WO2017222324A1 - Method for transmitting and receiving data in wireless communication system and device for supporting same - Google Patents

Method for transmitting and receiving data in wireless communication system and device for supporting same Download PDF

Info

Publication number
WO2017222324A1
WO2017222324A1 PCT/KR2017/006603 KR2017006603W WO2017222324A1 WO 2017222324 A1 WO2017222324 A1 WO 2017222324A1 KR 2017006603 W KR2017006603 W KR 2017006603W WO 2017222324 A1 WO2017222324 A1 WO 2017222324A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
data
cell
terminal
carrier
Prior art date
Application number
PCT/KR2017/006603
Other languages
French (fr)
Korean (ko)
Inventor
심현진
강지원
김희진
변일무
조희정
한진백
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Publication of WO2017222324A1 publication Critical patent/WO2017222324A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup

Definitions

  • the present invention relates to a method for transmitting and receiving data of a terminal in a wireless communication system, and more particularly, to a method for transmitting and receiving the same data repeatedly by adding a cell / carrier and an apparatus for supporting the same.
  • Mobile communication systems have been developed to provide voice services while ensuring user activity.
  • the mobile communication system has expanded not only voice but also data service.As a result of the explosive increase in traffic, a shortage of resources and users are demanding higher speed services, a more advanced mobile communication system is required. have.
  • An object of the present invention is to provide a method and apparatus for transmitting the same data in duplicate in order to increase the reliability of the data transmission.
  • the present invention provides a method and apparatus for adding a New Radio Access Technology (RAT) network for transmitting and receiving the same plurality of data to a Long Term Evolution (LTE) network in a multi-radio access technology (Multi-Radio Access Technology) environment
  • RAT New Radio Access Technology
  • LTE Long Term Evolution
  • Multi-Radio Access Technology Multi-Radio Access Technology
  • Another object of the present invention is to provide a method and apparatus for transmitting and receiving the same plurality of data by adding a cell / carrier to which carrier aggregation (CA) is applied.
  • CA carrier aggregation
  • an object of the present invention is to provide a method and apparatus for transmitting and receiving the same plurality of data by adding a base station using Dual Connectivity.
  • the present invention provides a method and apparatus for transmitting and receiving data by a terminal in a wireless communication system in order to solve the above problems.
  • the data transmission and reception method receiving capability information (Capability information) associated with the first specific function of the second base station from the first base station, the first specific function is the second
  • Capability information Capability information
  • the first specific function is the second
  • a base station receives a same data from the terminal as the first base station; Establishing a connection with the second base station based on the capability information; Receiving first control information indicating whether the first specific function of the second base station is activated from the first base station; Transmitting specific data to the first base station; And transmitting the duplicated data to the second base station according to whether the first specific function is activated, wherein the duplicated data is generated using the specific data.
  • the communication unit for transmitting and receiving a wireless signal with the outside; And a process operatively coupled with the communication unit, wherein the process receives from the first base station Capability information related to the first specific function of the second base station, wherein the first specific function is the first specific function.
  • a second base station is a function for receiving the same data as the first base station from the terminal, establishes a connection with the second base station based on the capability information, and the first specific function of the second base station from the first base station; Receiving first control information indicating whether is activated, transmitting specific data to the first base station, and transmitting duplicate data to the second base station according to whether the first specific function is activated, The duplicated data is provided by using the specific data.
  • the present invention has the effect of producing a plurality of the same data for providing the same service by generating a plurality of duplicate data through the duplication of data.
  • the present invention has the effect of transmitting and receiving a plurality of the same data by adding a cell / carrier using Carrier Aggregation (CA) or Dual Connectivity.
  • CA Carrier Aggregation
  • the present invention transmits the same data through a plurality of component carriers (CC) to which Carrier Aggregation (CA) or a plurality of base stations and / or cells to which dual connectivity (Dual Connectivity) is applied, thereby ensuring the reliability of data transmission (Reliability) There is an effect to increase.
  • CC component carriers
  • CA Carrier Aggregation
  • Dual Connectivity Dual Connectivity
  • FIG. 1 is a diagram illustrating an example of an EPS (Evolved Packet System) related to an LTE system to which the present invention can be applied.
  • EPS Evolved Packet System
  • FIG. 2 is a flowchart illustrating a process of establishing an RRC connection to which the present invention can be applied.
  • FIG. 3 is a flowchart illustrating a RRC connection resetting process to which the present invention can be applied.
  • FIGS. 4 and 5 are diagrams illustrating an example of a layer 2 structure in carrier aggregation to which the present invention can be applied.
  • FIG. 6 is a diagram illustrating an example of a component carrier and carrier aggregation in a wireless communication system to which the present invention can be applied.
  • FIGS. 7 to 9 are diagrams illustrating an example of a structure of a dual connectivity and a network interface to which the present invention can be applied.
  • FIG. 10 is a flowchart illustrating an example of transmitting and receiving a plurality of data by adding a new RAT in a multi-RAT environment proposed in the present specification.
  • 11 is a flowchart illustrating an example of transmitting and receiving a plurality of the same data through the addition of a base station using dual connectivity proposed in the present specification.
  • FIG. 12 is a flowchart illustrating an example of transmitting and receiving a plurality of identical data through cell / carrier addition using carrier aggregation proposed in the present specification.
  • FIG. 13 is a flowchart illustrating another example of transmitting and receiving a plurality of data by adding a new RAT in a multi-RAT environment proposed in the present specification.
  • FIG. 14 is a flowchart illustrating still another example of transmitting and receiving a plurality of identical data through the addition of a base station using dual connectivity proposed in the present specification.
  • FIG. 15 is a flowchart illustrating still another example of transmitting and receiving a plurality of identical data through cell / carrier addition using carrier aggregation proposed in the present specification.
  • 16 is a flowchart illustrating an example of a method for transmitting and receiving a plurality of identical data by adding a base station or a cell by the terminal proposed in the present specification.
  • 17 is a diagram illustrating an example of an internal block diagram of a wireless device to which the present invention can be applied.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an evolved-NodeB (eNB), a base transceiver system (BTS), an access point (AP), and the like. .
  • a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) Device, Machine-to-Machine (M2M) Device, Device-to-Device (D2D) Device, etc.
  • UE user equipment
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS Advanced Mobile Station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal and a receiver may be part of a base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA).
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of IEEE 802, 3GPP, and 3GPP2, which are wireless access systems. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • EPS stands for Evolved Packet System and means a core network supporting a Long Term Evolution (LTE) network.
  • LTE Long Term Evolution
  • UMTS evolved network
  • PDN Public Data Network
  • APN Access Point Name: A name of an access point managed in a network, which is provided to a UE. That is, the name (string) of the PDN. Based on the name of the access point, the corresponding PDN for the transmission and reception of data is determined.
  • Tunnel Endpoint Identifier An end point ID of a tunnel established between nodes in a network, and is set for each section in bearer units of each UE.
  • MME Mobility Management Entity
  • a session is a channel for data transmission.
  • the unit may be a PDN, a bearer, or an IP flow unit.
  • the difference between each unit can be divided into the entire unit network unit (APN or PDN unit), QoS classification unit (Bearer unit), and destination IP address unit as defined in 3GPP.
  • APN unit network unit
  • PDN unit QoS classification unit
  • Bearer unit destination IP address unit as defined in 3GPP.
  • EPS Bearer Logical path created between the UE and the gateway through which various kinds of traffic are transmitted and received.
  • Default EPS Bear As a logical path for data transmission and reception basically created when the terminal accesses the network, it may be maintained until the terminal exits from the network.
  • Dedicated EPS Bearer A logical path created when needed to provide additional services after the Default EPS Bearer is created.
  • IP flow Various types of traffic transmitted and received through a logical path between a terminal and a gateway.
  • Service Data Flow The IP flow or combination of multiple IP flows of user traffic classified by service type.
  • PDN connection (connection) A connection from the terminal to the PDN, that is, the association (connection) of the terminal represented by the IP address with the PDN represented by the APN.
  • UE Context The context information of the UE used to manage the UE in the network, that is, the context information consisting of UE id, mobility (current location, etc.), and attributes of the session (QoS, priority, etc.)
  • FIG. 1 is a diagram illustrating an example of an EPS (Evolved Packet System) related to an LTE system to which the present invention can be applied.
  • EPS Evolved Packet System
  • the LTE system aims to provide seamless Internet Protocol connectivity between the user equipment (UE) and the packet data network (PDN) without interfering with the end user's use of the application on the go. .
  • the LTE system completes the evolution of wireless access through the Evolved Universal Terrestrial Radio Access Network (E-UTRAN), which defines a radio protocol architecture between the user terminal and the base station, which is an Evolved Packet Core (EPC) network. It is also achieved through evolution in non-wireless terms by the inclusion of System Architecture Evolution (SAE).
  • SAE System Architecture Evolution
  • LTE and SAE include an Evolved Packet System (EPS).
  • EPS Evolved Packet System
  • the EPS uses the concept of EPS bearers to route IP traffic from the gateway to the user terminal in the PDN.
  • a bearer is an IP packet flow having a specific Quality of Service (QoS) between the gateway and the user terminal.
  • QoS Quality of Service
  • E-UTRAN and EPC both set up and release bearers required by the application.
  • EPC also called CN (core network)
  • CN core network
  • a node (logical or physical node) of an EPC of the SAE includes a mobility management entity (MME) 30, a PDN-GW or a PDN gateway (P-GW) 50, and an S-GW ( Serving Gateway (40), Policy and Charging Rules Function (PCRF) 60, Home Subscriber Server (HSS) 70, and the like.
  • MME mobility management entity
  • P-GW PDN gateway
  • S-GW Serving Gateway
  • PCRF Policy and Charging Rules Function
  • HSS Home Subscriber Server
  • the MME 30 is a control node that handles signaling between the UE and the CN.
  • the protocol exchanged between the UE and the CN is known as the Non-Access Stratum (NAS) protocol.
  • NAS Non-Access Stratum
  • Examples of functions supported by the MME 30 include functions related to bearer management operated by the session management layer in the NAS protocol, including network setup, management, and release of bearers, network and It is manipulated by the connectivity layer or mobility management layer in the NAS protocol layer, including the establishment of connection and security between UEs.
  • the S-GW 40 serves as a local mobility anchor for data bearers when the UE moves between base stations (eNodeBs). All user IP packets are sent via the S-GW 40.
  • the S-GW 40 may also temporarily downlink data while the UE is in an idle state known as the ECM-IDLE state and the MME initiates paging of the UE to re-establish the bearer. Maintain bearer related information when buffering. It also serves as a mobility anchor for inter-working with other 3GPP technologies such as General Packet Radio Service (GRPS) and Universal Mobile Telecommunications System (UMTS).
  • GRPS General Packet Radio Service
  • UMTS Universal Mobile Telecommunications System
  • the P-GW 50 performs IP address assignment for the UE and performs flow-based charging in accordance with QoS enforcement and rules from the PCRF 60.
  • the P-GW 50 performs QoS enforcement for GBR bearers (Guaranteed Bit Rate (GBR) bearers). It also serves as a mobility anchor for interworking with non-3GPP technologies such as CDMA2000 or WiMAX networks.
  • GBR bearers Guard Bit Rate (GBR) bearers
  • the PCRF 60 performs policy control decision-making and performs flow-based charging.
  • the HSS 70 is also called a home location register (HLR) and includes SAE subscription data including information on EPS-subscribed QoS profiles and access control for roaming. It also includes information about the PDN that the user accesses. This information may be maintained in the form of an Access Point Name (APN), which is a Domain Name system (DNS) -based label that identifies the PDN address that represents the access point or subscribed IP address for the PDN.
  • API Access Point Name
  • DNS Domain Name system
  • various interfaces such as S1-U, S1-MME, S5 / S8, S11, S6a, Gx, Rx, and SG may be defined between EPS network elements.
  • Mobility Management is a procedure to reduce overhead on the E-UTRAN and processing at the UE.
  • MME mobility management
  • the UE can inform the network about the new location whenever it leaves the current tracking area (TA) so that the network can contact the UE in the ECM-IDLE state.
  • This procedure may be called “Tracking Area Update”, which may be called “Routing Area Update” in universal terrestrial radio access network (UTRAN) or GSM EDGE Radio Access Network (GERAN) system.
  • the MME performs the function of tracking the user's location while the UE is in the ECM-IDLE state.
  • the MME transmits a paging message to all base stations (eNodeBs) on the tracking area (TA) where the UE is registered.
  • eNodeBs base stations
  • TA tracking area
  • the base station then begins paging for the UE over a radio interface.
  • a procedure for causing the state of the UE to transition to the ECM-CONNECTED state is performed.
  • This procedure can be called a “Service Request Procedure”. Accordingly, information related to the UE is generated in the E-UTRAN, and all bearers are re-established.
  • the MME is responsible for resetting the radio bearer and updating the UE context on the base station.
  • a mobility management (MM) backoff timer may be further used.
  • the UE may transmit a tracking area update (TAU) to update the TA, and the MME may reject the TAU request due to core network congestion, in which case the MM backoff timer You can provide a time value.
  • the UE may activate the MM backoff timer.
  • TAU tracking area update
  • FIG. 2 is a flowchart illustrating a process of establishing an RRC connection to which the present invention can be applied.
  • the terminal sends an RRC connection request message to the network requesting an RRC connection (S2010).
  • the network sends an RRC connection setup message in response to the RRC connection request (S2020). After receiving the RRC connection configuration message, the terminal enters the RRC connection mode.
  • the UE sends an RRC Connection Setup Complete message used to confirm successful completion of RRC connection establishment to the network (S2030).
  • FIG. 3 is a flowchart illustrating a RRC connection resetting process to which the present invention can be applied.
  • RRC connection reconfiguration is used to modify an RRC connection. It is used to establish / modify / release RBs, perform handovers, set up / modify / release measurements, add / modify / release cells / carriers.
  • the network sends an RRC connection reconfiguration message for modifying the RRC connection to the terminal (S3010).
  • the RRC connection reset message is a command for changing an RRC connection.
  • the RRC connection reset message may convey information about measurement configuration, mobility control, radio resource configuration (including RB, MAC main configuration and physical channel configuration), including associated dedicated NAS information and security configuration.
  • the terminal In response to the RRC connection reconfiguration, the terminal sends an RRC connection reconfiguration complete message used to confirm successful completion of the RRC connection reconfiguration to the network (S3020).
  • the communication environment considered in the embodiments of the present invention includes both multi-carrier support environments.
  • the multicarrier system or carrier aggregation (CA) system used in the present invention is one or more having a bandwidth smaller than the target band when configuring the target broadband to support the broadband
  • the multi-carrier means the aggregation of carriers (or carrier aggregation), wherein the aggregation of carriers means not only merging between contiguous carriers but also merging between non-contiguous carriers.
  • the number of component carriers aggregated between downlink and uplink may be set differently.
  • the case where the number of downlink component carriers (hereinafter referred to as 'DL CC') and the number of uplink component carriers (hereinafter referred to as 'UL CC') is the same is called symmetric aggregation. This is called asymmetric aggregation.
  • carrier aggregation may be used interchangeably with terms such as carrier aggregation, bandwidth aggregation, spectrum aggregation, and the like.
  • Carrier aggregation in which two or more component carriers are combined, aims to support up to 100 MHz bandwidth in an LTE-A system.
  • the bandwidth of the combining carrier may be limited to the bandwidth used by the existing system to maintain backward compatibility with the existing IMT system.
  • the existing 3GPP LTE system supports ⁇ 1.4, 3, 5, 10, 15, 20 ⁇ MHz bandwidth
  • the 3GPP LTE-advanced system i.e., LTE-A
  • the carrier aggregation system used in the present invention may support carrier aggregation by defining a new bandwidth regardless of the bandwidth used in the existing system.
  • the LTE-A system uses the concept of a cell to manage radio resources.
  • the carrier aggregation environment described above may be referred to as a multiple cell environment.
  • a cell is defined as a combination of a downlink resource (DL CC) and an uplink resource (UL CC), but the uplink resource is not an essential element. Accordingly, the cell may be configured with only downlink resources or with downlink resources and uplink resources.
  • DL CC downlink resource
  • UL CC uplink resource
  • the cell may be configured with only downlink resources or with downlink resources and uplink resources.
  • a specific UE When a specific UE has only one configured serving cell, it may have one DL CC and one UL CC, but when a specific UE has two or more configured serving cells, as many DLs as the number of cells Has a CC and the number of UL CCs may be the same or less.
  • the DL CC and the UL CC may be configured on the contrary. That is, when a specific UE has a plurality of configured serving cells, a carrier aggregation environment in which a UL CC has more than the number of DL CCs may be supported. That is, carrier aggregation may be understood as merging two or more cells, each having a different carrier frequency (center frequency of a cell).
  • carrier aggregation may be understood as merging two or more cells, each having a different carrier frequency (center frequency of a cell).
  • the term 'cell' should be distinguished from the 'cell' as an area covered by a generally used base station.
  • Cells used in the LTE-A system include a primary cell (PCell: Primary Cell) and a secondary cell (SCell: Secondary Cell).
  • PCell Primary Cell
  • SCell Secondary Cell
  • P cell and S cell may be used as a serving cell.
  • the UE that is in the RRC_CONNECTED state but the carrier aggregation is not configured or does not support the carrier aggregation, there is only one serving cell composed of the PCell.
  • one or more serving cells may exist, and the entire serving cell includes a PCell and one or more SCells.
  • Serving cells may be configured through an RRC parameter.
  • PhysCellId is a cell's physical layer identifier and has an integer value from 0 to 503.
  • SCellIndex is a short identifier used to identify an SCell and has an integer value from 1 to 7.
  • ServCellIndex is a short identifier used to identify a serving cell (P cell or S cell) and has an integer value from 0 to 7. A value of 0 is applied to the Pcell, and SCellIndex is pre-assigned to apply to the Scell. That is, a cell having the smallest cell ID (or cell index) in ServCellIndex becomes a P cell.
  • the P cell refers to a cell operating on a primary frequency (or primary CC).
  • the UE may be used to perform an initial connection establishment process or to perform a connection re-establishment process and may also refer to a cell indicated in a handover process.
  • the P cell refers to a cell serving as a center of control-related communication among serving cells configured in a carrier aggregation environment. That is, the terminal may receive and transmit a PUCCH only in its own Pcell, and may use only the Pcell to acquire system information or change a monitoring procedure.
  • the Evolved Universal Terrestrial Radio Access (E-UTRAN) uses a higher layer RRC Connection Reconfiguration message including mobility control information to a terminal supporting a carrier aggregation environment for a handover procedure. You can only change it.
  • the S cell may refer to a cell operating on a secondary frequency (or, secondary CC). Only one PCell may be allocated to a specific UE, and one or more SCells may be allocated.
  • the SCell is configurable after the RRC connection is established and can be used to provide additional radio resources.
  • the E-UTRAN may provide all system information related to the operation of the related cell in the RRC_CONNECTED state through a dedicated signal.
  • the change of the system information may be controlled by the release and addition of the related SCell, and at this time, an RRC connection reconfiguration message of a higher layer may be used.
  • the E-UTRAN may perform dedicated signaling having different parameters for each terminal, rather than broadcasting in the related SCell.
  • the E-UTRAN may configure a network including one or more Scells in addition to the Pcells initially configured in the connection establishment process.
  • the Pcell and the SCell may operate as respective component carriers.
  • the primary component carrier (PCC) may be used in the same sense as the PCell
  • the secondary component carrier (SCC) may be used in the same sense as the SCell.
  • FIGS. 4 and 5 are diagrams illustrating an example of a layer 2 structure in carrier aggregation to which the present invention can be applied.
  • FIG. 4 shows an example of a layer 2 structure in carrier aggregation for downlink data transmission
  • FIG. 8 shows a carrier aggregation for uplink data transmission.
  • An example of a layer 2 structure of a is shown.
  • the multi-carriers of the physical layer are only revealed in the MAC layer in order to require one HARQ entity in each serving cell.
  • one transport block is generated for each TTI in each serving cell.
  • Each transport block and its potential HARQ retransmissions are mapped to a single serving cell.
  • FIG. 6 is a diagram illustrating an example of a component carrier and carrier aggregation in a wireless communication system to which the present invention can be applied.
  • Component carriers include a DL CC and an UL CC.
  • One component carrier may have a frequency range of 20 MHz.
  • FIG. 6 (b) shows a carrier aggregation structure used in the LTE_A system.
  • three component carriers having a frequency size of 20 MHz are combined.
  • the number of DL CCs and UL CCs is not limited.
  • the UE may simultaneously monitor three CCs, receive downlink signals / data, and transmit uplink signals / data.
  • the network may allocate M (M ⁇ N) DL CCs to the UE.
  • the UE may monitor only M limited DL CCs and receive a DL signal.
  • the network may give L (L ⁇ M ⁇ N) DL CCs to allocate a main DL CC to the UE, in which case the UE must monitor the L DL CCs. This method can be equally applied to uplink transmission.
  • the linkage between the carrier frequency (or DL CC) of the downlink resource and the carrier frequency (or UL CC) of the uplink resource may be indicated by a higher layer message or system information such as an RRC message.
  • a combination of DL resources and UL resources may be configured by a linkage defined by SIB2 (System Information Block Type2).
  • SIB2 System Information Block Type2
  • the linkage may mean a mapping relationship between a DL CC on which a PDCCH carrying a UL grant is transmitted and a UL CC using the UL grant, and a DL CC (or UL CC) and HARQ ACK on which data for HARQ is transmitted. It may mean a mapping relationship between UL CCs (or DL CCs) through which a / NACK signal is transmitted.
  • FIGS. 7 to 9 are diagrams illustrating an example of a structure of a dual connectivity and a network interface to which the present invention can be applied.
  • the E-UTRAN is provided by a scheduler with two separate RX / TX UEs in RRC_CONNECTED and a non-ideal backhaul via the X2 interface. It supports dual connectivity (DC) operation configured to use radio resources located in two eNBs connected through the PC.
  • DC dual connectivity
  • Dual connectivity can imply control and data separation.
  • control signaling for mobility is provided through the macro cell at the same time that the high-speed data connection is provided through the small cell.
  • ENBs associated with dual connectivity for a particular UE may assume two different roles.
  • one eNB may act as a MeNB or SeNB as shown in FIGS. 7 to 9.
  • the UE may be connected with one MeNB and one SeNB.
  • the MeNB is an eNB that terminates at least one S1-MME in dual connectivity (DC)
  • the SeNB is an eNB that provides additional radio resources for the UE, but is not a master eNB in dual connectivity.
  • the DC configured with the CA means an operation mode of the UE in the RRC connection state, and is composed of a Master Cell Group and a Secondary Cell Group.
  • cell group indicates a group of serving cells associated with a master eNB (MeNB) or a secondary eNB (SeNB) in dual connectivity.
  • MeNB master eNB
  • SeNB secondary eNB
  • a “Master Cell Group (MCG)” is a group of serving cells associated with a MeNB and includes a primary cell (PCell) and optionally one or more secondary cells (SCells) in dual connectivity. .
  • SCG Secondary Cell Group
  • a cell should be distinguished from the “cell” as a general area covered by the eNB. That is, a cell represents a combination of downlink and optionally uplink resources.
  • the link between the carrier frequency of the downlink resource (eg, the center frequency of the cell) and the carrier frequency of the uplink resource is indicated in system information transmitted from the downlink resources.
  • the MCG bearer is a radio protocol located only in MeNB to use only MeNB resources in dual connectivity
  • the SCG bearer is a radio protocol located only in SeNB to use SeNB resources in dual connectivity.
  • split bearer is a radio protocol located in both MeNB and SeNB to use both MeNB and SeNB resources in dual connectivity.
  • FIG 9 shows an example of a user plane structure in dual connectivity.
  • the MeNB does not need to buffer or process packets for the EPS bearers sent by the SeNB.
  • Direct support for local breakout and content caching at SeNB for dual connectivity UEs
  • SeNB mobility visible to CN SeNB mobility visible to CN.
  • Offloading must be performed by the MME and cannot be very dynamic.
  • the interruption such as handover in the SeNB
  • the interruption is changed to transfer between SeNBs (for the bearers handled by SeNB, handover-like interruption at SeNB change with forwarding between SeNBs).
  • logical channel prioritization affects the transmission of uplink data (radio resource allocation is limited to the eNB where the radio bearer terminates).
  • FIG. 9B shows an example of a combination of MeNB and S1-U ending with bearer split in independent RLSs for split bearers.
  • Radio resources are available at the MeNB and SeNB for the same bearer.
  • MeNB -Relaxed requirements for SeNB mobility
  • PDCP is responsible for the reordering of PDCP PDUs for routing and receiving PDCP PDUs towards the eNB for transmission.
  • logical channel prioritization affects handling of RLC retransmissions and RLC status PDUs (limited to the eNB where the corresponding RLC entity resides).
  • SeNB does not support local breakout and content caching.
  • 5G demands to support various real-time application services such as health care, traffic safety, disaster safety, remote medical control, etc.
  • 5G realizes it is awkward for users to provide the internet with the most sensitive touch information of the five senses.
  • the goal is to build an ultra-low latency system with extremely short response times.
  • High-latency, high-reliability services require high reliability by transmitting data packets on short TTIs.
  • a time diversity method and a frequency diversity method may be used.
  • the time diversity method refers to a method in which when the transmitting side transmits the same data several times over a time axis on the time axis, the receiving side may recombine these received signals to obtain good transmission quality.
  • the transmitting side when the transmitting side carries the same data on several frequencies on the frequency axis and transmits the same data, it is possible to prevent fading by selecting a good reception signal or combining different signals using properties having different reception characteristics for each frequency. Means the way.
  • frequency diversity gain can be obtained.
  • DC dual connectivity
  • CA carrier aggregation technology
  • CC component carriers
  • the existing DC and CA are technologies for transmitting different data, and thus cannot transmit or receive the same data for a low delay high reliability service.
  • the present invention proposes a method in which DC and CA technologies can increase data reliability as well as data throughput.
  • DC and CA technology proposes a method of transmitting and receiving a plurality of the same data through the cell / carrier addition procedure.
  • FIG. 10 is a flowchart illustrating an example of transmitting and receiving a plurality of data by adding a new RAT in a multi-RAT environment proposed in the present specification.
  • the serving cell / carrier (or serving base station) may be referred to as a first cell / carrier (or first base station), and the secondary cell / carrier (or secondary base station) is referred to as a second cell / carrier ( Or, it may be called a second base station) or a third cell / carrier (or a third base station).
  • the first cell / carrier may receive information related to redundant transmission of data from the second cell / carrier added in the process of adding the second cell / carrier of the new RAT (S10010).
  • Information related to the redundant transmission of data may include: index information indicating whether the added second cell / carrier supports a copy data transmission / reception function, numerology information, and a bearer indicating a radio bear on which duplicate data is transmitted. May contain information.
  • the neuralology information may include location information indicating a location where a synchronization signal allocated in a radio resource is transmitted.
  • the first cell / carrier transmits information related to redundant transmission of data to the terminal (S10020).
  • the terminal may form a connection after synchronizing with the added second cell / carrier based on the neuralology information included in the information transmitted from the first cell / carrier.
  • the terminal may recognize whether the added second cell / carrier supports the copy data transmission / reception function through the information transmitted from the first cell / carrier.
  • the first cell / carrier transmits control information indicating that a duplicate data transmission / reception function is performed in a second cell / carrier added to the terminal in order to duplicately transmit data for providing a specific service requiring low delay and high reliability. (S10030).
  • the information transmitted and received between the UE and the first cell / carrier in steps S10020 and S10030 may be physical layer control information (for example, downlink control information transmitted through PDCCH / ePDCCH, etc.) or higher layer control information (layer 2 or more). For example, it may be included in the RRC Connection Reconfiguration message and the like and transmitted.
  • step S10010 may be omitted, and information related to the redundant transmission of data of step S10020 may be received from the second cell / carrier. Can be sent to.
  • the second cell / carrier supports a copy data transmission / reception function through the index information transmitted from the first cell / carrier or the second cell / carrier.
  • the terminal transmits / receives a plurality of identical data for the specific service requiring low delay and high reliability with the first cell / carrier and the second cell / carrier. Can not.
  • the terminal may transmit a plurality of pieces of the same data for providing a specific service requiring low delay and high reliability with the first cell / carrier and the second cell / carrier.
  • the plurality of identical data may be composed of one data and at least one copy data replicated using one data.
  • the terminal may transmit and receive specific data for providing a specific service with the first cell / carrier and transmit and receive duplicate data generated using the specific data with the second cell / carrier.
  • 11 is a flowchart illustrating an example of transmitting and receiving a plurality of the same data through the addition of a base station using dual connectivity proposed in the present specification.
  • a base station is added using dual connectivity in a multi-RAT environment, and the added base station, the first base station, and the terminal reduce the delay of data transmission and reception by transmitting and receiving a plurality of identical data for providing a specific service. And reliability can be ensured.
  • the first base station transmits an additional request message for requesting addition of a cell / carrier to the second base station in order to add a cell / carrier using dual connectivity (S11010).
  • the second base station may be a base station supporting a copy data transmission / reception function.
  • the second base station transmits an additional request Acknowledge to the first base station in response to the additional request message (S11020).
  • the additional request Acknowledge may include information related to the redundant transmission of data of step S10010 of FIG. 10.
  • the first base station terminates the procedure if the second base station does not accept the addition of the cell / carrier.
  • the first base station transmits an RRC connection reconfiguration message for adding the cell to the terminal (S11030).
  • the RRC connection reconfiguration message may include a parameter for adding a second base station and information related to redundant transmission of data received from the second base station.
  • the UE may recognize that the second base station is added through the received RRC connection reconfiguration message, and may recognize whether the second base station supports the copy data transmission / reception function based on the index information included in the RRC connection reconfiguration message. have.
  • the terminal may synchronize with the second base station based on the location information of the synchronization signal included in the RRC connection reconfiguration message, it may form a connection.
  • an RRC connection reconfiguration complete message is transmitted to the first base station (S11040).
  • the first base station may know that the cell / carrier addition through the RRC connection reconfiguration procedure is completed through the connection reconfiguration complete message transmitted from the terminal, and informs the second base station of the additional completion message for notifying that the cell / carrier addition has been completed. It transmits (S11050).
  • the terminal may transmit / receive a plurality of pieces of the same data for providing a specific service through the cell / carrier of the first base station and the added cell / carrier of the second base station.
  • the terminal may transmit and receive specific data for providing a specific service through the cell / carrier of the first base station, and transmit and receive duplicate data generated using the specific data through the cell / carrier of the second base station.
  • the terminal in the case of uplink data, the terminal generates at least one identical copy data using data for providing a specific service.
  • the terminal may transmit specific data to the first base station, and transmit at least one copy data generated using the specific data to the second base station.
  • the first base station in the case of downlink data, the first base station generates at least one identical copy data by using data for providing a specific service, and transmits the generated at least one copy data to the second base station.
  • the first base station and the second base station may transmit data and at least one copy data to the terminal.
  • the third base station may be added by performing the same procedure as the steps S11010 to S11050 with the third base station.
  • step S11060 to step S11100 are the same as step S11010 to step S11050, description thereof will be omitted.
  • FIG. 12 is a flowchart illustrating an example of transmitting and receiving a plurality of identical data through cell / carrier addition using carrier aggregation proposed in the present specification.
  • a cell / carrier is added using carrier aggregation, and the added cell / carrier and the first cell and the terminal transmit and receive data by transmitting and receiving a plurality of identical data for providing a specific service. Can reduce the delay and ensure the reliability.
  • the first cell forms an RRC connection with the UE through an RRC connection procedure.
  • the terminal transmits a buffer status report and / or a measurement report message to the second cell in order to add a cell / carrier using carrier aggregation (S12010).
  • the second cell If the second cell satisfies the cell addition condition, the second cell transmits an RRC connection reconfiguration message for adding the cell / carrier to the terminal (S12020).
  • the second cell may be a base station supporting a copy data transmission / reception function.
  • the RRC connection reconfiguration message may include a parameter for adding a cell / carrier of a second cell and information related to redundant transmission of data described with reference to FIG. 10.
  • the UE may recognize that the cell / carrier of the second cell is added through the received RRC connection reconfiguration message, and whether the second cell supports the function of transmitting / receiving duplicate data based on the index information included in the RRC connection reconfiguration message. Can be recognized.
  • an RRC connection reconfiguration complete message is transmitted to the second cell (S12030).
  • the second cell may know that the cell / carrier addition through the RRC connection reconfiguration procedure is completed through the connection reconfiguration complete message transmitted from the UE.
  • the terminal may transmit / receive a plurality of same data for providing a specific service through the cell / carrier of the first cell and the added cell / carrier of the second cell. have.
  • the terminal may transmit and receive specific data for providing a specific service with the first cell / carrier and transmit and receive duplicate data generated using the specific data with the second cell / carrier.
  • the terminal may generate at least one piece of identical copy data using specific data for providing a specific service.
  • the terminal may transmit specific data to the first cell / carrier and transmit at least one copy data generated from the specific data to the second cell / carrier.
  • the first cell in the case of downlink data, the first cell generates at least one identical copy data by using data for providing a specific service, and transmits the generated at least one copy data to the second cell.
  • the first cell and the second cell may transmit data and at least one copy data to the terminal.
  • the cell / carrier of the third cell may be added by performing the same procedure as that of the steps S12010 to S12030 with the third cell.
  • step S12040 to step S12060 are the same as step S12010 to step S12030, description thereof will be omitted.
  • FIG. 13 is a flowchart illustrating another example of transmitting and receiving a plurality of data by adding a new RAT in a multi-RAT environment proposed in the present specification.
  • a second cell / carrier of a new RAT supporting a function for transmitting and receiving a plurality of identical data to a first cell / carrier in a multi-RAT environment is added, and the first cell / carrier or second cell is added.
  • the carrier may transmit and receive a plurality of identical data for providing a specific service requiring low delay and high reliability by activating a function for transmitting and receiving a plurality of identical data of the terminal.
  • the first cell / carrier may receive information related to redundant transmission of data from the second cell / carrier added in the process of adding the second cell / carrier supporting the new RAT (S13010).
  • Information related to redundant transmission of data includes N bit index information indicating whether the added second cell / carrier supports the function of transmitting / receiving duplicate data, numerology information, and radio bearer to which duplicated data is transmitted. It may include bearer information indicating.
  • N means a positive integer greater than zero.
  • Table 1 shows an example of whether or not to support the data transmission / reception function according to the index information value.
  • the index information is information indicating whether or not the corresponding cell / carrier can transmit and receive the same data as the first cell / carrier.
  • the value of the index information is '00', the added cell / carrier supports the copy data transmission / reception function and when the connection state is in the connected state, the copy data transmission / reception function is always activated.
  • the index information When the value of the index information is '01' or '10', it supports the function of transmitting / receiving a duplicate data, and means that the duplicated cell transmit / receive function may be activated according to the radio state of the added second cell / carrier. .
  • the first cell / carrier and the added second cell / carrier can transmit and receive a plurality of identical data with the terminal.
  • the value of the index information is '10', it means that the copy data transmission / reception function is supported, but the copy data transmission / reception function is deactivated. Therefore, the first cell / carrier and the added second cell / carrier cannot transmit and receive a plurality of identical data with the terminal.
  • first cell / carrier and the added second cell / carrier are not physically separated, that is, if they are physically connected, information related to redundant transmission of data may be transferred to an internal operation.
  • the first cell / carrier recognizes whether the second cell / carrier supports the copy data transmission / reception function through the information related to the redundant transmission of data transmitted from the second cell / carrier, and the second cell / carrier added to the terminal. Transmits the capability information related to whether or not the same plurality of data can be transmitted (S13020).
  • the capability information may include index information indicating whether the added second cell / carrier supports a copy data transmission / reception function, numerology information, and bearer information indicating a radio bear on which duplicate data is transmitted. have.
  • the neuralology information may include location information indicating a location where a synchronization signal allocated in a radio resource is transmitted, TTI length information, type information of a RAT, parameters of each layer, and the like.
  • the terminal may form a connection after synchronizing with the added second cell / carrier based on the neuralology information included in the information transmitted from the first cell / carrier.
  • the terminal configures parameters of each layer (eg, -parameters, phyLayerParameters, rf-Parameters, measParameter, etc.) of each layer according to the type of the RAT configured using the capability information, in the c of the UE-EUTRA-Capability field of the UECapabilityInformation message.
  • parameters of each layer eg, -parameters, phyLayerParameters, rf-Parameters, measParameter, etc.
  • the capability information may be transmitted by being included in physical layer control information (eg, downlink control information transmitted through PDCCH / ePDCCH) or higher layer control information (eg, RRC Connection Reconfiguration message, etc.) of layer 2 or more. Can be.
  • physical layer control information eg, downlink control information transmitted through PDCCH / ePDCCH
  • higher layer control information eg, RRC Connection Reconfiguration message, etc.
  • the terminal may recognize whether the added second cell / carrier supports the copy data transmission / reception function through capability information transmitted from the first cell / carrier.
  • the terminal needs to report a specific service requiring low delay and high reliability (for example, to predict an accident in a scenario of an autonomous vehicle or to report an emergency situation around the base station to a nearby base station with high speed and high reliability). If data needs to be transmitted / received), a request message for requesting transmission / reception of a plurality of identical data is transmitted to the first cell / carrier or the second cell / carrier (S13030).
  • the terminal may transmit a request message for activating the copy data transmission / reception function to the first cell / carrier or the second cell / carrier.
  • the terminal transmits a request message requesting activation of the redundant data transmission / reception function to the first cell / carrier, and the first cell / carrier Transmits it to the second cell / carrier.
  • the second cell / carrier activates the redundant data transmission / reception function and transmits a response message indicating that the redundant data transmission / reception function is activated to the first cell / carrier.
  • the first cell / carrier transmits a response message including control information indicating that the redundant data transmission / reception function of the second cell / carrier is activated to the terminal based on the response message received from the second cell / carrier.
  • the terminal may inform the second cell / carrier of the status of the terminal (e.g., buffer status report and / or second cell / carrier). Along with a measurement report of a carrier) and transmits a request message requesting activation of a redundant data transmission / reception function.
  • the second cell / carrier may inform the second cell / carrier of the status of the terminal (e.g., buffer status report and / or second cell / carrier). Along with a measurement report of a carrier) and transmits a request message requesting activation of a redundant data transmission / reception function.
  • the second cell / carrier activates the redundant data transmission / reception function and transmits a response message including control information indicating that the redundant data transmission / reception function is activated to the terminal.
  • the second cell / carrier which wants to transmit / receive a plurality of identical data to provide a specific service is control information (for example, MAC control element instructing activation or deactivation of the redundant data transmission / reception function of the terminal to the first cell / carrier). N-bit indication, etc. included), and the first cell / carrier transmits it to the terminal (S13040).
  • control information for example, MAC control element instructing activation or deactivation of the redundant data transmission / reception function of the terminal to the first cell / carrier.
  • N-bit indication, etc. included N-bit indication, etc. included
  • the terminal activates / deactivates its own redundant data transmission / reception function based on the control information transmitted from the first cell / carrier.
  • control information of the second cell / carrier is transmitted for each cell.
  • control information of all added second cells may be transmitted in one first cell.
  • the terminal activates its own redundant data transmission function and the first cell / carrier and the added second cell / carrier.
  • the carrier transmits and receives a plurality of the same data for providing a specific service (S13050).
  • the terminal transmits and receives specific data for providing a specific service with the first cell / carrier and transmits and receives duplicate data generated using the specific data with the second cell / carrier.
  • the terminal In the case of uplink data, the terminal generates at least one identical copy data using specific data for providing a specific service.
  • the terminal may transmit specific data to the first cell / carrier and transmit at least one copy data generated from the specific data to the second cell / carrier.
  • the first cell In the case of downlink data, the first cell generates at least one identical copy data using data for providing a specific service, and transmits the generated at least one copy data to the added second cell.
  • the first cell and the second cell transmit data and at least one copy data to the terminal.
  • the terminal deactivates the redundant data transmission function of the terminal and the first cell / carrier and the added second cell.
  • the terminal may receive capability information from a plurality of second cells / carriers, and may add only some of the plurality of second cells / carriers by comparing the capability information.
  • the redundant data transmission / reception function of the terminal and the second cell / carrier Can be disabled.
  • the capability information transmitted from the plurality of second cells / carriers may further include available resource information of each of the second cells / carriers, channel state information indicating a channel state, and the like.
  • FIG. 14 is a flowchart illustrating still another example of transmitting and receiving a plurality of identical data through the addition of a base station using dual connectivity proposed in the present specification.
  • a plurality of identical data can be transmitted and received.
  • steps S14010 to S14050 are the same as steps S11010 to S11050 of FIG. 11, description thereof will be omitted.
  • the terminal adding the cell / carrier of the second base station through steps S14010 to S14050 transmits a request message requesting transmission and reception of duplicate data to the first base station when data of a specific service requiring low delay and high reliability occurs. And, the first base station transmits it to the second base station (S14060, S14070).
  • the terminal transmits a request message for activating the redundant data transmission / reception function of the second base station to the second base station through the first base station.
  • the second base station Upon receiving the request message from the terminal, the second base station activates its redundant data transmission / reception function and transmits a request acknowledgment indicating that the redundant data transmission / reception function is activated to the terminal through the first base station (S14080 and S14090).
  • the terminal may recognize that the redundant data transmission / reception function of the second base station is activated through the request acknowledgment.
  • the first base station transmits control information indicating activation or deactivation of the redundant data transmission / reception function of the terminal, and the terminal activates or deactivates the redundant data transmission / reception function according to the received control information.
  • the terminal when the first cell / carrier transmits control information indicating activation of the redundant data transmission function of the terminal to the terminal (S14100), the terminal activates its own redundant data transmission function and the cell / carrier of the first base station. And transmit and receive a plurality of identical data for providing a specific service through the added cell / carrier of the second base station (S14110).
  • the terminal In the case of uplink data, the terminal generates at least one identical copy data using specific data for providing a specific service.
  • the terminal may transmit specific data to the first base station and transmit at least one copy data generated from the specific data to the second base station.
  • the first base station In the case of downlink data, the first base station generates at least one identical copy data by using data for providing a specific service, and transmits the generated at least one copy data to the added second base station.
  • the first base station and the second base station transmit data and at least one copy data to the terminal.
  • the terminal receives control information indicating deactivation of the redundant data transmission function of the terminal from the first base station (S14120), the terminal deactivates its redundant data transmission function and the first base station and the added second base station.
  • the transmission and reception of a plurality of identical data for providing a specific service with the base station is stopped (S14130).
  • FIG. 15 is a flowchart illustrating still another example of transmitting and receiving a plurality of identical data through cell / carrier addition using carrier aggregation proposed in the present specification.
  • a plurality of identical cells for adding a second cell / carrier using carrier aggregation in a multi-RAT environment and for providing a specific service with a cell / carrier and a first cell / carrier to which the terminal is actively added are provided.
  • a plurality of identical data can be transmitted and received.
  • the first cell forms an RRC connection with the UE through an RRC connection procedure.
  • the second cell transmits an RRC connection reconfiguration message for the addition of the cell / carrier to the terminal (S15010).
  • the second cell may be a cell that supports a copy data transmission / reception function.
  • the RRC connection reconfiguration message may include a parameter for adding a cell / carrier of a second cell and information related to redundant transmission of data described with reference to FIG. 10.
  • the UE may recognize that the cell / carrier of the second cell is added through the received RRC connection reconfiguration message, and whether the second cell supports the function of transmitting / receiving duplicate data based on the index information included in the RRC connection reconfiguration message. Can be recognized.
  • an RRC connection reconfiguration complete message is transmitted to the second cell (S15020).
  • the second cell may know that the addition of the cell / carrier is completed through the RRC connection reconfiguration procedure through the connection reconfiguration complete message transmitted from the UE.
  • the terminal transmits a buffer status report message and / or a measurement report message for requesting transmission and reception of duplicate data to the added second cell (S15030).
  • the terminal transmits a request message for activating the redundant data transmission / reception function of the second cell to the second cell.
  • the second cell Upon receiving the request message from the terminal, the second cell activates its own redundant data transmission / reception function, and transmits a request acknowledgment indicating that the redundant data transmission / reception function is activated (S15040).
  • the terminal may recognize that the redundant data transmission / reception function of the second cell is activated through the request acknowledgment.
  • the first cell transmits control information indicating activation or deactivation of the redundant data transmission / reception function of the terminal, and the terminal activates or deactivates the redundant data transmission / reception function thereof according to the received control information.
  • the terminal activates its own redundant data transmission function, the cell / carrier and A plurality of identical data for providing a specific service is transmitted and received through the added cell / carrier of the second cell (S15060).
  • the terminal In the case of uplink data, the terminal generates at least one identical copy data using specific data for providing a specific service.
  • the terminal may transmit specific data to the first cell and transmit at least one copy data generated from the specific data to the second cell.
  • the first cell In the case of downlink data, the first cell generates at least one identical copy data using data for providing a specific service, and transmits the generated at least one copy data to the added second cell.
  • the first cell and the second cell transmit data and at least one copy data to the terminal.
  • control information transmitted from the first cell receives control information indicating deactivation of the redundant data transmission function of the terminal (S15070)
  • the terminal deactivates its own redundant data transmission function and the first cell. And the transmission and reception of the plurality of the same data for providing a specific service and the added second cell (S15080).
  • 16 is a flowchart illustrating an example of a method for transmitting and receiving a plurality of identical data by adding a base station or a cell by the terminal proposed in the present specification.
  • the terminal receives capability information related to the first specific function of the second base station through a procedure of adding a cell / carrier of the second base station from the first base station (S16010).
  • the first specific function means a function of transmitting and receiving the same data as the first base station by the second base station
  • the capability information includes the same information as the capability information described with reference to FIGS. 13 to 15.
  • the capability information may be transmitted by being included in physical layer control information (eg, downlink control information transmitted through PDCCH / ePDCCH) or higher layer control information (eg, RRC Connection Reconfiguration message, etc.) of layer 2 or more. Can be.
  • physical layer control information eg, downlink control information transmitted through PDCCH / ePDCCH
  • higher layer control information eg, RRC Connection Reconfiguration message, etc.
  • the terminal synchronizes with the second base station and forms a connection in order to add the cell / carrier of the second base station based on the capability information received from the first base station (S16020).
  • the terminal receives first control information indicating whether the first specific function of the second base station is activated from the first base station (S16030).
  • the control information may be transmitted by being included in physical layer control information (for example, downlink control information transmitted through PDCCH / ePDCCH) or higher layer control information (for example, RRC Connection Reconfiguration message, etc.) of layer 2 or more. Can be.
  • the terminal may generate at least one copy data from the specific data for providing a specific service (for example, a service requiring low delay and high reliability).
  • a specific service for example, a service requiring low delay and high reliability.
  • the terminal transmits specific data to the first base station (S16040), and transmits at least one copy data generated from the specific data to the second base station according to whether the first specific function is activated (S16050).
  • the at least one copy data is generated through the same method as the uplink data described with reference to FIGS. 13 and 16.
  • 17 is a diagram illustrating an example of an internal block diagram of a wireless device to which the present invention can be applied.
  • the wireless device may be a base station and a UE, and the base station includes both a macro base station and a small base station.
  • the base station 1710 and the UE 1720 include a communication unit (transmitter / receiver unit, RF unit, 1713, 1723), processor 1711, 1721, and memory 1712, 1722.
  • a communication unit transmitter / receiver unit, RF unit, 1713, 1723
  • processor 1711, 1721, and memory 1712, 1722 included in the base station 1710 and the UE 1720.
  • the base station and the UE may further include an input unit and an output unit.
  • the communication units 1713 and 1723, the processors 1711 and 1721, the input unit, the output unit, and the memory 1712 and 1722 are functionally connected to perform the method proposed in the present specification.
  • the communication unit transmitter / receiver unit or RF unit, 1713, 1723
  • the communication unit receives the information generated from the PHY protocol (Physical Layer Protocol)
  • the received information is transferred to the RF-Radio-Frequency Spectrum, filtered, and amplified.
  • the communication unit functions to move an RF signal (Radio Frequency Signal) received from the antenna to a band that can be processed by the PHY protocol and perform filtering.
  • the communication unit may also include a switch function for switching the transmission and reception functions.
  • Processors 1711 and 1721 implement the functions, processes, and / or methods proposed herein. Layers of the air interface protocol may be implemented by a processor.
  • the processor may be represented by a controller, a controller, a control unit, a computer, or the like.
  • the memories 1712 and 1722 are connected to a processor and store protocols or parameters for performing an uplink resource allocation method.
  • Processors 1711 and 1721 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the communication unit may include a baseband circuit for processing a wireless signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.
  • the output unit (display unit or display unit) is controlled by a processor and outputs information output from the processor together with a key input signal generated at the key input unit and various information signals from the processor.
  • Orientation-based device discovery method is not limited to the configuration and method of the embodiments described as described above, the embodiments are all or part of each of the embodiments is optional so that various modifications can be made It may be configured in combination.
  • the direction-based device search method of the present specification may be implemented as processor-readable code in a processor-readable recording medium provided in a network device.
  • the processor-readable recording medium includes all kinds of recording devices that store data that can be read by the processor. Examples of the processor-readable recording medium include ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like, and may also be implemented in the form of a carrier wave such as transmission over the Internet. .
  • the processor-readable recording medium can also be distributed over network coupled computer systems so that the processor-readable code is stored and executed in a distributed fashion.
  • the RRC connection method has been described with reference to an example applied to the 3GPP LTE / LTE-A system.
  • the RRC connection method may be applied to various wireless communication systems in addition to the 3GPP LTE / LTE-A system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention relates to a method and a device for transmitting data by a terminal in a wireless communication system. The present invention may provide a method and a device which receive, from a first base station, capability information associated with a first specific function of a second base station; establish a connection with the second base station on the basis of the capability information; receive, from the first base station, first control information indicating whether the first specific function of the second base station is activated or not; transmit specific data to the first base station; and transmit duplicated data to the second base station according to whether the first specific function has been activated or not.

