal. Therefore, a narrow transition band and a high rejection filter are more important for processing the signal in the frequency band above 1 GHz.
  • the prior art discloses a triplexer that uses a hollow inductor to obtain a transition band performance of a smaller filter.
  • the triplexer has a problem of poor consistency, and a tuning process is required for production. , resulting in low production efficiency and high cost.
  • the prior art also discloses a filter consisting of a discrete component capacitor and an inductor capable of filtering a clutter signal above 1 GHz.
  • a filter consisting of a discrete component capacitor and an inductor capable of filtering a clutter signal above 1 GHz.
  • the inductance loss of the filter increases due to the skin effect, and the quality factor of the inductor decreases. This filter is difficult to achieve with small in-band insertion loss and steep transition bands.
  • one end of the first microstrip line is connected to one end of the first capacitor
  • one end of the first inductor is connected to the other end of the first microstrip line
  • one end of the second microstrip line is connected to the other end of the first inductor, and the other end of the second microstrip line is connected to the other end of the first capacitor.
  • the filter further comprises:
  • one end of the second capacitor is respectively connected to one end of the first microstrip line and one end of the first capacitor, and one end of the second capacitor is grounded;
  • the filter further comprises:
  • a third microstrip line one end of the third microstrip line is respectively connected to one end of the fourth capacitor and one end of the third capacitor;
  • one end of the second inductor is connected to the other end of the third microstrip line
  • one end of the fifth capacitor is respectively connected to the other end of the fourth microstrip line and the other end of the fourth capacitor, and the other end of the fifth capacitor is grounded.
  • the filter further comprises:
  • one end of the fifth microstrip line is respectively connected to one end of the sixth capacitor and one end of the fifth capacitor;
  • one end of the third inductor is connected to the other end of the fifth microstrip line;
  • one end of the seventh capacitor is respectively connected to the other end of the sixth microstrip line and the other end of the sixth capacitor, and the other end of the seventh capacitor is grounded.
  • the first microstrip line, the second microstrip line, the third The microstrip line, the fourth microstrip line, the fifth microstrip line, and the sixth microstrip line have a width of 0.01 inches and a length of 0.1 inches.
  • a filter connected to the antenna for filtering a high frequency signal fed from the antenna and outputting a filtered signal
  • An amplifying circuit coupled to the filter for amplifying the filtered signal
  • the filter comprises:
  • one end of the first microstrip line is connected to one end of the first capacitor
  • one end of the first inductor is connected to the other end of the first microstrip line
  • one end of the second microstrip line is connected to the other end of the first inductor, and the other end of the second microstrip line is connected to the other end of the first capacitor.
  • the filter further comprises:
  • one end of the second capacitor is respectively connected to one end of the first microstrip line and one end of the first capacitor, and one end of the second capacitor is grounded;
  • the filter further comprises:
  • a third microstrip line one end of the third microstrip line is respectively connected to one end of the fourth capacitor and one end of the third capacitor;
  • one end of the second inductor is connected to the other end of the third microstrip line
  • one end of the fifth capacitor is respectively connected to the other end of the fourth microstrip line and the other end of the fourth capacitor, and the other end of the fifth capacitor is grounded.
  • the filter further comprises:
  • one end of the fifth microstrip line is respectively connected to one end of the sixth capacitor and one end of the fifth capacitor;
  • one end of the third inductor is connected to the other end of the fifth microstrip line;
  • one end of the seventh capacitor is respectively connected to the other end of the sixth microstrip line and the other end of the sixth capacitor, and the other end of the seventh capacitor is grounded.
  • the first microstrip line, the second microstrip line, the third microstrip line, the fourth microstrip line, the fifth microstrip line, and the The sixth microstrip line has a width of 0.01 inches and a length of 0.1 inches.
  • the microstrip line and the discrete component inductor are used in combination instead of the simple inductor.
  • the high frequency effect of the large inductor is overcome, thereby improving the quality factor of the inductor and reducing the insertion loss in the band;
  • it also has the flexibility of debugging. For example, the designer can adjust the microstrip line to any length, so that the discrete component inductance uses the conventional inductance, which reduces the production cost and delivery cycle.
  • FIG. 1 is a schematic structural diagram of a filter provided by Embodiment 1 of the present application.
  • FIG. 1 is a schematic structural diagram of a seventh-order elliptical low-pass filter according to a first embodiment of the present application
  • Figure 1b is a graph showing the amplitude-frequency characteristic response of the seventh-order elliptical low-pass filter shown in Figure 1a under ideal conditions;
  • 1c is a graph showing a response characteristic between an inductance coefficient and a frequency provided in Embodiment 1 of the present application;
  • 1d is a graph showing the response characteristics between the quality factor and the frequency of the inductor provided in the first embodiment of the present application;
  • FIG. 1e is a graph showing amplitude-frequency characteristic response of the seventh-order elliptical low-pass filter shown in FIG. 1a when a winding inductor is simply used;
  • FIG. 2 is a schematic structural diagram of a filter provided in Embodiment 2 of the present application.
  • FIG. 3 is a schematic structural diagram of a filter provided in Embodiment 3 of the present application.
  • FIG. 4 is a schematic structural diagram of a filter provided in Embodiment 4 of the present application.
  • FIG. 4a is a graph showing amplitude-frequency characteristic response of a filter provided in Embodiment 4 of the present application.
  • FIG. 5 is a schematic structural diagram of an electronic device according to Embodiment 5 of the present application.
  • FIG. 1 is a schematic structural diagram of a filter provided by Embodiment 1 of the present application.
  • the filter 100 includes a first capacitor C1, a first microstrip line M1, a first inductor L1, and a second microstrip line M2, one end of the first microstrip line M1 and one end of the first capacitor C1.
  • one end of the first inductor L1 is connected to the other end of the first microstrip line M1
  • one end of the second microstrip line M2 is connected to the other end of the first inductor L1
  • the other end of the second microstrip line M2 is first The other end of the capacitor C1 is connected.
  • the signal to be filtered is input through the filter input terminal 11, filtered, and output through the filter output terminal 12.
  • FIG. 1a is a schematic structural diagram of a seventh-order elliptical low-pass filter according to a first embodiment of the present application.
  • the seventh-order elliptical low-pass filter is composed of lumped elements.
  • the input terminal 1a1 of the seventh-order elliptical low-pass filter inputs a processing signal, and is processed to output the processed signal from the output terminal 1a2.
  • FIG. 1b is a graph of the amplitude-frequency characteristic response obtained by the seventh-order elliptical low-pass filter shown in FIG. 1a under ideal conditions. As shown in Fig.
  • the seventh-order elliptical low-pass filter has a decibel value of -1.539 dB.
  • the seventh-order elliptical low-pass filter has a decibel value of -50.69 dB.
  • the seventh-order elliptical low-pass filter composed of lumped elements under ideal conditions has excellent amplitude response characteristics, which can filter out clutter signals of about 50 dB at 1.1 GHz.
