WO2017217384A1 - テンショナ - Google Patents

テンショナ Download PDF

Info

Publication number
WO2017217384A1
WO2017217384A1 PCT/JP2017/021709 JP2017021709W WO2017217384A1 WO 2017217384 A1 WO2017217384 A1 WO 2017217384A1 JP 2017021709 W JP2017021709 W JP 2017021709W WO 2017217384 A1 WO2017217384 A1 WO 2017217384A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft member
shaft
spring
tensioner
cap
Prior art date
Application number
PCT/JP2017/021709
Other languages
English (en)
French (fr)
Inventor
山田 佳男
壮一 中山
貴雄 小林
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to JP2018523909A priority Critical patent/JP6818025B2/ja
Publication of WO2017217384A1 publication Critical patent/WO2017217384A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains

Definitions

  • the present invention relates to a tensioner used to keep the tension of a mating member such as an endless belt or chain constant, and more particularly to a tensioner that can have a simple structure with a reduced number of parts.
  • a tensioner is used for an engine of a motor vehicle such as a two-wheeled vehicle or a four-wheeled vehicle. For example, when a timing chain or a timing belt of an engine is pushed with a predetermined force, the tensioner is elongated or loosened. , Acts to keep the tension constant.
  • FIG. 52 shows a state in which the tensioner 200 is mounted on the engine body 300 of the automobile.
  • a pair of cam sprockets 310 and a crank sprocket 320 are arranged inside the engine body 300, and a timing chain 330 is stretched between these sprockets 310 and 320 in an endless manner.
  • a chain guide 340 is swingably disposed on the moving path of the timing chain 330, and the timing chain 330 moves while sliding on the chain guide 340.
  • the tensioner 200 is fixed to the engine main body 300 in a state where the engine main body 300 is inserted so as to pass through a mounting hole 360 formed in the engine main body 300.
  • the first shaft member and the second shaft member are assembled by the screw portion and accommodated in the case, the first shaft member is rotationally biased by the spring, and the second shaft member is propelled by this rotational force. It has a structure (see, for example, Patent Document 1).
  • FIG. 53 shows the structure of the conventional tensioner 200 described above.
  • the case 250 is fixed to the engine main body 300 by bolting or the like.
  • the rotation of the second shaft member 210 is restricted by a bearing 260 attached to the tip portion of the case 250.
  • the bearing 260 has a non-circular sliding hole 261 that is oval or parallel cut, and the rotation of the second shaft member 210 is restricted by passing through the sliding hole 261. Therefore, the first shaft member
  • the rotational force 230 is converted into linear motion, and the second shaft member 210 advances linearly.
  • the case 250 is provided with a dish-shaped shaft receiver 270, and the base end portion of the first shaft member 230 is inserted into the shaft receiver 270.
  • the second shaft member 210 moves forward with respect to the case 250 by the rotational force of the first shaft member 230 transmitted through the threaded portion 220, and causes the chain guide 340 (that is, the timing chain 330) to move. Press.
  • the tension of the timing chain 330 increases, the second shaft member 210 moves backward while rotating the first shaft member 230 in the reverse direction.
  • the shaft receiver 270 and the bearing 260 are provided in the case 250. Since the shaft receiver 270 needs to support the first shaft member 230 in a rotatable manner, the bearing 260 is provided because it is necessary to convert the rotational force of the first shaft member 230 into the propulsive force of the second shaft member 210. . Thus, in the conventional tensioner, the shaft receiver 270 for rotatably supporting the first shaft member and the bearing 260 for causing the second shaft member to linearly advance are required. Further, a case 250 for attaching them is also required. As a result, the conventional tensioner has a large number of parts, a complicated structure, and troublesome assembly. The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a tensioner that can greatly reduce the number of parts, simplify the structure, and can be easily assembled.
  • the tensioner according to the present invention includes a first shaft member fixed to a support member in a non-rotating state, and is attached to the first shaft member in a screwed state.
  • the advancement of the second shaft member is supported only in a state where the second shaft member is screwed to the first shaft member.
  • the present invention further includes a cap that is directly or indirectly in contact with the tip surface of the second shaft member and is rotatable with respect to the second shaft member, and the cap abuts against the counterpart member.
  • an average contact diameter at which the second shaft member and the mating member or the second shaft member and the cap are in contact with each other is set according to the advancement dimension of the second shaft member.
  • the spring is a torsion spring having one end locked to the first shaft member and the other end locked to the second shaft member. Further, the spring is a mainspring spring having one end locked to the first shaft member and the other end locked to the second shaft member.
  • the rear end portion is engaged with the support member or the first shaft member to be rotationally restricted, and the front end portion is directly or indirectly engaged with the second shaft member to be second.
  • a stopper member that locks the rotation of the shaft member is inserted in the axial direction of the second shaft member so as to be removable. Further, a stopper member that removably engages with the second shaft member and locks the movement of the second shaft member in the axial direction is detachable from the support member or the first shaft member.
  • Another tensioner includes a first shaft member fixed to a support member in a non-rotating state, and is attached to the first shaft member in a screwed state.
  • a second shaft member that presses and a spring that imparts a rotational force to the second shaft member, and the second shaft member advances while rotating by the rotational force imparted by the spring to move the counterpart member
  • the connector member is configured to be pressed, and a connector member that is rotatable in a state in which axial movement is constrained is disposed in a state of being engaged with the spring and the second shaft member, and the second shaft member includes the connector member. And advancing in the axial direction by applying a rotational force of the spring.
  • the spring is a mainspring spring having one end locked to the first shaft member or the support member and the other end locked to the connector member.
  • the stopper member that engages with the connector member and locks the rotation of the connector member is attachable to and detachable from the support member or the first shaft member.
  • a cap that is rotatable with respect to the second shaft member is attached in contact with the distal end surface of the second shaft member.
  • the connector member and the second shaft member are formed with a rotational force transmitting means for transmitting the rotational force by engaging with each other. Further, the second shaft member advances in the axial direction while the rotational force transmitting means is engaged with each other.
  • the rotational force transmitting means is engaged with a sliding surface portion formed along the axial direction of the second shaft member so as to face the sliding surface portion, and the sliding surface portion slides in the engaged state. It is formed by the facing nail
  • the first shaft member is fixed to the support member in a non-rotating state, and the second shaft member is advanced while rotating with the spring force of the spring while being screwed to the first shaft member. Press the member. Accordingly, since the first shaft member does not rotate, a shaft receiver for supporting the rotation of the first shaft member becomes unnecessary. Further, since the second shaft member advances while rotating, it is not necessary to restrict the rotation, and a bearing for restricting the rotation of the second shaft member becomes unnecessary. Since the shaft receiver and the bearing are unnecessary, a case for attaching them is also unnecessary, the number of parts is greatly reduced, the structure is simple, the assembly is easy, and the weight can be reduced.
  • the first shaft member is fixed to the support member in a non-rotating state, and the second shaft member is screwed to the first shaft member. Since the rotational force of the spring is transmitted to the second shaft member via the connector member, the second shaft member advances while rotating and presses the mating member. As described above, since the first shaft member does not rotate, a shaft receiver for supporting the rotation of the first shaft member becomes unnecessary. Further, since the second shaft member advances while rotating, it is not necessary to restrict the rotation, and a bearing for restricting the rotation of the second shaft member becomes unnecessary. Since the shaft receiver and the bearing are unnecessary, a case for attaching them is also unnecessary, the number of parts is greatly reduced, the structure is simple, the assembly is easy, and the weight can be reduced.
  • FIG. 4 is a cross-sectional view from the right side surface of the tensioner according to the first embodiment of the present invention, and is a cross-sectional view taken along line E6-E6 in FIG. It is a side view from the left side of the tensioner of 1st Embodiment of this invention.
  • FIG. 2 is a cross-sectional view taken along line E1-E1 in FIG. It is sectional drawing which shows the pressing state of the tensioner of 1st Embodiment.
  • (A) and (B) are a side view and a sectional view taken along line E2-E2 of the support member.
  • (A), (B) is a front view of the first shaft member and a sectional view taken along line E3-E3.
  • (A), (B), (C) is the front view, side view, and E4-E4 sectional view of the second shaft member.
  • (A), (B), (C) is the left view of a spring, a front view, and a right view.
  • (A), (B) is the front view and right view of a stopper member. It is sectional drawing which shows the tensioner of the modification of 1st Embodiment. It is sectional drawing which shows the tensioner of another modification of 1st Embodiment. It is sectional drawing which shows the tensioner of another modification of 1st Embodiment. It is sectional drawing which shows the modification of 1st Embodiment. It is a side view from the right side of the tensioner of 2nd Embodiment of this invention.
  • FIG. (A) is a side view from the left side of the tensioner of 2nd Embodiment of this invention. It is F1-F1 sectional view taken on the line of FIG. It is an expanded sectional view which shows the principal part of FIG. (A), (B) is a side view which shows the action
  • FIG. 27 is a sectional view taken along line G1-G1 in FIG. It is an expanded sectional view which shows the principal part of FIG. (A), (B) is an end elevation which shows the action
  • FIG. 34 is a cross-sectional view of the tensioner of the fourth embodiment taken along the line H2-H2 in FIG.
  • FIG. 32 is a cross-sectional view taken along line H1-H1 of FIG. 31 and shows a temporarily locked state of the tensioner of the fourth embodiment.
  • It is sectional drawing which shows the press state in the tensioner of 4th Embodiment. It is an expanded sectional view of the tensioner press state of a 4th embodiment.
  • (A) and (B) are a side view and a sectional view taken along line H3-H3 of a supporting member used in the fourth embodiment.
  • FIG. 44 is a cross-sectional view taken along line M2-M2 in FIG.
  • FIG. 43 showing a temporarily locked state of the tensioner according to the fifth embodiment of the present invention.
  • FIG. 43 is a sectional view taken along line M1-M1 in FIG. 42 of the fifth embodiment.
  • FIG. 46 is a cross-sectional view taken along line M3-M3 in FIG. 45, showing the unlocked state of the fifth embodiment. It is a longitudinal cross-sectional view which shows the lock release state of 5th Embodiment.
  • (A) and (B) are a side view and a sectional view taken along line M4-M4 of a supporting member used in the fifth embodiment.
  • (A), (B) is the left view and front view of a 1st shaft member which are used for 5th Embodiment.
  • (A), (B) is the partially broken cross section and right view of the 2nd shaft member used for 5th Embodiment.
  • (A), (B), (C), (D) is the left view, right view, top view, and partial fracture
  • (A), (B) is the side view and partially broken sectional view of the cap used for 5th Embodiment.
  • (A), (B) is the top view and front view of the stopper member which are used for 5th Embodiment. It is a side view which shows the state which assembled
  • the tensioner of the present invention has a structure in which the case for housing the component parts is omitted, and the number of parts is reduced by directly attaching to the engine body with this structure.
  • FIGS. 1 to 4 show the entire tensioner 1
  • FIGS. 5 to 9 show respective components
  • FIGS. 10 to 12 show modified examples.
  • It is. 1 and 2 are a sectional view and a left side view of the tensioner 1 taken along line E6-E6 in FIG. 3
  • FIG. 3 is a sectional view taken along line E1-E1 in FIG. 1, and FIG. The figure is shown.
  • the tensioner 1 is formed by a support member 2, a first shaft member 3, a second shaft member 4, a spring 5, and a stopper member 6.
  • the support member 2 serves as an attachment member when attaching the tensioner 1 to the engine body 300 (see FIG. 52).
  • the support member 2 supports the first shaft member 3.
  • the support member 2 includes a cloud-shaped flat plate-like flange portion 21 and a fixing portion 22 formed on the flange portion 21.
  • the flange portion 21 is a portion that is fixed to the engine main body 300 with a bolt or the like, and mounting hole portions 24 through which the bolt penetrates are formed at two positions sandwiching the fixing portion 22.
  • the fixing portion 22 is a portion that fixes the first shaft member 3 in a rising shape, and is formed in a rising shape in a short cylindrical shape at the center portion of the flange portion 21.
  • the first shaft member 3 can be fixed upright by inserting the fixing portion 22 into the rear end portion of the first shaft member 3 and crimping the fixing portion 22 in this inserted state (see FIG. 3).
  • the fixing portion 22 which is in the shape of a short cylinder has an operation hole portion 23.
  • the operation hole 23 is for inserting a stopper member 6 described later.
  • a rotation stop convex portion 25 is formed on the rear end surface of the flange portion 21.
  • the rotation prevention convex part 25 is for preventing rotation of the stopper member 6 described later.
  • the first shaft member 3 is formed of a cylindrical body having a predetermined length.
  • the first shaft member 3 is directly fixed to the fixing portion 22 of the support member 2 in a non-rotating state.
  • a male screw portion 31 is formed on the outer surface of the first shaft member 3, and a second shaft member 4 described later can be screwed together.
  • a caulking portion 32 to which the fixing portion 22 of the support member 2 is caulked is formed so as to protrude inward, and this caulking portion
  • the first shaft member 3 is fixed directly to the support member 2 by 32 in a non-rotating state. Further, a hook hole 33 in which one end of the spring 5 is locked is formed in a portion close to the rear end portion.
  • the structure for fixing the first shaft member 3 to the support member 2 may be other than the illustrated structure.
  • the caulking portion at the rear end portion of the first shaft member 3 may be formed so as to protrude outward, and the fixing portion 22 of the flange portion 21 of the support member 2 may be caulked with respect to the caulking portion.
  • the rear end portion of the first shaft member 3 may be fixed to the flange portion 21 of the support member 2 with a screw, and the rear end portion of the first shaft member 3 is fixed to the flange portion 21 of the support member 2 by spot welding. You may do it.
  • the second shaft member 4 advances in the axial direction to press the chain guide 340 (timing chain 330) as a counterpart member (see FIG. 4).
  • the second shaft member 4 is formed by a cylindrical body 41 that is open at the rear end side (left end side in FIG. 7) and sealed at the front end side by a head portion 42. Yes.
  • the front end surface of the head portion 42 becomes a contact surface 44 that directly contacts the mating member (chain guide 340 in FIG. 4).
  • a female screw portion 43 that is screwed into the male screw portion 32 of the first shaft member 3 is formed.
  • an engagement hole 45 that engages with the stopper member 6 when the distal end portion of the stopper member 6 is inserted is formed.
  • the engagement hole 45 is formed as a non-circular hole (square hole in the illustrated example) and engages with the stopper member 6.
  • a hook hole 46 in which the other end of the spring 5 is locked is formed on the outer surface on the distal end side of the cylindrical body 41.
  • the second shaft member 4 described above rotates when the spring force of the spring 5 acts. At this time, since the second shaft member 4 is screwed into the first shaft member 3, the second shaft member 4 advances in the axial direction of the first shaft member 3 while rotating. That is, the second shaft member 4 is supported by the first shaft member 3 only when the female screw 43 is screwed into the male screw 32 of the first shaft member 3. And it advances, rotating in the support state of this 1st shaft member 3. As shown in FIG. When the second shaft member 4 has a reaction force greater than the set value from the counterpart member, the second shaft member 4 moves backward while rotating in the reverse direction. Note that the second shaft member 4 does not retreat with a reaction force less than the setting.
  • the spring 5 is disposed outside the second shaft member 4.
  • a torsion spring in which hook portions 52 and 53 are formed at both ends of a coil portion 51 as shown in FIG. 8 is used.
  • the coil portion 51 is extrapolated to the second shaft member 4, and the hook portion 52 at one end is locked in the hook hole 33 of the first shaft member 3 in this extrapolated state, and the hook portion 53 at the other end. Is locked in the hook hole 46 of the two shaft member 4.
  • the torsion spring is in a state in which the rotational force by which the second shaft member 4 rotates is stored, and the tensioner 1 is set in the engine body 300 in this state.
  • the stopper member 6 temporarily locks the rotation of the second shaft member 4. This temporary lock is performed before the tensioner 1 is attached to the engine main body 300, and the temporary lock is released after the tensioner 1 is attached to the engine main body 300.
  • the stopper member 6 has a thin plate shape with a rectangular cross section, and is formed so that the length direction is T-shaped.
  • the stopper member 6 includes a stopper main body 61 extending in the axial direction of the second shaft portion 4, a first engaging portion 62 at the rear end (left end in FIG. 9) of the stopper main body 61, and a front end (FIG. 9). Right engaging portion) of the second engaging portion 63.
  • the stopper main body 61 is inserted into the second shaft member 4 from the operation hole 23 of the support member 2.
  • the first engaging portion 62 of the stopper member 6 enters and engages between the rotation preventing convex portions 25 formed on the flange portion 21 of the support member 2. This engagement restricts the rotation of the stopper member 6.
  • the second engagement portion 63 engages with the engagement hole 45 of the second shaft member 4. In the state where the second engaging portion 63 is engaged, the rotation of the second shaft member 4 is temporarily locked. The temporary lock is released by pulling out the stopper member 6 from the second shaft member 4 and releasing the engagement of the second engagement portion 63.
  • the stopper member 6 is inserted into the second shaft member 4 from the operation hole portion 23 of the support member 2, so that the second engagement portion 63 of the stopper member 6 becomes the engagement hole 45 of the second shaft member 4.
  • a state is shown in which the first engagement portion 62 is engaged with the rotation-preventing convex portion 25 of the support member 2.
  • the rotation of the second shaft member 4 is temporarily locked by the engagement of these stopper members 6, and the second shaft member 4 does not rotate and advance.
  • the tensioner 1 is attached and fixed to the engine main body 300.
  • the attachment to the engine body 300 is performed by bolting the flange portion 21 of the support member 2.
  • FIG. 4 shows a state where the stopper member 6 is pulled out from the tensioner 1 after the tensioner 1 is attached to the engine body 300. Since the temporary lock by the stopper member 6 is released by pulling out the stopper member 6, the second shaft member 4 advances in the axial direction while being rotated by the rotational force of the spring 5 in a state of being screwed to the first shaft member 3, The chain guide 340 is pressed by the contact surface 44. Thereby, the tension of the timing chain 330 can be applied. On the other hand, when the vibration (input load) from the engine is large and a tension higher than the set value is generated in the timing chain 330, the second shaft member 4 moves backward in the axial direction while rotating in the reverse direction.
  • the second shaft member 4 screwed to the first shaft member 3 advances in the axial direction while rotating by the rotational force from the spring 5 to press the mating member (chain guide 340). Since the tension is applied to the timing chain 330, the tension of the timing chain 330 can be kept constant.