Description

무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치Method for transmitting and receiving data in a wireless communication system and apparatus supporting the same
본 발명은 무선 통신시스템에서 단말의 데이터 송수신 방법에 관한 것으로서, 보다 상세하게 셀/캐리어 추가를 통해 동일한 데이터를 중복해서 송수신하기 위한 방법 및 이를 지원하는 장치에 관한 것이다.The present invention relates to a method for transmitting and receiving data of a terminal in a wireless communication system, and more particularly, to a method for transmitting and receiving the same data repeatedly by adding a cell / carrier and an apparatus for supporting the same.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스에 대한 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.Mobile communication systems have been developed to provide voice services while ensuring user activity. However, the mobile communication system has expanded not only voice but also data service.As a result of the explosive increase in traffic, a shortage of resources and users are demanding higher speed services, a more advanced mobile communication system is required. have.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.The requirements of the next generation of mobile communication systems will be able to accommodate the explosive data traffic, dramatically increase the data rate per user, greatly increase the number of connected devices, very low end-to-end latency, and high energy efficiency. It should be possible. Dual connectivity, Massive Multiple Input Multiple Output (MIMO), In-band Full Duplex, Non-Orthogonal Multiple Access (NOMA), Super Various technologies such as wideband support and device networking have been studied.
본 발명은 데이터 전송의 신뢰성(Reliability)을 높이기 위하여 동일한 데이터를 중복하여 전송하는 방법 및 장치를 제공함에 그 목적이 있다.An object of the present invention is to provide a method and apparatus for transmitting the same data in duplicate in order to increase the reliability of the data transmission.
또한, 본 발명은 다중 무선 접속 기술(Multi-Radio Access Technology) 환경에서, LTE(Long Term Evolution) 망에 동일한 복수의 데이터를 송수신하기 위한 New RAT(Radio Access Technology) 망을 추가하는 방법 및 장치를 제공함에 그 목적이 있다.In addition, the present invention provides a method and apparatus for adding a New Radio Access Technology (RAT) network for transmitting and receiving the same plurality of data to a Long Term Evolution (LTE) network in a multi-radio access technology (Multi-Radio Access Technology) environment The purpose is to provide.
또한, 본 발명은 Carrier Aggregation(CA)가 적용된 셀/캐리어를 추가하여 동일한 복수의 데이터를 송수신하는 방법 및 장치를 제공함에 그 목적이 있다.Another object of the present invention is to provide a method and apparatus for transmitting and receiving the same plurality of data by adding a cell / carrier to which carrier aggregation (CA) is applied.
또한, 본 발명은 Dual Connectivity를 이용해 기지국을 추가하여 동일한 복수의 데이터를 송수신하는 방법 및 장치를 제공함에 그 목적이 있다.In addition, an object of the present invention is to provide a method and apparatus for transmitting and receiving the same plurality of data by adding a base station using Dual Connectivity.
본 명세서에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved in the present specification are not limited to the technical problems mentioned above, and other technical problems not mentioned above will be clearly understood by those skilled in the art from the following description. Could be.
본 발명에서는 상술한 문제점을 해결하기 위하여, 무선 통신 시스템에서 단말이 데이터를 송수신하는 방법 및 장치를 제공한다. The present invention provides a method and apparatus for transmitting and receiving data by a terminal in a wireless communication system in order to solve the above problems.
구체적으로, 본 발명의 일 실시예에 따른 데이터 송수신 방법은, 제 1 기지국으로부터 제 2 기지국의 제 1 특정 기능과 관련된 능력 정보(Capability information)를 수신하는 단계, 상기 제 1 특정 기능은 상기 제 2 기지국이 상기 단말로부터 상기 제 1 기지국과 동일한 데이터를 수신하는 기능이고; 상기 능력 정보에 기초하여 상기 제 2 기지국과 연결을 형성하는 단계; 상기 제 1 기지국으로부터 상기 제 2 기지국의 상기 제 1 특정 기능이 활성화되었는지 여부를 나타내는 제 1 제어 정보를 수신하는 단계; 상기 제 1 기지국으로 특정 데이터를 전송하는 단계; 및 상기 제 1 특정 기능의 활성화 여부에 따라 상기 제 2 기지국으로 복제 데이터를 전송하는 단계를 포함하되, 상기 복제 데이터는 상기 특정 데이터를 이용하여 생성되는 것을 특징으로 한다.Specifically, the data transmission and reception method according to an embodiment of the present invention, receiving capability information (Capability information) associated with the first specific function of the second base station from the first base station, the first specific function is the second A base station receives a same data from the terminal as the first base station; Establishing a connection with the second base station based on the capability information; Receiving first control information indicating whether the first specific function of the second base station is activated from the first base station; Transmitting specific data to the first base station; And transmitting the duplicated data to the second base station according to whether the first specific function is activated, wherein the duplicated data is generated using the specific data.
또한, 본 발명은, 외부와 무선 신호를 송신 및 수신하는 통신부; 및 상기 통신부와 기능적으로 결합되어 있는 프로세스를 포함하되, 상기 프로세스는, 제 1 기지국으로부터 제 2 기지국의 제 1 특정 기능과 관련된 능력 정보(Capability information)를 수신하되, 상기 제 1 특정 기능은 상기 제 2 기지국이 상기 단말로부터 상기 제 1 기지국과 동일한 데이터를 수신하는 기능이고, 상기 능력 정보에 기초하여 상기 제 2 기지국과 연결을 형성하며, 상기 제 1 기지국으로부터 상기 제 2 기지국의 상기 제 1 특정 기능이 활성화되었는지 여부를 나타내는 제 1 제어 정보를 수신하고, 상기 제 1 기지국으로 특정 데이터를 전송하며, 상기 제 1 특정 기능의 활성화 여부에 따라 상기 제 2 기지국으로 복제 데이터를 전송하는 단계를 포함하되, 상기 복제 데이터는 상기 특정 데이터를 이용하여 생성되는 것을 특징으로 하는 단말을 제공한다.In addition, the present invention, the communication unit for transmitting and receiving a wireless signal with the outside; And a process operatively coupled with the communication unit, wherein the process receives from the first base station Capability information related to the first specific function of the second base station, wherein the first specific function is the first specific function. A second base station is a function for receiving the same data as the first base station from the terminal, establishes a connection with the second base station based on the capability information, and the first specific function of the second base station from the first base station; Receiving first control information indicating whether is activated, transmitting specific data to the first base station, and transmitting duplicate data to the second base station according to whether the first specific function is activated, The duplicated data is provided by using the specific data.
본 발명은 데이터의 복제를 통해 복수의 중복 데이터를 생성함으로써 동일한 서비스를 제공하기 위한 복수의 동일한 데이터를 생산할 수 있는 효과가 있다.The present invention has the effect of producing a plurality of the same data for providing the same service by generating a plurality of duplicate data through the duplication of data.
또한, 본 발명은 Carrier Aggregation(CA) 또는 Dual Connectivity를 이용하여 셀/캐리어를 추가함으로써 복수의 동일한 데이터들을 송수신할 수 있는 효과가 있다.In addition, the present invention has the effect of transmitting and receiving a plurality of the same data by adding a cell / carrier using Carrier Aggregation (CA) or Dual Connectivity.
또한, 본 발명은 Carrier Aggregation(CA)가 적용된 다수의 Component Carrier(CC) 또는 이중 연결(Dual Connectivity)가 적용된 다수의 기지국 및/또는 셀을 통해서 동일한 데이터를 전송함으로써, 데이터 전송의 신뢰성(Reliability )을 높일 수 있는 효과가 있다.In addition, the present invention transmits the same data through a plurality of component carriers (CC) to which Carrier Aggregation (CA) or a plurality of base stations and / or cells to which dual connectivity (Dual Connectivity) is applied, thereby ensuring the reliability of data transmission (Reliability) There is an effect to increase.
본 명세서에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Effects obtained in the present specification are not limited to the above-mentioned effects, and other effects not mentioned above may be clearly understood by those skilled in the art from the following description. will be.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는 첨부 도면은 본 발명에 대한 실시 예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings included as part of the detailed description to provide a better understanding of the invention provide embodiments of the invention, and together with the description, describe the technical features of the invention.
도 1은 본 발명이 적용될 수 있는 LTE 시스템에 관련된 EPS(Evolved Packet System)의 일 예를 나타낸 도이다.1 is a diagram illustrating an example of an EPS (Evolved Packet System) related to an LTE system to which the present invention can be applied.
도 2는 본 발명이 적용될 수 있는 RRC 연결을 확립하는 과정을 나타낸 흐름도이다.2 is a flowchart illustrating a process of establishing an RRC connection to which the present invention can be applied.
도 3은 본 발명이 적용될 수 있는 RRC 연결 재설정 과정을 나타낸 흐름도이다.3 is a flowchart illustrating a RRC connection resetting process to which the present invention can be applied.
도 4 및 도 5는 본 발명이 적용될 수 있는 캐리어 어그리게이션(Carrier Aggregation)에서의 계층(Layer) 2 구조의 일 예를 나타낸 도이다.4 and 5 are diagrams illustrating an example of a layer 2 structure in carrier aggregation to which the present invention can be applied.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 컴포넌트 캐리어 및 캐리어 병합의 일례를 나타낸 도이다.6 is a diagram illustrating an example of a component carrier and carrier aggregation in a wireless communication system to which the present invention can be applied.
도 7 내지 도 9는 본 발명이 적용될 수 있는 이중 연결(Dual Connectivity)의 구조 및 네트워크 인터페이스의 일 예를 나타낸 도이다.7 to 9 are diagrams illustrating an example of a structure of a dual connectivity and a network interface to which the present invention can be applied.
도 10은 본 명세서에서 제안하는 다중 RAT 환경에서, 새로운 RAT을 추가하여 복수의 데이터들을 송수신하는 일 예를 나타낸 순서도이다.10 is a flowchart illustrating an example of transmitting and receiving a plurality of data by adding a new RAT in a multi-RAT environment proposed in the present specification.
도 11은 본 명세서에서 제안하는 이중 연결(Dual Connectivity)을 이용한 기지국 추가를 통해서 복수의 동일한 데이터를 송수신하는 일 예를 나타낸 흐름도이다.11 is a flowchart illustrating an example of transmitting and receiving a plurality of the same data through the addition of a base station using dual connectivity proposed in the present specification.
도 12는 본 명세서에서 제안하는 반송파 집성(Carrier Aggregation)을 이용한 셀/캐리어 추가를 통해서 복수의 동일한 데이터를 송수신하는 일 예를 나타낸 흐름도이다.12 is a flowchart illustrating an example of transmitting and receiving a plurality of identical data through cell / carrier addition using carrier aggregation proposed in the present specification.
도 13은 본 명세서에서 제안하는 다중 RAT 환경에서, 새로운 RAT을 추가하여 복수의 데이터들을 송수신하는 또 다른 일 예를 나타낸 순서도이다.FIG. 13 is a flowchart illustrating another example of transmitting and receiving a plurality of data by adding a new RAT in a multi-RAT environment proposed in the present specification.
도 14는 본 명세서에서 제안하는 이중 연결(Dual Connectivity)을 이용한 기지국 추가를 통해서 복수의 동일한 데이터를 송수신하는 또 다른 일 예를 나타낸 흐름도이다.14 is a flowchart illustrating still another example of transmitting and receiving a plurality of identical data through the addition of a base station using dual connectivity proposed in the present specification.
도 15는 본 명세서에서 제안하는 반송파 집성(Carrier Aggregation)을 이용한 셀/캐리어 추가를 통해서 복수의 동일한 데이터를 송수신하는 또 다른 일 예를 나타낸 흐름도이다.FIG. 15 is a flowchart illustrating still another example of transmitting and receiving a plurality of identical data through cell / carrier addition using carrier aggregation proposed in the present specification.
도 16은 본 명세서에서 제안하는 단말이 기지국 또는 셀을 추가하여 복수의 동일한 데이터들을 송수신하는 방법의 일 예를 나타내는 순서도이다.16 is a flowchart illustrating an example of a method for transmitting and receiving a plurality of identical data by adding a base station or a cell by the terminal proposed in the present specification.
도 17은 본 발명이 적용될 수 있는 무선 장치의 내부 블록도의 일 예를 나타낸 도이다.17 is a diagram illustrating an example of an internal block diagram of a wireless device to which the present invention can be applied.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The detailed description, which will be given below with reference to the accompanying drawings, is intended to explain exemplary embodiments of the present invention and is not intended to represent the only embodiments in which the present invention may be practiced. The following detailed description includes specific details in order to provide a thorough understanding of the present invention. However, one of ordinary skill in the art appreciates that the present invention may be practiced without these specific details.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. In some instances, well-known structures and devices may be omitted or shown in block diagram form centering on the core functions of the structures and devices in order to avoid obscuring the concepts of the present invention.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.In this specification, a base station has a meaning as a terminal node of a network that directly communicates with a terminal. The specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station. A 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an evolved-NodeB (eNB), a base transceiver system (BTS), an access point (AP), and the like. . In addition, a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) Device, Machine-to-Machine (M2M) Device, Device-to-Device (D2D) Device, etc.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. Hereinafter, downlink (DL) means communication from a base station to a terminal, and uplink (UL) means communication from a terminal to a base station.
하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.In downlink, a transmitter may be part of a base station, and a receiver may be part of a terminal. In uplink, a transmitter may be part of a terminal and a receiver may be part of a base station.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.Specific terms used in the following description are provided to help the understanding of the present invention, and the use of such specific terms may be changed to other forms without departing from the technical spirit of the present invention.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.The following techniques are code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (SC-FDMA), and NOMA It can be used in various radio access systems such as non-orthogonal multiple access. CDMA may be implemented by a radio technology such as universal terrestrial radio access (UTRA) or CDMA2000. TDMA may be implemented with wireless technologies such as global system for mobile communications (GSM) / general packet radio service (GPRS) / enhanced data rates for GSM evolution (EDGE). OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA). UTRA is part of a universal mobile telecommunications system (UMTS). 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink. LTE-A (advanced) is the evolution of 3GPP LTE.
본 발명의 실시 예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시 예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.Embodiments of the present invention may be supported by standard documents disclosed in at least one of IEEE 802, 3GPP, and 3GPP2, which are wireless access systems. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니며, 5G 시스템에서도 적용될 수 있음은 물론이다.For clarity, the following description focuses on 3GPP LTE / LTE-A, but the technical features of the present invention are not limited thereto.
이하 도면을 참조하여 설명하기 앞서, 본 발명의 이해를 돕고자, 본 명세서에서 사용되는 용어를 간략하게 정의하기로 한다.Before describing with reference to the drawings, in order to help the understanding of the present invention, terms used herein will be briefly defined.
EPS: Evolved Packet System의 약자로서, LTE(Long Term Evolution) 네트워크를 지원하는 코어 네트워크를 의미한다. UMTS가 진화된 형태의 네트워크EPS: stands for Evolved Packet System and means a core network supporting a Long Term Evolution (LTE) network. UMTS evolved network
PDN (Public Data Network): 서비스를 제공하는 서버가 위치한 독립적인 망Public Data Network (PDN): An independent network on which servers providing services are located
APN (Access Point Name): 네트워크에서 관리하는 접속 포인트의 이름으로서 UE에게 제공된다. 즉, PDN의 이름(문자열)을 가리킴. 상기 접속 포인트의 이름에 기초하여, 데이터의 송수신을 위한 해당 PDN이 결정된다.APN (Access Point Name): A name of an access point managed in a network, which is provided to a UE. That is, the name (string) of the PDN. Based on the name of the access point, the corresponding PDN for the transmission and reception of data is determined.
TEID(Tunnel Endpoint Identifier): 네트워크 내 노드들 간에 설정된 터널의 End point ID, 각 UE의 bearer 단위로 구간별로 설정된다.Tunnel Endpoint Identifier (TEID): An end point ID of a tunnel established between nodes in a network, and is set for each section in bearer units of each UE.
MME: Mobility Management Entity의 약자로서, UE에 대한 세션과 이동성을 제공하기 위해 EPS 내에서 각 엔터티를 제어하는 역할을 한다.MME, which stands for Mobility Management Entity, serves to control each entity in EPS to provide session and mobility for the UE.
세션(Session): 세션은 데이터 전송을 위한 통로로써 그 단위는 PDN, Bearer, IP flow 단위 등이 될 수 있다.Session: A session is a channel for data transmission. The unit may be a PDN, a bearer, or an IP flow unit.
각 단위의 차이는 3GPP에서 정의한 것처럼 대상 네트워크 전체 단위(APN 또는 PDN 단위), QoS로 구분하는 단위(Bearer 단위), 목적지 IP 주소 단위로 구분할 수 있다.The difference between each unit can be divided into the entire unit network unit (APN or PDN unit), QoS classification unit (Bearer unit), and destination IP address unit as defined in 3GPP.
EPS Bearer: 다양한 종류의 트래픽이 송수신되는 단말과 게이트웨이 간에 생성되는 논리적 경로.EPS Bearer: Logical path created between the UE and the gateway through which various kinds of traffic are transmitted and received.
Default EPS Bear: 단말이 망에 접속하면 기본적으로 생성되는 데이터 송수신을 위한 논리적 경로로써, 단말이 망에서 빠져 나오기(Detach)전까지 유지될 수 있다.Default EPS Bear: As a logical path for data transmission and reception basically created when the terminal accesses the network, it may be maintained until the terminal exits from the network.
Dedicated EPS Bearer: Default EPS Bearer 생성된 후 추가적으로 서비스를 제공하기 위해 필요한 경우 생성되는 논리적 경로.Dedicated EPS Bearer: A logical path created when needed to provide additional services after the Default EPS Bearer is created.
IP flow: 단말과 게이트웨이 간에 논리적 경로를 통해서 송수신되는 다양한 종류의 트래픽.IP flow: Various types of traffic transmitted and received through a logical path between a terminal and a gateway.
Service Data Flow(SDF): 서비스 타입에 따라 분류되는 사용자 트래픽의 IP flow 또는 다수의 IP flow의 결합.Service Data Flow (SDF): The IP flow or combination of multiple IP flows of user traffic classified by service type.
PDN 연결(connection): 단말에서 PDN으로의 연결, 즉, IP 주소로 표현되는 단말과 APN으로 표현되는 PDN과의 연관(연결)을 나타낸다. 이는 세션이 형성될 수 있도록 코어 네트워크 내의 엔터티간 연결(단말-PDN GW)을 의미한다.PDN connection (connection): A connection from the terminal to the PDN, that is, the association (connection) of the terminal represented by the IP address with the PDN represented by the APN. This means an inter-entity connection (terminal-PDN GW) in the core network so that a session can be established.
UE Context: 네크워크에서 UE를 관리하기 위해 사용되는 UE의 상황 정보, 즉, UE id, 이동성(현재 위치 등), 세션의 속성(QoS, 우선순위 등)으로 구성된 상황 정보UE Context: The context information of the UE used to manage the UE in the network, that is, the context information consisting of UE id, mobility (current location, etc.), and attributes of the session (QoS, priority, etc.)
도 1은 본 발명이 적용될 수 있는 LTE 시스템에 관련된 EPS(Evolved Packet System)의 일 예를 나타낸 도이다.1 is a diagram illustrating an example of an EPS (Evolved Packet System) related to an LTE system to which the present invention can be applied.
LTE 시스템은 사용자 단말(UE)과 PDN(packet data network) 간에, 사용자가 이동 중 최종 사용자의 응용프로그램 사용에 방해를 주지 않으면서, 끊김 없는 IP 연결성(Internet Protocol connectivity)을 제공하는 것을 목표로 한다. LTE 시스템은, 사용자 단말과 기지국 간의 무선 프로토콜 구조(radio protocol architecture)를 정의하는 E-UTRAN(Evolved Universal Terrestrial Radio Access Network)를 통한 무선 접속의 진화를 완수하며, 이는 EPC(Evolved Packet Core) 네트워크를 포함하는 SAE(System Architecture Evolution)에 의해 비-무선적 측면에서의 진화를 통해서도 달성된다. LTE와 SAE는 EPS(Evolved Packet System)를 포함한다.The LTE system aims to provide seamless Internet Protocol connectivity between the user equipment (UE) and the packet data network (PDN) without interfering with the end user's use of the application on the go. . The LTE system completes the evolution of wireless access through the Evolved Universal Terrestrial Radio Access Network (E-UTRAN), which defines a radio protocol architecture between the user terminal and the base station, which is an Evolved Packet Core (EPC) network. It is also achieved through evolution in non-wireless terms by the inclusion of System Architecture Evolution (SAE). LTE and SAE include an Evolved Packet System (EPS).
EPS는 PDN 내에서 게이트웨이(gateway)로부터 사용자 단말로 IP 트래픽을 라우팅하기 위해 EPS 베어러(EPS bearers)라는 개념을 사용한다. 베어러(bearer)는 상기 게이트웨이와 사용자 단말 간에 특정한 QoS(Quality of Service)를 갖는 IP 패킷 플로우(IP packet flow)이다. E-UTRAN과 EPC는 응용 프로그램에 의해 요구되는 베어러를 함께 설정하거나 해제(release)한다.The EPS uses the concept of EPS bearers to route IP traffic from the gateway to the user terminal in the PDN. A bearer is an IP packet flow having a specific Quality of Service (QoS) between the gateway and the user terminal. E-UTRAN and EPC both set up and release bearers required by the application.
EPC는 CN(core network)이라고도 불리며, UE를 제어하고, 베어러의 설정을 관리한다.EPC, also called CN (core network), controls the UE and manages the bearer's configuration.
도 1에 도시된 바와 같이, 상기 SAE의 EPC의 노드(논리적 혹은 물리적 노드)는 MME(Mobility Management Entity) (30), PDN-GW 또는 P-GW(PDN gateway) (50), S-GW(Serving Gateway) (40), PCRF(Policy and Charging Rules Function) (60), HSS (Home subscriber Server) (70) 등을 포함한다.As shown in FIG. 1, a node (logical or physical node) of an EPC of the SAE includes a mobility management entity (MME) 30, a PDN-GW or a PDN gateway (P-GW) 50, and an S-GW ( Serving Gateway (40), Policy and Charging Rules Function (PCRF) 60, Home Subscriber Server (HSS) 70, and the like.
MME(30)는 UE와 CN 간의 시그널링을 처리하는 제어 노드이다. UE와 CN 간에 교환되는 프로토콜은 NAS(Non-Access Stratum) 프로토콜로 알려져 있다. MME(30)에 의해 지원되는 기능들의 일례는, 베어러의 설정, 관리, 해제를 포함하여 NAS 프로토콜 내의 세션 관리 계층(session management layer)에 의해 조작되는 베어러 관리(bearer management)에 관련된 기능, 네트워크와 UE 간의 연결(connection) 및 보안(Security)의 설립에 포함하여 NAS 프로토콜 계층에서 연결계층 또는 이동제어계층(mobility management layer)에 의해 조작된다.The MME 30 is a control node that handles signaling between the UE and the CN. The protocol exchanged between the UE and the CN is known as the Non-Access Stratum (NAS) protocol. Examples of functions supported by the MME 30 include functions related to bearer management operated by the session management layer in the NAS protocol, including network setup, management, and release of bearers, network and It is manipulated by the connectivity layer or mobility management layer in the NAS protocol layer, including the establishment of connection and security between UEs.
S-GW(40)는 UE가 기지국(eNodeB) 간에 이동할 때 데이터 베어러를 위한 로컬 이동성 앵커(local mobility anchor)의 역할을 한다. 모든 사용자 IP 패킷은 S-GW(40)을 통해 송신된다. 또한 S-GW(40)는 UE가 ECM-IDLE 상태로 알려진 유휴 상태(idle state)에 있고, MME가 베어러를 재설정(re-establish)하기 위해 UE의 페이징을 개시하는 동안 하향링크 데이터를 임시로 버퍼링 할 때 베어러에 관련된 정보를 유지한다. 또한, GRPS(General Packet Radio Service), UMTS(Universal Mobile Telecommunications System)와 같은 다른 3GPP 기술과의 인터 워킹(inter-working)을 위한 이동성 앵커(mobility anchor)의 역할을 수행한다.The S-GW 40 serves as a local mobility anchor for data bearers when the UE moves between base stations (eNodeBs). All user IP packets are sent via the S-GW 40. The S-GW 40 may also temporarily downlink data while the UE is in an idle state known as the ECM-IDLE state and the MME initiates paging of the UE to re-establish the bearer. Maintain bearer related information when buffering. It also serves as a mobility anchor for inter-working with other 3GPP technologies such as General Packet Radio Service (GRPS) and Universal Mobile Telecommunications System (UMTS).