  • the inductance used in the seventh-order elliptical low-pass filter is a common inductor.
  • the quality factor Q of the inductance of the seventh-order elliptical low-pass filter drops sharply, making it impossible to achieve an effective steep transition band.
  • FIG. 1c is a graph showing the response characteristic between the inductance coefficient and the frequency provided by the first embodiment of the present application
  • FIG. 1d is the relationship between the inductance quality factor and the frequency provided by the first embodiment of the present application.
  • Response characteristic graph As shown in FIG. 1c, the response characteristic graph includes three curves, the curve S1c is an inductance coefficient of 100 nH, the curve S2c is an inductance of 47 nH, and the curve S3c is an inductance of 3.9 nH.
  • the slope of the three curves sharply increases, that is, the inductance increases sharply.
  • the quality factor Q value of the inductor corresponding to the frequency around 1000MHz drops sharply. The reason is that when the frequency is continuously increased, the skin effect and leakage are serious, the inductance coefficient becomes large, resulting in increased loss and inductance. The quality factor Q value is reduced. In the actual working process, the seventh-order elliptical low-pass filter with lumped elements becomes smooth and the rectangular coefficient becomes larger.
  • FIG. 1e is a graph showing the amplitude-frequency characteristic response of the seventh-order elliptical low-pass filter shown in FIG. 1a when the winding inductance is simply used.
  • the amplitude of point A is 195.71793 MHz, which corresponds to an amplitude of -0.104 dB.
  • the amplitude of point B is 1.00000 GHz, which corresponds to an amplitude of -4.321 dB.
  • the amplitude of the C point frequency is 1.100 GHz, which corresponds to an amplitude of -21.549 dB.
  • Figure 1b Please refer to Figure 1b.
  • the ideal condition can filter out 50 dB, but in actual process, it can only reach 21.549 dB, and the difference between them is about 30 dB.
  • the out-of-band rejection capability of the high-frequency end above 2 GHz is reduced to -20 dB. Therefore, in the actual process, the low-pass filter composed of the winding inductance or the lumped element alone cannot satisfy the band of -50 dB or more. The need for external inhibition.
  • the first microstrip line M1 and the second microstrip are configured by mixing the first capacitor C1, the first microstrip line M1, the first inductor L1, and the second microstrip line M2 and constituting a filter.
  • the quality factor of the inductance of the line M2 is high.
  • the first microstrip line M1 and the second microstrip line M2 are matched with the first inductor L1, and the lumped inductor or the simple winding inductor in the prior art is equivalently split into small inductive values. Inductance and microstrip line equivalent inductance, which enables the miniaturization and mass production of filters.
  • the structural form of the filter provided by the embodiment of the present application may take any combination form.
  • the filter of the embodiment of the present application may be a Kaul filter, Butterworth. Filters, Chebyshev filters, Bessel filters, and more.
  • the filter of the embodiment of the present application may be a low pass filter, a high pass filter, a band pass filter, and a band rejection filter, or a combination of the above various filters, according to the frequency division characteristic of the filter. It will be understood by those skilled in the art that the filter described in connection with the embodiments disclosed herein or the technical inspiration generated by the teachings of the embodiments may be equivalently substituted or modified. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the filtering amplitude reaches -49 dB at 1.1 GHz, which is close to the ideal filter at 1.1 GHz. -50dB.
  • it overcomes the high-frequency effects of large inductors, thereby improving the quality factor of the inductor and reducing the in-band insertion loss; on the other hand, it also has the flexibility of debugging, for example, the designer can adjust the microstrip line to any length, Reduce the production cost and lead time by using conventional sense inductors for discrete component inductors.
  • FIG. 2 is a schematic structural diagram of a filter provided by Embodiment 2 of the present application.
  • the filter 100 includes a first capacitor C1, a first microstrip line M1, a first inductor L1, a second microstrip line M2, a second capacitor C2, and a third capacitor C3.
  • the signal to be filtered is input through the filter input terminal 21, filtered, and output through the filter output terminal 22.
  • one end of the first microstrip line M1 is connected to one end of the first capacitor C1
  • one end of the first inductor L1 is connected to the other end of the first microstrip line M1
  • one end of the second microstrip line M2 is The other end of the first inductor L1 is connected, the other end of the second microstrip line M2 is connected to the other end of the first capacitor C1, and one end of the second capacitor C2 is respectively connected to one end of the first microstrip line M1 and the first capacitor C1.
  • One end is connected, one end of the second capacitor C2 is grounded, and one end of the third capacitor C3 is respectively connected to the other end of the second microstrip line M2 and the other end of the first capacitor C1.
  • the filtering amplitude reaches -49 dB at 1.1 GHz, which is close to the ideal filter at 1.1 GHz. -50dB.
  • it overcomes the high-frequency effects of large inductors, thereby increasing electricity.
  • FIG. 3 is a schematic structural diagram of a filter provided in Embodiment 3 of the present application.
  • the filter 100 includes a first capacitor C1, a first microstrip line M1, a first inductor L1, a second microstrip line M2, a second capacitor C2, a third capacitor C3, and a fourth capacitor C4.
  • the signal to be filtered is input through the filter input terminal 31, filtered, and output through the filter output terminal 32.
  • one end of the first microstrip line M1 is connected to one end of the first capacitor C1
  • one end of the first inductor L1 is connected to the other end of the first microstrip line M1
  • one end of the second microstrip line M2 is The other end of the first inductor L1 is connected
  • the other end of the second microstrip line M2 is connected to the other end of the first capacitor C1
  • one end of the second capacitor C2 is respectively connected to one end of the first microstrip line M1 and the first capacitor C1.
  • One end is connected, one end of the second capacitor C2 is grounded, and one end of the third capacitor C3 is respectively connected to the other end of the second microstrip line M2 and the other end of the first capacitor C1, and one end of the third microstrip line M3 is respectively and fourth.
  • One end of the capacitor C4 is connected to one end of the third capacitor C3, one end of the second inductor L2 is connected to the other end of the third microstrip line M3, and one end of the fourth microstrip line M4 is connected to the other end of the second inductor L2.
  • One end of the five capacitor C5 is connected to the other end of the fourth microstrip line M4 and the other end of the fourth capacitor C4, respectively, and the other end of the fifth capacitor C5 is grounded.
  • the filtering amplitude reaches -49 dB at 1.1 GHz, which is close to the ideal filter at 1.1 GHz. -50dB.
  • it overcomes the high-frequency effects of large inductors, thereby improving the quality factor of the inductor and reducing the in-band insertion loss; on the other hand, it also has the flexibility of debugging, for example, the designer can adjust the microstrip line to any length, Reduce the production cost and lead time by using conventional sense inductors for discrete component inductors.
  • FIG. 4 is a schematic structural diagram of a filter provided in Embodiment 4 of the present application.
  • the filter 100 includes a first capacitor C1, a first microstrip line M1, a first inductor L1, a second microstrip line M2, a second capacitor C2, a third capacitor C3, a fourth capacitor C4, and a third micro
  • the signal to be filtered is input through the filter input terminal 41, filtered, and output through the filter output terminal 42.
