WO2017221475A1 - 磁性粉末、粉末混合体、圧粉コア、圧粉コアの製造方法、インダクタ、および電子・電気機器 - Google Patents

磁性粉末、粉末混合体、圧粉コア、圧粉コアの製造方法、インダクタ、および電子・電気機器 Download PDF

Info

Publication number
WO2017221475A1
WO2017221475A1 PCT/JP2017/009396 JP2017009396W WO2017221475A1 WO 2017221475 A1 WO2017221475 A1 WO 2017221475A1 JP 2017009396 W JP2017009396 W JP 2017009396W WO 2017221475 A1 WO2017221475 A1 WO 2017221475A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomic
powder
dust core
magnetic powder
core
Prior art date
Application number
PCT/JP2017/009396
Other languages
English (en)
French (fr)
Inventor
岡本 淳
寿人 小柴
成 花田
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2017221475A1 publication Critical patent/WO2017221475A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/08Metallic powder characterised by particles having an amorphous microstructure
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles

Definitions

  • the present invention relates to a magnetic powder, a powder mixture containing the magnetic powder, a dust core using a molded product of the powder mixture as a raw material member, a method for producing a dust core using the powder mixture, and the dust
  • the present invention relates to an inductor including a core, and an electronic / electrical device on which the inductor is mounted.
  • the “inductor” is a passive element including a core material including a dust core and a coil, and includes the concept of a reactor.
  • Patent Document 1 as a dust core capable of improving the thermal stability of the magnetic permeability, a dust core obtained by compressing and molding a mixture having a soft magnetic powder and an insulating binder is heat-treated.
  • the insulating binder has a binder resin and glass, and the glass transition temperature (Tg) of the glass is lower than the temperature of the heat treatment. Has been.
  • the present invention includes a magnetic powder that can be used as a raw material for a dust core, in which the magnetic properties hardly change even when left in a high temperature environment for a long time (this property is referred to as “heat resistance” in this specification), It is an object of the present invention to provide a dust core to be manufactured, a method for manufacturing the dust core, an inductor including the dust core, and an electronic / electric device on which the inductor is mounted.
  • a composition formula Fe 100 atomic% -a-b-c-x -y-z-t Ni a Sn b Cr c P x C y shown by B z Si t, 0 atomic% ⁇ a ⁇ 10 at%, 0 at% ⁇ b ⁇ 3 at%, 0 at% ⁇ c ⁇ 6 atomic%, 6.8 atomic% ⁇ x ⁇ 13 atomic%,
  • Amorphous soft magnetic powder comprising an Fe-based alloy composition satisfying 1.0 atomic% ⁇ y ⁇ 13 atomic%, 0 atomic% ⁇ z ⁇ 9 atomic%, and 5 atomic% ⁇ t ⁇ 10 atomic% is provided.
  • a magnetic powder is provided.
  • the composition of the amorphous alloy material is as described above.
  • the Si content is 5 atomic% or more and 10 atomic% or less, so that the heat resistance is excellent. Specifically, 250 to 300 ° C. It becomes easy to form a dust core in which the magnetic permeability and iron loss hardly change even when placed in a high temperature environment of about 1000 hours.
  • composition formula it may be preferable that 5.5 atomic% ⁇ t ⁇ 8 atomic%.
  • Another aspect of the present invention is a powder mixture containing the above magnetic powder and an insulating binder, wherein the insulating binder contains a glass-based material.
  • the insulating binder contains a glass-based material, the heat resistance of the dust core formed using such a powder mixture can be increased. And in such a powder core with improved heat resistance, it becomes possible to particularly improve heat resistance by providing the magnetic powder with powder of an amorphous alloy material having the above composition.
  • the glass material may contain phosphate glass.
  • the insulating binder may further contain a resin material.
  • the present invention provides a powder core using a molded product of the above powder mixture as a raw material member. Moreover, this invention provides the manufacturing method of a compacting core provided with the shaping
  • an inductor including a dust core, a coil, and a connection terminal connected to each end of the coil, wherein at least a part of the dust core is the connection
  • an inductor disposed so as to be located in an induced magnetic field generated by the current when a current is passed through the coil through a terminal. Since such an inductor includes a dust core having excellent heat resistance as described above, it is expected to be excellent in reliability as an inductor.
  • the present invention provides an electronic / electrical device in which the inductor is mounted, wherein the inductor is connected to a substrate at the connection terminal.
  • Such an electronic / electrical device is provided with an inductor that is expected to be excellent in reliability as described above, and thus is expected to operate stably even in a high temperature environment.
  • the magnetic powder according to the present invention is a raw material for a dust core having excellent magnetic properties (excelling in heat resistance) even when placed in a high temperature environment for a long time because the Si content in the composition is appropriately set. be able to.
  • the powder core containing said magnetic powder, the manufacturing method of the said powder core, the inductor provided with the said powder core, and the electronic / electrical device by which the said inductor was mounted are provided.
  • Magnetic powder according to an embodiment of the magnetic powder present invention composition formula, Fe 100 atomic% -a-b-c-x -y-z-t Ni a Sn b Cr c P x C y B z Si t 0 atom% ⁇ a ⁇ 10 atom%, 0 atom% ⁇ b ⁇ 3 atom%, 0 atom% ⁇ c ⁇ 6 atom%, 6.8 atom% ⁇ x ⁇ 13 atom%, 1.0 atom Amorphous soft magnetic powder comprising an Fe-based alloy composition satisfying% ⁇ y ⁇ 13 atomic%, 0 atomic% ⁇ z ⁇ 9 atomic%, and 5 atomic% ⁇ t ⁇ 10 atomic% is provided.
  • Fe-based alloy composition P, C, and Si are essential additive elements, and Ni, Sn, Cr, and B are optional additive elements.
  • the Fe-based alloy composition may contain inevitable impurities other than Fe, P, C, Ni, Sn, and Cr.
  • P is an amorphous forming element and contributes to making the main phase of the Fe-based alloy composition an amorphous phase. It also contributes to lowering the melting point Tm (unit: ° C.) of the Fe-based alloy composition.
  • the low melting point Tm of the Fe-based alloy composition means that it is possible to reduce the viscosity of the molten metal when soft magnetic powder is produced from the molten Fe-based alloy composition. Accordingly, when a soft magnetic powder is produced by a production method including an atomization process such as a water atomization method, a spherical powder is easily obtained.
  • the saturation magnetic flux density Bs of the soft magnetic powder is lowered, and the magnetic properties may be deteriorated.
  • the amount of P added in the Fe-based alloy composition is excessive, the brittleness of the soft magnetic powder is promoted, the Curie temperature Tc (unit: ° C.) is lowered, the thermal stability is lowered, and the amorphous There is also a possibility that the forming ability is reduced. Therefore, the addition amount of P in the Fe-based alloy composition is set to 6.8 atomic% or more and 13 atomic% or less.
  • the addition amount of P in the Fe-based alloy composition is 7.5 atomic% or more and 12.0 atoms. % Or less, and more preferably 8.5 atomic% or more and 11.2 atomic% or less.
  • the addition amount of C in the Fe-based alloy composition is 1.0 atomic% or more. If the amount of C added is excessively high, the amorphous forming ability is lowered, which is not preferable. Therefore, the addition amount of C in the Fe-based alloy composition is 13 atomic% or less. From the viewpoint of more stably realizing the benefit based on the addition of C to the Fe-based alloy composition, the amount of C added in the Fe-based alloy composition is 2.0 atomic% or more and 5.0 atoms. % Or less, and more preferably 1.5 atomic% or more and 3.0 atomic% or less.
  • the heat resistance (high temperature environment) of the powder core containing the soft magnetic powder made of the Fe-based alloy composition is achieved by setting the Si content to 5 atomic% or more.
  • the addition amount of Si in the Fe-based alloy composition is 5 atomic% or more. From the viewpoint of more stably realizing the heat resistance of the dust core, it may be preferable that the addition amount of Si in the Fe-based alloy composition is 5.5 atomic% or more, and 6 atomic% or more. It may be more preferable.
  • the addition amount of Si in the Fe-based alloy composition is 10 atomic% or less.
  • the amount of Si added to the Fe-based alloy composition is 5.5 atomic% or more and 10 atomic% or less. It is preferable to set it as 5.5 atomic% or more and 9.5 atomic% or less, and it is especially preferable to set it as 6 atomic% or more and 9 atomic% or less.
  • B Since B has excellent amorphous forming ability, B may be added to the Fe-based alloy composition. However, excessive addition of B in the Fe-based alloy composition is not preferable because the amorphous forming ability decreases. Therefore, the addition amount of B in the Fe-based alloy composition is 0 atomic% or more and 9 atomic%. From the viewpoint of more stably enjoying the benefit of adding B, it is preferable that the amount of B added in the Fe-based alloy composition is 2.0 atomic% or more and 8.5 atomic% or less, and 3.0 atomic%. More preferably, it is 8.0 atomic% or less.
  • the addition amount of Cr in the Fe-based alloy composition is 0 atomic% or more and 6 atomic%. From the viewpoint of more stably enjoying the benefit of adding Cr, the amount of Cr added in the Fe-based alloy composition is preferably 1.0 atomic% or more and 3.0 atomic% or less, and 1.5 atomic% More preferably, it is 2.5 atomic% or less.
  • the addition amount of Ni in the Fe-based alloy composition is 0 atomic% or more and 10 atomic%. From the viewpoint of more stably enjoying the benefits of adding Ni, the addition amount of Ni in the Fe-based alloy composition is preferably 0 atomic% or more and 8.0 atomic% or less, and is preferably 0 atomic% or more and 7.0. It is more preferable to set it to atomic% or less.
  • the addition amount of Sn in the Fe-based alloy composition is 0 atomic% or more and 10 atomic%. From the viewpoint of more stably enjoying the benefit of adding Sn, the amount of Sn added in the Fe-based alloy composition is preferably 0 atomic% or more and 3.0 atomic% or less, preferably 0 atomic% or more and 2.5 atomic% or less. It is more preferable to set it to atomic% or less.
  • the shape of the soft magnetic powder is arbitrary.
  • the shape of the soft magnetic powder may be spherical or non-spherical. In the case of a non-spherical shape, it may have a shape anisotropy such as a scale shape, an oval sphere shape, a droplet shape, a needle shape, or an indefinite shape having no special shape anisotropy. Good.
