WO2017214981A1 - 通道校正方法、装置及通信*** - Google Patents

通道校正方法、装置及通信*** Download PDF

Info

Publication number
WO2017214981A1
WO2017214981A1 PCT/CN2016/086252 CN2016086252W WO2017214981A1 WO 2017214981 A1 WO2017214981 A1 WO 2017214981A1 CN 2016086252 W CN2016086252 W CN 2016086252W WO 2017214981 A1 WO2017214981 A1 WO 2017214981A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
frequency device
correction
group
devices
Prior art date
Application number
PCT/CN2016/086252
Other languages
English (en)
French (fr)
Inventor
顾雪芹
江胜峰
龚啟清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680086167.1A priority Critical patent/CN109196792B/zh
Priority to PCT/CN2016/086252 priority patent/WO2017214981A1/zh
Priority to EP16905095.2A priority patent/EP3461022B1/en
Priority to KR1020197000218A priority patent/KR102177541B1/ko
Priority to JP2018564786A priority patent/JP6702605B2/ja
Publication of WO2017214981A1 publication Critical patent/WO2017214981A1/zh
Priority to US16/220,576 priority patent/US10892917B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • H04B15/02Reducing interference from electric apparatus by means located at or near the interfering apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2695Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with channel estimation, e.g. determination of delay spread, derivative or peak tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset
    • H04L2027/0038Correction of carrier offset using an equaliser
    • H04L2027/0042Correction of carrier offset using an equaliser the equaliser providing the offset correction per se

