WO2017217189A1 - 対物光学系及びそれを備えた内視鏡装置 - Google Patents

対物光学系及びそれを備えた内視鏡装置 Download PDF

Info

Publication number
WO2017217189A1
WO2017217189A1 PCT/JP2017/019032 JP2017019032W WO2017217189A1 WO 2017217189 A1 WO2017217189 A1 WO 2017217189A1 JP 2017019032 W JP2017019032 W JP 2017019032W WO 2017217189 A1 WO2017217189 A1 WO 2017217189A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
optical path
image
wavelength range
Prior art date
Application number
PCT/JP2017/019032
Other languages
English (en)
French (fr)
Inventor
本間博之
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201780035383.8A priority Critical patent/CN109328026B/zh
Priority to JP2017564648A priority patent/JP6317050B1/ja
Publication of WO2017217189A1 publication Critical patent/WO2017217189A1/ja
Priority to US16/212,184 priority patent/US10852526B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00186Optical arrangements with imaging filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • A61B1/051Details of CCD assembly
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2446Optical details of the image relay
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • G02B23/2484Arrangements in relation to a camera or imaging device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/1013Beam splitting or combining systems for splitting or combining different wavelengths for colour or multispectral image sensors, e.g. splitting an image into monochromatic image components on respective sensors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements

Definitions

  • the present invention relates to an objective optical system and an endoscope apparatus including the objective optical system.
  • white light observation and narrow-band light observation as observation methods in the endoscope.
  • the subject is illuminated with white light.
  • light transmission and light reflection occur.
  • the wavelength range of light transmitted through the subject and the light intensity at each wavelength vary depending on the optical characteristics of the subject.
  • the wavelength of the light reflected from the subject and the light intensity at each wavelength also vary depending on the optical characteristics of the subject.
  • an optical image is formed by light in all wavelength regions, and observation is performed using this optical image.
  • narrow band light observation the subject is illuminated with light with a narrow wavelength range, or illuminated with white light.
  • an optical image is formed by light in all wavelength regions, and observation is performed using this optical image.
  • an optical image is formed by light having a wavelength range narrower than that of white light, and observation is performed using this optical image.
  • an optical filter is arranged on the object side of the optical image, and only light having a narrow wavelength band is transmitted or reflected by this optical filter.
  • Patent Document 1 An optical system that forms two optical images from one objective optical system is disclosed in Patent Document 1, Patent Document 2, and Patent Document 3.
  • Patent Document 1 discloses a stereoscopic endoscope including two imaging units. Each imaging unit includes a lens assembly and a sensor assembly. An optical image of the subject is formed by the lens assembly.
  • the sensor assembly includes a prism assembly, a reflection unit, and two imaging sensors.
  • the prism assembly has a first surface (beam split surface) and a second surface (reflection surface).
  • the sensor assembly In the sensor assembly, light is divided into two at the beam splitting surface. As a result, a first optical path and a second optical path are formed. As a result, a first optical image is formed on the first optical path, and a second optical image is formed on the second optical path. The first optical image and the second optical image are formed at different positions in the same plane.
  • the first image sensor is disposed on the first optical path.
  • the first optical image is picked up by the first image sensor.
  • a second imaging sensor is disposed on the second optical path.
  • the second optical image is picked up by the second image sensor.
  • Patent Document 2 discloses an imaging apparatus system having two optical paths.
  • One optical path is an optical path for fluorescence observation, and includes an objective lens for fluorescence observation and a first polarizing plate.
  • the other optical path is an optical path for white light observation, and includes a white light observation objective lens and a second polarizing plate.
  • the first polarizing plate and the second polarizing plate are arranged so that the polarization directions are orthogonal.
  • a single polarizing beam splitter is arranged at the position where the two optical paths intersect. With the polarization beam splitter, either one of the fluorescent light and the white light is reflected by the polarization beam splitter surface, and the other is transmitted through the polarization beam splitter. The fluorescent image and the white light image are formed at different positions in the same plane. The fluorescent image and the white light image are picked up by one image sensor.
  • Patent Document 3 discloses an image pickup apparatus including an objective optical system, a dividing element, and one image pickup element.
  • this imaging device two optical images are formed by the dividing element, and the two optical images are captured by the imaging element.
  • the imaging device has a first filter arrangement area and a second filter arrangement area.
  • Patent Document 1 discloses a first surface having various optical characteristics.
  • the first surface has a characteristic of reflecting light in a specific wavelength range and transmitting light in other wavelength ranges.
  • the first surface has such optical characteristics
  • a first optical image is formed with light in a specific wavelength range. Therefore, narrow band light observation can be performed by observing the first optical image.
  • the second optical image is formed by light in which only light in a specific wavelength region is missing from white light. Therefore, white light observation cannot be performed even if the second optical image is observed.
  • Patent Document 2 narrow band light observation can be performed by observing a fluorescent image, and white light observation can be performed by observing a white light image.
  • two optical paths are formed on the object side of the polarizing beam splitter. This increases the size of the optical system.
  • Patent Document 3 two optical images are formed, and the two optical images are both white light images.
  • R, G, and B color filters are arranged in one of the two filter position regions, and a specific wavelength color filter is arranged on the other. Yes. For this reason, the versatility of the image sensor is reduced.
  • the present invention has been made in view of such a problem, and is an objective optical system capable of simultaneously performing narrow-band light observation and white light observation using a highly versatile imaging device while being a compact optical system, and An object of the present invention is to provide an endoscope apparatus including the same.
  • an objective optical system includes: A lens group that forms an image of the object; An optical path splitting element disposed on the image side of the lens group, The optical path splitting element is disposed on the optical path of the lens group, The optical path splitting element has an optical path splitting surface that forms a first optical path and a second optical path, The first optical path is formed on an extension line of the optical path of the lens group, The second optical path is formed to intersect the first optical path, The optical image in the first optical path and the optical image in the second optical path are formed on the same plane, A reflective surface is located in the second optical path; A predetermined optical surface is located only in one of the first optical path and the second optical path, The wavelength range of the light transmitted through the predetermined optical surface, or the wavelength range of the light reflected by the predetermined optical surface is limited, The restricted wavelength range is characterized by being narrower than the wavelength range of the light traveling in the other optical path.
  • the endoscope apparatus of the present invention is The above-mentioned objective optical system; An image sensor; And an image processing apparatus.
  • an objective optical system capable of simultaneously performing narrow-band light observation and white light observation using a highly versatile imaging device while being a small optical system, and an endoscope apparatus including the objective optical system. Can do.
  • FIG. 4 is a diagram illustrating spectral characteristics of the bandpass filter according to the first embodiment. It is a figure which shows the spectral characteristic of an optical film. It is a figure which shows the structure of the endoscope apparatus of this embodiment.
  • the objective optical system of the present embodiment includes a lens group that forms an image of an object, and an optical path dividing element that is disposed on the image side of the lens group, and the optical path dividing element is disposed on the optical path of the lens group.
  • the optical path splitting element has an optical path splitting surface that forms a first optical path and a second optical path, the first optical path is formed on an extension line of the optical path of the lens group, and the second optical path is the first optical path.
  • the optical image in the first optical path and the optical image in the second optical path are formed on the same plane, the reflecting surface is located in the second optical path, and the first optical path
  • the wavelength range of light transmitted through the predetermined optical surface or the wavelength range of light reflected by the predetermined optical surface is limited only in either one of the optical path and the second optical path.
  • the restricted wavelength range is narrower than the wavelength range of the light traveling in the other optical path.
  • the objective optical system of the present embodiment has an optical path dividing element disposed on the image side of the lens group.
  • the optical path dividing element has an optical path dividing surface. Examples of the optical path dividing surface include a surface having polarization characteristics and a half mirror surface.
  • optical path dividing surface When the optical path dividing surface has polarization characteristics, a quarter wavelength plate is disposed in the optical path.
  • the optical path dividing surface is a half mirror surface, it is not necessary to arrange a quarter wavelength plate. Below, the case where an optical path division surface has a polarization characteristic is demonstrated.
  • a first optical path and a second optical path are formed by the optical path dividing plane.
  • a predetermined optical surface is located only in one of the first optical path and the second optical path. On a given optical surface, light transmission or light reflection occurs. However, the wavelength range of transmitted light or the wavelength range of reflected light is limited.
  • the interference filter has an optical film formed on the optical surface.
  • the interference filter light in a specific wavelength range is transmitted or reflected by the optical film.
  • the colored glass filter absorbs light in a specific wavelength range. Below, it demonstrates using an optical film.
  • FIG. 1 shows the configuration of the objective optical system of the present embodiment.
  • the objective optical system 1 includes a lens group 2 and an optical path dividing unit 3.
  • the lens group 2 includes a plurality of lenses. However, in FIG. 1, the lens group 2 is represented by one lens. An optical image of the object is formed by the lens group 2.
  • the optical path dividing unit 3 is arranged on the image side of the lens group 2.
  • the optical path splitting unit 3 includes a prism 4, a prism 5, a mirror 6, a quarter wavelength plate 7, and a cover glass 8.
  • the prism 4 is a trapezoidal prism, and the prism 5 is a triangular prism.
  • the prism 4 and the prism 5 form an optical path dividing element.
  • the optical path splitting element is a polarization beam splitter.
  • the prism 4 is joined to the prism 5.
  • the optical surface S42 of the prism 4 and the optical surface S51 of the prism 5 form a joint surface SC.
  • the joint surface SC has a characteristic of transmitting P-polarized light and reflecting S-polarized light.
  • the mirror 6 is arranged so that the optical surface S61 faces the optical surface S43 of the prism 4.
  • the cover glass 8 is bonded to the optical surface S53 of the prism 5.
  • the optical path dividing unit 3 is disposed on the optical path of the lens group 2.
  • Light emitted from the lens group 2 (hereinafter referred to as “imaging light”) enters the optical path dividing unit 3.
  • the optical surface S41 is located closest to the lens group 2. Therefore, the imaging light is incident on the optical surface S41. Since the optical surface S41 is a transmission surface, the imaging light passes through the optical surface S41.
  • the imaging light is incident on the joint surface SC.
  • the joint surface SC is arranged such that the normal of the surface is 45 degrees with respect to the optical axis.
  • the imaging light incident on the joint surface SC includes light that passes through the joint surface SC (hereinafter referred to as “imaging light 1”) and light that is reflected by the joint surface SC (hereinafter referred to as “imaging light 2”). And divided.