  • Examples of the amorphous powder include a case where a plurality of spherical powders are bonded in contact with each other, or are bonded so as to be partially embedded in other powders.
  • the shape of the soft magnetic powder may be a shape obtained at the stage of producing the powder, or a shape obtained by secondary processing of the produced powder.
  • the former shape include a spherical shape, an oval shape, a droplet shape, and a needle shape, and examples of the latter shape include a scale shape.
  • the size of the soft magnetic powder is not limited.
  • the soft magnetic powder has a particle size that is 50% of the cumulative particle size distribution from the small particle size side in the volume-based particle size distribution measured by the laser diffraction / scattering method (also referred to as “50% volume cumulative diameter” in this specification). .) It may be preferable that D50 is 4 ⁇ m or more and 50 ⁇ m or less from the viewpoint of reducing the eddy current loss of the dust core containing the soft magnetic powder according to the embodiment of the present invention. From the viewpoint of more stably lowering the eddy current loss of the dust core, the 50% volume cumulative diameter D50 of the soft magnetic powder may be preferably 45 ⁇ m or less, and more preferably 35 ⁇ m or less.
  • an inductor including a dust core containing magnetic powder including a soft magnetic powder has a high frequency (in this specification, “high frequency” means 100 kHz or more. In a preferred example, it means 1 MHz or more.)
  • high frequency means 100 kHz or more. In a preferred example, it means 1 MHz or more.
  • the 50% volume cumulative diameter D50 of the soft magnetic powder may be preferably 4 ⁇ m or more, and may be preferably 15 ⁇ m or more.
  • the magnetic powder according to an embodiment of the present invention may contain a soft magnetic powder other than the amorphous soft magnetic powder.
  • soft magnetic powder include crystalline soft magnetic powder and soft magnetic powder containing nanocrystals.
  • nanocrystal means a crystal having a crystal grain size of about 50 nm or less.
  • the powder mixture according to an embodiment of the present invention contains magnetic powder and an insulating binder.
  • the “insulating binder” means a material capable of binding a plurality of magnetic powders while maintaining electrical insulation.
  • the insulating binder of the powder mixture according to one embodiment of the present invention contains a glass-based material.
  • the composition of the glass-based material is arbitrary as long as it has a glass transition temperature Tg.
  • the glass-based material may preferably contain phosphate glass.
  • the glass-based material may be composed of one type of material or a mixture of a plurality of types of materials.
  • the shape of the glass material is arbitrary.
  • the content of the glass-based material in the powder mixture is appropriately set. If it illustrates without limitation, content of the glass-type material in a powder mixture is 0.1 to 0.60 mass% with respect to the mass of magnetic powder.
  • the insulating binder may further contain a resin material.
  • the resin material include acrylic resin, silicone resin, epoxy resin, phenol resin, urea resin, and melamine resin.
  • the shape of the resin material is arbitrary, and the content of the resin material in the powder mixture is appropriately set. If it illustrates without limitation, content of the resin-type material in a powder mixture is 0.5 to 5 mass% with respect to the mass of magnetic powder.
  • the powder mixture according to one embodiment of the present invention includes phosphate ester, red phosphorus, antimony trioxide, carbon black, magnesium hydroxide, aluminum hydroxide, hexabromobenzene, melamine derivative, bromine-based, chlorine-based, platinum-based
  • an organic lubricant such as a metal soap such as zinc stearate and aluminum stearate, an inorganic lubricant, and the like may be further contained.
  • the powder core according to one embodiment of the present invention uses a molded product of the powder mixture according to one embodiment of the present invention as a raw material member.
  • This molded product may directly constitute the powder core, or the powder core may be a product obtained by subjecting this molded product to heat treatment.
  • the composition of the insulating binder in the powder core may be different from the composition of the insulating binder in the powder mixture.
  • the insulating binder in the powder mixture contains a resin-based material, the resin-based material is decomposed by heat treatment, and the residue is a component of the insulating binder in the dust core. The case where it becomes a kind is mentioned.
  • the temperature of the heat treatment is near or above the glass transition temperature of the glass-based material, the glass-based material may be fused to the magnetic powder.
  • FIG. 1 is a perspective view conceptually showing the shape of a dust core according to an embodiment of the present invention.
  • the dust core 1 shown in FIG. 1 has a substantially ring shape (toroidal core).
  • the manufacturing method of the powder core 1 according to an embodiment of the present invention may include a molding step described below, and may further include a heat treatment step.
  • the aforementioned powder mixture is prepared.
  • a molded product can be obtained by performing a molding process including pressure molding on the powder mixture.
  • the pressurizing condition is not limited and is appropriately determined based on the composition of the binder component.
  • the insulating binder contains a thermosetting resin
  • the pressing force is high, heating is not a necessary condition and pressurization is performed for a short time.
  • the powder mixture may be subjected to a treatment for having a specific shape before the forming treatment.
  • Granulated powder is illustrated as a powder mixture which has such a specific shape. Since the granulated powder is excellent in handleability, it is possible to improve the workability of compression molding which has a short molding time and excellent productivity.
  • the method for producing the granulated powder is not particularly limited.
  • the ingredients that give the granulated powder may be kneaded as they are, and the resulting kneaded product may be pulverized by a known method to obtain granulated powder, or a dispersion medium (water as an example) It is also possible to obtain a granulated powder by preparing a slurry to which is added, and drying and pulverizing the slurry. Screening and classification may be performed after pulverization to control the particle size distribution of the granulated powder.
  • Compressive conditions in compression molding are not particularly limited. What is necessary is just to set suitably considering the composition of granulated powder, the shape of a molded product, etc. If the pressure applied when the granulated powder is compression-molded is excessively low, the mechanical strength of the molded product decreases. For this reason, it becomes easy to produce the problem that the handleability of a molded product falls and the mechanical strength of the powder core 1 obtained from the molded product falls. Moreover, the magnetic characteristics of the dust core 1 may deteriorate or the insulating properties may decrease. On the other hand, if the applied pressure during compression molding of the granulated powder is excessively high, it becomes difficult to create a molding die that can withstand the pressure.
  • the applied pressure is preferably 0.3 GPa to 2 GPa, more preferably 0.5 GPa to 2 GPa, and particularly preferably 0.8 GPa to 2 GPa.
  • pressurization may be performed while heating, or pressurization may be performed at room temperature.
  • the molded product obtained by the molding process may be the powder core 1 according to the present embodiment, or the molded product is subjected to a heat treatment step to obtain the powder core 1 as described below. May be.
  • the molded product obtained by the above molding process is heated to adjust the magnetic properties by correcting the distance between the magnetic powders and to relax the strain applied to the magnetic powder in the molding process. Adjust the magnetic characteristics. In this way, the powder core 1 made of a molded product is obtained.
  • the heat treatment conditions such as the heat treatment temperature are set so that the magnetic properties of the dust core 1 are the best.
  • a method for setting the heat treatment conditions it is possible to change the heating temperature of the molded product and to make other conditions constant, such as the heating rate and the holding time at the heating temperature.
  • the evaluation criteria for the magnetic properties of the dust core 1 when setting the heat treatment conditions are not particularly limited.
  • the iron loss Pcv of the powder core 1 can be given as a specific example of the evaluation item. In this case, what is necessary is just to set the heating temperature of a molded product so that the iron loss Pcv of the powder core 1 may become the minimum.
  • the measurement conditions for the iron loss Pcv are set as appropriate. As an example, a condition in which the frequency is 100 kHz and the effective maximum magnetic flux density Bm is 100 mT can be given.
  • the atmosphere during the heat treatment is not particularly limited.
  • an oxidizing atmosphere the possibility of excessive thermal decomposition of the binder component and the possibility of progress of oxidation of the magnetic powder increases, so that an inert atmosphere such as nitrogen or argon, or a reducing property such as hydrogen Heat treatment is preferably performed in an atmosphere.
  • An inductor according to an embodiment of the present invention includes a dust core 1 according to an embodiment of the present invention, a coil, and a connection terminal connected to each end of the coil.
  • at least a part of the dust core 1 is disposed so as to be located in an induced magnetic field generated by the current when a current is passed through the coil via the connection terminal.
  • An inductor according to an embodiment of the present invention includes a dust core 1 according to an embodiment of the present invention, which is a dust core in which magnetic characteristics hardly change even after being placed in a high temperature environment for a long time (excellent heat resistance). Therefore, it is expected to have excellent reliability as an inductor.
  • the toroidal coil 10 includes a coil 2 a formed by winding a coated conductive wire 2 around a ring-shaped dust core (toroidal core) 1.
  • the ends 2d and 2e of the coil 2a can be defined in the portion of the conductive wire located between the coil 2a formed of the wound covered conductive wire 2 and the ends 2b and 2c of the covered conductive wire 2.