  • one end of the first microstrip line M1 is connected to one end of the first capacitor C1
  • one end of the first inductor L1 is connected to the other end of the first microstrip line M1
  • one end of the second microstrip line M2 is The other end of the first inductor L1 is connected
  • the other end of the second microstrip line M2 is connected to the other end of the first capacitor C1
  • one end of the second capacitor C2 is respectively connected to one end of the first microstrip line M1 and the first capacitor C1.
  • One end is connected, one end of the second capacitor C2 is grounded, and one end of the third capacitor C3 is respectively connected to the other end of the second microstrip line M2 and the other end of the first capacitor C1, and one end of the third microstrip line M3 is respectively and fourth.
  • One end of the capacitor C4 is connected to one end of the third capacitor C3, one end of the second inductor L2 is connected to the other end of the third microstrip line M3, and one end of the fourth microstrip line M4 is connected to the other end of the second inductor L2.
  • One end of the fifth capacitor C5 is connected to the other end of the fourth microstrip line M4 and the other end of the fourth capacitor C4, and the other end of the fifth capacitor C5 is grounded, and one end of the fifth microstrip line M5 and the sixth capacitor C6 are respectively One end is connected to one end of the fifth capacitor C5, one end of the third inductor L3 and the other end of the fifth microstrip line M5 End connection, one end of the sixth microstrip line M6 is connected to the other end of the third inductor L3, and one end of the seventh capacitor C7 is respectively connected to the other end of the sixth microstrip line M6 and the other end of the sixth capacitor C6, and the seventh The other end of the capacitor C7 is grounded.
  • FIG. 4a is a graph showing amplitude response characteristics of a filter provided in Embodiment 4 of the present application.
  • the curve S1 is the amplitude response characteristic curve of the filter using the pure lumped element
  • the curve S2 is the amplitude response characteristic curve of the seventh-order elliptical low-pass filter using the microstrip line and the discrete element inductance mixing.
  • Fig. 4a is the amplitude response characteristic curve of the filter using the pure lumped element
  • the curve S2 is the amplitude response characteristic curve of the seventh-order elliptical low-pass filter using the microstrip line and the discrete element inductance mixing.
  • the amplitude of point A is 195.71793MHz, the amplitude corresponding to -0.104dB, the amplitude of point B is 1.00000GHz, the amplitude corresponding to -4.321dB, and the amplitude of point C is 1.10000GHz. It is -21.549dB.
  • the amplitude of the D point frequency is 150.68566 MHz corresponding to -1.385 dB
  • the E point frequency is 950.00000 GHz corresponding to the amplitude of -3.443 dB
  • the F point frequency is 1.10000 GHz corresponding to the amplitude of -49.003 dB.
  • the filter provided by the embodiment of the present application has a filtering amplitude of -49 dB.
  • the ideal filter has a filtering amplitude of -50 dB at 1.1 GHz.
  • it overcomes the high-frequency effects of large inductors, thereby improving the quality factor of the inductor and reducing the in-band insertion loss; on the other hand, it also has the flexibility of debugging, for example, the designer can adjust the microstrip line to any length, Reduce the production cost and lead time by using conventional sense inductors for discrete component inductors.
  • the filter has the following advantages:
  • In-band insertion loss is less than 2dB
  • the rectangular coefficient of the filter is less than 1.2, that is, the ratio of the 3dB to the 40dB bandwidth;
  • the out-of-band attenuation is greater than 40dB;
  • Inductance parameters can be set to conventional standard values to facilitate production and procurement.
  • each inductive reactance of each inductor is 0nH, that is, each inductive reactance is equivalent to an impedance.
  • the first microstrip line, the second microstrip line, the third microstrip line, the fourth microstrip line, the fifth microstrip line, and the sixth microstrip line have a width of 0.01 inches, and a length. It is 0.1 inches.
  • a microstrip line of this size is used which has a high inductance factor Q value.
  • Designers can also choose the size of each microstrip line based on their design needs.
  • FIG. 5 is a schematic structural diagram of an electronic device according to Embodiment 5 of the present application.
  • the electronic device 50 includes an antenna 501, a filter 502, and an amplifying circuit 503.
  • the electronic device may be a set top box, a display panel, a television, a router, a multimedia playing device, and other electronic devices.
  • the antenna 501 receives and transmits a wireless signal, converts the wireless signal, and feeds the processing signal to the filter 502, wherein the processed signal includes a low frequency signal and a high frequency signal.
  • the antenna 501 includes an antenna body and a feed line connected to the antenna body. The designer selects the structural design of the antenna body according to the work purpose, and details are not described herein.
  • the filter 502 is connected to the antenna 501 for filtering the high frequency signal fed from the antenna 501 and outputting the filtered signal, thereby reducing the ripple coefficient of the electronic device and improving the reliability of the signal transmission.
  • the amplifying circuit 503 is connected to the filter 502 for amplifying the filtered signal.
  • the amplifying circuit 503 is capable of amplifying the relatively weak filtered signal for subsequent systems to process the filtered signal.
  • the subsequent system is a video system chip, and the video system chip performs analog-to-digital conversion and processing on the amplified filtered signal.
  • Subsequent systems can also be other application circuits, such as decoder chips. According to the content of the embodiment of the present application, the designer selects the processing circuit of the filtered signal filtered by the filter in combination with the purpose of the operation.
  • the filter 502 includes a first capacitor C1, a first microstrip line M1, a first inductor L1, and a second microstrip line M2.
  • One end of the first microstrip line M1 is connected to one end of the first capacitor C1.
  • One end of an inductor L1 is connected to the other end of the first microstrip line M1
  • one end of the second microstrip line M2 is connected to the other end of the first inductor L1
  • the other end of the second microstrip line M2 and the first capacitor C1 are Connected at the other end.
  • the filter 502 further includes a second capacitor C2 and a third capacitor C3.
  • One end of the second capacitor C2 is respectively connected to one end of the first microstrip line M1 and one end of the first capacitor C1, and one end of the second capacitor C2.
  • Grounding, one end of the third capacitor C3 is respectively connected to the other end of the second microstrip line M2 and the other end of the first capacitor C1.
  • the filter 52 further includes a fourth capacitor C4, a third microstrip line M3, a second inductor L2, a fourth microstrip line M4, and a fifth capacitor C5, and one end of the third microstrip line M3 and the fourth One end of the capacitor C4 is connected to one end of the third capacitor C3, one end of the second inductor L2 is connected to the other end of the third microstrip line M3, and one end of the fourth microstrip line M4 is connected to the other end of the second inductor L2.
  • One end of the five capacitor C5 is connected to the other end of the fourth microstrip line M4 and the other end of the fourth capacitor C4, respectively, and the other end of the fifth capacitor C5 is grounded.
  • the filter 502 further includes a sixth capacitor C6, a fifth microstrip line M5, a third inductor L3, a sixth microstrip line M6, and a seventh capacitor C7, and one end of the fifth microstrip line M5 is respectively sixth and sixth.