  • the optical path splitting element is a polarization beam splitter. Therefore, P-polarized light is transmitted and S-polarized light is reflected at the joint surface SC.
  • the imaging light 1 is P-polarized light
  • the imaging light 2 is S-polarized light.
  • the imaging light 1 and the imaging light 2 travel in different directions.
  • the optical path in which the imaging light 1 travels is the first optical path
  • the optical path in which the imaging light 2 travels is the second optical path
  • the first optical path and the second optical path are formed by the joint surface SC.
  • the joint surface SC is an optical path dividing surface.
  • the first optical path is formed on an extension line of the optical path of the lens group 2.
  • the second optical path is formed so as to intersect the first optical path. In FIG. 1, the second optical path is orthogonal to the first optical path.
  • the joint surface SC, the optical surface S52, the optical surface S53, and the optical surface S81 are located in the first optical path.
  • the imaging light 1 is incident on the optical surface S52.
  • the optical surface S52 is a reflecting surface.
  • the imaging light 1 is reflected by the optical surface S52 and enters the optical surface S53.
  • the optical surface S53 is a transmission surface.
  • the imaging light 1 passes through the optical surface S53 and enters the cover glass 8.
  • the imaging light 1 reaches the optical surface S81.
  • the optical surface S81 is a transmission surface.
  • An optical image I1 is formed in the vicinity of the optical surface S81.
  • junction surface SC, the optical surface S43, the quarter wavelength plate 7, the optical surface S61, the optical surface S53, and the optical surface S81 are located in the second optical path.
  • the imaging light 2 is incident on the optical surface S43.
  • the optical surface S43 is a transmission surface.
  • the imaging light 2 passes through the optical surface S43 and the quarter-wave plate 7 and enters the optical surface S61 of the mirror 6.
  • the optical surface S61 is a reflecting surface.
  • the imaging light 2 is reflected by the optical surface S61, passes through the quarter-wave plate 7, and enters the optical surface S43.
  • the 1 ⁇ 4 wavelength plate 7 is located in the second optical path.
  • the imaging light 2 is linearly polarized light.
  • the imaging light 2 is converted into circularly polarized light by passing through the quarter wavelength plate 7.
  • the imaging light 2 is reflected by the optical surface S61 of the mirror 6 and passes through the quarter wavelength plate 7 again.
  • the imaging light 2 passes through the quarter-wave plate 7 and is converted into linearly polarized light.
  • the polarization direction is a direction orthogonal to the S direction. That is, the imaging light 2 becomes P-polarized light. Therefore, the imaging light 2 is transmitted through the joint surface SC.
  • the imaging light 2 transmitted through the joint surface SC is incident on the optical surface S53.
  • the imaging light 2 passes through the optical surface S53 and enters the cover glass 8.
  • the imaging light 2 reaches the optical surface S81.
  • An optical image I2 is formed in the vicinity of the optical surface S81.
  • the optical path length is substantially the same for the first optical path and the second optical path. Therefore, the optical image I1 and the optical image I2 are formed on the same plane.
  • the optical film 9 is provided on the optical surface S43.
  • FIG. 2 is a diagram showing the spectral characteristics of the optical film 9. Spectral characteristics represent transmittance or reflectance at the optical surface as a function of wavelength. In FIG. 2, the spectral characteristic of the transmittance is shown.
  • the optical film 9 has a transmittance of 1% or more and 100% or less in the wavelength region from 480 nm to 520 nm.
  • the transmittance is 1% or less on both the shorter wavelength side than 480 nm and the longer wavelength side than 520 nm.
  • the subject is illuminated with white light, for example, light in a wavelength range from 400 nm to 700 nm. Further, it is assumed that the wavelength range of the light reflected from the subject is substantially the same as the wavelength range of the illumination light. In this case, light in the wavelength region from 400 nm to 700 nm enters the lens group 2 from the subject. Therefore, the wavelength range of the imaging light is from 400 nm to 700 nm.
  • the imaging light is incident on the joint surface SC and is divided into imaging light 1 and imaging light 2.
  • the imaging light 1 travels along the first optical path.
  • the imaging light 2 travels along the second optical path.
  • the optical surface S43 provided with the optical film 9 is located in the second optical path.
  • the imaging light 2 is incident on the optical surface S43.
  • FIG. 3 is a diagram showing the light intensity distribution.
  • the intensity distribution of the light that has passed through the optical surface S43 is indicated by a solid line
  • the intensity distribution of the light traveling through the first optical path is indicated by a broken line.
  • the vertical axis represents the light intensity
  • the horizontal axis represents the wavelength.
  • the intensity of light is standardized by the maximum value of light traveling in the first optical path.
  • the optical film 9 does not exist in the first optical path. Therefore, as shown by the broken line in FIG. 3, the wavelength range of the imaging light 1 is from 400 nm to 700 nm. Thus, the width of the wavelength range of the imaging light 1 is substantially the same as the width of the wavelength range of the imaging light.
  • the optical film 9 is present in the second optical path.
  • the wavelength range of the imaging light 2 before entering the optical surface S43 is from 400 nm to 700 nm, like the wavelength range of the imaging light 1.
  • the width of the wavelength range of the imaging light 2 after exiting from the optical surface S43 is from 480 nm to 520 nm as shown by the solid line in FIG.
  • the objective optical system of the present embodiment has the optical surface S43 provided with the optical film 9 as a predetermined optical surface. Therefore, the wavelength range of the light transmitted through the optical surface S43 is limited. Since the optical surface S43 is located only in the second optical path, the wavelength range of the light transmitted through the optical surface S43 is narrower than the wavelength range of the imaging light 1 traveling through the first optical path.
  • the wavelength range of the imaging light 1 is from 400 nm to 700 nm. Therefore, the optical image I1 is formed with light in the wavelength region from 400 nm to 700 nm, that is, white light. By observing the optical image I1, white light observation can be performed.
  • the wavelength range of the imaging light 2 emitted from the optical surface S43 is from 480 nm to 520 nm. Therefore, the optical image I2 is formed with light in a wavelength region from 480 nm to 520 nm, that is, narrowband light. By observing the optical image I2, narrowband light observation can be performed.
  • the number of optical paths formed on the object side relative to the optical path dividing unit 3 is one. Therefore, the objective optical system can be reduced in size. Moreover, since the optical image I1 and the optical image I2 are formed simultaneously, white light observation and narrow-band light observation can be performed simultaneously.
  • the wavelength range of the light forming the optical image I1 is different from the wavelength range of the light forming the optical image I2. Therefore, when the optical image I1 and the optical image I2 are picked up by the image pickup device, the optical image I1 and the color filter of the image pickup area can be made the same as the optical image I2 and the color filter of the image pickup area. As a result, a highly versatile image sensor can be used.
  • the objective optical system of the present embodiment it is possible to realize an objective optical system capable of performing narrow-band light observation and white light observation at the same time by using a highly versatile imaging device while being a small optical system. Can do.
  • an optical film 9 is provided on the optical surface S43.
  • a parallel plate may be disposed between the optical surface S43 and the quarter-wave plate 7 and the optical film 9 may be provided on the surface of the parallel plate.
  • a colored glass filter may be arranged between the optical surface S43 and the quarter wavelength plate 7.
  • the predetermined optical surface is located in the second optical path, a quarter-wave plate is located between the optical path dividing surface and the reflecting surface, and the optical path dividing surface is P-polarized light. It is preferable that the predetermined optical surface is located between the optical path dividing surface and the quarter wavelength plate.
  • the imaging light 2 directed from the optical path dividing surface, that is, the joint surface SC to the optical surface S43 is S-polarized light.
  • a case where the quarter wavelength plate 7 is not disposed between the joint surface SC and the optical surface S61 will be described.
  • the imaging light 2 is reflected by the optical surface S61 after passing through the optical surface S43.
  • the imaging light 2 again passes through the optical surface S43 and then enters the joint surface SC.
  • the imaging light 2 immediately before entering the bonding surface SC is S-polarized light. S-polarized light is reflected at the joint surface SC. Therefore, the imaging light 2 is reflected by the cemented surface SC and travels toward the lens group 2. In this case, the optical image I2 cannot be formed.
  • the quarter wavelength plate 7 is disposed between the cemented surface SC and the optical surface S61.
  • the imaging light 2 immediately before entering the bonding surface SC becomes P-polarized light. Therefore, all the imaging light 2 is transmitted through the joint surface SC. That is, the light intensity of the imaging light 2 is the same before and after passing through the joint surface SC.
  • the joint surface SC can be a half mirror surface. Also in this case, the imaging light 2 passes through the optical surface S43, is reflected by the optical surface S61, and enters the bonding surface SC. However, since the joint surface SC is a half mirror surface, the light intensity of the imaging light 2 after passing through the joint surface SC is half of the light intensity before passing through the joint surface SC.
  • the light intensity of the imaging light 2 is the same before and after passing through the joint surface SC. Accordingly, it is possible to prevent a decrease in light intensity in the imaging light 2 as compared with the case where the joining surface SC is a half mirror surface.
  • the predetermined optical surface that is, the optical surface provided with the optical film 9 is located between the joint surface SC and the quarter-wave plate 7.
  • the optical surface S43 is located between the cemented surface SC and the quarter-wave plate 7. Therefore, the optical film 9 is provided on the optical surface S43.
  • imaging light 2T light in the wavelength region from 480 nm to 520 nm
  • the imaging light 2T passes through the quarter-wave plate 7, is reflected by the optical surface S61, and passes through the quarter-wave plate 7 again. Then, the imaging light 2T passes through the optical film 9 again and enters the bonding surface SC.
  • imaging light 2R light in a wavelength range shorter than 480 nm and light in a wavelength range longer than 520 nm (hereinafter referred to as “imaging light 2R”) are reflected by the optical film 9.
  • the imaging light 2R reflected by the optical film 9 is incident on the joint surface SC.
  • the imaging light 2T and the imaging light 2R are incident on the joint surface SC.
  • the imaging light 2T is light in which S-polarized light has passed through the quarter-wave plate 7 twice. Therefore, the imaging light 2T is P-polarized light. Therefore, the imaging light 2T passes through the joint surface SC. Then, an optical image I2 is formed by the imaging light 2T.