P-GW(50)은 UE를 위한 IP 주소 할당을 수행하고, QoS 집행(Qos enforcement) 및 PCRF(60)로부터의 규칙에 따라 플로우-기반의 과금(flow-based charging)을 수행한다. P-GW(50)는 GBR 베어러(Guaranteed Bit Rate (GBR) bearers)를 위한 QoS 집행을 수행한다. 또한, CDMA2000이나 WiMAX 네트워크와 같은 비 3GPP(non-3GPP) 기술과의 인터워킹을 위한 이동성 앵커(mobility anchor) 역할도 수행한다.The P-GW 50 performs IP address assignment for the UE and performs flow-based charging in accordance with QoS enforcement and rules from the PCRF 60. The P-GW 50 performs QoS enforcement for GBR bearers (Guaranteed Bit Rate (GBR) bearers). It also serves as a mobility anchor for interworking with non-3GPP technologies such as CDMA2000 or WiMAX networks.
PCRF(60)는 정책 제어 의사결정(policy control decision-making)을 수행하고, 플로우-기반의 과금(flow-based charging)을 수행한다.The PCRF 60 performs policy control decision-making and performs flow-based charging.
HSS(70)는 HLR(Home Location Register)이라고도 불리며, EPS-subscribed QoS 프로파일(profile) 및 로밍을 위한 접속제어에 정보 등을 포함하는 SAE 가입 데이터(SAE subscription data)를 포함한다. 또한, 사용자가 접속하는 PDN에 대한 정보 역시 포함한다. 이러한 정보는 APN(Access Point Name) 형태로 유지될 수 있는데, APN는 DNS(Domain Name system) 기반의 레이블(label)로, PDN에 대한 액세스 포인트 또는 가입된 IP 주소를 나타내는 PDN 주소를 설명하는 식별기법이다.The HSS 70 is also called a home location register (HLR) and includes SAE subscription data including information on EPS-subscribed QoS profiles and access control for roaming. It also includes information about the PDN that the user accesses. This information may be maintained in the form of an Access Point Name (APN), which is a Domain Name system (DNS) -based label that identifies the PDN address that represents the access point or subscribed IP address for the PDN. Technique.
도 1에 도시된 바와 같이, EPS 네트워크 요소(EPS network elements)들 간에는 S1-U, S1-MME, S5/S8, S11, S6a, Gx, Rx 및 SG와 같은 다양한 인터페이스가 정의될 수 있다.As shown in FIG. 1, various interfaces such as S1-U, S1-MME, S5 / S8, S11, S6a, Gx, Rx, and SG may be defined between EPS network elements.
이하, 이동성 관리(mobility management; MM)의 개념과 이동성 관리(MM) 백오프 타이머(back-off timer)를 상세하게 설명한다. 이동성 관리(MM)는 E-UTRAN 상의 오버헤드와 UE에서의 프로세싱을 감소시키기 위한 절차이다.Hereinafter, the concept of mobility management (MM) and mobility management (MM) back-off timer will be described in detail. Mobility Management (MM) is a procedure to reduce overhead on the E-UTRAN and processing at the UE.
이동성 관리(MM)가 적용되는 경우, 액세스 네트워크에서 UE에 관련된 모든 정보는 데이터가 비활성화되는 기간 동안 해제될 수 있다. MME는 상기 Idle 구간 동안 UE 콘텍스트(context) 및 설정된 베어러에 관련된 정보를 유지할 수 있다.If mobility management (MM) is applied, all information related to the UE in the access network may be released during the period in which data is deactivated. The MME may maintain information related to the UE context and the configured bearer during the idle period.
네트워크가 ECM-IDLE 상태에 있는 UE에 접촉할 수 있도록, UE는 현재의 TA(Tracking Area)를 벗어날 때마다 네트워크에 새로운 위치에 관하여 알릴 수 있다. 이러한 절차는 “Tracking Area Update”라 불릴 수 있으며, 이 절차는 UTRAN(universal terrestrial radio access network)이나 GERAN(GSM EDGE Radio Access Network) 시스템에서 “Routing Area Update”라 불릴 수 있다. MME는 UE가 ECM-IDLE 상태에 있는 동안 사용자 위치를 추적하는 기능을 수행한다.The UE can inform the network about the new location whenever it leaves the current tracking area (TA) so that the network can contact the UE in the ECM-IDLE state. This procedure may be called “Tracking Area Update”, which may be called “Routing Area Update” in universal terrestrial radio access network (UTRAN) or GSM EDGE Radio Access Network (GERAN) system. The MME performs the function of tracking the user's location while the UE is in the ECM-IDLE state.
ECM-IDLE 상태에 있는 UE에게 전달해야 할 다운링크 데이터가 있는 경우, MME는 UE가 등록된 TA(tracking area) 상의 모든 기지국(eNodeB)에 페이징 메시지를 송신한다.If there is downlink data to be delivered to the UE in the ECM-IDLE state, the MME transmits a paging message to all base stations (eNodeBs) on the tracking area (TA) where the UE is registered.
그 다음, 기지국은 무선 인터페이스(radio interface) 상으로 UE에 대해 페이징을 시작한다. 페이징 메시지가 수신됨에 따라, UE의 상태가 ECM-CONNECTED 상태로 천이하게 하는 절차를 수행한다. 이러한 절차는 “Service Request Procedure”라 부릴 수 있다. 이에 따라 UE에 관련된 정보는 E-UTRAN에서 생성되고, 모든 베어러는 재설정(re-establish)된다. MME는 라디오 베어러(radio bearer)의 재설정과, 기지국 상에서 UE 콘텍스트를 갱신하는 역할을 수행한다.The base station then begins paging for the UE over a radio interface. As the paging message is received, a procedure for causing the state of the UE to transition to the ECM-CONNECTED state is performed. This procedure can be called a “Service Request Procedure”. Accordingly, information related to the UE is generated in the E-UTRAN, and all bearers are re-established. The MME is responsible for resetting the radio bearer and updating the UE context on the base station.
상술한 이동성 관리(MM) 절차가 수행되는 경우, MM(mobility management) 백오프 타이머가 추가로 사용될 수 있다. 구체적으로 UE는 TA를 갱신하기 위해 TAU(Tracking Area Update)를 송신할 수 있고, MME는 핵심 망의 혼잡(core network congestion)으로 인해 TAU 요청을 거절할 수 있는데, 이 경우 MM 백오프 타이머에 관련된 시간 값을 제공할 수 있다. 해당 시간 값을 수신함에 따라, UE는 MM 백오프 타이머를 활성화시킬 수 있다.When the above described mobility management (MM) procedure is performed, a mobility management (MM) backoff timer may be further used. Specifically, the UE may transmit a tracking area update (TAU) to update the TA, and the MME may reject the TAU request due to core network congestion, in which case the MM backoff timer You can provide a time value. Upon receiving the time value, the UE may activate the MM backoff timer.
도 2는 본 발명이 적용될 수 있는 RRC 연결을 확립하는 과정을 나타낸 흐름도이다.2 is a flowchart illustrating a process of establishing an RRC connection to which the present invention can be applied.
단말은 RRC 연결을 요청하는 RRC 연결 요청(RRC Connection Request) 메시지를 네트워크로 보낸다(S2010). 네트워크는 RRC 연결 요청에 대한 응답으로 RRC 연결 설정(RRC Connection Setup) 메시지를 보낸다(S2020). RRC 연결 설정 메시지를 수신한 후, 단말은 RRC 연결 모드로 진입한다.The terminal sends an RRC connection request message to the network requesting an RRC connection (S2010). The network sends an RRC connection setup message in response to the RRC connection request (S2020). After receiving the RRC connection configuration message, the terminal enters the RRC connection mode.
단말은 RRC 연결 확립의 성공적인 완료를 확인하기 위해 사용되는 RRC 연결 설정 완료(RRC Connection Setup Complete) 메시지를 네트워크로 보낸다(S2030). The UE sends an RRC Connection Setup Complete message used to confirm successful completion of RRC connection establishment to the network (S2030).
도 3은 본 발명이 적용될 수 있는 RRC 연결 재설정 과정을 나타낸 흐름도이다.3 is a flowchart illustrating a RRC connection resetting process to which the present invention can be applied.
RRC 연결 재설정(reconfiguration)은 RRC 연결을 수정하는데 사용된다. 이는 RB 확립/수정(modify)/해제(release), 핸드오버 수행, 측정 셋업/수정/해제, 셀/캐리어 추가/수정/해제를 위해 사용된다. RRC connection reconfiguration is used to modify an RRC connection. It is used to establish / modify / release RBs, perform handovers, set up / modify / release measurements, add / modify / release cells / carriers.
네트워크는 단말로 RRC 연결을 수정하기 위한 RRC 연결 재설정(RRC Connection Reconfiguration) 메시지를 보낸다(S3010). The network sends an RRC connection reconfiguration message for modifying the RRC connection to the terminal (S3010).
RRC 연결 재설정 메시지는 RRC 연결을 변경하기 위한 명령이다. RRC 연결 재설정 메시지는 연관된 전용 NAS 정보 및 보안 구성을 포함하여 측정 구성, 이동성 제어, 무선 자원 구성 (RB, MAC 주 구성 및 물리 채널 구성 포함)에 대한 정보를 전달할 수 있다.The RRC connection reset message is a command for changing an RRC connection. The RRC connection reset message may convey information about measurement configuration, mobility control, radio resource configuration (including RB, MAC main configuration and physical channel configuration), including associated dedicated NAS information and security configuration.
단말은 RRC 연결 재설정에 대한 응답으로, RRC 연결 재설정의 성공적인 완료를 확인하기 위해 사용되는 RRC 연결 재설정 완료(RRC Connection Reconfiguration Complete) 메시지를 네트워크로 보낸다(S3020).In response to the RRC connection reconfiguration, the terminal sends an RRC connection reconfiguration complete message used to confirm successful completion of the RRC connection reconfiguration to the network (S3020).
캐리어carrier 병합(Carrier Aggregation) 일반 Carrier Aggregation General
본 발명의 실시 예들에서 고려하는 통신 환경은 멀티 캐리어(Multi-carrier) 지원 환경을 모두 포함한다.The communication environment considered in the embodiments of the present invention includes both multi-carrier support environments.
즉, 본 발명에서 사용되는 멀티 캐리어 시스템 또는 캐리어 병합(CA: Carrier Aggregation) 시스템이라 함은 광대역을 지원하기 위해서, 목표로 하는 광대역을 구성할 때 목표 대역보다 작은 대역폭(bandwidth)을 가지는 1개 이상의 컴포넌트 캐리어(CC: Component Carrier)를 병합(aggregation)하여 사용하는 시스템을 말한다. That is, the multicarrier system or carrier aggregation (CA) system used in the present invention is one or more having a bandwidth smaller than the target band when configuring the target broadband to support the broadband A system that aggregates and uses a component carrier (CC).
본 발명에서 멀티 캐리어는 캐리어의 병합(또는, 반송파 집성)을 의미하며, 이때 캐리어의 병합은 인접한(contiguous) 캐리어 간의 병합뿐 아니라 비 인접한(non-contiguous) 캐리어 간의 병합을 모두 의미한다.In the present invention, the multi-carrier means the aggregation of carriers (or carrier aggregation), wherein the aggregation of carriers means not only merging between contiguous carriers but also merging between non-contiguous carriers.
또한, 하향링크와 상향링크 간에 집성되는 컴포넌트 캐리어들의 수는 다르게 설정될 수 있다. 하향링크 컴포넌트 캐리어(이하, 'DL CC'라 한다.) 수와 상향링크 컴포넌트 캐리어(이하, 'UL CC'라 한다.) 수가 동일한 경우를 대칭적(symmetric) 집성이라고 하고, 그 수가 다른 경우를 비대칭적(asymmetric) 집성이라고 한다. 이와 같은 캐리어 병합은 반송파 집성, 대역폭 집성(bandwidth aggregation), 스펙트럼 집성(spectrum aggregation) 등과 같은 용어와 혼용되어 사용될 수 있다.In addition, the number of component carriers aggregated between downlink and uplink may be set differently. The case where the number of downlink component carriers (hereinafter referred to as 'DL CC') and the number of uplink component carriers (hereinafter referred to as 'UL CC') is the same is called symmetric aggregation. This is called asymmetric aggregation. Such carrier aggregation may be used interchangeably with terms such as carrier aggregation, bandwidth aggregation, spectrum aggregation, and the like.
두 개 이상의 컴포넌트 캐리어가 결합되어 구성되는 캐리어 병합은 LTE-A 시스템에서는 100MHz 대역폭까지 지원하는 것을 목표로 한다. 목표 대역보다 작은 대역폭을 가지는 1개 이상의 캐리어를 결합할 때, 결합하는 캐리어의 대역폭은 기존 IMT 시스템과의 호환성(backward compatibility) 유지를 위해서 기존 시스템에서 사용하는 대역폭으로 제한할 수 있다. 예를 들어서 기존의 3GPP LTE 시스템에서는 {1.4, 3, 5, 10, 15, 20}MHz 대역폭을 지원하며, 3GPP LTE-advanced 시스템(즉, LTE-A)에서는 기존 시스템과의 호환을 위해 상기의 대역폭들만을 이용하여 20MHz보다 큰 대역폭을 지원하도록 할 수 있다.Carrier aggregation, in which two or more component carriers are combined, aims to support up to 100 MHz bandwidth in an LTE-A system. When combining one or more carriers having a bandwidth smaller than the target band, the bandwidth of the combining carrier may be limited to the bandwidth used by the existing system to maintain backward compatibility with the existing IMT system. For example, the existing 3GPP LTE system supports {1.4, 3, 5, 10, 15, 20} MHz bandwidth, and the 3GPP LTE-advanced system (i.e., LTE-A) supports the above for compatibility with the existing system. Only bandwidths can be used to support bandwidths greater than 20 MHz.
또한, 본 발명에서 사용되는 캐리어 병합 시스템은 기존 시스템에서 사용하는 대역폭과 상관없이 새로운 대역폭을 정의하여 캐리어 병합을 지원하도록 할 수도 있다.In addition, the carrier aggregation system used in the present invention may support carrier aggregation by defining a new bandwidth regardless of the bandwidth used in the existing system.
LTE-A 시스템은 무선 자원을 관리하기 위해 셀(cell)의 개념을 사용한다. The LTE-A system uses the concept of a cell to manage radio resources.
상술한 캐리어 병합 환경은 다중 셀(multiple cells) 환경으로 일컬을 수 있다. 셀은 하향링크 자원(DL CC)과 상향링크 자원(UL CC) 한 쌍의 조합으로 정의되나, 상향링크 자원은 필수 요소는 아니다. 따라서, 셀은 하향링크 자원 단독, 또는 하향링크 자원과 상향링크 자원으로 구성될 수 있다. 특정 단말이 단 하나의 설정된 서빙 셀(configured serving cell)을 가지는 경우 1개의 DL CC와 1개의 UL CC를 가질 수 있으나, 특정 단말이 2개 이상의 설정된 서빙 셀을 가지는 경우에는 셀의 수만큼의 DL CC를 가지며 UL CC의 수는 그와 같거나 그보다 작을 수 있다. The carrier aggregation environment described above may be referred to as a multiple cell environment. A cell is defined as a combination of a downlink resource (DL CC) and an uplink resource (UL CC), but the uplink resource is not an essential element. Accordingly, the cell may be configured with only downlink resources or with downlink resources and uplink resources. When a specific UE has only one configured serving cell, it may have one DL CC and one UL CC, but when a specific UE has two or more configured serving cells, as many DLs as the number of cells Has a CC and the number of UL CCs may be the same or less.
또는, 그 반대로 DL CC와 UL CC가 구성될 수도 있다. 즉, 특정 단말이 다수의 설정된 서빙 셀을 가지는 경우 DL CC의 수보다 UL CC가 더 많은 캐리어 병합 환경도 지원될 수 있다. 즉, 캐리어 병합(carrier aggregation)은 각각 캐리어 주파수(셀의 중심 주파수)가 서로 다른 둘 이상의 셀들의 병합으로 이해될 수 있다. 여기서, 말하는 '셀(Cell)'은 일반적으로 사용되는 기지국이 커버하는 영역으로서의 '셀'과는 구분되어야 한다.Alternatively, the DL CC and the UL CC may be configured on the contrary. That is, when a specific UE has a plurality of configured serving cells, a carrier aggregation environment in which a UL CC has more than the number of DL CCs may be supported. That is, carrier aggregation may be understood as merging two or more cells, each having a different carrier frequency (center frequency of a cell). Here, the term 'cell' should be distinguished from the 'cell' as an area covered by a generally used base station.
LTE-A 시스템에서 사용되는 셀은 프라이머리 셀(PCell: Primary Cell) 및 세컨더리 셀(SCell: Secondary Cell)을 포함한다. P셀과 S셀은 서빙 셀(Serving Cell)로 사용될 수 있다. RRC_CONNECTED 상태에 있지만 캐리어 병합이 설정되지 않았거나 캐리어 병합을 지원하지 않는 단말의 경우, P셀로만 구성된 서빙 셀이 단 하나 존재한다. 반면, RRC_CONNECTED 상태에 있고 캐리어 병합이 설정된 단말의 경우 하나 이상의 서빙 셀이 존재할 수 있으며, 전체 서빙 셀에는 P셀과 하나 이상의 S셀이 포함된다.Cells used in the LTE-A system include a primary cell (PCell: Primary Cell) and a secondary cell (SCell: Secondary Cell). P cell and S cell may be used as a serving cell. In case of the UE that is in the RRC_CONNECTED state but the carrier aggregation is not configured or does not support the carrier aggregation, there is only one serving cell composed of the PCell. On the other hand, in case of a UE in RRC_CONNECTED state and carrier aggregation is configured, one or more serving cells may exist, and the entire serving cell includes a PCell and one or more SCells.
서빙 셀(P셀과 S셀)은 RRC 파라미터를 통해 설정될 수 있다. PhysCellId는 셀의 물리 계층 식별자로 0부터 503까지의 정수값을 가진다. SCellIndex는 S셀을 식별하기 위하여 사용되는 간략한(short) 식별자로 1부터 7까지의 정수값을 가진다. ServCellIndex는 서빙 셀(P셀 또는 S셀)을 식별하기 위하여 사용되는 간략한(short) 식별자로 0부터 7까지의 정수값을 가진다. 0값은 P셀에 적용되며, SCellIndex는 S셀에 적용하기 위하여 미리 부여된다. 즉, ServCellIndex에서 가장 작은 셀 ID (또는 셀 인덱스)을 가지는 셀이 P셀이 된다. Serving cells (P cell and S cell) may be configured through an RRC parameter. PhysCellId is a cell's physical layer identifier and has an integer value from 0 to 503. SCellIndex is a short identifier used to identify an SCell and has an integer value from 1 to 7. ServCellIndex is a short identifier used to identify a serving cell (P cell or S cell) and has an integer value from 0 to 7. A value of 0 is applied to the Pcell, and SCellIndex is pre-assigned to apply to the Scell. That is, a cell having the smallest cell ID (or cell index) in ServCellIndex becomes a P cell.
P셀은 프라이머리 주파수(또는, primary CC) 상에서 동작하는 셀을 의미한다. 단말이 초기 연결 설정(initial connection establishment) 과정을 수행하거나 연결 재-설정 과정을 수행하는데 사용될 수 있으며, 핸드오버 과정에서 지시된 셀을 지칭할 수도 있다. 또한, P셀은 캐리어 병합 환경에서 설정된 서빙 셀 중 제어관련 통신의 중심이 되는 셀을 의미한다. 즉, 단말은 자신의 P셀에서만 PUCCH를 할당 받아 전송할 수 있으며, 시스템 정보를 획득하거나 모니터링 절차를 변경하는데 P셀만을 이용할 수 있다. E-UTRAN(Evolved Universal Terrestrial Radio Access)은 캐리어 병합 환경을 지원하는 단말에게 이동성 제어 정보(mobilityControlInfo)를 포함하는 상위 계층의 RRC 연결 재설정(RRC Connection Reconfiguration) 메시지를 이용하여 핸드오버 절차를 위해 P셀만을 변경할 수도 있다. P cell refers to a cell operating on a primary frequency (or primary CC). The UE may be used to perform an initial connection establishment process or to perform a connection re-establishment process and may also refer to a cell indicated in a handover process. In addition, the P cell refers to a cell serving as a center of control-related communication among serving cells configured in a carrier aggregation environment. That is, the terminal may receive and transmit a PUCCH only in its own Pcell, and may use only the Pcell to acquire system information or change a monitoring procedure. The Evolved Universal Terrestrial Radio Access (E-UTRAN) uses a higher layer RRC Connection Reconfiguration message including mobility control information to a terminal supporting a carrier aggregation environment for a handover procedure. You can only change it.
S셀은 세컨더리 주파수(또는, Secondary CC) 상에서 동작하는 셀을 의미할 수 있다. 특정 단말에 P셀은 하나만 할당되며, S셀은 하나 이상 할당될 수 있다. S셀은 RRC 연결이 설정이 이루어진 이후에 구성 가능하고 추가적인 무선 자원을 제공하는데 사용될 수 있다.The S cell may refer to a cell operating on a secondary frequency (or, secondary CC). Only one PCell may be allocated to a specific UE, and one or more SCells may be allocated. The SCell is configurable after the RRC connection is established and can be used to provide additional radio resources.
캐리어 병합 환경에서 설정된 서빙 셀 중에서 P셀을 제외한 나머지 셀들, 즉 S셀에는 PUCCH가 존재하지 않는다. E-UTRAN은 S셀을 캐리어 병합 환경을 지원하는 단말에게 추가할 때, RRC_CONNECTED 상태에 있는 관련된 셀의 동작과 관련된 모든 시스템 정보를 특정 시그널(dedicated signal)을 통해 제공할 수 있다. 시스템 정보의 변경은 관련된 S셀의 해제 및 추가에 의하여 제어될 수 있으며, 이 때 상위 계층의 RRC 연결 재설정 (RRC Connection Reconfiguration)메시지를 이용할 수 있다. E-UTRAN은 관련된 S셀 안에서 브로드캐스트하기 보다는 단말 별로 상이한 파라미터를 가지는 특정 시그널링(dedicated signaling) 할 수 있다.PUCCH does not exist in the remaining cells excluding the P cell, that is, the S cell, among the serving cells configured in the carrier aggregation environment. When the E-UTRAN adds the SCell to the UE supporting the carrier aggregation environment, the E-UTRAN may provide all system information related to the operation of the related cell in the RRC_CONNECTED state through a dedicated signal. The change of the system information may be controlled by the release and addition of the related SCell, and at this time, an RRC connection reconfiguration message of a higher layer may be used. The E-UTRAN may perform dedicated signaling having different parameters for each terminal, rather than broadcasting in the related SCell.
초기 보안 활성화 과정이 시작된 이후에, E-UTRAN은 연결 설정 과정에서 초기에 구성되는 P셀에 부가하여 하나 이상의 S셀을 포함하는 네트워크를 구성할 수 있다. 캐리어 병합 환경에서 P셀 및 S셀은 각각의 컴포넌트 캐리어로서 동작할 수 있다. 이하의 실시 예에서는 프라이머리 컴포넌트 캐리어(PCC)는 P셀과 동일한 의미로 사용될 수 있으며, 세컨더리 컴포넌트 캐리어(SCC)는 S셀과 동일한 의미로 사용될 수 있다.After the initial security activation process begins, the E-UTRAN may configure a network including one or more Scells in addition to the Pcells initially configured in the connection establishment process. In the carrier aggregation environment, the Pcell and the SCell may operate as respective component carriers. In the following embodiment, the primary component carrier (PCC) may be used in the same sense as the PCell, and the secondary component carrier (SCC) may be used in the same sense as the SCell.
도 4 및 도 5는 본 발명이 적용될 수 있는 캐리어 어그리게이션(Carrier Aggregation)에서의 계층(Layer) 2 구조의 일 예를 나타낸 도이다.4 and 5 are diagrams illustrating an example of a layer 2 structure in carrier aggregation to which the present invention can be applied.
도 4는 하향링크 데이터의 전송을 위한 캐리어 어그리게이션(Carrier Aggregation)에서의 계층(Layer) 2 구조의 일 예를 나타내고, 도 8은 상향 데이터의 전송을 위한 캐리어 어그리게이션(Carrier Aggregation)에서의 계층(Layer) 2 구조의 일 예를 나타낸다.4 shows an example of a layer 2 structure in carrier aggregation for downlink data transmission, and FIG. 8 shows a carrier aggregation for uplink data transmission. An example of a layer 2 structure of a is shown.
도 4 및 도 5를 참조하면, 캐리어 어그리게이션의 경우, 각 서빙 셀에서 하나의 HARQ 엔터티가 요구되기 위해서 물리 계층의 멀티 캐리어는 단지 MAC 계층에 드러난다.4 and 5, in case of carrier aggregation, the multi-carriers of the physical layer are only revealed in the MAC layer in order to require one HARQ entity in each serving cell.
상향링크 및 하향링크에서 서빙 셀마다 하나의 독립적인 HARQ 엔터티가 존재하고, 공간 다중화(Spatial multiplexing)가 없는 경우, 각 서빙 셀에서 각 TTI 마다 하나의 전송 블록(Transport Block)이 생성된다. 각 전송 블록 및 이것의 잠재적인 HARQ 재전송들은 싱글 서빙 셀에 매핑된다.If there is one independent HARQ entity for each serving cell in uplink and downlink and there is no spatial multiplexing, one transport block is generated for each TTI in each serving cell. Each transport block and its potential HARQ retransmissions are mapped to a single serving cell.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 컴포넌트 캐리어 및 캐리어 병합의 일례를 나타낸 도이다.6 is a diagram illustrating an example of a component carrier and carrier aggregation in a wireless communication system to which the present invention can be applied.
도 6의 (a)는 LTE 시스템에서 사용되는 단일 캐리어 구조를 나타낸다. 컴포넌트 캐리어에는 DL CC와 UL CC가 있다. 하나의 컴포넌트 캐리어는 20MHz의 주파수 범위를 가질 수 있다.6 (a) shows a single carrier structure used in an LTE system. Component carriers include a DL CC and an UL CC. One component carrier may have a frequency range of 20 MHz.
도 6의 (b)는 LTE_A 시스템에서 사용되는 캐리어 병합 구조를 나타낸다. 도 6의 (b)의 경우에 20MHz의 주파수 크기를 갖는 3 개의 컴포넌트 캐리어가 결합된 경우를 나타낸다. DL CC와 UL CC가 각각 3 개씩 있으나, DL CC와 UL CC의 개수에 제한이 있는 것은 아니다. 캐리어 병합의 경우 단말은 3개의 CC를 동시에 모니터링할 수 있고, 하향링크 신호/데이터를 수신할 수 있고 상향링크 신호/데이터를 송신할 수 있다. 6 (b) shows a carrier aggregation structure used in the LTE_A system. In the case of FIG. 6B, three component carriers having a frequency size of 20 MHz are combined. Although there are three DL CCs and three UL CCs, the number of DL CCs and UL CCs is not limited. In case of carrier aggregation, the UE may simultaneously monitor three CCs, receive downlink signals / data, and transmit uplink signals / data.
만약, 특정 셀에서 N개의 DL CC가 관리되는 경우에는, 네트워크는 단말에 M (M≤N)개의 DL CC를 할당할 수 있다. 이때, 단말은 M 개의 제한된 DL CC 만을 모니터링하고 DL 신호를 수신할 수 있다. 또한, 네트워크는 L (L≤M≤N)개의 DL CC에 우선순위를 주어 주된 DL CC를 단말에 할당할 수 있으며, 이러한 경우 단말은 L 개의 DL CC는 반드시 모니터링해야 한다. 이러한 방식은 상향링크 전송에도 똑같이 적용될 수 있다.If N DL CCs are managed in a specific cell, the network may allocate M (M ≦ N) DL CCs to the UE. In this case, the UE may monitor only M limited DL CCs and receive a DL signal. In addition, the network may give L (L ≦ M ≦ N) DL CCs to allocate a main DL CC to the UE, in which case the UE must monitor the L DL CCs. This method can be equally applied to uplink transmission.
하향링크 자원의 반송파 주파수(또는 DL CC)와 상향링크 자원의 반송파 주파수(또는, UL CC) 사이의 링키지(linkage)는 RRC 메시지와 같은 상위계층 메시지나 시스템 정보에 의해 지시될 수 있다. 예를 들어, SIB2(System Information Block Type2)에 의해서 정의되는 링키지에 의해서 DL 자원과 UL 자원의 조합이 구성될 수 있다. 구체적으로, 링키지는 UL 그랜트를 나르는 PDCCH가 전송되는 DL CC와 상기 UL 그랜트를 사용하는 UL CC간의 맵핑 관계를 의미할 수 있으며, HARQ를 위한 데이터가 전송되는 DL CC(또는 UL CC)와 HARQ ACK/NACK 신호가 전송되는 UL CC(또는 DL CC)간의 맵핑 관계를 의미할 수도 있다.The linkage between the carrier frequency (or DL CC) of the downlink resource and the carrier frequency (or UL CC) of the uplink resource may be indicated by a higher layer message or system information such as an RRC message. For example, a combination of DL resources and UL resources may be configured by a linkage defined by SIB2 (System Information Block Type2). Specifically, the linkage may mean a mapping relationship between a DL CC on which a PDCCH carrying a UL grant is transmitted and a UL CC using the UL grant, and a DL CC (or UL CC) and HARQ ACK on which data for HARQ is transmitted. It may mean a mapping relationship between UL CCs (or DL CCs) through which a / NACK signal is transmitted.
이중 연결(Dual Dual connection Connectivity:DCConnectivity: DC ))
도 7 내지 도 9는 본 발명이 적용될 수 있는 이중 연결(Dual Connectivity)의 구조 및 네트워크 인터페이스의 일 예를 나타낸 도이다.7 to 9 are diagrams illustrating an example of a structure of a dual connectivity and a network interface to which the present invention can be applied.
스몰 셀 진화를 지원하는 이종 네트워크에서, 이동성 강건함(mobility robustness), 잦은 핸드오버로 인해 증가되는 시그널링 부하(signaling load), 사용자 당 처리량 개선, 시스템 용량(capacity) 등과 관련된 다양한 요구사항들이 있다.In heterogeneous networks that support small cell evolution, there are various requirements related to mobility robustness, increased signaling load due to frequent handovers, improved throughput per user, system capacity, and the like.
이러한 요구 사항들을 실현하기 위한 해결책으로서, E-UTRAN은 RRC_연결 (RRC_CONNECTED)에서 다양한 RX/TX UE가 두 개의 구분되는 스케쥴러에 의해 제공되며, X2 인터페이스를 통해 비-이상적인(non-ideal) 백홀을 통해 연결된 2개의 eNB들에 위치되는 무선 자원을 이용하기 위해 구성되는 이중 연결성(DC) 동작을 지원한다.As a solution for realizing these requirements, the E-UTRAN is provided by a scheduler with two separate RX / TX UEs in RRC_CONNECTED and a non-ideal backhaul via the X2 interface. It supports dual connectivity (DC) operation configured to use radio resources located in two eNBs connected through the PC.