  • the member constituting the coil and the member constituting the connection terminal may be composed of the same member.
  • the coil-embedded inductor 20 can be formed in a small chip shape of several mm square, and includes a dust core 21 having a box shape, and a coil portion 22c in the covered conductive wire 22 is provided therein. Buried. End portions 22a and 22b of the coated conductive wire 22 are located on the surface of the powder core 21 and exposed. Part of the surface of the dust core 21 is covered with connection end portions 23a and 23b that are electrically independent from each other.
  • connection end portion 23 a is electrically connected to the end portion 22 a of the covered conductive wire 22, and the connection end portion 23 b is electrically connected to the end portion 22 b of the covered conductive wire 22.
  • the end 22a of the covered conductive wire 22 is covered by the connection end 23a, and the end 22b of the covered conductive wire 22 is covered by the connecting end 23b.
  • the method for embedding the coil portion 22c of the coated conductive wire 22 in the dust core 21 is not limited.
  • a member around which the coated conductive wire 22 is wound may be placed in a mold, and a powder-containing composition (granulated powder) containing magnetic powder may be further supplied into the mold to perform pressure molding.
  • a plurality of members prepared by preforming a powder-containing composition (granulated powder) containing magnetic powder are prepared in advance, and these members are combined, and the coated conductive wire 22 is disposed in the void portion defined at that time.
  • an assembly may be obtained, and the assembly may be pressure-molded.
  • the material of the covered conductive wire 22 including the coil portion 22c is not limited. For example, a copper alloy can be used.
  • the coil portion 22c may be an edgewise coil.
  • the material of the connection end portions 23a and 23b is not limited. From the viewpoint of excellent productivity, it may be preferable to include a metallized layer formed from a conductive paste such as a silver paste and a plating layer formed on the metallized layer.
  • the material for forming the plating layer is not limited. Examples of the metal element contained in the material include copper, aluminum, zinc, nickel, iron, and tin.
  • An electronic / electrical device is an electronic / electrical device in which the inductor according to the above-described embodiment of the present invention is mounted, and is connected to a substrate at a connecting terminal of the inductor. It is.
  • the electronic / electrical device according to one embodiment of the present invention is expected to operate stably even in a high temperature environment because the inductor according to one embodiment of the present invention is mounted.
  • Example 1 to Example 5 (1) Preparation of Fe-based amorphous alloy powder An Fe-based alloy composition having the composition shown in Table 1 (unit: atomic%) was prepared.
  • Soft magnetic powders were produced from these Fe-based alloy compositions using a water atomization method.
  • the particle size distribution of the obtained soft magnetic powder was measured by volume distribution using “Microtrac particle size distribution measuring device MT3000 series” manufactured by Nikkiso Co., Ltd.
  • the particle size (50% volume cumulative diameter) D50 at which the cumulative particle size distribution from the small particle size side becomes 50% was 16 ⁇ m.
  • the obtained molded product is placed in a furnace in a nitrogen stream atmosphere, and the furnace temperature is 400 ° C which is the optimum core heat treatment temperature from room temperature (23 ° C) at a heating rate of 10 ° C / min. And then kept at this temperature for 1 hour, and then subjected to a heat treatment for cooling to room temperature in the furnace to obtain a toroidal core composed of a dust core.
  • Test Example 1 X-Ray Diffraction X-ray diffraction measurement was performed on the soft magnetic powder produced in each example to confirm whether it was crystalline or amorphous. As a result, the soft magnetic powder produced in Examples 1 to 4 was amorphous, and the soft magnetic powder produced in Example 5 was crystalline.
  • Tc Curie temperature (unit: K)
  • Tg Glass transition temperature (unit: K)
  • Tx crystallization temperature (unit: K)
  • Tm * freezing point (unit: K)
  • Tg / Tm Glass transition temperature / freezing point
  • Tx / Tm Crystallization temperature / freezing point
  • Example 3 Measurement of heat resistance regarding relative magnetic permeability
  • Each of the toroidal cores produced in Examples 1 to 4 was wound with a coated copper wire 40 times to obtain a toroidal coil.
  • relative permeability ⁇ 0 was measured using an impedance analyzer (“4192A” manufactured by HP) under the condition of 100 kHz.
  • the toroidal cores of each example were prepared, and a heat resistance test was performed in which these toroidal cores were left in a heating furnace maintained at 300 ° C. for 10 hours, 100 hours, or 1000 hours.
  • Table 3 shows the measurement results of the relative permeability.
  • all the numerical values in Table 3 are average values of measurement results for four toroidal coils manufactured under the same conditions.
  • the change rate R ⁇ (unit:%) of the relative permeability was determined from the following formula.
  • R ⁇ ( ⁇ 1- ⁇ 0) / ⁇ 1 ⁇ 100
  • Table 4 shows the calculation result of the change rate R ⁇ of the relative magnetic permeability.
  • Test Example 4 Measurement of heat resistance related to iron loss About the toroidal coil obtained by winding the coated copper wire 40 times on the primary side and 10 times on the secondary side, respectively, on the toroidal core produced in Example 1 to Example 4.
  • the iron loss Pcv0 (unit: kW / m 3 ) was measured at a measurement frequency of 100 kHz under the condition that the effective maximum magnetic flux density Bm was 100 mT.
  • the toroidal cores of each example were prepared, and a heat resistance test was performed in which these toroidal cores were left in a heating furnace maintained at 300 ° C.
  • Table 5 shows the measurement results of the iron loss.
  • the numerical values in Table 5 are average values of measurement results for four toroidal coils manufactured under the same conditions.
  • the change rate RPcv (Pcv1-Pcv0) / Pcv1 ⁇ 100
  • Table 6 shows the calculation result of the change rate RPcv of the iron loss.
  • FIG. 4 is a graph showing the relationship between R ⁇ after 1000 hours shown in Table 4 and the amount of Si added in the Fe-based alloy composition relating to the soft magnetic powder.
  • FIG. 5 is a graph showing the relationship between RPcv after 1000 hours shown in Table 6 and the amount of Si added in the Fe-based alloy composition relating to the soft magnetic powder.
  • the heat resistance test is performed for both the relative permeability and the iron loss. It is understood that the rate of change (R ⁇ , RPcv) due to is close to 0%, and a powder core having excellent heat resistance was obtained.
  • FIG. 4 is a graph showing the relationship between R ⁇ after 1000 hours shown in Table 4 and the amount of Si added in the Fe-based alloy composition relating to the soft magnetic powder.
  • Soft magnetic powders were produced from these Fe-based alloy compositions using a water atomization method.
  • the particle size distribution of the obtained soft magnetic powder was measured by volume distribution using “Microtrac particle size distribution measuring device MT3000 series” manufactured by Nikkiso Co., Ltd.
  • the particle size (50% volume cumulative diameter) D50 at which the cumulative particle size distribution from the small particle size side becomes 50% was 11 ⁇ m.
  • granulated powder was prepared, compression molded, and heat-treated to obtain a toroidal core composed of a powdered core.
  • Test Example 5 X-ray diffraction X-ray diffraction measurement was performed on the soft magnetic powder produced in each Example to confirm whether it was crystalline or amorphous. As a result, the magnetic powders produced in Examples 6 to 12 were all amorphous.
  • thermophysical properties The soft magnetic powder produced in each example was measured using a thermal analyzer ("DSC8270" manufactured by Rigaku Corporation) to obtain various thermophysical properties. The results are shown in Table 8. The meanings of the symbols in Table 8 are as follows. Tc: Curie temperature (unit: K) Tg: Glass transition temperature (unit: K) Tx: crystallization temperature (unit: K) ⁇ Tx: crystallization temperature-crystallization temperature Tm *: freezing point (unit: K) Tg / Tm: Glass transition temperature / freezing point Tx / Tm: Crystallization temperature / freezing point
  • Toroidal coils were obtained by winding a coated copper wire 40 times on each of the toroidal cores produced in Examples 6 to 12. About each of these toroidal coils, relative permeability ⁇ 0 was measured using an impedance analyzer (“4192A” manufactured by HP) under the condition of 100 kHz. Separately, toroidal cores of each example were prepared, and a heat resistance test was performed in which these toroidal cores were left in a heating furnace maintained at a furnace temperature of 250 ° C. for 1000 hours.
  • Test Example 4 Measurement of heat resistance related to iron loss About the toroidal coil obtained by winding the coated copper wire 40 times on the primary side and 10 times on the secondary side, respectively, on the toroidal core produced in Example 6 to Example 12.
  • the iron loss Pcv0 (unit: kW / m 3 ) was measured at a measurement frequency of 100 kHz under the condition that the effective maximum magnetic flux density Bm was 100 mT.
  • the toroidal cores of each example were prepared, and a heat resistance test was performed in which these toroidal cores were left in a heating furnace maintained at a furnace temperature of 300 ° C.
  • FIG. 6 is a graph showing the relationship between R ⁇ after 1000 hours shown in Table 9 and the amount of Si added to the Fe-based alloy composition related to the magnetic powder.
  • FIG. 7 is a graph showing the relationship between RPcv after 1000 hours shown in Table 10 and the amount of Si added in the Fe-based alloy composition relating to the magnetic powder.
  • the heat resistance test is performed for both the relative magnetic permeability and the iron loss. It is understood that the rate of change (R ⁇ , RPcv) due to is close to 0%, and a powder core having excellent heat resistance was obtained.
  • Inductors having a dust core according to the present invention are less likely to deteriorate in reliability even when used for a long time in a high temperature environment, so that they are used as components for booster circuits such as electronic and electrical equipment, components such as transformers and choke coils, etc. It can be suitably used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