  • the optical image I2 is formed of light in a wavelength region from 480 nm to 520 nm, that is, narrowband light.
  • the imaging light 2R is light obtained by reflecting S-polarized light by the optical film 9. Therefore, the imaging light 2R is S-polarized light. Therefore, the imaging light 2R is reflected by the joint surface SC. Since the imaging light 2R travels toward the lens group 2, it does not contribute to the formation of the optical image I2.
  • the optical surface on which the optical film 9 is provided is positioned between the joint surface SC and the quarter-wave plate 7, only an optical image by narrowband light can be formed.
  • the S-polarized light also passes through the quarter-wave plate 7 twice for the imaging light 2R.
  • the imaging light 2R also passes through the joint surface SC together with the imaging light 2T.
  • the wavelength range of the light combining the imaging light 2R and the imaging light 2T is the same as the wavelength range of white light. Therefore, the optical image I2 becomes an optical image by white light.
  • the optical surface provided with the optical film 9 is positioned between the quarter-wave plate 7 and the optical surface S61.
  • the predetermined optical surface can be inserted into and removed from the second optical path.
  • a parallel plate may be disposed between the optical surface S43 and the quarter-wave plate 7 and the optical film 9 may be provided on the surface of the parallel plate.
  • a colored glass filter may be used instead of the parallel plate provided with the optical film 9.
  • the parallel plate provided with the optical film 9 may be insertable / removable with respect to the second optical path.
  • the optical image I1 is formed with white light
  • the optical image I2 is formed with narrowband light.
  • the optical path length in the first optical path is equal to the optical path length in the second optical path. Therefore, the in-focus area is the same in the optical image I1 and the optical image I2. Therefore, white light observation and narrow band light observation can be performed simultaneously.
  • the optical image I1 and the optical image I2 are formed with white light. Therefore, although white light observation can be performed, narrow-band light observation cannot be performed.
  • the optical path length in the first optical path is different from the optical path length in the second optical path. Therefore, the in-focus area differs between the optical image I1 and the optical image I2.
  • Such an optical image I1 and an optical image I2 are picked up, and thereby two images are acquired. Then, only the in-focus area is extracted from the two captured images, and the extracted areas are combined. By doing in this way, an image with a large depth of field can be acquired.
  • the predetermined optical surface is located in the first optical path, and the optical path dividing surface is a half mirror surface.
  • the joint surface SC is a half mirror surface.
  • the predetermined optical surface is located in the first optical path.
  • the optical film 9 is provided on the optical surface S52.
  • the imaging light is incident on the joint surface SC and is divided into imaging light 1 and imaging light 2.
  • the imaging light 1 travels along the first optical path.
  • the imaging light 2 travels along the second optical path.
  • An optical surface S52 provided with the optical film 9 is located in the first optical path.
  • the imaging light 1 is incident on the optical surface S52.
  • the wavelength range of the imaging light 1 before entering the optical surface S52 is from 400 nm to 700 nm. However, when passing through the optical surface S52, only light in the wavelength region from 480 nm to 520 nm is reflected by the optical film 9.
  • the wavelength range of the imaging light 1 emitted from the optical surface S52 is from 480 nm to 520 nm.
  • the optical film 9 does not exist in the second optical path. Therefore, the wavelength range of the imaging light 2 is from 400 nm to 700 nm. The width of the wavelength range of the imaging light 2 is almost the same as the width of the wavelength range of the imaging light.
  • the objective optical system of this embodiment has an optical surface provided with the optical film 9 as a predetermined optical surface.
  • the optical surface on which the optical film 9 is provided is located only in the first optical path. For this reason, the wavelength range of light on the optical surface provided with the optical film 9 is narrower than the wavelength range of the imaging light 2 traveling in the second optical path.
  • the wavelength range of the imaging light 1 emitted from the optical surface S52 is from 480 nm to 520 nm. Therefore, the optical image I1 is formed with light in a wavelength region from 480 nm to 520 nm, that is, narrowband light. By observing the optical image I1, narrowband light observation can be performed.
  • the wavelength range of the imaging light 2 is from 400 nm to 700 nm. Therefore, the optical image I2 is formed with light in a wavelength region from 400 nm to 700 nm, that is, white light. By observing the optical image I2, white light observation can be performed.
  • the optical system of this embodiment In the objective optical system of this embodiment, polarized light is not used. Therefore, it is not necessary to arrange the quarter wavelength plate 7 in the second optical path. Therefore, the optical system can be reduced in size.
  • the mirror 6 is not required by making the optical surface S43 a reflective surface. Therefore, the optical system can be further downsized.
  • the sizes of the prism 4 and the prism 5 may be set so that the optical path length in the first optical path is equal to the optical path length in the second optical path.
  • an optical film is provided on a predetermined optical surface, and the optical film has spectral characteristics that generate light in a limited wavelength range, and satisfies the following conditional expression (1). It is preferable. 3 nm ⁇ T ⁇ ⁇ ⁇ ⁇ 60 nm (1) here, T ⁇ is the maximum transmittance in a limited wavelength range (0 ⁇ T ⁇ ⁇ 1.0), ⁇ is the full width at half maximum in the limited wavelength range (unit: nm), It is.
  • conditional expression (1) If the lower limit of conditional expression (1) is not reached, the optical image formed by the narrow-band light becomes too dark. Therefore, observation with narrow band light becomes difficult. If the upper limit of conditional expression (1) is exceeded, the wavelength range on the predetermined optical surface becomes too wide. Therefore, the effect in narrow band light observation falls.
  • blood vessels located on the surface layer can be emphasized by using light in a blue wavelength region.
  • light in the green wavelength range it is possible to emphasize blood vessels located in the middle and deep layers.
  • a thick blood vessel can be emphasized by using light in the red wavelength region.
  • each restricted wavelength range preferably satisfies the conditional expression (1).
  • FIG. 4 is a diagram illustrating the spectral characteristics of the bandpass filter according to the first embodiment.
  • the bandpass filter of the first embodiment By using the bandpass filter of the first embodiment, two lights in a limited wavelength region can be generated.
  • the spectral characteristics of the bandpass filter of Example 1 have two limited wavelength regions. Specifically, as shown in Table 1, the spectral characteristics have a narrow band 1 and a narrow band 2.
  • ⁇ c is the center wavelength of the band
  • FWHM is the full width at half maximum
  • Tmax is the maximum transmittance.
  • FIG. 5 is a diagram showing the spectral characteristics of the bandpass filter of the second embodiment.
  • the bandpass filter of the second embodiment By using the bandpass filter of the second embodiment, three lights in a limited wavelength region can be generated.
  • the spectral characteristics of the bandpass filter of Example 2 have three restricted wavelength regions. Specifically, as shown in Table 2, the spectral characteristics have a narrow band 2, a narrow band 3, and a narrow band 4.
  • the endoscope apparatus includes the objective optical system according to the present embodiment, an image sensor, and an image processing apparatus.
  • FIG. 6 is a diagram showing a configuration of the endoscope apparatus of the present embodiment.
  • the endoscope apparatus includes an objective optical system 1, an image sensor 10, and an image processing apparatus 20.
  • the endoscope apparatus can include a display device 30.
  • the optical image 1 and the optical image 2 are formed by the objective optical system 1. Of the two optical images, one optical image is formed with white light, and the other optical image is formed with narrowband light.
  • the optical image 1 and the optical image 2 are captured by the image sensor 10.
  • the image signal is output from the image sensor 10.
  • the image signal includes an image signal corresponding to the optical image 1 and an image signal corresponding to the optical image 2.
  • the image signal output from the image sensor 10 is input to the image processing device 20.
  • image processing is performed on the image signal as necessary.
  • the image signal is input to the display device 30.
  • the image signal includes the image signal corresponding to the optical image 1 and the image signal corresponding to the optical image 2. Therefore, a white light image and a narrow band light image are displayed on the display device 30.
  • narrow band light observation and white light observation can be performed simultaneously.
  • the amount of information about the subject increases, so that the accuracy of screening, diagnosis, and treatment can be improved.
  • a lens group that forms an image of the object An optical path splitting element disposed on the image side of the lens group, The optical path splitting element is disposed on the optical path of the lens group, The optical path splitting element has an optical path splitting surface that forms a first optical path and a second optical path, The first optical path is formed on an extension line of the optical path of the lens group, The second optical path is formed to intersect the first optical path, The optical image in the first optical path and the optical image in the second optical path are formed on the same plane, A reflective surface is located in the second optical path; A predetermined optical surface is located only in one of the first optical path and the second optical path, The wavelength range of the light transmitted through the predetermined optical surface, or the wavelength range of the light reflected by the predetermined optical surface is limited, An objective optical system characterized in that the limited wavelength range is narrower than the wavelength range of light traveling in the other optical path.
  • the predetermined optical surface is located in the second optical path; A quarter-wave plate is located between the optical path splitting surface and the reflecting surface, The optical path splitting surface has a characteristic of transmitting P-polarized light and reflecting S-polarized light, The objective optical system according to Additional Item 1, wherein the predetermined optical surface is located between the optical path dividing surface and the quarter-wave plate. (Appendix 3) The objective optical system according to Additional Item 1 or Additional Item 2, wherein the predetermined optical surface can be inserted into and extracted from the second optical path. (Appendix 4) The predetermined optical surface is located in the first optical path; The objective optical system according to Item 1, wherein the optical path dividing surface is a half mirror surface.
  • the present invention is useful for an objective optical system capable of simultaneously performing narrow-band light observation and white light observation using a highly versatile imaging device, and an endoscope apparatus including the same, although it is a small optical system.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Multimedia (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

