WO2017217157A1 - Gas dissolving apparatus - Google Patents

Gas dissolving apparatus Download PDF

Info

Publication number
WO2017217157A1
WO2017217157A1 PCT/JP2017/018005 JP2017018005W WO2017217157A1 WO 2017217157 A1 WO2017217157 A1 WO 2017217157A1 JP 2017018005 W JP2017018005 W JP 2017018005W WO 2017217157 A1 WO2017217157 A1 WO 2017217157A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
float chamber
dissolution
flow path
Prior art date
Application number
PCT/JP2017/018005
Other languages
French (fr)
Japanese (ja)
Inventor
前田 康成
伊藤 良泰
一成 川原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017217157A1 publication Critical patent/WO2017217157A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7176Feed mechanisms characterised by the means for feeding the components to the mixer using pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/712Feed mechanisms for feeding fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/75Discharge mechanisms
    • B01F35/754Discharge mechanisms characterised by the means for discharging the components from the mixer
    • B01F35/7547Discharge mechanisms characterised by the means for discharging the components from the mixer using valves, gates, orifices or openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/18Actuating devices; Operating means; Releasing devices actuated by fluid actuated by a float

Definitions

  • the present invention relates to a gas dissolving apparatus.
  • a conventional gas dissolving apparatus includes a gas dissolving apparatus that mixes a gas and a liquid to dissolve the gas into the liquid (for example, Patent Document 1).
  • the gas dissolving device of Patent Document 1 includes a dissolution tank for dissolving a gas into a liquid.
  • the inside of the dissolution tank is partitioned into a plurality of spaces, and a liquid in which the gas is dissolved is generated in the process in which the gas-liquid mixed fluid in which the liquid and the gas are mixed flows in these spaces.
  • the gas dissolving device of Patent Document 1 is provided with a float chamber for discharging undissolved gas in the dissolving tank to the outside.
  • an object of the present invention is to provide a gas dissolving apparatus with improved reliability in solving the above-mentioned problems.
  • a gas dissolving apparatus includes an inlet for introducing a gas-liquid mixed fluid obtained by mixing a gas with a liquid, and a flow path for the gas-liquid mixed fluid flowing from the inlet.
  • a dissolution tank having a dissolution channel for dissolving the gas in the gas, and an outflow port for allowing the liquid in which the gas is dissolved to flow out of the dissolution channel, and a gas-liquid mixed fluid flowing into the dissolution tank.
  • An inflow path An outflow path connected to the outflow port for discharging a liquid in which gas is dissolved, and a float chamber for discharging undissolved gas in the dissolution flow path to the outside, communicating with the dissolution flow path And the dissolution flow path at a location different from the communication location where the float chamber communicates with the dissolution flow path, or the bypass flow path connecting the inflow path or the outflow path and the float chamber.
  • the reliability can be improved.
  • FIG. 9 is a longitudinal sectional view of a dissolving tank of the gas dissolving apparatus according to the embodiment (cross section taken along the line AA in FIG. 9).
  • FIG. 10 is a longitudinal sectional view of a dissolution tank of the gas dissolving apparatus according to the embodiment (a sectional view taken along line BB in FIG. 10).
  • FIG. 1 is a diagram illustrating a schematic configuration of a gas dissolving apparatus 2 according to the first embodiment.
  • the gas dissolving device 2 generates a fine bubble by decompressing a gas dissolved in a liquid using a decompression device 14 described later, and supplies a liquid containing the fine bubble to a bathtub or the like.
  • the gas dissolving apparatus 2 of Embodiment 1 includes an inflow path 4, a gas supply mechanism 6, a pump 8, a dissolution tank 10, an outflow path 12, a decompression device 14, and a float chamber 16. And a bypass channel 18.
  • a gas-liquid mixed fluid in which a liquid and a gas are mixed flows into the dissolution tank 10 from the inflow path 4, and the gas is dissolved in the liquid in the dissolution tank 10. Thereafter, the liquid in which the gas is dissolved flows out to the outflow passage 12 and is generated as fine bubbles by reducing the pressure by the decompression device 14.
  • undissolved gas that has not been dissolved in the liquid is stored in the float chamber 16 and is discharged to the outside of the dissolution tank 10.
  • a bypass flow path 18 for flowing a fluid into the float chamber 16 is provided.
  • the mixed fluid is allowed to flow in the float chamber 16 where a fluid flow does not normally occur, and the inside of the float chamber 16 can be cleaned.
  • each structure of the gas dissolving apparatus 2 is demonstrated in order.
  • the inflow path 4 is a flow path for allowing the gas-liquid mixed fluid to flow into the dissolution tank 10.
  • the inflow path 4 is constituted by a pipe, for example.
  • the upstream side of the inflow path 4 is connected to a liquid supply source (not shown), and is configured to be able to supply liquid into the inflow path 4.
  • the downstream side of the inflow path 4 is connected to the inlet 20 of the dissolution tank 10.
  • a gas supply mechanism 6 and a pump 8 are provided in the middle of the inflow path 4.
  • the gas supply mechanism 6 is a mechanism for supplying gas into the inflow path 4.
  • the gas supply mechanism 6 is configured to include, for example, a pipe or the like. In the first embodiment, the configuration of the gas supply mechanism 6 will be described in a simplified manner.
  • the gas supply mechanism 6 supplies gas into the inflow passage 4 to generate a gas-liquid mixed fluid in which liquid and gas are mixed.
  • the pump 8 is a pump provided on the downstream side of the gas supply mechanism 6.
  • the pump 8 pumps the gas-liquid mixed fluid in the inflow passage 4 toward the inlet 20 of the dissolution tank 10.
  • the operation of the pump 8 is controlled by a control device described later.
  • the flow rate of the gas-liquid mixed fluid supplied to the dissolution tank 10 can be adjusted by controlling the rotation speed of the pump 8.
  • the dissolution tank 10 is a container for storing the gas-liquid mixed fluid supplied from the inflow passage 4 and dissolving the gas in the liquid.
  • the dissolution tank 10 has the inflow port 20, the dissolution flow path 22, and the outflow port 24 described above.
  • the dissolution channel 22 is a channel for flowing the gas-liquid mixed fluid that has flowed in from the inlet 20, and is formed by the inner wall of the dissolution tank 10.
  • the dissolution channel 22 is composed of a plurality of spaces, and a detailed configuration will be described later.
  • the upstream end of the dissolution channel 22 starts at the inlet 20 and the downstream end of the dissolution channel 22 ends at the outlet 24.
  • the outlet 24 is an outlet for allowing the liquid in which the gas is dissolved in the dissolution channel 22 to flow out of the dissolution tank 10. Both the inlet 20 and the outlet 24 are formed as openings at the bottom of the dissolution tank 10.
  • the outflow path 12 is a flow path for flowing out the fluid from the dissolution tank 10 to a bathtub or the like.
  • the outflow path 12 is constituted by, for example, piping.
  • the upstream end of the outflow path 12 is connected to the outlet 24 of the dissolution tank 10, and the downstream end is connected to a bathtub or the like.
  • a decompression device 14 is provided at a position adjacent to the outlet 24 in the outflow passage 12.
  • the decompression device 14 is a device that decompresses the liquid flowing out from the outlet 24 of the dissolution tank 10. When the decompression device 14 decompresses the liquid, the gas dissolved in the liquid can be generated as fine bubbles in the outflow passage 12.
  • the decompression device 14 and the outflow path 12 constitute a miniaturization unit that microbubbles the gas dissolved in the liquid.
  • the float chamber 16 is a mechanism for discharging undissolved gas that has not been dissolved in the liquid in the dissolution tank 10 to the outside.
  • the float chamber 16 is attached to the upper part of the dissolution tank 10 so as to communicate with the dissolution flow path 22 in the dissolution tank 10.
  • the float chamber 16 is preferably communicated with the downstream side of the dissolution channel 22 in the dissolution tank 10.
  • the float chamber 16 is provided so as to communicate with the most downstream space (a gas-liquid separation chamber 40 described later) in the dissolution tank 10.
  • the float chamber 16 includes a float 26, a valve body 28, and a discharge port 30.
  • the float 26 is a member that floats on the liquid level in the float chamber 16.
  • the float 26 moves up and down according to the height (water level) of the liquid level in the float chamber 16.
  • the float 26 is connected to the valve body 28.
  • the valve body 28 is a member which closes the discharge port 30 so that opening and closing is possible.
  • the discharge port 30 is an opening for discharging the gas in the float chamber 16 to the outside.
  • the discharge port 30 is provided on the upper surface of the float chamber 16 and communicates the inside and the outside of the float chamber 16.
  • the outlet 30 when the water level in the float chamber 16 is higher than the predetermined water level, the outlet 30 is closed by the valve body 28, and when the water level in the float chamber 16 is lower than the predetermined water level, the discharge port 30 is discharged. It functions to open the outlet 30. Detailed functions of the float chamber 16 will be described later.
  • the bypass channel 18 is a channel for supplying a fluid into the float chamber 16.
  • the bypass flow path 18 forms a fluid flow in the float chamber 16 to prevent the float chamber 16 from being contaminated or to clean the adhered dirt.
  • the bypass channel 18 in the first embodiment is provided so as to communicate the side wall of the float chamber 16 with the outer wall of the dissolution tank 10 on the upstream side of the float chamber 16.
  • a location where the float chamber 16 and the bypass channel 18 are connected is a communication location where the float chamber 16 communicates with the dissolution tank 10 (a bottom wall opening (not shown) of the float chamber 16). Is another part.
  • the bypass flow path 18 is connected so as to communicate with the most upstream space (gas-liquid mixing chamber 36 described later) in the dissolution tank 10.
  • the dissolution tank 10 has an internal space partitioned by a plurality of walls.
  • the dissolution tank 10 in the first embodiment includes two partition walls 32 and 34.
  • the first partition wall 32 is a wall extending downward from the upper end portion of the inner wall of the dissolution tank 10.
  • the first partition wall 32 does not reach the lower end portion of the inner wall of the dissolution tank 10 and forms a first communication port 33 as a gap with the lower end portion of the inner wall.
  • the second partition wall 34 is a wall extending upward from the lower end portion of the inner wall of the dissolution tank 10.
  • the second partition wall 34 does not reach the upper end of the inner wall of the dissolution tank 10, and forms a second communication port 35 as a gap with the upper end of the inner wall.
  • a dissolution channel 22 is formed by the space.
  • a space (intermediate chamber 38) between them and a space (gas-liquid separation chamber 40) on the downstream side of the second partition wall 34 are partitioned.
  • the upstream end of the gas-liquid mixing chamber 36 is connected to the inlet 20, and the downstream end of the gas-liquid separation chamber 40 is connected to the outlet 24. Further, the upstream end portion of the bypass channel 18 is connected to the gas-liquid mixing chamber 36, and the float chamber 16 communicates with the gas-liquid separation chamber 40.
  • a gas-liquid mixed fluid in which liquid and gas are mixed is supplied to the dissolution tank 10.
  • the gas-liquid mixed fluid enters the gas-liquid mixing chamber 36 through the inlet 20.
  • the gas-liquid mixed fluid that has entered the gas-liquid mixing chamber 36 is ejected upward from the bottom of the inner wall of the dissolution tank 10.
  • the gas-liquid mixed fluid collides with the upper end of the inner wall of the dissolution tank 10 and the first partition wall 32 and rebounds.
  • the gas-liquid mixed fluid that collides with the upper end of the inner wall of the dissolution tank 10 and the first partition wall 32 and rebounds stirs the gas-liquid mixed fluid in the gas-liquid mixing chamber 36.
  • the gas mixed through the gas supply mechanism 6 and the gas previously stored in the gas-liquid mixing chamber 36 are vigorously mixed with the liquid as the solvent.
  • the gas-liquid mixed fluid is stirred, and the gas is dissolved in the liquid under pressure, whereby a liquid in which the gas is dissolved is generated.
  • Such dissolution of gas is promoted by shearing by stirring to subdivide the gas mixed as gas bubbles in the gas-liquid mixed fluid and increase the surface area in contact with the liquid.
  • the homogenization by stirring reduces the gas dissolution concentration in the vicinity of the liquid surface, which is also promoted by increasing the gas dissolution rate in the liquid.
  • the generated gas-liquid mixed fluid flows out into the intermediate chamber 38 through the first communication port 33 between the lower end of the first partition wall 32 and the bottom of the inner wall of the dissolution tank 10.
  • the liquid flowing out into the intermediate chamber 38 flows from the upper end of the second partition wall 34 through the second communication port 35 and out into the gas-liquid separation chamber 40.
  • the gas-liquid separation chamber 40 is a space that separates gas that cannot be dissolved in the liquid from the liquid as bubbles. Since the liquid flow is lifted up to the vicinity of the liquid surface, which is the gas-liquid interface, the bubbles move upward by buoyancy and flow into the float chamber 16.
  • the liquid flowing out into the gas-liquid separation chamber 40 flows out into the outflow path 12 through the outflow port 24. Since the outflow port 24 is provided at the bottom of the gas-liquid separation chamber 40, outflow of large bubbles existing near the liquid surface to the outside is prevented.
  • the gas flowing into the float chamber 16 accumulates in the space inside the float chamber 16.
  • the amount of gas accumulated in the float chamber 16 increases, and the liquid level in the float chamber 16 decreases accordingly.
  • the float 26 also descends.
  • the valve body 28 connected to the float 26 switches between opening and closing of the discharge port 30 according to the height position of the float 26. Specifically, when the water level in the float chamber 16 is high and the position of the float 26 is above a predetermined position, the valve body 28 closes the discharge port 30. On the other hand, when the water level in the float chamber 16 becomes low and the position of the float 26 is below the predetermined position, the valve body 28 opens the discharge port 30.
  • the gas is controlled not to be discharged through the drain port 30 but to be accumulated.
  • gas accumulates in the float chamber 16, and when the water level in the float chamber 16 falls, the float 26 also descends.
  • the valve body 28 opens the discharge port 30. Thereby, the gas is discharged through the discharge port 30.
  • the discharge port 30 is closed again.
  • a bypass flow path 18 that connects the float chamber 16 and the space (gas-liquid mixing chamber 36) in the dissolution tank 10 is provided so that the gas-liquid mixed fluid can flow into the float chamber 16.
  • the bypass flow path 18 is not provided, the liquid flow basically does not occur in the float chamber 16 although the liquid level moves up and down. For this reason, the inside of the float chamber 16 tends to accumulate dirt. For example, when the bacteria in the liquid die and become a jelly-like lump adheres to the side wall of the float chamber 16 or the float 26, the operation of the float 26 is hindered. There is.
  • the gas dissolving device 2 when used for supplying a liquid to the “bathtub”, an additive such as oil may be added to the liquid. It becomes easy to get dirty.
  • the bypass flow path 18 is provided so that the gas-liquid mixed fluid flows into the float chamber 16. Thereby, the gas-liquid mixed fluid can be flowed into the float chamber 16 to clean the inside of the float chamber 16, and the float 26 can be prevented from malfunctioning due to dirt on the wall surface in the float chamber 16, etc. The reliability of the gas dissolving device 2 can be improved.
  • the bypass flow path 18 is connected to the gas-liquid mixing chamber 36 which is the most upstream space in the dissolution tank 10. For this reason, by utilizing the pressure difference between the gas-liquid mixing chamber 36 and the float chamber 16, the gas-liquid mixed fluid having a high pressure on the upstream side can be flowed into the float chamber 16, and a strong flow is generated in the float chamber 16. Can be generated. Thereby, the detergency which cleans the float chamber 16 improves and the reliability of the gas dissolving apparatus 2 can be improved.