이중 연결성은 제어 및 데이터 분리를 함축할 수 있다. 예를 들어, 이동성을 위한 제어 시그널링은 높은-속도 데이터 연결이 스몰 셀을 통해 제공되는 시간과 동일한 시간에 매크로 셀을 통해 제공된다.Dual connectivity can imply control and data separation. For example, control signaling for mobility is provided through the macro cell at the same time that the high-speed data connection is provided through the small cell.
또한, 하향링크와 상향링크 사이의 분리, 상기 하향링크와 상향링크 간의 연결은 다른 셀들을 통해 제공된다.In addition, separation between downlink and uplink, and connection between the downlink and uplink are provided through other cells.
특정 UE를 위한 이중 연결성과 관련된 eNBs은 2개의 다른 역할을 가정할 수 있다. 예를 들어, 도 7 내지 도 9에 도시된 바와 같이 하나의 eNB는 MeNB 또는 SeNB로서 행동할 수 있다.ENBs associated with dual connectivity for a particular UE may assume two different roles. For example, one eNB may act as a MeNB or SeNB as shown in FIGS. 7 to 9.
이중 연결성에서, UE는 하나의 MeNB 및 하나의 SeNB와 연결될 수 있다.In dual connectivity, the UE may be connected with one MeNB and one SeNB.
MeNB는 이중 연결성(Dual Connectivity:DC)에서 적어도 하나의 S1-MME를 종료하는 eNB이며, SeNB는 UE를 위해 추가적인 무선 자원을 제공하는 eNB이나, 이중 연결성에서 마스터(Master) eNB는 아니다.The MeNB is an eNB that terminates at least one S1-MME in dual connectivity (DC), and the SeNB is an eNB that provides additional radio resources for the UE, but is not a master eNB in dual connectivity.
추가적으로, CA가 구성된 DC는 RRC 연결 상태에서 UE의 동작 모드를 의미하며, 마스터 셀 그룹(Master Cell Group) 및 세컨더리 셀 그룹(Secondary Cell Group)으로 구성된다.In addition, the DC configured with the CA means an operation mode of the UE in the RRC connection state, and is composed of a Master Cell Group and a Secondary Cell Group.
여기서, “셀 그룹(cell group)”은 이중 연결성에서 Master eNB (MeNB) 또는 Secondary eNB (SeNB)와 관련된 서빙 셀의 그룹을 나타낸다.Here, "cell group" indicates a group of serving cells associated with a master eNB (MeNB) or a secondary eNB (SeNB) in dual connectivity.
“마스터 셀 그룹(Master Cell Group:MCG)”는 MeNB와 관련된 서빙 셀의 그룹이며, 이중 연결성에서 primary cell (PCell) 및 선택적으로 하나 또는 그 이상의(one or more) secondary cells (SCells)을 포함한다. A “Master Cell Group (MCG)” is a group of serving cells associated with a MeNB and includes a primary cell (PCell) and optionally one or more secondary cells (SCells) in dual connectivity. .
“세컨더리 셀 그룹(Secondary Cell Group:SCG)”는 primary SCell (pSCell) 및 선택적으로 하나 또는 그 이상의 SCells를 포함하는 SeNB와 관련된 서빙 셀의 그룹을 나타낸다.“Secondary Cell Group (SCG)” refers to a group of serving cells associated with a SeNB comprising a primary SCell (pSCell) and optionally one or more SCells.
여기서, 이하에서 설명되는 “셀”은 eNB 에 의해 커버되는 일반적인 영역으로서의 ‘셀’과 구별되어야 한다. 즉, 셀(cell)은 하향링크와 선택적으로 상향링크 자원의 결합을 나타낸다.Here, the "cell" described below should be distinguished from the "cell" as a general area covered by the eNB. That is, a cell represents a combination of downlink and optionally uplink resources.
하향링크 자원의 캐리어 주파수(예: 셀의 중심 주파수)와 상향링크 자원의 캐리어 주파수 사이의 관계(linking)는 하향링크 자원들에서 전송되는 시스템 정보에서 지시된다.The link between the carrier frequency of the downlink resource (eg, the center frequency of the cell) and the carrier frequency of the uplink resource is indicated in system information transmitted from the downlink resources.
MCG 베어러는 이중 연결성에서 MeNB 자원만을 사용하기 위해 MeNB에서만 위치되는 무선 프로토콜이며, SCG 베어러는 이중 연결성에서 SeNB 자원을 사용하기 위해 SeNB에서만 위치되는 무선 프로토콜이다.The MCG bearer is a radio protocol located only in MeNB to use only MeNB resources in dual connectivity, and the SCG bearer is a radio protocol located only in SeNB to use SeNB resources in dual connectivity.
그리고, 스플릿 베어러(Split bearer)는 이중 연결성에서 MeNB 및 SeNB 자원 모두를 사용하기 위해 MeNB 및 SeNB 모두에서 위치되는 무선 프로토콜이다.And, split bearer is a radio protocol located in both MeNB and SeNB to use both MeNB and SeNB resources in dual connectivity.
도 9는 이중 연결에서 사용자 평면 구조의 일 예를 나타낸다. 9 shows an example of a user plane structure in dual connectivity.
도 9의 (a)는 SeNB 및 베어러 분할이 없는 독립 PDCP들에서 종료되는 S1-U의 조합의 일 예를 도시한다.9 (a) shows an example of a combination of S1-U terminating in SeNB and independent PDCPs without bearer splitting.
도 9의 (a)에 도시된 사용자 평면 구조의 장점은 아래와 같다.Advantages of the user plane structure shown in (a) of FIG. 9 are as follows.
- MeNB는 SeNB가 전송한 EPS 베어러에 대한 패킷을 버퍼링하거나 처리 할 필요가 없다.The MeNB does not need to buffer or process packets for the EPS bearers sent by the SeNB.
- PDCP/RLC 및 GTP-U/UDP/IP에 미치는 영향이 적거나 없다.-Little or no impact on PDCP / RLC and GTP-U / UDP / IP.
- 모든 트래픽을 MeNB로 라우팅 할 필요가 없으며, MeNB와 SeNB 간의 백홀 링크에 대한 요구 사항이 낮고, MeNB와 SeNB 사이에 흐름 제어가 필요하지 않다.There is no need to route all traffic to MeNB, low requirements for backhaul link between MeNB and SeNB, no flow control between MeNB and SeNB.
- 이중 연결 UE에 대해 SeNB에서 로컬 브레이크 아웃 및 콘텐츠 캐싱을 직접 지원한다.Direct support for local breakout and content caching at SeNB for dual connectivity UEs.
하지만, 도 9의 (a)에 도시된 사용자 평면 구조의 단점은 아래와 같다.However, disadvantages of the user plane structure shown in (a) of FIG. 9 are as follows.
- CN에서 확인할 수 있는 SeNB의 이동성(SeNB mobility visible to CN).SeNB mobility visible to CN.
- 오프로딩은 MME에 의해서 수행되어야 하며, 매우 동적일 수 없다.Offloading must be performed by the MME and cannot be very dynamic.
- 동일한 베어러에 대한 MeNB 및 SeNB에서의 무선 자원의 이용이 불가능함.No use of radio resources at the MeNB and SeNB for the same bearer.
- SeNB에서 처리하는 베어러에 대해서, SeNB에서의 핸드 오버와 같은 중단이 SeNB 간의 전달로 변경된다(for the bearers handled by SeNB, handover-like interruption at SeNB change with forwarding between SeNBs).For the bearer processing in the SeNB, the interruption, such as handover in the SeNB, is changed to transfer between SeNBs (for the bearers handled by SeNB, handover-like interruption at SeNB change with forwarding between SeNBs).
- 업 링크에서, 논리 채널 우선 순위화는 업 링크 데이터의 송신에 영향을 미친다(무선 자원 할당은 무선 베어러가 종료되는 eNB로 제한된다).In the uplink, logical channel prioritization affects the transmission of uplink data (radio resource allocation is limited to the eNB where the radio bearer terminates).
도 9의 (b)는 MeNB 및 MeNB와 분할 베어러들에 대한 독립 RLS들에서 베어러 분할로 종료되는 S1-U의 조합의 일 예를 도시한다.FIG. 9B shows an example of a combination of MeNB and S1-U ending with bearer split in independent RLSs for split bearers.
도 9의 (b)에 도시된 사용자 평면 구조의 장점은 아래와 같다.Advantages of the user plane structure shown in FIG. 9B are as follows.
- CN에 숨겨진 SeNB 이동성-SeNB mobility hidden in CN
- MeNB에서만 요구되는 암호화에 대한 어떠한 보안 임팩트도 없다.There is no security impact on encryption required only in MeNB.
- SeNB 변경시 SeNB간에 데이터 전달이 필요하지 않는다.No data transfer between SeNBs is required when the SeNB is changed.
- MeNB에서 SeNB로의 SeNB 트래픽의 RLC 처리를 오프로드한다.Offload RLC processing of SeNB traffic from MeNB to SeNB.
- RLC에 거의 또는 전혀 영향을 미치지 않는다.Little or no effect on RLC.
- 동일한 베어러에 대한 MeNB 및 SeNB에서 무선 자원의 이용이 가능하다.Radio resources are available at the MeNB and SeNB for the same bearer.
- SeNB 이동성에 대한 완화된 요구 사항(MeNB는 그 동안 사용될 수 있음).-Relaxed requirements for SeNB mobility (MeNB can be used in the meantime).
하지만, 도 9의 (b)에 도시된 사용자 평면 구조의 단점은 아래와 같다.However, disadvantages of the user plane structure shown in FIG. 9B are as follows.
- MeNB의 모든 이중 연결 트래픽을 라우팅, 처리 및 버퍼링해야 한다.All dual connectivity traffic of the MeNB must be routed, processed and buffered.
- PDCP는 전송을 위해 eNB로 향하는 PDCP PDU들의 라우팅 및 수신을 위해 PDCP PDU들의 재정렬에 책임이 있다.PDCP is responsible for the reordering of PDCP PDUs for routing and receiving PDCP PDUs towards the eNB for transmission.
- MeNB와 SeNB간에 흐름 제어가 필요하다.Flow control is required between MeNB and SeNB.
- 업 링크에서, 논리 채널 우선 순위화는 RLC 재전송 및 RLC 상태 PDU (해당 RLC 엔티티가 상주하는 eNB로 제한됨)를 처리하는 데 영향을 미친다.In the uplink, logical channel prioritization affects handling of RLC retransmissions and RLC status PDUs (limited to the eNB where the corresponding RLC entity resides).
- 이중 연결 UE의 경우 SeNB에서 로컬 브레이크 아웃 및 콘텐츠 캐싱을 지원하지 않는다.In case of dual connectivity UE, SeNB does not support local breakout and content caching.
5G는 헬스 케어, 교통 안전, 재난 안전, 원격 의료제어 등과 같은 다양한 실시간 응용 서비스를 지원하기 위한 요구사항이 증가하면서 인간의 오감 중 지연시간에 가장 민감한 촉감 정보를 인터넷으로 제공해도 사용자가 어색함을 눈치채지 못할 정도로 극단적으로 짧은 반응시간을 갖는 초 저 지연 시스템 구축을 목표로 하고 있다. As 5G demands to support various real-time application services such as health care, traffic safety, disaster safety, remote medical control, etc., 5G realizes it is awkward for users to provide the internet with the most sensitive touch information of the five senses. The goal is to build an ultra-low latency system with extremely short response times.
또한, 이와 같은 초 저 지연을 요구하는 서비스는 지연뿐만 아니라 신뢰도 높은 데이터 전송을 함께 요구하는 시나리오도 함께 고려하고 있기 때문에, 높은 신뢰도(약 99.999%)로 빠르게 데이터를 전송할 수 있도록 하는 기술(Ultra-reliable and low latency communication, i.e. URLLC)에 대한 필요성이 대두되고 있다.In addition, the service requiring ultra low delay considers not only the delay but also the scenario requiring the reliable data transmission. Therefore, the technology that enables fast data transmission with high reliability (approximately 99.999%) (Ultra-) There is a need for reliable and low latency communication (ie URLLC).
저지연 고신뢰 서비스에서는 데이터 패킷을 짧은 TTI에서 전송하여 높은 신뢰도를 요구한다. 높은 신뢰도를 얻기 위해서 time diversity 방법 및 frequency diversity 방법이 사용될 수 있다.Low-latency, high-reliability services require high reliability by transmitting data packets on short TTIs. In order to obtain high reliability, a time diversity method and a frequency diversity method may be used.
time diversity 방법은 송신 측에서 시간 축 상에서 시간 간격을 두고 동일한 데이터를 여러 번 송신하면 수신 측에서 이들 수신 신호를 다시 합성하여 양호한 전송 품질을 얻도록 할 수 있는 방법을 의미한다. The time diversity method refers to a method in which when the transmitting side transmits the same data several times over a time axis on the time axis, the receiving side may recombine these received signals to obtain good transmission quality.
frequency diversity 방법은 송신 측에서 주파수축상에서 여러 개의 주파수에 동일한 데이터를 실어서 송신하면 각 주파수마다 수신 특성이 다른 성질을 이용하여 양호한 수신 신호를 선택하거나 서로 다른 신호를 합성하여 페이딩을 방지할 수 있는 방법을 의미한다. In the frequency diversity method, when the transmitting side carries the same data on several frequencies on the frequency axis and transmits the same data, it is possible to prevent fading by selecting a good reception signal or combining different signals using properties having different reception characteristics for each frequency. Means the way.
저지연 고신뢰 서비스에서는 짧은 TTI에서 데이터를 전송하기 때문에 이러한 두 가지 방법 중 time diversity 방법은 time diversity gain은 얻기 어렵다. Since the low latency high reliability service transmits data in a short TTI, time diversity among these two methods is difficult to obtain time diversity gain.
따라서, frequency diversity 방법을 이용하여 다중 셀/다른 캐리어의 서로 다른 주파수를 동시에 사용한다면, frequency diversity gain을 얻을 수 있다. Therefore, if different frequencies of multiple cells / different carriers are used simultaneously using the frequency diversity method, frequency diversity gain can be obtained.
또한, 저 지연 고 신뢰 서비스에서는 데이터 패킷을 짧은 TTI에서 전송하기 때문에 대용량의 대역폭이 필요로 한다. LTE/LTE-A 시스템에서 다중 셀을 이용 기술인 이중 연결(DC)에서는 서로 다른 셀에 데이터를 전송 가능하므로 더 넓은 대여폭을 사용할 수 있다. In addition, low-latency, high-reliability services require large bandwidths because data packets are transmitted at short TTIs. In the dual connectivity (DC) technology, which uses multiple cells in an LTE / LTE-A system, data can be transmitted to different cells, thereby enabling a wider rental width.
또한, LTE/LTE-A 시스템에서의 다중 캐리어 이용 기술인 반송파 집성 기술(CA)을 이용한다면, 여러 컴포넌트 캐리어(CC) 를 사용하기 때문에 더 넓은 대여폭을 얻을 수 있다.In addition, if carrier aggregation technology (CA), which is a multi-carrier usage technology in LTE / LTE-A system, uses multiple component carriers (CC), a wider rental width can be obtained.
그러나. 기존 시스템에서 DC 및 CA 기술은 단말의 throughput 향상 또는 traffic offloading의 목적으로 구현되었기 때문에, 저지연 고신뢰 서비스에 적합하지 않다. But. DC and CA technology in the existing system is implemented for the purpose of improving the throughput or traffic offloading of the terminal, it is not suitable for low latency high reliability services.
즉, 기존의 DC 및 CA는 서로 다른 데이터를 전송하기 위한 기술이기 때문에 저 지연 고 신뢰 서비스를 위해서 동일한 데이터를 송수신하지 못한다.In other words, the existing DC and CA are technologies for transmitting different data, and thus cannot transmit or receive the same data for a low delay high reliability service.
따라서, 본 발명은 이와 같은 문제점을 해결하기 위해서 DC 및 CA기술은 데이터 처리율뿐만 아니라 데이터 신뢰성을 높이일 수 있는 방법을 제안한다. Therefore, in order to solve such a problem, the present invention proposes a method in which DC and CA technologies can increase data reliability as well as data throughput.
또한, DC 및 CA 기술에서 셀/캐리어 추가 절차를 통해 복수의 동일한 데이터를 송수신하는 방법을 제안한다.In addition, DC and CA technology proposes a method of transmitting and receiving a plurality of the same data through the cell / carrier addition procedure.
도 10은 본 명세서에서 제안하는 다중 RAT 환경에서, 새로운 RAT을 추가하여 복수의 데이터들을 송수신하는 일 예를 나타낸 순서도이다.10 is a flowchart illustrating an example of transmitting and receiving a plurality of data by adding a new RAT in a multi-RAT environment proposed in the present specification.
도 10을 참조하면, Multi-RAT 환경에서 서빙 셀/캐리어에 복수의 동일한 데이터들을 송수신하기 위한 기능을 지원하는 새로운 RAT의 2차 셀/캐리어를 추가함으로써, 저 지연 및 고 신뢰를 요구하는 특정 서비스를 제공하기 위한 복수의 동일한 데이터를 송수신할 수 있다.Referring to FIG. 10, by adding a secondary cell / carrier of a new RAT supporting a function of transmitting and receiving a plurality of identical data to a serving cell / carrier in a multi-RAT environment, a specific service requiring low delay and high reliability It can transmit and receive a plurality of the same data to provide.
이하, 본 발명에서 복수의 동일한 데이터들을 송수신하기 위한 특정 기능을 복제 데이터 송수신 기능이라고 하고, 서빙 셀과 추가되는 2차 셀은 서로 다른 무선 접속 기술(Radio Access Technology)를 지원한다고 가정한다. 또한, 서빙 셀/캐리어(또는, 서빙 기지국)는 제 1 셀/캐리어(또는, 제 1 기지국)로 호칭될 수 있으며, 2차 셀/캐리어(또는, 2차 기지국)는 제 2 셀/캐리어(또는, 제 2 기지국) 또는 제 3 셀/캐리어(또는, 제 3 기지국)로 호칭될 수 있다.Hereinafter, in the present invention, a specific function for transmitting and receiving a plurality of identical data is called a duplicate data transmission / reception function, and it is assumed that the serving cell and the added secondary cell support different radio access technologies. In addition, the serving cell / carrier (or serving base station) may be referred to as a first cell / carrier (or first base station), and the secondary cell / carrier (or secondary base station) is referred to as a second cell / carrier ( Or, it may be called a second base station) or a third cell / carrier (or a third base station).
구체적으로, 제 1 셀/캐리어는 새로운 RAT의 제 2 셀/캐리어를 추가하는 과정에서 추가된 제 2 셀/캐리어로부터 데이터의 중복 전송과 관련된 정보를 전송 받을 수 있다(S10010).In detail, the first cell / carrier may receive information related to redundant transmission of data from the second cell / carrier added in the process of adding the second cell / carrier of the new RAT (S10010).
데이터의 중복 전송과 관련된 정보는 추가된 제 2 셀/캐리어가 복제 데이터 송수신 기능을 지원하는지 여부를 나타내는 인덱스 정보, 뉴머롤로지 정보(numerology information), 및 중복된 데이터가 전송되는 무선 베어를 나타내는 베어러 정보를 포함할 수 있다.Information related to the redundant transmission of data may include: index information indicating whether the added second cell / carrier supports a copy data transmission / reception function, numerology information, and a bearer indicating a radio bear on which duplicate data is transmitted. May contain information.
뉴머롤로지 정보는 무선 자원 안에 할당된 동기 신호가 전송되는 위치를 나타내는 위치 정보 등을 포함할 수 있다.The neuralology information may include location information indicating a location where a synchronization signal allocated in a radio resource is transmitted.
이후, 제 1 셀/캐리어는 단말로 데이터의 중복 전송과 관련된 정보를 전송한다(S10020).Thereafter, the first cell / carrier transmits information related to redundant transmission of data to the terminal (S10020).
단말은 제 1 셀/캐리어로부터 전송된 정보에 포함된 뉴머롤로지 정보에 기초하여 추가된 제 2 셀/캐리어와 동기화한 뒤, 연결을 형성할 수 있다.The terminal may form a connection after synchronizing with the added second cell / carrier based on the neuralology information included in the information transmitted from the first cell / carrier.
단말은 제 1 셀/캐리어로부터 전송된 정보를 통해서 추가된 제 2 셀/캐리어가 복제 데이터 송수신 기능을 지원하는지 여부를 인식할 수 있다.The terminal may recognize whether the added second cell / carrier supports the copy data transmission / reception function through the information transmitted from the first cell / carrier.
제 1 셀/캐리어는 저 지연 고 신뢰를 요구하는 특정 서비스를 제공하기 위한 데이터를 중복해서 전송하기 위해서 단말로 추가된 제 2 셀/캐리어에서 복제 데이터 송수신 기능이 수행된다는 것을 알리는 제어 정보를 전송한다(S10030).The first cell / carrier transmits control information indicating that a duplicate data transmission / reception function is performed in a second cell / carrier added to the terminal in order to duplicately transmit data for providing a specific service requiring low delay and high reliability. (S10030).
이때, 단계 S10020 및 단계 S10030에서 단말과 제 1 셀/캐리어 간에 송수신되는 정보는 물리계층 제어 정보(예를 들면, PDCCH/ePDCCH를 통해 전송되는 downlink control information 등) 또는 layer 2 이상의 상위 계층 제어정보(예를 들면, RRC Connection Reconfiguration 메시지 등)에 포함되어 전송될 수 있다.In this case, the information transmitted and received between the UE and the first cell / carrier in steps S10020 and S10030 may be physical layer control information (for example, downlink control information transmitted through PDCCH / ePDCCH, etc.) or higher layer control information (layer 2 or more). For example, it may be included in the RRC Connection Reconfiguration message and the like and transmitted.
만약, 제 1 셀/캐리어와 추가된 제 2 셀/캐리어가 물리적으로 분리되어 있지 않은 경우, 단계 S10010은 생략될 수 있으며, 단계 S10020의 데이터의 중복 전송과 관련된 정보는 제 2 셀/캐리어로부터 단말로 전송될 수 있다.If the first cell / carrier and the added second cell / carrier are not physically separated, step S10010 may be omitted, and information related to the redundant transmission of data of step S10020 may be received from the second cell / carrier. Can be sent to.
제 1 셀/캐리어 또는 제 2 셀/캐리어로부터 전송된 인덱스 정보를 통해서 제 2 셀/캐리어가 복제 데이터 송수신 기능을 지원하는지 여부를 인식할 수 있다.It is possible to recognize whether the second cell / carrier supports a copy data transmission / reception function through the index information transmitted from the first cell / carrier or the second cell / carrier.
만약, 제 2 셀/캐리어가 복제 데이터 송수신 기능을 지원하는 않는 경우, 단말은 저 지연 및 고 신뢰를 요구하는 특정 서비스를 위한 복수의 동일한 데이터들을 제 1 셀/캐리어 및 제 2 셀/캐리어와 송수신할 수 없다.If the second cell / carrier does not support the function of transmitting / receiving duplicate data, the terminal transmits / receives a plurality of identical data for the specific service requiring low delay and high reliability with the first cell / carrier and the second cell / carrier. Can not.
하지만, 제 2 셀/캐리어가 복제 데이터 송수신 기능을 지원하는 경우, 단말은 저 지연 및 고 신뢰를 요구하는 특정 서비스를 제공하기 위한 복수의 동일한 데이터를 제 1 셀/캐리어 및 제 2 셀/캐리어와 송수신할 수 있다(S10040).However, when the second cell / carrier supports a copy data transmission / reception function, the terminal may transmit a plurality of pieces of the same data for providing a specific service requiring low delay and high reliability with the first cell / carrier and the second cell / carrier. Can transmit and receive (S10040).
이때, 복수의 동일한 데이터들은 하나의 데이터 및 하나의 데이터를 이용하여 복제된 적어도 하나의 복제 데이터로 구성될 수 있다.In this case, the plurality of identical data may be composed of one data and at least one copy data replicated using one data.
즉, 단말은 제 1 셀/캐리어와 특정 서비스를 제공하기 위한 특정 데이터를 송수신하고, 제 2 셀/캐리어와 특정 데이터를 이용하여 생성된 복제 데이터를 송수신할 수 있다.That is, the terminal may transmit and receive specific data for providing a specific service with the first cell / carrier and transmit and receive duplicate data generated using the specific data with the second cell / carrier.
이와 같은 방법을 통해서, 이중 연결 또는 반송파 집성 방법을 통해 제 2 셀/캐리어를 추가할 수 있으며, 단말은 제 1 셀/캐리어 및 추가된 제 2 셀/캐리어와 저 지연 및 고 신뢰를 요구하는 특정 서비스를 위한 복수의 동일한 데이터들을 송수신할 수 있다.Through this method, it is possible to add a second cell / carrier through a dual connectivity or carrier aggregation method, and the terminal has a specific requirement for low delay and high reliability with the first cell / carrier and the added second cell / carrier. A plurality of identical data for a service can be transmitted and received.
또한, 제 1 셀/캐리어 및 추가된 제 2 셀/캐리어와 저 지연 및 고 신뢰를 요구하는 특정 서비스를 위한 복수의 동일한 데이터들을 송수신함으로써, 특정 서비스가 요구하는 지연 및 신뢰를 만족시킬 수 있다.Further, by transmitting and receiving a plurality of identical data for a specific service requiring low delay and high reliability with the first cell / carrier and the added second cell / carrier, it is possible to satisfy the delay and reliability required by the specific service.
도 11은 본 명세서에서 제안하는 이중 연결(Dual Connectivity)을 이용한 기지국 추가를 통해서 복수의 동일한 데이터를 송수신하는 일 예를 나타낸 흐름도이다.11 is a flowchart illustrating an example of transmitting and receiving a plurality of the same data through the addition of a base station using dual connectivity proposed in the present specification.
도 11을 참조하면, Multi-RAT 환경에서 이중 연결을 이용하여 기지국을 추가하고, 추가된 기지국 및 제 1 기지국과 단말은 특정 서비스를 제공하기 위한 복수의 동일한 데이터를 송수신함으로써 데이터 송수신의 지연을 감소시키고 신뢰성을 확보할 수 있다.Referring to FIG. 11, a base station is added using dual connectivity in a multi-RAT environment, and the added base station, the first base station, and the terminal reduce the delay of data transmission and reception by transmitting and receiving a plurality of identical data for providing a specific service. And reliability can be ensured.
구체적으로, 제 1 기지국은 이중 연결을 이용하여 셀/캐리어를 추가하기 위해 제 2 기지국에게 셀/캐리어를 추가를 요청하는 추가 요청 메시지를 전송한다(S11010). 이때, 제 2 기지국은 복제 데이터 송수신 기능을 지원하는 기지국일 수 있다.In detail, the first base station transmits an additional request message for requesting addition of a cell / carrier to the second base station in order to add a cell / carrier using dual connectivity (S11010). In this case, the second base station may be a base station supporting a copy data transmission / reception function.
제 2 기지국은 추가 요청 메시지에 대한 응답으로 추가 요청 Acknowledge를 제 1 기지국으로 전송한다(S11020).The second base station transmits an additional request Acknowledge to the first base station in response to the additional request message (S11020).
이때, 추가 요청 Acknowledge는 도 10의 단계 S10010의 데이터의 중복 전송과 관련된 정보를 포함할 수 있다.In this case, the additional request Acknowledge may include information related to the redundant transmission of data of step S10010 of FIG. 10.
제 1 기지국은 제 2 기지국이 셀/캐리어의 추가를 승낙하지 않은 경우, 절차를 종료한다.The first base station terminates the procedure if the second base station does not accept the addition of the cell / carrier.
하지만, 제 1 기지국은 제 2 기지국이 셀/캐리어의 추가를 승낙하는 경우, 셀 추가를 위한 RRC 연결 재구성 메시지를 단말로 전송한다(S11030).However, when the second base station accepts the addition of the cell / carrier, the first base station transmits an RRC connection reconfiguration message for adding the cell to the terminal (S11030).
RRC 연결 재구성 메시지는 제 2 기지국을 추가하기 위한 파라메터 및 제 2 기지국으로부터 전송 받은 데이터의 중복 전송과 관련된 정보를 포함할 수 있다.The RRC connection reconfiguration message may include a parameter for adding a second base station and information related to redundant transmission of data received from the second base station.
단말은 수신된 RRC 연결 재구성 메시지를 통해서 제 2 기지국이 추가된다는 것을 인식할 수 있으며, RRC 연결 재구성 메시지에 포함된 인덱스 정보에 기초하여 제 2 기지국이 복제 데이터 송수신 기능을 지원하는지 여부를 인식할 수 있다.The UE may recognize that the second base station is added through the received RRC connection reconfiguration message, and may recognize whether the second base station supports the copy data transmission / reception function based on the index information included in the RRC connection reconfiguration message. have.
또한, 단말은 RRC 연결 재구성 메시지에 포함된 동기 신호의 위치 정보에 기초하여 제 2 기지국과 동기화할 수 있으며, 연결을 형성할 수 있다.In addition, the terminal may synchronize with the second base station based on the location information of the synchronization signal included in the RRC connection reconfiguration message, it may form a connection.
이후, 제 2 기지국을 통한 셀/캐리어 추가 절차를 완료한 뒤, 제 1 기지국으로 RRC 연결 재구성 완료 메시지를 전송한다(S11040).After completing the cell / carrier addition procedure through the second base station, an RRC connection reconfiguration complete message is transmitted to the first base station (S11040).
제 1 기지국은 단말로부터 전송된 연결 재구성 완료 메시지를 통해서 RRC 연결 재구성 절차를 통한 셀/캐리어 추가가 완료되었다는 것을 알 수 있으며, 제 2 기지국으로 셀/캐리어 추가가 완료되었다는 것을 알리기 위한 추가 완료 메시지를 전송한다(S11050).The first base station may know that the cell / carrier addition through the RRC connection reconfiguration procedure is completed through the connection reconfiguration complete message transmitted from the terminal, and informs the second base station of the additional completion message for notifying that the cell / carrier addition has been completed. It transmits (S11050).