Definitions

  • Embodiments of the present invention relate to the field of wireless communications technologies, and in particular, to a channel calibration method, apparatus, and communication system.
  • overlapping coverage of cells can cause interference to the terminal.
  • the base station 111 and the base station 112 have overlapping coverage areas, and terminals in the overlapping coverage area may be interfered by base stations other than the serving base station.
  • the dotted line in the figure represents interference and the solid line represents useful signals.
  • the serving base station of the terminal 113 is 111, which is interfered by the base station 112
  • the serving base station of the terminal 114 is the base station 112, which is subject to interference from the base station 111.
  • DMIMO distributed multiple-input multiple-output
  • the radio frequency devices can be deployed separately, and multiple overlapping radio frequency devices can form a group, and the radio devices in the group jointly transmit the terminals, and the interference is energy.
  • FIG. 2 compared with FIG. 1, DMIMO technology converts interference into a useful signal, and the interference becomes energy, which improves the system capacity and the experience of the edge terminal.
  • the channel correction of the radio frequency device is the premise of the DMIMIO implementation.
  • the channels of the radio frequency devices in the group have the same delay, so that the signals sent by the radio frequency devices can be added in phase when reaching the terminal, so as to enhance the downlink receiving signal of the terminal. strength.
  • the correction signal is transmitted in a single radio device, and the channel correction is performed only on a single radio device, that is, only in one radio device.
  • the RF channels are calibrated. Since the clock sources of the RF channels in the RF device are the same, the clock crystals are the same, and the external environment (such as temperature, illumination, wind direction, etc.) is basically the same, so the amplitude and phase characteristics of each RF channel change slowly. And the trend of change is basically the same, therefore, the channel correction in a single RRU usually has a slower cycle and only needs to be in the order of minutes.
  • channel correction is performed between multiple RF devices. Due to the environment of each RF device, the length of the fiber, and the different sources of the clock, the phase changes between the RF devices are faster and the trends are inconsistent. Existing calibration methods are no longer able to meet the performance requirements of DMIMO, and faster channel correction is required.
  • the embodiments of the present invention provide a channel calibration method, apparatus, and communication system, so as to improve channel calibration efficiency.
  • a channel correction method for performing channel correction on a radio frequency device in a network area, wherein the radio frequency device in the network area is divided into at least one radio frequency device group, and each radio frequency device group includes multiple radio frequency devices.
  • the calibration path between the plurality of radio frequency devices is reachable, and the base station where the first radio frequency device is located is pre-configured with configuration information, where the configuration information is used to indicate that each radio frequency device in the radio frequency device group where the first radio frequency device is located is sent.
  • Correcting the resource location of the signal, the first radio frequency device is any radio frequency device in the network area, and the method is performed by the base station where the first radio frequency device is located, including:
  • the device sends the resource location of the correction signal, and the second radio frequency device is the radio frequency device in the radio frequency device group where the first radio frequency device is located;
  • the channel of the first radio frequency device is compensated according to the first correction signal, the second correction signal, the first received signal, and the second received signal.
  • a channel calibration apparatus for channel correction of a radio frequency device in a network area, wherein the radio frequency device in the network area is divided into at least one radio frequency device group, and each radio frequency device group includes a plurality of radio frequency devices
  • the calibration path between the plurality of radio frequency devices is reachable, and the base station where the first radio frequency device is located is pre-configured with configuration information, where the configuration information is used to indicate that each radio frequency device in the radio frequency device group where the first radio frequency device is located is sent.
  • the first radio frequency device is any radio frequency device in the network area
  • the channel correction device is located at the base station where the first radio frequency device is located, and includes a unit or means for performing the steps of the above first aspect (means ).
  • the method includes: a first control unit, configured to control, according to the configuration information, the first radio frequency device to send the first correction signal on the first resource location, and acquire the first receiving of the first calibration signal by the second radio frequency device a signal, where the first resource location is a resource location where the first radio frequency device transmits the correction signal, the second radio frequency device is a radio frequency device in the radio frequency device group where the first radio frequency device is located, and the acquiring unit is configured to pass the configuration information according to the configuration information during the calibration period.
  • the first radio frequency device acquires a second received signal of the second correction signal at the second resource location, where the second resource location is a resource location at which the second radio frequency device transmits the second correction signal, and a compensation unit is configured to perform, according to the first calibration signal
  • the second correction signal, the first received signal, and the second received signal compensate for a channel of the first radio frequency device.
  • the above unit or means can be implemented by means of software, or by hardware, or by a combination of software and hardware.
  • a communication system including at least one base station, the radio frequency device of the at least one base station is divided into at least one radio frequency device group, each radio frequency device group includes a plurality of radio frequency devices, and between the plurality of radio frequency devices
  • the calibration path is reachable, and the base station where the first radio frequency device is located is pre-configured with configuration information, where the configuration information is used to indicate the location of the resource for each radio frequency device in the radio frequency device group where the first radio frequency device is located, the first radio frequency
  • the device is any radio frequency device in the network area, and the base station where the first radio frequency device is located includes the channel correction device of the above second aspect.
  • a program for performing the method of the above first aspect when executed by a processor.
  • a program product such as a computer readable storage medium, comprising the program of the fourth aspect is provided.
  • the radio frequency devices in the network area are grouped, and the location of the correction resource is preset for each radio frequency device in the radio frequency device group, so that each radio frequency device in the group is in accordance with the configuration information.
  • the correction signal is sent at the position of the correction resource, and the correction signal is received at the position of the correction resource of some or all of the other radio frequency devices, so that the configuration of the correction resource is not required every time, a large amount of configuration signaling is saved, and the channel correction efficiency is improved.
  • the corrective path between multiple RF devices means that the channel correction between them can be done directly or through channel correction between the two RF devices in the RF device group.
  • the intermediate radio frequency device may be one or plural.
  • the radio frequency device group in which the first radio frequency device is located includes a third radio frequency device, and the third radio frequency device passes the second radio frequency device or the fourth The radio frequency device implements channel correction with the first radio frequency device.
  • the number of radio frequency devices in the radio frequency device group that receive the correction signal sent by a certain radio frequency device in parallel may be multiple.
  • the channel correction method can further improve the correction efficiency.
  • the radio frequency device group in which the first radio frequency device is located may include a plurality of second radio frequency devices, and the plurality of second radio frequency devices receive the first correction signal in parallel, and the second resource positions of the plurality of second radio frequency devices are mutually different.
  • the calibration resources between the radio frequency device groups may be planned according to the isolation, and the correction resources are multiplexed between the high-isolation RF device groups.
  • the plurality of radio frequency device groups include a first radio frequency device group and a second radio frequency device group, and the first radio frequency device group and the second The isolation of the radio frequency device group satisfies a preset requirement, and the radio frequency devices in the first radio frequency device group and the second radio frequency device group transmit the correction signal using the same resource.
  • the plurality of radio frequency device groups include the third radio frequency device group and the fourth radio frequency device group, and the third radio frequency device group and the fourth radio frequency device group are isolated.
  • the preset requirements are not met, and the radio frequency devices in the third radio frequency device group and the fourth radio frequency device group transmit correction signals using different resources.
  • Isolation refers to the degree of mutual interference between two RF devices. The smaller the isolation, the greater the interference, the greater the isolation, and the smaller the interference. Isolation can be reflected by signal strength. For example, the radio frequency device A transmits a signal, and the radio frequency device B receives the signal. The magnitude of the received signal strength reflects the magnitude of the isolation between the radio frequency device A and the radio frequency device B.
  • the isolation between the radio frequency device groups satisfies the preset requirement that the isolation between each radio device of one of the two radio device groups and each of the radio devices of the other group meets the preset requirements.
  • the radio frequency devices within the network region may be grouped based on grouping factors.
  • the grouping factor may include one or more of the following factors: isolation requirements, maximum spacing between radio frequency devices, group specifications, maximum number of layers.
  • the isolation requirement can be selected in combination with one or more other factors.
  • a group identification can be assigned to each radio device group and used to correct resource allocation.
  • the radio frequency device group ID is equal to: the group identifier mod N of the radio frequency device group whose isolation degree meets the preset requirement is the same; the group ID mod N of the radio frequency device group whose isolation degree does not meet the preset requirement is different, Where N represents the number of radio frequency device groups within the calibration period.
  • the allocation criteria of the correction resource include: the same radio frequency device group with the same group ID mod N is assigned the same correction resource; the radio group device group with different group ID mod N is assigned different correction resources.
  • the correction resources of the same radio frequency device group with the group ID mod N are allocated at the same time position, and the correction resources of the radio group device group with different group ID mod N are allocated at different time positions.
  • the allocation of the correction resources can be simplified after the group ID is allocated, so that the allocation of the correction resources is faster, and the interference caused by the correction of the resource conflict is effectively reduced.
  • a plurality of correction sequences can be designed, and based on the correction results generated by the plurality of correction sequences, the correction sequence with the best calibration efficiency is selected as the optimal correction path, and the best is used in the subsequent calibration process. Correct the path to further improve calibration efficiency.
  • the method provided by the above first aspect may further include an optimal correction path selection process, including:
  • the base station where the first radio frequency device is located controls the first radio frequency device to send the correction signals according to a preset plurality of sequences in a plurality of correction periods, and each sequence indicates the sending order of the correction signals of the radio frequency devices in the radio frequency device group where the first radio frequency device is located. ;
  • the base station where the first radio frequency device is located selects the sequence with the highest correction efficiency as the optimal correction path;
  • the base station in which the first radio frequency device is located performs subsequent corrections in accordance with the optimal correction path.
  • the apparatus provided in the second aspect further includes a unit or means for implementing each step of the optimal calibration path selection process, for example, including: a second control unit, configured to control the first radio frequency apparatus in multiple correction periods
  • the correction signals are transmitted in a plurality of preset presets, each sequence indicating a transmission order of the correction signals of the radio frequency devices in the radio frequency device group in which the first radio frequency device is located; and a selection unit for selecting the sequence with the highest correction efficiency as the optimal correction path a trigger unit for triggering subsequent corrections to be performed in accordance with the optimal correction path.
  • the correction period may be further divided into a plurality of time periods, and one or more of the time periods may be used to perform correction of the specific parameters.
  • the grading correction can be realized, a faster correction period can be realized for a specific parameter, and the correction efficiency is further improved.
  • the correction period includes at least one correction sub-period, the correction sub-period being a period of time within the correction period for correcting a particular parameter.
  • the plurality of radio frequency device groups can use different frequency resources to correct the specific parameters in the same correction period.
  • the plurality of radio frequency device groups include the radio frequency device group that corrects the specific parameters using different frequency resources in the same correction period.
  • FIG. 1 is a schematic diagram of a cell overlap coverage causing interference to a terminal
  • FIG. 2 is a schematic diagram of a scenario of DIMIO
  • FIG. 3 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a channel correction method according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of another channel correction method according to an embodiment of the present disclosure.
  • FIG. 6 is a flowchart of a channel correction method according to an embodiment of the present application.
  • FIG. 7 is a flowchart of determining a correction path in a channel calibration method according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of a channel calibration apparatus according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another channel calibration apparatus according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • a terminal also called user equipment (UE) is a device that provides voice and/or data connectivity to a user, for example, a handheld device with a wireless connection function, an in-vehicle device, and the like.
  • UE user equipment
  • Common terminals include, for example, mobile phones, tablets, notebook computers, PDAs, mobile internet devices (MIDs), wearable devices such as smart watches, smart bracelets, pedometers, and the like.
  • MIDs mobile internet devices
  • wearable devices such as smart watches, smart bracelets, pedometers, and the like.
  • the base station also known as a radio access network (RAN) device is a A device for accessing a terminal to a wireless network, including but not limited to: an evolved Node B (eNB), a radio network controller (RNC), a Node B (NB), and a base station A base station controller (BSC), a base transceiver station (BTS), a home base station (for example, Home evolved NodeB, or Home Node B, HNB), and a base band unit (BBU).
  • eNB evolved Node B
  • RNC radio network controller
  • NB Node B
  • BSC base station controller
  • BTS base transceiver station
  • HNB Home evolved NodeB
  • BBU base band unit
  • AP Wifi access point
  • Isolation used to reflect the degree of mutual interference between two RF devices. The smaller the isolation, the greater the interference, the greater the isolation, and the smaller the interference.
  • Correction resource refers to the resource used to send the correction signal.
  • Multi means two or more, for example, plural means two or more.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • FIG. 3 is a schematic diagram of a communication system according to an embodiment of the present application.
  • the communication system includes a plurality of radio frequency devices 310-1 to 310-N, which are distributed in a layout.
  • these radio frequency devices can be remotely arranged from the baseband device, i.e., at a distance from the baseband device, each baseband device being connectable to one or more radio frequency devices.
  • the baseband device 330 in the figure is a general term for the baseband devices of these radio frequency devices, and is not shown separately.
  • the baseband devices of these radio frequency devices may be the same baseband device, or may be different baseband devices, and some radio frequency devices may be Connect to the same baseband unit.
  • the baseband devices of these radio frequency devices can be collectively arranged together, which is called a baseband cloud.
  • the radio frequency device is a remote radio unit (RRU)
  • the baseband device is a BBU.
  • RRU remote radio unit
  • BBU BBU
  • These RRUs are arranged to be pulled out from the BBU through optical fibers.
  • the BBUs of these RRUs can be arranged together to form a BBU cloud (Cloud BB).
  • the plurality of terminals 320-1 to 320-K access the wireless network.
  • the transmission day can be determined.
  • the channel matrix is M*K
  • the channel matrix is transposed, and the transposed matrix is multiplied by the channel matrix to obtain a K-dimensional transceiving matrix, wherein N, M and K are positive integers.
  • the K-dimensional transceiver matrix can form K orthogonal transmission vectors, each orthogonal transmission vector serves one terminal, the base station uses the orthogonal transmission vector to weight the terminal data, and the orthogonal terminal data jointly transmits in parallel without interference.