  • the float chamber 16 communicates with the gas-liquid separation chamber 40 which is the most downstream space in the dissolution tank 10. For this reason, the pressure difference of the fluid tends to occur between the upstream side and the downstream side in the bypass flow path 18, and the gas-liquid mixed fluid can flow more reliably to the float chamber 16.
  • bypass channel 18 connects the gas-liquid mixing chamber 36 and the float chamber 16
  • the present invention is not limited to such a case.
  • the bypass flow path 52 in the gas dissolving device 50 shown in FIG. 2 is provided so as to communicate the float chamber 16 and the gas-liquid separation chamber 40.
  • the bypass passage 52 communicates with the gas-liquid separation chamber 40 at a point downstream of the communication location (the bottom wall opening of the float chamber 16) where the float chamber 16 and the gas-liquid separation chamber 40 communicate. Connected to do.
  • the gas-liquid mixed fluid is caused to flow from the high-pressure float chamber 16 to the low-pressure gas-liquid separation chamber 40 using the pressure difference between the float chamber 16 and the gas-liquid separation chamber 40. Can do. Thereby, the flow of the gas-liquid mixed fluid is generated in the float chamber 16 and the inside of the float chamber 16 can be cleaned.
  • the float chamber 16 is on the low pressure side in the bypass flow path 18, and the space (gas-liquid mixing chamber 36) in the dissolution tank 10 is on the high pressure side. Therefore, the fluid is always supplied to the float chamber 16 through the bypass channel 18, and the float chamber 16 can always be cleaned. Further, since the high-pressure side of the bypass channel 18 is connected to the gas-liquid mixing chamber 36, a gas-liquid mixed fluid containing a large amount of bubbles is supplied to the float chamber 16 from the gas-liquid mixing chamber 36 where the gas and the liquid are intensively mixed. Is done.
  • the float chamber 16 in the bypass channel 52 is on the high pressure side, and the space (gas-liquid separation chamber 40) in the dissolution tank 10 is on the low pressure side. Therefore, the fluid flows into the bypass channel 52 only when the water level rises to the height position of the bypass channel 52 in the float chamber 16. As described above, the float chamber 16 is not always washed, and the liquid flowing through the bypass passage 52 contains almost no bubbles.
  • the bypass flow paths 18 and 52 are the most upstream space (gas-liquid mixing chamber 36) or the most downstream space (of the plurality of spaces in the dissolution tank 10 ( The gas-liquid separation chamber 40) and the float chamber 16 are connected. According to such a configuration, a pressure difference is easily generated in the fluid flowing in the bypass flow paths 18 and 52, and a strong flow can be generated in the float chamber 16. Thereby, the detergency which cleans the float chamber 16 improves, and the reliability of the gas dissolving apparatuses 2 and 50 can be improved.
  • Embodiment 1 and the modification demonstrated the case where the bypass flow paths 18 and 52 were connected with the gas-liquid mixing chamber 36 and the gas-liquid separation chamber 40, respectively, it is not restricted to such a case.
  • the float chamber 16 may be connected to an arbitrary position as long as it is a location different from the communication location where the float chamber 16 and the dissolution channel 22 communicate with each other. As a result, a pressure difference is generated between the upstream side and the downstream side of the bypass flow paths 18 and 52, so that the fluid can flow through the bypass flow paths 18 and 52 and the float chamber 16 can be washed.
  • Embodiment 2 Next, the gas dissolving apparatus 60 concerning Embodiment 2 is demonstrated using FIG.
  • the bypass flow paths 18 and 52 are provided so as to connect the float chamber 16 and the space in the dissolution tank 10, but in the second embodiment, not the space in the dissolution tank 10 but the inflow path. 4 is connected to the bypass flow path 62.
  • the difference from the first embodiment will be mainly described.
  • the gas dissolving device 60 includes a bypass channel 62 that connects the inflow channel 4 and the float chamber 16.
  • the upstream side of the bypass channel 62 is connected to a position on the downstream side of the pump 8 in the inflow channel 4.
  • the downstream side of the bypass flow path 62 is connected to the side wall of the float chamber 16 as in the first embodiment.
  • the gas dissolving device 60 further includes an on-off valve 64 and a check valve 66 as a configuration provided in the middle of the bypass flow path 62.
  • the gas dissolving device 60 further includes a control device 68 and a switch 69.
  • the on / off valve 64 is a valve (bypass channel on / off valve) that switches between opening and closing of the bypass channel 62.
  • the on-off valve 64 for example, an electromagnetic valve or an electric valve is used.
  • a check valve 66 is provided on the downstream side of the on-off valve 64 in the bypass passage 62.
  • the check valve 66 is a valve that prevents a back flow in the bypass flow path 62, and acts to flow the gas-liquid mixed fluid only in the direction of flowing from the inflow path 4 toward the float chamber 16.
  • the control device 68 is a device for controlling the operation of the on-off valve 64 and the pump 8.
  • the control device 68 is constituted by a microcomputer, for example.
  • a switch 69 is connected to the control device 68.
  • the switch 69 is a member for the user to operate ON / OFF of the operation of the gas dissolving device 60.
  • FIG. 4 shows an example of a method for controlling the pump 8 and the on-off valve 64 by the control device 68 in such a configuration.
  • the operation of the pump 8 is started in response to the ON signal of the gas dissolving device 60 being input by the switch 69. Specifically, the pump 8 is operated so as to increase the rotational speed to a predetermined rotational speed, and thereafter controlled to be maintained at the predetermined rotational speed (first operation). During this time, the on-off valve 64 is closed. That is, the gas-liquid mixed fluid is controlled to flow only from the inflow path 4 to the dissolution tank 10 without flowing the gas-liquid mixed fluid through the bypass channel 62.
  • the float chamber 16 is not washed until the input of the OFF signal of the gas dissolving device 2 by the switch 69 is received, and the gas is dissolved in the liquid by the dissolving tank 10 and fine bubbles are generated by the decompression device 14 and the outflow passage 12.
  • the 1st operation which generates is performed.
  • control is performed so that the rotational speed of the pump 8 is gradually increased as time passes. Thereby, the pump 8 is controlled so as not to take in a large amount of gas abruptly.
  • the control device 68 stops the operation of the pump 8. Specifically, the operation is performed until the pump 8 is stopped while the rotational speed of the pump 8 is decreased (second operation).
  • the on-off valve 64 is controlled to open during the second operation. That is, the float chamber 16 is cleaned immediately before the operation of the gas dissolving device 60 is completed. According to such control, in the first operation in which fine bubbles are generated, the gas-liquid mixed fluid is not supplied to the float chamber 16, and the rotation speed of the pump 8 is reduced in the second operation after the first operation. Wash while you are.
  • the gas-liquid mixed fluid having a desired flow rate is supplied to the dissolution tank 10, and the float chamber 16 that does not affect the first operation according to the end of the first operation is supplied. Washing can be performed. In this way, the first operation for generating fine bubbles and the second operation for cleaning the float chamber 16 can be efficiently made compatible.
  • the gas is compressed and the pressure of the liquid is high.
  • the rotation speed of the pump 8 is rapidly decreased in the second operation, the dissolution tank 10 The gas expands rapidly. In this case, gas may flow into the outflow passage 12 instead of the float chamber 16.
  • control is performed such that the rotational speed of the pump 8 is gradually decreased with the passage of time. This prevents the above-described phenomenon from occurring.
  • the decrease speed of the rotation speed of the pump 8 in the second operation is controlled slower than the increase speed of the rotation speed of the pump 8 at the start of the first operation. Thereby, the phenomenon mentioned above can be prevented more effectively.
  • the gas dissolving apparatus 60 includes the on-off valve (bypass passage on-off valve) 64 that opens and closes the bypass passage 62. As a result, it is possible to control the fluid to flow through the bypass channel 62 when desired.
  • the pump 8 is operated in a first operation that is operated at a predetermined rotational speed, and in the second operation until the pump 8 is stopped while decreasing the rotational speed of the pump 8 from the first operation. It is controlled to execute the operation.
  • the on-off valve 64 is controlled to open during the second operation of the pump 8.
  • the bypass flow path 62 connects the float chamber 16 and a position downstream of the pump 8 in the inflow path 4.
  • Embodiment 3 Next, the gas dissolving apparatus 70 concerning Embodiment 3 is demonstrated using FIG.
  • a gas supply path 72, an on-off valve 74, and a check valve 76 are provided. Since other configurations are the same as those of the second embodiment, description thereof is omitted.
  • the gas supply path 72 is a gas flow path for supplying gas to the inflow path 4.
  • the gas supply path 72 is constituted by, for example, a pipe.
  • the upstream side of the gas supply path 72 is connected to a gas supply source (not shown), and the downstream side of the gas supply path 72 is connected to the inflow path 4.
  • the gas supply path 72 is connected to the inflow path 4 at a position upstream of the pump 8.
  • An opening / closing valve 74 and a check valve 76 are provided in the middle of the gas supply path 72.
  • the on / off valve 74 is a valve (gas supply path on / off valve) that switches between opening and closing of the gas supply path 72.
  • As the on-off valve 74 for example, an electromagnetic valve or an electric valve is used.
  • a check valve 76 is provided upstream of the on-off valve 74 in the gas supply path 72.
  • the check valve 76 is a valve that prevents a back flow in the gas supply path 72, and acts to flow the gas only in the direction of flowing from the gas supply source toward the inflow path 4.
  • control device 68 controls the on-off valve 74 in addition to the pump 8 and the on-off valve 64.
  • An example of a method for controlling the pump 8, the on-off valve 64, and the on-off valve 74 by the control device 68 is shown in FIG.
  • the control method shown in FIG. 6 is common to the second embodiment with respect to the control of the pump 8 and the on-off valve 64, and only the control of the on-off valve 74 is different from the second embodiment. Hereinafter, the difference will be mainly described.
  • the control device 68 controls to open the on-off valve 74 during the first operation.
  • the on-off valve 74 is controlled to be closed during the second operation. That is, in the first operation, which is an operation for generating fine bubbles, gas is supplied to the inflow passage 4 to generate a gas-liquid mixed fluid.
  • the second operation for cleaning the float chamber 16 only the liquid is mainly supplied to the bypass channel 62 without supplying the gas to the inflow channel 4.
  • the gas-liquid mixed fluid containing a desired amount of gas is supplied to the dissolution tank 10 during the first operation, and the gas is not supplied to the inflow passage 4 during the second operation.
  • the gas dissolving apparatus 70 is a gas supply path 72 that supplies gas to a position upstream of the pump 8 in the inflow path 4 and an open / close valve that opens and closes the gas supply path 72. And a valve (gas supply passage opening / closing valve) 74.
  • the on-off valve 74 is controlled so that the pump 8 opens during the first operation and closes during the second operation. According to such control, while the gas is mixed and the gas-liquid mixed fluid is supplied in the first operation, the output by the pump 8 can be increased by not mixing the gas in the second operation, and the bypass A stronger flow can be generated through the channel 62. Thereby, the detergency which cleans the float chamber 16 improves, and the reliability of the gas dissolving apparatus 70 can be improved.
  • bypass flow path 62 is connected to the inflow path 4
  • the present invention is not limited to this case, and the outflow path 12 may be connected. Even in such a case, a pressure difference is generated between the upstream side and the downstream side of the bypass flow path, so that the fluid can flow through the bypass flow path and the float chamber 16 can be washed.
  • Embodiment 1-3 in order to form a bypass flow path that generates a flow of fluid in the float chamber 16, as in Embodiment 1, a communication location where the float chamber 16 and the dissolution flow path 22 communicate with each other.
  • the dissolution channel 22 and the float chamber 16 may be connected at a different location.
  • the inflow path 4 and the float chamber 16 may be connected as in the second and third embodiments, or the outflow path 12 and the float chamber 16 may be connected.
  • FIGS. 7 to 11 are examples based on the first embodiment described above.
  • 7 and 8 are partially exploded perspective views (front side and back side) of the dissolution tank 10
  • FIG. 9 is a plan view of the dissolution tank 10.
  • 10 is a cross-sectional view taken along the line AA in FIG. 9, and
  • FIG. 11 is a cross-sectional view taken along the line BB in FIG.
  • the float chamber 16 is provided on the upper surface of the outer wall of the dissolution tank 10, and the contact wall 78 is provided so as to contact the side wall of the float chamber 16. .
  • the contact wall 78 is a part of the outer wall upper surface 79 that forms the gas-liquid mixing chamber 36 in the dissolution tank 10.
  • the intermediate chamber 38 in the dissolution tank 10 is provided at a position different from the AA cross section of FIG. 9, it is not shown in FIG. 10, and the gas-liquid mixing chamber 36 and the gas-liquid separation chamber 40 are not shown. Only is shown.
  • a through-hole penetrating the float chamber 16 and the contact wall 78 is provided.
  • the through hole penetrates the float chamber 16 and the side wall of the contact wall 78 in the lateral direction (through the contact wall 78, the float chamber 16 and the gas-liquid mixing chamber 36 are communicated).
  • a path 18 is formed.
  • a temporary liquid level 80 in the float chamber 16 is illustrated, and the bypass channel 18 is provided in the vicinity of the liquid level 80.
  • the outer wall (outer wall upper surface 79) of the dissolving tank 10 constituting the most upstream space (gas-liquid mixing chamber 36) in the dissolving tank 10 is in contact with the float chamber 16. It has a wall 78. Further, the bypass channel 18 is formed by a through hole that communicates the contact wall 78 and the float chamber 16. In this way, the bypass channel 18 can be formed without providing other parts such as piping by forming the bypass channel 18 by the through-hole communicating with the contact wall 78 and the float chamber 16, and thus a simple configuration is adopted. Thus, the manufacturing cost of the gas dissolving device 2 can be reduced.
  • the present invention has been described with reference to the above-described embodiment 1-3 and examples, the present invention is not limited to the above-described embodiment 1-3.
  • Embodiment 1-3 the case where the bypass channel is connected to the side wall portion of the float chamber 16 has been described, but the present invention is not limited to such a case.
  • the bypass channel may be connected to an arbitrary position. In the float chamber 16, dirt is most likely to adhere to the vicinity of the liquid surface 80. Therefore, by connecting a bypass channel to the side wall of the float chamber 16 and ejecting fluid near the liquid surface 80. The inside of the float chamber 16 can be cleaned more efficiently.
  • the internal space of the dissolution tank 10 is partitioned by two partition walls 32 and 34, and the dissolution flow path 22 has three spaces (gas-liquid mixing chamber 36, intermediate chamber 38, and gas-liquid separation chamber 40).
  • the present invention is not limited to such a case. Any structure may be adopted as long as the gas can be dissolved in the liquid in the dissolution flow path 22 of the dissolution tank 10.
  • Embodiment 1-3 the case where the float chamber 16 is provided so as to communicate with the gas-liquid separation chamber 40 which is the most downstream space of the dissolution tank 10 has been described. It may be provided at an arbitrary position as long as it is downstream of the mixing chamber 36.
  • the gas dissolving apparatus can be applied to an application for generating a liquid in which a gas is dissolved and supplying the liquid without generating fine bubbles.
  • a gas dissolving device can be used as a means for generating a cleaning liquid for cleaning an object or as a means for generating a liquid used for health use.
  • the present invention is applicable to any gas dissolving apparatus that dissolves gas into liquid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Accessories For Mixers (AREA)
  • Float Valves (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