  • the first shaft member 3 is directly fixed to the support member 2 in a non-rotating state, and the spring force of the spring 5 is obtained while the second shaft member 4 is screwed to the first shaft member 3. Rotate to advance and press the mating member.
  • a shaft receiver for supporting the rotation of the first shaft member becomes unnecessary.
  • the tensioner can be easily assembled and reduced in weight with a simple structure by greatly reducing the number of parts.
  • ⁇ D is a contact diameter (contact average diameter) between the contact surface 44 of the second shaft member 4 and the receiving surface 344 of the chain guide 340.
  • a convex receiving portion 341 is formed on the chain guide 340, and the receiving surface 344 of the chain guide 340 is a surface facing the second shaft member 4 in the receiving portion 341.
  • the tensioner 1 of the present embodiment has the above-described structure, so that the following three torques act, and the advancement dimension (protrusion dimension) of the second shaft member 4 is determined by the balance of these torques. Torque 1...
  • Second shaft member generated in the threaded portion (the male threaded portion 31 and the female threaded portion 43) when engine vibration (alternate load) accompanying the fluctuation in the tension of the timing chain 330 is input to the second shaft member 4.
  • 4 Rotational torque in the backward (return) direction Torque 2 ...
  • the torque 2 is determined by the contact diameter (contact average diameter) ⁇ D of the second shaft member 4. Therefore, it is possible to adjust the allowance dimension (advance dimension) of the second shaft member 4 by appropriately selecting the contact diameter (contact average diameter) ⁇ D depending on the strength of the engine vibration.
  • the tensioner 1 of the modified example shown in FIG. 10 is such that the contact surface 44 at the tip of the second shaft member 4 is tapered and contacts the receiving surface 344 of the chain guide 340, thereby reducing the contact diameter ⁇ D. It becomes possible.
  • the tensioner 1 of the modified example shown in FIG. 11 is such that the receiving surface 344 of the chain guide 340 is tapered to contact the contact surface 44 of the second shaft member 4, and the contact diameter ⁇ D can be similarly reduced. Become.
  • a rotating piece 343 is rotatably attached to a receiving portion 341 of a chain guide 340 and the rotating piece 343 and the contact surface 44 of the second shaft member 4 are brought into contact with each other.
  • the rotating piece 343 operates to receive the pressing force of the second shaft member 4 while rotating between the second shaft member 4 and the chain guide 340.
  • the contact diameter ⁇ D can be adjusted without the second shaft member 4 rubbing directly with the chain guide 340.
  • FIG. 13 shows a tensioner 1 according to a modification of this embodiment.
  • the mainspring spring 55 is used as a spring that applies a rotational force to the second shaft member 4.
  • the mainspring spring 55 is a spring formed by winding a thin plate material having spring properties in a spiral shape, and restoring force is accumulated by winding up, and a rotational force is applied to the second shaft member 4 by this restoring force.
  • the mainspring spring 55 has a spiral spring main body portion 56 and one end portion 57 and the other end portion 58 which are both ends of the spring main body portion 56, and the spring main body portion 56 is located on the rear side of the second shaft member 4. Extrapolated, one end 57 is locked to the first shaft member 3, and the other end 58 is locked to the second shaft member 4. By these locking, the mainspring spring 55 directly applies a rotational force to the second shaft member 4.
  • FIGS. 14 to 25 show a tensioner 1A according to a second embodiment of the present invention.
  • FIGS. 14 to 17 show the entire tensioner 1A
  • FIGS. 18 to 20 show the operation of the tensioner 1A
  • FIGS. The parts are shown.
  • the support member 2, the second shaft member 4, and the stopper member 6 are changed with respect to the first embodiment. Further, a cap 7 is indirectly attached to the distal end portion of the second shaft member 4 via a coupling 8.
  • the rotation prevention convex portion 25 in the flange portion 21 is formed at a position orthogonal to the rotation prevention convex portion 25 of the first embodiment, and the first engagement portion 62 of the stopper member 6 is rotated. It engages with the stop projection 25.
  • the 1st shaft member 3 is being fixed by crimping the fixing
  • the caulking portion at the rear end portion of the first shaft member 3 is formed so as to protrude outward, and the fixing portion of the flange portion 21 of the support member 2 with respect to the caulking portion. 22 may be crimped, the rear end portion of the first shaft member 3 may be fixed to the flange portion 21 of the support member 2 with a screw, and the rear end portion of the first shaft member 3 may be fixed by spot welding.
  • the flange portion 21 may be fixed.
  • a cap 7 is attached to the distal end portion (the right end portion in FIGS. 16 and 17) of the second shaft member 4 via a coupling 8.
  • the cap 7 is attached to the distal end portion of the second shaft member 4 via the coupling 8.
  • the cap 7 indirectly contacts the second shaft member 4 through the coupling 8.
  • the coupling 8 includes a leg 81 at the rear end (left end in FIG. 22) and a coupling main body 82 formed integrally with the leg 81. It is formed in a short cylinder shape.
  • the leg 81 at the rear end is inserted into the tip of the second shaft member 4, and in this inserted state, the stopper pin 9 made of a split pin is inserted in a direction crossing the axial direction, and the second shaft member 4. And it is attached to the front-end
  • the cylindrical portion 41 of the second shaft member 4 has a shape in which the head portion 42 of the first embodiment is deleted. .
  • a pin hole 47 into which the stopper pin 9 is inserted is formed in the cylindrical portion 41 of the second shaft member 4.
  • the cap 7 includes a cap main body 71 that covers the tip of the coupling 8, and a leg 72 that extends rearward from the cap main body 71. 72 is inserted so as to penetrate the coupling main body 82. A ring-shaped retaining groove 73 is formed in the leg portion 72, and the cap 7 is coupled to the coupling 8 by attaching the retaining ring 10 to the retaining groove 73 of the leg portion 72 penetrating the coupling body portion 82. It is rotatably attached to the tip of the. As the retaining ring 10, a C-ring shown in FIG. 24 can be used.
  • the cap 7 is rotatable at the distal end portion of the second shaft member 4 (that is, the distal end portion of the coupling 8). In this state, the contact surface 74 on the distal end side receives the receiving surface 345 of the receiving portion 341 in the chain guide 340. Contact with. In such a structure, the second shaft member 4 indirectly contacts the chain guide 340 via the cap 7 and presses the guide 340.
  • the stopper member 6 has a thin plate shape with a rectangular cross section, and is formed so that the length direction is T-shaped.
  • the stopper member 6 includes a stopper main body 61 extending in the axial direction of the second shaft member 4, a first engaging portion 62 at the rear end (left end in FIG. 25) of the stopper main body 61, and a front end (FIG. 25). Right engaging portion) of the second engaging portion 63.
  • the second engaging portion 63 is formed in a bifurcated shape to form an engaging recess 64.
  • the stopper member 9 is engaged with the second shaft member 4 by the stopper pin 9 entering the engaging recess 64.
  • the first engaging portion 62 of the stopper member 6 enters and engages between the rotation preventing convex portions 25 formed on the flange portion 21 of the support member 2. This engagement restricts the rotation of the stopper member 6. Further, when the stopper pin 9 enters the engaging recess 64 of the second engaging portion 63, the second engaging portion 63 engages with the second shaft member 4 via the stopper pin 9. In these engaged states, the rotation of the second shaft member 4 is temporarily locked. This temporary locking is achieved by pulling out the stopper member 6 from the second shaft member 4 and releasing the engagement of the second engaging portion 63 with the stopper pin 9 (see FIG. 18).
  • FIG. 16 shows the operation for the position where the second shaft member 4 is most retracted.
  • the stopper member 6 is inserted into the second shaft member 4 to engage the engaging recess 64 at the tip with the stopper pin 9 and the rear.
  • the first engaging portion 62 at the end is engaged with the rotation preventing convex portion 25 of the support member 2.
  • the tensioner 1A is attached to the engine body 300. After this attachment, the stopper member 6 is pulled out to release the temporary lock.
  • FIG. 19 shows this state, and the cap 7 attached to the second shaft member 4 via the coupling 8 presses the guide 340 with the contact surface 74 at the tip contacting the receiving surface 345 of the chain guide 340. Thereby, tension can be applied to the timing chain 330.
  • the second shaft member 4 screwed into the first shaft member 3 advances in the axial direction while rotating by the rotational force from the spring 5, and the counterpart member (chain guide 340) via the cap 7.
  • the tension of the timing chain 330 can be kept constant.
  • the first shaft member 3 is directly fixed to the support member 2 in a non-rotating state, and the spring force of the spring 5 with the second shaft member 4 screwed to the first shaft member 3.
  • the cap 7 attached to the second shaft member 4 presses the mating member.
  • FIG. 20 shows a state in which the contact surface 74 of the cap 7 is in contact with the chain guide 340 (cap receiving surface 345 of the chain guide 340) as the second shaft member 4 advances.
  • the contact average diameter ⁇ D is determined by the cap sliding surface 83 of the coupling 8 that rotates integrally with the second shaft member 4 and the coupling sliding surface 75 of the cap 7.
  • the contact average diameter ⁇ D is calculated by (outer diameter of the contact surface on the sliding surface + inner diameter of the contact surface on the sliding surface) / 2.
  • the average contact diameter ⁇ D is a parameter that determines the resistance torque of sliding friction caused by the sliding movement of the cap sliding surface 83 of the rotating coupling 8 on the coupling sliding surface 75 of the cap 7 (first). By adjusting this contact average diameter ⁇ D, the advance dimension (protrusion allowance) of the second shaft member 4 can be set similarly to the first embodiment.
  • the contact area is determined by the guide contact surface 74 in which the cap 7 comes into contact with the cap receiving surface 345 of the chain guide 340 and the cap receiving surface 345 of the chain guide 340 in contact with the guide contact surface 74.
  • the contact area By adjusting the contact area, the surface pressure applied to the cap receiving surface 345 of the chain guide 340 can be adjusted. In this case, the contact pressure of the cap receiving surface 345 of the chain guide 340 can be reduced by increasing the contact area.
  • FIGS. 26 to 28 show the entire tensioner 1B
  • FIG. 29 shows a partially enlarged cross section
  • FIG. 30 shows the operation of the stopper member.
  • the support member 2, the stopper member 6, and the cap 7 are changed with respect to the second embodiment.
  • the first shaft member 3 is fixed by caulking the fixing portion 22 from the flange portion 21 of the support member 2 to the caulking portion 32 at the rear end thereof, but this fixing has a structure other than this. Also good.
  • the caulking portion at the rear end portion of the first shaft member 3 is formed so as to protrude outward, and the fixing portion of the flange portion 21 of the support member 2 with respect to the caulking portion.
  • the rear end portion of the first shaft member 3 may be fixed to the flange portion 21 of the support member 2 with a screw, and the rear end portion of the first shaft member 3 may be fixed by spot welding.
  • the flange portion 21 may be fixed.
  • the cap 7 is directly attached to the second shaft member 4 by inserting the leg portion 72 of the cap 7 into the distal end portion of the cylindrical portion 41 of the second shaft member 4 as shown in FIG. .
  • the cap 7 does not fall out of the second shaft member 4, and the second shaft member 4 is not detached. Mounted rotatably.
  • the rotation-preventing convex portion 25 is not formed on the flange portion 21 of the support member 2, and the first engagement portion 62 on the rear end side of the stopper member 6 is the flange portion 21 of the support member 2.
  • the support member 2 is engaged by abutting against the support member 2.
  • the stopper member 6 is moved relative to the second shaft member 4 by releasing the engagement. It can be rotated.
  • the cap 7 is formed with an engagement hole portion 49 in which the second engagement portion 63 is engaged with the second engagement portion 63 at the distal end portion of the stopper member 6. As shown in FIG.
  • the engagement hole portion 49 is formed by a circular portion 49a and a cutout portion 49b in which a facing portion of the circular portion 49a is cut out linearly.
  • the notch 49 b allows the second engaging portion 63 of the stopper member 6 to be inserted, and the circular portion 49 a prevents the second engaging portion 63 from coming off.
  • This stopper prevents the stopper member 6 from being engaged with the cap 7.
  • the stopper member 6 since the first engagement portion 62 of the stopper member 6 is engaged with the flange portion 21 of the support member 2, the stopper member 6 temporarily locks the movement of the second shaft member 4 through the cap 7. be able to.
  • the rotation prevention convex portion 25 is formed on the flange portion 21 of the support member 2, and the stopper member 6 is engaged with the rotation prevention convex portion 25 in the rotation prevention state. May be.
  • the second shaft member 4 screwed into the first shaft member 3 advances in the axial direction while rotating by the rotational force from the spring 5, and the counterpart member (chain guide) is passed through the cap 7. 340) is pressed to apply tension to the timing chain 330, so that the tension of the timing chain 330 can be kept constant.
  • the first shaft member 3 is directly fixed to the support member 2 in a non-rotating state, and the second shaft member 4 is rotated by a spring force while being screwed to the first shaft member 3.
  • the cap 7 attached to the second shaft member 4 presses the mating member.
  • the first shaft member does not rotate, so that a shaft receiver for supporting the rotation of the first shaft member is not necessary.
  • the second shaft member advances while rotating, it is not necessary to restrict the rotation, and a bearing for restricting the rotation of the second shaft member becomes unnecessary.
  • the shaft receiver and the bearing are not necessary, a case for attaching them is not necessary, and a caseless tensioner can be obtained. Accordingly, the tensioner can be easily assembled and reduced in weight with a simple structure by greatly reducing the number of parts.
  • the contact average diameter ⁇ D is determined by the cap sliding surface 401 of the second shaft member 4 with respect to the cap 7 and the shaft sliding surface 77 of the cap 7 with respect to the second shaft member 4. Further, the contact area is increased by the guide sliding surface 74 in which the cap 7 comes into contact with the cap receiving surface 345 of the chain guide 340 and the cap receiving surface 345 (see FIG. 20) of the chain guide 340 in contact with the guide sliding surface 74. It is determined. Therefore, similarly to the second embodiment, in this embodiment, the advance dimension (protrusion dimension) of the second shaft member 4 can be set by adjusting the contact average diameter ⁇ D. Further, by adjusting the contact area, the surface pressure applied to the cap receiving surface 345 of the chain guide 340 can be adjusted.
  • the stopper member 6 is rotationally restrained by engaging with the support member 2, but since the first shaft member 3 is attached to the support member 2 in a non-rotating state, the stopper member 6 is attached to the first shaft member 3. 6 may be engaged to restrict rotation.
  • a spring 5 that applies a rotational force to the second shaft member 4 may be disposed inside the second shaft member 4 or inside the first shaft member 3.
  • the first shaft member 3 may be indirectly attached to the support member 2 via an intermediate member (not shown) such as a plate material to be in a non-rotating state.
  • FIGS. 31 to 41 show a tensioner 1C according to a fourth embodiment of the present invention.
  • FIGS. 31 to 35 show the entire tensioner 1C
  • FIGS. 36 to 41 show parts thereof.
  • the tensioner 1C includes a support member 110, a first shaft member 120, a second shaft member 130, a spring 140, a stopper member 150, and a cap 160.
  • the support member 110 serves as an attachment member when the tensioner 1C is attached to the engine body 300 (see FIG. 52), and supports the first shaft member 120 in a non-rotating state.
  • the support member 110 has a cloud-shaped flat plate-like flange portion 111 and a fixing portion 112 formed on the flange portion 111.
  • the flange portion 111 is a portion that is fixed to the engine main body 300 with a bolt or the like, and mounting hole portions 113 through which the bolt penetrates are formed at two positions sandwiching the fixing portion 112.
  • the fixing part 112 fixes the first shaft member 120 in a rising shape.
  • the fixing portion 112 is formed in a cylindrical shape and recessed in the central portion of the flange portion 111, and the first shaft member 120 is inserted into the fixing portion 112 and fixed in a rising shape.
  • the first shaft member 120 can be fixed by press-fitting the rear end portion (the left end portion in FIGS. 33 and 34) into the fixing portion 112 of the support member 110. Further, in addition to press-fitting, the fixing portion 112 may be caulked in the radial direction, thereby further reliably fixing.
  • the first shaft member 120 can be fixed by means other than press fitting such as screwing, welding, and screwing.
  • the bottom wall portion 115 of the cylindrical fixing portion 112 is formed with an exit hole portion 114 through which a stopper receiving portion 131 at the rear end portion of the second shaft member 130 described later is withdrawn.
  • the first shaft member 120 is formed of a cylindrical body having a predetermined length, and has a cylindrical tubular main body 121.
  • the first shaft member 120 is directly fixed to the fixing portion 112 of the support member 110 in a non-rotating state. That is, in the first shaft member 120, the rear end side (left end side) of the cylindrical main body 121 is a fixed cylindrical portion 122, and the fixed cylindrical portion 122 is press-fitted into the fixed portion 112 of the support member 110 or after press-fitting. It is fixed by tightening or the like. As a result, the first shaft member 120 is supported by the support member 110 in a non-rotating state.
  • the first shaft member 120 is formed with a female thread portion 123 for attaching the second shaft member 130 in a screwed state.
  • the female screw portion 123 is formed on the inner surface on the distal end side (right end side) of the cylindrical tubular main body portion 121 with a predetermined length in the axial direction.
  • a D-cut portion 124 is formed on the outer peripheral surface of the first shaft member 120 so that the one-side hook portion 141 of the spring 140 is locked.
  • the D-cut portion 124 is formed in a hollow shape by cutting out a part of the outer peripheral surface of the first shaft member 120 in a straight line in a direction intersecting the axial direction, and the one-side hook portion of the spring 140 is formed in the D-cut portion 124.
  • the one side hook part 141 of the spring 140 is latched by 141 entering (refer FIG. 32).
  • the second shaft member 130 advances in the axial direction to press the chain guide 340 (timing chain 330) as a counterpart member (see FIG. 34).
  • the second shaft member 130 has a stopper receiving portion 131, a shaft portion 132, and a cap mounting portion 133 from the rear end side (left end side) to the front end side (right end side). It is in the form of a solid shaft that is formed sequentially in the axial direction.
  • the second shaft member 130 is inserted into the first shaft member 120 and advances in the axial direction while rotating while being inserted into the first shaft member 120.
  • a stopper receiving portion 131 of the second shaft member 130 is a portion with which a stopper member 150 to be described later is engaged, and is pulled out from a pull-out hole portion 114 of the support member 110, and the stopper member 150 is engaged in this pulled-out state. Since the stopper member 150 is engaged, a circumferential groove 134 is formed in the stopper receiving portion 131. As shown in FIGS. 33 and 34, a stopper ring 138 is fixed to the stopper receiving portion 131 of the second shaft member 130.
  • the retaining ring 138 is formed of a C ring or the like, and is fitted in a ring groove 139 (see FIG.
  • the retaining ring 138 contacts the thread of the female thread portion 123 of the first shaft member 120, and prevents the second shaft member 130 from coming out of the first shaft member 120 due to this contact.
  • the shaft portion 132 of the second shaft member 130 is a portion that is screwed into the female screw portion 123 of the first shaft member 120.
  • the shaft portion 132 is elongated in the axial direction, and a male screw portion 135 is formed over the entire length of the outer peripheral surface, and the male screw portion 135 is screwed into the female screw portion 123 of the first shaft member 120.