高温環境に長時間置かれても磁気特性が変化しにくい圧粉コアの原材料となりうる磁性粉末として、組成式が、Fe100原子%-a-b-c-x-y-z-tNiSnCrSiで示され、0原子%≦a≦10原子%、0原子%≦b≦3原子%、0原子%≦c≦6原子%、6.8原子%≦x≦13原子%、1.0原子%≦y≦13原子%、0原子%≦z≦9原子%、5原子%≦t≦10原子%であるFe基合金組成物からなる非晶質の軟磁性粉末を備える磁性粉末が提供される。

Description

磁性粉末、粉末混合体、圧粉コア、圧粉コアの製造方法、インダクタ、および電子・電気機器
 本発明は、磁性粉末、この磁性粉末を含有する粉末混合体、この粉末混合体の成形製造物を原料部材とする圧粉コア、この粉末混合体を用いる圧粉コアの製造方法、この圧粉コアを備えるインダクタ、およびこのインダクタが実装された電子・電気機器に関する。本明細書において、「インダクタ」とは、圧粉コアを含む芯材およびコイルを備える受動素子であって、リアクトルの概念を含むものとする。
 特許文献1には、透磁率の熱安定性を向上させることが可能な圧粉磁心として、軟磁性粉末及び絶縁性結着材を有する混合物を圧縮成形し、熱処理して得られる圧粉磁心であって、前記絶縁性結着材は、バインダー樹脂と、ガラスとを有してなり、前記ガラスのガラス転移温度(Tg)は前記熱処理の温度よりも低いことを特徴とする圧粉磁心が記載されている。
特開2012-212853号公報
 近年、幅広い動作環境においても磁気特性が変化しにくいインダクタが求められてきている。具体的には、300℃程度の高温環境に長時間(例えば1000時間)置かれても、磁気特性が低下しにくいインダクタが求められている。この磁気特性の具体例として、特許文献1に記載される透磁率以外に、鉄損を挙げることができる。
 本発明は、高温環境に長時間置かれても磁気特性が変化しにくい(本明細書において、この特性を「耐熱性」という。)圧粉コアの原材料となりうる磁性粉末、この磁性粉末を含有する圧粉コア、この圧粉コアの製造方法、この圧粉コアを備えるインダクタ、およびこのインダクタが実装された電子・電気機器を提供することを課題とする。
 上記課題を解決するために提供される本発明は、一態様として、組成式が、Fe100原子%-a-b-c-x-y-z-tNiSnCrSiで示され、0原子%≦a≦10原子%、0原子%≦b≦3原子%、0原子%≦c≦6原子%、6.8原子%≦x≦13原子%、1.0原子%≦y≦13原子%、0原子%≦z≦9原子%、5原子%≦t≦10原子%であるFe基合金組成物からなる非晶質の軟磁性粉末を備えることを特徴とする磁性粉末を提供する。非晶質合金材料の組成が上記のとおりであること、特に、Siの含有量が5原子%以上10原子%以下であることにより、耐熱性に優れる、具体的には、250℃から300℃程度の高温環境下に1000時間置かれても透磁率や鉄損が変化しにくい圧粉コアを形成することが容易となる。
 上記の組成式において、5.5原子%≦t≦8原子%であることが好ましい場合がある。
 本発明は、他の一態様として、上記の磁性粉末および絶縁性結着材を含有する粉末混合体であって、前記絶縁性結着材はガラス系材料を含有することを特徴とする粉末混合体を提供する。絶縁性結着材がガラス系材料を含有することにより、かかる粉末混合体を用いて形成された圧粉コアの耐熱性を高めることが可能となる。そして、そのような耐熱性が高められた圧粉コアにおいて、磁性粉末が上記のような組成を有する非晶質合金材料の粉末を備えることにより、耐熱性を特に高めることが可能となる。
 上記の粉末混合体において、前記ガラス系材料はリン酸系ガラスを含んでいてもよい。
 上記の粉末混合体において、前記絶縁性結着材は樹脂系材料をさらに含有してもよい。
 本発明は、別の一態様として、上記の粉末混合体の成形製造物を原料部材とする圧粉コアを提供する。また、本発明は、別の一態様として、上記の粉末混合体を成形して成形製造物を得る成形工程を備える圧粉コアの製造方法を提供する。
 本発明は、別の一態様として、上記の圧粉コア、コイルおよび前記コイルのそれぞれの端部に接続された接続端子を備えるインダクタであって、前記圧粉コアの少なくとも一部は、前記接続端子を介して前記コイルに電流を流したときに前記電流により生じた誘導磁界内に位置するように配置されているインダクタを提供する。かかるインダクタは、上記のように耐熱性に優れる圧粉コアを備えるため、インダクタとしての信頼性に優れると期待される。
 本発明は、別の一態様として、上記のインダクタが実装された電子・電気機器であって、前記インダクタは前記接続端子にて基板に接続されている電子・電気機器を提供する。かかる電子・電気機器は、上記のように信頼性に優れると期待されるインダクタを備えるため、高温環境下でも安定に動作することが期待される。
 本発明に係る磁性粉末は、組成におけるSi含有量が適切に設定されているため、高温環境に長時間置かれても優れた磁気特性を有する(耐熱性に優れる)圧粉コアの原材料となることができる。また、本発明によれば、上記の磁性粉末を含む圧粉コア、当該圧粉コアの製造方法、当該圧粉コアを備えるインダクタ、および当該インダクタが実装された電子・電気機器が提供される。
本発明の一実施形態に係る圧粉コアの形状を概念的に示す斜視図である。 本発明の一実施形態に係る圧粉コアを備えるインダクタの一種であるトロイダルコイルの形状を概念的に示す斜視図である。 本発明の一実施形態に係る圧粉コアを備えるインダクタの一種であるコイル埋設型インダクタの形状を概念的に示す斜視図である。 実施例1から実施例4に係るトロイダルコイルの比透磁率の変化率の測定結果を示すグラフである。 実施例1から実施例4に係るトロイダルコイルの鉄損の変化率の測定結果を示すグラフである。 実施例6から実施例12に係るトロイダルコイルの比透磁率の変化率の測定結果を示すグラフである。 実施例6から実施例12に係るトロイダルコイルの鉄損の変化率の測定結果を示すグラフである。
 以下、本発明の実施形態について詳しく説明する。
1.磁性粉末
 本発明の一実施形態に係る磁性粉末は、組成式が、Fe100原子%-a-b-c-x-y-z-tNiSnCrSiで示され、0原子%≦a≦10原子%、0原子%≦b≦3原子%、0原子%≦c≦6原子%、6.8原子%≦x≦13原子%、1.0原子%≦y≦13原子%、0原子%≦z≦9原子%、5原子%≦t≦10原子%であるFe基合金組成物からなる非晶質の軟磁性粉末を備える。
 上記のFe基合金組成物において、P,CおよびSiは必須の添加元素であり、Ni,Sn,CrおよびBは任意添加元素である。上記のFe基合金組成物は、Fe,P,C,Ni,SnおよびCr以外に不可避的不純物を含有していてもよい。
 Pはアモルファス形成元素であり、Fe基合金組成物の主相を非晶質相とすることに寄与する。また、Fe基合金組成物の融点Tm(単位:℃)を低下させることにも寄与する。Fe基合金組成物の融点Tmが低いことは、Fe基合金組成物の溶湯から軟磁性粉末を製造する際の溶湯の粘度を低下させることが可能であることを意味する。したがって、水アトマイズ法のようなアトマイズプロセスを含む製造方法で軟磁性粉末を製造する際に、球状の粉末が得られやすくなる。しかしながら、Fe基合金組成物内にPを過度に添加すると、軟磁性粉末の飽和磁束密度Bsが低下して、その磁気特性を低下させる傾向を示すこともある。さらに、一方、Fe基合金組成物におけるP添加量が過大であると、軟磁性粉末の脆性が促進される、キュリー温度Tc(単位:℃)が低下する、熱的安定性が低下する、アモルファス形成能が低下するといった現象がみられる可能性もある。したがって、Fe基合金組成物におけるPの添加量は、6.8原子%以上13原子%以下とされる。Fe基合金組成物にPを添加したことに基づく利益を享受することをより安定的に実現させる観点から、Fe基合金組成物におけるPの添加量を、7.5原子%以上12.0原子%以下とすることが好ましく、8.5原子%以上11.2原子%以下とすることがより好ましい。
 Cは、Fe基合金組成物の熱的安定性を高め、優れたアモルファス形成能を有する。したがって、Fe基合金組成物におけるCの添加量は1.0原子%以上とされる。Cの添加量が過度に高い場合には、アモルファス形成能が低下してしまうため、好ましくない。したがって、Fe基合金組成物におけるCの添加量は13原子%以下とされる。Fe基合金組成物にCを添加したことに基づく利益を享受することをより安定的に実現させる観点から、Fe基合金組成物におけるCの添加量を、2.0原子%以上5.0原子%以下とすることが好ましく、1.5原子%以上3.0原子%以下とすることがより好ましい。