This gas dissolving apparatus is provided with: a dissolution tank having an inlet through which a gas-liquid mixed fluid obtained by mixing a gas with a liquid flows in, a dissolution passage through which the gas is dissolved in the liquid and which is a passage for the gas-liquid mixed fluid that has flown in through the inlet, and an outlet through which the liquid having the gas dissolved therein flows out from the dissolution passage; an in-flow passage through which the gas-liquid mixed fluid flows into the dissolution tank and which is connected to the inlet; an out-flow passage through which the liquid having the gas dissolved therein flows out and which is connected to the outlet; a float chamber that is connected with the dissolution passage and is for discharging undissolved gas in the dissolution passage to the outside; and a bypass passage that connects the float chamber with the dissolution passage, the in-flow passage, or the out-flow passage at a spot different from the connection spot at which the float chamber is connected with the dissolution passage. Thus, reliability can be improved.

Description

気体溶解装置Gas dissolving device
 本発明は、気体溶解装置に関する。 The present invention relates to a gas dissolving apparatus.
 従来の気体溶解装置には、気体と液体を混合して気体を液体に溶解させる気体溶解装置がある(例えば、特許文献1)。 A conventional gas dissolving apparatus includes a gas dissolving apparatus that mixes a gas and a liquid to dissolve the gas into the liquid (for example, Patent Document 1).
 特許文献1の気体溶解装置は、気体を液体に溶解させるための溶解タンクを備える。溶解タンクの内部は複数の空間に仕切られており、液体と気体を混合した気液混合流体がこれらの空間を流れる過程で、気体が溶解した液体が生成される。このような構成において、特許文献1の気体溶解装置は、溶解タンクにおける未溶解の気体を外部に排出するためのフロート室が設けられている。 The gas dissolving device of Patent Document 1 includes a dissolution tank for dissolving a gas into a liquid. The inside of the dissolution tank is partitioned into a plurality of spaces, and a liquid in which the gas is dissolved is generated in the process in which the gas-liquid mixed fluid in which the liquid and the gas are mixed flows in these spaces. In such a configuration, the gas dissolving device of Patent Document 1 is provided with a float chamber for discharging undissolved gas in the dissolving tank to the outside.
特開2013-66815号公報JP 2013-66815 A
 しかしながら、昨今では、気体溶解装置の信頼性を向上させることが求められている。特許文献1の気体溶解装置は、長期間使用する場合には、フロートを収容するフロート室内に汚れが溜まり、フロートの動作不良が生じるおそれがある等、気体溶解装置の信頼性を向上させるという観点では改善の余地があるといえる。 However, recently, it is required to improve the reliability of the gas dissolving apparatus. When the gas dissolving apparatus of Patent Document 1 is used for a long period of time, dirt accumulates in the float chamber that accommodates the float, which may cause malfunction of the float. So there is room for improvement.
 従って、本発明の目的は、上記問題を解決することにあって、信頼性を向上させた気体溶解装置を提供することにある。 Therefore, an object of the present invention is to provide a gas dissolving apparatus with improved reliability in solving the above-mentioned problems.
 上記目的を達成するために、本発明の気体溶解装置は、液体に気体を混合した気液混合流体を流入させる流入口と、前記流入口から流入した気液混合流体の流路であって液体に気体を溶解させる溶解流路と、気体が溶解した液体を前記溶解流路から流出させる流出口とを有する溶解タンクと、前記流入口に接続され、前記溶解タンクに気液混合流体を流入させる流入路と、前記流出口に接続され、気体が溶解した液体を流出させる流出路と、前記溶解流路に連通し、前記溶解流路内の未溶解の気体を外部に排出するためのフロート室と、前記フロート室と前記溶解流路が連通する連通箇所とは別の箇所における前記溶解流路、又は、前記流入路若しくは前記流出路と、前記フロート室とを接続するバイパス流路と、を備える。 In order to achieve the above object, a gas dissolving apparatus according to the present invention includes an inlet for introducing a gas-liquid mixed fluid obtained by mixing a gas with a liquid, and a flow path for the gas-liquid mixed fluid flowing from the inlet. A dissolution tank having a dissolution channel for dissolving the gas in the gas, and an outflow port for allowing the liquid in which the gas is dissolved to flow out of the dissolution channel, and a gas-liquid mixed fluid flowing into the dissolution tank. An inflow path, an outflow path connected to the outflow port for discharging a liquid in which gas is dissolved, and a float chamber for discharging undissolved gas in the dissolution flow path to the outside, communicating with the dissolution flow path And the dissolution flow path at a location different from the communication location where the float chamber communicates with the dissolution flow path, or the bypass flow path connecting the inflow path or the outflow path and the float chamber. Prepare.
 本発明の気体溶解装置によれば、信頼性を向上させることができる。 According to the gas dissolving apparatus of the present invention, the reliability can be improved.
 本発明のこれらの態様と特徴は、添付された図面についての好ましい実施形態に関連した次の記述から明らかになる。
実施形態1にかかる気体溶解装置の概略図 実施形態1の変形例にかかる気体溶解装置の概略図 実施形態2にかかる気体溶解装置の概略図 実施形態2にかかる気体溶解装置の制御例を示す図 実施形態3にかかる気体溶解装置の概略図 実施形態3にかかる気体溶解装置の制御例を示す図 実施例にかかる気体溶解装置の溶解タンクの一部分解斜視図(表側) 実施例にかかる気体溶解装置の溶解タンクの一部分解斜視図(裏側) 実施例にかかる気体溶解装置の溶解タンクの平面図 実施例にかかる気体溶解装置の溶解タンクの縦断面図(図9のA-A断面図) 実施例にかかる気体溶解装置の溶解タンクの縦断面図(図10のB-B断面図)
These aspects and features of the invention will become apparent from the following description, taken in conjunction with the preferred embodiments with reference to the accompanying drawings, in which:
Schematic of the gas dissolution apparatus concerning Embodiment 1 Schematic of the gas dissolving apparatus concerning the modification of Embodiment 1. Schematic of the gas dissolving apparatus concerning Embodiment 2. The figure which shows the example of control of the gas dissolving apparatus concerning Embodiment 2. Schematic of the gas dissolving apparatus concerning Embodiment 3. The figure which shows the example of control of the gas dissolving apparatus concerning Embodiment 3. Partially exploded perspective view (front side) of a dissolution tank of a gas dissolution apparatus according to an embodiment Partially exploded perspective view (back side) of dissolution tank of gas dissolving apparatus according to embodiment The top view of the dissolution tank of the gas dissolution apparatus concerning an Example FIG. 9 is a longitudinal sectional view of a dissolving tank of the gas dissolving apparatus according to the embodiment (cross section taken along the line AA in FIG. 9). FIG. 10 is a longitudinal sectional view of a dissolution tank of the gas dissolving apparatus according to the embodiment (a sectional view taken along line BB in FIG. 10).
 以下に、本発明にかかる実施形態1-3および実施例を図面に基づいて詳細に説明する。 Embodiments 1-3 and examples according to the present invention will be described below in detail with reference to the drawings.
(実施形態1)
 図1は、実施形態1にかかる気体溶解装置2の概略構成を示す図である。
(Embodiment 1)
FIG. 1 is a diagram illustrating a schematic configuration of a gas dissolving apparatus 2 according to the first embodiment.
 図1に示す気体溶解装置2は、液体(例えば水)と気体(例えば空気)を混合した気液混合流体を流すとともに、後述する溶解タンク10により液体に気体を溶解させる装置である。気体溶解装置2は、液体に溶解した気体を後述する減圧装置14を用いて減圧することにより、微細気泡として発生させて、微細気泡を含む液体を浴槽等に供給するものである。 1 is a device for flowing a gas-liquid mixed fluid in which a liquid (for example, water) and a gas (for example, air) are mixed, and for dissolving the gas in the liquid by a dissolution tank 10 described later. The gas dissolving device 2 generates a fine bubble by decompressing a gas dissolved in a liquid using a decompression device 14 described later, and supplies a liquid containing the fine bubble to a bathtub or the like.
 図1に示すように、実施形態1の気体溶解装置2は、流入路4と、気体供給機構6と、ポンプ8と、溶解タンク10と、流出路12と、減圧装置14と、フロート室16と、バイパス流路18とを備える。このような構成において、液体と気体を混合した気液混合流体を流入路4から溶解タンク10に流入させ、溶解タンク10において気体を液体に溶解させる。その後、気体が溶解した液体を流出路12へ流出するとともに、減圧装置14により減圧することで微細気泡として発生させる。溶解タンク10においては、液体に溶解しなかった未溶解の気体はフロート室16に溜められ、溶解タンク10外部に排出される。 As shown in FIG. 1, the gas dissolving apparatus 2 of Embodiment 1 includes an inflow path 4, a gas supply mechanism 6, a pump 8, a dissolution tank 10, an outflow path 12, a decompression device 14, and a float chamber 16. And a bypass channel 18. In such a configuration, a gas-liquid mixed fluid in which a liquid and a gas are mixed flows into the dissolution tank 10 from the inflow path 4, and the gas is dissolved in the liquid in the dissolution tank 10. Thereafter, the liquid in which the gas is dissolved flows out to the outflow passage 12 and is generated as fine bubbles by reducing the pressure by the decompression device 14. In the dissolution tank 10, undissolved gas that has not been dissolved in the liquid is stored in the float chamber 16 and is discharged to the outside of the dissolution tank 10.
 実施形態1の気体溶解装置2では特に、フロート室16内に流体を流入するためのバイパス流路18を設けている。バイパス流路18を設けることにより、流体の流れが通常生じないフロート室16内に混合流体を流し、フロート室16内を洗浄可能としている。これにより、フロート室16内のフロート26がフロート室16内の汚れによって動作不良となることを防ぎ、気体溶解装置2の信頼性を向上させるものである。以下、気体溶解装置2の各構成について順に説明する。 In the gas dissolving device 2 of the first embodiment, in particular, a bypass flow path 18 for flowing a fluid into the float chamber 16 is provided. By providing the bypass flow path 18, the mixed fluid is allowed to flow in the float chamber 16 where a fluid flow does not normally occur, and the inside of the float chamber 16 can be cleaned. This prevents the float 26 in the float chamber 16 from malfunctioning due to dirt in the float chamber 16 and improves the reliability of the gas dissolving apparatus 2. Hereinafter, each structure of the gas dissolving apparatus 2 is demonstrated in order.
 流入路4は、溶解タンク10に気液混合流体を流入するための流路である。流入路4は例えば配管により構成される。流入路4の上流側は液体の供給源(図示せず)に接続されており、流入路4内に液体を供給可能に構成される。流入路4の下流側は溶解タンク10の流入口20に接続されている。流入路4の途中には、気体供給機構6およびポンプ8が設けられている。 The inflow path 4 is a flow path for allowing the gas-liquid mixed fluid to flow into the dissolution tank 10. The inflow path 4 is constituted by a pipe, for example. The upstream side of the inflow path 4 is connected to a liquid supply source (not shown), and is configured to be able to supply liquid into the inflow path 4. The downstream side of the inflow path 4 is connected to the inlet 20 of the dissolution tank 10. In the middle of the inflow path 4, a gas supply mechanism 6 and a pump 8 are provided.
 気体供給機構6は、流入路4内に気体を供給する機構である。気体供給機構6は例えば配管などを含んで構成されるが、実施形態1では、気体供給機構6の構成を簡略化して説明する。気体供給機構6は流入路4内に気体を供給することで、液体と気体を混合した気液混合流体を生成する。 The gas supply mechanism 6 is a mechanism for supplying gas into the inflow path 4. The gas supply mechanism 6 is configured to include, for example, a pipe or the like. In the first embodiment, the configuration of the gas supply mechanism 6 will be described in a simplified manner. The gas supply mechanism 6 supplies gas into the inflow passage 4 to generate a gas-liquid mixed fluid in which liquid and gas are mixed.
 ポンプ8は、気体供給機構6の下流側に設けられたポンプである。ポンプ8は、流入路4内の気液混合流体を溶解タンク10の流入口20に向けて圧送する。ポンプ8の運転は後述する制御装置によって制御される。ポンプ8の回転数を制御することで、溶解タンク10に供給する気液混合流体の流量を調整可能である。 The pump 8 is a pump provided on the downstream side of the gas supply mechanism 6. The pump 8 pumps the gas-liquid mixed fluid in the inflow passage 4 toward the inlet 20 of the dissolution tank 10. The operation of the pump 8 is controlled by a control device described later. The flow rate of the gas-liquid mixed fluid supplied to the dissolution tank 10 can be adjusted by controlling the rotation speed of the pump 8.
 溶解タンク10は、流入路4から供給されてくる気液混合流体を収容して気体を液体に溶解させるための容器である。溶解タンク10は、前述した流入口20と、溶解流路22と、流出口24とを有する。溶解流路22は、流入口20から流入した気液混合流体を流すための流路であり、溶解タンク10の内壁によって形成されている。溶解流路22は複数の空間によって構成されており、詳細な構成については後述する。溶解流路22の上流端は流入口20から始まり、溶解流路22の下流端は流出口24で終了する。流出口24は、溶解流路22において気体が溶解した液体を溶解タンク10から流出するための出口である。流入口20および流出口24はともに溶解タンク10の底部における開口として形成される。 The dissolution tank 10 is a container for storing the gas-liquid mixed fluid supplied from the inflow passage 4 and dissolving the gas in the liquid. The dissolution tank 10 has the inflow port 20, the dissolution flow path 22, and the outflow port 24 described above. The dissolution channel 22 is a channel for flowing the gas-liquid mixed fluid that has flowed in from the inlet 20, and is formed by the inner wall of the dissolution tank 10. The dissolution channel 22 is composed of a plurality of spaces, and a detailed configuration will be described later. The upstream end of the dissolution channel 22 starts at the inlet 20 and the downstream end of the dissolution channel 22 ends at the outlet 24. The outlet 24 is an outlet for allowing the liquid in which the gas is dissolved in the dissolution channel 22 to flow out of the dissolution tank 10. Both the inlet 20 and the outlet 24 are formed as openings at the bottom of the dissolution tank 10.
 流出路12は、溶解タンク10からの流体を浴槽などに流出するための流路である。流出路12は例えば配管により構成される。流出路12の上流端は溶解タンク10の流出口24に接続されており、下流端は浴槽などに接続されている。流出路12における流出口24に隣接する位置には減圧装置14が設けられている。 The outflow path 12 is a flow path for flowing out the fluid from the dissolution tank 10 to a bathtub or the like. The outflow path 12 is constituted by, for example, piping. The upstream end of the outflow path 12 is connected to the outlet 24 of the dissolution tank 10, and the downstream end is connected to a bathtub or the like. A decompression device 14 is provided at a position adjacent to the outlet 24 in the outflow passage 12.
 減圧装置14は、溶解タンク10の流出口24から流出してきた液体を減圧する装置である。減圧装置14が液体を減圧することにより、液体に溶解していた気体を流出路12において微細気泡として発生させることができる。減圧装置14および流出路12により、液体に溶解した気体を微細気泡化する微細化部が構成される。 The decompression device 14 is a device that decompresses the liquid flowing out from the outlet 24 of the dissolution tank 10. When the decompression device 14 decompresses the liquid, the gas dissolved in the liquid can be generated as fine bubbles in the outflow passage 12. The decompression device 14 and the outflow path 12 constitute a miniaturization unit that microbubbles the gas dissolved in the liquid.
 フロート室16は、溶解タンク10において液体に溶解しなかった未溶解の気体を外部に排出するための機構である。実施形態1では、フロート室16は溶解タンク10内の溶解流路22に連通するように、溶解タンク10の上部に取り付けられている。フロート室16は、溶解タンク10内の溶解流路22における下流側に連通させることが好ましい。本実施形態1では、図1に示すように、フロート室16は、溶解タンク10内の最も下流側の空間(後述する気液分離室40)に連通するように設けられている。 The float chamber 16 is a mechanism for discharging undissolved gas that has not been dissolved in the liquid in the dissolution tank 10 to the outside. In the first embodiment, the float chamber 16 is attached to the upper part of the dissolution tank 10 so as to communicate with the dissolution flow path 22 in the dissolution tank 10. The float chamber 16 is preferably communicated with the downstream side of the dissolution channel 22 in the dissolution tank 10. In the first embodiment, as shown in FIG. 1, the float chamber 16 is provided so as to communicate with the most downstream space (a gas-liquid separation chamber 40 described later) in the dissolution tank 10.