이후, 단말은 제 2 기지국이 복제 데이터 송수신 기능을 지원하는 경우, 제 1 기지국의 셀/캐리어 및 추가된 제 2 기지국의 셀/캐리어를 통해서 특정 서비스의 제공을 위한 복수의 동일한 데이터를 송수신할 수 있다.Subsequently, when the second base station supports a copy data transmission / reception function, the terminal may transmit / receive a plurality of pieces of the same data for providing a specific service through the cell / carrier of the first base station and the added cell / carrier of the second base station. have.
즉, 단말은 제 1 기지국의 셀/캐리어를 통해서 특정 서비스를 제공하기 위한 특정 데이터를 송수신하고, 제 2 기지국의 셀/캐리어를 통해서 특정 데이터를 이용하여 생성된 복제 데이터를 송수신할 수 있다.That is, the terminal may transmit and receive specific data for providing a specific service through the cell / carrier of the first base station, and transmit and receive duplicate data generated using the specific data through the cell / carrier of the second base station.
구체적으로, 상향링크 데이터의 경우, 단말은 특정 서비스를 제공하기 위한 데이터를 이용하여 적어도 하나의 동일한 복제 데이터를 생성하한다.In more detail, in the case of uplink data, the terminal generates at least one identical copy data using data for providing a specific service.
이후, 단말은 특정 데이터를 제 1 기지국으로 전송하고, 특정 데이터를 이용하여 생성된 적어도 하나의 복제 데이터를 제 2 기지국으로 전송할 수 있다.Thereafter, the terminal may transmit specific data to the first base station, and transmit at least one copy data generated using the specific data to the second base station.
또는, 하향링크 데이터의 경우, 제 1 기지국은 특정 서비스를 제공하기 위한 데이터를 이용하여 적어도 하나의 동일한 복제 데이터를 생성하고, 생성된 적어도 하나의 복제 데이터를 제 2 기지국으로 전송한다.Alternatively, in the case of downlink data, the first base station generates at least one identical copy data by using data for providing a specific service, and transmits the generated at least one copy data to the second base station.
이후, 제 1 기지국 및 제 2 기지국은 데이터 및 적어도 하나의 복제 데이터를 단말로 전송할 수 있다.Thereafter, the first base station and the second base station may transmit data and at least one copy data to the terminal.
제 1 기지국은 제 2 기지국외에 제 3 기지국을 추가적으로 추가하고자 하는 경우, 단계 S11010 내지 단계 S11050과 동일한 절차를 제 3 기지국과 수행함으로써, 제 3 기지국을 추가할 수 있다.When the first base station wants to add a third base station in addition to the second base station, the third base station may be added by performing the same procedure as the steps S11010 to S11050 with the third base station.
이하, 단계 S11060 내지 단계 S11100은 단계 S11010 내지 단계 S11050과 동일하므로 설명을 생략하도록 한다.Hereinafter, since step S11060 to step S11100 are the same as step S11010 to step S11050, description thereof will be omitted.
도 12는 본 명세서에서 제안하는 반송파 집성(Carrier Aggregation)을 이용한 셀/캐리어 추가를 통해서 복수의 동일한 데이터를 송수신하는 일 예를 나타낸 흐름도이다.12 is a flowchart illustrating an example of transmitting and receiving a plurality of identical data through cell / carrier addition using carrier aggregation proposed in the present specification.
도 12를 참조하면, Multi-RAT 환경에서 반송파 집성을 이용하여 셀/캐리어를 추가하고, 추가된 셀/캐리어 및 제 1 셀과 단말은 특정 서비스를 제공하기 위한 복수의 동일한 데이터를 송수신함으로써 데이터 송수신의 지연을 감소시키고 신뢰성을 확보할 수 있다.Referring to FIG. 12, in a multi-RAT environment, a cell / carrier is added using carrier aggregation, and the added cell / carrier and the first cell and the terminal transmit and receive data by transmitting and receiving a plurality of identical data for providing a specific service. Can reduce the delay and ensure the reliability.
구체적으로, 제 1 셀은 단말과 RRC 연결 절차를 통해서 RRC 연결을 형성하고 있다.Specifically, the first cell forms an RRC connection with the UE through an RRC connection procedure.
이후, 단말은 반송파 집성을 이용하여 셀/캐리어을 추가하기 위해 제 2 셀에게 버퍼 상태 보고 및/또는 측정 보고 메시지를 전송한다(S12010).Thereafter, the terminal transmits a buffer status report and / or a measurement report message to the second cell in order to add a cell / carrier using carrier aggregation (S12010).
제 2 셀이 셀 추가 조건을 만족하는 경우, 제 2 셀은 단말로 셀/캐리어를 추가하기 위한 RRC 연결 재구성 메시지를 전송한다(S12020). 이때, 제 2 셀은 복제 데이터 송수신 기능을 지원하는 기지국일 수 있다.If the second cell satisfies the cell addition condition, the second cell transmits an RRC connection reconfiguration message for adding the cell / carrier to the terminal (S12020). In this case, the second cell may be a base station supporting a copy data transmission / reception function.
RRC 연결 재구성 메시지는 제 2 셀의 셀/캐리어를 추가하기 위한 파라메터 및 도 10에서 설명한 데이터의 중복 전송과 관련된 정보를 포함할 수 있다.The RRC connection reconfiguration message may include a parameter for adding a cell / carrier of a second cell and information related to redundant transmission of data described with reference to FIG. 10.
단말은 수신된 RRC 연결 재구성 메시지를 통해서 제 2 셀의 셀/캐리어가 추가된다는 것을 인식할 수 있으며, RRC 연결 재구성 메시지에 포함된 인덱스 정보에 기초하여 제 2 셀이 복제 데이터 송수신 기능을 지원하는지 여부를 인식할 수 있다.The UE may recognize that the cell / carrier of the second cell is added through the received RRC connection reconfiguration message, and whether the second cell supports the function of transmitting / receiving duplicate data based on the index information included in the RRC connection reconfiguration message. Can be recognized.
이후, 제 2 셀을 통한 셀/캐리어 추가 절차를 완료한 뒤, 제 2 셀로 RRC 연결 재구성 완료 메시지를 전송한다(S12030).Thereafter, after completing the cell / carrier addition procedure through the second cell, an RRC connection reconfiguration complete message is transmitted to the second cell (S12030).
제 2 셀은 단말로부터 전송된 연결 재구성 완료 메시지를 통해서 RRC 연결 재구성 절차를 통한 셀/캐리어 추가가 완료되었다는 것을 알 수 있다.The second cell may know that the cell / carrier addition through the RRC connection reconfiguration procedure is completed through the connection reconfiguration complete message transmitted from the UE.
이후, 단말은 제 2 셀이 복제 데이터 송수신 기능을 지원하는 경우, 제 1 셀의 셀/캐리어 및 추가된 제 2 셀의 셀/캐리어를 통해서 특정 서비스의 제공을 위한 복수의 동일한 데이터를 송수신할 수 있다.Subsequently, when the second cell supports the copy data transmission / reception function, the terminal may transmit / receive a plurality of same data for providing a specific service through the cell / carrier of the first cell and the added cell / carrier of the second cell. have.
즉, 단말은 제 1 셀/캐리어와 특정 서비스를 제공하기 위한 특정 데이터를 송수신하고, 제 2 셀/캐리어와 특정 데이터를 이용하여 생성된 복제 데이터를 송수신할 수 있다.That is, the terminal may transmit and receive specific data for providing a specific service with the first cell / carrier and transmit and receive duplicate data generated using the specific data with the second cell / carrier.
구체적으로, 상향링크 데이터의 경우, 단말은 특정 서비스를 제공하기 위한 특정 데이터를 이용하여 적어도 하나의 동일한 복제 데이터를 생성할 수 있다.In more detail, in the case of uplink data, the terminal may generate at least one piece of identical copy data using specific data for providing a specific service.
이후, 단말은 특정 데이터를 제 1 셀/캐리어로 전송하고, 특정 데이터로부터 생성된 적어도 하나의 복제 데이터를 제 2 셀/캐리어로 전송할 수 있다.Thereafter, the terminal may transmit specific data to the first cell / carrier and transmit at least one copy data generated from the specific data to the second cell / carrier.
또는, 하향링크 데이터의 경우, 제 1 셀은 특정 서비스를 제공하기 위한 데이터를 이용하여 적어도 하나의 동일한 복제 데이터를 생성하고, 생성된 적어도 하나의 복제 데이터를 제 2 셀로 전송한다.Alternatively, in the case of downlink data, the first cell generates at least one identical copy data by using data for providing a specific service, and transmits the generated at least one copy data to the second cell.
이후, 제 1 셀 및 제 2 셀은 데이터 및 적어도 하나의 복제 데이터를 단말로 전송할 수 있다.Thereafter, the first cell and the second cell may transmit data and at least one copy data to the terminal.
단말은 제 2 셀외에 제 3 셀의 셀/캐리어를 추가적으로 추가하고자 하는 경우, 단계 S12010 내지 단계 S12030과 동일한 절차를 제 3 셀과 수행함으로써, 제 3 셀의 셀/캐리어를 추가할 수 있다.If the UE wants to add a cell / carrier of the third cell in addition to the second cell, the cell / carrier of the third cell may be added by performing the same procedure as that of the steps S12010 to S12030 with the third cell.
이하, 단계 S12040 내지 단계 S12060은 단계 S12010 내지 단계 S12030과 동일하므로 설명을 생략하도록 한다.Hereinafter, since step S12040 to step S12060 are the same as step S12010 to step S12030, description thereof will be omitted.
도 13은 본 명세서에서 제안하는 다중 RAT 환경에서, 새로운 RAT을 추가하여 복수의 데이터들을 송수신하는 또 다른 일 예를 나타낸 순서도이다.FIG. 13 is a flowchart illustrating another example of transmitting and receiving a plurality of data by adding a new RAT in a multi-RAT environment proposed in the present specification.
도 13을 참조하면, Multi-RAT 환경에서 제 1 셀/캐리어에 복수의 동일한 데이터들을 송수신하기 위한 기능을 지원하는 새로운 RAT의 제 2 셀/캐리어를 추가하고, 제 1 셀/캐리어 또는 제 2 셀/캐리어는 단말의 복수의 동일한 데이터를 송수신하기 위한 기능을 활성화 시킴으로써, 저 지연 및 고 신뢰를 요구하는 특정 서비스를 제공하기 위한 복수의 동일한 데이터를 송수신할 수 있다.Referring to FIG. 13, a second cell / carrier of a new RAT supporting a function for transmitting and receiving a plurality of identical data to a first cell / carrier in a multi-RAT environment is added, and the first cell / carrier or second cell is added. The carrier may transmit and receive a plurality of identical data for providing a specific service requiring low delay and high reliability by activating a function for transmitting and receiving a plurality of identical data of the terminal.
구체적으로, 제 1 셀/캐리어는 새로운 RAT을 지원하는 제 2 셀/캐리어를 추가하는 과정에서 추가된 제 2 셀/캐리어로부터 데이터의 중복 전송과 관련된 정보를 전송 받을 수 있다(S13010).In detail, the first cell / carrier may receive information related to redundant transmission of data from the second cell / carrier added in the process of adding the second cell / carrier supporting the new RAT (S13010).
데이터의 중복 전송과 관련된 정보는 추가된 제 2 셀/캐리어가 복제 데이터 송수신 기능을 지원하는지 여부를 나타내는 N bit의 인덱스 정보, 뉴머롤로지 정보(numerology information), 및 중복된 데이터가 전송되는 무선 베어러를 나타내는 베어러 정보를 포함할 수 있다.Information related to redundant transmission of data includes N bit index information indicating whether the added second cell / carrier supports the function of transmitting / receiving duplicate data, numerology information, and radio bearer to which duplicated data is transmitted. It may include bearer information indicating.
이때, N은 0보다 큰 양의 정수를 의미한다.In this case, N means a positive integer greater than zero.
아래 표 1은 인덱스 정보의 값에 따른 복제 데이터 송수신 기능의 지원 여부의 일 예를 나타낸 표이다.Table 1 below shows an example of whether or not to support the data transmission / reception function according to the index information value.
Figure PCTKR2017006603-appb-T000001
Figure PCTKR2017006603-appb-T000001
인덱스 정보는 해당 셀/캐리어가 제 1 셀/캐리어와 동일한 데이터를 송수신할 수 있는 가능성이 있는지 여부를 나타내는 정보이다. 인덱스 정보의 값이 ‘00’인 경우, 추가된 셀/캐리어는 복제 데이터 송수신 기능을 지원하며 연결 상태에 있는 경우, 항상 복제 데이터 송수신 기능이 활성화 되어 있다는 것을 의미한다.The index information is information indicating whether or not the corresponding cell / carrier can transmit and receive the same data as the first cell / carrier. When the value of the index information is '00', the added cell / carrier supports the copy data transmission / reception function and when the connection state is in the connected state, the copy data transmission / reception function is always activated.
인덱스 정보의 값이 ‘01’ 또는 ‘10’인 경우, 복제 데이터 송수신 기능을 지원하며, 추가된 연결 상태의 제 2 셀/캐리어는 무선 상태에 따라 복제 데이터 송수신 기능이 활성화될 수 있다는 것을 의미한다.When the value of the index information is '01' or '10', it supports the function of transmitting / receiving a duplicate data, and means that the duplicated cell transmit / receive function may be activated according to the radio state of the added second cell / carrier. .
즉, 인덱스 정보의 값이 ‘01’인 경우, 복제 데이터 송수신 기능을 지원하고, 복제 데이터 송수신 기능이 활성화 되어 있다는 것을 의미한다. 따라서, 제 1 셀/캐리어와 추가된 제 2 셀/캐리어는 단말과 복수의 동일한 데이터들을 송수신할 수 있다.That is, when the value of the index information is '01', it means that the copy data transmission / reception function is supported and the copy data transmission / reception function is activated. Therefore, the first cell / carrier and the added second cell / carrier can transmit and receive a plurality of identical data with the terminal.
하지만, 인덱스 정보의 값이 ‘10’인 경우, 복제 데이터 송수신 기능을 지원하지만, 복제 데이터 송수신 기능이 비활성화 되어 있다는 것을 의미한다. 따라서, 제 1 셀/캐리어와 추가된 제 2 셀/캐리어는 단말과 복수의 동일한 데이터들을 송수신할 수 없다.However, when the value of the index information is '10', it means that the copy data transmission / reception function is supported, but the copy data transmission / reception function is deactivated. Therefore, the first cell / carrier and the added second cell / carrier cannot transmit and receive a plurality of identical data with the terminal.
만약, 제 1 셀/캐리어와 추가된 제 2 셀/캐리어가 물리적으로 분리되어 있지 않은 경우, 즉 물리적으로 연결되어 있는 경우, 데이터의 중복 전송과 관련된 정보는 내부 동작으로 전달될 수 있다.If the first cell / carrier and the added second cell / carrier are not physically separated, that is, if they are physically connected, information related to redundant transmission of data may be transferred to an internal operation.
하지만, 제 1 셀/캐리어와 추가된 제 2 셀/캐리어가 물리적으로 분리되어 있는 경우, 즉 물리적으로 연결되어 있지 않은 경우, 데이터의 중복 전송과 관련된 정보는 제어 메시지에 포함되어 전송될 수 있다.However, when the first cell / carrier and the added second cell / carrier are physically separated, that is, not physically connected, information related to redundant transmission of data may be included in the control message and transmitted.
제 1 셀/캐리어는 제 2 셀/캐리어로부터 전송된 데이터의 중복 전송과 관련된 정보를 통해서 제 2 셀/캐리어가 복제 데이터 송수신 기능을 지원하는지 여부를 인식하고, 단말로 추가된 제 2 셀/캐리어가 동일한 복수의 데이터들을 전송할 수 있는지 여부와 관련된 능력 정보를 전송한다(S13020).The first cell / carrier recognizes whether the second cell / carrier supports the copy data transmission / reception function through the information related to the redundant transmission of data transmitted from the second cell / carrier, and the second cell / carrier added to the terminal. Transmits the capability information related to whether or not the same plurality of data can be transmitted (S13020).
능력 정보는 추가된 제 2 셀/캐리어가 복제 데이터 송수신 기능을 지원하는지 여부를 나타내는 인덱스 정보, 뉴머롤로지 정보(numerology information), 및 중복된 데이터가 전송되는 무선 베어를 나타내는 베어러 정보를 포함할 수 있다.The capability information may include index information indicating whether the added second cell / carrier supports a copy data transmission / reception function, numerology information, and bearer information indicating a radio bear on which duplicate data is transmitted. have.
뉴머롤로지 정보는 무선 자원 안에 할당된 동기 신호가 전송되는 위치를 나타내는 위치 정보, TTI 길이 정보, RAT의 타입 정보, 및 각 계층의 파라메터 등을 포함할 수 있다.The neuralology information may include location information indicating a location where a synchronization signal allocated in a radio resource is transmitted, TTI length information, type information of a RAT, parameters of each layer, and the like.
단말은 제 1 셀/캐리어로부터 전송된 정보에 포함된 뉴머롤로지 정보에 기초하여 추가된 제 2 셀/캐리어와 동기화한 뒤, 연결을 형성할 수 있다.The terminal may form a connection after synchronizing with the added second cell / carrier based on the neuralology information included in the information transmitted from the first cell / carrier.
이후, 단말은 능력 정보를 이용하여 설정된 RAT의 타입에 따라 각 계층의 파라메터(예를 들면, UECapabilityInformation message의 UE-EUTRA-Capability field 중 c에-Parameters, phyLayerParameters, rf-Parameters, measParameter 등)들을 설정하고, 이에 따라 데이터를 송수신할 수 있다.Thereafter, the terminal configures parameters of each layer (eg, -parameters, phyLayerParameters, rf-Parameters, measParameter, etc.) of each layer according to the type of the RAT configured using the capability information, in the c of the UE-EUTRA-Capability field of the UECapabilityInformation message. Thus, data can be transmitted and received.
이때, 능력 정보는 물리계층 제어 정보(예를 들면, PDCCH/ePDCCH를 통해 전송되는 downlink control information 등) 또는 layer 2 이상의 상위 계층 제어정보(예를 들면, RRC Connection Reconfiguration 메시지 등)에 포함되어 전송될 수 있다.In this case, the capability information may be transmitted by being included in physical layer control information (eg, downlink control information transmitted through PDCCH / ePDCCH) or higher layer control information (eg, RRC Connection Reconfiguration message, etc.) of layer 2 or more. Can be.
단말은 제 1 셀/캐리어로부터 전송된 능력 정보를 통해 추가된 제 2 셀/캐리어가 복제 데이터 송수신 기능을 지원하는지 여부를 인식할 수 있다.The terminal may recognize whether the added second cell / carrier supports the copy data transmission / reception function through capability information transmitted from the first cell / carrier.
이후, 단말은 저 지연 및 고 신뢰를 요구하는 특정 서비스(예를 들면, 자율 주행 차량의 시나리오에서 사고가 발생할 것을 예측하거나 주변의 위급한 상황을 신속하고 높은 신뢰도로 주변의 기지국 등에 보고해야 하는 경우 등)를 제공하기 위한 데이터를 송수신해야 하는 경우, 제 1 셀/캐리어 또는 제 2 셀/캐리어로 복수의 동일한 데이터들의 송수신을 요청하는 요청메시지를 전송한다(S13030).Subsequently, the terminal needs to report a specific service requiring low delay and high reliability (for example, to predict an accident in a scenario of an autonomous vehicle or to report an emergency situation around the base station to a nearby base station with high speed and high reliability). If data needs to be transmitted / received), a request message for requesting transmission / reception of a plurality of identical data is transmitted to the first cell / carrier or the second cell / carrier (S13030).
즉, 단말은 복제 데이터 송수신 기능의 활성화를 요청하는 요청 메시지를 제 1 셀/캐리어 또는 제 2 셀/캐리어로 전송할 수 있다.That is, the terminal may transmit a request message for activating the copy data transmission / reception function to the first cell / carrier or the second cell / carrier.
구체적으로, 제 1 셀/캐리어 및 제 2 셀/캐리어가 물리적으로 분리되어 있는 경우, 단말은 제 1 셀/캐리어로 중복 데이터 송수신 기능의 활성화를 요청하는 요청 메시지를 전송하고, 제 1 셀/캐리어는 이를 제 2 셀/캐리어로 전송한다.Specifically, when the first cell / carrier and the second cell / carrier are physically separated, the terminal transmits a request message requesting activation of the redundant data transmission / reception function to the first cell / carrier, and the first cell / carrier Transmits it to the second cell / carrier.
이후, 제 2 셀/캐리어는 중복 데이터 송수신 기능을 활성화 하고, 제 1 셀/캐리어로 중복 데이터 송수신 기능이 활성화되었다는 것을 나타내는 응답 메시지를 전송한다.Thereafter, the second cell / carrier activates the redundant data transmission / reception function and transmits a response message indicating that the redundant data transmission / reception function is activated to the first cell / carrier.
제 1 셀/캐리어는 제 2 셀/캐리어로부터 수신한 응답 메시지에 기초하여 단말로 제 2 셀/캐리어의 중복 데이터 송수신 기능이 활성화 되었다는 것을 나타내는 제어 정보를 포함하는 응답 메시지를 전송한다.The first cell / carrier transmits a response message including control information indicating that the redundant data transmission / reception function of the second cell / carrier is activated to the terminal based on the response message received from the second cell / carrier.
하지만, 제 1 셀/캐리어 및 제 2 셀/캐리어가 물리적으로 분리되어 있지 않은 경우, 단말은 제 2 셀/캐리어로 단말의 상태를 알리는 메시지(예를 들면 버퍼 상태 보고 및/또는 제 2 셀/캐리어의 측정 보고 등)와 함께 중복 데이터 송수신 기능의 활성화를 요청하는 요청 메시지를 전송한다.However, if the first cell / carrier and the second cell / carrier are not physically separated, the terminal may inform the second cell / carrier of the status of the terminal (e.g., buffer status report and / or second cell / carrier). Along with a measurement report of a carrier) and transmits a request message requesting activation of a redundant data transmission / reception function.
이후, 제 2 셀/캐리어는 중복 데이터 송수신 기능을 활성화 하고, 단말로 중복 데이터 송수신 기능이 활성화되었다는 것을 나타내는 제어 정보를 포함하는 응답 메시지를 전송한다.Thereafter, the second cell / carrier activates the redundant data transmission / reception function and transmits a response message including control information indicating that the redundant data transmission / reception function is activated to the terminal.
특정 서비스의 제공을 위해서 복수의 동일한 데이터를 송수신하고자 하는 제 2 셀/캐리어는 제 1 셀/캐리어로 단말의 중복 데이터 송수신 기능의 활성화 또는 비활성화를 지시하는 제어 정보(예를 들면, MAC Control Element에 포함되는 N-bit indication 등)를 전송하고, 제 1 셀/캐리어는 이를 단말로 전송한다(S13040).The second cell / carrier which wants to transmit / receive a plurality of identical data to provide a specific service is control information (for example, MAC control element instructing activation or deactivation of the redundant data transmission / reception function of the terminal to the first cell / carrier). N-bit indication, etc. included), and the first cell / carrier transmits it to the terminal (S13040).
단말은 제 1 셀/캐리어로부터 전송된 제어 정보에 기초하여 자신의 중복 데이터 송수신 기능을 활성화/비활성화 시킨다.The terminal activates / deactivates its own redundant data transmission / reception function based on the control information transmitted from the first cell / carrier.
이때, 다중 셀을 이용한 중복 전송을 수행하는 경우, 추가된 제 2 셀/캐리어의 제어 정보는 각 셀 별로 전송된다. 하지만 다중 캐리어를 이용한 중복 전송을 수행하는 경우, 하나의 제 1 셀에서 모든 추가된 제 2 셀의 제어 정보가 전송될 수 있다.In this case, in case of performing redundant transmission using multiple cells, the added control information of the second cell / carrier is transmitted for each cell. However, when performing redundant transmission using multiple carriers, control information of all added second cells may be transmitted in one first cell.
구체적으로, 제 1 셀/캐리어로부터 전송된 제어 정보가 단말의 중복 데이터 전송 기능의 활성화를 지시하는 경우, 단말은 자신의 중복 데이터 전송 기능을 활성화 시키고 제 1 셀/캐리어 및 추가된 제 2 셀/캐리어와 특정 서비스를 제공하기 위한 복수의 동일한 데이터를 송수신한다(S13050).Specifically, when the control information transmitted from the first cell / carrier indicates activation of the redundant data transmission function of the terminal, the terminal activates its own redundant data transmission function and the first cell / carrier and the added second cell / carrier. The carrier transmits and receives a plurality of the same data for providing a specific service (S13050).
즉, 단말은 제 1 셀/캐리어와 특정 서비스를 제공하기 위한 특정 데이터를 송수신하고, 제 2 셀/캐리어와 특정 데이터를 이용하여 생성된 복제 데이터를 송수신한다.That is, the terminal transmits and receives specific data for providing a specific service with the first cell / carrier and transmits and receives duplicate data generated using the specific data with the second cell / carrier.
상향링크 데이터의 경우, 단말은 특정 서비스를 제공하기 위한 특정 데이터를 이용하여 적어도 하나의 동일한 복제 데이터를 생성한다.In the case of uplink data, the terminal generates at least one identical copy data using specific data for providing a specific service.
이후, 단말은 특정 데이터를 제 1 셀/캐리어로 전송하고, 특정 데이터로부터 생성된 적어도 하나의 복제 데이터를 제 2 셀/캐리어로 전송할 수 있다.Thereafter, the terminal may transmit specific data to the first cell / carrier and transmit at least one copy data generated from the specific data to the second cell / carrier.
하향링크 데이터의 경우, 제 1 셀은 특정 서비스를 제공하기 위한 데이터를 이용하여 적어도 하나의 동일한 복제 데이터를 생성하고, 생성된 적어도 하나의 복제 데이터를 추가된 제 2 셀로 전송한다.In the case of downlink data, the first cell generates at least one identical copy data using data for providing a specific service, and transmits the generated at least one copy data to the added second cell.
이후, 제 1 셀 및 제 2 셀은 데이터 및 적어도 하나의 복제 데이터를 단말로 전송한다.Thereafter, the first cell and the second cell transmit data and at least one copy data to the terminal.
하지만, 제 1 셀/캐리어로부터 전송된 제어 정보가 단말의 중복 데이터 전송 기능의 비 활성화를 지시하는 경우, 단말은 자신의 중복 데이터 전송 기능을 비 활성화 시키고 제 1 셀/캐리어 및 추가된 제 2 셀/캐리어와 특정 서비스를 제공하기 위한 복수의 동일한 데이터의 송수신을 중단한다(S13060).However, when the control information transmitted from the first cell / carrier indicates deactivation of the redundant data transmission function of the terminal, the terminal deactivates the redundant data transmission function of the terminal and the first cell / carrier and the added second cell. / Send and receive a plurality of the same data for providing a carrier and a specific service (S13060).
본 발명의 또 다른 실시 예로 단말은 복수의 제 2 셀/캐리어들로부터 능력 정보를 수신할 수 있으며, 능력 정보를 비교하여 복수의 제 2 셀/캐리어들 중 일부만을 추가할 수 있다.According to another embodiment of the present invention, the terminal may receive capability information from a plurality of second cells / carriers, and may add only some of the plurality of second cells / carriers by comparing the capability information.
본 발명의 또 다른 실시 예로 단말과 제 2 셀/캐리어간에 일정 시간 동안 제 1 셀/캐리어와 단말간에 송수신 되는 데이터와 동일한 데이터가 송수신되지 않는 경우, 단말 및 제 2 셀/캐리어의 중복 데이터 송수신 기능은 비활성화 될 수 있다. In another embodiment of the present invention, if the same data as the data transmitted / received between the first cell / carrier and the terminal is not transmitted or received between the terminal and the second cell / carrier for a predetermined time, the redundant data transmission / reception function of the terminal and the second cell / carrier Can be disabled.
이 경우, 복수의 제 2 셀/캐리어들로부터 전송되는 능력 정보는 각 제 2 셀/캐리어들 각각의 이용 가능한 자원 정보, 및 채널 상태를 나타내는 채널 상태 정보 등을 더 포함할 수 있다.In this case, the capability information transmitted from the plurality of second cells / carriers may further include available resource information of each of the second cells / carriers, channel state information indicating a channel state, and the like.