 Siは、Fe基合金組成物の熱的安定性を高め、優れたアモルファス形成能を有する。また、後述する実施例において具体的に示すように、Siの含有量を5原子%以上とすることにより、Fe基合金組成物からなる軟磁性粉末を含有する圧粉コアの耐熱性(高温環境に長時間置かれても磁気特性が変化しにくいこと)を特に高めることが可能となる。したがって、Fe基合金組成物におけるSiの添加量は5原子%以上とされる。圧粉コアの耐熱性を高めることをより安定的に実現させる観点から、Fe基合金組成物におけるSiの添加量を、5.5原子%以上とすることが好ましい場合があり、6原子%以上とすることがより好ましい場合がある。しかしながら、Fe基合金組成物にSiを過度に添加すると、逆にFe基合金組成物内に非晶質相が形成されることが困難となり、Fe基合金組成物からなる軟磁性粉末を含有する圧粉コアの磁気特性を低下させる傾向を示すこともある。したがって、Fe基合金組成物におけるSiの添加量は、10原子%以下とされる。圧粉コアの磁気特性に与える影響を抑えつつアモルファス形成能を高めることをより安定的に実現させる観点から、Fe基合金組成物におけるSiの添加量を、5.5原子%以上10原子%以下とすることが好ましく、5.5原子%以上9.5原子%以下とすることがより好ましく、6原子%以上9原子%以下とすることが特に好ましい。
 Bは優れたアモルファス形成能を有するため、Fe基合金組成物にはBが添加されていてもよい。しかしながら、Fe基合金組成物内にBを過度に添加させると、アモルファス形成能が低下してしまうため、好ましくない。したがって、Fe基合金組成物におけるBの添加量は、0原子%以上9原子%とされる。Bを添加した利益をより安定的に享受する観点から、Fe基合金組成物におけるBの添加量を、2.0原子%以上8.5原子%以下とすることが好ましく、3.0原子%以上8.0原子%以下とすることがより好ましい。
 Crは軟磁性粉末の耐食性を向上させるため、Fe基合金組成物にはCrが添加されていてもよい。しかしながら、Fe基合金組成物内にCrを過度に添加させると、Fe基合金組成物からなる軟磁性粉末を含有する圧粉コアの磁気特性が低下しやすくなる。したがって、Fe基合金組成物におけるCrの添加量は、0原子%以上6原子%とされる。Crを添加した利益をより安定的に享受する観点から、Fe基合金組成物におけるCrの添加量を、1.0原子%以上3.0原子%以下とすることが好ましく、1.5原子%以上2.5原子%以下とすることがより好ましい。
 NiはCrとともに添加すると耐食性が高まるため、Fe基合金組成物にはNiが添加されていてもよい。しかしながら、Fe基合金組成物内にNiを過度に添加させると、Fe基合金組成物からなる軟磁性粉末を含有する圧粉コアの磁気特性が低下しやすくなる。したがって、Fe基合金組成物におけるNiの添加量は、0原子%以上10原子%とされる。Niを添加した利益をより安定的に享受する観点から、Fe基合金組成物におけるNiの添加量を、0原子%以上8.0原子%以下とすることが好ましく、0原子%以上7.0原子%以下とすることがより好ましい。
 SnはFe基合金組成物の融点Tm(単位:℃)を低下させることに寄与することがあり、Fe基合金組成物にはSnが添加されていてもよい。しかしながら、Fe基合金組成物内にSnを過度に添加させると、Fe基合金組成物からなる軟磁性粉末を含有する圧粉コアの磁気特性が低下しやすくなる。したがって、Fe基合金組成物におけるSnの添加量は、0原子%以上10原子%とされる。Snを添加した利益をより安定的に享受する観点から、Fe基合金組成物におけるSnの添加量を、0原子%以上3.0原子%以下とすることが好ましく、0原子%以上2.5原子%以下とすることがより好ましい。
 軟磁性粉末の形状は任意である。軟磁性粉末の形状は球状であってもよいし非球状であってもよい。非球状である場合には、鱗片状、楕円球状、液滴状、針状といった形状異方性を有する形状であってもよいし、特段の形状異方性を有しない不定形であってもよい。不定形の粉体の例として、球状の粉体の複数が、互いに接して結合していたり、他の粉体に部分的に埋没するように結合していたりする場合が挙げられる。
 軟磁性粉末の形状は、粉末を製造する段階で得られた形状であってもよいし、製造された粉末を二次加工することにより得られた形状であってもよい。前者の形状としては、球状、楕円球状、液滴状、針状などが例示され、後者の形状としては、鱗片状が例示される。
 軟磁性粉末の大きさは限定されない。軟磁性粉末は、レーザ回折・散乱法により測定した体積基準の粒度分布において小粒径側からの積算粒径分布が50%となる粒径(本明細書において「50%体積累積径」ともいう。)D50が4μm以上50μm以下であることが、本発明の一実施形態に係る軟磁性粉末を含有する圧粉コアの渦電流損を低下させる観点から好ましい場合がある。上記の圧粉コアの渦電流損をより安定的に低下させる観点から、軟磁性粉末の50%体積累積径D50は、45μm以下であることが好ましい場合があり、35μm以下であることがより好ましい場合があり、25μm以下であることがさらに好ましい場合があり、15μm以下であることが特に好ましい場合がある。また、軟磁性材料の粉末の粒径が小さい場合には、軟磁性粉末を備える磁性粉末を含有する圧粉コアを備えるインダクタが高周波(本明細書において「高周波」とは、100kHz以上を意味し、好ましい一例では1MHz以上を意味する。)環境で使用されたときに、圧粉コアの渦電流損が少なくなる。このため、圧粉コアの鉄損Pcvが高まりにくい。この観点からも、軟磁性粉末の粒径は小さいことが好ましい。ただし、軟磁性粉末の粒径が過度に小さい場合には、軟磁性粉末を含有する圧粉コアの透磁率の低下が顕著となる場合がある。また、過度に小粒径の粉末は取扱い性(調製過程での取扱い性を含む。)が低下する傾向がある。したがって、軟磁性粉末の50%体積累積径D50は、4μm以上であることが好ましい場合があり、15μm以上であることが好ましい場合がある。
 本発明の一実施形態に係る磁性粉末は、上記の非晶質の軟磁性粉末以外の軟磁性粉末を含有してもよい。そのような軟磁性粉末の具体例として、結晶質の軟磁性粉末、ナノ結晶を含有する軟磁性粉末が挙げられる。本明細書において「ナノ結晶」とは、結晶粒径が50nm程度またはそれ以下の結晶を意味する。
 本発明の一実施形態に係る粉末混合体は、磁性粉末および絶縁性結着材を含有する。本明細書において「絶縁性結着材」とは、複数の磁性粉末を電気的な絶縁を維持した状態で結着させうる材料を意味する。本発明の一実施形態に係る粉末混合体の絶縁性結着材はガラス系材料を含有する。ガラス系材料の組成は、ガラス転移温度Tgを有している限り、任意である。ガラス転移温度Tgが比較的低くなることなどの理由から、ガラス系材料はリン酸系ガラスを含有することが好ましい場合がある。この場合において、ガラス系材料は一種類の材料から構成されていてもよいし、複数種類の材料の混合体であってもよい。ガラス系材料の形状は任意である。粉末混合体におけるガラス系材料の含有量は適宜設定される。限定されない例示をすれば、粉末混合体におけるガラス系材料の含有量は、磁性粉末の質量に対して0.1質量%以上0.60質量%以下である。
 絶縁性結着材は樹脂系材料をさらに含有してもよい。樹脂系材料の具体例として、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂などが例示される。絶縁性結着材が樹脂系材料を含有する場合において、樹脂系材料の形状は任意であり、粉末混合体における樹脂系材料の含有量は適宜設定される。限定されない例示をすれば、粉末混合体における樹脂系材料の含有量は、磁性粉末の質量に対して0.5質量%以上5質量%以下である。
 本発明の一実施形態に係る粉末混合体は、リン酸エステル、赤燐、三酸化アンチモン、カーボンブラック、水酸化マグネシウム、水酸化アルミニウム、ヘキサブロモベンゼン、メラミン誘導体、臭素系、塩素系、白金系等の難燃剤、ステアリン酸亜鉛、ステアリン酸アルミニウム等の金属石鹸などの有機系の潤滑剤、無機系の潤滑剤などをさらに含有していてもよい。
 本発明の一実施形態に係る圧粉コアは、上記の本発明の一実施形態に係る粉末混合体の成形製造物を原料部材とする。この成形製造物がそのまま圧粉コアを構成してもよいし、圧粉コアは、この成形製造物に熱処理が施されたものであってもよい。熱処理が施された場合には、圧粉コアにおける絶縁性結着材の組成などが粉末混合体における絶縁性結着材の組成と異なってもよい。その場合の具体例として、粉末混合体における絶縁性結着材が樹脂系材料を含有し、熱処理によって樹脂系材料が分解し、その残渣が圧粉コアにおける絶縁性結着材を構成する成分の一種となる場合が挙げられる。また、熱処理の温度がガラス系材料のガラス転移温度近傍またはそれ以上である場合には、ガラス系材料は磁性粉末に融着した状態となることがある。
 図1は、本発明の一実施形態に係る圧粉コアの形状を概念的に示す斜視図である。図1に示される圧粉コア1は、ほぼリング状の形状を有する(トロイダルコア)。
 上記の本発明の一実施形態に係る圧粉コア1の製造方法は特に限定されないが、次に説明する製造方法を採用すれば、圧粉コア1をより効率的に製造することが実現される。
 本発明の一実施形態に係る圧粉コア1の製造方法は、次に説明する成形工程を備え、さらに熱処理工程を備えていてもよい。