  • One end of the capacitor C6 is connected to one end of the fifth capacitor C5, one end of the third inductor L3 is connected to the other end of the fifth microstrip line M5, and one end of the sixth microstrip line M6 is connected to the other end of the third inductor L3.
  • One end of the seven capacitor C7 is connected to the other end of the sixth microstrip line M6 and the other end of the sixth capacitor C6, respectively, and the other end of the seventh capacitor C7 is grounded.
  • the filtering amplitude reaches -49 dB at 1.1 GHz, which is close to the ideal filter at 1.1 GHz. -50dB.
  • it overcomes the high-frequency effects of large inductors, thereby improving the quality factor of the inductor and reducing the in-band insertion loss; on the other hand, it also has the flexibility of debugging, for example, the designer can adjust the microstrip line to any length, Reduce the production cost and lead time by using conventional sense inductors for discrete component inductors.
  • the widths of the first microstrip line M1, the second microstrip line M2, the third microstrip line M3, the fourth microstrip line M4, the fifth microstrip line M5, and the sixth microstrip line M6 are 0.01 inches and 0.1 inches in length.
  • a microstrip line of this size is used which has a high inductance factor Q value.
  • Designers can also choose the size of each microstrip line based on their design needs.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Filters And Equalizers (AREA)

Abstract

本申请公开一种滤波器及电子设备。其中,该滤波器包括第一电容、第一微带线、第一电感以及第二微带线,第一微带线的一端和第一电容的一端连接,第一电感的一端和第一微带线的另一端连接,第二微带线的一端和第一电感的另一端连接,第二微带线的另一端和第一电容的另一端连接。通过采用微带线和分立元件电感混合使用,以代替单纯的电感,一方面,其克服大电感的高频效应,从而提高电感的品质因素和降低带内插损;另一方面,其还具有调试的灵活性,比如,设计者能够调整微带线到任意长度,使分立元件电感使用常规感值电感,从而降低生产成本。

Description

一种滤波器及电子设备 技术领域
本申请涉及滤波器领域,尤其涉及一种滤波器及电子设备。
背景技术
目前在有线电缆进行传输的电视信号频带通常在1GHz以内,但是随着多媒体的发展,尤其同轴电缆多媒体联盟(Multimedia over Coax Alliance,MoCA)的广泛应用,其通过采用共用有线线缆的方式传输1GHz以上的频段信号。然而该1GHz以上的频段信号需要从设备自身发出,其功率往往比有线电视下发的信号强几个数量级,比如四十个dB,并且其频率间隔最少只有100MHz,对有线信号正常接收造成影响,因此窄过渡带、高抑制能力的滤波器处理该1GHz以上的频段信号愈显重要。
现有技术公开一种三工器,该三工器采用空心电感来获得较小的滤波器的过渡带性能,然而该三工器存在着一致性不好的问题,生产时需要有调谐的过程,导致生产效能低下和成本昂贵。
现有技术有又公开一种滤波器,该滤波器由分立元件电容和电感构成,其能够滤波1GHz以上的杂波信号。但是,在VHF/UHF波段,由于趋肤效应,该滤波器的电感损耗增大,电感的品质因素降低。该滤波器难以做到较小的带内插损和陡峭的过渡带。
申请内容
有鉴于此,有必要针对上述现有技术存在带内插损大和电感的品质因素高的问题,提供一种滤波器及电子设备。
本发明实施例提供的一种滤波器,包括:
第一电容;
第一微带线,所述第一微带线的一端和所述第一电容的一端连接;
第一电感,所述第一电感的一端和所述第一微带线的另一端连接;
第二微带线,所述第二微带线的一端和所述第一电感的另一端连接,所述第二微带线的另一端和所述第一电容的另一端连接。
在其中的一个实施方式中,所述滤波器还包括:
第二电容,所述第二电容的一端分别与所述第一微带线的一端和所述第一电容的一端连接,所述第二电容的一端接地;
第三电容,所述第三电容的一端分别与所述第二微带线的另一端和所述第一电容的另一端连接。
在其中的一个实施方式中,所述滤波器还包括:
第四电容;
第三微带线,所述第三微带线的一端分别与所述第四电容的一端和所述第三电容的一端连接;
第二电感,所述第二电感的一端和所述第三微带线的另一端连接;
第四微带线,所述第四微带线的一端和所述第二电感的另一端连接;
第五电容,所述第五电容的一端分别与所述第四微带线的另一端和所述第四电容的另一端连接,所述第五电容的另一端接地。
在其中的一个实施方式中,所述滤波器还包括:
第六电容;
第五微带线,所述第五微带线的一端分别与所述第六电容的一端和所述第五电容的一端连接;
第三电感,所述第三电感的一端和所述第五微带线的另一端连接;
第六微带线,所述第六微带线的一端和所述第三电感的另一端连接;
第七电容,所述第七电容的一端分别与所述第六微带线的另一端和所述第六电容的另一端连接,所述第七电容的另一端接地。
在其中的一个实施方式中,所述第一微带线、所述第二微带线、所述第三 微带线、所述第四微带线、所述第五微带线以及所述第六微带线的宽度为0.01英寸,长度为0.1英寸。
本发明实施例提供的一种电子设备,包括:
天线,用于接收和发射无线信号;
滤波器,和所述天线连接,用于滤除从所述天线馈入的高频信号,输出滤波信号;
放大电路,和所述滤波器连接,用于放大所述滤波信号;
其中,所述滤波器包括:
第一电容;
第一微带线,所述第一微带线的一端和所述第一电容的一端连接;
第一电感,所述第一电感的一端和所述第一微带线的另一端连接;
第二微带线,所述第二微带线的一端和所述第一电感的另一端连接,所述第二微带线的另一端和所述第一电容的另一端连接。
在其中的一个实施方式中,所述滤波器还包括:
第二电容,所述第二电容的一端分别与所述第一微带线的一端和所述第一电容的一端连接,所述第二电容的一端接地;