  • the second shaft member 130 is supported by the first shaft member 120 when the male screw portion 135 is screwed into the female screw portion 123 of the first shaft member 120, and advances in the axial direction while rotating in this supported state.
  • the cap attaching part 133 of the second shaft member 130 is a part for attaching a cap 160 described later.
  • the cap attachment portion 133 is formed at the tip portion of the second shaft member 130 and indirectly presses the chain guide 340 as a counterpart member via the cap 160. Further, the cap mounting portion 133 is also a portion for locking the other hook portion 142 of the spring 140. For this reason, a slit-shaped slit groove 136 into which the other hook portion 142 of the spring 140 is inserted and locked is a shaft. It is formed along the direction.
  • the spring 140 applies a rotational force to the second shaft member 130.
  • the spring 140 is a torsion spring in which one side hook part 141 and the other side hook part 142 are formed at both ends of the coil part 143.
  • the coil portion 143 is extrapolated to the first shaft member 120.
  • the one-side hook portion 141 is locked to the D-cut portion 124 of the first shaft member 120
  • the other-side hook The portion 142 is locked to the slot groove 136 of the second shaft member 130.
  • the spring 140 is in a state in which the rotational force that the second shaft member 130 rotates is stored, and the tensioner 1 ⁇ / b> C is attached to the engine body 300 in this state. And the 2nd shaft member 130 rotates with the rotational force of the spring 140, maintaining the screwing state with the 1st shaft member 120, and advances to an axial direction, rotating.
  • the stopper member 150 temporarily locks the rotation of the second shaft member 130.
  • the temporary lock by the stopper member 150 is performed before the tensioner 1C is attached to the engine main body 300. After the attachment to the engine main body 300, the temporary lock is released by removing the stopper member 150.
  • the stopper member 150 of this embodiment is formed by bending a thin plate material into a rectangular clip shape as shown in FIG.
  • a part of the side surface portion of the stopper member 150 is opened, and the stopper member 150 is inserted into the second shaft by sandwiching the stopper receiving portion 131 of the second shaft member 130 by the opened opening 151.
  • Engage with member 130 As shown in FIG. 33, this engagement is performed when the stopper receiving portion 131 of the second shaft member 130 is extracted from the extraction hole portion 114 of the support member 110.
  • the second shaft member 130 is locked from the outside of the support member 110. As a result, the axial movement of the second shaft member 130 is temporarily locked. Since the movement of the second shaft member 130 is locked, the rotation of the second shaft member 130 is also locked by the rotational force of the spring 140.
  • the tensioner 1C is attached and fixed to the engine body 300 in such a temporarily locked state. Disengagement by the stopper member 150 is performed by removing the stopper member 150 from the second shaft member 130 with the tensioner 1 ⁇ / b> C attached to the engine body 300. The temporary lock by the stopper member 150 is released by removing the stopper member 150. As a result, the second shaft member 130 advances in the axial direction while rotating by the rotational force of the spring 140 while being screwed into the first shaft member 120, and presses the chain guide 340 (see FIG. 34).
  • the cap 160 is attached to the cap attachment part 133 at the tip portion of the second shaft member 130 as shown in FIGS. As shown in FIG. 40, the cap 160 is formed by a circular contact surface portion 161 and a leg portion 162 extending to the rear side (left side) of the contact surface portion 161.
  • the leg portion 162 of the cap 160 has a tubular piece shape, and the cap 160 covers the cap attachment portion 133 by extrapolating the tubular piece-like leg portion 162 to the cap attachment portion 133 of the second shaft member 130. It is put on. And after covering the cap attaching part 133, the diameter of the rear end opening part of the leg part 162 is reduced.
  • the cap 160 is attached to the second shaft member 130 in a state where the cap 160 is prevented from coming off from the cap attaching portion 133 of the second shaft member 130 and is rotatable.
  • the cap 160 may be attached to the second shaft member 130 so as not to rotate.
  • the contact surface portion 161 of the cap 160 faces the chain guide 340, and when the second shaft member 130 advances in the axial direction, the contact surface portion 161 contacts the receiving surface 344 of the chain guide 340 (see FIG. 34). In this contact state, the second shaft member 130 presses the chain guide 340 (timing chain 330).
  • the second shaft member 130 screwed into the first shaft member 120 advances in the axial direction while rotating by the rotational force from the spring 140, and the counterpart member is interposed via the rotatable cap 160. Since the chain guide 340 is pressed to apply tension to the timing chain 330, the tension of the timing chain 330 can be kept constant.
  • the first shaft member 120 is directly fixed to the support member 110 in a non-rotating state, and the spring force of the spring 140 is engaged with the second shaft member 130 screwed to the first shaft member 120.
  • the cap 160 attached to the second shaft member 130 presses the mating member.
  • FIG. 35 shows a state in which the contact surface portion 161 of the cap 160 is in contact with the chain guide 340 (cap receiving surface 344 of the chain guide 340) as the second shaft member 130 advances.
  • the contact average diameter ⁇ D is determined by the cap sliding surface 137 of the second shaft member 130 with respect to the cap 160 and the shaft sliding surface 163 of the cap 160 with respect to the second shaft member 130.
  • the contact area is determined by the contact surface portion 161 where the cap 160 contacts the cap receiving surface 344 of the chain guide 340 and the cap receiving surface 344 of the chain guide 340 which contacts the contact surface portion 161. Therefore, also in this embodiment, the advance dimension (protrusion allowance dimension) of the second shaft member 130 can be set by adjusting the contact average diameter ⁇ D. Further, the contact pressure applied to the cap receiving surface 344 of the chain guide 340 can be adjusted by adjusting the contact area. By increasing the contact area, the surface pressure of the cap receiving surface 344 of the chain guide 340 can be reduced.
  • FIGS. 46 to 51 show respective components of the tensioner 1D.
  • the tensioner 1D according to this embodiment includes a first shaft member 520 fixed to the support member in a non-rotating state, and is attached to the first shaft member 520 in a screwed state.
  • a connector member 570 that is configured to press a mating member and that is rotatable in a state in which axial movement is constrained is disposed in a state where the spring 540 and the second shaft member 530 are engaged, and the second shaft member 530 is A structure in which the rotational force of the spring 540 is applied via the connector member 570 advances in the axial direction.
  • the above tensioner 1D includes a support member 510, a first shaft member 520, a second shaft member 530, a spring 540, a stopper member 550, a cap 560, and a connector member 570. And.
  • the support member 510 serves as an attachment member for attaching the tensioner 1D to the engine body 300 (see FIG. 52), and supports the first shaft member 510 in a non-rotating state.
  • the support member 510 has a cloud-shaped flat plate-like flange portion 511 and a fixing portion 512 formed on the flange portion 511.
  • the flange portion 511 is a portion that is fixed to the engine main body 300 with a bolt or the like, and mounting hole portions 513 through which the bolt passes are formed on both sides of the fixing portion 512.
  • reference numeral 514 denotes a stopper hole portion into which a pin-like portion 551 of a stopper member 550 described later is inserted.
  • the pin-like portion 551 of the stopper member inserted into the stopper hole 514 is locked to the connector member 570 (see FIGS. 42 and 43), and the rotation of the connector member 570 is temporarily locked by this locking.
  • the fixing portion 512 is a portion that fixes the first shaft member 520 in a rising shape.
  • the fixing portion 512 is formed to be recessed in a cylindrical shape at the central portion of the flange portion 511, and the first shaft member 520 is inserted and fixed to the fixing portion 512.
  • the first shaft member 520 is fixed by press-fitting the fixed shaft portion 521 at the rear end portion (the left end portion in FIGS. 43 and 45) into the fixed portion 512 of the support member 510.
  • the fixing portion 512 may be crimped so as to reduce the diameter, whereby the first shaft member 520 can be more reliably fixed.
  • the first shaft member 520 can be fixed by means such as screwing, welding, screwing, or the like.
  • the first shaft member 520 has a solid shaft shape in which a fixed shaft portion 521 and a shaft portion 522 are integrally formed in the axial direction.
  • the fixed shaft portion 521 is press-fitted into the fixed portion 512 of the support member 510 at the rear end portion (left end portion).
  • a slit 524 is formed in the fixed shaft portion 521 along the axial direction so that one end 542 of a spring 540 described later is inserted and locked.
  • the shaft portion 522 of the first shaft member 520 is connected to the fixed shaft portion 521 in a state where the diameter is larger than that of the fixed shaft portion 521.
  • a male screw portion 523 is formed over the entire length on the outer peripheral surface of the shaft portion 522.
  • an engaging step portion 525 is formed at the boundary portion between them. The engagement step portion 525 acts so as to restrain the later-described connector member 570 from moving in the axial direction.
  • the second shaft member 530 advances in the axial direction to press the chain guide 340 (timing chain 330) as a counterpart member.
  • the second shaft member 530 is entirely formed in a cylindrical shape, and the shaft portion 522 of the first shaft member 520 is inserted therein. Therefore, the second shaft member 530 includes a cylindrical tube main body portion 531 extending in the axial direction, and the first shaft member 520 is inserted into the tube main body portion 531.
  • Such a second shaft member 530 is extrapolated to the first shaft member 520, and advances in the axial direction while rotating in this extrapolated state.
  • An internal thread portion 532 is formed on the inner surface of the tube main body portion 531 of the second shaft member 530.
  • the female screw portion 532 is a portion into which the male screw portion 523 of the first shaft member 520 inserted into the cylinder main body portion 531 is screwed, and the second shaft member 530 advances while rotating by this screwing.
  • the second shaft member 530 advances while rotating together with the connector member 570, as will be described later.
  • the female screw portion 532 is formed at a predetermined length at the rear end portion (left end portion) in the cylinder main body portion 531.
  • a cap 560 described later is rotatably attached to the tip of the second shaft member 530 as shown in FIGS.
  • a cap locking groove 533 including a circumferential groove is formed on the outer surface of the cylinder main body portion 531 of the second shaft member 530.
  • a sliding surface portion 534 is formed on the tube main body portion 531 of the second shaft member 530.
  • the sliding surface portion 534 is formed by performing a parallel cut (so-called D cut) on both sides of the cylindrical body portion 531 having a circular shape.
  • the sliding surface portion 534 is formed to have a predetermined length along the axial direction with respect to the tube main body portion 531.
  • the sliding surface portion 534 constitutes a rotational force transmitting means 590 together with a facing claw portion 576 of the connector member 570 described later.
  • the torque transmission means 590 will be described later.
  • a detent protrusion 535 protruding outward in the radial direction is formed at the rear end (left end) of the tube main body portion 531 of the second shaft member 530.
  • the detachment protrusion 535 prevents the second shaft member 530 from coming off the connector member 570 when the second shaft member 530 advances in the axial direction.
  • the mainspring spring 540 is a spring formed by winding a thin plate material having spring properties in a spiral shape, and restoring force is accumulated by winding up, and a rotational force is applied to the second shaft member 530 by this restoring force.
  • the mainspring spring has a merit that the spring constant can be made lower than that of the torsion spring and a stable rotational force can be applied.
  • the mainspring spring 540 has a spiral spring main body 541, one end (inner end) 542 serving as both ends of the spring main body 541, and the other end (outer end) 543. As shown in FIGS.
  • the mainspring 540 has a spring main body portion 541 that is externally inserted into the fixed shaft portion 521 of the first shaft member 520 and one end portion (inner end portion) 542 that is slipped by the first shaft member 520.
  • the other end portion (outer end portion) 543 is locked to the leg portion 573 of the connector member 570 and assembled.
  • the stopper member 550 is a member that temporarily locks the rotation of the second shaft member 530.
  • the connector member 570 is assembled to the second shaft member 530, and the stopper member 550 engages with the connector member 570 to lock the rotation of the second shaft member 530.
  • the stopper member 550 is formed in a pin shape and engages with the connector member 570 (the stopper receiving portion 572 of the connector member 570), and the stopper formed integrally with the pin portion 551. And a base portion 552.
  • the stopper base 552 is in contact with the flange portion 511 of the support member 510 and holds the mounting state of the stopper member 550 on the support member 510.
  • the stopper member 550 temporarily locks the rotation of the second shaft member 530 via the connector member 570. Temporary locking by the stopper member 550 is performed before the tensioner 1D is attached to the engine body 300, and after the attachment to the engine body 300, the stopper member 550 is pulled out from the support member 510. Thereby, the temporary lock by the stopper member 550 is released.
  • the cap 560 is attached to the front end surface of the second shaft member 530 as shown in FIGS. As shown in FIG. 50, the cap 560 is formed by a circular contact surface portion 561 and a leg portion 562 extending to the rear side (left side) of the contact surface portion 561.
  • the leg portion 562 of the cap 560 has a cylindrical shape, and the cap 560 covers the distal end portion of the second shaft member 530 by extrapolating the leg portion 562 to the distal end portion (right end portion) of the second shaft member 530. To be covered. Thereafter, the diameter of the rear end opening of the leg 562 is reduced. Accordingly, the cap 560 is attached to the distal end portion of the second shaft member 530 in a state in which the cap 560 is prevented from being detached from the distal end portion of the second shaft member 530 and is rotatable. The cap 560 may be attached to the second shaft member 530 so as not to rotate.
  • the contact surface portion 561 of the cap 560 faces the chain guide 340.
  • reference numeral 563 denotes a shaft sliding surface on which the tip surface of the second shaft member 530 comes into contact with the sliding.
  • the connector member 570 is disposed so as to engage with the mainspring spring 540 and the second shaft member 530 in a state in which the axial movement is restricted. Such a connector member 570 acts to relay the rotational force of the mainspring spring 540 and transmit it to the second shaft member 530.
  • FIG. 49 shows the connector member 570.
  • the connector member 570 has a stopper receiving portion 572, a leg portion 573, and a facing claw portion 576.
  • the connector member 570 includes a connector plate portion 571 formed in a bowl shape when viewed from the side.
  • the connector plate portion 571 is formed with a shaft hole portion 574 through which the fixed shaft portion 521 of the first shaft member 520 is inserted.
  • the connector plate portion 571 is set on the engagement step portion 525 of the first shaft member 520 with the first shaft member 520 inserted. As a result, the connector member 570 is assembled in a state where movement in the axial direction is restricted.
  • the stopper receiving portion 572 is formed by denting two portions at both end portions in the width direction of the connector plate portion 571.
  • a pin-like portion 551 of the stopper member 550 is locked to the stopper receiving portion 572.
  • the leg portions 573 are formed at a plurality of locations (four locations) around the connector plate portion 571.
  • the leg portion 573 is formed by partially bending the connector plate portion 571 toward the rear side (left side), and the outer end portion of the mainspring spring 540 is formed on any one of the plurality of leg portions 573. 543 is locked (see FIGS. 42 and 43). As a result, the rotational force of the mainspring spring 540 is transmitted to the connector member 570, so that the connector member 570 rotates.
  • the connector plate portion 571 is formed with a pair of extended plate portions 575 extending to the front side (right side) of the plate portion 571 in a state of being opposed to each other.
  • the pair of extended plate portions 575 are bent so as to approach each other at the extended end portion, and the facing claw portion 576 is formed integrally with the extended end portion.
  • the facing claw portions 576 are formed in the connector member 570 as a pair.
  • the pair of facing claw portions 576 are provided so as to face the sliding surface portion 534 formed on the second shaft member 530 and engage with the sliding surface portion 534 in this facing state.
  • Each facing claw portion 576 is formed by a sliding receiving surface portion 577 and an engaging claw portion 578 on both sides of the sliding receiving surface portion 577.
  • the sliding receiving surface portion 577 is formed in a flat shape, and the sliding surface portion 534 of the second shaft member 530 comes into contact, and the sliding surface portion 534 slides in this contact state.
  • the engaging claw portions 578 are engaged with both sides of the sliding receiving surface portion 577 so as to sandwich the sliding surface portion 534 of the second shaft member 530, and the engaging claw portion 578 causes the facing claw portion 576 to become the second shaft member 530.
  • the sliding surface portion 534 is prevented from coming off, and the engagement state between the facing claw portion 576 and the sliding surface portion 534 of the second shaft member 530 can be maintained. Due to such engagement, the rotation of the connector member 570 is transmitted to the second shaft member 530, and the second shaft member 530 rotates together with the connector member 570. At this time, since the second shaft member 530 is screwed with the first shaft member 520, the second shaft member 530 advances in the axial direction and presses the mating member by rotating together.
  • the facing claw portion 576 of the connector member 570 and the sliding surface portion 534 of the second shaft member 530 form a rotational force transmission means 590 that transmits the rotational force of the mainspring spring 540 to the second shaft member 530.
  • 42 and 43 show a state in which the advancement of the second shaft member 530 is temporarily locked.
  • the pin-shaped portion 551 of the stopper member 550 receives the stopper receiver of the connector member 570. Locked to the portion 572. In this state, even if the rotational force of the mainspring spring 540 acts on the connector member 570, the connector member 570 does not rotate and the advance of the second shaft member 530 is locked.
  • the cap 560 attached to the distal end surface of the second shaft member 530 comes into contact with the chain guide 340 as the counterpart member, and the second shaft member 530 presses the chain guide 340.
  • the second shaft member 530 moves backward in the axial direction while rotating in the reverse direction. Note that the second shaft member 530 does not retract with a reaction force less than the setting.
  • the second shaft member 530 screwed to the first shaft member 520 rotates together with the connector member 570 by the rotational force from the mainspring spring 540, so that it can advance and rotate in the axial direction while rotating.
  • the tension of the timing chain 330 can be kept constant because the chain guide 340 as a counterpart member is pressed through the cap 560 to apply tension to the timing chain 330.
  • the first shaft member 520 is directly fixed to the support member 510 in a non-rotating state, and the second shaft member 530 is screwed into the first shaft member 520 and the mainspring via the connector member 570.
  • one end 542 of the mainspring spring 540 is locked to the slit groove 524 of the first shaft member 520, but the one end 542 only needs to be locked to the fixed side. You may latch to 510.
  • the stopper member 550 is attached to the support member 510, but the present invention is not limited thereto, and the stopper member 550 may be attached to the first shaft member 520 on the fixed side.
  • the connector plate portion 571 is engaged with the engagement step portion 525 of the first shaft member 520 to restrict the movement of the connector member 570 in the axial direction.
  • a slit may be formed, and the connector member 570 (connector plate portion 571) may be locked in the slit.
  • the cap 560 that is rotatably attached to the tip of the second shaft member 530 may be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)