 フロート室16は、フロート26と、弁体28と、排出口30とを備える。フロート26は、フロート室16内の液面に浮かぶ部材である。フロート26は、フロート室16内の液面の高さ(水位)に準じて上下に移動する。フロート26は、弁体28に接続されている。弁体28は、排出口30を開閉可能に閉じる部材である。排出口30は、フロート室16内の気体を外部に排出するための開口部である。排出口30はフロート室16の上面に設けられており、フロート室16の内部と外部とを連通する。このような構成において、フロート室16内の水位が所定水位よりも高い場合には、弁体28によって排出口30が閉じられ、フロート室16内の水位が所定水位よりも低い場合には、排出口30が開かれるように機能する。フロート室16の詳細な機能については後述する。 The float chamber 16 includes a float 26, a valve body 28, and a discharge port 30. The float 26 is a member that floats on the liquid level in the float chamber 16. The float 26 moves up and down according to the height (water level) of the liquid level in the float chamber 16. The float 26 is connected to the valve body 28. The valve body 28 is a member which closes the discharge port 30 so that opening and closing is possible. The discharge port 30 is an opening for discharging the gas in the float chamber 16 to the outside. The discharge port 30 is provided on the upper surface of the float chamber 16 and communicates the inside and the outside of the float chamber 16. In such a configuration, when the water level in the float chamber 16 is higher than the predetermined water level, the outlet 30 is closed by the valve body 28, and when the water level in the float chamber 16 is lower than the predetermined water level, the discharge port 30 is discharged. It functions to open the outlet 30. Detailed functions of the float chamber 16 will be described later.
 バイパス流路18は、フロート室16内に流体を供給する流路である。バイパス流路18はフロート室16内部に流体の流れを形成することで、フロート室16内部に汚れがつくことを防止する、あるいは付着した汚れを洗浄するものである。実施形態1におけるバイパス流路18は、フロート室16の側壁と、フロート室16よりも上流側における溶解タンク10の外壁とを連通するように設けられている。フロート室16とバイパス流路18が接続される箇所(フロート室16の側壁)は、フロート室16が溶解タンク10と連通する連通箇所(フロート室16の底壁開口部(図示せず))とは別の箇所である。本実施形態1では、図1に示すように、バイパス流路18は、溶解タンク10内の最も上流側の空間(後述する気液混合室36)に連通するように接続される。 The bypass channel 18 is a channel for supplying a fluid into the float chamber 16. The bypass flow path 18 forms a fluid flow in the float chamber 16 to prevent the float chamber 16 from being contaminated or to clean the adhered dirt. The bypass channel 18 in the first embodiment is provided so as to communicate the side wall of the float chamber 16 with the outer wall of the dissolution tank 10 on the upstream side of the float chamber 16. A location where the float chamber 16 and the bypass channel 18 are connected (side wall of the float chamber 16) is a communication location where the float chamber 16 communicates with the dissolution tank 10 (a bottom wall opening (not shown) of the float chamber 16). Is another part. In the first embodiment, as shown in FIG. 1, the bypass flow path 18 is connected so as to communicate with the most upstream space (gas-liquid mixing chamber 36 described later) in the dissolution tank 10.
 次に、溶解タンク10の内部構成について説明する。 Next, the internal configuration of the dissolution tank 10 will be described.
 溶解タンク10は、複数の壁によって内部空間が仕切られている。具体的には、実施形態1における溶解タンク10は、2つの仕切り壁32、34を備える。第1仕切り壁32は、溶解タンク10の内壁上端部から下方に延びる壁である。第1仕切り壁32は溶解タンク10の内壁下端部には到達しておらず、内壁下端部との間に隙間としての第1連通口33を形成する。第2仕切り壁34は、溶解タンク10の内壁下端部から上方に延びる壁である。第2仕切り壁34は溶解タンク10の内壁上端部には到達しておらず、内壁上端部との間に隙間としての第2連通口35を形成する。このような第1仕切り壁32および第2仕切り壁34によって、溶解タンク10内の空間が複数の空間に仕切られている。当該空間によって溶解流路22が形成されている。このような構成によれば、溶解タンク10内の溶解流路22として、第1仕切り壁32の上流側の空間(気液混合室36)と、第1仕切り壁32と第2仕切り壁34の間の空間(中間室38)と、第2仕切り壁34の下流側の空間(気液分離室40)とに区画される。気液混合室36と中間室38は第1連通口33にて連通し、中間室38と気液分離室40は第2連通口35にて連通する。気液混合室36の上流端は流入口20に接続し、気液分離室40の下流端は流出口24に接続する。また、気液混合室36にはバイパス流路18の上流端部が接続され、気液分離室40にはフロート室16が連通する。 The dissolution tank 10 has an internal space partitioned by a plurality of walls. Specifically, the dissolution tank 10 in the first embodiment includes two partition walls 32 and 34. The first partition wall 32 is a wall extending downward from the upper end portion of the inner wall of the dissolution tank 10. The first partition wall 32 does not reach the lower end portion of the inner wall of the dissolution tank 10 and forms a first communication port 33 as a gap with the lower end portion of the inner wall. The second partition wall 34 is a wall extending upward from the lower end portion of the inner wall of the dissolution tank 10. The second partition wall 34 does not reach the upper end of the inner wall of the dissolution tank 10, and forms a second communication port 35 as a gap with the upper end of the inner wall. The first partition wall 32 and the second partition wall 34 as described above partition the space in the dissolution tank 10 into a plurality of spaces. A dissolution channel 22 is formed by the space. According to such a configuration, as the dissolution flow path 22 in the dissolution tank 10, the space upstream of the first partition wall 32 (gas-liquid mixing chamber 36), the first partition wall 32, and the second partition wall 34. A space (intermediate chamber 38) between them and a space (gas-liquid separation chamber 40) on the downstream side of the second partition wall 34 are partitioned. The gas-liquid mixing chamber 36 and the intermediate chamber 38 communicate with each other through the first communication port 33, and the intermediate chamber 38 and the gas-liquid separation chamber 40 communicate with each other through the second communication port 35. The upstream end of the gas-liquid mixing chamber 36 is connected to the inlet 20, and the downstream end of the gas-liquid separation chamber 40 is connected to the outlet 24. Further, the upstream end portion of the bypass channel 18 is connected to the gas-liquid mixing chamber 36, and the float chamber 16 communicates with the gas-liquid separation chamber 40.
 このような構成を有する溶解タンク10の内部における気液混合流体の作用について説明する。 The operation of the gas-liquid mixed fluid in the dissolution tank 10 having such a configuration will be described.
 まず、ポンプ8が作動することにより、液体と気体が混合された気液混合流体が溶解タンク10に供給される。気液混合流体は流入口20を通じて気液混合室36に入る。気液混合室36に入った気液混合流体は、溶解タンク10の内壁底部から上方に向かって噴出する。気液混合流体は、溶解タンク10の内壁上端部や第1仕切り壁32に衝突し、跳ね返る。溶解タンク10の内壁上端部や第1仕切り壁32に衝突し、跳ね返る気液混合流体は、気液混合室36内の気液混合流体を撹拌する。このとき、気体供給機構6を通じて混合された気体および気液混合室36にあらかじめ貯留していた気体が、溶媒である液体と激しく混合される。気液混合流体は撹拌され、加圧下で気体が液体中に溶解することで、気体が溶解した液体が生成される。このような気体の溶解は、撹拌による剪断によって、気液混合流体に気泡として混合されている気体が細分化され、液体と接触する表面積が大きくなることによって促進される。さらに、撹拌による均一化によって、液面付近における気体の溶解濃度が低減され、液体への気体の溶解速度が上昇することによっても促進される。 First, when the pump 8 is operated, a gas-liquid mixed fluid in which liquid and gas are mixed is supplied to the dissolution tank 10. The gas-liquid mixed fluid enters the gas-liquid mixing chamber 36 through the inlet 20. The gas-liquid mixed fluid that has entered the gas-liquid mixing chamber 36 is ejected upward from the bottom of the inner wall of the dissolution tank 10. The gas-liquid mixed fluid collides with the upper end of the inner wall of the dissolution tank 10 and the first partition wall 32 and rebounds. The gas-liquid mixed fluid that collides with the upper end of the inner wall of the dissolution tank 10 and the first partition wall 32 and rebounds stirs the gas-liquid mixed fluid in the gas-liquid mixing chamber 36. At this time, the gas mixed through the gas supply mechanism 6 and the gas previously stored in the gas-liquid mixing chamber 36 are vigorously mixed with the liquid as the solvent. The gas-liquid mixed fluid is stirred, and the gas is dissolved in the liquid under pressure, whereby a liquid in which the gas is dissolved is generated. Such dissolution of gas is promoted by shearing by stirring to subdivide the gas mixed as gas bubbles in the gas-liquid mixed fluid and increase the surface area in contact with the liquid. Further, the homogenization by stirring reduces the gas dissolution concentration in the vicinity of the liquid surface, which is also promoted by increasing the gas dissolution rate in the liquid.
 生成された気液混合流体は、第1仕切り壁32の下端と溶解タンク10の内壁底部との間の第1連通口33を通って中間室38に流出する。中間室38に流出した液体は、第2仕切り壁34の上端部から第2連通口35を越流して気液分離室40に流出する。気液分離室40は、液体に溶解し切れない気体を気泡として液体から分離する空間である。気液界面である液面付近にまで液体の流れが持ち上げられるので、気泡は浮力によって上方へ移動し、フロート室16に流入する。一方、気液分離室40に流出した液体は、流出口24を通じて流出路12に流出する。流出口24は気液分離室40の底部に設けられているので、液面付近に存在する大きな気泡の外部への流出は防止される。 The generated gas-liquid mixed fluid flows out into the intermediate chamber 38 through the first communication port 33 between the lower end of the first partition wall 32 and the bottom of the inner wall of the dissolution tank 10. The liquid flowing out into the intermediate chamber 38 flows from the upper end of the second partition wall 34 through the second communication port 35 and out into the gas-liquid separation chamber 40. The gas-liquid separation chamber 40 is a space that separates gas that cannot be dissolved in the liquid from the liquid as bubbles. Since the liquid flow is lifted up to the vicinity of the liquid surface, which is the gas-liquid interface, the bubbles move upward by buoyancy and flow into the float chamber 16. On the other hand, the liquid flowing out into the gas-liquid separation chamber 40 flows out into the outflow path 12 through the outflow port 24. Since the outflow port 24 is provided at the bottom of the gas-liquid separation chamber 40, outflow of large bubbles existing near the liquid surface to the outside is prevented.
 フロート室16に流入した気体は、フロート室16内の空間に溜まっていく。ポンプ8の運転が継続するにつれて、フロート室16内に溜まる気体の量が増加し、それに伴いフロート室16内の液面が下がる。フロート室16内の液面の低下に応じてフロート26も下降する。フロート26に接続されている弁体28は、フロート26の高さ位置に応じて排出口30の開閉を切り替える。具体的には、フロート室16内の水位が高く、フロート26の位置が所定位置よりも上方にあるときは、弁体28は排出口30を閉じる。一方で、フロート室16内の水位が低くなり、フロート26の位置が所定位置よりも下方にあるときは、弁体28は排出口30を開く。 The gas flowing into the float chamber 16 accumulates in the space inside the float chamber 16. As the operation of the pump 8 continues, the amount of gas accumulated in the float chamber 16 increases, and the liquid level in the float chamber 16 decreases accordingly. As the liquid level in the float chamber 16 decreases, the float 26 also descends. The valve body 28 connected to the float 26 switches between opening and closing of the discharge port 30 according to the height position of the float 26. Specifically, when the water level in the float chamber 16 is high and the position of the float 26 is above a predetermined position, the valve body 28 closes the discharge port 30. On the other hand, when the water level in the float chamber 16 becomes low and the position of the float 26 is below the predetermined position, the valve body 28 opens the discharge port 30.
 このようなフロート26および弁体28の制御によれば、フロート室16内に未溶解の気体が溜まり始めるうちは、排水口30を通じて気体を排出せず、気体を溜めるように制御される。時間の経過とともにフロート室16内に気体が溜まり、フロート室16内の水位が下がると、フロート26も下降する。フロート26が所定位置まで下がると、弁体28は排出口30を開く。これにより、排出口30を通じて気体が排出される。気体が排出されると、フロート室16内の水位は再び上昇し、フロート26も上方に移動する。これにより、排出口30は再度閉じられる。このような動作により、気体を溜める動作と、気体を排出する動作とが交互に繰り返され、未溶解の気体をフロート室16から間欠的に排出することができる。 According to the control of the float 26 and the valve body 28 as described above, while the undissolved gas starts to be accumulated in the float chamber 16, the gas is controlled not to be discharged through the drain port 30 but to be accumulated. As time passes, gas accumulates in the float chamber 16, and when the water level in the float chamber 16 falls, the float 26 also descends. When the float 26 is lowered to a predetermined position, the valve body 28 opens the discharge port 30. Thereby, the gas is discharged through the discharge port 30. When the gas is discharged, the water level in the float chamber 16 rises again, and the float 26 moves upward. Thereby, the discharge port 30 is closed again. By such an operation, an operation for accumulating gas and an operation for discharging gas are alternately repeated, and undissolved gas can be intermittently discharged from the float chamber 16.
 さらに実施形態1では、フロート室16と溶解タンク10内の空間(気液混合室36)とを接続するバイパス流路18を設け、フロート室16内に気液混合流体を流入可能としている。バイパス流路18が設けられていない場合には、フロート室16内において液面の上下動はあるものの液体の流れは基本的に生じない。このため、フロート室16内部は汚れが溜まりやすく、例えば液体中の菌が死んでゼリー状の塊となったものがフロート室16の側壁やフロート26に付着する等、フロート26の動作を妨げる場合がある。特に、気体溶解装置2が「浴槽」に液体を供給するために使用される場合には、液体にオイルなどの添加物を添加する場合があり、そのような場合にはフロート室16内部がより汚れやすくなる。これを受けて、実施形態1ではバイパス流路18を設け、フロート室16内に気液混合流体を流入させる構成としている。これにより、フロート室16に気液混合流体を流してフロート室16内を洗浄することができ、フロート室16内の壁面の汚れなどによってフロート26が動作不良を起こすことを防止することができ、気体溶解装置2の信頼性を向上させることができる。 Furthermore, in the first embodiment, a bypass flow path 18 that connects the float chamber 16 and the space (gas-liquid mixing chamber 36) in the dissolution tank 10 is provided so that the gas-liquid mixed fluid can flow into the float chamber 16. When the bypass flow path 18 is not provided, the liquid flow basically does not occur in the float chamber 16 although the liquid level moves up and down. For this reason, the inside of the float chamber 16 tends to accumulate dirt. For example, when the bacteria in the liquid die and become a jelly-like lump adheres to the side wall of the float chamber 16 or the float 26, the operation of the float 26 is hindered. There is. In particular, when the gas dissolving device 2 is used for supplying a liquid to the “bathtub”, an additive such as oil may be added to the liquid. It becomes easy to get dirty. In response to this, in the first embodiment, the bypass flow path 18 is provided so that the gas-liquid mixed fluid flows into the float chamber 16. Thereby, the gas-liquid mixed fluid can be flowed into the float chamber 16 to clean the inside of the float chamber 16, and the float 26 can be prevented from malfunctioning due to dirt on the wall surface in the float chamber 16, etc. The reliability of the gas dissolving device 2 can be improved.
 上述したように、実施形態1では、バイパス流路18を溶解タンク10内における最も上流側の空間である気液混合室36と接続している。このため、気液混合室36とフロート室16との圧力差を利用して、上流側における圧力の高い気液混合流体をフロート室16内に流入させることができ、フロート室16に強い流れを生じさせることができる。これにより、フロート室16を洗浄する洗浄力が向上し、気体溶解装置2の信頼性を向上させることができる。 As described above, in the first embodiment, the bypass flow path 18 is connected to the gas-liquid mixing chamber 36 which is the most upstream space in the dissolution tank 10. For this reason, by utilizing the pressure difference between the gas-liquid mixing chamber 36 and the float chamber 16, the gas-liquid mixed fluid having a high pressure on the upstream side can be flowed into the float chamber 16, and a strong flow is generated in the float chamber 16. Can be generated. Thereby, the detergency which cleans the float chamber 16 improves and the reliability of the gas dissolving apparatus 2 can be improved.
 さらに、実施形態1では、フロート室16を溶解タンク10内における最も下流側の空間である気液分離室40と連通している。このため、バイパス流路18における上流側と下流側で流体の圧力差が生じやすくなり、フロート室16へより確実に気液混合流体を流すことができる。 Furthermore, in the first embodiment, the float chamber 16 communicates with the gas-liquid separation chamber 40 which is the most downstream space in the dissolution tank 10. For this reason, the pressure difference of the fluid tends to occur between the upstream side and the downstream side in the bypass flow path 18, and the gas-liquid mixed fluid can flow more reliably to the float chamber 16.
(変形例)
 実施形態1では、バイパス流路18が気液混合室36とフロート室16を接続する場合について説明したが、このような場合に限らない。例えば、図2に示すような位置にバイパス流路52を設けてもよい。図2に示す気体溶解装置50におけるバイパス流路52は、フロート室16と気液分離室40とを連通するように設けられている。より具体的には、フロート室16と気液分離室40が連通する連通箇所(フロート室16の底壁開口部)よりも下流側の地点において、バイパス流路52を気液分離室40と連通するように接続している。このような場合であっても、フロート室16と気液分離室40との圧力差を利用して、圧力の高いフロート室16から圧力の低い気液分離室40へ気液混合流体を流すことができる。これにより、フロート室16内に気液混合流体の流れを生じさせ、フロート室16内を洗浄することができる。