小型な光学系でありながら、汎用性の高い撮像素子を用いて狭帯域光観察と白色光観察が同時に行える対物光学系及びそれを備えた内視鏡装置を提供する。 対物光学系1は、物体の像を形成するレンズ群2と、レンズ群2の像側に配置された光路分割素子3と、を有し、光路分割素子3は、第1の光路と第2の光路を形成する光路分割面を有し、第1の光路は、レンズ群2の光路の延長線上に形成され、第2の光路は、第1の光路と交差するように形成され、第1の光路における光学像I1と第2の光路における光学像I2は、同一平面上に形成され、第2の光路に、反射面が位置し、第1の光路と第2の光路の何れか一方の光路のみに、所定の光学面が位置し、所定の光学面を透過した光の波長域、又は、所定の光学面で反射された光の波長域は制限されており、制限された波長域は、他方の光路を進行する光の波長域よりも狭い。

Description

対物光学系及びそれを備えた内視鏡装置
 本発明は、対物光学系及びそれを備えた内視鏡装置に関する。
 内視鏡における観察方法として、白色光観察と狭帯域光観察とがある。白色光観察では、白色光で被写体が照明される。被写体では、光の透過や光の反射が生じる。被写体を透過した光の波長域や、各波長における光強度は、被写体が持つ光学特性によって異なる。被写体で反射された光の波長や、各波長における光強度も、被写体が持つ光学特性によって異なる。白色光観察では、全ての波長域の光によって光学像が形成され、この光学像を用いて観察が行われる。
 狭帯域光観察では、波長域が狭い光で被写体が照明されるか、又は、白色光で照明が行われる。前者の場合、通常観察と同様に、全ての波長域の光によって光学像が形成され、この光学像を用いて観察が行われる。後者の場合、白色光の波長域よりも狭い波長域の光によって光学像が形成され、この光学像を用いて観察が行われる。そのために、例えば、光学像よりも物体側に光学フィルタが配置され、この光学フィルタで、波長域が狭い光だけが透過又は反射される。
 1つの対物光学系から2つの光学像を形成する光学系が、特許文献1、特許文献2及び特許文献3に開示されている。
 特許文献1には、撮像ユニットを2つ備えた立体内視鏡が開示されている。各撮像ユニットは、レンズアセンブリーとセンサアセンブリーとからなる。レンズアセンブリーによって、被写体の光学像が形成される。
 センサアセンブリーは、プリズムアセンブリー、反射ユニット及び2つの撮像センサーを有する。プリズムアセンブリーは、第1面(ビームスプリット面)と第2面(反射面)とを有する。
 センサアセンブリーでは、ビームスプリット面で、光が2つに分けられる。これにより、第1の光路と第2の光路が形成される。その結果、第1の光路上に第1の光学像が形成され、第2の光路上に第2の光学像が形成される。第1の光学像と第2の光学像は、同一平面内の異なる位置に形成される。
 第1の光路上には、第1の撮像センサーが配置されている。第1の光学像は、第1の撮像センサーで撮像される。第2の光路上には、第2の撮像センサーが配置されている。第2の光学像は、第2の撮像センサーで撮像される。
 特許文献2には、2つの光路を備えた撮像装置システムが開示されている。一方の光路は蛍光観察用の光路であって、蛍光観察用対物レンズと第1の偏光板とを有する。他方の光路は、白色光観察用の光路であって、白色光観察用対物レンズと第2の偏光板とを有する。第1の偏光板と第2の偏光板は、偏光方向が直交するように配置されている。
 2つの光路が交差する位置には、1つの偏光ビームスプリッターが配置されている。偏光ビームスプリッターによって、蛍光と白色光のいずれか一方は、偏光ビームスプリッター面で反射され、他方は偏光ビームスプリッターを透過する。蛍光像と白色光像は、同一平面内の異なる位置に形成される。蛍光像と白色光像は、1つの撮像素子で撮像される。
 特許文献3には、対物光学系、分割素子及び1つの撮像素子を備えた撮像装置が開示されている。この撮像装置では、分割素子によって2つの光学像が形成され、2つの光学像が撮像素子によって撮像されている。撮像素子は、第1のフィルタ配置領域と、第2のフィルタ配置領域と、を有する。
米国特許第8684914号明細書 国際公開第2013/027459号 特開2014-103597号公報
 特許文献1には、様々な光学特性を持つ第1面が開示されている。例えば、第1面は、特定の波長域の光を反射し、それ以外の波長域の光を透過させる特性を有する。
 第1面がこのような光学特性を有する場合、被写体を白色光で照明すると、特定の波長域の光で第1の光学像が形成される。よって、第1の光学像を観察することで、狭帯域光観察が行える。一方、第2の光学像は、白色光から特定の波長域の光だけが欠落した光で形成される。そのため、第2の光学像を観察しても、白色光観察は行えない。
 特許文献2では、蛍光像を観察することで狭帯域光観察が行え、白色光像を観察することで白色光観察が行える。しかしながら、特許文献2では、偏光ビームスプリッターよりも物体側に、2つの光路が形成されている。そのため、光学系が大型化してしまう。
 特許文献3では、2つの光学像が形成されるが、2つの光学像は、共に白色光像である。狭帯域光観察と白色光観察を行うために、特許文献3では、2つのフィルタ位置領域の一方に、R、G、Bのカラーフィルタが配置され、他方に、特定波長カラーフィルタが配されている。そのため、撮像素子の汎用性が低くなる。
 本発明は、このような課題に鑑みてなされたものであって、小型な光学系でありながら、汎用性の高い撮像素子を用いて狭帯域光観察と白色光観察が同時に行える対物光学系及びそれを備えた内視鏡装置を提供することを目的とするものである。
 上述した課題を解決し、目的を達成するために、本発明の少なくとも幾つかの実施形態に係る対物光学系は、
 物体の像を形成するレンズ群と、
 レンズ群の像側に配置された光路分割素子と、を有し、
 光路分割素子は、レンズ群の光路上に配置され、
 光路分割素子は、第1の光路と第2の光路を形成する光路分割面を有し、
 第1の光路は、レンズ群の光路の延長線上に形成され、
 第2の光路は、第1の光路と交差するように形成され、
 第1の光路における光学像と第2の光路における光学像は、同一平面上に形成され、
 第2の光路に、反射面が位置し、
 第1の光路と第2の光路の何れか一方の光路のみに、所定の光学面が位置し、
 所定の光学面を透過した光の波長域、又は、所定の光学面で反射された光の波長域は制限されており、
 制限された波長域は、他方の光路を進行する光の波長域よりも狭いことを特徴とする。
 また、本発明の内視鏡装置は、
 上述の対物光学系と、
 撮像素子と、
 画像処理装置と、を有することを特徴とする。
 本発明によれば、小型な光学系でありながら、汎用性の高い撮像素子を用いて狭帯域光観察と白色光観察が同時に行える対物光学系及びそれを備えた内視鏡装置を提供することができる。
本実施形態の対物光学系の構成を示す図である。 光学膜の分光特性を示す図である。 光の強度分布を示す図である。 実施例1のバンドパスフィルターの分光特性を示す図である。 光学膜の分光特性を示す図である。 本実施形態の内視鏡装置の構成を示す図である。
 以下、本実施形態に係る対物光学系と本実施形態に係る内視鏡装置について、図面を用いて、このような構成をとった理由と作用を説明する。なお、以下の本実施形態に係る対物光学系や本実施形態に係る内視鏡装置により、この発明が限定されるものではない。
 本実施形態の対物光学系は、物体の像を形成するレンズ群と、レンズ群の像側に配置された光路分割素子と、を有し、光路分割素子は、レンズ群の光路上に配置され、光路分割素子は、第1の光路と第2の光路を形成する光路分割面を有し、第1の光路は、レンズ群の光路の延長線上に形成され、第2の光路は、第1の光路と交差するように形成され、第1の光路における光学像と第2の光路における光学像は、同一平面上に形成され、第2の光路に、反射面が位置し、第1の光路と第2の光路の何れか一方の光路のみに、所定の光学面が位置し、所定の光学面を透過した光の波長域、又は、所定の光学面で反射された光の波長域は制限されており、制限された波長域は、他方の光路を進行する光の波長域よりも狭いことを特徴とする。
 本実施形態の対物光学系は、レンズ群の像側に配置された光路分割素子を有する。光路分割素子は、光路分割面を有する。光路分割面としては、例えば、偏光特性を有する面や、ハーフミラー面がある。
 光路分割面が偏光特性を有する場合、光路中には1/4波長板が配置される。光路分割面がハーフミラー面の場合、1/4波長板を配置する必要は無い。以下では、光路分割面が偏光特性を有する場合について説明する。
 光路分割面によって、第1の光路と第2の光路が形成される。第1の光路と第2の光路の何れか一方の光路のみに、所定の光学面が位置する。所定の光学面では、光の透過又は光の反射が生じる。ただし、透過した光の波長域、又は、反射された光の波長域は制限される。
 光の波長域を制限する素子としては、干渉フィルタや、色ガラスフィルタがある。干渉フィルタは、光学面上に形成された光学膜を有する。干渉フィルタでは、光学膜によって、特定の波長域の光が透過、又は反射される。色ガラスフィルタでは、特定の波長域の光が吸収される。以下では、光学膜を用いて説明する。
 図1に、本実施形態の対物光学系の構成を示す。対物光学系1は、レンズ群2と、光路分割ユニット3と、を有する。レンズ群2は、複数のレンズで構成されている。ただし、図1では、レンズ群2を1つのレンズで表している。レンズ群2によって、物体の光学像が形成される。
 光路分割ユニット3は、レンズ群2の像側に配置されている。光路分割ユニット3は、プリズム4と、プリズム5と、ミラー6と、1/4波長板7と、カバーガラス8と、を有する。プリズム4は台形状のプリズム、プリズム5は三角プリズムである。プリズム4とプリズム5とで光路分割素子が形成されている。光路分割素子は、偏光ビームスプリッターである。
 プリズム4は、プリズム5に接合されている。プリズム4の光学面S42とプリズム5の光学面S51とで、接合面SCが形成されている。接合面SCは、P偏光の光を透過し、S偏光の光を反射する特性を有する。
 ミラー6は、光学面S61がプリズム4の光学面S43と対向するように配置されている。カバーガラス8は、プリズム5の光学面S53に接合されている。
 光路分割ユニット3は、レンズ群2の光路上に配置されている。レンズ群2を出射した光(以下、「結像光」という)は、光路分割ユニット3に入射する。光路分割ユニット3では、光学面S41がレンズ群2の最も近くに位置している。よって、結像光は光学面S41に入射する。光学面S41は透過面なので、結像光は光学面S41を透過する。
 続いて、結像光は接合面SCに入射する。接合面SCは、面の法線が光軸に対して45度となるように配置されている。接合面SCに入射した結像光は、接合面SCを透過する光(以下、「結像光1」という)と、接合面SCで反射される光(以下、「結像光2」という)と、に分かれる。