Abstract

部品点数を削減して構造を簡単とし、組み立てが容易なテンショナを提供する。非回転状態で支持部材(2)に固定された第1シャフト部材(3)と、第1シャフト部材(3)に螺合状態で取り付けられ、軸方向に進出することにより相手部材(340)を直接又は間接的に押圧する第2シャフト部材(4)と、第2シャフト部材(4)に回転力を付与するばね(5)とを備える。第2シャフト部材(4)はばね(5)が付与する回転力によって回転しながら進出して相手部材(340)を押圧する。

Description

テンショナ
 本発明は無端状のベルトやチェーン等の相手部材の張力を一定に保つために用いられるテンショナに関し、特に部品点数を削減した簡単な構造とすることが可能なテンショナに関する。
 テンショナは、例えば2輪車や4輪車等の自動車のエンジンに使用されるものであり、エンジンのタイミングチェーンやタイミングベルトを所定の力で押すことにより、これらに伸びや緩みが生じた場合に、その張力を一定に保つように作用する。
 図52は、自動車のエンジン本体300にテンショナ200を実装した状態を示す。エンジン本体300の内部には、一対のカムスプロケット310とクランクスプロケット320とが配置されており、これらのスプロケット310、320の間にタイミングチェーン330が無端状となって掛け渡されている。タイミングチェーン330の移動路には、チェーンガイド340が揺動可能に配置されており、タイミングチェーン330はチェーンガイド340を摺動しながら移動する。テンショナ200はエンジン本体300に形成された取付穴360を貫通するようにエンジン本体300を挿通した状態でエンジン本体300に固定される。
 テンショナにおいては、従来より第1シャフト部材及び第2シャフト部材をねじ部によって組み付けてケース内に収容し、第1シャフト部材をばねによって回転付勢し、この回転力によって第2シャフト部材を推進させる構造となっている(例えば、特許文献1参照)。
 図53は上述した従来のテンショナ200の構造を示す。筒状の第2シャフト部材210と、ねじ部220によって第2シャフト部材210と螺合した第1シャフト部材230と、第1シャフト部材230に回転トルクを付与するコイルばね等のばね240と、これらを収容するケース250とを備えており、ケース250がボルト止め等によってエンジン本体300に固定される。第2シャフト部材210はケース250の先端部分に取り付けられた軸受260によって回転が拘束されている。軸受260には小判形状や平行カットされた非円形の摺動穴261が形成されており、第2シャフト部材210が摺動穴261を貫通することにより回転が拘束されるため、第1シャフト部材230の回転力が直線運動に変換され、第2シャフト部材210が直線的に進出する。ケース250には皿状のシャフト受け270が設けられ、このシャフト受け270に第1シャフト部材230の基端部が挿入されている。
このようなテンショナ200においては、第2シャフト部材210はねじ部220を介して伝達された第1シャフト部材230の回転力によってケース250に対して進出してチェーンガイド340(すなわちタイミングチェーン330)を押圧する。一方、タイミングチェーン330の張力が大きくなると、第2シャフト部材210が第1シャフト部材230を逆方向に回転させながら後退する。これらの動作によってタイミングチェーン330の張力を一定に保つことができる。
特許第4521624号公報
従来のテンショナ200においては、シャフト受け270及び軸受260がケース250に設けられるものである。シャフト受け270は第1シャフト部材230を回転可能に支持する必要があるため、軸受260は第1シャフト部材230の回転力を第2シャフト部材210の推進力に変換する必要があるために設けられる。
 このように従来のテンショナでは、第1シャフト部材を回転可能に支持するためのシャフト受け270及び第2シャフト部材を直線的に進出させるための軸受260が必要となっている。又、これらを取り付けるためのケース250も必要となっている。これにより従来のテンショナは、部品点数が多く、構造が複雑、組み立てが面倒となる問題がある。
 本発明はこのような従来の問題点を考慮してなされたものであり、部品点数を大幅に削減でき、構造を簡単とし、組み立てが容易なテンショナを提供することを目的とする。
 本発明のテンショナは、非回転状態で支持部材に固定された第1シャフト部材と、前記第1シャフト部材に螺合状態で取り付けられ、軸方向に進出することにより相手部材を直接又は間接的に押圧する第2シャフト部材と、前記第2シャフト部材に直接に回転力を付与するばねとを備え、前記第2シャフト部材は前記ばねが付与する回転力によって回転しながら進出して前記相手部材を押圧することを特徴とする。
 本発明において、前記第2シャフト部材の進出は第2シャフト部材が前記第1シャフト部材に螺合した状態でのみ支持される。
 又、本発明では、前記第2シャフト部材の先端面と直接又は間接的に接触して第2シャフト部材に対して回転可能となっているキャップをさらに備え、前記キャップが前記相手部材に当接しているもの。
 又、前記第2シャフト部材と前記相手部材又は前記第2シャフト部材と前記キャップとが接触する接触平均径が第2シャフト部材の進出寸法に合わせて設定される。
又、前記ばねは一端が前記第1シャフト部材に係止され、他端が前記第2シャフト部材に係止されたねじりばねである。
 さらに、前記ばねは一端が前記第1シャフト部材に係止され、他端が前記第2シャフト部材に係止されたぜんまいばねである。
 さらに、又、本発明では、後端部が前記支持部材又は前記第1シャフト部材に係合して回転拘束され、先端部が前記第2シャフト部材に直接又は間接的に係合して第2シャフト部材の回転をロックするストッパ部材が前記第2シャフト部材の軸方向に挿脱可能に挿入される。
 又、前記第2シャフト部材に係脱可能に係合して第2シャフト部材の軸方向の移動をロックするストッパ部材が前記支持部材又は前記第1シャフト部材に着脱自在となっている。
 本発明の別のテンショナは、非回転状態で支持部材に固定された第1シャフト部材と、前記第1シャフト部材に螺合状態で取り付けられ、軸方向に進出することにより相手部材を直接又は間接的に押圧する第2シャフト部材と、前記第2シャフト部材に回転力を付与するばねとを備え、前記第2シャフト部材は前記ばねが付与する回転力によって回転しながら進出して前記相手部材を押圧する構造であって、軸方向移動が拘束された状態で回転可能なコネクタ部材が前記ばねと前記第2シャフト部材とに係合した状態で配置され、前記第2シャフト部材は前記コネクタ部材を介してばねの回転力が付与されることにより前記軸方向に進出することを特徴とする。
 この発明において、前記ばねは一端部が前記第1シャフト部材又は前記支持部材に係止され、他端部が前記コネクタ部材に係止されたぜんまいばねである。
 又、この発明においては、前記コネクタ部材に係合してコネクタ部材の回転をロックするストッパ部材が前記支持部材又は前記第1シャフト部材に着脱可能となっている。
 又、前記第2シャフト部材に対して回転可能なキャップが第2シャフト部材の先端面に接触した状態で取り付けられている。
 さらに前記コネクタ部材及び前記第2シャフト部材に、相互に係合することにより前記回転力を伝達する回転力伝達手段が形成されている。
 又、前記第2シャフト部材は前記回転力伝達手段が相互に係合した状態のままで前記軸方向に進出する。
 さらに、前記回転力伝達手段は、前記第2シャフト部材の軸方向に沿って形成された摺動面部と、この摺動面部に対面して係合し当該係合状態で前記摺動面部が摺動するように前記コネクタ部材に形成された対面爪部とによって形成される。
 本発明のテンショナでは、第1シャフト部材が支持部材に非回転状態で固定されており、第2シャフト部材が第1シャフト部材に螺合した状態でばねのばね力で回転しながら進出して相手部材を押圧する。従って第1シャフト部材が回転しないため、第1シャフト部材の回転を支持するためのシャフト受けが不要となる。又、第2シャフト部材が回転しながら進出するため、回転拘束する必要がなく、第2シャフト部材の回転を拘束するための軸受が不要となる。シャフト受け及び軸受が不要となるため、これらを取り付けるためのケースも不要となり、部品点数を大幅に削減して簡単な構造で、組み立てが容易で軽量化も可能となる。
 本発明の別のテンショナにおいても、第1シャフト部材が支持部材に非回転状態で固定され、この第1シャフト部材に第2シャフト部材が螺合する。第2シャフト部材にはコネクタ部材を介してばねの回転力が伝達されるため、第2シャフト部材は回転しながら進出して相手部材を押圧する。このように第1シャフト部材が回転しないことから第1シャフト部材の回転を支持するためのシャフト受けが不要となる。又、第2シャフト部材が回転しながら進出するため、回転拘束する必要がなく、第2シャフト部材の回転を拘束するための軸受が不要となる。シャフト受け及び軸受が不要となるため、これらを取り付けるためのケースも不要となり、部品点数を大幅に削減して簡単な構造で、組み立てが容易で軽量化も可能となる。
本発明の第1実施形態のテンショナの右側面からの断面図であり、図3におけるE6-E6線断面図である。 本発明の第1実施形態のテンショナの左側からの側面図である。 図1におけるE1-E1線断面図である。 第1実施形態のテンショナの押圧状態を示す断面図である。 (A)、(B)は支持部材の側面図及びE2-E2線断面図である。 (A)、(B)は第1シャフト部材の正面図及びE3-E3線断面図である。 (A)、(B)、(C)は第2シャフト部材の正面図、側面図及びE4-E4線断面図である。 (A)、(B)、(C)はばねの左側面図、正面図、右側面図である。 (A)、(B)はストッパ部材の正面図及び右側面図である。 第1実施形態の変形例のテンショナを示す断面図である。 第1実施形態の別の変形例のテンショナを示す断面図である。 第1実施形態のさらに別の変形例のテンショナを示す断面図である。 第1実施形態の変形形態を示す断面図である。 本発明の第2実施形態のテンショナの右側からの側面図である。 本発明の第2実施形態のテンショナの左側からの側面図である。 図14のF1-F1線断面図である。 図16の要部を示す拡大断面図である。 (A)、(B)は第2実施形態のテンショナにおけるストッパ部材の作動を示す側面図である。 第2実施形態のテンショナの押圧状態を示す断面図である。 図18の要部を示す拡大断面図である。 (A)、(B)は第2実施形態に用いる第2シャフト部材の側面図、F2-F2線断面図である。 (A)、(B)はカップリングを示す側面図、縦断面図である。 キャップを示す側面図である。 (A)、(B)は止め輪を示す正面図、縦断面図である。 第2実施形態に用いるストッパ部材の正面図、右側面図である。 本発明の第3実施形態のテンショナの右側からの側面図である。 第3実施形態のテンショナの左側からの側面図である。 図26におけるG1-G1線断面図である。 図28の要部を示す拡大断面図である。 (A)、(B)は第3実施形態のストッパ部材の作動を示す端面図である。 本発明の第4実施形態のテンショナの右側面からの側面図である。 第4実施形態のテンショナの図33におけるH2-H2線断面図である。 図31のH1-H1線断面図であり、第4実施形態のテンショナの一時ロック状態を示す。 第4実施形態のテンショナにおける押圧状態を示す断面図である。 第4実施形態のテンショナ押圧状態の拡大断面図である。 (A)、(B)は第4実施形態に用いる支持部材の側面図及びH3-H3線断面図である。 (A)、(B)は第4実施形態に用いる第2シャフト部材の正面図及び右側面図である。 (A)、(B)は第4実施形態に用いる第1シャフト部材の正面図及びH4-H4線断面図である。 (A)、(B)、(C)は第4実施形態に用いるばねの左側面図、正面図及び右側面図である。 (A)、(B)は第4実施形態に用いるキャップの左側面図、部分破断断面図である。 (A)、(B)は第4実施形態に用いるストッパ部材を示す正面図及び右側面図である。 本発明の第5実施形態のテンショナの一時ロック状態を示す図43におけるM2-M2線断面図である。 第5実施形態の図42におけるM1-M1線断面図である。 第5実施形態のロック解除状態を示す図45におけるM3-M3線断面図である。 第5実施形態のロック解除状態を示す縦断面図である。 (A)、(B)は第5実施形態に用いる支持部材の側面図及びM4-M4線断面図である。 (A)、(B)は第5実施形態に用いる第1シャフト部材の左側面図及び正面図である。 (A)、(B)は第5実施形態に用いる第2シャフト部材の部分破断断面及び右側面図である。 (A)、(B)、(C)、(D)は第5実施形態に用いるコネクタ部材を示す左側面図、右側面図、上面図、部分破断断面図である。 (A)、(B)は第5実施形態に用いるキャップの側面図及び部分破断断面図である。 (A)、(B)は第5実施形態に用いるストッパ部材の上面図、正面図である。 テンショナをエンジン本体に組み付けた状態を示す側面図である。 従来のテンショナを示す断面図である。
 以下、本発明を図示する実施形態により具体的に説明する。なお、各実施形態において同一の部材には同一の符号を付して対応させてある。本発明のテンショナは、構成部品を収容するケースを省いた構造とし、この構造でエンジン本体に直付けすることにより部品点数を削減したものである。
[第1実施形態]
 図1~図12は本発明の第1実施形態のテンショナ1を示し、図1~図4はテンショナ1の全体、図5~図9はそれぞれの部品であり、図10~図12は変形例である。図1及び図2はテンショナ1の図3のE6-E6線に沿った右側面からの断面図及び左側面図、図3は図1のE1-E1線断面図、図4は動作時の断面図を示す。テンショナ1は、支持部材2と、第1シャフト部材3と、第2シャフト部材4と、ばね5と、ストッパ部材6とによって形成される。
 支持部材2はテンショナ1をエンジン本体300(図52参照)に取り付ける際の取り付け部材となる。又、支持部材2は第1シャフト部材3を支持する。図1~図3及び図5に示すように、支持部材2は雲形平板状のフランジ部21と、フランジ部21に形成された固定部22とを有している。フランジ部21はエンジン本体300にボルト等によって固定される部位であり、ボルトが貫通する取付穴部24が固定部22を挟んだ2箇所に形成されている。
 固定部22は第1シャフト部材3を立ち上がり状に固定する部位であり、フランジ部21の中央部分に短筒状となって立ち上がり状に形成されている。第1シャフト部材3の後端部に固定部22を挿入し、この挿入状態で固定部22を加締めることにより第1シャフト部材3を立ち上がり状に固定することができる(図3参照)。短筒状となっている固定部22は操作穴部23を有している。操作穴部23は後述するストッパ部材6を挿入するためのものである。さらに図5に示すように、フランジ部21の後端面には、回転止め凸部25が形成されている。回転止め凸部25は後述するストッパ部材6の回転を阻止するためのものである。
 図3及び図6に示すように、第1シャフト部材3は所定長さの筒体によって形成されている。第1シャフト部材3は支持部材2の固定部22に非回転状態で直接に固定される。第1シャフト部材3の外面には、雄ねじ部31が形成されており、後述する第2シャフト部材4が螺合可能となっている。第1シャフト部材3の後端部(図6における左端部)には、支持部材2の固定部22が加締められる加締め部32が内側に突出するように形成されており、この加締め部32によって第1シャフト部材3が支持部材2に非回転状態で直接に固定される。又、後端部に近接した部位には、ばね5の一端が係止されるフック穴33が形成されている。
 本発明において、第1シャフト部材3の支持部材2への固定構造については、図示した構造以外によっても可能である。例えば、第1シャフト部材3の後端部の加締め部を外側に突出するように形成し、この加締め部に対して支持部材2のフランジ部21の固定部22を加締めても良い。又、第1シャフト部材3の後端部をねじによって支持部材2のフランジ部21に固定しても良く、第1シャフト部材3の後端部をスポット溶接によって支持部材2のフランジ部21に固定しても良い。さらには、第1シャフト部材3の後端部及び支持部材2におけるフランジ部21の固定部22に相互に螺合するねじ部を形成し、このねじ部を結合させることにより固定しても良い。
 第2シャフト部材4は軸方向に進出することにより相手部材としてのチェーンガイド340(タイミングチェーン330)を押圧する(図4参照)。図3、図4、図7に示すように、第2シャフト部材4は後端側(図7における左端側)が開口され、先端側がヘッド部42によって封鎖された筒状体41によって形成されている。ヘッド部42の先端面は相手部材(図4におけるチェーンガイド340)と直接に接触する接触面44となる。