(Modification)
In the first embodiment, the case where the bypass channel 18 connects the gas-liquid mixing chamber 36 and the float chamber 16 has been described. However, the present invention is not limited to such a case. For example, you may provide the bypass flow path 52 in a position as shown in FIG. The bypass flow path 52 in the gas dissolving device 50 shown in FIG. 2 is provided so as to communicate the float chamber 16 and the gas-liquid separation chamber 40. More specifically, the bypass passage 52 communicates with the gas-liquid separation chamber 40 at a point downstream of the communication location (the bottom wall opening of the float chamber 16) where the float chamber 16 and the gas-liquid separation chamber 40 communicate. Connected to do. Even in such a case, the gas-liquid mixed fluid is caused to flow from the high-pressure float chamber 16 to the low-pressure gas-liquid separation chamber 40 using the pressure difference between the float chamber 16 and the gas-liquid separation chamber 40. Can do. Thereby, the flow of the gas-liquid mixed fluid is generated in the float chamber 16 and the inside of the float chamber 16 can be cleaned.
 前述した実施形態1では、バイパス流路18においてフロート室16が低圧側であり、溶解タンク10内の空間(気液混合室36)が高圧側である。よって、バイパス流路18を通じてフロート室16に常時流体を供給し、フロート室16の洗浄が常時可能である。また、バイパス流路18の高圧側は気液混合室36に接続されているため、気体と液体が激しく混ざり合う気液混合室36から、気泡を多く含む気液混合流体がフロート室16に供給される。一方、上記変形例では、バイパス流路52におけるフロート室16が高圧側であり、溶解タンク10内の空間(気液分離室40)が低圧側である。よって、フロート室16内においてバイパス流路52の高さ位置まで水位が上がったときのみ、バイパス流路52に流体が流れる。このように、フロート室16の洗浄を常時行うものではなく、また、バイパス流路52を流れる液体には気泡はほとんど含まれない。 In the first embodiment described above, the float chamber 16 is on the low pressure side in the bypass flow path 18, and the space (gas-liquid mixing chamber 36) in the dissolution tank 10 is on the high pressure side. Therefore, the fluid is always supplied to the float chamber 16 through the bypass channel 18, and the float chamber 16 can always be cleaned. Further, since the high-pressure side of the bypass channel 18 is connected to the gas-liquid mixing chamber 36, a gas-liquid mixed fluid containing a large amount of bubbles is supplied to the float chamber 16 from the gas-liquid mixing chamber 36 where the gas and the liquid are intensively mixed. Is done. On the other hand, in the above modification, the float chamber 16 in the bypass channel 52 is on the high pressure side, and the space (gas-liquid separation chamber 40) in the dissolution tank 10 is on the low pressure side. Therefore, the fluid flows into the bypass channel 52 only when the water level rises to the height position of the bypass channel 52 in the float chamber 16. As described above, the float chamber 16 is not always washed, and the liquid flowing through the bypass passage 52 contains almost no bubbles.
 上述した実施形態1および変形例で示すように、バイパス流路18、52は、溶解タンク10における複数の空間のうち、最も上流側の空間(気液混合室36)又は最も下流側の空間(気液分離室40)とフロート室16とを接続する。このような構成によれば、バイパス流路18、52に流れる流体に圧力差が生じやすくなり、フロート室16に強い流れを生じさせることができる。これにより、フロート室16を洗浄する洗浄力が向上し、気体溶解装置2、50の信頼性を向上させることができる。 As shown in the first embodiment and the modification described above, the bypass flow paths 18 and 52 are the most upstream space (gas-liquid mixing chamber 36) or the most downstream space (of the plurality of spaces in the dissolution tank 10 ( The gas-liquid separation chamber 40) and the float chamber 16 are connected. According to such a configuration, a pressure difference is easily generated in the fluid flowing in the bypass flow paths 18 and 52, and a strong flow can be generated in the float chamber 16. Thereby, the detergency which cleans the float chamber 16 improves, and the reliability of the gas dissolving apparatuses 2 and 50 can be improved.
 なお、実施形態1および変形例では、バイパス流路18、52をそれぞれ気液混合室36および気液分離室40と接続する場合について説明したが、このような場合に限らない。フロート室16と溶解流路22が連通する連通箇所とは別の箇所であれば、任意の位置にフロート室16を接続してもよい。これにより、バイパス流路18、52の上流側と下流側で圧力差が生じるため、バイパス流路18、52を通じて流体を流し、フロート室16を洗浄することができる。 In addition, although Embodiment 1 and the modification demonstrated the case where the bypass flow paths 18 and 52 were connected with the gas-liquid mixing chamber 36 and the gas-liquid separation chamber 40, respectively, it is not restricted to such a case. The float chamber 16 may be connected to an arbitrary position as long as it is a location different from the communication location where the float chamber 16 and the dissolution channel 22 communicate with each other. As a result, a pressure difference is generated between the upstream side and the downstream side of the bypass flow paths 18 and 52, so that the fluid can flow through the bypass flow paths 18 and 52 and the float chamber 16 can be washed.
(実施形態2)
 次に、実施形態2にかかる気体溶解装置60について、図3を用いて説明する。実施形態1および変形例では、バイパス流路18、52をフロート室16と溶解タンク10内の空間とを接続するように設けたが、実施形態2では、溶解タンク10内の空間ではなく流入路4にバイパス流路62を接続するものである。以下、実施形態1との相違点を中心に説明する。
(Embodiment 2)
Next, the gas dissolving apparatus 60 concerning Embodiment 2 is demonstrated using FIG. In the first embodiment and the modification, the bypass flow paths 18 and 52 are provided so as to connect the float chamber 16 and the space in the dissolution tank 10, but in the second embodiment, not the space in the dissolution tank 10 but the inflow path. 4 is connected to the bypass flow path 62. Hereinafter, the difference from the first embodiment will be mainly described.
 図3に示すように、気体溶解装置60は、流入路4とフロート室16とを接続するバイパス流路62を備える。バイパス流路62の上流側は、流入路4におけるポンプ8の下流側の位置に接続される。バイパス流路62の下流側は、実施形態1と同様にフロート室16の側壁に接続される。 As shown in FIG. 3, the gas dissolving device 60 includes a bypass channel 62 that connects the inflow channel 4 and the float chamber 16. The upstream side of the bypass channel 62 is connected to a position on the downstream side of the pump 8 in the inflow channel 4. The downstream side of the bypass flow path 62 is connected to the side wall of the float chamber 16 as in the first embodiment.
 気体溶解装置60はさらに、バイパス流路62の途中に設けられる構成として、開閉弁64と、逆止弁66とを備える。気体溶解装置60はさらに、制御装置68と、スイッチ69とを備える。 The gas dissolving device 60 further includes an on-off valve 64 and a check valve 66 as a configuration provided in the middle of the bypass flow path 62. The gas dissolving device 60 further includes a control device 68 and a switch 69.
 開閉弁64は、バイパス流路62の開閉を切り替える弁(バイパス流路開閉弁)である。開閉弁64としては例えば、電磁弁あるいは電動弁が用いられる。バイパス流路62における開閉弁64の下流側に逆止弁66が設けられている。逆止弁66はバイパス流路62内の逆流を防止する弁であり、流入路4からフロート室16に向かって流れる方向にのみ気液混合流体を流すように作用する。 The on / off valve 64 is a valve (bypass channel on / off valve) that switches between opening and closing of the bypass channel 62. As the on-off valve 64, for example, an electromagnetic valve or an electric valve is used. A check valve 66 is provided on the downstream side of the on-off valve 64 in the bypass passage 62. The check valve 66 is a valve that prevents a back flow in the bypass flow path 62, and acts to flow the gas-liquid mixed fluid only in the direction of flowing from the inflow path 4 toward the float chamber 16.
 制御装置68は、開閉弁64およびポンプ8などの運転を制御するための装置である。制御装置68は例えばマイクロコンピュータなどにより構成される。制御装置68には、スイッチ69が接続されている。スイッチ69は、気体溶解装置60の運転のON/OFFなどをユーザが操作するための部材である。 The control device 68 is a device for controlling the operation of the on-off valve 64 and the pump 8. The control device 68 is constituted by a microcomputer, for example. A switch 69 is connected to the control device 68. The switch 69 is a member for the user to operate ON / OFF of the operation of the gas dissolving device 60.
 このような構成において、制御装置68によるポンプ8および開閉弁64の制御方法の一例を図4に示す。 FIG. 4 shows an example of a method for controlling the pump 8 and the on-off valve 64 by the control device 68 in such a configuration.
 図4に示す制御方法によれば、スイッチ69によって気体溶解装置60のON信号が入力されることに応じて、ポンプ8の運転を開始する。具体的には、ポンプ8の回転数を所定回転数まで増加させるように運転し、その後、所定回転数にて維持するように制御する(第1運転)。この間、開閉弁64は閉じた状態とする。すなわち、バイパス流路62には気液混合流体を流さずに、流入路4から溶解タンク10にのみ気液混合流体を流すように制御する。これにより、スイッチ69による気体溶解装置2のOFF信号の入力を受信するまで、フロート室16の洗浄を行わず、溶解タンク10により液体に気体を溶解して減圧装置14および流出路12により微細気泡を発生させる第1運転を行う。 According to the control method shown in FIG. 4, the operation of the pump 8 is started in response to the ON signal of the gas dissolving device 60 being input by the switch 69. Specifically, the pump 8 is operated so as to increase the rotational speed to a predetermined rotational speed, and thereafter controlled to be maintained at the predetermined rotational speed (first operation). During this time, the on-off valve 64 is closed. That is, the gas-liquid mixed fluid is controlled to flow only from the inflow path 4 to the dissolution tank 10 without flowing the gas-liquid mixed fluid through the bypass channel 62. As a result, the float chamber 16 is not washed until the input of the OFF signal of the gas dissolving device 2 by the switch 69 is received, and the gas is dissolved in the liquid by the dissolving tank 10 and fine bubbles are generated by the decompression device 14 and the outflow passage 12. The 1st operation which generates is performed.
 第1運転におけるポンプ8の始動時には、図4に示すように、時間の経過とともに徐々にポンプ8の回転数を増加させるように制御している。これにより、ポンプ8が大量の気体を急激に取り込まないように制御している。 At the start of the pump 8 in the first operation, as shown in FIG. 4, control is performed so that the rotational speed of the pump 8 is gradually increased as time passes. Thereby, the pump 8 is controlled so as not to take in a large amount of gas abruptly.
 その後、スイッチ69から気体溶解装置60のOFF信号を受信すると、制御装置68はポンプ8の運転を停止する。具体的には、ポンプ8の回転数を減少させながら、ポンプ8が停止するまで運転を行う(第2運転)。ここで、第2運転の間に開閉弁64を開くように制御する。すなわち、気体溶解装置60の運転が終了する直前にフロート室16の洗浄を行う。このような制御によれば、微細気泡を発生させる第1運転では、フロート室16には気液混合流体を供給せずに、第1運転後の第2運転においてポンプ8の回転数が減少している最中に洗浄を行う。これにより、微細気泡を発生させる第1運転では、所望の流量の気液混合流体を溶解タンク10に供給しつつ、第1運転の終了に応じて、第1運転には影響しないフロート室16の洗浄を実施することができる。このようにして、微細気泡を発生させる第1運転と、フロート室16内の洗浄を行う第2運転とを効率良く両立させることができる。 Thereafter, when an OFF signal of the gas dissolving device 60 is received from the switch 69, the control device 68 stops the operation of the pump 8. Specifically, the operation is performed until the pump 8 is stopped while the rotational speed of the pump 8 is decreased (second operation). Here, the on-off valve 64 is controlled to open during the second operation. That is, the float chamber 16 is cleaned immediately before the operation of the gas dissolving device 60 is completed. According to such control, in the first operation in which fine bubbles are generated, the gas-liquid mixed fluid is not supplied to the float chamber 16, and the rotation speed of the pump 8 is reduced in the second operation after the first operation. Wash while you are. As a result, in the first operation for generating fine bubbles, the gas-liquid mixed fluid having a desired flow rate is supplied to the dissolution tank 10, and the float chamber 16 that does not affect the first operation according to the end of the first operation is supplied. Washing can be performed. In this way, the first operation for generating fine bubbles and the second operation for cleaning the float chamber 16 can be efficiently made compatible.
 なお、第1運転直後の溶解タンク10内においては気体が圧縮されて液体の圧力が高くなっている状態であり、第2運転においてポンプ8の回転数を急激に低下させると、溶解タンク10において気体が急激に膨張する。この場合、フロート室16ではなく、流出路12へ気体が流れこむ可能性がある。これを受けて、図4に示すように、第2運転においても、時間の経過とともにポンプ8の回転数を徐々に減少させるように制御している。これにより、前述した現象の発生を防止するようにしている。なお、図4に示す制御例では、第1運転の始動時におけるポンプ8の回転数の増加速度よりも、第2運転におけるポンプ8の回転数の減少速度を遅く制御している。これにより、前述した現象をより効果的に防止することができる。 In the dissolution tank 10 immediately after the first operation, the gas is compressed and the pressure of the liquid is high. When the rotation speed of the pump 8 is rapidly decreased in the second operation, the dissolution tank 10 The gas expands rapidly. In this case, gas may flow into the outflow passage 12 instead of the float chamber 16. In response to this, as shown in FIG. 4, also in the second operation, control is performed such that the rotational speed of the pump 8 is gradually decreased with the passage of time. This prevents the above-described phenomenon from occurring. In the control example shown in FIG. 4, the decrease speed of the rotation speed of the pump 8 in the second operation is controlled slower than the increase speed of the rotation speed of the pump 8 at the start of the first operation. Thereby, the phenomenon mentioned above can be prevented more effectively.
 上述したように、実施形態2における気体溶解装置60は、バイパス流路62を開閉する開閉弁(バイパス流路開閉弁)64を備えている。これにより、所望の場合にバイパス流路62に流体を流すという制御が可能となる。 As described above, the gas dissolving apparatus 60 according to the second embodiment includes the on-off valve (bypass passage on-off valve) 64 that opens and closes the bypass passage 62. As a result, it is possible to control the fluid to flow through the bypass channel 62 when desired.
 また、実施形態2における気体溶解装置60では、ポンプ8は、所定の回転数で運転される第1運転と、第1運転からポンプ8の回転数を減少させながら停止するまで運転される第2運転とを実行するように制御される。開閉弁64は、ポンプ8の第2運転中に開くように制御される。このように、ポンプ8の第2運転の間に開閉弁64を開いてフロート室16の洗浄を実施することで、フロート室16の洗浄に伴う第1運転への流量等の影響を低減することができる。これにより、気体溶解装置60をより安定的に稼働させることができ、気体溶解装置60の信頼性を向上させることができる。 Further, in the gas dissolving device 60 in the second embodiment, the pump 8 is operated in a first operation that is operated at a predetermined rotational speed, and in the second operation until the pump 8 is stopped while decreasing the rotational speed of the pump 8 from the first operation. It is controlled to execute the operation. The on-off valve 64 is controlled to open during the second operation of the pump 8. Thus, by opening the on-off valve 64 during the second operation of the pump 8 and cleaning the float chamber 16, the influence of the flow rate and the like on the first operation accompanying the cleaning of the float chamber 16 is reduced. Can do. Thereby, the gas dissolving apparatus 60 can be operated more stably, and the reliability of the gas dissolving apparatus 60 can be improved.
 また、実施形態2における気体溶解装置60では、バイパス流路62は、流入路4におけるポンプ8よりも下流側の位置とフロート室16とを接続する。流入路4におけるポンプ8よりも下流側の位置からフロート室16に流体を流すことで、ポンプ8による推進力を受けてフロート室16に確実に流体を流すことができる。 In the gas dissolving device 60 according to the second embodiment, the bypass flow path 62 connects the float chamber 16 and a position downstream of the pump 8 in the inflow path 4. By flowing the fluid from the position downstream of the pump 8 in the inflow path 4 to the float chamber 16, the fluid can be reliably flowed to the float chamber 16 by receiving the propulsive force from the pump 8.
(実施形態3)
 次に、実施形態3にかかる気体溶解装置70について、図5を用いて説明する。実施形態3では、気体供給機構6の詳細な構成として、気体供給路72と、開閉弁74と、逆止弁76とを備える。その他の構成については実施形態2と共通するため、説明を省略する。
(Embodiment 3)
Next, the gas dissolving apparatus 70 concerning Embodiment 3 is demonstrated using FIG. In the third embodiment, as a detailed configuration of the gas supply mechanism 6, a gas supply path 72, an on-off valve 74, and a check valve 76 are provided. Since other configurations are the same as those of the second embodiment, description thereof is omitted.