第三电容,所述第三电容的一端分别与所述第二微带线的另一端和所述第一电容的另一端连接。
在其中的一个实施方式中,所述滤波器还包括:
第四电容;
第三微带线,所述第三微带线的一端分别与所述第四电容的一端和所述第三电容的一端连接;
第二电感,所述第二电感的一端和所述第三微带线的另一端连接;
第四微带线,所述第四微带线的一端和所述第二电感的另一端连接;
第五电容,所述第五电容的一端分别与所述第四微带线的另一端和所述第四电容的另一端连接,所述第五电容的另一端接地。
在其中的一个实施方式中,所述滤波器还包括:
第六电容;
第五微带线,所述第五微带线的一端分别与所述第六电容的一端和所述第五电容的一端连接;
第三电感,所述第三电感的一端和所述第五微带线的另一端连接;
第六微带线,所述第六微带线的一端和所述第三电感的另一端连接;
第七电容,所述第七电容的一端分别与所述第六微带线的另一端和所述第六电容的另一端连接,所述第七电容的另一端接地。
在其中的一个实施方式中,所述第一微带线、所述第二微带线、所述第三微带线、所述第四微带线、所述第五微带线以及所述第六微带线的宽度为0.01英寸,长度为0.1英寸。
在本发明实施例中,通过采用微带线和分立元件电感混合使用,以代替单纯的电感,一方面,其克服大电感的高频效应,从而提高电感的品质因素和降低带内插损;另一方面,其还具有调试的灵活性,比如,设计者能够调整微带线到任意长度,使分立元件电感使用常规感值电感,从而降低生产成本和供货周期。
附图说明
图1是本申请实施一提供的一种滤波器的结构示意图;
图1a是本申请实施例一提供现有技术的一种七阶椭圆低通滤波器的结构示意图;
图1b是图1a所示的七阶椭圆低通滤波器在理想条件下获取的幅频特性响应曲线图;
图1c是本申请实施例一提供的电感系数和频率之间的响应特性曲线图;
图1d是本申请实施例一提供的电感的品质因素和频率之间的响应特性曲线图;
图1e是图1a所示的七阶椭圆低通滤波器单纯采用绕线电感时的幅频特性响应曲线图;
图2是本申请实施二提供的一种滤波器的结构示意图;
图3是本申请实施三提供的一种滤波器的结构示意图;
图4是本申请实施四提供的一种滤波器的结构示意图;
图4a是本申请实施例四提供的一种滤波器的幅频特性响应曲线图;
图5是本申请实施例五提供的一种电子设备的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
实施例一
请参考图1,图1是本申请实施一提供的一种滤波器的结构示意图。如图1所示,该滤波器100包括第一电容C1、第一微带线M1、第一电感L1以及第二微带线M2,第一微带线M1的一端和第一电容C1的一端连接,第一电感L1的一端和第一微带线M1的另一端连接,第二微带线M2的一端和第一电感L1的另一端连接,第二微带线M2的另一端和第一电容C1的另一端连接。待滤波信号通过滤波输入端11输入,经过滤波,通过滤波输出端12输出。
请参考图1a,图1a是本申请实施例一提供现有技术的一种七阶椭圆低通滤波器的结构示意图。如图1a所示,该七阶椭圆低通滤波器采用集总元件构成的,该七阶椭圆低通滤波器的输入端1a1输入处理信号,经过处理,从输出端1a2输出该处理信号。请参考图1b,图1b是图1a所示的七阶椭圆低通滤波器在理想条件下获取的幅频特性响应曲线图。如图1b所示,在0.95GHz时,即1b点,该七阶椭圆低通滤波器的分贝值为-1.539dB。在1.1GHz时,即2b点,该七阶椭圆低通滤波器的分贝值为-50.69dB。很明显,在理想条件下的采用集总元件构成的七阶椭圆低通滤波器具有非常优秀的幅度响应特性,其能够在1.1GHz时能够滤除50dB左右的杂波信号。但是在实际使用过程中,七阶椭圆低通滤波器使用的电感为普通电感。当输入端1a1输入的信号包括高频信号时, 该七阶椭圆低通滤波器的电感的品质因素Q会急剧下降,致使无法实现有效的陡峭的过渡带。
请一并参考图1c和图1d,图1c是本申请实施例一提供的电感系数和频率之间的响应特性曲线图,图1d是本申请实施例一提供的电感品质因素和频率之间的响应特性曲线图。如图1c所示,该响应特性曲线图包括三条曲线,曲线S1c是电感系数100nH的,曲线S2c是电感系数47nH的,曲线S3c是电感系数3.9nH的。从图1c可知,在1000MHz以上的频率,三条曲线的斜率急剧增大,即电感系数急剧增大。如图1d所示,1000MHz附近的频率所对应的电感的品质因素Q值急剧下降,其原因在于:当频率不断升高时,趋肤效应和泄露严重,电感系数变大,导致损耗增大和电感的品质因素Q值降低。采用集总元件构成的七阶椭圆低通滤波器在实际工作过程中,七阶椭圆低通滤波器的边沿变得平缓,矩形系数变大。
请参考图1e,图1e是图1a所示的七阶椭圆低通滤波器单纯采用绕线电感时的幅频特性响应曲线图。如图1e所示,在A点处,A点频率为195.71793MHz所对应的幅度为-0.904dB。在B点处,B点频率为1.00000GHz所对应的幅度为-4.321dB。在C点出,C点频率为1.10000GHz所对应的幅度为-21.549dB。请结合图1b,在频率为1.1GHz时,理想条件能够滤除50dB,但是在实际过程中,却只能达到21.549dB,两者差值大约为30dB。请再参考图1e,在2GHz以上的高频端带外抑制能力下降到-20dB,因此,在实际过程中,单纯采用绕线电感或者集总元件构成的低通滤波器无法满足-50dB以上带外抑制的需求。
在本申请实施例中,通过将第一电容C1、第一微带线M1、第一电感L1以及第二微带线M2混合使用并且构成滤波器,第一微带线M1和第二微带线M2的电感的品质因素Q值高。相对于现有技术,第一微带线M1、第二微带线M2配合着第一电感L1,相对地将现有技术中的集总电感或单纯绕线电感等效分拆为小感值电感和微带线等效电感,从而实现滤波器的小型化和批量化生产。
本申请实施例提供的滤波器的结构形式可以呈现任意组合形态。根据“最佳逼近特性”标准划分,本申请实施例的滤波器可以是考尔滤波器、巴特沃斯 滤波器、切比雪夫滤波器、贝塞尔滤波器以及等等。根据滤波器的选频特性划分,本申请实施例的滤波器可以是低通滤波器、高通滤波器、带通滤波器以及带阻滤波器,更或者是上述各种滤波器的组合。本技术领域的人员应当理解:结合本文中所公开的实施例描述的滤波器或者根据实施例所训导的内容产生的技术启发,均可以对该滤波器进行等效替换或者变形。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请实施例中,通过采用微带线和分立元件电感混合使用,以代替单纯的电感,在1.1GHz处,其滤波的幅度达到-49dB,接近于理想滤波器在1.1GHz处滤波幅度为-50dB。一方面,其克服大电感的高频效应,从而提高电感的品质因素和降低带内插损;另一方面,其还具有调试的灵活性,比如,设计者能够调整微带线到任意长度,使分立元件电感使用常规感值电感,从而降低生产成本和供货周期。
实施例二
请参考图2,图2是本申请实施二提供的一种滤波器的结构示意图。如图2所示,该滤波器100包括第一电容C1、第一微带线M1、第一电感L1、第二微带线M2、第二电容C2以及第三电容C3。待滤波信号通过滤波输入端21输入,经过滤波,通过滤波输出端22输出。
在本实施例中,第一微带线M1的一端和第一电容C1的一端连接,第一电感L1的一端和第一微带线M1的另一端连接,第二微带线M2的一端和第一电感L1的另一端连接,第二微带线M2的另一端和第一电容C1的另一端连接,第二电容C2的一端分别与第一微带线M1的一端和第一电容C1的一端连接,第二电容C2的一端接地,第三电容C3的一端分别与第二微带线M2的另一端和第一电容C1的另一端连接。