 筒状体41の内面には、第1シャフト部材3の雄ねじ部32に螺合する雌ねじ部43が形成されている。ヘッド部42における接触面44との反対側には、ストッパ部材6の先端部が差し込まれることによりストッパ部材6と係合する係合穴45が形成されている。係合穴45は非円形穴(図示例では、角穴)に形成されてストッパ部材6との係合が行われる。さらに筒状体41の先端側の外面には、ばね5の他端が係止されるフック穴46が形成されている。
以上の第2シャフト部材4はばね5のばね力が作用することにより回転する。このとき第2シャフト部材4は第1シャフト部材3に螺合しているため、第2シャフト部材4は回転しながら第1シャフト部材3の軸方向に進出する。すなわち第2シャフト部材4は雌ねじ43が第1シャフト部材3の雄ねじ32に螺合し、この螺合状態でのみ第1シャフト部材3に支持される。そして、この第1シャフト部材3の支持状態で回転しながら進出する。かかる第2シャフト部材4は相手部材から設定以上の反力があると、第2シャフト部材4は逆方向に回転しながら後退する。なお、設定未満の反力では、第2シャフト部材4は後退することはない。
 図3及び図4に示すように、ばね5は第2シャフト部材4の外側に配置される。ばね5としては、図8に示すようにコイル部51の両端部にフック部52、53が形成されたねじりばねが用いられる。このねじりばね5はコイル部51が第2シャフト部材4に外挿され、この外挿状態で一端のフック部52が第1シャフト部材3のフック穴33に係止され、他端のフック部53が2シャフト部材4のフック穴46に係止される。ねじりばねは第2シャフト部材4が回転する回転力を蓄えた状態となっており、この状態でテンショナ1がエンジン本体300にセットされる。
 ストッパ部材6は第2シャフト部材4の回転を一時的にロックするものである。この一時ロックはテンショナ1をエンジン本体300に取り付ける前に行われ、エンジン本体300への取り付け後には一時ロックが解除される。図9に示すように、ストッパ部材6は断面矩形の薄い板状からなり、長さ方向がT字形となるように形成されている。ストッパ部材6は第2シャフト部4の軸方向に延びたストッパ本体部61と、ストッパ本体部61の後端部(図9における左端部)の第1係合部62と、先端部(図9における右端部)の第2係合部63とを有している。ストッパ本体部61は支持部材2の操作穴部23から第2シャフト部材4の内部に挿入される。
ストッパ部材6の第1係合部62は支持部材2のフランジ部21に形成されている回転止め凸部25の間に入り込んで係合する。この係合によりストッパ部材6は回転が拘束される。第2係合部63は第2シャフト部材4の係合穴45に係合する。第2係合部63が係合した状態では、第2シャフト部材4の回転が一時ロックされる。この一時ロックの解除はストッパ部材6を第2シャフト部材4から引き抜いて第2係合部63の係合を解除することによりなされる。
 図3はストッパ部材6が支持部材2の操作穴部23から第2シャフト部材4内に挿入されることによりストッパ部材6の第2係合部63が第2シャフト部材4の係合穴45に係合し、第1係合部62が支持部材2の回転止め凸部25に係合した状態を示す。これらのストッパ部材6の係合によって第2シャフト部材4の回転が一時ロックされており、第2シャフト部材4は回転及び進出することがない。この一時ロック状態でテンショナ1をエンジン本体300に取り付けて固定する。エンジン本体300への取り付けは、支持部材2のフランジ部21をボルト止めすることによりなされる。
 図4はテンショナ1をエンジン本体300へ取り付けた後、ストッパ部材6をテンショナ1から引き抜いた状態を示す。ストッパ部材6の引き抜きによってストッパ部材6による一時ロックが解除されるため、第2シャフト部材4は第1シャフト部材3に螺合した状態でばね5の回転力により回転しながら軸方向に進出し、その接触面44によってチェーンガイド340を押圧する。これによりタイミングチェーン330の張力を付与することができる。一方、エンジンからの振動(入力荷重)が大きく、タイミングチェーン330に設定以上の張力が発生すると、第2シャフト部材4は逆方向に回転しながら軸方向に後退する。
 以上の実施形態のテンショナ1では、第1シャフト部材3に螺合した第2シャフト部材4がばね5からの回転力によって回転しながら軸方向に進出して相手部材(チェーンガイド340)を押圧してタイミングチェーン330に張力を付与するため、タイミングチェーン330の張力を一定に保つことができる。この構造のテンショナ1は、第1シャフト部材3が支持部材2に非回転状態で直接に固定されており、第2シャフト部材4が第1シャフト部材3に螺合した状態でばね5のばね力で回転しながら進出して相手部材を押圧する。このような構造では、第1シャフト部材が回転しないため、第1シャフト部材の回転を支持するためのシャフト受けが不要となる。又、第2シャフト部材は回転しながら進出することから、回転拘束する必要がなく、第2シャフト部材の回転を拘束するための軸受が不要となる。このようにシャフト受け及び軸受が不要となるため、これらを取り付けるためのケースも不要となり、ケースレスのテンショナとすることができる。従って、部品点数を大幅に削減して簡単な構造で、組み立てが容易で軽量化も可能なテンショナとすることができる。
 次に、テンショナ1の設計例を説明する。図4において、φDは第2シャフト部材4の接触面44とチェーンガイド340の受け面344との接触径(接触平均径)である。ここでチェーンガイド340には凸状の受け部341が形成されており、チェーンガイド340の受け面344は受け部341における第2シャフト部材4に臨んだ面となっている。
本実施形態のテンショナ1は上記構造とすることにより、以下の3つのトルクが作用し、これらのトルクの釣り合いによって第2シャフト部材4の進出寸法(出代寸法)が決まる。
 トルク1・・・タイミングチェーン330の張力変動に伴うエンジン振動(交番荷重)が第2シャフト部材4に入力されることにより、ねじ部(雄ねじ部31及び雌ねじ部43)に発生する第2シャフト部材4の後退(戻り)方向への回転トルク
 トルク2・・・回転する第2シャフト部材4の接触面44がチェーンガイド340の受け面344を摺動することによる摺動摩擦の抵抗トルク
 トルク3・・・ばね5が付勢する第2シャフト部材の進出方向のトルク
 以上の3つのトルクにおいて、トルク2が小さいと第2シャフト部材4の出代位置が後退傾向となり、トルク2が大きいと第2シャフト部材4が進出傾向となる。かかるトルク2は第2シャフト部材4の接触径(接触平均径)φDによって決まる。このため、エンジン振動の強弱によって接触径(接触平均径)φDを適切に選定することにより第2シャフト部材4の出代寸法(進出寸法)を調整することが可能となる。
 図10~図12は本実施形態の変形例を示す。
 図10に示す変形例のテンショナ1は、第2シャフト部材4の先端の接触面44を先細り状としてチェーンガイド340の受け面344と接触するものであり、これにより接触径φDを小さくすることが可能となる。
 図11に示す変形例のテンショナ1は、チェーンガイド340の受け面344を先細り状として第2シャフト部材4の接触面44と接触するものであり、同様に接触径φDを小さくすることが可能となる。
 図12に示す変形例のテンショナ1は、チェーンガイド340の受け部341に回転ピース343を回転可能に取り付け、この回転ピース343と第2シャフト部材4の接触面44とを接触させるものである。回転ピース343は第2シャフト部材4とチェーンガイド340との間で回転しながら第2シャフト部材4の押圧力を受けるように作動する。回転ピース343を設けることにより第2シャフト部材4がチェーンガイド340と直接に擦れることなく接触径φDを調整することができる。
 図13はこの実施形態の変形形態のテンショナ1を示す。この形態のテンショナ1では、第2シャフト部材4に対して回転力を付与するばねとして、ぜんまいばね55を用いるものである。ぜんまいばね55はばね性を有した薄板材を渦巻き状に巻くことにより形成されるばねであり、巻き上げることにより復元力が蓄積され、この復元力によって第2シャフト部材4に回転力を付与する。ぜんまいばね55は渦巻き状のばね本体部56と、ばね本体部56の両端部となる一端部57及び他端部58を有しており、ばね本体部56が第2シャフト部材4の後部側に外挿され、一端部57が第1シャフト部材3に係止され、他端部58が第2シャフト部材4に係止される。これらの係止によりぜんまいばね55は第2シャフト部材4に対して直接に回転力を付与する。
[第2実施形態]
 図14~図25は、本発明の第2実施形態のテンショナ1Aであり、図14~図17はテンショナ1Aの全体、図18~図20はテンショナ1Aの動作、図21~図25はそれぞれの部品を示している。
 本実施形態のテンショナ1Aにおいては、第1実施形態に対し、支持部材2、第2シャフト部材4及びストッパ部材6が変更される。又、第2シャフト部材4の先端部にはキャップ7がカップリング8を介して間接的に取り付けられる。
 支持部材2においては、そのフランジ部21における回転止め凸部25が第1実施形態の回転止め凸部25と直交する位置に形成されており、ストッパ部材6の第1係合部62がこの回転止め凸部25に係合するようになっている。第1シャフト部材3はその後端部の加締め部32に支持部材2のフランジ部21からの固定部22を加締めることにより固定されているが、この固定はこれ以外の構造であっても良い。例えば、第1実施形態と同様に、第1シャフト部材3の後端部の加締め部を外側に突出するように形成し、この加締め部に対して支持部材2のフランジ部21の固定部22を加締めても良く、第1シャフト部材3の後端部をねじによって支持部材2のフランジ部21に固定しても良く、第1シャフト部材3の後端部をスポット溶接によって支持部材2のフランジ部21に固定しても良い。さらには、第1シャフト部材3の後端部及び支持部材2におけるフランジ部21の固定部22に相互に螺合するねじ部を形成し、このねじ部を結合させることにより固定しても良い。
 図16及び図17に示すように、第2シャフト部材4の先端部(図16、図17における右端部)には、カップリング8を介してキャップ7が取り付けられる。キャップ7はカップリング8を介して第2シャフト部材4の先端部に取り付けられる。カップリング8を介することからキャップ7は第2シャフト部材4に間接的に接触する。
 カップリング8は図17及び図22に示すように、後端部(図22の左端部)の脚部81と、脚部81に一体に形成されたカップリング本体部82とを備え、全体が短筒状に形成されている。カップリング8は後端部の脚部81が第2シャフト部材4の先端部に挿入され、この挿入状態で割りピンからなるストッパピン9を軸方向と交差する方向に差し込んで第2シャフト部材4及び脚部81に貫通させることにより第2シャフト部材4の先端部に取り付けられる。これによりカップリング8は第2シャフト部材4と一体的に回転する。
 このカップリング8に対応するため、図17、図20及び図21に示すように、第2シャフト部材4の筒状部41は第1実施形態のヘッド部42が削除された形状となっている。第2シャフト部材4の筒状部41には、ストッパピン9が挿入されるピン穴47が形成されている。
図16、図17及び図23に示すように、キャップ7はカップリング8の先端部を覆うキャップ本体部71と、キャップ本体部71から後方側に伸びる脚部72とを備えており、脚部72がカップリング本体部82を貫通するように挿入される。脚部72には、リング状の抜け止め溝73が形成されており、カップリング本体部82を貫通した脚部72の抜け止め溝73に対し止め輪10を取り付けることによりキャップ7がカップリング8の先端部に回転可能に取り付けられる。止め輪10としては、図24に示すCリングを用いることができる。かかるキャップ7は第2シャフト部材4の先端部(すなわちカップリング8の先端部)で回転可能となっており、この状態で先端側の接触面74がチェーンガイド340における受け部341の受け面345と接触する。このような構造では、第2シャフト部材4はキャップ7を介してチェーンガイド340に間接的に接触して同ガイド340を押圧する。
 図25に示すように、ストッパ部材6は断面矩形の薄い板状からなり、長さ方向がT字形となるように形成されている。ストッパ部材6は第2シャフト部材4の軸方向に延びたストッパ本体部61と、ストッパ本体部61の後端部(図25における左端部)の第1係合部62と、先端部(図25における右端部)の第2係合部63とを有している。本実施形態における第2係合部63は二股状に形成されることにより係合凹部64が形成されている。この係合凹部64内にストッパピン9が入り込むことによりストッパ部材6が第2シャフト部材4に係合する。
 かかるストッパ部材6の第1係合部62は支持部材2のフランジ部21に形成されている回転止め凸部25の間に入り込んで係合する。この係合によりストッパ部材6は回転が拘束される。又、第2係合部63の係合凹部64にストッパピン9が入り込むことにより第2係合部63がストッパピン9を介して第2シャフト部材4に係合する。これらの係合状態では、第2シャフト部材4の回転が一時ロックされる。この一時ロックはストッパ部材6を第2シャフト部材4から引き抜いて第2係合部63のストッパピン9への係合を解除することによりなされる(図18参照)。
 図16は第2シャフト部材4が最も後退した位置に対する操作を示し、ストッパ部材6を第2シャフト部材4の内部に挿入して先端部の係合凹部64をストッパピン9に係合させると共に後端部の第1係合部62を支持部材2の回転止め凸部25に係合させている。これにより第2シャフト部材4の進出が一時ロックされた状態となる。この状態でテンショナ1Aをエンジン本体300に取り付ける。この取り付けの後、ストッパ部材6を引き抜くことにより、一時ロックを解除する。
 一時ロックの解除により、第2シャフト部材4はばね5が付与する回転力により回転しながら第1シャフト部材3の軸方向に進出する。このとき、カップリング8は第2シャフト部材4と共に回転しながら進出する。図19はこの状態を示し、カップリング8を介して第2シャフト部材4に取り付けられたキャップ7は先端の接触面74がチェーンガイド340の受け面345に接触して同ガイド340を押圧する。これにより、タイミングチェーン330に張力を付与することができる。
 本実施形態のテンショナ1Aでは、第1シャフト部材3に螺合した第2シャフト部材4がばね5からの回転力によって回転しながら軸方向に進出し、キャップ7を介して相手部材(チェーンガイド340)を押圧してタイミングチェーン330に張力を付与するため、タイミングチェーン330の張力を一定に保つことができる。この構造のテンショナ1Aは、第1シャフト部材3が支持部材2に非回転状態で直接に固定されており、第2シャフト部材4が第1シャフト部材3に螺合した状態でばね5のばね力により回転しながら進出し、この進出によって第2シャフト部材4に取り付けたキャップ7が相手部材を押圧する。このような構造では、第1実施形態と同様に第1シャフト部材が回転しないため、第1シャフト部材の回転を支持するためのシャフト受けが不要となる。又、第2シャフト部材は回転しながら進出することから、回転拘束する必要がなく、第2シャフト部材の回転を拘束するための軸受が不要となる。このようにシャフト受け及び軸受が不要となるため、これらを取り付けるためのケースも不要となり、ケースレスのテンショナとすることができる。従って、部品点数を大幅に削減して簡単な構造で、組み立てが容易で軽量化も可能なテンショナとすることができる。
 図20は第2シャフト部材4が進出することにより、キャップ7の接触面74がチェーンガイド340(チェーンガイド340のキャップ受け面345)に接触した状態を示す。第2シャフト部材4と一体的に回転するカップリング8のキャップ摺動面83と、キャップ7のカップリング摺動面75とによって接触平均径φDが決定される。接触平均径φDは(摺動面における接触面の外径+摺動面における接触面の内径)/2によって算出される。かかる接触平均径φDは回転するカップリング8のキャップ摺動面83がキャップ7のカップリング摺動面75を摺動することによる摺動摩擦の抵抗トルクを決めるパラメータとなっていることから(第1実施形態におけるトルク2に相当)、この接触平均径φDを調整することにより、第1実施形態と同様に第2シャフト部材4の進出寸法(出代寸法)を設定することができる。
 この実施形態では、キャップ7がチェーンガイド340のキャップ受け面345と接触するガイド接触面74と、このガイド接触面74と接触するチェーンガイド340のキャップ受け面345とによって接触面積が決定される。この接触面積を調整することにより、チェーンガイド340のキャップ受け面345に与える面圧を調整することができる。この場合、接触面積を大きくすることにより、チェーンガイド340のキャップ受け面345の面圧を下げることができる。
[第3実施形態]