 成形工程では、まず、前述の粉末混合体を用意する。この粉末混合体に対して加圧成形を含む成形処理を行うことにより成形製造物を得ることができる。加圧条件は限定されず、バインダー成分の組成などに基づき適宜決定される。例えば、絶縁性結着材が熱硬化性の樹脂を含有する場合には、加圧とともに加熱して、金型内で樹脂の硬化反応を進行させることが好ましい。一方、圧縮成形の場合には、加圧力が高いものの、加熱は必要条件とならず、短時間の加圧となる。
 粉末混合体は特定の形状を有するための処理が成形処理の前に施されていてもよい。そのような特定の形状を有する粉末混合体として、造粒粉が例示される。造粒粉は取り扱い性に優れるため、成形時間が短く生産性に優れる圧縮成形の作業性を向上させることができる。
 造粒粉の製造方法は特に限定されない。上記の造粒粉を与える成分をそのまま混錬し、得られた混練物を公知の方法で粉砕するなどして造粒粉を得てもよいし、上記の成分に分散媒(水が一例として挙げられる。)を添加してなるスラリーを調製し、このスラリーを乾燥させて粉砕することにより造粒粉を得てもよい。粉砕後にふるい分けや分級を行って、造粒粉の粒度分布を制御してもよい。
 圧縮成形における加圧条件は特に限定されない。造粒粉の組成、成形製造物の形状などを考慮して適宜設定すればよい。造粒粉を圧縮成形する際の加圧力が過度に低い場合には、成形製造物の機械的強度が低下する。このため、成形製造物の取り扱い性が低下する、成形製造物から得られた圧粉コア1の機械的強度が低下する、といった問題が生じやすくなる。また、圧粉コア1の磁気特性が低下したり絶縁性が低下したりする場合もある。一方、造粒粉を圧縮成形する際の加圧力が過度に高い場合には、その圧力に耐えうる成形金型を作成するのが困難になってくる。圧縮加圧工程が圧粉コア1の機械特性や磁気特性に悪影響を与える可能性をより安定的に低減させ、工業的に大量生産を容易に行う観点から、造粒粉を圧縮成形する際の加圧力は、0.3GPa以上2GPa以下とすることが好ましく、0.5GPa以上2GPa以下とすることがより好ましく、0.8GPa以上2GPa以下とすることが特に好ましい。
 圧縮成形では、加熱しながら加圧を行ってもよいし、常温で加圧を行ってもよい。
 成形工程により得られた成形製造物が本実施形態に係る圧粉コア1であってもよいし、次に説明するように成形製造物に対して熱処理工程を実施して圧粉コア1を得てもよい。
 熱処理工程では、上記の成形工程により得られた成形製造物を加熱することにより、磁性粉末間の距離を修正することによる磁気特性の調整および成形工程において磁性粉末に付与された歪を緩和させて磁気特性の調整を行う。こうして、成形製造物からなる圧粉コア1が得られる。
 熱処理工程は上記のように圧粉コア1の磁気特性の調整が目的であるから、熱処理温度などの熱処理条件は、圧粉コア1の磁気特性が最も良好となるように設定される。熱処理条件を設定する方法の一例として、成形製造物の加熱温度を変化させ、昇温速度および加熱温度での保持時間など他の条件は一定とすることが挙げられる。
 熱処理条件を設定する際の圧粉コア1の磁気特性の評価基準は特に限定されない。評価項目の具体例として圧粉コア1の鉄損Pcvを挙げることができる。この場合には、圧粉コア1の鉄損Pcvが最低となるように成形製造物の加熱温度を設定すればよい。鉄損Pcvの測定条件は適宜設定され、一例として、周波数を100kHz、実行最大磁束密度Bmを100mTとする条件が挙げられる。
 熱処理の際の雰囲気は特に限定されない。酸化性雰囲気の場合には、バインダー成分の熱分解が過度に進行する可能性や、磁性粉末の酸化が進行する可能性が高まるため、窒素、アルゴンなどの不活性雰囲気や、水素などの還元性雰囲気で熱処理を行うことが好ましい。
 本発明の一実施形態に係るインダクタは、上記の本発明の一実施形態に係る圧粉コア1、コイルおよびこのコイルのそれぞれの端部に接続された接続端子を備える。ここで、圧粉コア1の少なくとも一部は、接続端子を介してコイルに電流を流したときにこの電流により生じた誘導磁界内に位置するように配置されている。本発明の一実施形態に係るインダクタは、高温環境に長時間置かれても磁気特性が変化しにくい(耐熱性に優れる)圧粉コアである本発明の一実施形態に係る圧粉コア1を備えるため、インダクタとしての信頼性に優れると期待される。
 このようなインダクタの一例として、図2に示されるトロイダルコイル10が挙げられる。トロイダルコイル10は、リング状の圧粉コア(トロイダルコア)1に、被覆導電線2を巻回することによって形成されたコイル2aを備える。巻回された被覆導電線2からなるコイル2aと被覆導電線2の端部2b,2cとの間に位置する導電線の部分において、コイル2aの端部2d,2eを定義することができる。このように、本実施形態に係るインダクタは、コイルを構成する部材と接続端子を構成する部材とが同一の部材から構成されていてもよい。
 本発明の一実施形態に係るインダクタの他の一例として、図3に示されるコイル埋設型インダクタ20が挙げられる。コイル埋設型インダクタ20は、数mm角の小形のチップ状に形成することが可能であり、箱型の形状を有する圧粉コア21を備え、その内部に、被覆導電線22におけるコイル部22cが埋設されている。被覆導電線22の端部22a,22bは、圧粉コア21の表面に位置し、露出している。圧粉コア21の表面の一部は、互いに電気的に独立な接続端部23a,23bによって覆われている。接続端部23aは被覆導電線22の端部22aと電気的に接続され、接続端部23bは被覆導電線22の端部22bと電気的に接続されている。図3に示されるコイル埋設型インダクタ20では、覆導電線22の端部22aは接続端部23aによって覆われ、覆導電線22の端部22bは接続端部23bによって覆われている。
 被覆導電線22のコイル部22cの圧粉コア21内への埋設方法は限定されない。被覆導電線22を巻回した部材を金型内に配置し、さらに磁性粉末を含む粉末含有組成物(造粒粉)を金型内に供給して、加圧成形を行ってもよい。あるいは、磁性粉末を含む粉末含有組成物(造粒粉)をあらかじめ予備成形してなる複数の部材を用意し、これらの部材を組み合わせ、その際画成される空隙部内に被覆導電線22を配置して組立体を得て、この組立体を加圧成形してもよい。コイル部22cを含む被覆導電線22の材質は限定されない。例えば、銅合金とすることが挙げられる。コイル部22cはエッジワイズコイルであってもよい。接続端部23a,23bの材質も限定されない。生産性に優れる観点から、銀ペーストなどの導電ペーストから形成されたメタライズ層とこのメタライズ層上に形成されためっき層とを備えることが好ましい場合がある。このめっき層を形成する材料は限定されない。当該材料が含有する金属元素として、銅、アルミ、亜鉛、ニッケル、鉄、スズなどが例示される。
 本発明の一実施形態に係る電子・電気機器は、上記の本発明の一実施形態に係るインダクタが実装された電子・電気機器であって、インダクタの接続端子にて基板に接続されているものである。本発明の一実施形態に係る電子・電気機器は、本発明の一実施形態に係るインダクタが実装されているため、高温環境下でも安定に動作することが期待される。
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
 以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。
(実施例1から実施例5)
(1)Fe基非晶質合金粉末の作製
 表1に示される組成(単位:原子%)のFe基合金組成物を用意した。
Figure JPOXMLDOC01-appb-T000001
 これらのFe基合金組成物から水アトマイズ法を用いて軟磁性粉末を作製した。得られた軟磁性粉末の粒度分布を日機装社製「マイクロトラック粒度分布測定装置 MT3000シリーズ」を用いて体積分布で測定した。体積基準の粒度分布において小粒径側からの積算粒径分布が50%となる粒径(50%体積累積径)D50は、16μmであった。
(2)造粒粉の作製
 上記の実施例1から実施例5に係る軟磁性粉末を97.2質量部、アクリル樹脂およびフェノール樹脂からなる絶縁性結着材を2~3質量部、およびステアリン酸亜鉛からなる潤滑剤0~0.5質量部を、溶媒としての水に混合してスラリーを得た。得られたスラリーから造粒粉を得た。
(3)圧縮成形
 得られた造粒粉を金型に充填し、面圧0.5~1.5GPaで加圧成形して、外径20mm×内径12mm×厚さ3mmのリング形状を有する成形製造物を得た。
(4)熱処理
 得られた成形製造物を、窒素気流雰囲気の炉内に載置し、炉内温度を、室温(23℃)から昇温速度10℃/分で最適コア熱処理温度である400℃まで加熱し、この温度にて1時間保持し、その後、炉内で室温まで冷却する熱処理を行い、圧粉コアからなるトロイダルコアを得た。
(試験例1)X線回折
 各実施例において製造した軟磁性粉末についてX線回折測定を行って、結晶質であるか非晶質であるか確認した。その結果、実施例1から実施例4において製造した軟磁性粉末は非晶質であって、実施例5において製造した軟磁性粉末は結晶質であった。