在本申请实施例中,通过采用微带线和分立元件电感混合使用,以代替单纯的电感,在1.1GHz处,其滤波的幅度达到-49dB,接近于理想滤波器在1.1GHz处滤波幅度为-50dB。一方面,其克服大电感的高频效应,从而提高电 感的品质因素和降低带内插损;另一方面,其还具有调试的灵活性,比如,设计者能够调整微带线到任意长度,使分立元件电感使用常规感值电感,从而降低生产成本和供货周期。
实施例三
请参考图3,图3是本申请实施三提供的一种滤波器的结构示意图。如图3所示,该滤波器100包括第一电容C1、第一微带线M1、第一电感L1、第二微带线M2、第二电容C2、第三电容C3、第四电容C4、第三微带线M3、第二电感L2、第四微带线M4以及第五电容C5。待滤波信号通过滤波输入端31输入,经过滤波,通过滤波输出端32输出。
在本实施例中,第一微带线M1的一端和第一电容C1的一端连接,第一电感L1的一端和第一微带线M1的另一端连接,第二微带线M2的一端和第一电感L1的另一端连接,第二微带线M2的另一端和第一电容C1的另一端连接,第二电容C2的一端分别与第一微带线M1的一端和第一电容C1的一端连接,第二电容C2的一端接地,第三电容C3的一端分别与第二微带线M2的另一端和第一电容C1的另一端连接,第三微带线M3的一端分别与第四电容C4的一端和第三电容C3的一端连接,第二电感L2的一端和第三微带线M3的另一端连接,第四微带线M4的一端和第二电感L2的另一端连接,第五电容C5的一端分别与第四微带线M4的另一端和第四电容C4的另一端连接,第五电容C5的另一端接地。
在本申请实施例中,通过采用微带线和分立元件电感混合使用,以代替单纯的电感,在1.1GHz处,其滤波的幅度达到-49dB,接近于理想滤波器在1.1GHz处滤波幅度为-50dB。一方面,其克服大电感的高频效应,从而提高电感的品质因素和降低带内插损;另一方面,其还具有调试的灵活性,比如,设计者能够调整微带线到任意长度,使分立元件电感使用常规感值电感,从而降低生产成本和供货周期。
实施例四
请参考图4,图4是本申请实施四提供的一种滤波器的结构示意图。如图4 所示,该滤波器100包括第一电容C1、第一微带线M1、第一电感L1、第二微带线M2、第二电容C2、第三电容C3、第四电容C4、第三微带线M3、第二电感L2、第四微带线M4、第五电容C5、第六电容C6、第五微带线M5、第三电感L3、第六微带线M6以及第七电容C7。待滤波信号通过滤波输入端41输入,经过滤波,通过滤波输出端42输出。
在本实施例中,第一微带线M1的一端和第一电容C1的一端连接,第一电感L1的一端和第一微带线M1的另一端连接,第二微带线M2的一端和第一电感L1的另一端连接,第二微带线M2的另一端和第一电容C1的另一端连接,第二电容C2的一端分别与第一微带线M1的一端和第一电容C1的一端连接,第二电容C2的一端接地,第三电容C3的一端分别与第二微带线M2的另一端和第一电容C1的另一端连接,第三微带线M3的一端分别与第四电容C4的一端和第三电容C3的一端连接,第二电感L2的一端和第三微带线M3的另一端连接,第四微带线M4的一端和第二电感L2的另一端连接,第五电容C5的一端分别与第四微带线M4的另一端和第四电容C4的另一端连接,第五电容C5的另一端接地,第五微带线M5的一端分别与第六电容C6的一端和第五电容C5的一端连接,第三电感L3的一端和第五微带线M5的另一端连接,第六微带线M6的一端和第三电感L3的另一端连接,第七电容C7的一端分别与第六微带线M6的另一端和第六电容C6的另一端连接,第七电容C7的另一端接地。
请一并参考图1e和图4a,图4a是本申请实施例四提供的一种滤波器的幅度响应特性曲线图。如图4a所示,曲线S1为采用纯集总元件的滤波器的幅度响应特性曲线,曲线S2为采用微带线和分立元件电感混合使用的七阶椭圆低通滤波器的幅度响应特性曲线。如图1e所示,在S1中,A点频率为195.71793MHz所对应的幅度为-0.904dB,B点频率为1.00000GHz所对应的幅度为-4.321dB,C点频率为1.10000GHz所对应的幅度为-21.549dB。在S2中,D点频率为150.68566MHz所对应的幅度为-1.385dB,E点频率为950.00000GHz所对应的幅度为-3.043dB,F点频率为1.10000GHz所对应的幅度为-49.003dB。很显然,在1.1GHz处,本申请实施例提供的滤波器的滤波的幅度达到-49dB,接 近于理想滤波器在1.1GHz处滤波幅度为-50dB。一方面,其克服大电感的高频效应,从而提高电感的品质因素和降低带内插损;另一方面,其还具有调试的灵活性,比如,设计者能够调整微带线到任意长度,使分立元件电感使用常规感值电感,从而降低生产成本和供货周期。进一步的,该滤波器还具有以下优点:
1、带内插损小于2dB;
2、滤波器的矩形系数小于1.2,即3dB与40dB带宽的比值;
3、带外衰减大于40dB;
4、采用普通FR4、两层板低成本设计;
5、电感参数可以设定到常规标准值,方便生产与采购。
请再参考图4a,在3GHz高频附近,曲线S2上升幅度小,曲线S1上升幅度大,这是由于纯集总元件的滤波器中的大感值电感自谐振频率更低,在3GHz高频附近容易出现谐振,并且电感和电感之间的距离较近,容易出现互感现象,致使纯集总元件的滤波器的前级和后级之间出现信号耦合,进一步降低了滤除性能,因此采用微带线和分立元件电感构成的滤波器的滤波性能优于采用纯集总元件的滤波器。
请再参考图4a,当待滤波信号的频率超过一定频率值时,各个电感的感抗为0nH,即各个感抗等效为阻抗。
在本申请各个实施例中,第一微带线、第二微带线、第三微带线、第四微带线、第五微带线以及第六微带线的宽度为0.01英寸,长度为0.1英寸。采用该尺寸的微带线,其具有高电感因数Q值。设计者还可以根据设计需要自行选择各个微带线的尺寸。
实施例五
请参考图5,图5是本申请实施例五提供的一种电子设备的结构示意图。如图5所示,该电子设备50包括天线501、滤波器502以及放大电路503。
在本申请实施例中,电子设备可以为机顶盒、显示面板、电视机、路由器、多媒体播放设备以及其它电子设备。
在本申请实施例中,天线501接收和发射无线信号,对该无线信号进行转换,对滤波器502馈入处理信号,其中,该处理信号包括低频信号和高频信号。天线501包括天线本体以及连接于天线本体上的馈线,设计者根据作业目的选择天线本体的结构设计,在此不必赘述。
在本实施例中,滤波器502和天线501连接,用于滤除从天线501馈入的高频信号,输出滤波信号,从而降低电子设备的纹波系数,提高信号传输的可靠性。
在本实施例中,放大电路503和滤波器502连接,用于放大滤波信号。放大电路503能够将比较弱的滤波信号进行放大,以便后续***处理该滤波信号。比如说,后续***为视频***芯片,视频***芯片将该放大后的滤波信号进行模数转换和处理。后续***还可以为其它应用电路,比如解码芯片。设计者根据本申请实施例所训导的内容,结合作业目的,自行选择经过滤波器滤除后的滤波信号的处理电路。
进一步的,该滤波器502包括第一电容C1、第一微带线M1、第一电感L1以及第二微带线M2,第一微带线M1的一端和第一电容C1的一端连接,第一电感L1的一端和第一微带线M1的另一端连接,第二微带线M2的一端和第一电感L1的另一端连接,第二微带线M2的另一端和第一电容C1的另一端连接。
进一步的,该滤波器502还包括第二电容C2以及第三电容C3,第二电容C2的一端分别与第一微带线M1的一端和第一电容C1的一端连接,第二电容C2的一端接地,第三电容C3的一端分别与第二微带线M2的另一端和第一电容C1的另一端连接。
进一步的,该滤波器52还包括第四电容C4、第三微带线M3、第二电感L2、第四微带线M4以及第五电容C5,第三微带线M3的一端分别与第四电容C4的一端和第三电容C3的一端连接,第二电感L2的一端和第三微带线M3的另一端连接,第四微带线M4的一端和第二电感L2的另一端连接,第五电容C5的一端分别与第四微带线M4的另一端和第四电容C4的另一端连接,第五电容C5的另一端接地。