이와 같이, 특정 서비스의 데이터를 중복해서 송수신함으로써, 특정 서비스에서 요구하는 저 지연 및 고 신뢰를 만족 시킬 수 있다.In this way, by repeatedly transmitting and receiving data of a specific service, it is possible to satisfy the low delay and high reliability required by the specific service.
또한, 단말이 저 지연 및 고 신뢰를 요구하는 특정 서비스의 데이터가 발생하는 경우, 능동적으로 기지국에게 동일한 데이터의 중복 전송을 요청함으로써 다수의 셀/캐리어를 통해서 특정 서비스를 제공하기 위한 복수의 동일한 데이터들을 송수신할 수 있다.In addition, when data of a specific service requiring low delay and high reliability is generated by the terminal, a plurality of identical data for providing a specific service through multiple cells / carriers by actively requesting duplicate transmission of the same data to the base station. You can send and receive them.
도 14는 본 명세서에서 제안하는 이중 연결(Dual Connectivity)을 이용한 기지국 추가를 통해서 복수의 동일한 데이터를 송수신하는 또 다른 일 예를 나타낸 흐름도이다.14 is a flowchart illustrating still another example of transmitting and receiving a plurality of identical data through the addition of a base station using dual connectivity proposed in the present specification.
도 14를 참조하면, Multi-RAT 환경에서 이중 연결을 이용하여 기지국을 추가하고, 단말이 능동적으로 추가된 제 2 기지국 및 제 1 기지국으로 특정 서비스를 제공하기 위한 복수의 동일한 데이터를 송수신을 요청함으로써, 복수의 동일한 데이터를 송수신할 수 있다.Referring to FIG. 14, by adding a base station using dual connectivity in a multi-RAT environment and requesting transmission / reception of a plurality of identical data for providing a specific service to the second base station and the first base station to which the terminal is actively added A plurality of identical data can be transmitted and received.
먼저, 단계 S14010 내지 단계 S14050은 도 11의 단계 S11010 내지 단계 S11050과 동일하므로 설명을 생략하도록 한다.First, since steps S14010 to S14050 are the same as steps S11010 to S11050 of FIG. 11, description thereof will be omitted.
단계 S14010 내지 단계 S14050을 통해서 제 2 기지국의 셀/캐리어를 추가한 단말은 저 지연 및 고 신뢰를 요구하는 특정 서비스의 데이터가 발생한 경우, 제 1 기지국으로 중복 데이터의 송수신을 요청하는 요청 메시지를 전송하고, 제 1 기지국은 이를 제 2 기지국으로 전송한다(S14060, S14070).The terminal adding the cell / carrier of the second base station through steps S14010 to S14050 transmits a request message requesting transmission and reception of duplicate data to the first base station when data of a specific service requiring low delay and high reliability occurs. And, the first base station transmits it to the second base station (S14060, S14070).
즉, 단말은 제 2 기지국의 중복 데이터 송수신 기능의 활성화를 요청하는 요청 메시지를 제 1 기지국을 통해서 제 2 기지국으로 전송한다.That is, the terminal transmits a request message for activating the redundant data transmission / reception function of the second base station to the second base station through the first base station.
단말로부터 요청 메시지를 수신한 제 2 기지국은 자신의 중복 데이터 송수신 기능을 활성화 하고, 중복 데이터 송수신 기능이 활성화 되었다는 것을 나타내는 요청 Acknowledge를 제 1 기지국을 통해 단말로 전송한다(S14080, S14090).Upon receiving the request message from the terminal, the second base station activates its redundant data transmission / reception function and transmits a request acknowledgment indicating that the redundant data transmission / reception function is activated to the terminal through the first base station (S14080 and S14090).
단말은 요청 Acknowledge를 통해서 제 2 기지국의 중복 데이터 송수신 기능이 활성화 되었다는 것을 인식할 수 있다.The terminal may recognize that the redundant data transmission / reception function of the second base station is activated through the request acknowledgment.
이후, 제 1 기지국은 단말의 중복 데이터 송수신 기능의 활성화 또는 비활성화를 지시하는 제어 정보를 전송하고, 단말은 수신된 제어 정보에 따라 자신의 중복 데이터 송수신 기능을 활성화 또는 비활성화 시킨다.Thereafter, the first base station transmits control information indicating activation or deactivation of the redundant data transmission / reception function of the terminal, and the terminal activates or deactivates the redundant data transmission / reception function according to the received control information.
구체적으로, 제 1 셀/캐리어가 단말의 중복 데이터 전송 기능의 활성화를 지시하는 제어 정보를 단말로 전송하는 경우(S14100), 단말은 자신의 중복 데이터 전송 기능을 활성화 시키고 제 1 기지국의 셀/캐리어 및 추가된 제 2 기지국의 셀/캐리어를 통해서 특정 서비스를 제공하기 위한 복수의 동일한 데이터를 송수신한다(S14110).In detail, when the first cell / carrier transmits control information indicating activation of the redundant data transmission function of the terminal to the terminal (S14100), the terminal activates its own redundant data transmission function and the cell / carrier of the first base station. And transmit and receive a plurality of identical data for providing a specific service through the added cell / carrier of the second base station (S14110).
상향링크 데이터의 경우, 단말은 특정 서비스를 제공하기 위한 특정 데이터를 이용하여 적어도 하나의 동일한 복제 데이터를 생성한다.In the case of uplink data, the terminal generates at least one identical copy data using specific data for providing a specific service.
이후, 단말은 특정 데이터를 제 1 기지국으로 전송하고, 특정 데이터로부터 생성된 적어도 하나의 복제 데이터를 제 2 기지국으로 전송할 수 있다.Thereafter, the terminal may transmit specific data to the first base station and transmit at least one copy data generated from the specific data to the second base station.
하향링크 데이터의 경우, 제 1 기지국은 특정 서비스를 제공하기 위한 데이터를 이용하여 적어도 하나의 동일한 복제 데이터를 생성하고, 생성된 적어도 하나의 복제 데이터를 추가된 제 2 기지국으로 전송한다.In the case of downlink data, the first base station generates at least one identical copy data by using data for providing a specific service, and transmits the generated at least one copy data to the added second base station.
이후, 제 1 기지국 및 제 2 기지국은 데이터 및 적어도 하나의 복제 데이터를 단말로 전송한다.Thereafter, the first base station and the second base station transmit data and at least one copy data to the terminal.
이후, 단말은 제 1 기지국으로부터 단말의 중복 데이터 전송 기능의 비 활성화를 지시하는 제어 정보를 수신한 경우(S14120), 단말은 자신의 중복 데이터 전송 기능을 비 활성화 시키고 제 1 기지국 및 추가된 제 2 기지국과 특정 서비스를 제공하기 위한 복수의 동일한 데이터의 송수신을 중단한다(S14130).Subsequently, when the terminal receives control information indicating deactivation of the redundant data transmission function of the terminal from the first base station (S14120), the terminal deactivates its redundant data transmission function and the first base station and the added second base station. The transmission and reception of a plurality of identical data for providing a specific service with the base station is stopped (S14130).
도 15는 본 명세서에서 제안하는 반송파 집성(Carrier Aggregation)을 이용한 셀/캐리어 추가를 통해서 복수의 동일한 데이터를 송수신하는 또 다른 일 예를 나타낸 흐름도이다.FIG. 15 is a flowchart illustrating still another example of transmitting and receiving a plurality of identical data through cell / carrier addition using carrier aggregation proposed in the present specification.
도 15를 참조하면, Multi-RAT 환경에서 반송파 집성을 이용하여 제 2 셀/캐리어를 추가하고, 단말이 능동적으로 추가된 셀/캐리어 및 제 1 셀/캐리어와 특정 서비스를 제공하기 위한 복수의 동일한 데이터를 송수신을 요청함으로써, 복수의 동일한 데이터를 송수신할 수 있다.Referring to FIG. 15, a plurality of identical cells for adding a second cell / carrier using carrier aggregation in a multi-RAT environment and for providing a specific service with a cell / carrier and a first cell / carrier to which the terminal is actively added are provided. By requesting transmission and reception of data, a plurality of identical data can be transmitted and received.
구체적으로, 제 1 셀은 단말과 RRC 연결 절차를 통해서 RRC 연결을 형성하고 있다.Specifically, the first cell forms an RRC connection with the UE through an RRC connection procedure.
이후, 제 2 셀이 셀 추가 조건을 만족하는 경우, 제 2 셀은 단말로 셀/캐리어의 추가를 위한 RRC 연결 재구성 메시지를 전송한다(S15010). 이때, 제 2 셀은 복제 데이터 송수신 기능을 지원하는 셀일 수 있다.Thereafter, when the second cell satisfies the cell addition condition, the second cell transmits an RRC connection reconfiguration message for the addition of the cell / carrier to the terminal (S15010). In this case, the second cell may be a cell that supports a copy data transmission / reception function.
RRC 연결 재구성 메시지는 제 2 셀의 셀/캐리어를 추가하기 위한 파라메터 및 도 10에서 설명한 데이터의 중복 전송과 관련된 정보를 포함할 수 있다.The RRC connection reconfiguration message may include a parameter for adding a cell / carrier of a second cell and information related to redundant transmission of data described with reference to FIG. 10.
단말은 수신된 RRC 연결 재구성 메시지를 통해서 제 2 셀의 셀/캐리어가 추가된다는 것을 인식할 수 있으며, RRC 연결 재구성 메시지에 포함된 인덱스 정보에 기초하여 제 2 셀이 복제 데이터 송수신 기능을 지원하는지 여부를 인식할 수 있다.The UE may recognize that the cell / carrier of the second cell is added through the received RRC connection reconfiguration message, and whether the second cell supports the function of transmitting / receiving duplicate data based on the index information included in the RRC connection reconfiguration message. Can be recognized.
이후, 제 2 셀을 통한 셀/캐리어 추가 절차를 완료한 뒤, 제 2 셀로 RRC 연결 재구성 완료 메시지를 전송한다(S15020).Thereafter, after the cell / carrier addition procedure through the second cell is completed, an RRC connection reconfiguration complete message is transmitted to the second cell (S15020).
제 2 셀은 단말로부터 전송된 연결 재구성 완료 메시지를 통해서 RRC 연결 재구성 절차를 통해 셀/캐리어의 추가가 완료되었다는 것을 알 수 있다.The second cell may know that the addition of the cell / carrier is completed through the RRC connection reconfiguration procedure through the connection reconfiguration complete message transmitted from the UE.
이후, 단말은 저 지연 및 고 신뢰를 요구하는 특정 서비스의 데이터가 발생한 경우, 추가된 제 2 셀로 중복 데이터의 송수신을 요청하기 위한 버퍼 상태 보고 메시지 및/또는 측정 보고 메시지를 전송한다(S15030).Thereafter, when data of a specific service requiring low delay and high reliability occurs, the terminal transmits a buffer status report message and / or a measurement report message for requesting transmission and reception of duplicate data to the added second cell (S15030).
즉, 단말은 제 2 셀의 중복 데이터 송수신 기능의 활성화를 요청하는 요청 메시지를 제 2 셀로 전송한다.That is, the terminal transmits a request message for activating the redundant data transmission / reception function of the second cell to the second cell.
단말로부터 요청 메시지를 수신한 제 2 셀은 자신의 중복 데이터 송수신 기능을 활성화 하고, 중복 데이터 송수신 기능이 활성화 되었다는 것을 나타내는 요청 Acknowledge를 단말로 전송한다(S15040).Upon receiving the request message from the terminal, the second cell activates its own redundant data transmission / reception function, and transmits a request acknowledgment indicating that the redundant data transmission / reception function is activated (S15040).
단말은 요청 Acknowledge를 통해서 제 2 셀의 중복 데이터 송수신 기능이 활성화 되었다는 것을 인식할 수 있다.The terminal may recognize that the redundant data transmission / reception function of the second cell is activated through the request acknowledgment.
이후, 제 1 셀은 단말의 중복 데이터 송수신 기능의 활성화 또는 비활성화를 지시하는 제어 정보를 전송하고, 단말은 수신된 제어 정보에 따라 자신의 중복 데이터 송수신 기능을 활성화 또는 비활성화 시킨다.Thereafter, the first cell transmits control information indicating activation or deactivation of the redundant data transmission / reception function of the terminal, and the terminal activates or deactivates the redundant data transmission / reception function thereof according to the received control information.
구체적으로, 제 1 셀이 단말의 중복 데이터 전송 기능의 활성화를 지시하는 제어 정보를 단말로 전송하는 경우(S15050), 단말은 자신의 중복 데이터 전송 기능을 활성화 시키고, 제 1 셀의 셀/캐리어 및 추가된 제 2 셀의 셀/캐리어를 통해서 특정 서비스를 제공하기 위한 복수의 동일한 데이터를 송수신한다(S15060).Specifically, when the first cell transmits control information indicating activation of the redundant data transmission function of the terminal to the terminal (S15050), the terminal activates its own redundant data transmission function, the cell / carrier and A plurality of identical data for providing a specific service is transmitted and received through the added cell / carrier of the second cell (S15060).
상향링크 데이터의 경우, 단말은 특정 서비스를 제공하기 위한 특정 데이터를 이용하여 적어도 하나의 동일한 복제 데이터를 생성한다.In the case of uplink data, the terminal generates at least one identical copy data using specific data for providing a specific service.
이후, 단말은 특정 데이터를 제 1 셀로 전송하고, 특정 데이터로부터 생성된 적어도 하나의 복제 데이터를 제 2 셀로 전송할 수 있다.Thereafter, the terminal may transmit specific data to the first cell and transmit at least one copy data generated from the specific data to the second cell.
하향링크 데이터의 경우, 제 1 셀은 특정 서비스를 제공하기 위한 데이터를 이용하여 적어도 하나의 동일한 복제 데이터를 생성하고, 생성된 적어도 하나의 복제 데이터를 추가된 제 2 셀로 전송한다.In the case of downlink data, the first cell generates at least one identical copy data using data for providing a specific service, and transmits the generated at least one copy data to the added second cell.
이후, 제 1 셀 및 제 2 셀은 데이터 및 적어도 하나의 복제 데이터를 단말로 전송한다.Thereafter, the first cell and the second cell transmit data and at least one copy data to the terminal.
이후, 단말은 제 1 셀로부터 전송된 제어 정보가 단말의 중복 데이터 전송 기능의 비 활성화를 지시하는 제어 정보를 수신한 경우(S15070), 단말은 자신의 중복 데이터 전송 기능을 비 활성화 시키고 제 1 셀 및 추가된 제 2 셀과 특정 서비스를 제공하기 위한 복수의 동일한 데이터의 송수신을 중단한다(S15080).Subsequently, when the control information transmitted from the first cell receives control information indicating deactivation of the redundant data transmission function of the terminal (S15070), the terminal deactivates its own redundant data transmission function and the first cell. And the transmission and reception of the plurality of the same data for providing a specific service and the added second cell (S15080).
도 16은 본 명세서에서 제안하는 단말이 기지국 또는 셀을 추가하여 복수의 동일한 데이터들을 송수신하는 방법의 일 예를 나타내는 순서도이다.16 is a flowchart illustrating an example of a method for transmitting and receiving a plurality of identical data by adding a base station or a cell by the terminal proposed in the present specification.
구체적으로, 단말은 제 1 기지국으로부터 제 2 기지국의 셀/캐리어를 추가하는 절차를 통해서 제 2 기지국의 제 1 특정 기능과 관련된 능력 정보(Capability information)를 수신한다(S16010). 이때, 제 1 특정 기능은 제 2 기지국이 제 1 기지국과 동일한 데이터를 송수신하는 기능을 의미하고, 능력 정보는 도 13 내지 도 15에서 설명한 능력 정보와 동일한 정보를 포함한다.In more detail, the terminal receives capability information related to the first specific function of the second base station through a procedure of adding a cell / carrier of the second base station from the first base station (S16010). In this case, the first specific function means a function of transmitting and receiving the same data as the first base station by the second base station, and the capability information includes the same information as the capability information described with reference to FIGS. 13 to 15.
또한, 능력 정보는 물리계층 제어 정보(예를 들면, PDCCH/ePDCCH를 통해 전송되는 downlink control information 등) 또는 layer 2 이상의 상위 계층 제어정보(예를 들면, RRC Connection Reconfiguration 메시지 등)에 포함되어 전송될 수 있다.In addition, the capability information may be transmitted by being included in physical layer control information (eg, downlink control information transmitted through PDCCH / ePDCCH) or higher layer control information (eg, RRC Connection Reconfiguration message, etc.) of layer 2 or more. Can be.
이후, 단말은 제 1 기지국으로부터 전송 받은 능력 정보에 기초하여 제 2 기지국의 셀/캐리어를 추가하기 위해서 제 2 기지국과 동기화를 하고 연결을 형성한다(S16020)Thereafter, the terminal synchronizes with the second base station and forms a connection in order to add the cell / carrier of the second base station based on the capability information received from the first base station (S16020).
이후, 단말은 제 1 기지국으로부터 제 2 기지국의 제 1 특정 기능이 활성화되었는지 여부를 나타내는 제 1 제어 정보를 수신한다(S16030). 이때, 제어 정보는 물리계층 제어 정보(예를 들면, PDCCH/ePDCCH를 통해 전송되는 downlink control information 등) 또는 layer 2 이상의 상위 계층 제어정보(예를 들면, RRC Connection Reconfiguration 메시지 등)에 포함되어 전송될 수 있다.Thereafter, the terminal receives first control information indicating whether the first specific function of the second base station is activated from the first base station (S16030). In this case, the control information may be transmitted by being included in physical layer control information (for example, downlink control information transmitted through PDCCH / ePDCCH) or higher layer control information (for example, RRC Connection Reconfiguration message, etc.) of layer 2 or more. Can be.
이후, 단말은 특정 서비스(예를 들면, 저 지연 및 고 신뢰를 요구하는 서비스 등)를 제공하기 위한 특정 데이터로부터 적어도 하나의 복제 데이터를 생성할 수 있다.Thereafter, the terminal may generate at least one copy data from the specific data for providing a specific service (for example, a service requiring low delay and high reliability).
단말은 특정 데이터를 제 1 기지국으로 전송하고(S16040), 제 1 특정 기능의 활성화 여부에 따라 특정 데이터로부터 생성된 적어도 하나의 복제 데이터를 제 2 기지국으로 전송한다(S16050). 이때, 적어도 하나의 복제 데이터는 도 13 및 도 16에서 설명한 상향링크 데이터와 동일한 방법을 통해서 생성된다.The terminal transmits specific data to the first base station (S16040), and transmits at least one copy data generated from the specific data to the second base station according to whether the first specific function is activated (S16050). In this case, the at least one copy data is generated through the same method as the uplink data described with reference to FIGS. 13 and 16.
도 17은 본 발명이 적용될 수 있는 무선 장치의 내부 블록도의 일 예를 나타낸 도이다.17 is a diagram illustrating an example of an internal block diagram of a wireless device to which the present invention can be applied.
여기서, 상기 무선 장치는 기지국 및 UE일 수 있으며, 기지국은 매크로 기지국 및 스몰 기지국을 모두 포함한다.Here, the wireless device may be a base station and a UE, and the base station includes both a macro base station and a small base station.
상기 도 17에 도시된 바와 같이, 기지국(1710) 및 UE(1720)는 통신부(송수신부, RF 유닛, 1713, 1723), 프로세서(1711, 1721) 및 메모리(1712, 1722)를 포함한다.As shown in FIG. 17, the base station 1710 and the UE 1720 include a communication unit (transmitter / receiver unit, RF unit, 1713, 1723), processor 1711, 1721, and memory 1712, 1722.
이외에도 상기 기지국 및 UE는 입력부 및 출력부를 더 포함할 수 있다.In addition, the base station and the UE may further include an input unit and an output unit.
상기 통신부(1713, 1723), 프로세서(1711, 1721), 입력부, 출력부 및 메모리(1712, 1722)는 본 명세서에서 제안하는 방법을 수행하기 위해 기능적으로 연결되어 있다.The communication units 1713 and 1723, the processors 1711 and 1721, the input unit, the output unit, and the memory 1712 and 1722 are functionally connected to perform the method proposed in the present specification.
통신부(송수신부 또는 RF유닛, 1713,1723)는 PHY 프로토콜(Physical Layer Protocol)로부터 만들어진 정보를 수신하면, 수신한 정보를 RF 스펙트럼(Radio-Frequency Spectrum)으로 옮기고, 필터링(Filtering), 증폭(Amplification) 등을 수행하여 안테나로 송신한다. 또한, 통신부는 안테나에서 수신되는 RF 신호(Radio Frequency Signal)을 PHY 프로토콜에서 처리 가능한 대역으로 옮기고, 필터링을 수행하는 기능을 한다.When the communication unit (transmitter / receiver unit or RF unit, 1713, 1723) receives the information generated from the PHY protocol (Physical Layer Protocol), the received information is transferred to the RF-Radio-Frequency Spectrum, filtered, and amplified. ) To transmit to the antenna. In addition, the communication unit functions to move an RF signal (Radio Frequency Signal) received from the antenna to a band that can be processed by the PHY protocol and perform filtering.
그리고, 통신부는 이러한 송신과 수신 기능을 전환하기 위한 스위치(Switch) 기능도 포함할 수 있다.The communication unit may also include a switch function for switching the transmission and reception functions.
프로세서(1711,1721)는 본 명세서에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서에 의해 구현될 수 있다. Processors 1711 and 1721 implement the functions, processes, and / or methods proposed herein. Layers of the air interface protocol may be implemented by a processor.
상기 프로세서는 제어부, controller, 제어 유닛, 컴퓨터 등으로 표현될 수도 있다.The processor may be represented by a controller, a controller, a control unit, a computer, or the like.
메모리(1712,1722)는 프로세서와 연결되어, 상향링크 자원 할당 방법을 수행하기 위한 프로토콜이나 파라미터를 저장한다.The memories 1712 and 1722 are connected to a processor and store protocols or parameters for performing an uplink resource allocation method.
프로세서(1711,1721)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. 통신부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시 예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. Processors 1711 and 1721 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices. The memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device. The communication unit may include a baseband circuit for processing a wireless signal. When the embodiment is implemented in software, the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.The module may be stored in memory and executed by a processor. The memory may be internal or external to the processor and may be coupled to the processor by various well known means.
출력부(디스플레이부 또는 표시부)는 프로세서에 의해 제어되며, 키 입력부에서 발생되는 키 입력 신호 및 프로세서로부터의 각종 정보 신호와 함께, 상기 프로세서에서 출력되는 정보들을 출력한다.The output unit (display unit or display unit) is controlled by a processor and outputs information output from the processor together with a key input signal generated at the key input unit and various information signals from the processor.
나아가, 설명의 편의를 위하여 각 도면을 나누어 설명하였으나, 각 도면에 서술되어 있는 실시 예들을 병합하여 새로운 실시 예를 구현하도록 설계하는 것도 가능하다. 그리고, 당업자의 필요에 따라, 이전에 설명된 실시 예들을 실행하기 위한 프로그램이 기록되어 있는 컴퓨터에서 판독 가능한 기록 매체를 설계하는 것도 본 발명의 권리범위에 속한다.Further, for convenience of description, the drawings are divided and described, but it is also possible to design a new embodiment by merging the embodiments described in each drawing. And, according to the needs of those skilled in the art, it is also within the scope of the present invention to design a computer-readable recording medium having a program recorded thereon for executing the embodiments described above.
본 명세서에 따른 방향 기반 기기 검색 방법은 상기한 바와 같이 설명된 실시 예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상기 실시 예들은 다양한 변형이 이루어질 수 있도록 각 실시 예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.Orientation-based device discovery method according to the present disclosure is not limited to the configuration and method of the embodiments described as described above, the embodiments are all or part of each of the embodiments is optional so that various modifications can be made It may be configured in combination.
한편, 본 명세서의 방향 기반 기기 검색 방법은 네트워크 디바이스에 구비된 프로세서가 읽을 수 있는 기록매체에 프로세서가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 프로세서가 읽을 수 있는 기록매체는 프로세서에 의해 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 프로세서가 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한, 인터넷을 통한 전송 등과 같은 캐리어 웨이브의 형태로 구현되는 것도 포함한다. 또한, 프로세서가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 프로세서가 읽을 수 있는 코드가 저장되고 실행될 수 있다.Meanwhile, the direction-based device search method of the present specification may be implemented as processor-readable code in a processor-readable recording medium provided in a network device. The processor-readable recording medium includes all kinds of recording devices that store data that can be read by the processor. Examples of the processor-readable recording medium include ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like, and may also be implemented in the form of a carrier wave such as transmission over the Internet. . The processor-readable recording medium can also be distributed over network coupled computer systems so that the processor-readable code is stored and executed in a distributed fashion.
또한, 이상에서는 본 명세서의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 명세서는 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해돼서는 안 될 것이다.In addition, while the above has been shown and described with respect to preferred embodiments of the present specification, the present specification is not limited to the specific embodiments described above, the technical field to which the invention belongs without departing from the spirit of the invention claimed in the claims. Of course, various modifications can be made by those skilled in the art, and these modifications should not be individually understood from the technical spirit or the prospect of the present invention.
그리고, 당해 명세서에서는 물건 발명과 방법 발명이 모두 설명되고 있으며, 필요에 따라 양 발명의 설명은 보충적으로 적용될 수가 있다.In addition, in this specification, both the object invention and the method invention are described, and description of both invention can be supplementally applied as needed.
본 발명의 무선 통신 시스템에서 RRC 연결 방법은 3GPP LTE/LTE-A 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE-A 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.In the wireless communication system of the present invention, the RRC connection method has been described with reference to an example applied to the 3GPP LTE / LTE-A system. However, the RRC connection method may be applied to various wireless communication systems in addition to the 3GPP LTE / LTE-A system.