 上述のように、光路分割素子は、偏光ビームスプリッターである。よって、接合面SCでは、P偏光の光が透過され、S偏光の光が反射される。結像光1はP偏光の光、結像光2はS偏光の光になる。
 結像光1と結像光2は、互いに異なる方向に進行する。結像光1が進行する光路を第1の光路、結像光2が進行する光路を第2の光路とすると、接合面SCによって、第1の光路と第2の光路が形成される。このように、接合面SCは光路分割面である。
 第1の光路は、レンズ群2の光路の延長線上に形成されている。第2の光路は、第1の光路と交差するように形成されている。図1では、第2の光路は第1の光路と直交している。
 第1の光路には、接合面SC、光学面S52、光学面S53及び光学面S81が位置している。
 結像光1は、光学面S52に入射する。光学面S52は反射面である。結像光1は光学面S52で反射され、光学面S53に入射する。光学面S53は透過面である。結像光1は光学面S53を透過し、カバーガラス8に入射する。結像光1は光学面S81に到達する。光学面S81は透過面である。光学面S81の近傍に、光学像I1が形成される。
 第2の光路には、接合面SC、光学面S43、1/4波長板7、光学面S61、光学面S53及び光学面S81が位置している。
 結像光2は、光学面S43に入射する。光学面S43は透過面である。結像光2は光学面S43と1/4波長板7を透過し、ミラー6の光学面S61に入射する。光学面S61は反射面である。結像光2は光学面S61で反射され、1/4波長板7を透過し、光学面S43に入射する。
 第2の光路には、1/4波長板7が位置している。結像光2は、直線偏光の光である。結像光2は、1/4波長板7を通過することで、円偏光の光に変換される。結像光2は、ミラー6の光学面S61で反射され、再び、1/4波長板7を通過する。
 結像光2は、1/4波長板7を通過することで、直線偏光の光に変換される。1/4波長板7から出射した結像光2では、偏光方向がS方向と直交する方向になる。すなわち、結像光2はP偏光の光になる。よって、結像光2は、接合面SCを透過する。
 接合面SCを透過した結像光2は、光学面S53に入射する。結像光2は光学面S53を透過し、カバーガラス8に入射する。結像光2は光学面S81に到達する。光学面S81の近傍に、光学像I2が形成される。
 光路長は、第1の光路と第2の光路とで略同じである。よって、光学像I1と光学像I2は、同一平面上に形成される。
 本実施形態の対物光学系では、光学膜9が光学面S43に設けられている。図2は、光学膜9の分光特性を示す図である。分光特性は、光学面における透過率又は反射率を波長の関数として表したものである。図2では、透過率の分光特性が示されている。
 図2に示すように、光学膜9では、480nmから520nmまでの波長域で、透過率が1%以上、100%以下になっている。480nmよりも短波長側と、520nmよりも長波長側では、透過率は共に1%以下になっている。
 被写体は白色光、例えば、400nmから700nmまでの波長域の光によって照明されているとする。また、被写体で反射された光の波長域は、照明光の波長域とほぼ同じであるとする。この場合、400nmから700nmまでの波長域の光が被写体からレンズ群2に入射する。よって、結像光の波長域は、400nmから700nmまでになる。
 結像光は接合面SCに入射し、結像光1と結像光2に分かれる。結像光1は、第1の光路を進行する。結像光2は、第2の光路を進行する。第2の光路には、光学膜9が設けられた光学面S43が位置している。結像光2は、光学面S43に入射する。
 図3は、光の強度分布を示す図である。図3では、光学面S43を通過した光の強度分布が実線で示され、第1の光路を進行する光の強度分布が破線で示されている。縦軸は光の強度を表し、横軸は波長を表している。光の強度は、第1の光路を進行する光の最大値で規格化されている。
 第1の光路には、光学膜9は存在しない。よって、図3の破線で示すように、結像光1の波長域は、400nmから700nmまでになる。このように、結像光1の波長域の広さは、結像光の波長域の広さとほぼ同じになる。
 第2の光路には、光学膜9が存在する。光学面S43に入射する前の結像光2の波長域は、結像光1の波長域と同様に、400nmから700nmまでである。
 しかしながら、光学面S43を通過する際、480nmから520nmまでの波長域の光だけが光学膜9を透過し、480nmよりも短い波長域の光や、520nmよりも長い波長域の光は、光学膜9で反射される。そのため、光学面S43から出射した後の結像光2の波長域の広さは、図3の実線で示すように、480nmから520nmまでになる。
 このように、本実施形態の対物光学系は、所定の光学面として、光学膜9が設けられた光学面S43を有する。そのため、光学面S43を透過した光の波長域は制限される。光学面S43は第2の光路のみに位置しているため、光学面S43を透過した光の波長域は、第1の光路を進行する結像光1の波長域よりも狭くなる。
 上述のように、結像光1の波長域は、400nmから700nmまでである。よって、400nmから700nmまでの波長域の光、すなわち、白色光で光学像I1が形成される。光学像I1を観察することで、白色光観察が行える。
 一方、光学面S43から出射する結像光2の波長域は、480nmから520nmまでである。よって、480nmから520nmまでの波長域の光、すなわち、狭帯域光で光学像I2が形成される。光学像I2を観察することで、狭帯域光観察が行える。
 本実施形態の対物光学系では、光路分割ユニット3よりも物体側に形成されている光路の数は、1つである。よって、対物光学系を小型化することができる。また、光学像I1と光学像I2は、同時に形成されるので、白色光観察と狭帯域光観察を同時に行うことができる。
 また、光学像I1を形成する光の波長域と、光学像I2を形成する光の波長域とは、異なっている。よって、光学像I1と光学像I2を撮像素子で撮像する場合、光学像I1と撮像する領域のカラーフィルタと、光学像I2と撮像する領域のカラーフィルタとを同じにすることができる。その結果、汎用性の高い撮像素子を用いることができる。
 このように、本実施形態の対物光学系によれば、小型な光学系でありながら、汎用性の高い撮像素子を用いて狭帯域光観察と白色光観察が同時に行える対物光学系を実現することができる。
 図1に示す対物光学系では、光学面S43に光学膜9が設けられている。しかしながら、光学面S43と1/4波長板7との間に平行平板を配置し、平行平板の表面に光学膜9を設けても良い。また、光学面S43と1/4波長板7との間に、色ガラスフィルタを配置しても良い。
 本実施形態の対物光学系では、所定の光学面は、第2の光路に位置し、光路分割面と反射面との間に、1/4波長板が位置し、光路分割面は、P偏光の光を透過し、S偏光の光を反射する特性を有し、所定の光学面は、光路分割面と1/4波長板との間に位置することが好ましい。
 光路分割面、すなわち、接合面SCから光学面S43に向かう結像光2は、S偏光の光である。接合面SCから光学面S61までの間に、1/4波長板7が配置されていない場合について説明する。
 この場合、結像光2は、光学面S43を通過した後、光学面S61で反射される。結像光2は、再び光学面S43を通過した後、接合面SCに入射する。接合面SCに入射する直前の結像光2は、S偏光の光である。接合面SCでは、S偏光の光は反射される。よって、結像光2は接合面SCで反射され、レンズ群2に向かう。この場合、光学像I2を形成することはできない。
 本実施形態の対物光学系では、接合面SCと光学面S61との間に、1/4波長板7が配置されている。これにより、接合面SCに入射する直前の結像光2は、P偏光の光になる。よって、結像光2は、全て接合面SCを透過する。すなわち、結像光2の光強度は、接合面SCを透過する前と後とで同じになる。
 後述のように、接合面SCはハーフミラー面にすることができる。この場合も、結像光2は光学面S43を通過した後、光学面S61で反射されて、接合面SCに入射する。ただし、接合面SCはハーフミラー面なので、接合面SCを透過した後の結像光2の光強度は、接合面SCを透過する前の光強度の半分になる。
 これに対して、本実施形態の対物光学系では、上述のように、結像光2の光強度は、接合面SCを透過する前と後とで同じになる。よって、接合面SCがハーフミラー面の場合に比べて、結像光2における光強度の低下を防止できる。
 また、所定の光学面、すなわち、光学膜9が設けられた光学面は、接合面SCと1/4波長板7との間に位置していることが好ましい。本実施形態の対物光学系では、光学面S43が、接合面SCと1/4波長板7との間に位置している。そのため、光学面S43に光学膜9が設けられている。
 上述のように、光学膜9では、480nmから520nmまで波長域の光(以下、「結像光2T」という)は、光学膜9を透過する。結像光2Tは、1/4波長板7を通過し、光学面S61で反射され、再び1/4波長板7を通過する。そして、結像光2Tは、再び光学膜9を透過し、接合面SCに入射する。
 一方、480nmよりも短い波長域の光や、520nmよりも長い波長域の光(以下、「結像光2R」という)は、光学膜9で反射される。光学膜9で反射された結像光2Rは、接合面SCに入射する。このように、接合面SCには、結像光2Tと結像光2Rが入射する。
 結像光2Tは、S偏光の光が1/4波長板7を2回通過した光である。よって、結像光2TはP偏光の光である。そのため、結像光2Tは、接合面SCを透過する。そして、結像光2Tによって光学像I2が形成される。光学像I2は、480nmから520nmまで波長域の光、すなわち、狭帯域光で形成されている。
 一方、結像光2Rは、S偏光の光が光学膜9で反射された光である。よって、結像光2RはS偏光の光である。そのため、結像光2Rは、接合面SCで反射される。結像光2Rはレンズ群2に向かって進行するので、光学像I2の形成に寄与しない。
 このように、光学膜9が設けられた光学面が、接合面SCと1/4波長板7との間に位置することで、狭帯域光による光学像のみを形成することができる。
 光学膜9が設けられた光学面が、1/4波長板7と光学面S61との間に位置する場合、結像光2Rも、S偏光の光が1/4波長板7を2回通過した光になる。この場合、結像光2Rも結像光2Tと一緒に接合面SCを透過する。結像光2Rと結像光2Tを合わせた光の波長域は、白色光の波長域と同じである。よって、光学像I2は、白色光による光学像になる。
 このようなことから、光学膜9が設けられた光学面が、1/4波長板7と光学面S61との間に位置することは好ましくない。
 本実施形態の対物光学系では、所定の光学面は、第2の光路に対して挿抜可能であることが好ましい。