 気体供給路72は、流入路4に気体を供給するための気体の流路である。気体供給路72は例えば配管により構成される。気体供給路72の上流側は気体の供給源(図示せず)に接続されており、気体供給路72の下流側は流入路4に接続されている。図5に示すように、気体供給路72はポンプ8よりも上流側の位置で流入路4に接続されている。気体供給路72の途中には、開閉弁74と、逆止弁76とが設けられている。 The gas supply path 72 is a gas flow path for supplying gas to the inflow path 4. The gas supply path 72 is constituted by, for example, a pipe. The upstream side of the gas supply path 72 is connected to a gas supply source (not shown), and the downstream side of the gas supply path 72 is connected to the inflow path 4. As shown in FIG. 5, the gas supply path 72 is connected to the inflow path 4 at a position upstream of the pump 8. An opening / closing valve 74 and a check valve 76 are provided in the middle of the gas supply path 72.
 開閉弁74は、気体供給路72の開閉を切り替える弁(気体供給路開閉弁)である。開閉弁74としては例えば、電磁弁あるいは電動弁が用いられる。気体供給路72における開閉弁74の上流側に逆止弁76が設けられている。逆止弁76は、気体供給路72内の逆流を防止する弁であり、気体の供給源から流入路4に向かって流れる方向にのみ気体を流すように作用する。 The on / off valve 74 is a valve (gas supply path on / off valve) that switches between opening and closing of the gas supply path 72. As the on-off valve 74, for example, an electromagnetic valve or an electric valve is used. A check valve 76 is provided upstream of the on-off valve 74 in the gas supply path 72. The check valve 76 is a valve that prevents a back flow in the gas supply path 72, and acts to flow the gas only in the direction of flowing from the gas supply source toward the inflow path 4.
 このような構成において、制御装置68は、ポンプ8および開閉弁64に加えて開閉弁74を制御する。制御装置68によるポンプ8、開閉弁64および開閉弁74の制御方法の一例を図6に示す。 In such a configuration, the control device 68 controls the on-off valve 74 in addition to the pump 8 and the on-off valve 64. An example of a method for controlling the pump 8, the on-off valve 64, and the on-off valve 74 by the control device 68 is shown in FIG.
 図6に示す制御方法は、ポンプ8および開閉弁64の制御については実施形態2と共通し、開閉弁74の制御のみが実施形態2と相違する。以下、相違点を中心に説明する。 The control method shown in FIG. 6 is common to the second embodiment with respect to the control of the pump 8 and the on-off valve 64, and only the control of the on-off valve 74 is different from the second embodiment. Hereinafter, the difference will be mainly described.
 図6に示すように、制御装置68は、第1運転時には開閉弁74を開くように制御する。一方で、第2運転時には開閉弁74を閉じるように制御する。すなわち、微細気泡を発生させる運転である第1運転時には、流入路4に気体を供給して気液混合流体を生成する。また、フロート室16の洗浄を行う第2運転時には、流入路4に気体を供給せずにバイパス流路62に主に液体のみを供給するようにしている。このような制御方法によれば、第1運転時には所望の量の気体を含んだ気液混合流体を溶解タンク10に供給しつつ、第2運転時には流入路4に気体を供給しないことで、気体が含まれることによるポンプ8の圧送性能の低下を防ぐことができる。これにより、第2運転時において、バイパス流路62へ所望の流量の液体を供給することができ、フロート室16の洗浄をより確実に実施することができる。 As shown in FIG. 6, the control device 68 controls to open the on-off valve 74 during the first operation. On the other hand, the on-off valve 74 is controlled to be closed during the second operation. That is, in the first operation, which is an operation for generating fine bubbles, gas is supplied to the inflow passage 4 to generate a gas-liquid mixed fluid. In the second operation for cleaning the float chamber 16, only the liquid is mainly supplied to the bypass channel 62 without supplying the gas to the inflow channel 4. According to such a control method, the gas-liquid mixed fluid containing a desired amount of gas is supplied to the dissolution tank 10 during the first operation, and the gas is not supplied to the inflow passage 4 during the second operation. It is possible to prevent the pumping performance of the pump 8 from being deteriorated due to the inclusion of. Thereby, in the second operation, a liquid having a desired flow rate can be supplied to the bypass passage 62, and the float chamber 16 can be more reliably cleaned.
 上述したように、実施形態3における気体溶解装置70は、流入路4におけるポンプ8よりも上流側の位置に気体を供給する気体供給路72と、気体供給路72を開閉する開閉弁である開閉弁(気体供給路開閉弁)74とを備える。開閉弁74は、ポンプ8が第1運転の間に開き、第2運転の間に閉じるように制御される。このような制御によれば、第1運転時には気体を混合させて気液混合流体を供給する一方で、第2運転時には気体を混合させないことで、ポンプ8による出力を上昇させることができ、バイパス流路62を通じてより強い流れを生じさせることができる。これにより、フロート室16を洗浄する洗浄力が向上し、気体溶解装置70の信頼性を向上させることができる。 As described above, the gas dissolving apparatus 70 according to the third embodiment is a gas supply path 72 that supplies gas to a position upstream of the pump 8 in the inflow path 4 and an open / close valve that opens and closes the gas supply path 72. And a valve (gas supply passage opening / closing valve) 74. The on-off valve 74 is controlled so that the pump 8 opens during the first operation and closes during the second operation. According to such control, while the gas is mixed and the gas-liquid mixed fluid is supplied in the first operation, the output by the pump 8 can be increased by not mixing the gas in the second operation, and the bypass A stronger flow can be generated through the channel 62. Thereby, the detergency which cleans the float chamber 16 improves, and the reliability of the gas dissolving apparatus 70 can be improved.
 なお、上述の実施形態2、3では、バイパス流路62を流入路4と接続する場合について説明したが、このような場合に限らず、流出路12と接続してもよい。このような場合であっても、バイパス流路の上流側と下流側で圧力差が生じるため、バイパス流路を通じて流体を流し、フロート室16を洗浄することができる。 In the second and third embodiments, the case where the bypass flow path 62 is connected to the inflow path 4 has been described. However, the present invention is not limited to this case, and the outflow path 12 may be connected. Even in such a case, a pressure difference is generated between the upstream side and the downstream side of the bypass flow path, so that the fluid can flow through the bypass flow path and the float chamber 16 can be washed.
 以上、実施形態1-3によれば、フロート室16に流体の流れを生じさせるバイパス流路を形成するには、実施形態1のように、フロート室16と溶解流路22が連通する連通箇所とは別の箇所における溶解流路22とフロート室16を接続してもよい。また、実施形態2、3のように流入路4とフロート室16とを接続する、あるいは、流出路12とフロート室16とを接続するようにしてもよい。 As described above, according to Embodiment 1-3, in order to form a bypass flow path that generates a flow of fluid in the float chamber 16, as in Embodiment 1, a communication location where the float chamber 16 and the dissolution flow path 22 communicate with each other. Alternatively, the dissolution channel 22 and the float chamber 16 may be connected at a different location. Further, the inflow path 4 and the float chamber 16 may be connected as in the second and third embodiments, or the outflow path 12 and the float chamber 16 may be connected.
(実施例)
 次に、本発明の実施例について、図7-図11を用いて説明する。図7―図11に示す実施例は、上述した実施形態1に基づく実施例である。図7、図8は、溶解タンク10の一部分解斜視図(表側、裏側)であり、図9は、溶解タンク10の平面図である。図10は、図9におけるA-A断面図であり、図11は、図10におけるB-B断面図である。
(Example)
Next, an embodiment of the present invention will be described with reference to FIGS. The examples shown in FIGS. 7 to 11 are examples based on the first embodiment described above. 7 and 8 are partially exploded perspective views (front side and back side) of the dissolution tank 10, and FIG. 9 is a plan view of the dissolution tank 10. 10 is a cross-sectional view taken along the line AA in FIG. 9, and FIG. 11 is a cross-sectional view taken along the line BB in FIG.
 図7などに示すように、実施例における溶解タンク10では、溶解タンク10の外壁上面にフロート室16が設けられるとともに、フロート室16の側壁に接触するように、接触壁78が設けられている。接触壁78は、図10に示すように、溶解タンク10内の気液混合室36を形成する外壁上面79の一部である。このような構成により、フロート室16と気液混合室36とが接触壁78を介して隣接する。 As shown in FIG. 7 and the like, in the dissolution tank 10 in the embodiment, the float chamber 16 is provided on the upper surface of the outer wall of the dissolution tank 10, and the contact wall 78 is provided so as to contact the side wall of the float chamber 16. . As shown in FIG. 10, the contact wall 78 is a part of the outer wall upper surface 79 that forms the gas-liquid mixing chamber 36 in the dissolution tank 10. With such a configuration, the float chamber 16 and the gas-liquid mixing chamber 36 are adjacent to each other through the contact wall 78.
 なお、溶解タンク10内の中間室38は、図9のA-A断面とは異なる位置に設けられているため、図10では図示されておらず、気液混合室36および気液分離室40のみが図示されている。 Since the intermediate chamber 38 in the dissolution tank 10 is provided at a position different from the AA cross section of FIG. 9, it is not shown in FIG. 10, and the gas-liquid mixing chamber 36 and the gas-liquid separation chamber 40 are not shown. Only is shown.
 本実施例では、フロート室16と接触壁78を貫通する貫通孔が設けられている。貫通孔はフロート室16と接触壁78の側壁を横方向に貫通するものであり(接触壁78を貫通してフロート室16と気液混合室36とを連通させる)、当該貫通孔によってバイパス流路18が形成される。図10では、フロート室16内の一時的な液面80が図示されており、バイパス流路18は液面80付近に設けられている。 In this embodiment, a through-hole penetrating the float chamber 16 and the contact wall 78 is provided. The through hole penetrates the float chamber 16 and the side wall of the contact wall 78 in the lateral direction (through the contact wall 78, the float chamber 16 and the gas-liquid mixing chamber 36 are communicated). A path 18 is formed. In FIG. 10, a temporary liquid level 80 in the float chamber 16 is illustrated, and the bypass channel 18 is provided in the vicinity of the liquid level 80.
 このような構成において、気液混合室36とフロート室16では流体の圧力差が存在し、圧力の高い気液混合室36から圧力の低いフロート室16への流れが生じる。これにより、バイパス流路18を通じてフロート室16へ気液混合流体を流し、フロート室16内を洗浄することができる。図10の矢印で示すように、フロート室16内に流れ込んだ気液混合流体は、フロート26とフロート室16の内壁との間の空間を周方向に旋回するように流れている。 In such a configuration, there is a fluid pressure difference between the gas-liquid mixing chamber 36 and the float chamber 16, and a flow from the high-pressure gas-liquid mixing chamber 36 to the low-pressure float chamber 16 occurs. Thereby, the gas-liquid mixed fluid can be flowed to the float chamber 16 through the bypass flow path 18 and the inside of the float chamber 16 can be washed. As shown by the arrows in FIG. 10, the gas-liquid mixed fluid that has flowed into the float chamber 16 flows so as to swirl in the circumferential direction in the space between the float 26 and the inner wall of the float chamber 16.
 本実施例による気体溶解装置2によれば、溶解タンク10における最も上流側の空間(気液混合室36)を構成する溶解タンク10の外壁(外壁上面79)は、フロート室16と接触する接触壁78を有する。また、接触壁78とフロート室16を連通する貫通孔によってバイパス流路18が形成される。このように、接触壁78とフロート室16を連通する貫通孔によってバイパス流路18を形成することで、配管等の別部品を設けることなくバイパス流路18を形成できるため、簡単な構成を採用して気体溶解装置2の製造コストを低減することができる。 According to the gas dissolving device 2 according to the present embodiment, the outer wall (outer wall upper surface 79) of the dissolving tank 10 constituting the most upstream space (gas-liquid mixing chamber 36) in the dissolving tank 10 is in contact with the float chamber 16. It has a wall 78. Further, the bypass channel 18 is formed by a through hole that communicates the contact wall 78 and the float chamber 16. In this way, the bypass channel 18 can be formed without providing other parts such as piping by forming the bypass channel 18 by the through-hole communicating with the contact wall 78 and the float chamber 16, and thus a simple configuration is adopted. Thus, the manufacturing cost of the gas dissolving device 2 can be reduced.
 以上、上述の実施形態1-3および実施例を挙げて本発明を説明したが、本発明は上述の実施形態1-3に限定されない。例えば、実施形態1-3では、バイパス流路をフロート室16の側壁部分に接続する場合について説明したが、このような場合に限らない。フロート室16内を洗浄するように流体を噴出できる位置であれば、任意の位置にバイパス流路を接続してもよい。なお、フロート室16内においては、液面80付近に汚れが最も付着しやすいため、バイパス流路をフロート室16の側壁に接続して液面80の近傍に流体を噴出するようにすることで、フロート室16内をより効率的に洗浄することができる。 As mentioned above, although the present invention has been described with reference to the above-described embodiment 1-3 and examples, the present invention is not limited to the above-described embodiment 1-3. For example, in Embodiment 1-3, the case where the bypass channel is connected to the side wall portion of the float chamber 16 has been described, but the present invention is not limited to such a case. As long as the fluid can be ejected so as to clean the inside of the float chamber 16, the bypass channel may be connected to an arbitrary position. In the float chamber 16, dirt is most likely to adhere to the vicinity of the liquid surface 80. Therefore, by connecting a bypass channel to the side wall of the float chamber 16 and ejecting fluid near the liquid surface 80. The inside of the float chamber 16 can be cleaned more efficiently.
 実施形態1-3では、溶解タンク10の内部空間が2つの仕切り壁32、34によって仕切られ、溶解流路22が3つの空間(気液混合室36、中間室38、気液分離室40)によって形成される場合について説明したが、このような場合に限らない。溶解タンク10の溶解流路22において液体に気体を溶解させることができる構成であれば、任意の構造を採用してもよい。 In Embodiment 1-3, the internal space of the dissolution tank 10 is partitioned by two partition walls 32 and 34, and the dissolution flow path 22 has three spaces (gas-liquid mixing chamber 36, intermediate chamber 38, and gas-liquid separation chamber 40). However, the present invention is not limited to such a case. Any structure may be adopted as long as the gas can be dissolved in the liquid in the dissolution flow path 22 of the dissolution tank 10.
 また実施形態1-3では、フロート室16を溶解タンク10の最も下流側の空間である気液分離室40に連通するように設ける場合について説明したが、このような場合に限らず、気液混合室36よりも下流側であれば任意の位置に設けてもよい。 In Embodiment 1-3, the case where the float chamber 16 is provided so as to communicate with the gas-liquid separation chamber 40 which is the most downstream space of the dissolution tank 10 has been described. It may be provided at an arbitrary position as long as it is downstream of the mixing chamber 36.
 また実施形態1-3では、気体が溶解した液体を減圧して微細気泡を発生させる減圧装置14を設ける場合について説明したが、減圧装置14を設けない場合であってもよい。すなわち、微細気泡を発生させずに、気体が溶解した液体を生成しその液体を供給する用途にも気体溶解装置は適用可能である。例えば、物体を洗浄するための洗浄液を生成する手段として、あるいは、健康用途に用いる液体などを生成する手段として、気体溶解装置を利用することもできる。 Further, in Embodiment 1-3, the case where the pressure reducing device 14 that generates a fine bubble by reducing the pressure of the liquid in which the gas is dissolved is described, but the case where the pressure reducing device 14 is not provided may be used. That is, the gas dissolving apparatus can be applied to an application for generating a liquid in which a gas is dissolved and supplying the liquid without generating fine bubbles. For example, a gas dissolving device can be used as a means for generating a cleaning liquid for cleaning an object or as a means for generating a liquid used for health use.
 なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。 It should be noted that, by appropriately combining arbitrary embodiments of the above-described various embodiments, the effects possessed by them can be produced.
 本発明は、気体を液体に溶解させる気体溶解装置であれば適用可能である。 The present invention is applicable to any gas dissolving apparatus that dissolves gas into liquid.
 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本開示の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。 Although the present invention has been fully described in connection with preferred embodiments with reference to the accompanying drawings, various variations and modifications will be apparent to those skilled in the art. Such changes and modifications are to be understood as included within the scope of the present disclosure as set forth in the appended claims.
(台湾は本段落なし)
 2016年6月13日に出願された日本国特許出願No.2016-117152号の明細書、図面、及び特許請求の範囲の開示内容は、全体として参照されて本明細書の中に取り入れられるものである。
(Taiwan has no paragraph)
Japanese Patent Application No. 1 filed on June 13, 2016. The disclosures of the specification, drawings, and claims of 2016-117152 are hereby incorporated by reference in their entirety.