 図26~図30は、本発明の第3実施形態のテンショナ1Bを示し、図26~図28はテンショナ1Bの全体、図29は部分拡大断面、図30はストッパ部材の動作である。
 本実施形態のテンショナ1Bにおいては、第2実施形態に対し、支持部材2、ストッパ部材6及びキャップ7が変更される。ここで第1シャフト部材3はその後端部の加締め部32に支持部材2のフランジ部21からの固定部22を加締めることにより固定されているが、この固定はこれ以外の構造であっても良い。例えば、第1実施形態と同様に、第1シャフト部材3の後端部の加締め部を外側に突出するように形成し、この加締め部に対して支持部材2のフランジ部21の固定部22を加締めても良く、第1シャフト部材3の後端部をねじによって支持部材2のフランジ部21に固定しても良く、第1シャフト部材3の後端部をスポット溶接によって支持部材2のフランジ部21に固定しても良い。さらには、第1シャフト部材3の後端部及び支持部材2におけるフランジ部21の固定部22に相互に螺合するねじ部を形成し、このねじ部を結合させることにより固定しても良い。
テンショナ1Bにおいては、図28に示すようにキャップ7の脚部72が第2シャフト部材4における筒状部41の先端部に挿入されることにより、キャップ7が第2シャフト部材4に直接取り付けられる。このとき、キャップ7の抜け止め溝73及び第2シャフト部材4の抜け止め溝48に止め輪10を取り付けることにより、キャップ7は第2シャフト部材4から抜け落ちることなく、第2シャフト部材4に対し回転可能に取り付けられる。
 この実施形態において、支持部材2のフランジ部21に回転止め凸部25が形成されることがなく、ストッパ部材6の後端部側の第1係合部62はこの支持部材2のフランジ部21に当接することにより支持部材2に係合する。このようにストッパ部材6の第1係合部62が支持部材2のフランジ部21に係合した状態に対しては、係合を解除することによりストッパ部材6は第2シャフト部材4に対して回転操作可能となる。また、ストッパ部材6の先端部の第2係合部63に対し、キャップ7には第2係合部63が係合する係合穴部49が形成される。係合穴部49は図30に示すように、円形部49aと、円形部49aにおける対向部分を直線的に切り欠いた切り欠き部49bとによって形成されている。切り欠き部49bはストッパ部材6の第2係合部63の挿通を許容し、円形部49aが第2係合部63の抜け止めを行う。この抜け止めによりストッパ部材6がキャップ7と係合した状態となる。一方、ストッパ部材6の第1係合部62は支持部材2のフランジ部21に係合しているため、ストッパ部材6は第2シャフト部材4が進出する動作をキャップ7を介して一時ロックすることができる。なお、第1及び第2実施形態と同様に、支持部材2のフランジ部21に回転止め凸部25を形成し、この回転止め凸部25によってストッパ部材6を回転止め状態で係合するようにしても良い。
 本実施形態のテンショナ1Bにおいても、第1シャフト部材3に螺合した第2シャフト部材4がばね5からの回転力によって回転しながら軸方向に進出し、キャップ7を介して相手部材(チェーンガイド340)を押圧してタイミングチェーン330に張力を付与するため、タイミングチェーン330の張力を一定に保つことができる。このテンショナ1Bにおいても、第1シャフト部材3が支持部材2に非回転状態で直接に固定されており、第2シャフト部材4が第1シャフト部材3に螺合した状態でばね力により回転しながら進出し、この進出によって第2シャフト部材4に取り付けたキャップ7が相手部材を押圧する。このような構造では、第1実施形態及び第2実施形態と同様に、第1シャフト部材が回転しないため、第1シャフト部材の回転を支持するためのシャフト受けが不要となる。又、第2シャフト部材は回転しながら進出することから、回転拘束する必要がなく、第2シャフト部材の回転を拘束するための軸受が不要となる。このようにシャフト受け及び軸受が不要となるため、これらを取り付けるためのケースも不要となり、ケースレスのテンショナとすることができる。従って、部品点数を大幅に削減して簡単な構造で、組み立てが容易で軽量化も可能なテンショナとすることができる。
 この実施形態において、第2シャフト部材4におけるキャップ7に対するキャップ摺動面401とキャップ7における第2シャフト部材4に対するシャフト摺動面77とによって接触平均径φDが決定される。又、キャップ7がチェーンガイド340のキャップ受け面345と接触するガイド摺動面74と、このガイド摺動面74と接触するチェーンガイド340のキャップ受け面345(図20参照)とによって接触面積が決定される。従って、第2実施形態と同様に、この実施形態においても、接触平均径φDを調整することにより、第2シャフト部材4の進出寸法(出代寸法)を設定することができる。又、接触面積を調整することにより、チェーンガイド340のキャップ受け面345に与える面圧を調整することができる。
 以上の第1~第3実施形態においては、種々変形が可能である。
 例えば、ストッパ部材6は支持部材2と係合することにより回転拘束されているが、支持部材2に第1シャフト部材3が非回転状態で取り付けられることから、この第1シャフト部材3にストッパ部材6を係合して回転拘束しても良い。また、第2シャフト部材4に回転力を付与するばね5を第2シャフト部材4の内側又は第1シャフト部材3の内側に配置しても良い。さらに第1シャフト部材3は板材等の中間部材(図示省略)を介して支持部材2に間接的に取り付けて非回転状態としても良い。
[第4実施形態]
 図31~図41は、本発明の第4実施形態のテンショナ1Cを示し、図31~図35はテンショナ1Cの全体、図36~図41はそれぞれの部品である。図31~図34に示すように、テンショナ1Cは、支持部材110と、第1シャフト部材120と、第2シャフト部材130と、ばね140と、ストッパ部材150と、キャップ160とを備えている。
 支持部材110はテンショナ1Cをエンジン本体300(図52参照)に取り付ける際の取り付け部材となると共に、第1シャフト部材120を非回転状態で支持する。図31~図34及び図36に示すように、支持部材110は雲形平板状のフランジ部111と、フランジ部111に形成された固定部112とを有している。フランジ部111はエンジン本体300にボルト等によって固定される部位であり、ボルトが貫通する取付穴部113が固定部112を挟んだ2箇所に形成されている。
 固定部112は第1シャフト部材120を立ち上がり状に固定する。固定部112はフランジ部111の中央部分に円筒状となって窪むように形成され、この固定部112に第1シャフト部材120が挿入されて立ち上がり状に固定される。第1シャフト部材120の固定は、その後端部(図33及び図34における左端部)を支持部材110の固定部112に圧入することにより行うことができる。又、圧入に加えて固定部112を径方向に加締めても良く、これによりさらに確実に固定することができる。第1シャフト部材120の固定はねじ止め、溶接、ねじ螺合等の圧入以外の手段によっても可能である。円筒状の固定部112の底壁部115には、後述する第2シャフト部材130の後端部のストッパ受け部131が抜け出される抜け出し穴部114が形成される。
 第1シャフト部材120は図33、図34及び図38に示すように、所定長さの円筒体によって形成されており、円筒状の筒状本体部121を有している。第1シャフト部材120は支持部材110の固定部112に非回転状態で直接に固定される。すなわち第1シャフト部材120は筒状本体部121の後端側(左端側)が固定筒部122となっており、この固定筒部122が支持部材110の固定部112に圧入や圧入後の加締め等により固定される。これにより第1シャフト部材120が支持部材110に非回転状態で支持される。
第1シャフト部材120には、第2シャフト部材130を螺合状態で取り付けるための雌ねじ部123が形成される。雌ねじ部123は円筒状の筒状本体部121における先端側(右端側)の内面に軸方向への所定長さで形成される。又、第1シャフト部材120の外周面には、ばね140の一側フック部141が係止されるDカット部124が形成される。Dカット部124は第1シャフト部材120の外周面の一部を軸方向と交差する方向に直線状に切り欠くことにより窪み状に形成され、このDカット部124にばね140の一側フック部141が入り込むことによりばね140の一側フック部141が係止される(図32参照)。
 第2シャフト部材130は軸方向に進出することにより相手部材としてのチェーンガイド340(タイミングチェーン330)を押圧する(図34参照)。第2シャフト部材130は図33、図34及び図37に示すように、後端側(左端側)から先端側(右端側)に向かってストッパ受け部131、シャフト部132、キャップ取付部133が軸方向に順に形成された中実のシャフト状となっている。この第2シャフト部材130は第1シャフト部材120の内部に挿入され、第1シャフト部材120への挿入状態で回転しながら軸方向に進出する。
 第2シャフト部材130のストッパ受け部131は後述するストッパ部材150が係合する部位であり、支持部材110の抜け出し穴部114から抜け出され、この抜け出し状態でストッパ部材150が係合する。ストッパ部材150が係合するため、ストッパ受け部131には周溝134が形成される。
 図33及び図34に示すように、第2シャフト部材130のストッパ受け部131には、止めリング138が固定されている。止めリング138はCリング等からなり、周溝134よりもシャフト部132側に位置するように第2シャフト部材13のストッパ受け部131に形成されたリング用溝139(図37参照)に嵌められる。止めリング138は第1シャフト部材120の雌ねじ部123のねじ山に当接し、この当接により第2シャフト部材130が第1シャフト部材120から抜け出ることを防止するものである。
 第2シャフト部材130のシャフト部132は第1シャフト部材120の雌ねじ部123に螺合する部位である。シャフト部132は軸方向に長くなっており、その外周面の全長にわたって雄ねじ部135が形成され、この雄ねじ部135が第1シャフト部材120の雌ねじ部123に螺合する。第2シャフト部材130は雄ねじ部135が第1シャフト部材120の雌ねじ部123に螺合することにより第1シャフト部材120に支持され、この支持状態で回転しながら軸方向に進出する。一方、相手部材(チェーンガイド340)から設定以上の反力があると、第2シャフト部材130は逆方向に回転しながら軸方向に後退する。なお、設定未満の反力では、第2シャフト部材130は後退することはない。
 第2シャフト部材130のキャップ取付部133は後述するキャップ160を取り付けるための部位である。キャップ取付部133は第2シャフト部材130の先端部位に形成されており、キャップ160を介して相手部材としてのチェーンガイド340を間接的に押圧する。又、キャップ取付部133はばね140の他側フック部142を係止する部位でもあり、このためばね140の他側フック部142が挿入されて係止されるスリット状のすり割り溝136が軸方向に沿って形成されている。
 ばね140は第2シャフト部材130に回転力を付与するものである。ばね140は図39に示すように、コイル部143の両端部に一側フック部141及び他側フック部142が形成されたねじりばねが用いられる。ねじりばねからなるばね140はコイル部143が第1シャフト部材120に外挿され、この外挿状態で一側フック部141が第1シャフト部材120のDカット部124に係止され、他側フック部142が第2シャフト部材130のすり割り溝136に係止される。ばね140は第2シャフト部材130が回転する回転力を蓄えた状態となっており、この状態でテンショナ1Cがエンジン本体300に取り付けられる。そして、第2シャフト部材130は第1シャフト部材120との螺合状態を保ったままでばね140の回転力によって回転し、回転しながら軸方向に進出する。
 ストッパ部材150は第2シャフト部材130の回転を一時的にロックする。ストッパ部材150による一時ロックはテンショナ1Cをエンジン本体300に取り付ける前に行われ、エンジン本体300への取り付け後には、ストッパ部材150を取り外して一時ロックが解除される。この実施形態のストッパ部材150は、図41に示すように薄板材を四角形のクリップ状に屈曲加工することにより形成されている。
 図41に示すように、ストッパ部材150の側面部分の一部は開口されており、開口された開口部151によって第2シャフト部材130のストッパ受け部131を挟むことによりストッパ部材150が第2シャフト部材130に係合する。かかる係合は図33に示すように、第2シャフト部材130のストッパ受け部131が支持部材110の抜き出し穴部114から抜き出された状態のときに行われ、この係合によってストッパ部材150が支持部材110の外側から第2シャフト部材130をロックする。このことにより第2シャフト部材130の軸方向移動が一時的にロックされる。第2シャフト部材130の移動がロックされるため、第2シャフト部材130はばね140による回転力によっても回転することがロックされる。かかる一時ロック状態でテンショナ1Cをエンジン本体300に取り付けて固定する。
ストッパ部材150による係合解除は、テンショナ1Cをエンジン本体300へ取り付けた状態でストッパ部材150を第2シャフト部材130から取り外すことにより行われる。ストッパ部材150の取り外しによってストッパ部材150による一時ロックが解除される。これにより第2シャフト部材130は第1シャフト部材120に螺合した状態でばね140の回転力によって回転しながら軸方向に進出し、チェーンガイド340を押圧する(図34参照)。
 キャップ160は図33及び図34に示すように、第2シャフト部材130の先端部位のキャップ取付部133に取り付けられる。図40に示すように、キャップ160は円形の接触面部161と、接触面部161の後側(左側)に延びる脚部162とによって形成されている。
 キャップ160の脚部162は筒片状となっており、筒片状の脚部162を第2シャフト部材130のキャップ取付部133に外挿することによりキャップ160がキャップ取付部133を覆うように被せられる。そして、キャップ取付部133に被した後、脚部162の後端開口部分を縮径させる。これによりキャップ160が第2シャフト部材130のキャップ取付部133から抜け止めされた状態で、且つ回転可能となって第2シャフト部材130取り付けられる。なお、キャップ160は第2シャフト部材130に回転しないように取り付けられていても良い。
 キャップ160の接触面部161は チェーンガイド340に対面するものであり、第2シャフト部材130が軸方向に進出したとき、接触面部161はチェーンガイド340の受け面344に接触する(図34参照)。この接触状態で第2シャフト部材130がチェーンガイド340(タイミングチェーン330)を押圧する。
 この実施形態のテンショナ1Cにおいても、第1シャフト部材120に螺合した第2シャフト部材130がばね140からの回転力によって回転しながら軸方向に進出し、回転可能なキャップ160を介して相手部材としてのチェーンガイド340を押圧してタイミングチェーン330に張力を付与するため、タイミングチェーン330の張力を一定に保つことができる。
この構造のテンショナ1Cは、第1シャフト部材120が支持部材110に非回転状態で直接に固定されており、第2シャフト部材130が第1シャフト部材120に螺合した状態でばね140のばね力により回転しながら進出し、この進出によって第2シャフト部材130に取り付けたキャップ160が相手部材を押圧する。このような構造では、第1シャフト部材120が回転しないため、第1シャフト部材120の回転を支持するためのシャフト受けが不要となる。又、第2シャフト部材130は回転しながら進出することから、回転拘束する必要がなく、第2シャフト部材130の回転を拘束するための軸受が不要となる。このようにシャフト受け及び軸受が不要となるため、これらを取り付けるためのケースも不要となり、ケースレスのテンショナとすることができる。従って、部品点数を大幅に削減して簡単な構造で、組み立てが容易で軽量化も可能となる。
 図35は第2シャフト部材130が進出することにより、キャップ160の接触面部161がチェーンガイド340(チェーンガイド340のキャップ受け面344)に接触した状態を示す。
 この実施形態において、第2シャフト部材130におけるキャップ160に対するキャップ摺動面137とキャップ160における第2シャフト部材130に対するシャフト摺動面163によって接触平均径φDが決定される。又、キャップ160がチェーンガイド340のキャップ受け面344と接触する接触面部161と、この接触面部161と接触するチェーンガイド340のキャップ受け面344とによって接触面積が決定される。従って、この実施形態においても、接触平均径φDを調整することにより、第2シャフト部材130の進出寸法(出代寸法)を設定することができる。又、接触面積を調整することにより、チェーンガイド340のキャップ受け面344に与える面圧を調整することができる。そして接触面積を大きくすることにより、チェーンガイド340のキャップ受け面344の面圧を下げることができる。