 上述のように、光学面S43と1/4波長板7との間に平行平板を配置し、平行平板の表面に光学膜9を設けても良い。また、光学膜9を設けた平行平板の代わりに、色ガラスフィルタを用いても良い。
 また、光学膜9を設けた平行平板を、第2の光路に対して挿抜可能にしても良い。平行平板が第2の光路に挿入されている場合、白色光で光学像I1が形成され、狭帯域光で光学像I2が形成される。第1の光路における光路長と第2の光路における光路長は等しい。そのため、ピントが合っている領域は、光学像I1と光学像I2とで同じになる。よって、白色光観察と狭帯域光観察が同時に行える。
 一方、平行平板が第2の光路から抜去されている場合、白色光で光学像I1と光学像I2が形成される。そのため、白色光観察は行えるが、狭帯域光観察は行えない。
 更に、第1の光路における光路長と第2の光路における光路長とは、異なる。そのため、ピントが合っている領域は、光学像I1と光学像I2とで異なる。このような光学像I1と光学像I2を撮像し、これにより2つの画像を取得する。そして、撮像した2つの画像からピントが合っている領域だけを抽出し、抽出した領域を合成する。このようにすることで、被写界深度の大きな画像を取得することができる。
 本実施形態の対物光学系では、所定の光学面は、第1の光路に位置し、光路分割面は、ハーフミラー面であることが好ましい。
 本実施形態の対物光学系では、接合面SCは、ハーフミラー面である。この場合、所定の光学面は、第1の光路に位置する。具体的には、光学面S52に光学膜9が設けられている。
 結像光は接合面SCに入射し、結像光1と結像光2に分かれる。結像光1は、第1の光路を進行する。結像光2は、第2の光路を進行する。第1の光路には、光学膜9が設けられた光学面S52が位置している。結像光1は、光学面S52に入射する。
 光学面S52に入射する前の結像光1の波長域は、400nmから700nmまでである。しかしながら、光学面S52を通過する際、480nmから520nmまでの波長域の光だけが光学膜9で反射される。
 一方、480nmよりも短い波長域の光や、520nmよりも長い波長域の光は、光学膜9を透過する。そのため、光学面S52から出射する結像光1の波長域は、480nmから520nmまでになる。
 第2の光路には、光学膜9は存在しない。よって、結像光2の波長域は、400nmから700nmまでになる。結像光2の波長域の広さは、結像光の波長域の広さとほぼ同じである。
 このように、本実施形態の対物光学系は、所定の光学面として、光学膜9が設けられた光学面を有する。そして、光学膜9が設けられた光学面は、第1の光路のみに位置している。そのため、光学膜9が設けられた光学面における光の波長域は、第2の光路を進行する結像光2の波長域よりも狭くなっている。
 上述のように、光学面S52から出射する結像光1の波長域は、480nmから520nmまでである。よって、480nmから520nmまで波長域の光、すなわち、狭帯域光で光学像I1が形成される。光学像I1を観察することで、狭帯域光観察が行える。
 一方、結像光2の波長域は、400nmから700nmまでである。よって、400nmから700nmまでの波長域の光、すなわち、白色光で光学像I2が形成される。光学像I2を観察することで、白色光観察が行える。
 本実施形態の対物光学系では、偏光を利用していない。そのため、第2の光路に1/4波長板7を配置する必要がない。よって、光学系を小型化することができる。
 また、光学面S43を反射面にすることで、ミラー6も不要になる。よって、光学系をより小型化することができる。光学面S43を反射面にする場合、第1の光路における光路長と、第2の光路における光路長が等しくなるように、プリズム4やプリズム5の大きさを設定すれば良い。
 本実施形態の対物光学系では、所定の光学面に、光学膜が設けられ、光学膜は、制限された波長域の光を生じる分光特性を有し、以下の条件式(1)を満足することが好ましい。
 3nm≦Tλ×Δλ≦60nm   (1)
 ここで、
 Tλは、制限された波長域における最大透過率(0≦Tλ≦1.0)、
 Δλは、制限された波長域における半値全幅(単位はnm)、
である。
 条件式(1)の下限値を下回ると、狭帯域光で形成される光学像が暗くなりすぎる。そのため、狭帯域光での観察が困難になる。条件式(1)の上限値を上回ると、所定の光学面における波長域が広くなりすぎる。そのため、狭帯域光観察における効果が低下する。
 狭帯域光観察における効果としては、例えば、血管の強調がある。具体的には、青色の波長域の光を用いることで、表層に位置する血管を強調できる。緑色の波長域の光を用いることで、中深層に位置する血管を強調することができる。また、赤色の波長域の光を用いることで、太い血管を強調することができる。
 本実施形態の対物光学系では、制限された波長域の数は複数であり、各々の制限された波長域は、条件式(1)を満足することが好ましい。
 このようにすることで、複数の波長域で狭帯域光観察をすることができる。これにより、被写体に関する情報量が増大するので、スクリーニング、診断及び処置の精度を向上させることができる。
 複数の制限された波長域の例を示す。図4は、実施例1のバンドパスフィルターの分光特性を示す図である。実施例1のバンドパスフィルターを用いることで、制限された波長域の光を2つ生じさせることができる。
 実施例1のバンドパスフィルターの分光特性は、制限された波長域を2つ有する。具体的には、表1に示すように、分光特性は、狭帯域1と狭帯域2を有する。表1において、λcは帯域の中心波長、FWHMは半値全幅、Tmaxは最大透過率である。
Figure JPOXMLDOC01-appb-T000001
 実施例1のバンドパスフィルターを用いることで、表層に位置する血管の強調と、中深層に位置する血管の強調ができる。
 図5は、実施例2のバンドパスフィルターの分光特性を示す図である。実施例2のバンドパスフィルターを用いることで、制限された波長域の光を3つ生じさせることができる。
 実施例2のバンドパスフィルターの分光特性は、制限された波長域を3つ有する。具体的には、表2に示すように、分光特性は、狭帯域2、狭帯域3及び狭帯域4を有する。
Figure JPOXMLDOC01-appb-T000002
 実施例2のバンドパスフィルターを用いることで、中深層に位置する血管の強調と、太い血管の強調と、ができる。
 本実施形態の内視鏡装置は、本実施形態の対物光学系と、撮像素子と、画像処理装置と、を有することを特徴とする。
 図6は、本実施形態の内視鏡装置の構成を示す図である。内視鏡装置は、対物光学系1と、撮像素子10と、画像処理装置20と、を有する。内視鏡装置は、表示装置30を備えることができる。
 上述のように、対物光学系1によって、光学像1と光学像2が形成される。2つの光学像のうち、一方の光学像は白色光で形成され、他方の光学像は狭帯域光で形成される。光学像1と光学像2は、撮像素子10で撮像される。
 撮像素子10から画像信号が出力される。画像信号には、光学像1に対応する画像信号と、光学像2に対応する画像信号と、が含まれている。撮像素子10から出力された画像信号は、画像処理装置20に入力される。画像処理装置20では、必要に応じて、画像信号に対して画像処理が行われる。画像信号は表示装置30に入力される。
 上述のように、画像信号には、光学像1に対応する画像信号と、光学像2に対応する画像信号と、が含まれている。よって、白色光画像と狭帯域光画像が、表示装置30に表示される。
 本実施形態の内視鏡装置によれば、狭帯域光観察と白色光観察を同時に行なうことができる。これにより、被写体に関する情報量が増大するので、スクリーニング、診断及び処置の精度を向上させることができる。
 以上、本発明の種々の実施形態について説明したが、本発明は、これらの実施形態のみに限られるものではなく、その趣旨を逸脱しない範囲で、これら実施形態の構成を適宜組合せて構成した実施形態も本発明の範疇となるものである。
(付記)
 なお、これらの実施例から以下の構成の発明が導かれる。
(付記項1)
 物体の像を形成するレンズ群と、
 レンズ群の像側に配置された光路分割素子と、を有し、
 光路分割素子は、レンズ群の光路上に配置され、
 光路分割素子は、第1の光路と第2の光路を形成する光路分割面を有し、
 第1の光路は、レンズ群の光路の延長線上に形成され、
 第2の光路は、第1の光路と交差するように形成され、
 第1の光路における光学像と第2の光路における光学像は、同一平面上に形成され、
 第2の光路に、反射面が位置し、
 第1の光路と第2の光路の何れか一方の光路のみに、所定の光学面が位置し、
 所定の光学面を透過した光の波長域、又は、所定の光学面で反射された光の波長域は制限されており、
 制限された波長域は、他方の光路を進行する光の波長域よりも狭いことを特徴とする対物光学系。
(付記項2)
 所定の光学面は、第2の光路に位置し、
 光路分割面と反射面との間に、1/4波長板が位置し、
 光路分割面は、P偏光の光を透過し、S偏光の光を反射する特性を有し、
 所定の光学面は、光路分割面と1/4波長板との間に位置することを特徴とする付記項1に記載の対物光学系。
(付記項3)
 所定の光学面は、第2の光路に対して挿抜可能であることを特徴とする付記項1又は付記項2に記載の対物光学系。
(付記項4)
 所定の光学面は、第1の光路に位置し、
 光路分割面は、ハーフミラー面であることを特徴とする付記項1に記載の対物光学系。
(付記項5)
 所定の光学面に、光学膜が設けられ、
 光学膜は、制限された波長域の光を生じる分光特性を有し、
 以下の条件式(1)を満足することを特徴とする付記項1から4の何れか一項に記載の対物光学系。
 3nm≦Tλ×Δλ≦60nm   (1)
 ここで、
 Tλは、制限された波長域における最大透過率(0≦Tλ≦1.0)、
 Δλは、制限された波長域における半値全幅(単位はnm)、
である。
(付記項6)
 制限された波長域の数は複数であり、
 各々の制限された波長域は、条件式(1)を満足することを特徴とする付記項5に記載の対物光学系。
(付記項7)
 付記項1から6のいずれか一項に記載の対物光学系と、
 撮像素子と、
 画像処理装置と、を有することを特徴とする内視鏡装置。
 本発明は、小型な光学系でありながら、汎用性の高い撮像素子を用いて狭帯域光観察と白色光観察が同時に行える対物光学系及びそれを備えた内視鏡装置に有用である。
 1 対物光学系
 2 レンズ群
 3 光路分割ユニット
 4 プリズム
 5 プリズム
 6 ミラー
 7 1/4波長板
 8 カバーガラス
 9 光学膜
 10 撮像素子
 20 画像処理装置
 30 表示装置
 I1、I2 光学像
 S41、S42、S43、S51、S52、S53、S61、S81 光学面
 SC 接合面

Claims (4)

  1.  物体の像を形成するレンズ群と、
     前記レンズ群の像側に配置された光路分割素子と、を有し、
     前記光路分割素子は、前記レンズ群の光路上に配置され、
     前記光路分割素子は、第1の光路と第2の光路を形成する光路分割面を有し、
     前記第1の光路は、前記レンズ群の光路の延長線上に形成され、
     前記第2の光路は、前記第1の光路と交差するように形成され、
     前記第1の光路における光学像と前記第2の光路における光学像は、同一平面上に形成され、
     前記第2の光路に、反射面が位置し、
     前記第1の光路と前記第2の光路の何れか一方の光路のみに、所定の光学面が位置し、
     前記所定の光学面を透過した光の波長域、又は、前記所定の光学面で反射された光の波長域は制限されており、
     制限された波長域は、他方の光路を進行する光の波長域よりも狭いことを特徴とする対物光学系。
  2.  前記所定の光学面は、前記第2の光路に位置し、
     前記光路分割面と前記反射面との間に、1/4波長板が位置し、
     前記光路分割面は、P偏光の光を透過し、S偏光の光を反射する特性を有し、
     前記所定の光学面は、前記光路分割面と前記1/4波長板との間に位置することを特徴とする請求項1に記載の対物光学系。
  3.  前記所定の光学面に、光学膜が設けられ、
     前記光学膜は、前記制限された波長域の光を生じる分光特性を有し、
     以下の条件式(1)を満足することを特徴とする請求項1又は2に記載の対物光学系。
     3nm≦Tλ×Δλ≦60nm   (1)
     ここで、
     Tλは、前記制限された波長域における最大透過率(0≦Tλ≦1.0)、
     Δλは、前記制限された波長域における半値全幅(単位はnm)、
    である。
  4.  請求項1から3のいずれか一項に記載の対物光学系と、
     撮像素子と、
     画像処理装置と、を有することを特徴とする内視鏡装置。
PCT/JP2017/019032 2016-06-17 2017-05-22 対物光学系及びそれを備えた内視鏡装置 WO2017217189A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780035383.8A CN109328026B (zh) 2016-06-17 2017-05-22 物镜光学***以及具备物镜光学***的内窥镜装置
JP2017564648A JP6317050B1 (ja) 2016-06-17 2017-05-22 対物光学系及びそれを備えた内視鏡装置
US16/212,184 US10852526B2 (en) 2016-06-17 2018-12-06 Objective optical system and endoscope apparatus using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016120716 2016-06-17
JP2016-120716 2016-06-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/212,184 Continuation US10852526B2 (en) 2016-06-17 2018-12-06 Objective optical system and endoscope apparatus using the same

Publications (1)

Publication Number Publication Date
WO2017217189A1 true WO2017217189A1 (ja) 2017-12-21

Family

ID=60663596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019032 WO2017217189A1 (ja) 2016-06-17 2017-05-22 対物光学系及びそれを備えた内視鏡装置

Country Status (4)

Country Link
US (1) US10852526B2 (ja)
JP (1) JP6317050B1 (ja)
CN (1) CN109328026B (ja)
WO (1) WO2017217189A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057990A1 (ja) * 2022-09-16 2024-03-21 ソニーグループ株式会社 撮像装置及び医療用観察システム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11653824B2 (en) * 2017-05-30 2023-05-23 Sony Corporation Medical observation system and medical observation device
CN112066917B (zh) * 2020-09-17 2023-01-31 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) 平面度检测设备、方法和电子设备
CN114176484A (zh) * 2021-12-16 2022-03-15 重庆西山科技股份有限公司 偏振光内窥镜装置、摄像头及摄像头光学***
CN114916899A (zh) * 2022-07-19 2022-08-19 珠海维尔康生物科技有限公司 一种光学设计的荧光摄像头及其成像方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014103597A (ja) * 2012-11-21 2014-06-05 Olympus Corp 撮像装置
WO2014171284A1 (ja) * 2013-04-19 2014-10-23 オリンパスメディカルシステムズ株式会社 内視鏡装置
WO2016043107A1 (ja) * 2014-09-18 2016-03-24 オリンパス株式会社 内視鏡システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03175412A (ja) * 1989-12-05 1991-07-30 Victor Co Of Japan Ltd 偏光変換素子
DE69028497T2 (de) * 1989-12-20 1997-02-06 Canon Kk Polarisierendes Beleuchtungsgerät
JPH04230705A (ja) * 1990-05-18 1992-08-19 Canon Inc 偏光変換装置、該偏光変換装置を備えた偏光照明装置および該偏光照明装置を有する投写型表示装置
US5434669A (en) * 1990-10-23 1995-07-18 Olympus Optical Co., Ltd. Measuring interferometric endoscope having a laser radiation source
US5381278A (en) * 1991-05-07 1995-01-10 Canon Kabushiki Kaisha Polarization conversion unit, polarization illumination apparatus provided with the unit, and projector provided with the apparatus
US6587269B2 (en) * 2000-08-24 2003-07-01 Cogent Light Technologies Inc. Polarization recovery system for projection displays
DE10246521B4 (de) * 2002-10-05 2005-11-10 Karl Storz Gmbh & Co. Kg Endoskop
US8684914B2 (en) 2011-08-12 2014-04-01 Intuitive Surgical Operations, Inc. Image capture unit and an imaging pipeline with enhanced color performance in a surgical instrument and method
JP5393926B2 (ja) 2011-08-24 2014-01-22 オリンパスメディカルシステムズ株式会社 撮像装置及び撮像装置システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014103597A (ja) * 2012-11-21 2014-06-05 Olympus Corp 撮像装置
WO2014171284A1 (ja) * 2013-04-19 2014-10-23 オリンパスメディカルシステムズ株式会社 内視鏡装置
WO2016043107A1 (ja) * 2014-09-18 2016-03-24 オリンパス株式会社 内視鏡システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057990A1 (ja) * 2022-09-16 2024-03-21 ソニーグループ株式会社 撮像装置及び医療用観察システム

Also Published As

Publication number Publication date
CN109328026B (zh) 2021-03-19
JPWO2017217189A1 (ja) 2018-06-21
JP6317050B1 (ja) 2018-04-25
CN109328026A (zh) 2019-02-12
US20190113739A1 (en) 2019-04-18
US10852526B2 (en) 2020-12-01

Similar Documents

Publication Publication Date Title
JP6317050B1 (ja) 対物光学系及びそれを備えた内視鏡装置
TWI728171B (zh) 用於自一寬頻源產生多通道可調照明之系統及方法
JP6260006B2 (ja) 撮像装置、並びにそれを用いた撮像システム、電子ミラーシステムおよび測距装置
US9293491B2 (en) Polarization image sensor and endoscope
JP6939000B2 (ja) 撮像装置及び撮像方法
JP6377181B2 (ja) 撮像装置
US11163169B2 (en) Endoscope and imaging arrangement providing improved depth of field and resolution
JP5796191B2 (ja) 撮像システム
JP2015225344A5 (ja)
JP2014103597A (ja) 撮像装置
US10893793B2 (en) Objective optical system and endoscope device including the same
JP6742984B2 (ja) ビームスプリッタ装置を備えた顕微鏡
JPH0743658A (ja) 投写型表示装置
US20060262208A1 (en) Optical low pass filter and image pickup apparatus having the same
TW201514552A (zh) 可修正光譜像差之光學濾波元件
JP4572569B2 (ja) 表示装置
JP2010113255A (ja) 光学素子、および光学素子の製造方法
JP5311790B2 (ja) 画像表示装置
JP2007057386A (ja) カメラ1台を用いたインライン3次元計測装置及び計測方法
JP6211261B2 (ja) 測距装置
US20220291496A1 (en) Chromatic light sheet microscope
JP5066782B2 (ja) 接眼式表示装置とこれを有するカメラ
US20190310450A1 (en) Cloaking devices constructed from reflection boundaries, half-mirrors and multiband dichroic color filters and vehicles comprising the same
JP2017156310A (ja) 蛍光測定装置
SU1659956A1 (ru) Лазерный проекционный микроскоп

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017564648

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813092

Country of ref document: EP

Kind code of ref document: A1