Claims (15)

  1. 무선 통신 시스템에서 단말이 데이터를 송신하는 방법에 있어서,In a method for transmitting data by a terminal in a wireless communication system,
    제 1 기지국으로부터 제 2 기지국의 제 1 특정 기능과 관련된 능력 정보(Capability information)를 수신하는 단계,Receiving capability information related to a first specific function of a second base station from the first base station,
    상기 제 1 특정 기능은 상기 제 2 기지국이 상기 단말로부터 상기 제 1 기지국과 동일한 데이터를 수신하는 기능이고;The first specific function is a function of the second base station receiving the same data as the first base station from the terminal;
    상기 능력 정보에 기초하여 상기 제 2 기지국과 연결을 형성하는 단계;Establishing a connection with the second base station based on the capability information;
    상기 제 1 기지국으로부터 상기 제 2 기지국의 상기 제 1 특정 기능이 활성화되었는지 여부를 나타내는 제 1 제어 정보를 수신하는 단계;Receiving first control information indicating whether the first specific function of the second base station is activated from the first base station;
    상기 제 1 기지국으로 특정 데이터를 전송하는 단계; 및Transmitting specific data to the first base station; And
    상기 제 1 특정 기능의 활성화 여부에 따라 상기 제 2 기지국으로 복제 데이터를 전송하는 단계를 포함하되,And transmitting the duplicate data to the second base station according to whether the first specific function is activated.
    상기 복제 데이터는 상기 특정 데이터를 이용하여 생성되는 것을 특징으로 하는 방법.And the duplicated data is generated using the specific data.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 능력 정보는 상기 제 2 기지국이 상기 제 1 특정 기능을 지원하는지 여부를 나타내는 인덱스 정보, 상기 복제 데이터가 전송되는 무선 베어러를 나타내는 베어러 정보 또는 상기 제 2 기지국으로부터 전송되는 동기 신호의 위치 정보를 포함하는 방법.The capability information includes index information indicating whether the second base station supports the first specific function, bearer information indicating a radio bearer in which the duplicate data is transmitted, or position information of a synchronization signal transmitted from the second base station. How to.
  3. 제 2 항에 있어서, 연결을 형성하는 단계는,The method of claim 2, wherein forming a connection comprises:
    상기 위치 정보에 기초하여 상기 제 2 기지국과 동기화하는 단계를 더 포함하는 방법.Synchronizing with the second base station based on the location information.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 능력 정보는 하향링크 제어 정보(downlink control information) 또는 상위 계층 제어 정보에 포함되어 전송되는 방법.The capability information is transmitted by being included in downlink control information or higher layer control information.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 기지국으로부터 상기 단말의 제 2 특정 기능의 활성화를 지시하는 제 2 제어 정보를 수신하는 단계,Receiving second control information indicating activation of a second specific function of the terminal from the first base station;
    상기 제 2 특정 기능은 상기 단말이 동일한 데이터를 복수의 기지국 또는 복수의 셀로 송신하는 기능이고; 및The second specific function is a function of the terminal transmitting the same data to a plurality of base stations or a plurality of cells; And
    상기 제 2 정보에 기초하여 상기 제 2 특정 기능을 활성화시키는 단계를 더 포함하는 방법.Activating the second specific function based on the second information.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 제 1 기지국으로부터 상기 제 2 특정 기능의 비 활성화를 지시하는 제 3 제어 정보를 수신하는 단계; 및Receiving third control information indicating deactivation of the second specific function from the first base station; And
    상기 제 3 제어 정보에 기초하여 상기 제 2 특정 기능을 비 활성화 시키는 단계를 더 포함하는 방법.Disabling the second specific function based on the third control information.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 기지국으로 상기 제 1 특정 기능의 활성화를 요청하는 요청 메시지를 전송하는 단계; 및Transmitting a request message requesting activation of the first specific function to the first base station; And
    상기 요청 메시지에 대한 응답으로 상기 제 1 제어 정보를 포함하는 응답 메시지를 수신하는 단계를 더 포함하는 방법.Receiving a response message including the first control information in response to the request message.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 특정 기능은 일정 시간 동안 상기 단말로부터 전송되는 데이터가 없는 경우, 비활성화 되는 방법.The first specific function is deactivated when there is no data transmitted from the terminal for a predetermined time.
  9. 무선 통신 시스템에서 데이터를 송신하는 단말에 있어서,A terminal for transmitting data in a wireless communication system,
    외부와 무선 신호를 송신 및 수신하는 통신부; 및Communication unit for transmitting and receiving a wireless signal with the outside; And
    상기 통신부와 기능적으로 결합되어 있는 프로세스를 포함하되, 상기 프로세스는,Including a process that is functionally coupled with the communication unit, wherein the process,
    제 1 기지국으로부터 제 2 기지국의 제 1 특정 기능과 관련된 능력 정보(Capability information)를 수신하되,Receive capability information related to the first specific function of the second base station from the first base station,
    상기 제 1 특정 기능은 상기 제 2 기지국이 상기 단말로부터 상기 제 1 기지국과 동일한 데이터를 수신하는 기능이고,The first specific function is a function for the second base station to receive the same data as the first base station from the terminal,
    상기 능력 정보에 기초하여 상기 제 2 기지국과 연결을 형성하며,Establish a connection with the second base station based on the capability information,
    상기 제 1 기지국으로부터 상기 제 2 기지국의 상기 제 1 특정 기능이 활성화되었는지 여부를 나타내는 제 1 제어 정보를 수신하고,Receiving first control information indicating whether the first specific function of the second base station is activated from the first base station,
    상기 제 1 기지국으로 특정 데이터를 전송하며,Transmit specific data to the first base station,
    상기 제 1 특정 기능의 활성화 여부에 따라 상기 제 2 기지국으로 복제 데이터를 전송하는 단계를 포함하되,And transmitting the duplicate data to the second base station according to whether the first specific function is activated.
    상기 복제 데이터는 상기 특정 데이터를 이용하여 생성되는 것을 특징으로 하는 단말.The duplicated data is generated using the specific data terminal.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 능력 정보는 상기 제 2 기지국이 상기 제 1 특정 기능을 지원하는지 여부를 나타내는 인덱스 정보, 상기 복제 데이터가 전송되는 무선 베어러를 나타내는 베어러 정보 또는 상기 제 2 기지국으로부터 전송되는 동기 신호의 위치 정보를 포함하는 단말.The capability information includes index information indicating whether the second base station supports the first specific function, bearer information indicating a radio bearer in which the duplicate data is transmitted, or position information of a synchronization signal transmitted from the second base station. Terminal.
  11. 제 10 항에 있어서, 상기 프로세스는,The method of claim 10, wherein the process comprises:
    상기 위치 정보에 기초하여 상기 제 2 기지국과 동기화하는 단말.The terminal synchronizes with the second base station based on the location information.
  12. 제 9 항에 있어서, 상기 프로세스는,The method of claim 9, wherein the process comprises:
    상기 제 1 기지국으로부터 상기 단말의 제 2 특정 기능의 활성화를 지시하는 제 2 제어 정보를 수신하되,Receiving second control information indicating activation of a second specific function of the terminal from the first base station,
    상기 제 2 특정 기능은 상기 단말이 동일한 데이터를 복수의 기지국 또는 복수의 셀로 송신하는 기능이고,The second specific function is a function for the terminal to transmit the same data to a plurality of base stations or a plurality of cells,
    상기 제 2 정보에 기초하여 상기 제 2 특정 기능을 활성화시키는 단계를 더 포함하는 단말.And activating the second specific function based on the second information.
  13. 제 12 항에 있어서, 상기 프로세스는,The method of claim 12, wherein the process comprises:
    상기 제 1 기지국으로부터 상기 제 2 특정 기능의 비 활성화를 지시하는 제 3 제어 정보를 수신하고,Receiving third control information indicating deactivation of the second specific function from the first base station,
    상기 제 3 제어 정보에 기초하여 상기 제 2 특정 기능을 비 활성화 시키는 단말.And a terminal for deactivating the second specific function based on the third control information.
  14. 제 9 항에 있어서, 상기 프로세스는,The method of claim 9, wherein the process comprises:
    상기 제 1 기지국으로 상기 제 1 특정 기능의 활성화를 요청하는 요청 메시지를 전송하고,Send a request message requesting activation of the first specific function to the first base station,
    상기 요청 메시지에 대한 응답으로 상기 제 1 제어 정보를 포함하는 응답 메시지를 수신하는 단말.The terminal for receiving a response message including the first control information in response to the request message.
  15. 제 9 항에 있어서,The method of claim 9,
    상기 제 1 특정 기능은 일정 시간 동안 상기 단말로부터 전송되는 데이터가 없는 경우, 비활성화 되는 단말.The first specific function is deactivated when there is no data transmitted from the terminal for a predetermined time.
PCT/KR2017/006603 2016-06-24 2017-06-22 Method for transmitting and receiving data in wireless communication system and device for supporting same WO2017222324A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662354121P 2016-06-24 2016-06-24
US62/354,121 2016-06-24