Claims (10)

  1.  液体に気体を混合した気液混合流体を流入させる流入口と、前記流入口から流入した気液混合流体の流路であって液体に気体を溶解させる溶解流路と、気体が溶解した液体を前記溶解流路から流出させる流出口とを有する溶解タンクと、
     前記流入口に接続され、前記溶解タンクに気液混合流体を流入させる流入路と、
     前記流出口に接続され、気体が溶解した液体を流出させる流出路と、
     前記溶解流路に連通し、前記溶解流路内の未溶解の気体を外部に排出するためのフロート室と、
     前記フロート室と前記溶解流路が連通する連通箇所とは別の箇所における前記溶解流路、又は、前記流入路若しくは前記流出路と、前記フロート室とを接続するバイパス流路と、
     を備える、気体溶解装置。
    An inflow port for introducing a gas-liquid mixed fluid in which a gas is mixed with a liquid, a flow path for a gas-liquid mixed fluid flowing in from the inflow port, a dissolution channel for dissolving the gas in the liquid, and a liquid in which the gas is dissolved A dissolution tank having an outlet for flowing out of the dissolution channel;
    An inflow path connected to the inflow port and allowing a gas-liquid mixed fluid to flow into the dissolution tank;
    An outflow path connected to the outflow port for allowing the gas dissolved liquid to flow out;
    A float chamber for communicating with the dissolution channel and discharging undissolved gas in the dissolution channel to the outside;
    A bypass flow path that connects the float chamber and the dissolution flow path in a place different from the communication location where the float flow path and the dissolution flow path communicate with each other, or the inflow path or the outflow path;
    A gas dissolving device.
  2.  前記溶解タンクの内部は、前記溶解流路を形成するように互いに連通する複数の空間によって区画されており、
     前記バイパス流路は、前記溶解タンクにおける複数の空間のうち、最も上流側又は最も下流側の空間と前記フロート室とを接続する、請求項1に記載の気体溶解装置。
    The inside of the dissolution tank is partitioned by a plurality of spaces communicating with each other so as to form the dissolution flow path,
    2. The gas dissolving device according to claim 1, wherein the bypass flow path connects the most upstream or most downstream space among the plurality of spaces in the dissolution tank and the float chamber.
  3.  前記フロート室は、前記溶解タンクにおける前記複数の空間のうち、最も下流側の空間と連通しており、
     前記バイパス流路は、前記溶解タンクにおける前記複数の空間のうち、最も上流側の空間と前記フロート室とを接続する、請求項2に記載の気体溶解装置。
    The float chamber communicates with the most downstream space among the plurality of spaces in the dissolution tank,
    3. The gas dissolving device according to claim 2, wherein the bypass flow path connects the most upstream space of the plurality of spaces in the dissolution tank and the float chamber.
  4.  前記溶解タンクにおける前記最も上流側の空間を構成する前記溶解タンクの外壁は、前記フロート室と接触する接触壁を有し、前記接触壁と前記フロート室を連通する貫通孔によって前記バイパス流路が形成される、請求項3に記載の気体溶解装置。 The outer wall of the dissolution tank that constitutes the most upstream space in the dissolution tank has a contact wall that contacts the float chamber, and the bypass flow path is formed by a through hole that communicates the contact wall and the float chamber. The gas dissolving device according to claim 3, which is formed.
  5.  前記バイパス流路を開閉する開閉弁をさらに備える、請求項1から3のいずれか1つに記載の気体溶解装置。 The gas dissolving device according to any one of claims 1 to 3, further comprising an on-off valve that opens and closes the bypass flow path.
  6.  前記流入路の途中に設けられ、前記流入口に向けて気液混合流体を送るポンプをさらに備え、
     前記バイパス流路は、前記流入路における前記ポンプよりも下流側の位置と前記フロート室とを接続する、請求項1に記載の気体溶解装置。
    A pump that is provided in the middle of the inflow path and sends a gas-liquid mixed fluid toward the inlet;
    2. The gas dissolving device according to claim 1, wherein the bypass flow path connects a position downstream of the pump in the inflow path and the float chamber.
  7.  前記バイパス流路を開閉する開閉弁であるバイパス流路開閉弁と、
     前記バイパス流路開閉弁および前記ポンプの運転を制御する制御装置とをさらに備え、
     前記制御装置は、前記ポンプを、所定の回転数で運転する第1運転と、前記第1運転から前記ポンプの回転数を減少させながら停止するまで運転する第2運転とを実行するように制御し、かつ、前記バイパス流路開閉弁を、前記ポンプの前記第2運転の間に開くように制御する、請求項6に記載の気体溶解装置。
    A bypass flow path opening / closing valve that is an open / close valve for opening and closing the bypass flow path;
    A controller for controlling the operation of the bypass flow path opening and closing valve and the pump,
    The control device controls the pump to perform a first operation that operates at a predetermined rotational speed and a second operation that operates from the first operation until the pump is stopped while decreasing the rotational speed of the pump. The gas dissolving device according to claim 6, wherein the bypass flow path opening / closing valve is controlled to open during the second operation of the pump.
  8.  前記流入路における前記ポンプよりも上流側の位置に気体を供給する気体供給路と、
     前記気体供給路を開閉する開閉弁であり、前記制御装置によって運転を制御される気体供給路開閉弁と、をさらに備え、
     前記制御装置は、前記気体供給路開閉弁を前記ポンプの前記第1運転の間に開き、前記第2運転の間に閉じるように制御する、請求項7に記載の気体溶解装置。
    A gas supply path for supplying gas to a position upstream of the pump in the inflow path;
    An on-off valve for opening and closing the gas supply path, further comprising a gas supply path on-off valve whose operation is controlled by the control device,
    The gas dissolution apparatus according to claim 7, wherein the control device controls the gas supply path opening / closing valve to be opened during the first operation of the pump and closed during the second operation.
  9.  前記フロート室は、前記フロート室内の気体を排出する排出口と、前記排出口を開閉可能に閉じる弁体と、前記弁体に連結されたフロートとを有する、請求項1から8のいずれか1つに記載の気体溶解装置。 The said float chamber has a discharge port which discharges | emits the gas in the said float chamber, the valve body which closes the said discharge port so that opening and closing is possible, and the float connected to the said valve body, Any one of Claim 1 to 8 The gas dissolving apparatus described in 1.
  10.  液体に溶解した気体を減圧して前記流出路において微細気泡として発生させる減圧装置をさらに備える、請求項1から9のいずれか1つに記載の気体溶解装置。 The gas dissolving device according to any one of claims 1 to 9, further comprising a decompressing device that decompresses the gas dissolved in the liquid to generate fine bubbles in the outflow path.
PCT/JP2017/018005 2016-06-13 2017-05-12 Gas dissolving apparatus WO2017217157A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-117152 2016-06-13
JP2016117152A JP6621024B2 (en) 2016-06-13 2016-06-13 Gas dissolving device