(試験例2)熱物性の測定
 熱分析装置((株)リガク製「DSC8270」)を用いて各実施例において製造した軟磁性粉末を測定し、各種熱物性を得た。その結果を表2に示す。表2における記号の意味は次のとおりである。
  Tc:キュリー温度(単位:K)
  Tg:ガラス転移温度(単位:K)
  Tx:結晶化温度(単位:K)
  ΔTx:結晶化温度-結晶化温度
  Tm*:凝固点(単位:K)
  Tg/Tm:ガラス転移温度/凝固点
  Tx/Tm:結晶化温度/凝固点
Figure JPOXMLDOC01-appb-T000002
(試験例3)比透磁率に関する耐熱性の測定
 実施例1から実施例4において作製したトロイダルコアのそれぞれに被覆銅線をそれぞれ40回巻いてトロイダルコイル得た。これらのトロイダルコイルのそれぞれについて、インピーダンスアナライザー(HP社製「4192A」)を用いて、100kHzの条件で比透磁率μ0を測定した。別途各実施例のトロイダルコアを用意し、炉内温度が300℃に保持された加熱炉内にこれらのトロイダルコアを10時間、100時間または1000時間放置する耐熱試験を行った。その後、炉内温度を室温まで冷却してトロイダルコアを取出し、各耐熱試験後のトロイダルコアについても、耐熱試験前における測定と同条件で比透磁率μ1を測定した。比透磁率の測定結果を表3に示す。なお、表3中の数値はいずれも同一条件で製造された4個のトロイダルコイルについての測定結果の平均値である。
Figure JPOXMLDOC01-appb-T000003
 下記式から比透磁率の変化率Rμ(単位:%)を求めた。
  Rμ=(μ1-μ0)/μ1×100
 比透磁率の変化率Rμの算出結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
(試験例4)鉄損に関する耐熱性の測定
 実施例1から実施例4において作製したトロイダルコアに被覆銅線をそれぞれ1次側40回、2次側10回巻いて得られたトロイダルコイルについて、BHアナライザー(岩崎通信機社製「SY-8218」)を用いて、実効最大磁束密度Bmを100mTとする条件で、測定周波数100kHzで鉄損Pcv0(単位:kW/m)を測定した。別途各実施例のトロイダルコアを用意し、炉内温度が300℃に保持された加熱炉内にこれらのトロイダルコアを10時間、100時間または1000時間放置する耐熱試験を行った。その後、炉内温度を室温まで冷却してトロイダルコアを取出し、各耐熱試験後のトロイダルコアについても、耐熱試験前における測定と同条件で鉄損Pcv1(単位:kW/m)を測定した。鉄損の測定結果を表5に示す。なお、表5中の数値はいずれも同一条件で製造された4個のトロイダルコイルについての測定結果の平均値である。
Figure JPOXMLDOC01-appb-T000005
 下記式から鉄損の変化率RPcv(単位:%)を求めた。
  RPcv=(Pcv1-Pcv0)/Pcv1×100
 鉄損の変化率RPcvの算出結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 図4は、表4に示される1000時間後のRμと軟磁性粉末に係るFe基合金組成物におけるSi添加量との関係を示すグラフである。図5は、表6に示される1000時間後のRPcvと軟磁性粉末に係るFe基合金組成物におけるSi添加量との関係を示すグラフである。図4および図5に示されるように、Fe基合金組成物におけるSi添加量が5原子%以上である磁性粉末を含有する圧粉コアでは、比透磁率および鉄損のいずれについても、耐熱試験による変化率(Rμ、RPcv)が0%に近くなり、耐熱性に優れる圧粉コアが得られたことが理解される。また、図4に示されるグラフから、Si添加量が過度に高くなると比透磁率の変化率Rμが低下する傾向がみられる。したがって、Fe基合金組成物におけるSi添加量を5原子%以上10原子%以下とすることにより、耐熱性に優れる圧粉コアを形成可能な軟磁性粉末が得られることが確認された。
(実施例6から実施例12)
(1)Fe基非晶質合金粉末の作製
 表7に示される組成(単位:原子%)のFe基合金組成物を用意した。
Figure JPOXMLDOC01-appb-T000007
 これらのFe基合金組成物から水アトマイズ法を用いて軟磁性粉末を作製した。得られた軟磁性粉末の粒度分布を日機装社製「マイクロトラック粒度分布測定装置 MT3000シリーズ」を用いて体積分布で測定した。体積基準の粒度分布において小粒径側からの積算粒径分布が50%となる粒径(50%体積累積径)D50は、11μmであった。以下、実施例1から5の場合と同様の条件で、造粒粉の作成、圧縮成形および熱処理を行って、圧粉コアからなるトロイダルコアを得た。
(試験例5)X線回折
 各実施例において製造した軟磁性粉末についてX線回折測定を行って、結晶質であるか非晶質であるか確認した。その結果、実施例6から実施例12において製造した磁性粉末はいずれも非晶質であった。
(試験例6)熱物性の測定
 熱分析装置((株)リガク製「DSC8270」)を用いて各実施例において製造した軟磁性粉末を測定し、各種熱物性を得た。その結果を表8に示す。表8における記号の意味は次のとおりである。
  Tc:キュリー温度(単位:K)
  Tg:ガラス転移温度(単位:K)
  Tx:結晶化温度(単位:K)
  ΔTx:結晶化温度-結晶化温度
  Tm*:凝固点(単位:K)
  Tg/Tm:ガラス転移温度/凝固点
  Tx/Tm:結晶化温度/凝固点
Figure JPOXMLDOC01-appb-T000008
(試験例7)比透磁率に関する耐熱性の測定
 実施例6から実施例12において作製したトロイダルコアのそれぞれに被覆銅線をそれぞれ40回巻いてトロイダルコイル得た。これらのトロイダルコイルのそれぞれについて、インピーダンスアナライザー(HP社製「4192A」)を用いて、100kHzの条件で比透磁率μ0を測定した。別途各実施例のトロイダルコアを用意し、炉内温度が250℃に保持された加熱炉内にこれらのトロイダルコアを1000時間放置する耐熱試験を行った。その後、炉内温度を室温まで冷却してトロイダルコアを取出し、各耐熱試験後のトロイダルコアについても、耐熱試験前における測定と同条件で比透磁率μ1を測定した。下記式から比透磁率の変化率Rμ(単位:%)を求めた。
  Rμ=(μ1-μ0)/μ1×100
 比透磁率の変化率Rμの算出結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
(試験例4)鉄損に関する耐熱性の測定
 実施例6から実施例12において作製したトロイダルコアに被覆銅線をそれぞれ1次側40回、2次側10回巻いて得られたトロイダルコイルについて、BHアナライザー(岩崎通信機社製「SY-8218」)を用いて、実効最大磁束密度Bmを100mTとする条件で、測定周波数100kHzで鉄損Pcv0(単位:kW/m)を測定した。別途各実施例のトロイダルコアを用意し、炉内温度が300℃に保持された加熱炉内にこれらのトロイダルコアを1000時間放置する耐熱試験を行った。その後、炉内温度を室温まで冷却してトロイダルコアを取出し、各耐熱試験後のトロイダルコアについても、耐熱試験前における測定と同条件で鉄損Pcv1(単位:kW/m)を測定した。下記式から鉄損の変化率RPcv(単位:%)を求めた。
  RPcv=(Pcv1-Pcv0)/Pcv1×100
 鉄損の変化率RPcvの算出結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
 図6は、表9に示される1000時間後のRμと磁性粉末に係るFe基合金組成物におけるSi添加量との関係を示すグラフである。図7は、表10に示される1000時間後のRPcvと磁性粉末に係るFe基合金組成物におけるSi添加量との関係を示すグラフである。図6および図7に示されるように、Fe基合金組成物におけるSi添加量が5原子%以上である磁性粉末を含有する圧粉コアでは、比透磁率および鉄損のいずれについても、耐熱試験による変化率(Rμ、RPcv)が0%に近くなり、耐熱性に優れる圧粉コアが得られたことが理解される。したがって、Fe基合金組成物の組成の基本構成にかかわらず、Fe基合金組成物におけるSi添加量を5原子%以上10原子%以下とすることにより、耐熱性に優れる圧粉コアを形成可能な磁性粉末が得られることが確認された。
 本発明の圧粉コアを備えるインダクタは、高温環境で長時間使用されても信頼性が低下しにくいため、電子・電気機器等の昇圧回路の構成部品、トランスやチョークコイル等の構成部品などとして好適に使用されうる。
1…圧粉コア(トロイダルコア)
10…トロイダルコイル
2…被覆導電線
2a…コイル
2b,2c…被覆導電線2の端部
2d,2e…コイル2aの端部
20…コイル埋設型インダクタ
21…圧粉コア
22…被覆導電線
22a,22b…端部
23a,23b…接続端部
22c…コイル部