进一步的,该滤波器502还包括第六电容C6、第五微带线M5、第三电感L3、第六微带线M6以及第七电容C7,第五微带线M5的一端分别与第六电容C6的一端和第五电容C5的一端连接,第三电感L3的一端和第五微带线M5的另一端连接,第六微带线M6的一端和第三电感L3的另一端连接,第七电容C7的一端分别与第六微带线M6的另一端和第六电容C6的另一端连接,第七电容C7的另一端接地。
在本申请实施例中,通过采用微带线和分立元件电感混合使用,以代替单纯的电感,在1.1GHz处,其滤波的幅度达到-49dB,接近于理想滤波器在1.1GHz处滤波幅度为-50dB。一方面,其克服大电感的高频效应,从而提高电感的品质因素和降低带内插损;另一方面,其还具有调试的灵活性,比如,设计者能够调整微带线到任意长度,使分立元件电感使用常规感值电感,从而降低生产成本和供货周期。
在本实施例中,第一微带线M1、第二微带线M2、第三微带线M3、第四微带线M4、第五微带线M5以及第六微带线M6的宽度为0.01英寸,长度为0.1英寸。采用该尺寸的微带线,其具有高电感因数Q值。设计者还可以根据设计需要自行选择各个微带线的尺寸。
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种滤波器(100),其特征在于,包括:
    第一电容(C1);
    第一微带线(M1),所述第一微带线(M1)的一端和所述第一电容(C1)的一端连接;
    第一电感(L1),所述第一电感(L1)的一端和所述第一微带线(M1)的另一端连接;
    第二微带线(M2),所述第二微带线(M2)的一端和所述第一电感(L1)的另一端连接,所述第二微带线(M2)的另一端和所述第一电容(C1)的另一端连接。
  2. 根据权利要求1所述的滤波器,其特征在于,所述滤波器(100)还包括:
    第二电容(C2),所述第二电容(C2)的一端分别与所述第一微带线(M1)的一端和所述第一电容(C1)的一端连接,所述第二电容(C2)的一端接地;
    第三电容(C3),所述第三电容(C3)的一端分别与所述第二微带线(M2)的另一端和所述第一电容(C1)的另一端连接。
  3. 根据权利要求2所述的滤波器,其特征在于,所述滤波器(100)还包括:
    第四电容(C4);
    第三微带线(M3),所述第三微带线(M3)的一端分别与所述第四电容(C4)的一端和所述第三电容(C3)的一端连接;
    第二电感(L2),所述第二电感(L2)的一端和所述第三微带线(M3)的另一端连接;
    第四微带线(M4),所述第四微带线(M4)的一端和所述第二电感(L2)的另一端连接;
    第五电容(C5),所述第五电容(C5)的一端分别与所述第四微带线(M4)的另一端和所述第四电容(C4)的另一端连接,所述第五电容(C5)的另一端接地。
  4. 根据权利要求3所述的滤波器,其特征在于,所述滤波器(100)还包括:
    第六电容(C6);
    第五微带线(M5),所述第五微带线(M5)的一端分别与所述第六电容(C6)的一端和所述第五电容(C5)的一端连接;
    第三电感(L3),所述第三电感(L3)的一端和所述第五微带线(M5)的另一端连接;
    第六微带线(M6),所述第六微带线(M6)的一端和所述第三电感(L3)的另一端连接;
    第七电容(C7),所述第七电容(C7)的一端分别与所述第六微带线(M6)的另一端和所述第六电容(C6)的另一端连接,所述第七电容(C7)的另一端接地。
  5. 根据权利要求4所述的滤波器,其特征在于,所述第一微带线(M1)、所述第二微带线(M2)、所述第三微带线(M3)、所述第四微带线(M4)、所述第五微带线(M5)以及所述第六微带线(M6)的宽度为0.01英寸,长度为0.1英寸。
  6. 一种电子设备(50),其特征在于,包括:
    天线(501),用于接收和发射无线信号;
    滤波器(502),和所述天线(501)连接,用于滤除从所述天线馈入的高频信号,输出滤波信号;
    放大电路(503),和所述滤波器(502)连接,用于放大所述滤波信号;
    其中,所述滤波器(502)包括:
    第一电容(C1);
    第一微带线(M1),所述第一微带线(M1)的一端和所述第一电容(C1)的一端连接;
    第一电感(L1),所述第一电感(L1)的一端和所述第一微带线(M1)的另一端连接;
    第二微带线(M2),所述第二微带线(M2)的一端和所述第一电感(L1)的另一端连接,所述第二微带线(M2)的另一端和所述第一电容(C1)的另一端连接。
  7. 根据权利要求6所述的电子设备,其特征在于,所述滤波器(502)还包括:
    第二电容(C2),所述第二电容(C2)的一端分别与所述第一微带线(M1)的一 端和所述第一电容(C1)的一端连接,所述第二电容(C2)的一端接地;
    第三电容(C3),所述第三电容(C3)的一端分别与所述第二微带线(M2)的另一端和所述第一电容(C1)的另一端连接。
  8. 根据权利要求7所述的电子设备,其特征在于,所述滤波器(502)还包括:
    第四电容(C4);
    第三微带线(M3),所述第三微带线(M3)的一端分别与所述第四电容(C4)的一端和所述第三电容(C3)的一端连接;
    第二电感(L2),所述第二电感(L2)的一端和所述第三微带线(M3)的另一端连接;
    第四微带线(M4),所述第四微带线(M4)的一端和所述第二电感(L2)的另一端连接;
    第五电容(C5),所述第五电容(C5)的一端分别与所述第四微带线(M4)的另一端和所述第四电容(C4)的另一端连接,所述第五电容(C5)的另一端接地。
  9. 根据权利要求8所述的电子设备,其特征在于,所述滤波器(502)还包括:
    第六电容(C6);
    第五微带线(M5),所述第五微带线(M5)的一端分别与所述第六电容(C6)的一端和所述第五电容(C5)的一端连接;
    第三电感(L3),所述第三电感(L3)的一端和所述第五微带线(M5)的另一端连接;
    第六微带线(M6),所述第六微带线(M6)的一端和所述第三电感(L3)的另一端连接;
    第七电容(C7),所述第七电容(C7)的一端分别与所述第六微带线(M6)的另一端和所述第六电容(C6)的另一端连接,所述第七电容(C7)的另一端接地。
  10. 根据权利要求9所述的电子设备,其特征在于,所述第一微带线(M1)、所述第二微带线(M2)、所述第三微带线(M3)、所述第四微带线(M4)、所述第五微带线(M5)以及所述第六微带线(M6)的宽度为0.01英寸,长度为0.1英寸。
PCT/CN2017/083454 2016-06-30 2017-05-08 一种滤波器及电子设备 WO2018000939A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610502817.8A CN106209008B (zh) 2016-06-30 2016-06-30 一种滤波器及电子设备
CN201610502817.8 2016-06-30

Publications (1)

Publication Number Publication Date
WO2018000939A1 true WO2018000939A1 (zh) 2018-01-04

Family

ID=57463256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083454 WO2018000939A1 (zh) 2016-06-30 2017-05-08 一种滤波器及电子设备