  • the above communication system works in a DMIMO scenario, and needs to perform channel correction between multiple radio frequency devices to make the channels of each radio frequency device have the same delay, so that the signals transmitted by the radio frequency devices can be added in phase when reaching the terminal.
  • the current calibration method is to correct between two RF devices, and each pair of RF devices is serially executed.
  • the calibration period can only be achieved in minutes (min).
  • the air interface channel of the RF device is greatly affected by the external environment (such as temperature, illumination, wind direction, etc.), and the length of the fiber connected to the baseband device, the clock source, etc. may also be different. Therefore, after each correction, the RF device is interposed. The phase difference is likely to change a lot in a short time, so the current calibration method can not meet the performance requirements of DMIMO, and faster channel correction is needed.
  • a radio frequency device in a network area is divided into at least one radio frequency device group (also referred to as a radio frequency device cluster), and the radio frequency device group includes a plurality of radio frequency devices, and each radio frequency device in the radio frequency device group is disposed. Correcting the location of the resource, that is, the resource location of the correction signal, where the resource location may be stored in the form of configuration information at the base station where the radio frequency device is located, so that the base station where the radio frequency device is located controls the radio frequency device to correct the resource based on the configuration information.
  • the correction signals are transmitted at the locations, and the correction signals are used to implement channel correction of the radio frequency devices in the radio frequency device group. Those skilled in the art will appreciate that these correction signals may be the same signal. Although the terms first and second correction signals are given below to distinguish that the correction signals are transmitted by different radio frequency devices, it does not mean that the correction signals themselves are different. Of course, the correction signal itself can be different, but it imposes overhead on the system, and each radio frequency device needs to know the correction signal sent by other radio frequency devices in advance.
  • the radio frequency devices 310-1 to 310-4 are divided into the same radio frequency device group. Presetting the location of the calibration resource of each radio frequency device in the radio frequency device group to the base station where the radio frequency device is located. In this way, the base station of each radio frequency device can control the corresponding radio frequency device to send the correction signal on the preset correction resource, and the radio frequency device that can receive the correction signal in the group can receive the correction signal, so that the calibration signal can be used.
  • the correction signals transmitted by the two radio frequency devices and the reception signals of the correction signals are channel-corrected. Referring to FIG. 4 in combination, in FIG.
  • each radio frequency device is represented by a hexagon, and each coverage area represents the radio frequency device.
  • the radio frequency device 310-1 transmits a correction signal on the correction resource L1, the radio frequency devices 310-2 and 310-3 receive the correction signal;
  • the radio frequency device 310-2 transmits a correction signal on the correction resource L2, the radio frequency device 310-1 and 310-3 receives the correction signal;
  • radio frequency device 310-3 transmits a correction signal on correction resource L3, radio frequency devices 310-1, 310-2, and 310-4 receive the correction signal; radio frequency device 310-4 on correction resource L4
  • the correction signal is transmitted and the radio frequency device 310-3 receives the correction signal.
  • the radio frequency devices 310-1 and 310-2, the radio frequency devices 310-1 and 310-3, the radio frequency devices 310-2 and 310-3, and the radio frequency devices 310-3 and 310-4 can utilize the corrections transmitted from each other.
  • the signal is channel corrected.
  • the radio frequency device receives the correction signal, but the received signal is not the original correction signal itself, but a signal weighted by the transmission channel and its own radio frequency channel, and the signal is called the reception signal of the correction signal.
  • the reception signal of the correction signal When performing channel correction, it is necessary to perform channel correction using the received signal of the correction signal.
  • a plurality of radio frequency devices are serially corrected between two.
  • the correction resource between the radio frequency device 310-1 and the radio frequency device 310-2 is configured first, and the radio frequency device 310-1 and the radio frequency device 310-2 mutually send correction signals to each other, and then channel correction is performed by using the correction signals sent from each other; Reconfiguring the correction resource between the radio frequency device 310-1 and the radio frequency device 310-3, and the radio frequency device 310-1 and the radio frequency device 310-3 mutually send the correction signals to each other, and then using the correction signals transmitted from each other.
  • the received signal is channel-corrected; the channel correction between the RF device 310-2 and the RF device 310-3, the RF device 310-3, and the RF device 310-4 is similar. It can be seen that the process needs to generate configuration signaling continuously, and the configuration signaling overhead is huge, and the efficiency is low, and the required time is long.
  • the radio frequency devices are grouped, and the calibration resources of the radio frequency devices in each radio frequency device group are preset. When a radio frequency device sends the correction signal, other or all radio frequency devices can receive the correction in parallel. The signal can save a lot of configuration signaling overhead and improve channel correction efficiency.
  • the radio frequency device 310-3 Correcting to the channel of the radio frequency device 310-1, corresponding to the radio frequency device 310-4 performing channel correction to the radio frequency device 310-1; and the radio frequency device 310-1 correcting the channel of the radio frequency device 310-3, and the radio frequency
  • the correction of the channel of the device 310-3 to the radio frequency device 310-4 is equivalent to the channel correction of the radio frequency device 310-1 to the radio frequency device 310-4, and thus is equivalent to being performed between the radio frequency device 310-1 and the radio frequency device 310-4.
  • Channel correction further improves the efficiency of channel correction.
  • the radio frequency device in the radio frequency device group can have the correction signals of any two radio frequency devices reach the other party, or can not meet the requirement, and only the correction path can be reached.
  • the so-called correction path reachability means that the channel correction between the two radio frequency devices in the radio frequency device group can be directly or through channel correction with the intermediate radio frequency device.
  • the intermediate radio frequency device may be one or plural.
  • the above is only an example.
  • the embodiment of the present application does not limit the calibration relationship between the radio frequency devices in the radio frequency device group. That is, when a radio frequency device (for example, the first radio frequency device) transmits the correction signal, other radio frequency devices can receive the same.
  • the correction signal may also be received by a portion of the radio frequency device (eg, the second radio frequency device, the third radio frequency device), and the radio device (eg, the fourth radio device) that does not receive the correction signal is capable of receiving the signal.
  • a radio frequency device such as a third radio frequency device, implements channel correction with the first radio frequency device.
  • the radio frequency devices in one network area are grouped, and the location of the calibration resources is configured for each radio frequency device in the radio frequency device group, so that each radio frequency device in the group according to the configuration information Sending a correction signal at the position of its own correction resource, and receiving a correction signal at a position of the correction resource of some or all of the other radio frequency devices, and performing channel correction in the prior art, there is no need to correct the resource every time.
  • Configuration saves a lot of configuration signaling and improves channel correction efficiency.
  • the more RF devices in the group the more obvious the improvement in calibration efficiency.
  • the RF device in the group can perform channel correction in parallel, which further improves the calibration efficiency. It has been verified that the correction period can be shortened to the second level, which provides a performance basis for scenarios such as DMIMO that require a high channel correction period.
  • the configuration information of these radio frequency device groups can be planned at one time, so that the correction resource planning between the radio frequency device groups can be better performed, for example, in the radio frequency device group.
  • the calibration resources are reused between the groups with high isolation, that is, the same resources are used to send the correction signal. Resources.
  • planning and setting the configuration information to the corresponding base station at one time can reduce the overhead of configuration messages required by the base station to perform channel correction in two.
  • FIG. 5 is a schematic diagram of a channel correction method according to an embodiment of the present application.
  • the network area has a plurality of radio frequency devices, wherein each hexagon represents a coverage area of a radio frequency device, and each of the hexagonal devices can represent a radio frequency device, and the radio frequency devices are grouped, wherein The radio frequency devices of the same group are denoted by the same number.
  • the number includes a basic number and a superscript.
  • the basic number is the same as the superscript.
  • the isolation between the groups is large.
  • the correction resources can be multiplexed, that is, the same resource is used to send the correction. signal.
  • the radio frequency device group numbered 4, 4', 4" can multiplex the correction resources.
  • the radio frequency devices in the area are divided into multiple groups, and each group has multiple radio frequency devices.
  • here are three examples. In practical applications, more RF devices can be included.
  • the resource location of the radio frequency device in the radio frequency device group to send the correction signal may be set.
  • radio frequency device set 1 radio frequency device 511 transmits a correction signal at a first resource location
  • radio frequency device 512 transmits a correction signal at a second resource location
  • radio frequency device 513 transmits a correction signal at a third resource location.
  • the information of the resource locations is stored in the configuration information of the base stations where the radio frequency devices 511, 512, and 513 are located.
  • the radio frequency devices 511, 512, and 513 may be located at the same base station, or may be located at different base stations, where different base stations may be part.
  • radio frequency devices 511, 512, and 513 may be located in different BBUs, and these BBUs are placed in a centralized manner to form a BBU cloud.
  • the base station where the radio frequency device 511 is located controls the radio frequency device 511 to send a correction signal at the first resource location according to the stored configuration information, and the base station where the radio frequency devices 512 and 513 are located passes the radio frequency devices 512 and 513 according to the stored configuration information at the first resource location.
  • the received signal of the correction signal is obtained.
  • the base stations in which the radio frequency devices 512 and 513 are located transmit the respective received signals to the radio frequency device 511. Then, the base station where the radio frequency device 511 is located acquires the received signal of the correction signal sent by the radio frequency device 512 at the second resource location by the radio frequency device 511 according to the stored configuration information, and then the correction signal transmitted by the radio frequency device 511 and the radio frequency device 512, and the like.
  • the received signal of the correction signal performs channel correction between the radio frequency device 511 and the radio frequency device 512.
  • the base station where the radio frequency device 511 is located acquires the received signal of the correction signal sent by the radio frequency device 513 at the third resource location by the radio frequency device 511 according to the stored configuration information, and performs channel correction between the radio frequency device 511 and the radio frequency device 513.
  • the channel correction process of the radio frequency device 512 and the radio frequency device 513 is the same as that described above, and details are not described herein again.
  • the radio frequency devices in the same group can perform parallel channel correction, thus improving the efficiency of channel correction.
  • the same correction resources can be used between groups with high isolation. Thus, from the perspective of the whole network, the correction efficiency is greatly improved.
  • the above channel correction method may be implemented by the base station controlling the receiving and transmitting of the correction signal by the radio frequency device according to the preset configuration information. Description will be made below with reference to FIG. 6.
  • FIG. 6 is a flowchart of a channel calibration method according to an embodiment of the present application.
  • the channel correction method is used for channel correction of a radio frequency device in a network area, the radio frequency device in the network area is divided into at least one radio frequency device group, each radio frequency device group includes multiple radio frequency devices, and multiple radio frequency devices in the group
  • the calibration path is reachable, and the configuration information is preset on the base station where any radio frequency device is located, and the configuration information is used to indicate the resource location of each radio frequency device in the radio frequency device group in which the radio frequency device is located to send the correction signal.
  • the radio frequency device as the first radio frequency device as an example
  • the method is performed by the base station where the first radio frequency device is located. As shown in FIG. 6, the method includes the following steps:
  • the first radio frequency device is configured to send the first calibration signal at the first resource location according to the configuration information, and acquire the first received signal of the second radio frequency device to the first calibration signal, where the first resource location is a radio frequency device transmits a resource location of the correction signal, and the second radio frequency device is a radio frequency device in the radio frequency device group where the first radio frequency device is located;
  • S620 Acquire a second received signal of the second correction signal at the second resource location by using the first radio frequency device according to the configuration information, where the second resource location is a resource location where the second radio frequency device sends the second calibration signal;
  • S630 Compensate the channel of the first radio frequency device according to the first correction signal, the second correction signal, the first received signal, and the second received signal.
  • the base station can directly acquire the first received signal from the local, including the case where the first radio frequency device and the second radio frequency device are located in the same baseband device and different baseband devices.
  • the first received signal can be directly obtained; when located in different baseband devices, the baseband device in which the first radio frequency device is located receives the first received signal from the baseband device in which the second radio frequency device is located.
  • the base station where the first radio frequency device is located may acquire the first received signal from the base station where the second radio frequency device is located.
  • the first radio frequency device and the second radio frequency device are located in different BBUs, but the BBUs in which they are located are placed in a centralized manner, and the received signals of each other can be quickly obtained.
  • the radio frequency device group in which the first radio frequency device is located may have a plurality of second radio frequency devices, and the second radio frequency devices use different correction resources, that is, the plurality of second radio frequency devices send correction signals at respective second resource locations, where the The two resources are different in location.
  • a third radio frequency device where the third radio frequency device implements channel correction between the first radio frequency device and the fourth radio frequency device, and the number of the third radio frequency device is not limited, and may be one There may be more than one, and the locations of the correction resources of the plurality of third radio frequency devices are different.
  • the grouping of the radio frequency devices in the network area may select a grouping factor according to requirements.
  • the grouping factors may include, for example, the following factors: isolation requirements, maximum spacing between radio frequency devices, group specifications, maximum number of layers, and the like. These factors may be used in combination, or one or more of them may be selected for combination. Preferably, the choice of isolation requires use in combination with one or more other factors. In addition, the isolation requirement is selected so that you do not have to select the maximum number of layers.
  • the RF devices that meet the isolation requirements can be divided into one group.
  • This isolation can be reflected by the signal strength.
  • the radio frequency device A transmits a signal
  • the radio frequency device B receives the signal.
  • the radio frequency devices A and B can be divided into one radio frequency device group.
  • the signal strength can be reference signal received power (RSRP).
  • RSRP reference signal received power
  • the maximum number of neighboring cells between the cells covered by the radio frequency device in the radio frequency device group does not exceed the maximum number of layers.
  • the maximum number of layers is 3, the neighboring cell of cell 1 includes cell 2, and the neighboring cell of cell 2 includes cell 4. If the radio frequency devices of cell 1, cell 2, and cell 4 are located in the same radio device group, cell 4 The RF device in the adjacent area cannot be located in the RF device group, otherwise the maximum number of layers will exceed 3 layers.
  • the cell 1 and the neighboring cell of the cell 2 may also include other cells, and other cells also need to satisfy the maximum number of neighboring cells of the cell in the same radio device group of not more than 3 layers.