Publications (1)

Publication Number Publication Date
WO2017217157A1 true WO2017217157A1 (en) 2017-12-21

Family

ID=60663504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018005 WO2017217157A1 (en) 2016-06-13 2017-05-12 Gas dissolving apparatus

Country Status (3)

Country Link
JP (1) JP6621024B2 (en)
TW (1) TWI687259B (en)
WO (1) WO2017217157A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111534329A (en) * 2020-05-25 2020-08-14 盘锦浩业化工有限公司 Gasoline hydrogenation and olefin removal treatment method and device
CN112237856A (en) * 2019-07-19 2021-01-19 株式会社荏原制作所 Gas solution manufacturing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS491985U (en) * 1972-04-06 1974-01-09
JPS59501702A (en) * 1982-08-20 1984-10-11 ソ−ダストリ−ム リミテツド liquid aeration equipment
JP2006007899A (en) * 2004-06-24 2006-01-12 Nippon Sharyo Seizo Kaisha Ltd Water sealing device for vehicle
JP2010227784A (en) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Gas dissolving apparatus
JP2012148006A (en) * 2011-01-20 2012-08-09 Panasonic Corp Installation structure of gas dissolving apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252269A (en) * 1992-09-21 2000-09-14 Mitsubishi Electric Corp Equipment and method for liquid vaporization
JP2002256284A (en) * 2001-02-28 2002-09-11 Sanyo Chem Ind Ltd Cleaning solution for preventing fur of flushing toilet
CN102131572B (en) * 2008-08-26 2014-01-08 松下电器产业株式会社 Air-dissolved water production device
JP5022415B2 (en) * 2008-08-26 2012-09-12 パナソニック株式会社 Gas dissolving device and bathtub with microbubble generation function
JP2010119811A (en) * 2008-11-19 2010-06-03 Viita Kk Method and apparatus for producing carbonate spring
JP2011173048A (en) * 2010-02-23 2011-09-08 Panasonic Electric Works Co Ltd Dissolution tank
JP5870262B2 (en) * 2012-03-08 2016-02-24 パナソニックIpマネジメント株式会社 Gas dissolution tank
JP5887555B2 (en) * 2012-03-08 2016-03-16 パナソニックIpマネジメント株式会社 Gas dissolution tank
JP6368080B2 (en) * 2013-10-22 2018-08-01 パナソニック株式会社 Microbubble generator and bubble diameter control method
JP2016073918A (en) * 2014-10-06 2016-05-12 パナソニックIpマネジメント株式会社 Gas dissolution device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS491985U (en) * 1972-04-06 1974-01-09
JPS59501702A (en) * 1982-08-20 1984-10-11 ソ−ダストリ−ム リミテツド liquid aeration equipment
JP2006007899A (en) * 2004-06-24 2006-01-12 Nippon Sharyo Seizo Kaisha Ltd Water sealing device for vehicle
JP2010227784A (en) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Gas dissolving apparatus
JP2012148006A (en) * 2011-01-20 2012-08-09 Panasonic Corp Installation structure of gas dissolving apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112237856A (en) * 2019-07-19 2021-01-19 株式会社荏原制作所 Gas solution manufacturing device
CN112237856B (en) * 2019-07-19 2024-04-23 株式会社荏原制作所 Gas dissolved liquid manufacturing device
CN111534329A (en) * 2020-05-25 2020-08-14 盘锦浩业化工有限公司 Gasoline hydrogenation and olefin removal treatment method and device

Also Published As

Publication number Publication date
JP2017221869A (en) 2017-12-21
JP6621024B2 (en) 2019-12-18
TW201742666A (en) 2017-12-16
TWI687259B (en) 2020-03-11

Similar Documents

Publication Publication Date Title
JP4552930B2 (en) Washing water discharge device and flush toilet equipped with the same
JP4895032B2 (en) Microbubble generator
JP2007000837A (en) Cleaning froth jet pump
KR20050055702A (en) Foamed cleaning liquid dispensing system
JP2009022841A (en) Cleaning apparatus
WO2017217157A1 (en) Gas dissolving apparatus
JP4470936B2 (en) Chemical-mixed water discharge device and flush toilet device
JP4895033B2 (en) Microbubble generator
JP2009255039A (en) Gas dissolving vessel
CN217527059U (en) Micro-nano bubble liquid generation system and water heater
JP4764625B2 (en) Mixing nozzle and hand washing device using the same
JP5601502B2 (en) Fine foam group generation apparatus and fine foam group bathing system
JP5508235B2 (en) Microbubble generator
KR101741610B1 (en) Sanitary washing device
JP2001279787A (en) Flush toilet
JP2006081724A (en) Bathroom cleaning device
JP2008274615A (en) Toilet device
JP5134336B2 (en) Foam detergent dispenser
JP4215114B2 (en) Washing water discharge device and flush toilet equipped with the same
JP7155863B2 (en) cleaning equipment
CN221422152U (en) Foaming device, foam generating system and toilet bowl
JP4708008B2 (en) Hand washing equipment
JP3578170B2 (en) Flush toilet
JP4950969B2 (en) Washing water discharge device and flush toilet equipped with the same
JP2018053602A (en) Toilet bowl device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813061

Country of ref document: EP

Kind code of ref document: A1