[第5実施形態]
 図42~図51は、本発明の第5実施形態のテンショナ1Dを示す。図42~図45は、テンショナ1Dの全体を示し、図46~図51は、テンショナ1Dのそれぞれの部品を示す。
この実施形態のテンショナ1Dは、非回転状態で支持部材に固定された第1シャフト部材520と、第1シャフト部材520に螺合状態で取り付けられ、軸方向に進出することにより相手部材を直接又は間接的に押圧する第2シャフト部材530と、記第2シャフト部材530に回転力を付与するばね540とを備え、第2シャフト部材530はばね540が付与する回転力によって回転しながら進出して相手部材を押圧する構造であって、軸方向移動が拘束された状態で回転可能なコネクタ部材570がばね540と第2シャフト部材530とに係合した状態で配置され、第2シャフト部材530はコネクタ部材570を介してばね540の回転力が付与されることにより軸方向に進出する構造となっている。
以上のテンショナ1Dは図42~図45に示すように、支持部材510と、第1シャフト部材520と、第2シャフト部材530と、ばね540と、ストッパ部材550と、キャップ560と、コネクタ部材570とを備えている。
 支持部材510はテンショナ1Dをエンジン本体300(図52参照)に取り付けるための取り付け部材になるとともに、第1シャフト部材510を非回転状態で支持する。支持部材510は図42~図45及び図46に示すように、雲形平板状のフランジ部511と、フランジ部511に形成された固定部512とを有している。フランジ部511はエンジン本体300にボルト等によって固定される部位であり、ボルトが貫通する取付穴部513が固定部512を挟んだ両側に形成されている。図44及び図46において、符号514はストッパ用穴部であり、後述するストッパ部材550のピン状部551が挿入される。ストッパ用穴部514に挿入されたストッパ部材のピン状部551がコネクタ部材570に係止され(図42、図43参照)、この係止によりコネクタ部材570の回転が一時的にロックされる。
 固定部512は第1シャフト部材520を立ち上がり状に固定する部位である。固定部512はフランジ部511の中央部分に円筒状となって凹むように形成され、この固定部512に第1シャフト部材520が挿入されて固定される。第1シャフト部材520はその後端部(図43及び図45における左端部)の固定軸部521を支持部材510の固定部512に圧入することにより固定される。この場合、圧入に加えて固定部512を縮径するように加締めても良く、これによりさらに確実に第1シャフト部材520を固定することができる。なお、第1シャフト部材520の固定はねじ止め、溶接、ねじ螺合等の手段によっても行うことができる。
 第1シャフト部材520は図43、図45及び図47に示すように固定軸部521と、シャフト部522とが軸方向に一体的に形成された中実のシャフト状となっている。
固定軸部521はその後端部(左端部)が支持部材510の固定部512に圧入される。これにより第1シャフト部材520が非回転状態で支持部材510に立ち上がり状に支持される。固定軸部521には後述するばね540の一端部542が挿入されて係止されるすり割り溝524が軸方向に沿って形成される。
 第1シャフト部材520のシャフト部522は固定軸部521よりも大径となった状態で固定軸部521に連設される。シャフト部522の外周面には雄ねじ部523が全長にわたって形成されている。又、シャフト部522が固定軸部521よりも大径となることによりこれらの境界部分には係合段差部525が形成される。かかる係合段差部525は後述するコネクタ部材570が軸方向に移動することを拘束するように作用する。
 第2シャフト部材530は軸方向に進出することにより相手部材としてのチェーンガイド340(タイミングチェーン330)を押圧する。第2シャフト部材530は図43、図45及び図48に示すように、全体が円筒状に形成されており、その内部に第1シャフト部材520のシャフト部522が挿入される。このため第2シャフト部材530は軸方向に延びた円筒状の筒本体部531を備え、この筒本体部531の内部に第1シャフト部材520が挿入される。
 このような第2シャフト部材530は第1シャフト部材520に外挿され、この外挿状態で回転しながら軸方向に進出する。かかる第2シャフト部材530の筒本体部531の内面には雌ねじ部532が形成される。雌ねじ部532は筒本体部531に挿入された第1シャフト部材520の雄ねじ部523が螺合するものであり、この螺合により第2シャフト部材530が回転しながら進出する。この実施形態において、第2シャフト部材530は後述するように、コネクタ部材570と共回りしながら進出するものである。なお、この実施形態において、雌ねじ部532は筒本体部531内における後端部(左端部)に所定の長さで形成される。
 第2シャフト部材530の先端部には、図43及び図45に示すように後述するキャップ560が回転可能に取り付けられる。キャップ560を取り付けるため、第2シャフト部材530の筒本体部531の外面には、周溝からなるキャップ係止溝533が形成されている。
 図42、図44及び図48に示すように、第2シャフト部材530の筒本体部531には摺動面部534が形成される。摺動面部534は円形となっている筒本体部531の両側に対して平行カット(いわゆるDカット)を施すことにより形成される。この摺動面部534は筒本体部531に対し、軸方向に沿った所定の長さとなるように形成される。かかる摺動面部534は後述するコネクタ部材570の対面爪部576と共に回転力伝達手段590を構成する。回転力伝達手段590については後述する。
 なお、第2シャフト部材530の筒本体部531における後端部(左端部)には、径方向外側に突出した外れ止め凸部535が形成されている。外れ止め凸部535は第2シャフト部材530が軸方向に進出したときにコネクタ部材570から外れることを防止する。
 第2シャフト部材530に回転力を付与するばね540は、ぜんまいばねが用いられる。ぜんまいばね540はばね性を有した薄板材を渦巻き状に巻くことにより形成されるばねであり、巻き上げることにより復元力が蓄積され、この復元力により第2シャフト部材530に回転力を付与する。ぜんまいばねはねじりばねに比べてばね定数を低くすることができ、安定した回転力を付与することができるメリットがある。
かかるぜんまいばね540は渦巻き状のばね本体部541と、ばね本体部541の両端部となる一端部(内端部)542と、他端部(外端部)543とを有している。図42~図45に示すように、ぜんまいばね540はばね本体部541が第1シャフト部材520の固定軸部521に外挿され、一端部(内端部)542が第1シャフト部材520のすり割り溝524に係止され、他端部(外端部)543がコネクタ部材570の脚部573に係止されて組み付けられる。
 ストッパ部材550は第2シャフト部材530の回転を一時的にロックする部材である。この実施形態において、第2シャフト部材530にコネクタ部材570が組み付けられる構造となっており、ストッパ部材550はコネクタ部材570に係合することにより、第2シャフト部材530の回転をロックする。図51に示すようにストッパ部材550はピン状に形成されてコネクタ部材570(コネクタ部材570のストッパ受け部572)に係合するピン状部551と、ピン状部551と一体に形成されたストッパ基部552とによって形成されている。ストッパ基部552は支持部材510のフランジ部511に当接してストッパ部材550の支持部材510への取り付け状態を保持する。
 かかるストッパ部材550によって第2シャフト部材530の回転がコネクタ部材570を介して一時的にロックされる。ストッパ部材550による一時ロックはテンショナ1Dをエンジン本体300に取り付ける前に行われ、エンジン本体300への取り付け後には、ストッパ部材550を支持部材510から引き抜く。これによりストッパ部材550による一時ロックが解除される。
 キャップ560は図43及び図45に示すように第2シャフト部材530の先端面に取り付けられる。図50に示すように、キャップ560は円形の接触面部561と、接触面部561の後側(左側)に延びる脚部562とによって形成されている。
 キャップ560の脚部562は筒状となっており、この脚部562を第2シャフト部材530の先端部(右端部)に外挿することによりキャップ560が第2シャフト部材530の先端部を覆うように被せられる。その後、脚部562の後端開口部分を縮径させる。これによりキャップ560が第2シャフト部材530の先端部から抜け止めされた状態で、且つ回転可能となって第2シャフト部材530の先端部に取り付けられる。なお、キャップ560は第2シャフト部材530に回転しないように取り付けられていても良い。
 キャップ560の接触面部561はチェーンガイド340に対面するものであり、第2シャフト部材530が軸方向に進出したとき、接触面部561がチェーンガイド340の受け面344に接触する(図34参照)。この接触状態で第2シャフト部材530がチェーンガイド340(タイミングチェーン330)を押圧する。図50において、符号563は第2シャフト部材530の先端面が摺動可能に接触するシャフト摺動面である。
 コネクタ部材570は軸方向移動が拘束された状態で、ぜんまいばね540と第2シャフト部材530とに係合するように配置される。このようなコネクタ部材570はぜんまいばね540の回転力を中継して第2シャフト部材530に伝達するように作用する。
 図49はコネクタ部材570を示す。コネクタ部材570はストッパ受け部572と、脚部573と、対面爪部576とを有している。このコネクタ部材570は側面から見て鞍形状に形成されたコネクタ板部571を備えている。このコネクタ板部571には、第1シャフト部材520の固定軸部521が挿通するシャフト穴部574が形成される。かかるコネクタ板部571は第1シャフト部材520が挿通した状態で第1シャフト部材520の係合段差部525にセットされる。これによりコネクタ部材570が軸方向の移動が拘束された状態で組み付けられる。
 ストッパ受け部572はコネクタ板部571の幅方向両端部の2箇所を凹ませることにより形成されている。このストッパ受け部572にはストッパ部材550のピン状部551が係止される。
 脚部573はコネクタ板部571の周辺の複数箇所(4箇所)に形成されている。脚部573はコネクタ板部571を後側(左側)に向かって部分的に屈曲させることにより形成されるものであり、複数の内のいずれか1つの脚部573にぜんまいばね540の外端部543が係止される(図42、図43参照)。これによりぜんまいばね540の回転力がコネクタ部材570に伝達されるため、コネクタ部材570が回転する。
 コネクタ板部571には、対向した状態で同板部571の前側(右側)に延びる一対の延設板部575が形成されている。一対の延設板部575は延設終端部で相互に接近するように屈曲されており、対面爪部576はこの延設終端部に一体的に形成される。これにより対面爪部576は一対となってコネクタ部材570に形成される。
一対の対面爪部576は第2シャフト部材530に形成された摺動面部534に対面し、この対面状態で摺動面部534に係合するように設けられるものである。各対面爪部576は摺動受け面部577と、摺動受け面部577の両側の係爪部578とによって形成されている。摺動受け面部577は平面状に形成されており、第2シャフト部材530の摺動面部534が接触し、この接触状態で摺動面部534が摺動する。係爪部578は摺動受け面部577の両側で第2シャフト部材530の摺動面部534を挟むように係合し、この係爪部578の係合によって対面爪部576が第2シャフト部材530の摺動面部534から外れることが防止され、対面爪部576と第2シャフト部材530の摺動面部534との係合状態を保持することができる。かかる係合によってコネクタ部材570の回転が第2シャフト部材530に伝達され、第2シャフト部材530はコネクタ部材570と共回りする。このとき第2シャフト部材530は第1シャフト部材520と螺合しているため、共回りによって回転することにより第2シャフト部材530は軸方向に進出して相手部材を押圧する。このようなコネクタ部材570の対面爪部576及び第2シャフト部材530の摺動面部534によってぜんまいばね540の回転力を第2シャフト部材530に伝達する回転力伝達手段590が形成される。
 次に、この実施形態のテンショナ1Dの動作を説明する。図42及び図43は、第2シャフト部材530の進出が一時ロックされた状態であり、ストッパ部材550を支持部材510に差し込むことにより、ストッパ部材550のピン状部551がコネクタ部材570のストッパ受け部572に係止されている。この状態では、ぜんまいばね540の回転力はコネクタ部材570に作用しても、コネクタ部材570が回転することがなく第2シャフト部材530の進出がロックされている。
 図44及び図45は、ストッパ部材550を支持部材510から引き抜いた状態であり、ストッパ部材550のピン状部551がコネクタ部材570のストッパ受け部572との係止から抜け出る。この状態では、ぜんまいばね540の回転力によりコネクタ部材570が回転する。このときコネクタ部材570の対面爪部576が第2シャフト部材530の摺動面部534と係合しているため、第2シャフト部材530はコネクタ部材570と共回りする。第2シャフト部材530は、第1シャフト部材520と螺合しているため、第2シャフト部材530は回転に伴って軸方向に進出する。これにより、第2シャフト部材530の先端面に取り付けられているキャップ560が相手部材としてのチェーンガイド340と接触し、第2シャフト部材530によるチェーンガイド340への押圧が行われる。一方、相手部材から設定以上の反力があると、第2シャフト部材530は逆方向に回転しながら軸方向に後退する。なお、設定未満の反力では、第2シャフト部材530は後退することはない。
 このようなテンショナ1Dでは、第1シャフト部材520に螺合した第2シャフト部材530がぜんまいばね540からの回転力によってコネクタ部材570と共回りするため、回転しながら軸方向に進出し、回転可能なキャップ560を介して相手部材としてのチェーンガイド340を押圧してタイミングチェーン330に張力を付与するため、タイミングチェーン330の張力を一定に保つことができる。
このテンショナ1Dは、第1シャフト部材520が支持部材510に非回転状態で直接に固定されており、第2シャフト部材530が第1シャフト部材520に螺合した状態でコネクタ部材570を介したぜんまいばね540のばね力により回転しながら進出し、この進出によって第2シャフト部材530に取り付けたキャップ560が相手部材を押圧する。このような構造では、第1シャフト部材520が回転しないため、第1シャフト部材520の回転を支持するためのシャフト受けが不要となる。又、第2シャフト部材530は回転しながら進出することから、回転拘束する必要がなく、第2シャフト部材530の回転を拘束するための軸受が不要となる。このようにシャフト受け及び軸受が不要となるため、これらを取り付けるためのケースも不要となり、ケースレスのテンショナとすることができる。従って、部品点数を大幅に削減して簡単な構造で、組み立てが容易で軽量化も可能となる。
 この実施形態においては、ぜんまいばね540の一端部542が第1シャフト部材520のすり割り溝524に係止されているが、この一端部542は固定側に係止されていれば良く、支持部材510に係止しても良い。
 又、ストッパ部材550が支持部材510に取り付けられるが、これに限らずストッパ部材550を固定側である第1シャフト部材520に取り付けても良い。
 さらに、コネクタ板部571が第1シャフト部材520の係合段差部525に係合することによりコネクタ部材570の軸方向への移動が拘束されているが、これに限らず第1シャフト部材520にスリットを形成し、このスリットにコネクタ部材570(コネクタ板部571)を係止しても良い。さらに、第2シャフト部材530の先端部に回転可能に取り付けられるキャップ560を省略しても良い。
1、1A、1B、1C、1D テンショナ
2、110、510 支持部材
3、120、520 第1シャフト部材
4、130、530 第2シャフト部材
5、140、540 ばね
6、150、550 ストッパ部材
7、160、560 キャップ
8 カップリング
300 エンジン本体
340 チェーンガイド
534 摺動面部
570 コネクタ部材
576 対面爪部
590 回転力伝達手段