  • the application does not limit, and those skilled in the art can select different algorithms to group according to the selected grouping factors.
  • grouping factors eg, maximum spacing, maximum number of layers, isolation requirements, and group specifications
  • a plurality of pre-packets are obtained based on the radio frequency devices that satisfy the grouping factor between the two.
  • the total gain in each pre-packet is evaluated to obtain a total gain optimal grouping scheme.
  • each group can be assigned a group ID (ID).
  • ID can be used to implement the allocation of correction resources between the radio device groups to achieve multiplexing and staggering of the correction resources.
  • the calibration resource may be a time resource, and may be a frequency resource or a space resource. The application does not impose any limitation. Taking the time resource as an example, the corrected time resource location may be allocated to the radio device group according to the group ID, wherein the radio resource device group with high isolation can use the same time resource to send the correction signal; the radio device group with low isolation is used. Staggered in time resources to avoid mutual interference during simultaneous correction.
  • the allocation criteria of the correction resource between the radio device groups include: the radio resource device group with the same group ID mod N is assigned the same correction resource, and the radio group device group with different group ID mod N is different. Assign different correction resources. Taking the time resource as an example, the correction resources of the same radio frequency device group with the group ID mod N are allocated at the same time position; the correction resources of the radio group device group with different group ID mod N are allocated at different time positions.
  • the determination that the isolation degree meets the preset condition (or high and low) may be implemented by using a preset isolation threshold. For example, if the isolation is greater than the threshold, the isolation meets the preset condition (or the isolation is high), and the resource may be multiplexed. Correction signal; if the threshold is less than the threshold, the isolation does not meet the preset condition (or the isolation is low), and the resource is sent to the correction signal. If the threshold is equal to the threshold, the resource may be reused or the resource may be staggered.
  • the isolation between the RF device groups can be reflected by the isolation of the RF devices in the two RF device groups. For example, the isolation between the RF device groups 1 and 4 does not meet the pre-determination.
  • the condition means that the isolation between any one of the radio frequency devices in the radio frequency device group 1 and any one of the radio frequency device groups 4 is lower than the threshold; the radio frequency device groups 4 and 4' The isolation between the radio frequency device group 4 and any one of the radio frequency device groups 4' is higher than the threshold value when the isolation degree meets the preset condition (or the high isolation).
  • one or more of the time domain resources, the frequency domain resources, and the spatial domain resources may be implemented according to the number of the radio frequency device groups.
  • the resources are staggered.
  • the radio frequency device group correction resources can be directly distinguished in the time domain; when there are many radio frequency device groups placed in the correction period, the time domain is not enough, On the basis of the time domain, further distinguishing in the frequency domain; when the differentiation in the frequency domain is not enough, the spatial domain can be further distinguished on the basis of the frequency domain.
  • Table 1 is an example.
  • the first row represents the time domain resource, assuming that it can be divided into 8 RF device groups. If only the correction resources are to be staggered between the 8 RF device groups, the time domain is staggered. Complete resource allocation. If the correction resources need to be staggered between more than 8 groups of radio frequency devices, the staggering on the frequency domain resources can be further completed under each time domain resource. For example, both radio frequency device group 1 and radio frequency device group 9 use time domain resource 0, but use frequency domain resources 0 and 1 respectively in the frequency domain. Similarly, when more RF device groups need resources to be staggered, but the frequency domain resources are not enough to meet the requirements, they can be further staggered by code division. Here, it is merely an example of staggering resources, and is not intended to limit the application. For example, it can be staggered from the frequency domain and then staggered from the time domain.
  • the radio frequency device in the radio frequency device group can also be configured to perform the switching of the correction signal receiving and transmitting states according to different sequences, and perform signal strength measurement, and select an optimal transmitting and receiving sequence according to the measured signal strength, as the most
  • the correct calibration path is configured to the base station where the radio frequency device is located in the radio frequency device group, so that the base station controls the radio frequency device of the base station to perform the correction signal transmission according to the optimal correction path.
  • the radio frequency device in the radio frequency device group 1 has a plurality of sequences for transmitting correction signals, and the sequence is: first, radio frequency device 511, radio frequency device 512, radio frequency device 513; second type, radio frequency device 511, radio frequency device 513, radio frequency device 512; third, radio frequency device 512, radio frequency device 511, radio frequency device 513; fourth type, radio frequency device 512, radio frequency device 513, radio frequency device 511; fifth type, radio frequency device 513, radio frequency device 512, The radio frequency device 511; the sixth type, the radio frequency device 513, the radio frequency device 511, and the radio frequency device 512.
  • the base stations of the radio frequency devices respectively control the radio frequency devices to transmit the correction signals according to the sequences, and then select an order with the highest correction efficiency as the optimal correction path, and use the optimal correction path in the subsequent calibration process. Correction.
  • Figure 6 shows the calibration process in a correction cycle. Different calibration cycles can be used to complete the calibration process shown in Figure 6 and select the correction sequence with the best calibration efficiency as the optimal correction path. And storing the optimal correction path, and using the optimal correction path in the subsequent correction process to further improve the correction efficiency.
  • the above method further includes the steps shown in FIG. 7:
  • S710 The base station where the first radio frequency device is located controls the first radio frequency device to send the correction signal in different calibration cycles according to a preset multiple sequence, and each sequence indicates the sending of the correction signal of the radio frequency device in the radio frequency device group where the first radio frequency device is located. order;
  • S720 the base station where the first radio frequency device is located selects the sequence with the highest calibration efficiency as the optimal correction path;
  • S730 The base station where the first radio frequency device is located performs subsequent correction according to an optimal calibration path.
  • the correction period can be further divided into a plurality of time segments, each of which can serve as a correction sub-period.
  • the correction period is corrected as a long period, and the full amount correction can be performed, that is, the parameters (also referred to as parameters) that need to be corrected are corrected, and of course, most of the parameters can be removed (excluding the specific parameters corrected in the correction sub-period).
  • Make corrections For example, the amplitude, phase, and the like of each frequency point are included.
  • the syndrome period is shorter and can be used to correct specific parameters, such as parameters that change faster, such as the initial phase. In this way, the grading correction can be realized, and the parameter with faster change can realize a faster correction period, and the correction efficiency is further improved.
  • the correction resources of different radio frequency device groups may be allocated in the time domain, and for the correction in the correction sub-period, the correction resources of the different radio frequency device groups may be further divided in the frequency domain, thus, The mutual isolation between the radio frequency device groups in the frequency domain can be further realized.
  • the transceiver channel 1 of the cell 1 in the coverage of the radio frequency device is used as a reference transceiver channel between the radio frequency device 1 and the radio frequency device 2, and the antenna of the cell 1 is taken.
  • the antenna unit 2 of the cell 2 within the coverage of the unit 1 and the radio frequency device 2 serves as a corrected pair of transmitting and receiving antennas.
  • cell 1 operates in a transmit mode and cell 2 operates in a receive mode.
  • the cell 1 sends a correction signal, and the cell 2 receives the correction signal sent by the cell 1.
  • the signal received by the cell 2 can be expressed as:
  • cell 2 operates in a transmit mode and cell 1 operates in a receive mode.
  • Cell 2 sends Correcting the signal, the cell 1 receives the correction signal sent by the cell 2, wherein the signal received by the cell 1 can be expressed as:
  • S 1 , S 2 are known correction signals, that is, correction signals transmitted by the cell 1 and the cell, respectively.
  • the baseband portion of the base station uses the received signal to estimate the inter-cell correction compensation coefficient as follows:
  • the cell 2 channel response is compensated and multiplied by ⁇ 1,2 on each receive channel of cell 2.
  • the response ratios of the transceiver channels of the cell 1 and the cell 2 are the same. It can also be realized by dividing ⁇ 1, 2 on each transmission channel of cell 2.
  • T ij represents the transmission channel characteristic of the channel j of the cell i, including the entire transmission path characteristic of the baseband signal processing unit, the medium radio frequency unit, and the connection path between the intermediate radio frequency unit and the antenna unit
  • R ij represents the reception channel of the cell i channel j
  • the characteristics include the baseband signal processing unit, the middle radio frequency unit, and the entire receiving channel characteristic of the connection path between the intermediate radio frequency unit and the antenna unit.
  • H ij,kl represents the air interface channel response between the cell i antenna unit j and the cell k antenna unit 1.
  • Y ij,kl indicates that the cell k receives the signal transmitted by the cell i transmission channel j received by the channel 1.
  • S i denotes an inter-cell correction reference signal transmitted by the cell i.
  • ⁇ i,k represents the inter-channel correction compensation coefficient of the cell i with respect to the cell k.
  • the correction signal may be sent in a guard period (GP) in a time division duplex (TDD) system.
  • TDD time division duplex
  • FDD frequency division duplex
  • the above configuration information may be preset on the base station, and the above channel correction is implemented based on the configuration information. method.
  • the apparatus for implementing the above channel correction method which may be located in the baseband portion of the base station or in the radio frequency portion, is described in detail below. Preferably, it is disposed in the baseband portion.
  • FIG. 8 is a schematic diagram of a channel calibration apparatus according to an embodiment of the present application.
  • the device 800 is configured to perform channel correction on a radio frequency device in a network area, where the radio frequency device in the network area is divided into at least one radio frequency device group, and each radio frequency device group includes multiple radio frequency devices, and multiple The calibration path between the radio frequency devices is reachable.
  • the base station where the first radio frequency device is located is pre-configured with configuration information, and the configuration information is used to indicate the resource location of each radio frequency device in the radio frequency device group where the first radio frequency device is located.
  • the first radio frequency device is any radio frequency device in the network area, and the channel correction device is located at the base station where the first radio frequency device is located, and includes a unit for implementing each step of the above channel correction method.
  • the first control unit 810, the acquisition unit 820, and the compensation unit 830 wherein the first control unit 810 is configured to control, according to the configuration information, the first radio frequency device to transmit the first correction signal on the first resource location according to the configuration information, Obtaining, by the second radio frequency device, a first received signal of the first calibration signal, where the first resource location is a resource location of the first radio frequency device sending the correction signal, and the second radio frequency device is a radio frequency component in the radio frequency device group where the first radio frequency device is located
  • the acquiring unit 820 is configured to acquire, by the first radio frequency device, a second received signal of the second correction signal by using the first radio frequency device according to the configuration information, where the second resource location sends the second calibration for the second radio frequency device.
  • the description of inter-group correction resource multiplexing and staggering is the same as the above embodiment; regarding the grading correction, the correction period is divided into a plurality of correction sub-periods, and the description of correcting one or some parameters is also the same.
  • the above embodiments are also the same as the above embodiments with respect to the number of the second radio frequency devices and the radio frequency devices in the radio frequency device group including the channel correction required to be completed by the intermediate radio frequency device, which are not described herein again.
  • the process for optimal correction path selection is also the same as the above embodiment, and the apparatus 800 can include means for implementing the various steps of the above optimal correction path selection.
  • a second control unit 840, a selection unit 850, and a trigger unit 860 are included.
  • the second control unit 840 is configured to control the first radio frequency device to send the correction signals according to a preset plurality of sequences in a plurality of correction periods, each sequence indicating a correction signal of the radio frequency device in the radio frequency device group where the first radio frequency device is located.
  • the sending sequence; the selecting unit 850 is configured to select the order with the highest correction efficiency as the optimal correction path;
  • the triggering unit 860 is configured to trigger the subsequent correction according to the optimal correction path.
  • each unit above is only a division of logical functions, and the actual implementation may be integrated into one physical entity in whole or in part, or may be physically separated.
  • each of the above units may be a separately set processing element, or may be integrated in one of the base stations, or may be stored in the memory of the base station in the form of program code, and is called by a processing element of the base station.
  • the individual units can be integrated or implemented independently.
  • the processing elements described herein can be an integrated circuit chip with signal processing capabilities.
  • each step of the above method or each of the above units may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU), or may be one or more integrated circuits configured to implement the above method, for example, one or more specific integrated circuits (Application Specific) Integrated Circuit (ASIC), or one or more digital singal processors (DSPs), or one or more Field Programmable Gate Arrays (FPGAs).
  • CPU central processing unit
  • ASIC Application Specific
  • DSP digital singal processors
  • FPGAs Field Programmable Gate Arrays
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • the base station includes an antenna 101, a radio frequency device 102, and a baseband device 103.
  • the antenna 103 is connected to the radio frequency device 102.
  • the radio frequency device 102 receives the information transmitted by the terminal through the antenna 101, and transmits the information transmitted by the terminal to the baseband device 103 for processing.
  • the baseband device 103 processes the information of the terminal and sends it to the radio frequency device 102.
  • the radio frequency device 102 processes the information of the terminal and sends it to the terminal through the antenna 101.
  • the above channel correcting device can be located in the baseband device 103, including the processing element 1031 and the storage element 1032.
  • the baseband device 103 may include, for example, at least one baseband board, which is disposed on the baseband board There are a plurality of chips, as shown in FIG. 10, one of which is, for example, a processing element 1031, coupled to the storage element 1032 to invoke a program in the storage element 1032 to perform the operations shown in the above method embodiments.
  • the baseband device 103 can also include an interface 1033 for interacting with the radio frequency device 102, such as a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the above units may be implemented by different chips of the baseband device 103, or they may be integrated together by one chip of the baseband device 103; or their functions may be stored in the form of program code in the baseband device 103.
  • the storage element is implemented by one processing element of the baseband device 103.
  • the processing elements herein, as described above, may be general purpose processors, such as a central processing unit CPU, or may be one or more integrated circuits configured to implement the above methods, such as one or more specific integrated circuit ASICs, or One or more microprocessors DSP, or one or more FPGAs, etc.
  • the storage element can be a memory or a collective name for a plurality of storage elements.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
  • connection may suitably be a computer readable medium.
  • the software is using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave from a website, server, or other For remote source transmission, then coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fixing of the associated medium.
  • coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fixing of the associated medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种通道校正方法,用于对网络区域内的射频装置进行通道校正,该网络区域内的射频装置被划分为至少一个射频装置组,每个射频装置组包括多个射频装置,第一射频装置所在的基站上预设有配置信息,该配置信息用于指示第一射频装置所在的射频装置组内的每个射频装置发送校正信号的资源位置,第一射频装置为网络区域内的任一射频装置,该方法由第一射频装置所在的基站执行,包括:在校正周期内根据所述配置信息控制第一射频装置在第一资源位置上发送第一校正信号,并接收第二射频装置对第一校正信号的第一接收信号,其中第一资源位置为第一射频装置发送校正信号的资源位置,第二射频装置为第一射频装置所在射频装置组内的射频装置;在校正周期内根据配置信息通过第一射频装置在第二资源位置上获取第二校正信号的第二接收信号,其中第二资源位置为第二射频装置发送第二校正信号的资源位置;根据第一校正信号、第二校正信号、第一接收信号和第二接收信号对第一射频装置的通道进行补偿。以上方法可以实现多个射频装置联合的通道校正,提高校正效率。

Description

通道校正方法、装置及通信*** 技术领域
本发明实施例涉及无线通信技术领域,尤其涉及通道校正方法、装置及通信***。
背景技术
在无线通信***中,小区的重叠覆盖会对终端造成干扰。请参考图1,基站111和基站112具有重叠覆盖的区域,重叠覆盖区域内的终端会受到其服务基站以外的基站的干扰。图中虚线代表干扰,实线代表有用信号。例如终端113的服务基站为111,其会受到基站112的干扰,终端114的服务基站为基站112,其会受到基站111的干扰。
随着通信技术的发展,分布式多输入多输出(distributed multiple-input multiple-output,DMIMO)技术得以引入。在DMIMO场景中,可以将射频装置分开部署,多个重叠覆盖的射频装置可以形成一个组,组内的射频装置对终端进行联合发送,变干扰为能量。请参考图2,与图1相比,DMIMO技术将干扰转换为有用信号,变干扰为能量,提升了***容量和边缘终端的体验。
射频装置的通道校正是DMIMIO实现的前提,通过通道校正,组内各射频装置的通道具有相同的时延,使得各射频装置发送的信号到达终端时能够同相相加,以增强终端下行接收信号的强度。
现有的多输入多输出(multiple-input multiple-output,MIMO)技术中,校正信号在单个射频装置内进行发送,通道校正也只在单个射频装置上进行,即只对一个射频装置内的多个射频通道进行校正。由于射频装置内各射频通道的时钟源相同,时钟晶振相同,所处的外部环境(例如:温度,光照,风向等)基本相同,因此各射频通道的幅度、相位特性变化较慢, 且变化趋势基本相同,因此,单RRU内的通道校正通常周期较慢,只需要做到分钟级。
而对于DMIMO场景下的通道校正,通道校正在多个射频装置间进行,受各射频装置所处环境,光纤长度,时钟不同源等的影响,射频装置间的相位变化较快,且变化趋势不一致,现有的校正方法已经无法满足DMIMO的性能要求,需要做到更快速的通道校正。
发明内容
有鉴于此,本发明实施例提供一种通道校正方法、装置及通信***,以期提高通道校正的效率。
第一方面,提供一种通道校正方法,用于对网络区域内的射频装置进行通道校正,该网络区域内的射频装置被划分为至少一个射频装置组,每个射频装置组包括多个射频装置,所述多个射频装置间的校正路径可达,第一射频装置所在的基站上预设有配置信息,该配置信息用于指示第一射频装置所在的射频装置组内的每个射频装置发送校正信号的资源位置,第一射频装置为网络区域内的任一射频装置,该方法由第一射频装置所在的基站执行,包括:
在校正周期内根据配置信息控制第一射频装置在第一资源位置上发送第一校正信号,并获取第二射频装置对第一校正信号的第一接收信号,其中第一资源位置为第一射频装置发送校正信号的资源位置,第二射频装置为第一射频装置所在射频装置组内的射频装置;
在校正周期内根据配置信息通过第一射频装置在第二资源位置上获取第二校正信号的第二接收信号,其中第二资源位置为第二射频装置发送第二校正信号的资源位置;
根据第一校正信号、第二校正信号、第一接收信号和第二接收信号对第一射频装置的通道进行补偿。
第二方面,提供一种通道校正装置,用于对网络区域内的射频装置进行通道校正,该网络区域内的射频装置被划分为至少一个射频装置组,每个射频装置组包括多个射频装置,所述多个射频装置间的校正路径可达,第一射频装置所在的基站上预设有配置信息,该配置信息用于指示第一射频装置所在的射频装置组内的每个射频装置发送校正信号的资源位置,第一射频装置为网络区域内的任一射频装置,该通道校正装置位于第一射频装置所在的基站,且包括用于执行以上第一方面各个步骤的单元或手段(means)。例如,包括:第一控制单元,用于在校正周期内根据配置信息控制第一射频装置在第一资源位置上发送第一校正信号,并获取第二射频装置对第一校正信号的第一接收信号,其中第一资源位置为第一射频装置发送校正信号的资源位置,第二射频装置为第一射频装置所在射频装置组内的射频装置;获取单元,用于在校正周期内根据配置信息通过第一射频装置在第二资源位置上获取第二校正信号的第二接收信号,其中第二资源位置为第二射频装置发送第二校正信号的资源位置;补偿单元,用于根据第一校正信号、第二校正信号、第一接收信号和第二接收信号对第一射频装置的通道进行补偿。以上单元或手段可以通过软件的方式实现,也可以通过硬件的方式实现,还可以通过软硬结合的方式实现。
第三方面,提供一种通信***,包括至少一个基站,该至少一个基站的射频装置被划分为至少一个射频装置组,每个射频装置组包括多个射频装置,所述多个射频装置间的校正路径可达,第一射频装置所在的基站上预设有配置信息,该配置信息用于指示第一射频装置所在的射频装置组内的每个射频装置发送校正信号的资源位置,第一射频装置为网络区域内的任一射频装置,第一射频装置所在的基站包括以上第二方面的通道校正装置。
第四方面,提供一种程序,该程序在被处理器执行时用于执行以上第一方面的方法。
第五方面,提供一种程序产品,例如计算机可读存储介质,包括第四方面的程序。
可见,在以上各个方面,网络区域内的射频装置被分组,且为射频装置组内的每个射频装置预置了校正资源的位置,如此,组内每个射频装置便根据该配置信息在自己的校正资源的位置上发送校正信号,在部分或全部其它射频装置的校正资源的位置上接收校正信号,无需每次都进行校正资源的配置,节省了大量的配置信令,提高了通道校正效率。
多个射频装置间的校正路径可达是指射频装置组内的任两个射频装置之间可以直接或通过与中间射频装置间的通道校正,来完成它们之间的通道校正。该中间射频装置可以为一个,也可以为多个。
在一种实现方式中,射频装置组中存在中间射频装置,例如在以上各个方面,第一射频装置所在的射频装置组内包括第三射频装置,第三射频装置通过第二射频装置或第四射频装置实现与第一射频装置之间的通道校正。
在一种实现方式中,射频装置组内并行接收某个射频装置发送的校正信号的射频装置的数量可以为多个。相对于现有技术两两串行进行通道校正的方式,可以进一步提高校正效率。例如在以上各个方面,第一射频装置所在射频装置组内可以包括多个第二射频装置,多个第二射频装置并行接收第一校正信号,且多个第二射频装置的第二资源位置彼此不同。
在一种实现方式中,可以根据隔离度对射频装置组间的校正资源进行规划,让隔离度高的射频装置组之间复用校正资源。例如,在以上各个方面,网络区域内的射频装置被划分为多个射频装置组时,该多个射频装置组包括第一射频装置组和第二射频装置组,第一射频装置组和第二射频装置组的隔离度满足预设要求,且第一射频装置组和第二射频装置组内的射频装置使用相同的资源发送校正信号。再如,多个射频装置组包括第三射频装置组和第四射频装置组,第三射频装置组和第四射频装置组的隔离度 不满足预设要求,且第三射频装置组和第四射频装置组内的射频装置使用不同的资源发送校正信号。
隔离度是指两个射频装置之间的相互干扰程度,隔离度越小,干扰越大,隔离度越大,干扰越小。隔离度可以通过信号强度来体现。例如,射频装置A发送信号,射频装置B接收信号,接收的信号强度大小反应了射频装置A和射频装置B之间的隔离度的大小。
射频装置组之间的隔离度满足预设要求是指两个射频装置组中一个组的每个射频装置与另一个组的每个射频装置之间的隔离度都满足预设要求。
在一种实现方式中,可以基于分组因素将网络区域内的射频装置分组。该分组因素可以包括以下因素中的一个或多个:隔离度要求,射频装置间的最大间距,组规格,最大层数。较佳的,可以选择隔离度要求与其它一个或多个因素的组合进行分组。
在完成分组后,可以为每个射频装置组分配组标识(ID),并在校正资源分配时利用该组ID。例如,在以上各个方面中,射频装置组ID满足:隔离度满足预设要求的射频装置组的组标识mod N相同;隔离度不满足预设要求的射频装置组的组ID mod N不相同,其中N表示校正周期***频装置组的数量。校正资源的分配准则包括:组ID mod N相同的射频装置组分配相同的校正资源;组ID mod N不同的射频装置组分配不同的校正资源。以时间资源为例,组ID mod N相同的射频装置组的校正资源分配在相同的时间位置上,组ID mod N不同的射频装置组的校正资源分配在不同的时间位置上。如此,可以在组ID分配好以后简化校正资源的分配,使得校正资源的分配更加快速,且有效减少校正资源冲突引起的干扰。
在一种实现方式中,可以设计多种校正顺序,并基于多种校正顺序产生的校正结果,选择校正效率最优的校正顺序作为最佳校正路径,并在后续的校正过程中采用该最佳校正路径,以进一步提升校正效率。例如,以上第一方面提供的方法还可以包括最佳校正路径选择过程,其包括:
第一射频装置所在的基站控制第一射频装置在多个校正周期按照预设的多种顺序发送校正信号,每种顺序指示了第一射频装置所在射频装置组***频装置的校正信号的发送顺序;
第一射频装置所在的基站选择校正效率最高的顺序作为最佳校正路径;
第一射频装置所在的基站按照最佳校正路径执行后续的校正。
再如,以上第二方面提供的装置中,还包括实现最佳校正路径选择过程的各个步骤的单元或手段,例如,包括:第二控制单元,用于控制第一射频装置在多个校正周期按照预设的多种顺序发送校正信号,每种顺序指示了第一射频装置所在射频装置组***频装置的校正信号的发送顺序;选择单元,用于选择校正效率最高的顺序作为最佳校正路径;触发单元,用于触发按照最佳校正路径执行后续的校正。
在一种实现方式中,可以将校正周期进一步切分,分成多个时间段,利用其中的一个或多个时间段进行特定参数的校正。如此可以实现分级校正,对特定参数可以实现更快的校正周期,校正效率进一步得到提升。例如,在以上各个方面中,校正周期包括至少一个校正子周期,该校正子周期为所述校正周期内的一段时间,用于对特定参数进行校正。
进一步的,多个射频装置组之间可以在同一个校正周期使用不同频率资源对该特定参数进行校正。例如,在以上各个方面中,网络区域内的射频装置被划分为多个射频装置组时,多个射频装置组包括在同一校正周期内使用不同频率资源对特定参数进行校正的射频装置组。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一种小区重叠覆盖对终端产生干扰的示意图;
图2为一种DIMIO的场景示意图;
图3为本申请实施例提供的一种通信***的示意图;
图4为本申请实施例提供的一种通道校正方法的场景示意图;
图5为本申请实施例提供的另一种通道校正方法的场景示意图;
图6为本申请实施例提供的一种通道校正方法的流程图;
图7为本申请实施例提供的一种通道校正方法中确定校正路径的流程图;
图8为本申请实施例提供的一种通道校正装置的示意图;
图9为本申请实施例提供的另一种通道校正装置的示意图;
图10为本申请实施例提供的一种基站的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图,对本发明实施例中的技术方案进行描述,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、终端,又称之为用户设备(user equipment,UE),是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。常见的终端例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等。
2)、基站,又称为无线接入网(radio access network,RAN)设备是一 种将终端接入到无线网络的设备,包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(base band unit,BBU)。此外,还可以包括Wifi接入点(access point,AP)等。
3)隔离度,用于反应两个射频装置之间的相互干扰程度,隔离度越小,干扰越大,隔离度越大,干扰越小。
4)校正资源,指用于发送校正信号的资源。
5)“多”是指两或两以上,例如,多个是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
请参考图3,其为本申请实施例提供的一种通信***的示意图。如图3所示,该通信***包括多个射频装置310-1至310-N,这些射频装置分布布局。此外,这些射频装置可以从基带装置拉远出去布置,即布置在与基带装置相隔一定距离的地方,每个基带装置可以连接一个或多个射频装置。图中的基带装置330是对这些射频装置的基带装置的统称,并没有区分开来显示,这些射频装置的基带装置可以为同一个基带装置,也可以为不同的基带装置,且部分射频装置可以连接到同一个基带装置。另外这些射频装置的基带装置可以集中布置在一起,称为基带云,例如射频装置为射频拉远单元(remote radio unit,RRU),基带装置为BBU,这些RRU通过光纤从BBU拉远出去布置,且这些RRU的BBU可以布置在一起,构成BBU云(Cloud BB)。
射频装置310-1至310-N的覆盖范围内,多个终端320-1至320-K接入无线网络。根据N个射频装置310-1至310-N的天线数,可以确定发射天 线通道数为M,则信道矩阵为M*K,将信道矩阵进行转置,并将转置的矩阵与信道矩阵相乘,得到K维收发矩阵,其中N、M和K均为正整数。该K维收发矩阵可以形成K个正交发送向量,每个正交发送向量服务一个终端,基站采用正交的发送向量对终端数据进行加权,正交的终端数据联合并行发送互不干扰。
可见,以上通信***工作在DMIMO场景下,需要进行多个射频装置间的通道校正来使得各射频装置的通道具有相同的时延,从而让各射频装置发送的信号到达终端时能够同相相加。
目前的校正方式为多个射频装置两两之间校正,每对射频装置之间串行执行,在射频装置较多情况下,校正周期只能做到分钟(min)级别。然而,射频装置空口通道受外部环境(例如:温度,光照,风向等)影响较大,且与基带装置连接的光纤的长度,时钟源等也可能不同,因此,每次校正之后,射频装置间的相位差很可能在短时间内又发生了较大的变化,因此当前的校正方法已经无法满足DMIMO的性能要求,需要做到更快速的通道校正。
考虑到以上问题,本申请实施例提供的通道校正方案可以更加快速的解决通道校正的问题。在本申请实施例中,将一片网络区域中的射频装置划分为至少一个射频装置组(又称为射频装置簇),射频装置组包括多个射频装置,设置射频装置组内每个射频装置的校正资源的位置,即发送校正信号的资源位置,这些资源位置可以以配置信息的形式存储于射频装置所在的基站,使得这些射频装置所在的基站基于该配置信息,控制这些射频装置在各自校正资源的位置上发送校正信号,并利用这些校正信号实现射频装置组内的射频装置的通道校正。本领域技术人员可以知道,这些校正信号可以为相同的信号,以下虽然给出了第一和第二校正信号等用语,是为了区分校正信号是不同射频装置发送的,并非表示校正信号本身不同。 当然,校正信号本身也可以不同,但给***造成开销,每个射频装置需要预先知道其他射频装置发送的校正信号。
在图3所示的通信***中,以N为4为例,射频装置310-1至310-4被划分到同一个射频装置组。预设该射频装置组的内每个射频装置的校正资源的位置到该射频装置所在的基站上。如此,每个射频装置的基站便可以控制对应的射频装置在预设好的校正资源上发送校正信号,而组内可以接收到该校正信号的射频装置便可以接收该校正信号,如此便可以利用两个射频装置彼此发送的校正信号和对校正信号的接收信号进行通道校正。请合并参考图4,图4中,每个射频装置的覆盖区域用六边形表示,每个覆盖区域代表该射频装置。其中,射频装置310-1在校正资源L1上发送校正信号,射频装置310-2和310-3接收该校正信号;射频装置310-2在校正资源L2上发送校正信号,射频装置310-1和310-3接收该校正信号;射频装置310-3在校正资源L3上发送校正信号,射频装置310-1、310-2和310-4接收该校正信号;射频装置310-4在校正资源L4上发送校正信号,射频装置310-3接收该校正信号。如此,射频装置310-1和310-2、射频装置310-1和310-3、射频装置310-2和310-3、射频装置310-3和310-4之间便可以利用彼此发送的校正信号进行通道校正。
需要说明的是,射频装置接收校正信号,但其接收到的信号已经不是原来发送的校正信号的本身,而是经过传输信道和自身射频通道加权的信号,该信号称为校正信号的接收信号。在进行通道校正时便需要利用校正信号的接收信号进行通道校正。
现有技术中,多个射频装置两两之间串行校正。例如先配置射频装置310-1与射频装置310-2之间的校正资源,且射频装置310-1与射频装置310-2彼此互发校正信号,而后利用彼此发送的校正信号进行通道校正;然后再配置射频装置310-1与射频装置310-3之间的校正资源,且射频装置310-1与射频装置310-3彼此互发校正信号,而后利用彼此发送的校正信号 的接收信号进行通道校正;关于射频装置310-2与射频装置310-3、射频装置310-3与射频装置310-4等之间的通道校正与之类似。可见,该过程需要不断产生配置信令,配置信令开销巨大,且效率低下,所需的时间较长。而在本申请实施例中,将射频装置分组,每个射频装置组内的射频装置的校正资源都预置好,某个射频装置发送校正信号时,其它部分或全部射频装置可以并行接收该校正信号,如此可以大量节省配置信令的开销,且提高了通道校正效率。
需要说明的是,虽然射频装置310-1和射频装置310-4之间没有直接进行通道校正,但是由于射频装置310-4向射频装置310-3的通道进行了校正,而射频装置310-3向射频装置310-1的通道进行了校正,相当于射频装置310-4向射频装置310-1进行了通道校正;且射频装置310-1向射频装置310-3的通道进行了校正,而射频装置310-3向射频装置310-4的通道进行了校正相当于射频装置310-1向射频装置310-4进行了通道校正,因此相当于射频装置310-1和射频装置310-4之间进行了通道校正,进一步提高了通道校正的效率。
可见,射频装置组内的射频装置可以任意两个射频装置的校正信号都可达对方,也可以不满足这种要求,而只需校正路径可达即可。所谓校正路径可达是指射频装置组内的任两个射频装置之间可以直接或通过与中间射频装置间的通道校正,来完成它们之间的通道校正。该中间射频装置可以为一个,也可以为多个。
以上仅为举例,本申请实施例并不限制射频装置组***频装置间的校正关系,也就是说,可以某个射频装置(例如第一射频装置)发送校正信号时,其它射频装置都能接收到该校正信号,也可以部分射频装置(例如第二射频装置、第三射频装置)接收该校正信号,而未接收该校正信号的射频装置(例如第四射频装置)通过能接收到该信号的射频装置(例如第三射频装置)实现与第一射频装置之间的通道校正。
可见,在以上实施例中,将一个网络区域内的射频装置进行分组,且为射频装置组内的每个射频装置配置了校正资源的位置,如此,组内每个射频装置便根据该配置信息在自己的校正资源的位置上发送校正信号,在部分或全部其它射频装置的校正资源的位置上接收校正信号,相对于现有技术两两进行通道校正的方式,无需每次都进行校正资源的配置,节省了大量的配置信令,提高了通道校正效率。组***频装置越多,校正效率的提升越明显。此外,组***频装置可以并行进行通道校正,进一步提高了校正效率。经过验证,通过这种方式可以将校正周期缩短到秒级,为DMIMO等对通道校正周期要求较高的场景提供了性能基础。
在整个网络区域内具有多个射频装置组时,可以一次性规划这些射频装置组的配置信息,如此可以更好的做到射频装置组间的校正资源的规划,例如,在对射频装置组进行配置时,可以综合考虑所有射频装置组间的隔离度的情况,并根据隔离度来规划校正资源,隔离度高的组之间复用校正资源,即采用相同的资源发送校正信号,如此可以节约资源。此外,一次性规划并设置配置信息到对应的基站上,可以减少基站在两两进行通道校正时所需配置消息的开销。
请参看图5,其为本申请实施例提供的一种通道校正方法的场景示意图。如图5所示,该网络区域内具有多个射频装置,其中每个六边形表示一个射频装置的覆盖区域,进而利用每个六边形可以代表一个射频装置,将这些射频装置分组,其中同一个组的射频装置用相同的编号表示,该编号包括一个基本编号和上标,其中基本编号相同上标不同的组间隔离度较大,可以复用校正资源,即使用相同的资源发送校正信号。例如,如图中箭头所示,编号为4,4',4”的射频装置组可以复用校正资源。该区域内的射频装置被划分为多个组,每个组内有多个射频装置,这里为了简单起见,以3个为例。在实际应用中,可以包括更多射频装置。
对于同一个射频装置组,可以设置该射频装置组***频装置发送校正信号的资源位置。例如对于射频装置组1,射频装置511在第一资源位置上发送校正信号,射频装置512在第二资源位置上发送校正信号,射频装置513在第三资源位置上发送校正信号。这些资源位置的信息以配置信息的方式存储于射频装置511,512和513所在的基站,其中,射频装置511,512和513可以位于同一基站,也可以位于不同基站,这里位于不同基站可以是部分位于不同基站,也可以是全部位于不同基站;或者射频装置511,512和513可以位于不同的BBU,这些BBU集中放置,构成BBU云。
射频装置511所在的基站根据存储的配置信息控制射频装置511在第一资源位置上发送校正信号,射频装置512和513所在的基站根据存储的配置信息通过射频装置512和513在该第一资源位置上获取该校正信号的接收信号。射频装置512和513所在的基站将各自接收到的接收信号发送给射频装置511。而后,射频装置511所在的基站根据存储的配置信息通过射频装置511在第二资源位置上获取射频装置512发送的校正信号的接收信号,而后基于射频装置511和射频装置512发送的校正信号以及这些校正信号的接收信号进行射频装置511和射频装置512之间的通道校正。同样的,射频装置511所在的基站根据存储的配置信息通过射频装置511在第三资源位置上获取射频装置513发送的校正信号的接收信号,并进行射频装置511和射频装置513之间的通道校正。关于射频装置512和射频装置513的通道校正过程,同以上描述,在此不再赘述。
可见,在本申请中,同一个组内的射频装置可以进行并行通道校正,如此提高了通道校正的效率。此外,隔离度高的组间也可以采用相同的校正资源,如此,从整网来看,校正效率获得了更大的的提高。
以上通道校正方法可以由基站根据预设的配置信息,控制其射频装置对校正信号的接收和发送来实现。下面结合图6进行描述。
请参考图6,其为本申请实施例提供的一种通道校正方法的流程图。该通道校正方法用于对网络区域内的射频装置进行通道校正,该网络区域内的射频装置被划分为至少一个射频装置组,每个射频装置组包括多个射频装置,组内多个射频装置间的校正路径可达,任一射频装置所在的基站上预设有配置信息,该配置信息用于指示该射频装置所在的射频装置组内的每个射频装置发送校正信号的资源位置。以该任一射频装置为第一射频装置为例,该方法由第一射频装置所在的基站执行,如图6所示,该方法包括如下步骤:
S610:在校正周期内根据配置信息控制第一射频装置在第一资源位置上发送第一校正信号,并获取第二射频装置对第一校正信号的第一接收信号,其中第一资源位置为第一射频装置发送校正信号的资源位置,第二射频装置为第一射频装置所在射频装置组内的射频装置;
S620:在校正周期内根据配置信息通过第一射频装置在第二资源位置上获取第二校正信号的第二接收信号,其中第二资源位置为第二射频装置发送第二校正信号的资源位置;
S630:根据第一校正信号、第二校正信号、第一接收信号和第二接收信号对第一射频装置的通道进行补偿。
当第一射频装置和第二射频装置的位于同一基站时,该基站可以直接从本地获取第一接收信号,其中包括第一射频装置和第二射频装置位于相同基带装置和不同基带装置的情况,当位于相同基带装置时,可以直接获取第一接收信号;当位于不同基带装置时,第一射频装置所在的基带装置从第二射频装置所在的基带装置接收第一接收信号。当第一射频装置和第二射频装置位于不同的基站时,第一射频装置所在的基站可以从第二射频装置所在的基站获取第一接收信号。在BBU云的结构中,第一射频装置和第二射频装置位于不同的BBU中,但它们所在的BBU集中放置,可以快速获取彼此的接收信号。
第一射频装置所在射频装置组内可以具有多个第二射频装置,这些第二射频装置采用的校正资源不同,即多个第二射频装置在各自的第二资源位置上发送校正信号,这些第二资源位置不同。且还可以包括第三射频装置,该第三射频装置通过第二射频装置或第四射频装置实现与第一射频装置之间的通道校正,对于第三射频装置的数量不做限制,可以为一个也可以为多个,且多个第三射频装置的校正资源的位置不同。
对网络区域***频装置的分组可以根据需要选择分组因素,分组因素例如可以包括以下因素:隔离度要求,射频装置间的最大间距,组规格,最大层数等。这些因素可以结合使用,也可以选择其中的一个或多个进行组合使用。较佳的,选择隔离度要求与其它一个或多个因素结合使用。另外,选择了隔离度要求,可以不用再选择最大层数。
例如,当分组考虑隔离度要求这个因素时,满足隔离度要求的射频装置可以分为一个组。该隔离度可以通过信号强度来体现。例如,射频装置A发送信号,射频装置B接收信号,当接收的信号强度小于预设阈值时,可以将该射频装置A和B划分到一个射频装置组。该信号强度可以为参考信号接收功率(reference signal received power,RSRP)。当分组考虑射频装置间的最大间距这个因素时,距离在该最大间距以内(包括等于该最大间距)的射频装置可以划分到一个射频装置组。当分组考虑射频装置的组规格这个因素时,射频装置组内的射频装置数量不超过该规格。当分组考虑最大层数这个因素时,射频装置组内的射频装置所覆盖的小区之间的最大邻区层数不超过该最大层数。例如,最大层数为3,小区1的邻区包括小区2,小区2的邻区包括小区4,如果小区1、小区2和小区4的射频装置位于同一个射频装置组内,则小区4的邻区的射频装置不可以再位于该射频装置组内,否则最大层数将超过3层。当然小区1,小区2的邻区还可以包括其它小区,其它小区同样也需要满足同一个射频装置组内的小区的最大邻区层数不超过3层。
对于分组的算法,本申请不做限制,本领域技术人员可以根据选择的分组因素,选择不同的算法进行分组。例如,可以通过遍历网络区域内所有射频装置的组合,得到两两之间满足分组因素(例如最大间距、最大层数、隔离度要求和组规格)的射频装置。基于两两之间满足分组因素的射频装置,得到多个预分组。对每个预分组内总增益进行评估,得到总增益最优的分组方案。
在完成分组以后,可以给每个组分配一个组标识(ID)。该组ID可以用来实现射频装置组间的校正资源的分配,以实现校正资源的复用和错开。该校正资源可以为时间资源,可以为频率资源,也可以为空间资源,本申请不做任何限制。以时间资源为例,可以根据组ID为射频装置组分配校正的时间资源位置,其中,隔离度高的射频装置组之间可以使用相同的时间资源发送校正信号;隔离度低的射频装置组之间在时间资源上错开,避免同时校正时的相互干扰。例如,组ID分配时,基于一定的准则,其中一个准则可以是:隔离度高的射频装置组的组ID mod N相同;隔离度低的射频装置组的组ID mod N不相同,其中N表示校正周期内能够放置的射频装置组的数量。如此可以利用组ID自动完成校正资源的分配,例如,射频装置组间的校正资源的分配准则包括:组ID mod N相同的射频装置组分配相同的校正资源,组ID mod N不同的射频装置组分配不同的校正资源。以时间资源为例,组ID mod N相同的射频装置组的校正资源分配在相同的时间位置上;组ID mod N不同的射频装置组的校正资源分配在不同的时间位置上。
需要说明的是,隔离度满足预设条件(或高低)的判断可以通过预设隔离度阈值来实现,例如大于该阈值则隔离度满足预设条件(或隔离度高),可以复用资源发送校正信号;小于该阈值,则隔离度不满足预设条件(或隔离度低),错开资源发送校正信号;等于阈值的情况下,可以复用资源,也可以错开资源。射频装置组间的隔离度可以通过这两个射频装置组内的射频装置的隔离度来体现,例如射频装置组1和4之间的隔离度不满足预 设条件(或隔离度低),是指射频装置组1内的任一个射频装置与射频装置组4内的任一个射频装置之间的隔离度都低于阈值;射频装置组4和4'之间的隔离度满足预设条件(或隔离度高),是指射频装置组4内的任一个射频装置与射频装置组4'内的任一个射频装置之间的隔离度都高于阈值。
此外,在对网络区域***频装置组的资源进行规划的过程中,可以根据射频装置组的数量,结合时域资源,频域资源,空间域资源中的一个或多个实现射频装置组间的资源错开。当校正周期内放置的射频装置组较少时,可以直接在时间域上区分这些射频装置组校正资源;当校正周期内放置的射频装置组较多,时间域上的区分以不足够时,可以在时域的基础上进一步做频域上的区分;当频域上的区分还不足够时,可以在频域的基础上,进一步做空间域上的区分。以下表1所示的资源区分为例。
表1
Figure PCTCN2016086252-appb-000001
如表1所示,第一行代表时域资源,假设其可以划分给8个射频装置组,如果只需要在8个以内的射频装置组之间错开校正资源,则在时域错开,即可以完成资源分配。如果需要在8个以上的射频装置组之间错开校正资源,则可以进一步在每块时域资源下完成频域资源上的错开。例如,射频装置组1和射频装置组9都使用时域资源0,但是在频域上分别使用频域资源0和1。同理,当更多的射频装置组需要资源错开,但频域资源也不足以满足要求时,可以进一步通过码分的方式错开。此处,仅仅是对资源错开的一种举例,并非用以限制本申请。例如,可以先从频域上错开,再从时间域上错开。
在一实施例中,还可以配置射频装置组内的射频装置按照不同顺序进行校正信号收、发状态的切换,并进行信号强度测量,根据测量的信号强度,选择最优的收发顺序,作为最佳校正路径,配置到该射频装置组***频装置所在的基站,使得基站据此最佳校正路径,控制该基站的射频装置进行校正信号的发送。例如,射频装置组1内的射频装置发送校正信号的顺序有多种,先后顺序分别为:第一种,射频装置511、射频装置512,射频装置513;第二种,射频装置511、射频装置513,射频装置512;第三种,射频装置512、射频装置511、射频装置513;第四种,射频装置512、射频装置513、射频装置511;第五种、射频装置513、射频装置512,射频装置511;第六种,射频装置513、射频装置511、射频装置512。这些射频装置的基站分别控制这些射频装置按照这些顺序进行校正信号的发送,而后选择出校正效率最高的一种顺序作为最佳校正路径,并在后续的校正过程中,使用该最佳校正路径进行校正。
下面结合图6和图7描述以上过程。图6示出了一个校正周期内的校正过程,在不同的校正周期,可以采用不同的校正顺序,以完成图6所示的校正过程,并选择校正效率最优的校正顺序作为最佳校正路径,并存储该最佳校正路径,在后的校正过程中采用该最佳校正路径,以进一步提高校正效率。此外,以上方法还包括图7所示的步骤:
S710:第一射频装置所在的基站控制第一射频装置按照预设多种顺序在不同的校正周期发送校正信号,每种顺序指示了第一射频装置所在射频装置组***频装置的校正信号的发送顺序;
S720:第一射频装置所在的基站选择校正效率最高的顺序作为最佳校正路径;
S730:第一射频装置所在的基站按照最佳校正路径执行后续的校正。
其中,每个校正周期的校正过程可以参照图6的描述,在此不再赘述。
在一较佳的实施例中,校正周期还可以进一步切分,分成多个时间段,每个时间段可以作为一个校正子周期。其中,校正周期作为长周期的校正,可以进行全量校正,即对需要进行校正的参数(又称为参量)均进行校正,当然也可以对大部分参数(除去校正子周期内校正的特定参数)进行校正。例如包括每个频点的幅度、相位等。校正子周期更短,可以专门用来校正特定参数,例如变化比较快的参数,比如初始相位。如此,可以实现分级校正,对变化比较快的参数可以实现更快的校正周期,校正效率进一步得到提升。
需要说明的是,对校正周期的切分可以均分也可以不均分,本申请不做任何限制。
此外,在长周期校正时,可以在时间域上划分给不同射频装置组的校正资源,而对于校正子周期内的校正,可以在频率域上进一步划分给不同射频装置组的校正资源,如此,可以进一步实现射频装置组之间在频域上的相互隔离。
关于射频装置间基于彼此发送的校正信号进行通道校正的方法为本领域技术人员所知,且即使后续发展出更多的方法也可以应用本申请的通道校正方法中。现通过一个例子来描述基于校正信号进行通道校正的方法,其并非用以限制本申请。
以射频装置1和射频装置2之间的通道校正为例,以射频装置覆盖范围内的小区1的收发通道1作为射频装置1和射频装置2间校正时的参考收发通道,取小区1的天线单元1和射频装置2覆盖范围内的小区2的天线单元2作为校正的收发天线对。首先,小区1工作在发送模式,小区2工作在接收模式。小区1发送校正信号,小区2接收小区1发送的校正信号,其中,小区2接收到的信号可以表示为:
Y11,21=T11*R21*H11,21*S1           (1)
之后,小区2工作在发送模式,小区1工作在接收模式。小区2发送 校正信号,小区1接收小区2发送的校正信号,其中,小区1接收到的信号可以表示为:
Y21,11=T21*R11*H21,11*S2           (2)
S1,S2为已知的校正信号,即分别为小区1和小区发送的校正信号。不同小区天线间信道具有互异性,即H21,11=H11,21。基站的基带部分利用接收到的信号,估计小区间校正补偿系数,如下:
Figure PCTCN2016086252-appb-000002
而后根据补偿系数,补偿小区间收发通路,根据以上公式(3)可以得到如下公式(4):
Figure PCTCN2016086252-appb-000003
补偿小区2通道响应,在小区2每个接收通道上乘以α1,2。实现小区1和小区2的收发通道响应比值相同。也可以通过在小区2每个发送通道上除以α1,2来实现。其中,Tij表示小区i的通道j的发射通道特性,包括基带信号处理单元、中射频单元和中射频单元与天线单元间连接通路的整个发射通路特性;Rij表示小区i通道j的接收通道特性,包括基带信号处理单元、中射频单元和中射频单元与天线单元间连接通路的整个接收通道特性。Hij,kl表示小区i天线单元j与小区k天线单元l间的空口信道响应。Yij,kl表示小区k接收通道l接收到的小区i发射通道j发送的信号。Si表示小区i发送的小区间校正参考信号。αi,k表示小区i相对于小区k的通道间校正补偿系数。
需要说明的是,在以上实施例中,校正信号可以在时分双工(time division duplex,TDD)***中的保护期(guard period,GP)发送。在频分双工(frequency division duplex,FDD)***中,可以牺牲一个时隙用来做校正。
以上配置信息可以预设在基站上,基于该配置信息实现以上通道校正 方法。下面详细描述实现以上通道校正方法的装置,该装置可以位于基站的基带部分,也可以位于射频部分。较佳的,设置在基带部分。
请参考图8,其为本申请实施例提供的一种通道校正装置的示意图。如图8所示,该装置800用于对网络区域内的射频装置进行通道校正,网络区域内的射频装置被划分为至少一个射频装置组,每个射频装置组包括多个射频装置,多个射频装置间的校正路径可达,第一射频装置所在的基站上预设有配置信息,配置信息用于指示第一射频装置所在的射频装置组内的每个射频装置发送校正信号的资源位置,第一射频装置为网络区域内的任一射频装置,通道校正装置位于第一射频装置所在的基站,包括用于实现以上通道校正方法各个步骤的单元。例如,包括第一控制单元810,获取单元820和补偿单元830,其中,第一控制单元810用于在校正周期内根据配置信息控制第一射频装置在第一资源位置上发送第一校正信号,并获取第二射频装置对第一校正信号的第一接收信号,其中第一资源位置为第一射频装置发送校正信号的资源位置,第二射频装置为第一射频装置所在射频装置组内的射频装置;获取单元820用于在校正周期内根据配置信息通过第一射频装置在第二资源位置上获取第二校正信号的第二接收信号,其中第二资源位置为第二射频装置发送第二校正信号的资源位置;补偿单元830用于根据第一校正信号、第二校正信号、第一接收信号和第二接收信号对第一射频装置的通道进行补偿。
关于射频装置分组的情况,组间校正资源复用和错开的描述同以上实施例;关于分级校正,即将校正周期划分为多个校正子周期,对某个或某些参数进行校正的描述也同以上实施例;关于第二射频装置的数量以及射频装置组内包括需要通过中间射频装置完成通道校正的射频装置的情况也也同以上实施例,这些在此都不再赘述。
同样的,对于最佳校正路径选择的过程也同以上实施例,在该装置800可以包括实现以上最佳校正路径选择的各个步骤的单元。例如,请参考图9, 包括第二控制单元840,选择单元850、和触发单元860。其中,第二控制单元840用于控制第一射频装置在多个校正周期按照预设的多种顺序发送校正信号,每种顺序指示了第一射频装置所在射频装置组***频装置的校正信号的发送顺序;选择单元850用于选择校正效率最高的顺序作为最佳校正路径;触发单元860用于触发按照所述最佳校正路径执行后续的校正。
应理解以上各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。例如,以上各个单元可以为单独设立的处理元件,也可以集成在基站的某一个芯片中实现,此外,也可以以程序代码的形式存储于基站的存储器中,由基站的某一个处理元件调用并执行以上各个单元的功能。此外各个单元可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU),还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。
请参见图10,图10为本申请实施例提供的一种基站的结构示意图。如图10所示,该基站包括:天线101、射频装置102、基带装置103。天线103与射频装置102连接。在上行方向上,射频装置102通过天线101接收终端发送的信息,将终端发送的信息发送给基带装置103进行处理。在下行方向上,基带装置103对终端的信息进行处理,并发送给射频装置102,射频装置102对终端的信息进行处理后经过天线101发送给终端。
以上通道校正装置可以位于基带装置103,包括处理元件1031和存储元件1032。基带装置103例如可以包括至少一个基带板,该基带板上设置 有多个芯片,如图10所示,其中一个芯片例如为处理元件1031,与存储元件1032连接,以调用存储元件1032中的程序,执行以上方法实施例中所示的操作。该基带装置103还可以包括接口1033,用于与射频装置102交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
再如,以上各个单元可以通过基带装置103的不同芯片实现,也可以将它们集成在一起,通过基带装置103的一个芯片实现;或者,将它们的功能通过程序代码的形式存储于基带装置103的存储元件中,通过基带装置103的一个处理元件调度实现。
这里的处理元件同以上描述,可以是通用处理器,例如中央处理器CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
通过以上的实施例的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他 远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。
总之,以上所述仅为本发明技术方案的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (27)

  1. 一种通道校正方法,用于对网络区域内的射频装置进行通道校正,所述网络区域内的射频装置被划分为至少一个射频装置组,每个射频装置组包括多个射频装置,所述多个射频装置间的校正路径可达,第一射频装置所在的基站上预设有配置信息,所述配置信息用于指示所述第一射频装置所在的射频装置组内的每个射频装置发送校正信号的资源位置,所述第一射频装置为所述网络区域内的任一射频装置,所述方法由所述第一射频装置所在的基站执行,包括:
    在校正周期内根据所述配置信息控制所述第一射频装置在第一资源位置上发送第一校正信号,并获取第二射频装置对所述第一校正信号的第一接收信号,其中所述第一资源位置为所述第一射频装置发送校正信号的资源位置,所述第二射频装置为所述第一射频装置所在射频装置组内的射频装置;
    在所述校正周期内根据所述配置信息通过所述第一射频装置在第二资源位置上获取第二校正信号的第二接收信号,其中所述第二资源位置为所述第二射频装置发送所述第二校正信号的资源位置;
    根据所述第一校正信号、所述第二校正信号、所述第一接收信号和所述第二接收信号对所述第一射频装置的通道进行补偿。
  2. 根据权利要求1所述的方法,其特征在于,所述校正周期包括至少一个校正子周期,所述校正子周期为所述校正周期内的一段时间,所述校正子周期用于对特定参数进行校正。
  3. 根据权利要求2所述的方法,其特征在于,所述网络区域内的射频装置被划分为多个射频装置组时,所述多个射频装置组包括在同一校正周期内使用不同频率资源对所述特定参数进行校正的射频装置组。
  4. 如权利要求1至3任一项所述的方法,其特征在于,所述网络区域内的射频装置被划分为多个射频装置组时,所述多个射频装置组包括第一 射频装置组和第二射频装置组,所述第一射频装置组和所述第二射频装置组的隔离度满足预设要求,且所述第一射频装置组和所述第二射频装置组内的射频装置使用相同的资源发送校正信号。
  5. 如权利要求1至4任一项所述的方法,其特征在于,所述网络区域内的射频装置被划分为多个射频装置组时,所述多个射频装置组包括第三射频装置组和第四射频装置组,所述第三射频装置组和所述第四射频装置组的隔离度不满足预设要求,且所述第三射频装置组和所述第四射频装置组内的射频装置使用不同的资源发送校正信号。
  6. 如权利要求1至5任一项所述的方法,其特征在于,所述网络区域内的射频装置基于分组因素被划分为至少一个射频装置组,所述分组因素包括以下因素中的一个或多个:隔离度要求,射频装置间的最大间距,组规格,最大层数。
  7. 如权利要求1至6任一项所述的方法,其特征在于,所述网络区域内的射频装置被划分为多个射频装置组时,每个射频装置组被分配一个组标识。
  8. 如权利要求7所述的方法,其特征在于,射频装置组ID满足:隔离度满足预设要求的射频装置组的组标识mod N相同;隔离度不满足预设要求的射频装置组的组ID mod N不相同,其中N表示校正周期***频装置组的数量。
  9. 如权利要求8所述的方法,其特征在于,所述组标识用于射频装置组间的校正资源的分配。
  10. 如权利要求9所述的方法,其特征在于,射频装置组间的校正资源的分配准则包括:组ID mod N相同的射频装置组分配相同的校正资源,组ID mod N不同的射频装置组分配不同的校正资源。
  11. 如权利要求1至10任一项所述的方法,其特征在于,还包括:
    所述第一射频装置所在的基站控制所述第一射频装置在多个校正周期 按照预设的多种顺序发送校正信号,每种顺序指示了所述第一射频装置所在射频装置组***频装置的校正信号的发送顺序;
    所述第一射频装置所在的基站选择校正效率最高的顺序作为最佳校正路径;
    所述第一射频装置所在的基站按照所述最佳校正路径执行后续的校正。
  12. 如权利要求1至11任一项所述的方法,其特征在于,所述第一射频装置所在的射频装置组内包括第三射频装置,所述第三射频装置通过所述第二射频装置或第四射频装置实现与所述第一射频装置之间的通道校正。
  13. 如权利要求1至12任一项所述的方法,其特征在于,所述第一射频装置所在射频装置组内包括多个所述第二射频装置,所述多个第二射频装置并行接收所述第一校正信号,且所述多个第二射频装置的第二资源位置彼此不同。
  14. 一种通道校正装置,用于对网络区域内的射频装置进行通道校正,所述网络区域内的射频装置被划分为至少一个射频装置组,每个射频装置组包括多个射频装置,所述多个射频装置间的校正路径可达,第一射频装置所在的基站上预设有配置信息,所述配置信息用于指示所述第一射频装置所在的射频装置组内的每个射频装置发送校正信号的资源位置,所述第一射频装置为所述网络区域内的任一射频装置,所述通道校正装置位于所述第一射频装置所在的基站,包括:
    第一控制单元,用于在校正周期内根据所述配置信息控制所述第一射频装置在第一资源位置上发送第一校正信号,并获取第二射频装置对所述第一校正信号的第一接收信号,其中所述第一资源位置为所述第一射频装置发送校正信号的资源位置,所述第二射频装置为所述第一射频装置所在射频装置组内的射频装置;
    获取单元,用于在所述校正周期内根据所述配置信息通过所述第一射频装置在第二资源位置上获取第二校正信号的第二接收信号,其中所述第 二资源位置为所述第二射频装置发送所述第二校正信号的资源位置;
    补偿单元,用于根据所述第一校正信号、所述第二校正信号、所述第一接收信号和所述第二接收信号对所述第一射频装置的通道进行补偿。
  15. 根据权利要求14所述的装置,其特征在于,所述校正周期包括至少一个校正子周期,所述校正子周期为所述校正周期内的一段时间,所述校正子周期用于对特定参数进行校正。
  16. 根据权利要求15所述的装置,其特征在于,所述网络区域内的射频装置被划分为多个射频装置组时,所述多个射频装置组包括在同一校正周期内使用不同频率资源对所述特定参数进行校正的射频装置组。
  17. 如权利要求14至16任一项所述的装置,其特征在于,所述网络区域内的射频装置被划分为多个射频装置组时,所述多个射频装置组包括第一射频装置组和第二射频装置组,所述第一射频装置组和所述第二射频装置组的隔离度满足预设要求,且所述第一射频装置组和所述第二射频装置组内的射频装置使用相同的资源发送校正信号。
  18. 如权利要求14至17任一项所述的装置,其特征在于,所述网络区域内的射频装置被划分为多个射频装置组时,所述多个射频装置组包括第三射频装置组和第四射频装置组,所述第三射频装置组和所述第四射频装置组的隔离度不满足预设要求,且所述第三射频装置组和所述第四射频装置组内的射频装置使用不同的资源发送校正信号。
  19. 如权利要求14至18任一项所述的装置,其特征在于,所述网络区域内的射频装置基于分组因素被划分为至少一个射频装置组,所述分组因素包括以下因素中的一个或多个:隔离度要求,射频装置间的最大间距,组规格,最大层数。
  20. 如权利要求14至19任一项所述的装置,其特征在于,所述网络区域内的射频装置被划分为多个射频装置组时,每个射频装置组被分配一个组标识。
  21. 如权利要求20所述的装置,其特征在于,射频装置组ID满足:隔离度满足预设要求的射频装置组的组标识mod N相同;隔离度不满足预设要求的射频装置组的组ID mod N不相同,其中N表示校正周期***频装置组的数量。
  22. 如权利要求21所述的装置,其特征在于,所述组标识用于射频装置组间的校正资源的分配。
  23. 如权利要求22所述的装置,其特征在于,射频装置组间的校正资源的分配准则包括:组ID mod N相同的射频装置组分配相同的校正资源,组ID mod N不同的射频装置组分配不同的校正资源。
  24. 如权利要求14至23任一项所述的装置,其特征在于,还包括:
    第二控制单元,用于控制所述第一射频装置在多个校正周期按照预设的多种顺序发送校正信号,每种顺序指示了所述第一射频装置所在射频装置组***频装置的校正信号的发送顺序;
    选择单元,用于选择校正效率最高的顺序作为最佳校正路径;
    触发单元,用于触发按照所述最佳校正路径执行后续的校正。
  25. 如权利要求14至24任一项所述的装置,其特征在于,所述第一射频装置所在的射频装置组内包括第三射频装置,所述第三射频装置通过所述第二射频装置或第四射频装置实现与所述第一射频装置之间的通道校正。
  26. 如权利要求14至25任一项所述的装置,其特征在于,所述第一射频装置所在射频装置组内包括多个所述第二射频装置,所述多个第二射频装置并行接收所述第一校正信号,且所述多个第二射频装置的第二资源位置彼此不同。
  27. 一种通信***,其特征在于,包括至少一个基站,所述至少一个基站的射频装置被划分为至少一个射频装置组,每个射频装置组包括多个射频装置,所述多个射频装置间的校正路径可达,第一射频装置所在的基 站上预设有配置信息,所述配置信息用于指示所述第一射频装置所在的射频装置组内的每个射频装置发送校正信号的资源位置,所述第一射频装置为所述网络区域内的任一射频装置,所述第一射频装置所在的基站包括如权利要求14至26任一项所述通道校正装置。
PCT/CN2016/086252 2016-06-17 2016-06-17 通道校正方法、装置及通信*** WO2017214981A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201680086167.1A CN109196792B (zh) 2016-06-17 2016-06-17 通道校正方法、装置及通信***
PCT/CN2016/086252 WO2017214981A1 (zh) 2016-06-17 2016-06-17 通道校正方法、装置及通信***
EP16905095.2A EP3461022B1 (en) 2016-06-17 2016-06-17 Channel correction method and device and communication system
KR1020197000218A KR102177541B1 (ko) 2016-06-17 2016-06-17 채널 정정 방법 및 디바이스 및 통신 시스템
JP2018564786A JP6702605B2 (ja) 2016-06-17 2016-06-17 チャネル補正方法及びチャネル補正装置並びに通信システム
US16/220,576 US10892917B2 (en) 2016-06-17 2018-12-14 Channel correction method and apparatus, and communications system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/086252 WO2017214981A1 (zh) 2016-06-17 2016-06-17 通道校正方法、装置及通信***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/220,576 Continuation US10892917B2 (en) 2016-06-17 2018-12-14 Channel correction method and apparatus, and communications system

Publications (1)

Publication Number Publication Date
WO2017214981A1 true WO2017214981A1 (zh) 2017-12-21

Family

ID=60662886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086252 WO2017214981A1 (zh) 2016-06-17 2016-06-17 通道校正方法、装置及通信***

Country Status (6)

Country Link
US (1) US10892917B2 (zh)
EP (1) EP3461022B1 (zh)
JP (1) JP6702605B2 (zh)
KR (1) KR102177541B1 (zh)
CN (1) CN109196792B (zh)
WO (1) WO2017214981A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111130582A (zh) * 2018-11-01 2020-05-08 华为技术有限公司 一种相干联合发射jt中计算发射权值的方法及相应装置
CN111953392A (zh) * 2020-08-14 2020-11-17 北京邮电大学 一种面向分布式mimo的天线校准序列发送方法及***
CN114189291A (zh) * 2020-09-15 2022-03-15 北京佰才邦技术股份有限公司 一种天线校准方法、射频拉远单元及基带处理单元

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103229471A (zh) * 2012-12-17 2013-07-31 华为技术有限公司 通道校正补偿方法、基带处理单元及***
CN104104420A (zh) * 2013-04-09 2014-10-15 华为技术有限公司 协作发射集的确定方法和基站
WO2014202025A1 (zh) * 2013-06-20 2014-12-24 华为技术有限公司 多天线信道校正的方法、装置和基站***
CN104243387A (zh) * 2014-09-03 2014-12-24 京信通信***(中国)有限公司 一种ofdm***的通道校正方法及装置
CN105207723A (zh) * 2014-06-30 2015-12-30 华为技术有限公司 通道校正方法、基站、用户设备和通信***

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8711773B2 (en) * 2008-09-05 2014-04-29 Blackberry Limited Multi-carrier operation for wireless systems
KR100935933B1 (ko) * 2002-10-15 2010-01-11 삼성전자주식회사 무선통신에서 무선단말 그룹화에 의한 신뢰성 있는멀티캐스트 데이터 재전송 방법 및 장치
JP4015937B2 (ja) * 2002-12-06 2007-11-28 松下電器産業株式会社 デューティ比補正回路
US8929281B2 (en) * 2006-09-15 2015-01-06 Qualcomm Incorporated Methods and apparatus related to peer to peer device
JP2008187552A (ja) * 2007-01-31 2008-08-14 Hitachi Communication Technologies Ltd 基地局間制御チャネルを持つ通信システム及び基地局
JP4993778B2 (ja) * 2009-02-18 2012-08-08 日本電信電話株式会社 分散アンテナシステムおよび分散アンテナ制御方法
KR101552126B1 (ko) * 2009-06-01 2015-09-10 삼성전자주식회사 무선통신 시스템에서 협력 다중 입출력을 위한 캘리브레이션 장치 및 방법
KR101618127B1 (ko) * 2010-04-22 2016-05-04 엘지전자 주식회사 분산 안테나 시스템에서의 신호 송수신 방법 및 장치
US9294948B2 (en) * 2012-03-22 2016-03-22 Lg Electronics Inc. Method for measuring interference strength in wireless communication system and device therefor
WO2013172773A1 (en) * 2012-05-14 2013-11-21 Telefonaktiebolaget L M Ericsson (Publ) Enhanced receiver adaptation based on relation between signals from aggressor and victim cells
CN103457651B (zh) * 2012-05-31 2016-08-24 华为技术有限公司 联合通道校正方法、联合通道校正单元及基站
CN103634085B (zh) 2012-08-27 2016-09-07 电信科学技术研究院 一种反馈和接收pmi的方法、***及设备
JP6159803B2 (ja) * 2012-09-04 2017-07-05 株式会社Nttドコモ 内部相対的送受信機キャリブレーションのための方法および装置
CN103716075B (zh) * 2012-09-29 2016-12-21 华为技术有限公司 一种多个射频拉远单元间联合通道校正的方法和装置
BR112015019626B1 (pt) 2013-02-22 2022-08-16 Sony Corporation Aparelhos de controle de comunicação, e, método de controle de comunicação
CN104159282B (zh) * 2013-05-15 2018-12-14 华为技术有限公司 一种信号调整方法及装置、小区
CN104244296B (zh) * 2013-06-13 2018-02-06 华为技术有限公司 多rru间通道校正方法及装置
US9265019B2 (en) * 2013-09-16 2016-02-16 Qualcomm Incorporated Storage of base station identity code (BSIC) timing
EP3828717B1 (en) * 2013-12-26 2024-07-03 INTEL Corporation Multichip package link
WO2015109513A1 (zh) * 2014-01-24 2015-07-30 华为技术有限公司 信息传输的方法、用户设备及基站
CN106464458A (zh) * 2014-03-18 2017-02-22 华为技术有限公司 一种ue间互易性校正的方法、装置及通信***
EP3119150B1 (en) * 2014-04-10 2024-04-03 Huawei Technologies Co., Ltd. Channel status information reporting method, user equipment and base station
US10063395B2 (en) * 2015-01-05 2018-08-28 Lg Electronics Inc. Method for estimating channel status in wireless communication system, and apparatus therefor
CN105044639A (zh) * 2015-06-23 2015-11-11 许继电气股份有限公司 一种电力***合并单元采集通道的校正方法及***
US10117254B2 (en) * 2015-07-31 2018-10-30 Qualcomm Incorporated Pilot sequences in data streams
WO2017117795A1 (zh) * 2016-01-08 2017-07-13 华为技术有限公司 一种信号的发送方法、接收方法、终端设备、基站及***
CN107592189B (zh) * 2016-07-06 2020-07-14 华为技术有限公司 一种传输方法、用户设备及基站

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103229471A (zh) * 2012-12-17 2013-07-31 华为技术有限公司 通道校正补偿方法、基带处理单元及***
CN104104420A (zh) * 2013-04-09 2014-10-15 华为技术有限公司 协作发射集的确定方法和基站
WO2014202025A1 (zh) * 2013-06-20 2014-12-24 华为技术有限公司 多天线信道校正的方法、装置和基站***
CN105207723A (zh) * 2014-06-30 2015-12-30 华为技术有限公司 通道校正方法、基站、用户设备和通信***
CN104243387A (zh) * 2014-09-03 2014-12-24 京信通信***(中国)有限公司 一种ofdm***的通道校正方法及装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111130582A (zh) * 2018-11-01 2020-05-08 华为技术有限公司 一种相干联合发射jt中计算发射权值的方法及相应装置
CN111953392A (zh) * 2020-08-14 2020-11-17 北京邮电大学 一种面向分布式mimo的天线校准序列发送方法及***
CN111953392B (zh) * 2020-08-14 2022-03-25 北京邮电大学 一种面向分布式mimo的天线校准序列发送方法及***
CN114189291A (zh) * 2020-09-15 2022-03-15 北京佰才邦技术股份有限公司 一种天线校准方法、射频拉远单元及基带处理单元
CN114189291B (zh) * 2020-09-15 2023-12-05 北京佰才邦技术股份有限公司 一种天线校准方法、射频拉远单元及基带处理单元

Also Published As

Publication number Publication date
EP3461022B1 (en) 2020-09-23
US10892917B2 (en) 2021-01-12
JP2019526185A (ja) 2019-09-12
CN109196792B (zh) 2021-01-29
KR102177541B1 (ko) 2020-11-11
JP6702605B2 (ja) 2020-06-03
KR20190015502A (ko) 2019-02-13
EP3461022A1 (en) 2019-03-27
EP3461022A4 (en) 2019-06-05
CN109196792A (zh) 2019-01-11
US20190123939A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
JP7321707B2 (ja) 方法、システムおよび装置
US11197169B2 (en) Device and method for operating beamforming in wireless communication system
WO2019047940A1 (zh) 参考信号配置、信息的发送、信息的接收方法及装置
JP2017532881A (ja) ビーム構成方法、基地局、およびユーザ機器
US12003309B2 (en) Beam selection priority
US20180175992A1 (en) A Wireless Device, A Radio Network Node, And Methods Therein
US11902194B2 (en) Channel state information reference signal resource mapping
JPWO2018084135A1 (ja) 装置及び無線通信方法
US11622362B2 (en) Parallel scheduler architecture
TW201944819A (zh) 在新無線電中探測參考信號功率控制
US10892917B2 (en) Channel correction method and apparatus, and communications system
JP2024500395A (ja) より高いランクの送信をサポートするためのタイプiiポート選択コードブックを拡張する方法
WO2022236657A1 (en) Method and apparatus for determining guard period location for srs antenna switching
CN112956133B (zh) 虚拟化有源天线***(aas)中的端口到天线映射设计
WO2019001314A1 (zh) 一种控制信道发送方法及装置
US20240072964A1 (en) Transmission of Single-Port Reference Signal Resources
US20240121649A1 (en) Method and apparatus for measuring of ue-to-ue crosslink interference in wireless communication system
US20230403119A1 (en) Multi-slot reference signal triggering
WO2019193123A1 (en) Non-orthogonal multiple access signature sequence selection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905095

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564786

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197000218

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016905095

Country of ref document: EP

Effective date: 20181217