Country Status (2)

Country Link
CN (1) CN106209008B (zh)
WO (1) WO2018000939A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115799781A (zh) * 2022-11-16 2023-03-14 宜确半导体(苏州)有限公司 一种耦合线带通滤波器
CN117391019A (zh) * 2023-10-18 2024-01-12 广州市德珑电子器件有限公司 Emi电源滤波器的仿真测试方法、装置、设备以及介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106209008B (zh) * 2016-06-30 2019-02-26 深圳市九洲电器有限公司 一种滤波器及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09214202A (ja) * 1996-01-31 1997-08-15 Sumitomo Kinzoku Electro Device:Kk 誘電体フィルタ
CN101170206A (zh) * 2007-11-23 2008-04-30 中兴通讯股份有限公司 一种可调频段滤波器及其实现方法
CN201319399Y (zh) * 2008-12-22 2009-09-30 建汉科技股份有限公司 小型低通滤波器
CN104241745A (zh) * 2014-09-05 2014-12-24 中国科学院微电子研究所 一种微带滤波器
CN106209008A (zh) * 2016-06-30 2016-12-07 深圳市九洲电器有限公司 一种滤波器及电子设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5604375A (en) * 1994-02-28 1997-02-18 Sumitomo Electric Industries, Ltd. Superconducting active lumped component for microwave device application
CN102751960B (zh) * 2012-05-07 2015-08-26 摩比天线技术(深圳)有限公司 一种应用于lte的射频低通滤波器
CN103606724B (zh) * 2013-11-25 2016-09-07 海能达通信股份有限公司 一种功率设备及其微带滤波器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09214202A (ja) * 1996-01-31 1997-08-15 Sumitomo Kinzoku Electro Device:Kk 誘電体フィルタ
CN101170206A (zh) * 2007-11-23 2008-04-30 中兴通讯股份有限公司 一种可调频段滤波器及其实现方法
CN201319399Y (zh) * 2008-12-22 2009-09-30 建汉科技股份有限公司 小型低通滤波器
CN104241745A (zh) * 2014-09-05 2014-12-24 中国科学院微电子研究所 一种微带滤波器
CN106209008A (zh) * 2016-06-30 2016-12-07 深圳市九洲电器有限公司 一种滤波器及电子设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115799781A (zh) * 2022-11-16 2023-03-14 宜确半导体(苏州)有限公司 一种耦合线带通滤波器
CN115799781B (zh) * 2022-11-16 2024-02-02 宜确半导体(苏州)有限公司 一种耦合线带通滤波器
CN117391019A (zh) * 2023-10-18 2024-01-12 广州市德珑电子器件有限公司 Emi电源滤波器的仿真测试方法、装置、设备以及介质
CN117391019B (zh) * 2023-10-18 2024-03-22 广州市德珑电子器件有限公司 Emi电源滤波器的仿真测试方法、装置、设备以及介质

Also Published As

Publication number Publication date
CN106209008B (zh) 2019-02-26
CN106209008A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
US20090153263A1 (en) Modulized wave filter
WO2018000939A1 (zh) 一种滤波器及电子设备
WO2007131501A1 (de) Elektrisches bauelement
CN110459839B (zh) 一种频率可调差分双通带滤波器
CN114024108B (zh) 一种小型化可重构微带低通滤波器
US7511596B2 (en) Dual bandpass filter having serial configuration of coupled-line filters
CN109819299B (zh) 一种高通滤波电路及高通滤波器、数字电视接收终端
US7492239B1 (en) Radio frequency combiner
WO2004105175A1 (ja) リングフィルタ及びそれを用いた広帯域帯域通過フィルタ
JP2001204016A (ja) 衛星チューナの入力回路
CN104009271B (zh) 一种基于级联四个谐振器的平面带通滤波器
JP2006173697A (ja) アンテナ装置
US10447227B2 (en) Radio frequency transceiver circuit with distributed inductor and method thereof
CN115694394A (zh) 一种适用于wifi 5g频段的ipd带通滤波器芯片
CN101908663A (zh) 自匹配的带通滤波器及其相关降频器
KR101010214B1 (ko) 비대칭 임피던스 필터를 이용한 다이플렉서
US20140314131A1 (en) Signal Transceiver with Enhanced Return Loss in Power-off State
CN206922743U (zh) 一体化Ka波段天线前端
US8253515B2 (en) Band-pass filter
CN203871449U (zh) 一种基于级联四个谐振器的平面带通滤波器
CN203721858U (zh) 一种超宽带陷波滤波器
CN221102370U (zh) Ka波段带通滤波器
CN112737612B (zh) 一种车载射频接收板
JP3192341U (ja) MoCA遮断機能を有する分岐器
CN209592282U (zh) 2-18GHz宽带15dB耦合器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17818936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.05.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17818936

Country of ref document: EP

Kind code of ref document: A1