Claims (15)

  1.  非回転状態で支持部材に固定された第1シャフト部材と、
     前記第1シャフト部材に螺合状態で取り付けられ、軸方向に進出することにより相手部材を直接又は間接的に押圧する第2シャフト部材と、
     前記第2シャフト部材に直接に回転力を付与するばねとを備え、
     前記第2シャフト部材は前記ばねが付与する回転力によって回転しながら進出して前記相手部材を押圧することを特徴とするテンショナ。
  2.  前記第2シャフト部材の進出は第2シャフト部材が前記第1シャフト部材に螺合した状態でのみ支持されることを特徴とする請求項1記載のテンショナ。
  3.  前記第2シャフト部材の先端面と直接又は間接的に接触して第2シャフト部材に対して回転可能となっているキャップをさらに備え、前記キャップが前記相手部材に当接していることを特徴とする請求項1又は2記載のテンショナ。
  4.  前記第2シャフト部材と前記相手部材又は前記第2シャフト部材と前記キャップとが接触する接触平均径が第2シャフト部材の進出寸法に合わせて設定されることを特徴とする請求項1乃至3のいずれか1項記載のテンショナ。
  5. 前記ばねは一端が前記第1シャフト部材に係止され、他端が前記第2シャフト部材に係止されたねじりばねであることを特徴とする請求項1記載のテンショナ。
  6.  前記ばねは一端が前記第1シャフト部材に係止され、他端が前記第2シャフト部材に係止されたぜんまいばねであることを特徴とする請求項1記載のテンショナ。
  7.  後端部が前記支持部材又は前記第1シャフト部材に係合して回転拘束され、先端部が前記第2シャフト部材に直接又は間接的に係合して第2シャフト部材の回転をロックするストッパ部材が前記第2シャフト部材の軸方向に挿脱可能に挿入されることを特徴とする請求項1記載のテンショナ。
  8.  前記第2シャフト部材に係脱可能に係合して第2シャフト部材の軸方向の移動をロックするストッパ部材が前記支持部材又は前記第1シャフト部材に着脱自在となっていることを特徴とする請求項1記載のテンショナ。
  9.  非回転状態で支持部材に固定された第1シャフト部材と、
     前記第1シャフト部材に螺合状態で取り付けられ、軸方向に進出することにより相手部材を直接又は間接的に押圧する第2シャフト部材と、
     前記第2シャフト部材に回転力を付与するばねとを備え、
     前記第2シャフト部材は前記ばねが付与する回転力によって回転しながら進出して前記相手部材を押圧する構造であって、
     軸方向移動が拘束された状態で回転可能なコネクタ部材が前記ばねと前記第2シャフト部材とに係合した状態で配置され、前記第2シャフト部材は前記コネクタ部材を介してばねの回転力が付与されることにより前記軸方向に進出することを特徴とするテンショナ。
  10.  前記ばねは一端部が前記第1シャフト部材又は前記支持部材に係止され、他端部が前記コネクタ部材に係止されたぜんまいばねであることを特徴とする請求項9記載のテンショナ。
  11.  前記コネクタ部材に係合してコネクタ部材の回転をロックするストッパ部材が前記支持部材又は前記第1シャフト部材に着脱可能となっていることを特徴とする請求項9記載のテンショナ。
  12.   前記第2シャフト部材に対して回転可能なキャップが第2シャフト部材の先端面に接触した状態で取り付けられていることを特徴とする請求項9記載のテンショナ。
  13.  前記コネクタ部材及び前記第2シャフト部材に、相互に係合することにより前記回転力を伝達する回転力伝達手段が形成されていることを特徴とする請求項9記載のテンショナ。
  14.  前記第2シャフト部材は前記回転力伝達手段が相互に係合した状態のままで前記軸方向に進出することを特徴とする請求項13記載のテンショナ。
  15. 前記回転力伝達手段は、前記第2シャフト部材の軸方向に沿って形成された摺動面部と、この摺動面部に対面して係合し当該係合状態で前記摺動面部が摺動するように前記コネクタ部材に形成された対面爪部とによって形成されることを特徴とする請求項14載のテンショナ。
PCT/JP2017/021709 2016-06-13 2017-06-12 テンショナ WO2017217384A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018523909A JP6818025B2 (ja) 2016-06-13 2017-06-12 テンショナ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-117450 2016-06-13
JP2016117450 2016-06-13
JP2016-147357 2016-07-27
JP2016147357 2016-07-27

Publications (1)

Publication Number Publication Date
WO2017217384A1 true WO2017217384A1 (ja) 2017-12-21

Family

ID=60663188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021709 WO2017217384A1 (ja) 2016-06-13 2017-06-12 テンショナ

Country Status (2)

Country Link
JP (1) JP6818025B2 (ja)
WO (1) WO2017217384A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112513499A (zh) * 2018-08-01 2021-03-16 日本发条株式会社 张紧器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333056A (ja) * 2001-05-09 2002-11-22 Ntn Corp チェーンテンショナ
JP4521624B2 (ja) * 2000-07-31 2010-08-11 日本発條株式会社 テンショナー
JP2010242788A (ja) * 2009-04-01 2010-10-28 Ntn Corp オートテンショナ
JP2013142441A (ja) * 2012-01-11 2013-07-22 Enuma Chain Mfg Co Ltd オートテンショナ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4521624B2 (ja) * 2000-07-31 2010-08-11 日本発條株式会社 テンショナー
JP2002333056A (ja) * 2001-05-09 2002-11-22 Ntn Corp チェーンテンショナ
JP2010242788A (ja) * 2009-04-01 2010-10-28 Ntn Corp オートテンショナ
JP2013142441A (ja) * 2012-01-11 2013-07-22 Enuma Chain Mfg Co Ltd オートテンショナ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112513499A (zh) * 2018-08-01 2021-03-16 日本发条株式会社 张紧器

Also Published As

Publication number Publication date
JPWO2017217384A1 (ja) 2019-04-11
JP6818025B2 (ja) 2021-01-20

Similar Documents

Publication Publication Date Title
US6435992B2 (en) Tensioner with plunger stopper pin
JP5711593B2 (ja) ブラインドリベット及びその締結方法
US6374975B1 (en) Movable torque coupling element for the transmission of torque between two colinear shafts
CN101135331A (zh) 具有公差补偿的紧固装置
US20130345003A1 (en) Chainsaw with guide bar clamping and chain tensioning assembly
JP2019177418A (ja) ブラインドファスナー用の取付工具及びファスナーの取付手順
EP3111804A1 (en) Concealable connection device for furniture
EP3464959A1 (en) Park lock system, mounting bracket for a park lock system, transmission comprising such a park lock system, method for assembling such a park lock system into a transmission.
WO2017217384A1 (ja) テンショナ
US6968821B2 (en) Model engine starter
JP6175057B2 (ja) テンショナー
JP3538662B2 (ja) 推進力付与装置
JP4934815B2 (ja) テンショナー
JP4922131B2 (ja) ウエビング巻取装置
CN107178260B (zh) 链条锁
CN108341018B (zh) 踏板结构
JP3837595B2 (ja) テンショナー
KR100578760B1 (ko) 수동변속기
CN113858119B (zh) 解锁工具
JP2006300275A (ja) テンショナー
JP6431049B2 (ja) テンショナ
JP4385167B2 (ja) テンショナー
JP3117527U (ja) ドライバー
JP3184190U (ja) パーキングロッド
JP4680160B2 (ja) テンショナリフタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813280

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018523909

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813280

Country of ref document: EP

Kind code of ref document: A1