Publications (1)

Publication Number Publication Date
WO2017222324A1 true WO2017222324A1 (en) 2017-12-28

Family

ID=60783926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006603 WO2017222324A1 (en) 2016-06-24 2017-06-22 Method for transmitting and receiving data in wireless communication system and device for supporting same

Country Status (1)

Country Link
WO (1) WO2017222324A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020032612A1 (en) * 2018-08-10 2020-02-13 Lg Electronics Inc. Method and apparatus for triggering transmission carrier reselection procedure for deactivated duplication in wireless communication system
US11452157B2 (en) * 2018-08-09 2022-09-20 Nokia Technologies Oy Communication connection control in a non-homogenous network scenario

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120057560A1 (en) * 2009-05-11 2012-03-08 Sung Jun Park Method and apparatus for transmitting and receiving duplicate data in a multicarrier wireless communication system
WO2014076371A1 (en) * 2012-11-13 2014-05-22 Nokia Corporation Secondary cell activation delay indication
US8824298B2 (en) * 2011-10-03 2014-09-02 Intel Corporation Multi-RAT carrier aggregation for integrated WWAN-WLAN operation
KR101612557B1 (en) * 2009-03-13 2016-04-15 엘지전자 주식회사 Method of receiving multimedia broadcast multicast service in cell-based wireless communication system
US20160127016A1 (en) * 2014-10-31 2016-05-05 Skyworks Solutions, Inc. Uplink diversity and interband uplink carrier aggregation in front-end architecture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101612557B1 (en) * 2009-03-13 2016-04-15 엘지전자 주식회사 Method of receiving multimedia broadcast multicast service in cell-based wireless communication system
US20120057560A1 (en) * 2009-05-11 2012-03-08 Sung Jun Park Method and apparatus for transmitting and receiving duplicate data in a multicarrier wireless communication system
US8824298B2 (en) * 2011-10-03 2014-09-02 Intel Corporation Multi-RAT carrier aggregation for integrated WWAN-WLAN operation
WO2014076371A1 (en) * 2012-11-13 2014-05-22 Nokia Corporation Secondary cell activation delay indication
US20160127016A1 (en) * 2014-10-31 2016-05-05 Skyworks Solutions, Inc. Uplink diversity and interband uplink carrier aggregation in front-end architecture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11452157B2 (en) * 2018-08-09 2022-09-20 Nokia Technologies Oy Communication connection control in a non-homogenous network scenario
WO2020032612A1 (en) * 2018-08-10 2020-02-13 Lg Electronics Inc. Method and apparatus for triggering transmission carrier reselection procedure for deactivated duplication in wireless communication system
US11452015B2 (en) 2018-08-10 2022-09-20 Lg Electronics Inc. Method and apparatus for triggering transmission carrier reselection procedure for deactivated duplication in wireless communication system

Similar Documents

Publication Publication Date Title
WO2018231007A1 (en) Method for responding to request and network device
WO2018128528A1 (en) Method for managing pdu session in wireless communication system and apparatus therefor
WO2018097599A1 (en) De-registration method in wireless communication system and device therefor
WO2019098745A1 (en) Handover method in wireless communication system and apparatus therefor
WO2019160342A1 (en) Method and apparatus for supporting rach-less mobility with pre-allocated beams in wireless communication system
WO2018079998A1 (en) Method for performing handover in wireless communication system and device for same
WO2019160390A1 (en) Method for terminal setting update in wireless communication system and apparatus therefor
WO2019135560A1 (en) Method, user device, and network node for performing pdu session establishment procedure
WO2017191952A1 (en) Method for transmitting and receiving data in wireless communication system, and device for supporting same
WO2018088812A1 (en) Handover method and user equipment
WO2016153130A1 (en) Method and device for transmitting or receiving data by terminal in wireless communication system
WO2017171451A1 (en) Method for transmitting buffered data in wireless communication system, and apparatus therefor
WO2019194486A1 (en) Method and apparatus for discarding buffered data while keeping connection in cp-up separation
WO2017188758A1 (en) Method and apparatus for suspending/resuming nas signaling in wireless communication system
WO2017039042A1 (en) Data transmission and reception method and device of terminal in wireless communication system
WO2018079947A1 (en) Method for supporting ue mobility in wireless communication system and device therefor
WO2017138769A1 (en) Method for updating location of terminal in wireless communication system and apparatus for supporting same
WO2016159522A1 (en) Method and user equipment for performing network selection and traffic routing
WO2017142171A1 (en) Method and terminal for creating, modifying, releasing session in next-generation mobile communication
WO2016148357A1 (en) Data transmission/reception method and apparatus for terminal in wireless communication system
WO2016024790A1 (en) Method for transmitting downlink data in a wireless communication system, and device for same
WO2016140403A1 (en) Method and device for rrc connection of terminal in wireless communication system
WO2015137631A1 (en) Method for performing proximity service, and user device
WO2021049841A1 (en) Method for moving ims voice session on non-3gpp to 3gpp access
WO2017138768A1 (en) Method for transreceiving data in wireless communication system and device supporting same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815737

Country of ref document: EP

Kind code of ref document: A1