Claims (9)

  1.  組成式が、Fe100原子%-a-b-c-x-y-z-tNiSnCrSiで示され、0原子%≦a≦10原子%、0原子%≦b≦3原子%、0原子%≦c≦6原子%、6.8原子%≦x≦13原子%、1.0原子%≦y≦13原子%、0原子%≦z≦9原子%、5原子%≦t≦10原子%であるFe基合金組成物からなる非晶質の軟磁性粉末を備えることを特徴とする磁性粉末。
  2.  5.5原子%≦t≦8原子%である、請求項1に記載の磁性粉末。
  3.  請求項1または2に記載される磁性粉末および絶縁性結着材を含有する粉末混合体であって、
     前記絶縁性結着材はガラス系材料を含有すること
    を特徴とする粉末混合体。
  4.  前記ガラス系材料はリン酸系ガラスを含む、請求項3に記載の粉末混合体。
  5.  前記絶縁性結着材は樹脂系材料をさらに含有する、請求項3または4に記載の粉末混合体。
  6.  請求項3から5のいずれか一項に記載される粉末混合体の成形製造物を原料部材とする圧粉コア。
  7.  請求項3から5のいずれか一項に記載される粉末混合体に対して成形処理を行って成形製造物を得る成形工程を備える圧粉コアの製造方法。
  8.  請求項6に記載される圧粉コア、コイルおよび前記コイルのそれぞれの端部に接続された接続端子を備えるインダクタであって、前記圧粉コアの少なくとも一部は、前記接続端子を介して前記コイルに電流を流したときに前記電流により生じた誘導磁界内に位置するように配置されているインダクタ。
  9.  請求項8に記載されるインダクタが実装された電子・電気機器であって、前記インダクタは前記接続端子にて基板に接続されている電子・電気機器。
PCT/JP2017/009396 2016-06-21 2017-03-09 磁性粉末、粉末混合体、圧粉コア、圧粉コアの製造方法、インダクタ、および電子・電気機器 WO2017221475A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016122260A JP2019143167A (ja) 2016-06-21 2016-06-21 磁性粉末、粉末混合体、圧粉コア、圧粉コアの製造方法、インダクタ、および電子・電気機器
JP2016-122260 2016-06-21

Publications (1)

Publication Number Publication Date
WO2017221475A1 true WO2017221475A1 (ja) 2017-12-28

Family

ID=60784797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009396 WO2017221475A1 (ja) 2016-06-21 2017-03-09 磁性粉末、粉末混合体、圧粉コア、圧粉コアの製造方法、インダクタ、および電子・電気機器

Country Status (2)

Country Link
JP (1) JP2019143167A (ja)
WO (1) WO2017221475A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307291A (ja) * 2004-04-22 2005-11-04 Alps Electric Co Ltd 非晶質軟磁性合金粉末及びそれを用いた圧粉コアと電波吸収体
JP2008240148A (ja) * 2007-02-28 2008-10-09 Nippon Steel Corp 軟磁気特性に優れたFe系非晶質合金
JP2012212853A (ja) * 2011-03-24 2012-11-01 Alps Green Devices Co Ltd 圧粉磁心及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307291A (ja) * 2004-04-22 2005-11-04 Alps Electric Co Ltd 非晶質軟磁性合金粉末及びそれを用いた圧粉コアと電波吸収体
JP2008240148A (ja) * 2007-02-28 2008-10-09 Nippon Steel Corp 軟磁気特性に優れたFe系非晶質合金
JP2012212853A (ja) * 2011-03-24 2012-11-01 Alps Green Devices Co Ltd 圧粉磁心及びその製造方法

Also Published As

Publication number Publication date
JP2019143167A (ja) 2019-08-29

Similar Documents

Publication Publication Date Title
JP6662436B2 (ja) 圧粉磁心の製造方法
JP6260508B2 (ja) 圧粉磁心
JP6513458B2 (ja) 圧粉コア、該圧粉コアの製造方法、該圧粉コアを備える電子・電気部品、および該電子・電気部品が実装された電子・電気機器
JP6503058B2 (ja) 圧粉コア、当該圧粉コアの製造方法、該圧粉コアを備えるインダクタ、および該インダクタが実装された電子・電気機器
JP6358491B2 (ja) 圧粉磁心、それを用いたコイル部品および圧粉磁心の製造方法
TWI631223B (zh) 壓粉磁芯、該壓粉磁芯之製造方法、具備該壓粉磁芯之電感器及安裝有該電感器之電子・電氣機器
TW201738908A (zh) 壓粉芯、該壓粉芯之製造方法、具該壓粉芯之電感器、及安裝有該電感器之電子・電氣機器
JP6213809B2 (ja) 圧粉磁心、これを用いたコイル部品および圧粉磁心の製造方法
WO2017038295A1 (ja) 圧粉コア、該圧粉コアの製造方法、該圧粉コアを備える電気・電子部品、および該電気・電子部品が実装された電気・電子機器
JP6460505B2 (ja) 圧粉磁心の製造方法
WO2017086102A1 (ja) 圧粉コアの製造方法
JP6898057B2 (ja) 圧粉磁心
US10283266B2 (en) Powder core, manufacturing method of powder core, inductor including powder core, and electronic/electric device having inductor mounted therein
WO2018207521A1 (ja) 圧粉コア、当該圧粉コアの製造方法、該圧粉コアを備えるインダクタ、および該インダクタが実装された電子・電気機器
JP6168382B2 (ja) 圧粉磁心の製造方法
TWI591659B (zh) Dust core, electrical and electronic components and electrical and electronic machinery
WO2017221475A1 (ja) 磁性粉末、粉末混合体、圧粉コア、圧粉コアの製造方法、インダクタ、および電子・電気機器
JP7152504B2 (ja) 圧粉成形コア、当該圧粉成形コアの製造方法、該圧粉成形コアを備えるインダクタ、および該インダクタが実装された電子・電気機器
JP6944313B2 (ja) 磁性粉末、圧粉コア、インダクタ、および電子・電気機器
JP2021141267A (ja) 磁性粉末、磁性粉末成形体、および磁性粉末の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17814947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17814947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP