WO2017212744A1 - Radiant tube burner unit, and industrial furnace - Google Patents

Radiant tube burner unit, and industrial furnace Download PDF

Info

Publication number
WO2017212744A1
WO2017212744A1 PCT/JP2017/012320 JP2017012320W WO2017212744A1 WO 2017212744 A1 WO2017212744 A1 WO 2017212744A1 JP 2017012320 W JP2017012320 W JP 2017012320W WO 2017212744 A1 WO2017212744 A1 WO 2017212744A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
combustion
radiant tube
heat exchange
burner
Prior art date
Application number
PCT/JP2017/012320
Other languages
French (fr)
Japanese (ja)
Inventor
健介 川端
毅 有松
寿雄 惠上
Original Assignee
中外炉工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中外炉工業株式会社 filed Critical 中外炉工業株式会社
Publication of WO2017212744A1 publication Critical patent/WO2017212744A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/126Radiant burners cooperating with refractory wall surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention supplies the fuel gas and the combustion air to the combustion burner section at one end of the radiant tube, burns the fuel gas in the radiant tube in the combustion burner section, and burns the combustion exhaust gas after combustion.
  • an industrial furnace provided with a plurality of such radiant tube burner units.
  • the fuel gas and the combustion air are supplied to the combustion burner portion to burn the fuel gas in the radiant tube, and the combustion exhaust gas after combustion is the other end of the radiant tube
  • the combustion exhaust gas contains harmful nitrogen oxides (hereinafter referred to as "NOx”) and unburned component gas such as CO gas and hydrocarbon gas (HC), etc.
  • NOx harmful nitrogen oxides
  • HC hydrocarbon gas
  • a radiant tube burner is used to prevent the flame from contacting the object to be heated and oxidizing the object when heating the object to be heated.
  • a radiant tube burner unit is used.
  • the fuel gas and the combustion air are supplied to the combustion burner portion at one end of the radiant tube, and the fuel gas and the combustion air are mixed in the combustion burner portion.
  • the fuel gas is burned in the radiant tube and the flue gas after burning is discharged from the other end of the radiant tube.
  • the fuel gas is mixed with the combustion air in the combustion burner section as described above, and the NOx contained in the combustion exhaust gas is reduced in burning the fuel gas in the radiant tube
  • actual air amount / theoretical air amount
  • CO gas or hydrocarbons ex. HC
  • Patent Document 1 the combustion exhaust gas from a radiant tube burner is purified using a nitrogen oxide reduction catalyst, and the obtained NOx purification gas has an air ratio of 1.0 or more. It has been proposed to oxidize and remove unburned components using an oxidation catalyst after adding combustion air as described above.
  • Patent Document 1 a first exhaust gas processing unit containing a nitrogen oxide reduction catalyst and a second exhaust gas processing unit containing an oxidation catalyst are provided. It is necessary to supply air between the exhaust gas processing unit and the second exhaust gas processing unit, and there is a problem that the apparatus becomes complicated and becomes large.
  • JP 2001-241619 A Japanese Patent Application Laid-Open No. 9-210305
  • the present invention supplies the fuel gas and the combustion air to the combustion burner section at one end of the radiant tube, burns the fuel gas in the radiant tube in the combustion burner section, and burns the combustion exhaust gas after combustion. It is an object of the present invention to solve the above-mentioned problems in a radiant tube burner unit provided with a radiant tube burner to be discharged from the other end of.
  • the radiant tube burner unit after the fuel gas is mixed with the combustion air in the combustion burner portion and burned in the radiant tube, the flue gas is discharged from the other end of the radiant tube to the outside
  • the combustion exhaust gas is properly prevented from being discharged to the outside in the state where the combustion exhaust gas contains harmful NOx and unburned component gas such as CO gas and hydrocarbon (HC) gas. It is an object of the present invention to make effective use of the heat of combustion exhaust gas.
  • the fuel gas and the combustion air are supplied to the combustion burner portion at one end of the radiant tube, and the fuel gas in the combustion burner portion
  • a radiant tube burner unit provided with a radiant tube burner for burning the combustion exhaust gas in the radiant tube and discharging the combustion exhaust gas from the other end of the radiant tube, a position downstream of the emission direction of the exhaust gas in the radiant tube
  • an exhaust gas processing unit containing a three-way catalyst and heating combustion air supplied to the combustion burner unit by the heat of the combustion exhaust gas at a position upstream of the exhaust gas processing unit in the exhaust gas discharge direction.
  • First heat exchange means for The position of the discharge direction downstream side of the combustion exhaust gas than the processing unit, provided with a second heat exchange means for heating the combustion air supplied to the burner unit by the heat of the combustion exhaust gas discharged from the exhaust gas treatment unit.
  • the combustion exhaust gas after burning the fuel gas in the radiant tube is led to the exhaust gas processing unit, and the three-way catalyst accommodated in the exhaust gas processing unit is used to generate the combustion exhaust gas.
  • the contained NOx is reduced by the unburned component gas contained in the combustion exhaust gas.
  • the air ratio ⁇ is 1.0 or less by reducing the amount of the combustion air to the fuel gas, it occurs at the time of combustion.
  • the amount of NOx to be reduced decreases so that the NOx contained in the combustion exhaust gas is reduced, and the NOx contained in the combustion exhaust gas is sufficiently reduced by the three-way catalyst by the unburned component gas contained in the combustion exhaust gas.
  • the combustion air supplied to the combustion burner unit is generated by the heat of the combustion exhaust gas.
  • the combustion air supplied to the combustion burner unit is heated by the heat of the combustion exhaust gas.
  • the combustion air supplied to the combustion burner portion is heated by the heat of the combustion exhaust gas so that the heat of the combustion exhaust gas is effectively used.
  • the combustion air heated in the second heat exchange means is led to the first heat exchange means, and in the first heat exchange means, the second heat exchange means
  • the heated combustion air introduced from the above may be further heated by the heat of the combustion exhaust gas and supplied to the above-mentioned combustion burner portion.
  • a fuel gas guiding passage for guiding a part of the fuel gas supplied to the combustion burner section to a position upstream of the exhaust gas processing section in the exhaust gas discharge direction. It is preferable to provide a control means for controlling the amount of fuel gas guided through the fuel gas guiding path.
  • control means for controlling the amount of fuel gas guided through the fuel gas guide path When the control means for controlling the amount of fuel gas guided through the fuel gas guide path is provided as described above, the control means is adapted to correspond to the amount of nitrogen oxides contained in the combustion exhaust gas, and The amount of fuel gas guided through the guiding path is controlled.
  • the fuel gas and the combustion air are supplied to the combustion burner portion as described above, the fuel gas is burned in the combustion burner portion while the amount of the combustion air to the fuel gas is increased.
  • an appropriate amount of fuel is introduced before it is led to the exhaust gas processing unit containing the three-way catalyst through the fuel gas guide path by the control means. Gas can be supplied.
  • the combustion exhaust gas containing a large amount of NOx and the appropriate amount of fuel gas are brought together to the exhaust gas treatment unit, and the NOx in the combustion exhaust gas is sufficiently reduced by the action of the three-way catalyst. Will be discharged.
  • the unburned component gas contained in the combustion exhaust gas discharged from the exhaust gas processing unit is disposed between the exhaust gas processing unit and the second heat exchange means.
  • a post-combustion device is provided to burn. In this way, even if unburned component gas remains in the combustion exhaust gas processed in the exhaust gas processing unit, the unburned component gas is burned by the post-combustion device and oxidized to CO 2 or H 2 O.
  • the heat of the combustion exhaust gas discharged from each exhaust gas processing unit is provided at a position downstream of the exhaust gas processing unit in each radiant tube burner unit in the discharge direction of the combustion exhaust gas. It is possible to provide one second heat exchange means for heating the combustion air supplied to the combustion burner section in each radiant tube burner unit.
  • an exhaust gas processing unit containing a three-way catalyst is provided at a position downstream of each radiant tube in the exhaust gas discharge direction.
  • a first heat exchange means for heating the combustion air supplied to each combustion burner unit by the heat of the combustion exhaust gas is provided at a position upstream of the exhaust gas processing units in the discharge direction of the combustion exhaust gas, while each radiant tube burner unit
  • a second heat exchange means for heating the atmosphere gas in the preheating zone by the heat of the combustion exhaust gas discharged from each exhaust gas processing unit is provided at a position downstream of the exhaust gas processing unit in the discharge direction of the combustion exhaust gas The atmosphere gas in the above is heated by this second heat exchange means and circulated.
  • the fuel gas and the combustion air are supplied to the combustion burner portion, the fuel gas is burned in the radiant tube, and the combustion exhaust gas is discharged from the other end of the radiant tube.
  • the combustion exhaust gas is led to the exhaust gas processing unit in which the three-way catalyst is accommodated to treat harmful NOx contained in the combustion exhaust gas, and unburned component gas consisting of CO gas and hydrocarbon (HC) gas.
  • the combustion air supplied to the combustion burner portion is heated by the heat of the combustion exhaust gas by the first heat exchange means provided at a position upstream of the exhaust gas processing portion in the discharge direction of the combustion exhaust gas.
  • Combustion to be supplied to the combustion burner section by the second heat exchange means provided at a position downstream of the exhaust gas discharge direction from The atmospheric gas in the air and preheat zone was set to be heated by the heat of the combustion exhaust gas discharged from the exhaust gas treatment unit.
  • the radiant tube burner unit when the fuel gas is mixed with the combustion air and burned in the radiant tube, NOx and unburned component gas in the combustion exhaust gas are appropriate in the exhaust gas processing unit.
  • the combustion exhaust gas can be properly discharged to the outside in a safe state where the combustion exhaust gas contains no NOx and unburned component gas.
  • the combustion air supplied to the combustion burner portion and the atmosphere gas in the preheating zone are sufficiently heated by the heat of the combustion exhaust gas, and the heat of the combustion exhaust gas is effectively used.
  • a fuel gas guiding path for guiding a part of the fuel gas supplied to the combustion burner section to a position upstream of the exhaust gas processing section in the discharge direction of the combustion exhaust gas;
  • Control means for controlling the amount of fuel gas guided through the passage, and burning unburned component gas contained in the combustion exhaust gas discharged from the exhaust gas processing unit between the exhaust gas processing unit and the second heat exchange unit
  • a U-shaped radiant tube is used as the radiant tube 11 in the radiant tube burner 10, and this U-shaped radiant tube is used.
  • 11 is disposed inside the industrial furnace 1, and both ends of the radiant tube 11 are extended outside the industrial furnace 1 through the furnace wall 1a.
  • the shape of the radiant tube 11 is not limited to the U-shape, and may be any known shape such as a W-shape or an I-shape.
  • fuel gas such as hydrocarbon (HC) gas is supplied to the combustion burner section 12 at one end side of the radiant tube 11 through the fuel gas supply pipe 21, and the first heat exchange means 31 described later
  • combustion air heated by the heat of the combustion exhaust gas is supplied through the combustion air supply pipe 22, and in the combustion burner section 12, the fuel gas and the heated combustion air are supplied.
  • the fuel gas in the radiant tube 11 is supplied to the combustion burner section 12 at one end side of the radiant tube 11 through the fuel gas supply pipe 21, and the first heat exchange means 31 described later
  • combustion air heated by the heat of the combustion exhaust gas is supplied through the combustion air supply pipe 22, and in the combustion burner section 12, the fuel gas and the heated combustion air are supplied.
  • the flue gas after combustion is discharged from the other end of the radiant tube 11 through the exhaust pipe 23 from a chimney (not shown) or the like.
  • an exhaust gas processing unit 24 containing a three-way catalyst is provided at the other end of the radiant tube 11 for discharging the above-mentioned combustion exhaust gas, and combustion after burning in the radiant tube 11 The exhaust gas is led to the exhaust gas processing unit 24 for processing.
  • the first heat exchange means 31 for heating the combustion air by the heat of the combustion exhaust gas the first heat exchange in the radiant tube 11 on the upstream side of the exhaust gas discharge direction with respect to the exhaust gas processing unit 24
  • the second heat exchange means 32 for heating the combustion air with the heat of the combustion exhaust gas while providing the portion 31 the second heat exchange portion 32 in the exhaust pipe 23 downstream of the exhaust gas discharge direction with respect to the exhaust gas processing portion 24.
  • the first heat exchange unit 31 is provided in the radiant tube 11 and the second heat exchange unit 32 is provided in the exhaust pipe 23.
  • the first heat exchange unit 31 is provided in the radiant tube
  • the second heat exchanging unit 32 may be provided at a position taken out from the inside of the exhaust pipe 23 or a position taken out from the inside of the exhaust pipe 23.
  • the combustion air is guided by the blower 33 through the combustion air guide pipe 34 to the second heat exchange section 32, and the second heat exchange section 32 treats the combustion air as exhaust gas.
  • the combustion exhaust gas is heated by the heat of the combustion exhaust gas led from the portion 24 and the combustion exhaust gas after the combustion air is heated is discharged through the exhaust pipe 23 as described above.
  • the combustion air heated in the second heat exchange unit 32 is guided to the first heat exchange unit 31 through the combustion air guide pipe 34 at the downstream side of the second heat exchange unit 32;
  • the combustion air heated as described above is further heated by the heat of the combustion exhaust gas before being introduced to the exhaust gas processing section 24, and the combustion air thus heated is
  • the fuel gas is supplied to the combustion burner section 12 through the combustion air supply pipe 22 and the combustion air and fuel gas heated as described above are mixed to burn the fuel gas.
  • the combustion air is sufficiently heated by the heat of the combustion exhaust gas in the first heat exchange unit 31 and the second heat exchange unit 32, and in this state, it is led to the combustion burner unit 12 and the fuel gas is Is combusted, and the heat of the combustion exhaust gas can be effectively utilized, and heat exchange is performed between the combustion exhaust gas and the combustion air in the first heat exchange section 31;
  • the temperature of the combustion exhaust gas led from the radiant tube 11 to the exhaust gas processing unit 24 decreases, and the temperature of the combustion exhaust gas exceeds the temperature range where the three-way catalyst accommodated in the exhaust gas processing unit 24 can function.
  • the three-way catalyst can properly treat the combustion exhaust gas.
  • the temperature range in which the three-way catalyst can function is about 400 ° C. to 800 ° C.
  • NOx is generated during combustion when supplying the fuel gas and the combustion air to the combustion burner portion 12 through the fuel gas supply pipe 21 and the combustion air supply pipe 22.
  • the amount of combustion air to fuel gas may be reduced, for example, to make the air ratio .mu. It is
  • the combustion in the exhaust gas discharge direction downstream of the exhaust gas processing unit 24 and in the combustion direction of the second heat exchange unit 32 is provided in the exhaust pipe 23 at a position on the upstream side in the discharge direction of the exhaust gas, and the post-combustion fuel gas from the post-combustion fuel gas supply pipe 25a is provided to the post-combustion device 25 and post-combustion air supply Post combustion air can be supplied from the pipe 25b.
  • the post-combustion device 25 When the exhaust gas processing unit 24 discharges the combustion exhaust gas containing the unburned component gas as described above, the post-combustion device 25 is provided with a post-combustion fuel gas supply pipe as required. Fuel gas for post-combustion and air for post-combustion are supplied from 25a and post-combustion air supply pipe 25b, and then unburned component gas in the combustion exhaust gas is burned by the combustion device 25 to produce unburned component gas. It can be discharged in the state of being oxidized to CO 2 or H 2 O.
  • the post-combustion device 25 when the unburned component gas in the combustion exhaust gas is burned by the post-combustion device 25 in this way, the combustion exhaust gas heated by the post-combustion is guided to the second heat exchange portion 32 and the heated combustion is carried out. As described above, the combustion air introduced to the second heat exchange unit 32 is further heated by the exhaust gas, and the heat of the combustion exhaust gas heated by the post-combustion is also effectively used.
  • the post-combustion device 25 is used to burn the unburned component gas remaining in the combustion exhaust gas with a flame, the post-combustion device 25 is not limited to such a device, such as electric heating The unburned component gas remaining in the combustion exhaust gas can also be burned by
  • a part of the fuel gas supplied to the combustion burner unit 12 through the fuel gas supply pipe 21 is a part of the combustion exhaust gas than the exhaust gas processing unit 24.
  • a fuel gas guiding passage 26 leading to a position on the upstream side in the discharge direction, and a control valve controlling the amount of fuel gas guided to a position on the upstream side in the discharge direction of the combustion exhaust gas from the exhaust gas processing unit 24 Control means) 26a can be provided.
  • control valve 26a guides the fuel gas through the fuel gas guide passage 26 in accordance with the amount of NOx contained in the combustion exhaust gas after being burned in the combustion burner section 12. The amount of fuel gas is controlled.
  • the amount of the combustion air is increased, for example, When the fuel gas is burned in the combustion burner section 12 so that the air ratio ⁇ exceeds 1.0, the fuel gas is burned by a sufficient amount of combustion air, and CO gas in the combustion exhaust gas or While unburned component gas such as hydrocarbon (HC) gas decreases, a large amount of NOx is generated at the time of combustion, and a large amount of NOx is contained in the combustion exhaust gas.
  • HC hydrocarbon
  • the control valve 26a causes the fuel gas guide passage 26 to flow upstream of the exhaust gas processing portion 24 in the exhaust gas discharge direction.
  • An appropriate amount of fuel gas is supplied to a position upstream of the exhaust gas processing unit 24 in the discharge direction of the combustion exhaust gas by controlling the amount of fuel gas guided to the position of. It is led to the exhaust gas processing unit 24 containing the three-way catalyst together with the combustion exhaust gas.
  • the NOx in the combustion exhaust gas reacts with the fuel gas through the fuel gas guide path 26 as described above by the action of the three-way catalyst accommodated in the exhaust gas processing unit 24 and the NOx is reduced to N 2. Become so.
  • the amount of fuel gas led to the exhaust gas processing unit 24 through the fuel gas guide passage 26 is increased.
  • the afterburning device 25 as described above by burning unburned components gas in the combustion exhaust gas discharged from the exhaust gas treatment unit 24, CO 2 Ya It can be made to discharge in the state oxidized to H 2 O.
  • the fuel supplied to the combustion burner section 12 through the fuel gas supply pipe 21 as in the radiant tube burner unit shown in FIG. A fuel gas guiding path 26 for guiding a part of the gas to a position upstream of the exhaust gas processing unit 24 in the exhaust gas discharge direction, and a discharge direction of the combustion exhaust gas from the exhaust gas processing unit 24 through the fuel gas guide path 26
  • a plurality of such radiant tube burners 10 are provided to the furnace wall 1 a of the industrial furnace 1 using a radiant tube burner 10 provided with a control valve 26 a for controlling the amount of fuel gas guided to the upstream position. ing.
  • the exhaust pipes 23 for guiding the combustion exhaust gas discharged from the exhaust gas processing unit 24 are joined together in each of the radiant tube burners 10 described above, and the exhaust pipes thus joined together
  • the afterburning apparatus 25 is provided at 23 and the combustion exhaust gas from which the unburned component gas remains is discharged from the exhaust gas processing unit 24 as described above, in the combustion exhaust gas discharged from each exhaust gas processing unit 24.
  • the unburned component gas is then burned by the combustion device 25 to be oxidized to CO 2 or H 2 O.
  • the exhaust pipe 23 on the downstream side in the discharge direction of the combustion exhaust gas from the post-combustion device 25 is provided with a large diameter portion 23a having a large diameter, and the inside of the large diameter portion 23a
  • the second heat exchange section 32 is provided, and the combustion air is introduced to the second heat exchange section 32 through the combustion air guide pipe 34 by the blower 33.
  • the combustion air led to the second heat exchange section 32 as described above is led to the large diameter section 23 a in the second heat exchange section 32.
  • the combustion exhaust gas after being heated by the heat of the combustion exhaust gas from the exhaust gas processing unit 24 or the heat of the combustion exhaust gas after being post-combusted in the above-described post-combustion device 25 and heating the combustion air in this way is It is made to discharge from chimney 23b through the exhaust pipe 23 of this.
  • the combustion air heated in the second heat exchange section 32 is passed through the combustion air guide pipe 34 on the downstream side of the second heat exchange section 32 to form the first air in each radiant tube burner 10. It leads to the heat exchange part 31.
  • the combustion air heated in the second heat exchange unit 32 as described above is further heated by the heat of the combustion exhaust gas before being introduced to the exhaust gas processing unit 24, and the like to supply the combustion air heated to the combustion burner section 12 through the combustion air supply pipe 22 so that the combustion air heated as described above is mixed with the fuel gas to burn the fuel gas. I have to.
  • the exhaust pipes 23 for guiding the combustion exhaust gas discharged from the exhaust gas processing unit 24 in each radiant tube burner 10 are merged and merged in this way
  • the post-combustion device 25 and the second heat exchange section 32 are provided in the exhaust pipe 23, but the post-combustion device 25 is provided for each radiant tube burner 10 as in the radiant tube burner unit shown in FIG.
  • the second heat exchange unit 32 can be provided separately.
  • the combustion air is introduced into the first heat exchanging portion 31 of each radiant tube burner 10 by the air blower 33.
  • the combustion air heated in each first heat exchange section 31 is supplied to the combustion burner section 12 in each radiant tube burner 10 through the combustion air supply pipe 22, and each combustion burner section 12
  • the fuel gas and the heated combustion air are mixed respectively, the fuel gas is burned in each radiant tube 11, and the flue gas after combustion is passed through the exhaust pipe 23 from the other end of the radiant tube 11 through a chimney (see FIG. It is made to discharge from (not shown) etc.
  • the combustion burner section 12 is supplied through the fuel gas supply pipe 21.
  • a fuel gas guiding passage 26 for guiding a part of the fuel gas to a position upstream of the exhaust gas processing unit 24 in the exhaust gas discharge direction, and a discharge of the combustion exhaust gas from the exhaust gas processing unit 24 through the fuel gas guide passage 26 Using a radiant tube burner 10 provided with a control valve 26a for controlling the amount of fuel gas guided to a position upstream in the direction, and providing a plurality of such radiant tube burners 10 to the furnace wall 1a of the industrial furnace 1 I have to.
  • the exhaust pipes 23 for guiding the combustion exhaust gas discharged from the exhaust gas processing unit 24 are joined together, and the exhaust pipes thus joined together
  • the afterburning apparatus 25 is provided at 23 and the combustion exhaust gas from which the unburned component gas remains is discharged from the exhaust gas processing unit 24 as described above, in the combustion exhaust gas discharged from each exhaust gas processing unit 24.
  • the unburned component gas is then burned by the combustion device 25 to be oxidized to CO 2 or H 2 O.
  • the diameter of the exhaust pipe 23 at the downstream side of the exhaust gas discharge direction from the post-combustion device 25 is larger.
  • the large portion 23a is provided, and the second heat exchange portion 32 is provided in the large diameter portion 23a.
  • the preheating zone 1c is used to preheat the processed material so as to continuously process the elongated processed material (not shown) such as a steel strip. It is provided to communicate with the industrial furnace 1 via the guide path 1b.
  • the atmosphere gas in the preheating zone 1 c is guided by the blower 41 through the atmosphere gas circulation pipe 42 to the second heat exchange unit 32, and the second heat exchange is performed.
  • the heat of the combustion exhaust gas from the exhaust gas processing portion 24 led to the large diameter portion 23a and the heat of the combustion exhaust gas after the post-combustion in the post-combustion device 25 are heated, and thus The atmosphere gas in the preheating zone 1c is heated and circulated in the second heat exchange unit 32 so that the heated atmosphere gas is returned to the inside of the preheating zone 1c through the atmosphere gas circulation pipe 42.
  • combustion exhaust gas after the atmosphere gas is heated in the second heat exchange section 32 as described above is discharged from the chimney (not shown) through the exhaust pipe 23.
  • a part of the fuel gas supplied to the combustion burner section 12 through the fuel gas supply pipe 21 is A fuel gas guiding path 26 leading to a position on the upstream side of the exhaust gas discharge direction with respect to the exhaust gas processing unit 24 and a fuel guiding to a upstream side of the exhaust gas discharge direction from the exhaust gas processing unit 24 through the fuel gas guide path 26
  • the control valve 26a for controlling the amount of gas is provided, and the post-combustion device 25 is provided in the exhaust pipe 23 for guiding the combustion exhaust gas discharged from each exhaust gas processing unit 24, these need not necessarily be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Gas Burners (AREA)
  • Air Supply (AREA)
  • Chimneys And Flues (AREA)
  • Incineration Of Waste (AREA)

Abstract

In order to burn a mixture of fuel gas and combustion air in a combustion burner portion located at one end of a radiant tube burner, and discharge the exhaust gas after combustion from the other end of the radiant tube, this radiant tube burner unit comprises: an exhaust gas processing portion which contains a three-way catalyst on the downstream side in the direction in which the exhaust gas is discharged; a first heat-exchanging portion which heats the combustion air using the heat of the exhaust gas to be guided to the exhaust gas processing portion; and a second heat-exchanging portion which heats the combustion air using the heat of the exhaust gas discharged from the exhaust gas processing portion.

Description

ラジアントチューブバーナーユニット及び工業炉Radiant tube burner unit and industrial furnace
 本発明は、ラジアントチューブの一端部における燃焼バーナー部に燃料ガスと燃焼用空気とを供給し、前記の燃焼バーナー部において燃料ガスをラジアントチューブ内で燃焼させて、燃焼後の燃焼排ガスをラジアントチューブの他端部から排出させるラジアントチューブバーナーを備えたラジアントチューブバーナーユニット及びこのようなラジアントチューブバーナーユニットが複数設けられた工業炉に関するものである。特に、前記のようなラジアントチューブバーナーユニットにおいて、燃焼バーナー部に燃料ガスと燃焼用空気とを供給して、燃料ガスをラジアントチューブ内で燃焼させ、燃焼後の燃焼排ガスをラジアントチューブの他端部から外部に排出させるにあたり、燃焼排ガス中に有害な窒素酸化物(以下、NOxという。)や、またCOガスや炭化水素ガス(HC)等の未燃成分ガスが含まれた状態で、燃焼排ガスが外部に排出されるのを防止すると共に、燃焼排ガスの熱を有効に利用するようにした点に特徴を有するものである。 The present invention supplies the fuel gas and the combustion air to the combustion burner section at one end of the radiant tube, burns the fuel gas in the radiant tube in the combustion burner section, and burns the combustion exhaust gas after combustion. And an industrial furnace provided with a plurality of such radiant tube burner units. In particular, in the radiant tube burner unit as described above, the fuel gas and the combustion air are supplied to the combustion burner portion to burn the fuel gas in the radiant tube, and the combustion exhaust gas after combustion is the other end of the radiant tube The combustion exhaust gas contains harmful nitrogen oxides (hereinafter referred to as "NOx") and unburned component gas such as CO gas and hydrocarbon gas (HC), etc. In addition to preventing the exhaust gas from being discharged to the outside, it is characterized in that the heat of the combustion exhaust gas is effectively used.
 従来から、加熱炉や熱処理炉等の工業炉においては、被加熱物を加熱させるにあたり、火炎が被加熱物に接触して、被加熱物が酸化されたりするのを防止するため、ラジアントチューブバーナーを備えたラジアントチューブバーナーユニットが利用されている。 Conventionally, in an industrial furnace such as a heating furnace or a heat treatment furnace, a radiant tube burner is used to prevent the flame from contacting the object to be heated and oxidizing the object when heating the object to be heated. A radiant tube burner unit is used.
 そして、このようなラジアントチューブバーナーユニットにおいては、一般に、ラジアントチューブの一端部における燃焼バーナー部に燃料ガスと燃焼用空気とを供給し、前記の燃焼バーナー部において燃料ガスと燃焼用空気とを混合させて、燃料ガスをラジアントチューブ内で燃焼させ、燃焼後の燃焼排ガスをラジアントチューブの他端部から排出させるようになっている。 In such a radiant tube burner unit, generally, the fuel gas and the combustion air are supplied to the combustion burner portion at one end of the radiant tube, and the fuel gas and the combustion air are mixed in the combustion burner portion. The fuel gas is burned in the radiant tube and the flue gas after burning is discharged from the other end of the radiant tube.
 ここで、前記のラジアントチューブバーナーにおいて、前記のように燃焼バーナー部において燃料ガスを燃焼用空気と混合させて、燃料ガスをラジアントチューブ内において燃焼させるにあたり、燃焼排ガスに含まれるNOxを減量化するために、燃料ガスに対する燃焼用空気の量を少なくし、空気比μ(実際の空気量/理論空気量)を1.0以下にして燃焼を行うと、燃焼排ガス中にCOガスや炭化水素(HC)ガス等の未燃成分ガスが多く残り、この未燃成分ガスがラジアントチューブの他端部から外部に排出されてしまい、安全性や環境の点において問題があった。 Here, in the radiant tube burner described above, the fuel gas is mixed with the combustion air in the combustion burner section as described above, and the NOx contained in the combustion exhaust gas is reduced in burning the fuel gas in the radiant tube In order to reduce the amount of combustion air to fuel gas and to perform combustion with an air ratio μ (actual air amount / theoretical air amount) of 1.0 or less, CO gas or hydrocarbons (ex. HC) A large amount of unburned component gas such as gas remains, and the unburned component gas is discharged from the other end of the radiant tube to the outside, which poses a problem in terms of safety and environment.
 一方、燃料ガスに対する燃焼用空気の量を多くし、空気比μが1.0を超えるようにして燃焼を行うと、燃焼排ガス中に未燃成分ガスが残るのが抑制されるが、燃焼時にNOxが多く発生し、NOxを多く含む燃焼排ガスがラジアントチューブの他端部から外部に排出されて、環境を大きく害するという問題があった。特に、近年においては、燃焼排ガス中におけるNOxを大幅に低減させることが要望されている。 On the other hand, if the amount of combustion air to fuel gas is increased and combustion is performed with the air ratio μ exceeding 1.0, the unburned component gas remaining in the combustion exhaust gas is suppressed, but at the time of combustion A large amount of NOx is generated, and the combustion exhaust gas containing a large amount of NOx is discharged to the outside from the other end of the radiant tube, resulting in a problem of significantly harming the environment. In particular, in recent years, there has been a demand to significantly reduce NOx in combustion exhaust gas.
 そして、近年においては、特許文献1に示されるように、ラジアントチューブバーナーからの燃焼排ガスを、窒素酸化物還元触媒を用いて浄化し、得られたNOx浄化ガスに空気比が1.0以上となるように燃焼用空気を添加した後、更に酸化触媒を用いて未燃成分を酸化除去させるようにしたものが提案されている。 And in recent years, as shown in Patent Document 1, the combustion exhaust gas from a radiant tube burner is purified using a nitrogen oxide reduction catalyst, and the obtained NOx purification gas has an air ratio of 1.0 or more. It has been proposed to oxidize and remove unburned components using an oxidation catalyst after adding combustion air as described above.
 ここで、特許文献1に示されるものにおいては、窒素酸化物還元触媒を収容させた第1の排ガス処理部と、酸化触媒を収容させた第2の排ガス処理部とを設けると共に、この第1の排ガス処理部と第2の排ガス処理部との間に空気を供給させることが必要になり、装置が複雑になって大型化する等の問題があった。 Here, in the case shown in Patent Document 1, a first exhaust gas processing unit containing a nitrogen oxide reduction catalyst and a second exhaust gas processing unit containing an oxidation catalyst are provided. It is necessary to supply air between the exhaust gas processing unit and the second exhaust gas processing unit, and there is a problem that the apparatus becomes complicated and becomes large.
 また、排ガス処理の一つとしては、三元触媒によって、安全、環境、人体などに悪影響なCO、HC、NOxを酸化、還元し、HO、CO、Nに変化させて浄化するものが知られている。 In addition, as one of the exhaust gas treatment, CO, HC, and NOx which are harmful to safety, environment, human body, etc. are oxidized and reduced by three-way catalyst, converted to H 2 O, CO 2 , N 2 and purified Things are known.
 また、従来においては、ラジアントチューブバーナーを備えたラジアントチューブバーナーユニットにおいて、燃料ガスをラジアントチューブ内で燃焼させた後における燃焼排ガスの熱を利用するため、特許文献2に示されるように、燃焼排ガスを排出させるラジアントチューブの排出側の端部に熱交換手段を設け、燃焼バーナー部に供給する燃焼用空気を燃焼排ガスの熱によって加熱させ、このように加熱された燃焼用空気を燃料ガスと混合させて燃焼バーナー部において燃焼させるようにして、燃焼排ガスの熱を利用するようにしたものが提案されている。 Also, conventionally, in a radiant tube burner unit provided with a radiant tube burner, in order to use the heat of the combustion exhaust gas after burning the fuel gas in the radiant tube, as shown in Patent Document 2, the combustion exhaust gas A heat exchange means is provided at the end of the discharge side of the radiant tube to discharge the combustion air, the combustion air supplied to the combustion burner is heated by the heat of the combustion exhaust gas, and the heated combustion air is mixed with the fuel gas It has been proposed that the heat of the combustion exhaust gas is utilized by causing the combustion burner portion to burn.
 しかし、特許文献2に示されるものにおいては、前記のように燃焼排ガスに含まれるNOxを軽減させたり、燃焼排ガス中にCOガスや炭化水素(HC)ガス等の未燃成分ガスが多く残ったりするのを解決することについては一切示されておらず、これらの問題を解決することはできないものである。 However, in the case shown in Patent Document 2, as described above, NOx contained in the combustion exhaust gas is reduced, or a large amount of unburned component gas such as CO gas or hydrocarbon (HC) gas remains in the combustion exhaust gas. There is no mention of solving the problem, and these problems can not be solved.
特開2001-241619号公報JP 2001-241619 A 特開平9-210305号公報Japanese Patent Application Laid-Open No. 9-210305
 本発明は、ラジアントチューブの一端部における燃焼バーナー部に燃料ガスと燃焼用空気とを供給し、前記の燃焼バーナー部において燃料ガスをラジアントチューブ内で燃焼させて、燃焼後の燃焼排ガスをラジアントチューブの他端部から排出させるラジアントチューブバーナーを備えたラジアントチューブバーナーユニットにおける前記のような問題を解決することを課題とするものである。 The present invention supplies the fuel gas and the combustion air to the combustion burner section at one end of the radiant tube, burns the fuel gas in the radiant tube in the combustion burner section, and burns the combustion exhaust gas after combustion. It is an object of the present invention to solve the above-mentioned problems in a radiant tube burner unit provided with a radiant tube burner to be discharged from the other end of.
 すなわち、本発明におけるラジアントチューブバーナーユニットにおいては、燃料ガスを燃焼バーナー部において燃焼用空気と混合させて、ラジアントチューブ内において燃焼させた後、燃焼排ガスをラジアントチューブの他端部から外部に排出させるにあたり、燃焼排ガス中に有害なNOxや、またCOガスや炭化水素(HC)ガス等の未燃成分ガスが含まれた状態で、燃焼排ガスが外部に排出されるのを適切に防止すると共に、燃焼排ガスの熱を有効に利用できるようにすることを課題とするものである。 That is, in the radiant tube burner unit according to the present invention, after the fuel gas is mixed with the combustion air in the combustion burner portion and burned in the radiant tube, the flue gas is discharged from the other end of the radiant tube to the outside On the other hand, the combustion exhaust gas is properly prevented from being discharged to the outside in the state where the combustion exhaust gas contains harmful NOx and unburned component gas such as CO gas and hydrocarbon (HC) gas. It is an object of the present invention to make effective use of the heat of combustion exhaust gas.
 本発明に係るラジアントチューブバーナーユニットにおいては、前記のような課題を解決するため、ラジアントチューブの一端部における燃焼バーナー部に燃料ガスと燃焼用空気とを供給し、前記の燃焼バーナー部において燃料ガスをラジアントチューブ内で燃焼させて、燃焼後の燃焼排ガスをラジアントチューブの他端部から排出させるラジアントチューブバーナーを備えたラジアントチューブバーナーユニットにおいて、前記のラジアントチューブにおける燃焼排ガスの排出方向下流側の位置に、三元触媒を収容させた排ガス処理部を設けると共に、前記の排ガス処理部よりも燃焼排ガスの排出方向上流側の位置に、燃焼排ガスの熱によって燃焼バーナー部に供給する燃焼用空気を加熱させる第1熱交換手段を設け、さらに前記の排ガス処理部よりも燃焼排ガスの排出方向下流側の位置に、排ガス処理部から排出される燃焼排ガスの熱によって燃焼バーナー部に供給する燃焼用空気を加熱させる第2熱交換手段を設けた。 In the radiant tube burner unit according to the present invention, in order to solve the above problems, the fuel gas and the combustion air are supplied to the combustion burner portion at one end of the radiant tube, and the fuel gas in the combustion burner portion In a radiant tube burner unit provided with a radiant tube burner for burning the combustion exhaust gas in the radiant tube and discharging the combustion exhaust gas from the other end of the radiant tube, a position downstream of the emission direction of the exhaust gas in the radiant tube And an exhaust gas processing unit containing a three-way catalyst and heating combustion air supplied to the combustion burner unit by the heat of the combustion exhaust gas at a position upstream of the exhaust gas processing unit in the exhaust gas discharge direction. First heat exchange means for The position of the discharge direction downstream side of the combustion exhaust gas than the processing unit, provided with a second heat exchange means for heating the combustion air supplied to the burner unit by the heat of the combustion exhaust gas discharged from the exhaust gas treatment unit.
 そして、前記のラジアントチューブバーナーユニットにおいては、ラジアントチューブ内で燃料ガスを燃焼させた後の燃焼排ガスを前記の排ガス処理部に導き、この排ガス処理部に収容された三元触媒により、燃焼排ガスに含まれるNOxを燃焼排ガスに含まれる未燃成分ガスによって還元させるようにする。 In the radiant tube burner unit, the combustion exhaust gas after burning the fuel gas in the radiant tube is led to the exhaust gas processing unit, and the three-way catalyst accommodated in the exhaust gas processing unit is used to generate the combustion exhaust gas. The contained NOx is reduced by the unburned component gas contained in the combustion exhaust gas.
 ここで、前記のように燃焼バーナー部に燃料ガスと燃焼用空気とを供給するにあたり、燃料ガスに対する燃焼用空気の量を少なくして、空気比μを1.0以下にすると、燃焼時に発生するNOxの量が少なくなって燃焼排ガスに含まれるNOxが減少し、更にその燃焼排ガスに含まれるNOxが前記の三元触媒により燃焼排ガスに含まれる未燃成分ガスによって十分に還元されるようになる。 Here, when supplying the fuel gas and the combustion air to the combustion burner portion as described above, if the air ratio μ is 1.0 or less by reducing the amount of the combustion air to the fuel gas, it occurs at the time of combustion. The amount of NOx to be reduced decreases so that the NOx contained in the combustion exhaust gas is reduced, and the NOx contained in the combustion exhaust gas is sufficiently reduced by the three-way catalyst by the unburned component gas contained in the combustion exhaust gas. Become.
 また、前記のラジアントチューブバーナーユニットにおいては、排ガス処理部よりも燃焼排ガスの排出方向上流側の位置に設けた第1熱交換手段において、燃焼バーナー部に供給する燃焼用空気を燃焼排ガスの熱によって加熱させると共に、排ガス処理部よりも燃焼排ガスの排出方向下流側の位置に設けた第2熱交換手段において、燃焼バーナー部に供給する燃焼用空気を燃焼排ガスの熱によって加熱させるようにする。このようにすると、第1熱交換手段と第2熱交換手段とにおいて、燃焼バーナー部に供給される燃焼用空気が燃焼排ガスの熱により加熱され、燃焼排ガスの熱が有効に利用されるようになる。 In the radiant tube burner unit described above, in the first heat exchange means provided at a position upstream of the exhaust gas processing unit in the exhaust gas discharge direction, the combustion air supplied to the combustion burner unit is generated by the heat of the combustion exhaust gas. In the second heat exchange means provided at a position downstream of the exhaust gas processing unit in the discharge direction of the combustion exhaust gas, the combustion air supplied to the combustion burner unit is heated by the heat of the combustion exhaust gas. In this case, in the first heat exchange means and the second heat exchange means, the combustion air supplied to the combustion burner portion is heated by the heat of the combustion exhaust gas so that the heat of the combustion exhaust gas is effectively used. Become.
 ここで、前記のラジアントチューブバーナーユニットにおいては、前記の第2熱交換手段において加熱された燃焼用空気を前記の第1熱交換手段に導き、この第1熱交換手段において、第2熱交換手段から導かれた加熱された燃焼用空気を燃焼排ガスの熱によりさらに加熱させて、前記の燃焼バーナー部に供給させるようにすることもできる。 Here, in the radiant tube burner unit, the combustion air heated in the second heat exchange means is led to the first heat exchange means, and in the first heat exchange means, the second heat exchange means The heated combustion air introduced from the above may be further heated by the heat of the combustion exhaust gas and supplied to the above-mentioned combustion burner portion.
 また、本発明に係るラジアントチューブバーナーユニットにおいては、前記の燃焼バーナー部に供給する燃料ガスの一部を、前記の排ガス処理部よりも燃焼排ガスの排出方向上流側の位置に導く燃料ガス案内路と、この燃料ガス案内路を通して案内する燃料ガスの量を制御する制御手段とを設けることが好ましい。 Further, in the radiant tube burner unit according to the present invention, a fuel gas guiding passage for guiding a part of the fuel gas supplied to the combustion burner section to a position upstream of the exhaust gas processing section in the exhaust gas discharge direction. It is preferable to provide a control means for controlling the amount of fuel gas guided through the fuel gas guiding path.
 そして、このように燃料ガス案内路を通して案内する燃料ガスの量を制御する制御手段を設けた場合、この制御手段において、前記の燃焼排ガスに含まれる窒素酸化物の量に対応させて、燃料ガス案内路を通して案内する燃料ガスの量を制御させるようにする。 When the control means for controlling the amount of fuel gas guided through the fuel gas guide path is provided as described above, the control means is adapted to correspond to the amount of nitrogen oxides contained in the combustion exhaust gas, and The amount of fuel gas guided through the guiding path is controlled.
 ここで、前記のように燃焼バーナー部に燃料ガスと燃焼用空気とを供給するにあたり、燃料ガスに対する燃焼用空気の量が多くなった状態で、燃料ガスを前記の燃焼バーナー部において燃焼させた結果、燃焼排ガス中にNOxが多く含まれるようになった場合には、前記の制御手段により燃料ガス案内路を通して前記の三元触媒を収容させた排ガス処理部に導かれる前に適当量の燃料ガスを供給させるようにすることができる。このようにすると、NOxが多く含まれる燃焼排ガスと適当量の燃料ガスとが一緒になって排ガス処理部に導かれ、前記の三元触媒の作用によって、燃焼排ガス中におけるNOxが十分に還元されて排出されるようになる。 Here, when the fuel gas and the combustion air are supplied to the combustion burner portion as described above, the fuel gas is burned in the combustion burner portion while the amount of the combustion air to the fuel gas is increased. As a result, when a large amount of NOx is contained in the combustion exhaust gas, an appropriate amount of fuel is introduced before it is led to the exhaust gas processing unit containing the three-way catalyst through the fuel gas guide path by the control means. Gas can be supplied. In this way, the combustion exhaust gas containing a large amount of NOx and the appropriate amount of fuel gas are brought together to the exhaust gas treatment unit, and the NOx in the combustion exhaust gas is sufficiently reduced by the action of the three-way catalyst. Will be discharged.
 また、本発明に係る前記のラジアントチューブバーナーユニットにおいては、前記の排ガス処理部と前記の第2熱交換手段との間に、排ガス処理部から排出される燃焼排ガスに含まれる未燃成分ガスを燃焼させる後燃焼装置を設けることが好ましい。このようにすると、排ガス処理部において処理された燃焼排ガス中に未燃成分ガスが残っていても、この未燃成分ガスが前記の後燃焼装置により燃焼されてCOやHOに酸化され、燃焼排ガス中に未燃成分ガスが残った状態で排出されるのが防止されると共に、このように後燃焼装置により燃焼された燃焼排ガスが前記の第2熱交換手段に導かれ、この第2熱交換手段において、燃焼バーナー部に供給する燃焼用空気が、後燃焼装置により燃焼された燃焼排ガスの熱によってさらに十分に加熱されるようになり、燃焼排ガスの熱がさらに効率よく利用されるようになる。 In the radiant tube burner unit according to the present invention, the unburned component gas contained in the combustion exhaust gas discharged from the exhaust gas processing unit is disposed between the exhaust gas processing unit and the second heat exchange means. Preferably, a post-combustion device is provided to burn. In this way, even if unburned component gas remains in the combustion exhaust gas processed in the exhaust gas processing unit, the unburned component gas is burned by the post-combustion device and oxidized to CO 2 or H 2 O. And exhausting unburned component gas remaining in the combustion exhaust gas is prevented, and the combustion exhaust gas thus burned by the post-combustion device is led to the second heat exchange means, and (2) In the heat exchange means, the combustion air supplied to the combustion burner portion is more sufficiently heated by the heat of the combustion exhaust gas burned by the post combustion device, and the heat of the combustion exhaust gas is used more efficiently It will be.
 また、本発明に係る第1の工業炉においては、ラジアントチューブバーナーユニットを複数設けるにあたり、前記のようなラジアントチューブバーナーユニットを複数設けるようにした。 Further, in the first industrial furnace according to the present invention, when providing a plurality of radiant tube burner units, a plurality of radiant tube burner units as described above are provided.
 ここで、前記の第1の工業炉においては、各ラジアントチューブバーナーユニットにおける各排ガス処理部よりも燃焼排ガスの排出方向下流側の位置に、各排ガス処理部から排出される燃焼排ガスの熱によって、各ラジアントチューブバーナーユニットにおける燃焼バーナー部に供給する燃焼用空気を加熱させる1つの第2熱交換手段を設けるようにすることができる。 Here, in the first industrial furnace, the heat of the combustion exhaust gas discharged from each exhaust gas processing unit is provided at a position downstream of the exhaust gas processing unit in each radiant tube burner unit in the discharge direction of the combustion exhaust gas. It is possible to provide one second heat exchange means for heating the combustion air supplied to the combustion burner section in each radiant tube burner unit.
 また、本発明に係る第2の工業炉においては、ラジアントチューブバーナーユニットを複数設けるにあたり、各ラジアントチューブの燃焼排ガスの排出方向下流側の位置に三元触媒を収容させた排ガス処理部を設け、各排ガス処理部よりも燃焼排ガスの排出方向上流側の位置に、それぞれ各燃焼バーナー部に供給する燃焼用空気を燃焼排ガスの熱によって加熱させる第1熱交換手段を設ける一方、各ラジアントチューブバーナーユニットにおける排ガス処理部よりも燃焼排ガスの排出方向下流側の位置に、各排ガス処理部から排出される燃焼排ガスの熱によって予備加熱帯における雰囲気ガスを加熱させる第2熱交換手段を設け、予備加熱帯における雰囲気ガスを、この第2熱交換手段により加熱させて循環させるようにした。 Further, in the second industrial furnace according to the present invention, in providing a plurality of radiant tube burner units, an exhaust gas processing unit containing a three-way catalyst is provided at a position downstream of each radiant tube in the exhaust gas discharge direction. A first heat exchange means for heating the combustion air supplied to each combustion burner unit by the heat of the combustion exhaust gas is provided at a position upstream of the exhaust gas processing units in the discharge direction of the combustion exhaust gas, while each radiant tube burner unit A second heat exchange means for heating the atmosphere gas in the preheating zone by the heat of the combustion exhaust gas discharged from each exhaust gas processing unit is provided at a position downstream of the exhaust gas processing unit in the discharge direction of the combustion exhaust gas The atmosphere gas in the above is heated by this second heat exchange means and circulated.
 本発明におけるラジアントチューブバーナーユニットにおいては、燃焼バーナー部に燃料ガスと燃焼用空気とを供給し、燃料ガスをラジアントチューブ内で燃焼させて、燃焼後の燃焼排ガスをラジアントチューブの他端部から排出させるにあたり、前記のように燃焼排ガスを三元触媒が収容された排ガス処理部に導いて、燃焼排ガス中における有害なNOxや、COガスや炭化水素(HC)ガスからなる未燃成分ガスを処理すると共に、前記の排ガス処理部よりも燃焼排ガスの排出方向上流側の位置に設けた第1熱交換手段によって、燃焼バーナー部に供給する燃焼用空気を燃焼排ガスの熱によって加熱させ、さらに排ガス処理部よりも燃焼排ガスの排出方向下流側の位置に設けた第2熱交換手段によって、燃焼バーナー部に供給する燃焼用空気や予備加熱帯における雰囲気ガスを排ガス処理部から排出された燃焼排ガスの熱によって加熱させるようにした。 In the radiant tube burner unit according to the present invention, the fuel gas and the combustion air are supplied to the combustion burner portion, the fuel gas is burned in the radiant tube, and the combustion exhaust gas is discharged from the other end of the radiant tube. As described above, the combustion exhaust gas is led to the exhaust gas processing unit in which the three-way catalyst is accommodated to treat harmful NOx contained in the combustion exhaust gas, and unburned component gas consisting of CO gas and hydrocarbon (HC) gas. At the same time, the combustion air supplied to the combustion burner portion is heated by the heat of the combustion exhaust gas by the first heat exchange means provided at a position upstream of the exhaust gas processing portion in the discharge direction of the combustion exhaust gas. Combustion to be supplied to the combustion burner section by the second heat exchange means provided at a position downstream of the exhaust gas discharge direction from The atmospheric gas in the air and preheat zone was set to be heated by the heat of the combustion exhaust gas discharged from the exhaust gas treatment unit.
 この結果、本発明におけるラジアントチューブバーナーユニットにおいては、燃料ガスを燃焼用空気と混合させて、ラジアントチューブ内において燃焼させた場合に、燃焼排ガス中におけるNOxや未燃成分ガスが排ガス処理部において適切に処理され、燃焼排ガス中にNOxや未燃成分ガスが含まれない安全な状態で、燃焼排ガスを外部に適切に排出できるようになると共に、第1熱交換手段と第2熱交換手段とにおいて、燃焼バーナー部に供給される燃焼用空気や予備加熱帯における雰囲気ガスが燃焼排ガスの熱により十分に加熱され、燃焼排ガスの熱が有効に利用されるようになる。 As a result, in the radiant tube burner unit according to the present invention, when the fuel gas is mixed with the combustion air and burned in the radiant tube, NOx and unburned component gas in the combustion exhaust gas are appropriate in the exhaust gas processing unit. In the first heat exchange means and the second heat exchange means, the combustion exhaust gas can be properly discharged to the outside in a safe state where the combustion exhaust gas contains no NOx and unburned component gas. The combustion air supplied to the combustion burner portion and the atmosphere gas in the preheating zone are sufficiently heated by the heat of the combustion exhaust gas, and the heat of the combustion exhaust gas is effectively used.
本発明の実施形態に係るラジアントチューブバーナーユニットを工業炉に設けた状態を示した概略説明図である。It is the schematic explanatory drawing which showed the state which provided the radiant tube burner unit which concerns on embodiment of this invention in the industrial furnace. 前記の実施形態に係るラジアントチューブバーナーユニットにおいて、排ガス処理部と第2熱交換手段との間に、排ガス処理部から排出される燃焼排ガスに含まれる未燃成分ガスを燃焼させる後燃焼装置を設けた第1の変更例を示した概略説明図である。In the radiant tube burner unit according to the above embodiment, an afterburner is provided between the exhaust gas processing unit and the second heat exchange means to burn unburned component gas contained in the combustion exhaust gas discharged from the exhaust gas processing unit. It is the schematic explanatory drawing which showed the 1st example of a change. 前記の実施形態に係るラジアントチューブバーナーユニットにおいて、燃焼バーナー部に供給する燃料ガスの一部を排ガス処理部よりも燃焼排ガスの排出方向上流側の位置に導く燃料ガス案内路と、この燃料ガス案内路を通して案内する燃料ガスの量を制御する制御手段とを設けると共に、排ガス処理部と第2熱交換手段との間に、排ガス処理部から排出される燃焼排ガスに含まれる未燃成分ガスを燃焼させる後燃焼装置を設けた第2の変更例を示した概略説明図である。In the radiant tube burner unit according to the above-described embodiment, a fuel gas guiding path for guiding a part of the fuel gas supplied to the combustion burner section to a position upstream of the exhaust gas processing section in the discharge direction of the combustion exhaust gas; Control means for controlling the amount of fuel gas guided through the passage, and burning unburned component gas contained in the combustion exhaust gas discharged from the exhaust gas processing unit between the exhaust gas processing unit and the second heat exchange unit It is the schematic explanatory drawing which showed the 2nd modification which provided the post-combustion apparatus to make it carry out. 本発明の実施形態に係る第1の工業炉の使用状態を示した概略説明図である。It is the schematic explanatory drawing which showed the use condition of the 1st industrial furnace which concerns on embodiment of this invention. 本発明の実施形態に係る第2の工業炉の使用状態を示した概略説明図である。It is the schematic explanatory drawing which showed the use condition of the 2nd industrial furnace which concerns on embodiment of this invention.
 以下、本発明の実施形態に係るラジアントチューブバーナーユニット及びラジアントチューブバーナーユニットが複数設けられた工業炉を添付図面に基づいて具体的に説明する。なお、本発明に係るラジアントチューブバーナーユニット及び工業炉は、下記の実施形態に示したものに限定されず、発明の要旨を変更しない範囲において、適宜変更して実施できるものである。 Hereinafter, an industrial furnace provided with a plurality of radiant tube burner units and radiant tube burner units according to an embodiment of the present invention will be specifically described based on the attached drawings. In addition, the radiant tube burner unit and the industrial furnace which concern on this invention are not limited to what was shown to the following embodiment, In the range which does not change the summary of invention, it can change suitably and can implement.
 ここで、図1に示す第1の実施形態に係るラジアントチューブバーナーユニットにおいては、ラジアントチューブバーナー10におけるラジアントチューブ11としてU字型に形成されたものを用い、このU字型になったラジアントチューブ11を工業炉1の内部に配置させる一方、このラジアントチューブ11の両端部を、炉壁1aを通して工業炉1の外部に延出させるようにしている。なお、ラジアントチューブ11の形状はU字型に限られず、W字型やI字型等の公知のどのような形状のものであってもよい。 Here, in the radiant tube burner unit according to the first embodiment shown in FIG. 1, a U-shaped radiant tube is used as the radiant tube 11 in the radiant tube burner 10, and this U-shaped radiant tube is used. 11 is disposed inside the industrial furnace 1, and both ends of the radiant tube 11 are extended outside the industrial furnace 1 through the furnace wall 1a. The shape of the radiant tube 11 is not limited to the U-shape, and may be any known shape such as a W-shape or an I-shape.
 そして、この実施形態においては、ラジアントチューブ11の一端側における燃焼バーナー部12に、燃料ガス供給管21を通して炭化水素(HC)ガス等の燃料ガスを供給すると共に、後述する第1熱交換手段31と第2熱交換手段32とにおいて、燃焼排ガスの熱により加熱された燃焼用空気を、燃焼用空気供給管22を通して供給し、この燃焼バーナー部12において、燃料ガスと加熱された燃焼用空気とを混合させて、燃料ガスをラジアントチューブ11内で燃焼させ、燃焼後の燃焼排ガスをラジアントチューブ11の他端部から排気管23を通して煙突(図示せず)等から排出させるようにしている。 And, in this embodiment, fuel gas such as hydrocarbon (HC) gas is supplied to the combustion burner section 12 at one end side of the radiant tube 11 through the fuel gas supply pipe 21, and the first heat exchange means 31 described later In the second heat exchange means 32, combustion air heated by the heat of the combustion exhaust gas is supplied through the combustion air supply pipe 22, and in the combustion burner section 12, the fuel gas and the heated combustion air are supplied. Are mixed to burn the fuel gas in the radiant tube 11, and the flue gas after combustion is discharged from the other end of the radiant tube 11 through the exhaust pipe 23 from a chimney (not shown) or the like.
 ここで、この実施形態においては、前記の燃焼排ガスを排出させるラジアントチューブ11の他端部に、三元触媒を収容させた排ガス処理部24を設け、ラジアントチューブ11内で燃焼させた後の燃焼排ガスをこの排ガス処理部24に導いて処理するようにしている。 Here, in this embodiment, an exhaust gas processing unit 24 containing a three-way catalyst is provided at the other end of the radiant tube 11 for discharging the above-mentioned combustion exhaust gas, and combustion after burning in the radiant tube 11 The exhaust gas is led to the exhaust gas processing unit 24 for processing.
 また、この実施形態においては、燃焼用空気を燃焼排ガスの熱によって加熱させる第1熱交換手段31として、排ガス処理部24よりも燃焼排ガスの排出方向上流側におけるラジアントチューブ11内に第1熱交換部31を設けると共に、燃焼用空気を燃焼排ガスの熱によって加熱させる第2熱交換手段32として、排ガス処理部24よりも燃焼排ガスの排出方向下流側における排気管23内に第2熱交換部32を設けるようにしている。なお、この実施形態においては、第1熱交換部31をラジアントチューブ11内に設けると共に、第2熱交換部32を排気管23内に設けるようにしたが、第1熱交換部31をラジアントチューブ11内から取り出した位置や、第2熱交換部32を排気管23内から取り出した位置に設けるようにすることもできる。 Further, in this embodiment, as the first heat exchange means 31 for heating the combustion air by the heat of the combustion exhaust gas, the first heat exchange in the radiant tube 11 on the upstream side of the exhaust gas discharge direction with respect to the exhaust gas processing unit 24 As the second heat exchange means 32 for heating the combustion air with the heat of the combustion exhaust gas while providing the portion 31, the second heat exchange portion 32 in the exhaust pipe 23 downstream of the exhaust gas discharge direction with respect to the exhaust gas processing portion 24. To provide In this embodiment, the first heat exchange unit 31 is provided in the radiant tube 11 and the second heat exchange unit 32 is provided in the exhaust pipe 23. However, the first heat exchange unit 31 is provided in the radiant tube Alternatively, the second heat exchanging unit 32 may be provided at a position taken out from the inside of the exhaust pipe 23 or a position taken out from the inside of the exhaust pipe 23.
 そして、この実施形態においては、燃焼用空気を、送風装置33により燃焼用空気案内管34を通して前記の第2熱交換部32に導き、この第2熱交換部32において、燃焼用空気を排ガス処理部24から導かれた燃焼排ガスの熱によって加熱させ、燃焼用空気を加熱させた後の燃焼排ガスを、前記のように排気管23を通して排出させるようにしている。 Then, in this embodiment, the combustion air is guided by the blower 33 through the combustion air guide pipe 34 to the second heat exchange section 32, and the second heat exchange section 32 treats the combustion air as exhaust gas. The combustion exhaust gas is heated by the heat of the combustion exhaust gas led from the portion 24 and the combustion exhaust gas after the combustion air is heated is discharged through the exhaust pipe 23 as described above.
 また、前記のように第2熱交換部32において加熱された燃焼用空気を、第2熱交換部32よりも下流側における燃焼用空気案内管34を通して前記の第1熱交換部31に導き、この第1熱交換部31において、前記のように加熱された燃焼用空気を排ガス処理部24に導かれる前の燃焼排ガスの熱によってさらに加熱させ、このように加熱させた燃焼用空気を、前記の燃焼用空気供給管22を通して燃焼バーナー部12に供給し、前記のように加熱された燃焼用空気と燃料ガスとを混合させて、燃料ガスを燃焼させるようにしている。 Further, as described above, the combustion air heated in the second heat exchange unit 32 is guided to the first heat exchange unit 31 through the combustion air guide pipe 34 at the downstream side of the second heat exchange unit 32; In the first heat exchange section 31, the combustion air heated as described above is further heated by the heat of the combustion exhaust gas before being introduced to the exhaust gas processing section 24, and the combustion air thus heated is The fuel gas is supplied to the combustion burner section 12 through the combustion air supply pipe 22 and the combustion air and fuel gas heated as described above are mixed to burn the fuel gas.
 このようにすると、第1熱交換部31と第2熱交換部32とにおいて、燃焼用排ガスの熱により燃焼用空気が十分に加熱され、この状態で、燃焼バーナー部12に導かれて燃料ガスが燃焼されるようになり、燃焼用排ガスの熱を有効に利用できるようになると共に、前記の第1熱交換部31において燃焼用排ガスと燃焼用空気との間で熱交換が行われて、ラジアントチューブ11から前記の排ガス処理部24に導かれる燃焼用排ガスの温度が低下し、燃焼用排ガスの温度が、排ガス処理部24に収容させた三元触媒が機能できる温度領域を超えた温度になるのが防止され、三元触媒によって燃焼用排ガスを適切に処理できるようになる。なお、三元触媒が機能できる温度領域は約400℃~800℃である。 Thus, the combustion air is sufficiently heated by the heat of the combustion exhaust gas in the first heat exchange unit 31 and the second heat exchange unit 32, and in this state, it is led to the combustion burner unit 12 and the fuel gas is Is combusted, and the heat of the combustion exhaust gas can be effectively utilized, and heat exchange is performed between the combustion exhaust gas and the combustion air in the first heat exchange section 31; The temperature of the combustion exhaust gas led from the radiant tube 11 to the exhaust gas processing unit 24 decreases, and the temperature of the combustion exhaust gas exceeds the temperature range where the three-way catalyst accommodated in the exhaust gas processing unit 24 can function. And the three-way catalyst can properly treat the combustion exhaust gas. The temperature range in which the three-way catalyst can function is about 400 ° C. to 800 ° C.
 ここで、前記のラジアントチューブバーナーユニットにおいて、前記の燃焼バーナー部12に、燃料ガス供給管21と燃焼用空気供給管22とを通して燃料ガスと燃焼用空気とを供給するにあたり、燃焼時に発生するNOxの量を少なくするため、燃料ガスに対する燃焼用空気の量を少なくし、例えば、空気比μを1.0以下にして、前記の燃焼バーナー部12において燃料ガスを燃焼させるようにすることが行われている。 Here, in the radiant tube burner unit described above, NOx is generated during combustion when supplying the fuel gas and the combustion air to the combustion burner portion 12 through the fuel gas supply pipe 21 and the combustion air supply pipe 22. In order to reduce the amount of combustion air, the amount of combustion air to fuel gas may be reduced, for example, to make the air ratio .mu. It is
 そして、このように燃料ガスに対する燃焼用空気の量を少なくして、燃料ガスを燃焼させると、燃焼排ガスに含まれるNOxが減少すると共に、この燃焼排ガス中にCOガスや炭化水素(HC)ガス等の未燃成分ガスが残るようになる。 Then, when the amount of combustion air to fuel gas is reduced as described above and the fuel gas is burned, NOx contained in the combustion exhaust gas is reduced, and CO gas or hydrocarbon (HC) gas is contained in the combustion exhaust gas. Unburned component gas such as is left behind.
 ここで、このようにNOxと未燃成分ガスとが残った燃焼排ガスを、ラジアントチューブ11における燃焼排ガスの排出方向下流側に設けられた前記の排ガス処理部24に導くと、この排ガス処理部24に収容された三元触媒により、燃焼排ガスに残ったNOxと未燃成分ガスとが反応して、NOxがNに還元されると共に、未燃成分ガスがCOやHOに酸化された状態で排出されるようになる。 Here, when the combustion exhaust gas in which the NOx and the unburned component gas remain in this way is led to the exhaust gas processing unit 24 provided on the downstream side of the emission direction of the combustion exhaust gas in the radiant tube 11, this exhaust gas processing unit 24 The three-way catalyst contained in the reaction causes the reaction between the NOx remaining in the combustion exhaust gas and the unburned component gas to reduce NOx to N 2 and oxidize the unburned component gas to CO 2 and H 2 O Will be discharged in
 そして、このようにNOxと未燃成分ガスとが残った燃焼排ガスを排ガス処理部24に収容された三元触媒によって処理するようにした場合において、燃料ガスに対する燃焼用空気の量が少なくなると、燃焼排ガス中における未燃成分ガスが多くなって、排ガス処理部24に収容された三元触媒によって未燃成分ガスが十分に処理されず、排ガス処理部24から未燃成分ガスが残った燃焼排ガスが排出されるおそれがある。 Then, in the case where the combustion exhaust gas in which the NOx and the unburned component gas remain in this way is treated by the three-way catalyst contained in the exhaust gas processing unit 24, when the amount of combustion air for the fuel gas decreases, A combustion exhaust gas in which the unburned component gas in the combustion exhaust gas is large and the unburned component gas is not sufficiently treated by the three-way catalyst contained in the exhaust gas processing unit 24 and the unburned component gas remains from the exhaust gas processing unit 24 May be discharged.
 このため、前記の実施形態に係るラジアントチューブバーナーユニットにおいて、図2に示すように、前記の排ガス処理部24よりも燃焼排ガスの排出方向下流側で、前記の第2熱交換部32よりも燃焼排ガスの排出方向上流側の位置における排気管23に後燃焼装置25を設け、この後燃焼装置25に対して、後燃焼用燃料ガス供給管25aから後燃焼用燃料ガスと、後燃焼用空気供給管25bから後燃焼用空気とを供給させることができる。 For this reason, in the radiant tube burner unit according to the embodiment, as shown in FIG. 2, the combustion in the exhaust gas discharge direction downstream of the exhaust gas processing unit 24 and in the combustion direction of the second heat exchange unit 32. The post-combustion device 25 is provided in the exhaust pipe 23 at a position on the upstream side in the discharge direction of the exhaust gas, and the post-combustion fuel gas from the post-combustion fuel gas supply pipe 25a is provided to the post-combustion device 25 and post-combustion air supply Post combustion air can be supplied from the pipe 25b.
 そして、前記のように排ガス処理部24から未燃成分ガスが残った燃焼排ガスが排出される場合には、前記の後燃焼装置25に対して、必要に応じて、後燃焼用燃料ガス供給管25aと後燃焼用空気供給管25bとから後燃焼用燃料ガスと後燃焼用空気とを供給して、この後燃焼装置25により燃焼排ガス中における未燃成分ガスを燃焼させ、未燃成分ガスをCOやHOに酸化させた状態で排出させるようにすることができる。 When the exhaust gas processing unit 24 discharges the combustion exhaust gas containing the unburned component gas as described above, the post-combustion device 25 is provided with a post-combustion fuel gas supply pipe as required. Fuel gas for post-combustion and air for post-combustion are supplied from 25a and post-combustion air supply pipe 25b, and then unburned component gas in the combustion exhaust gas is burned by the combustion device 25 to produce unburned component gas. It can be discharged in the state of being oxidized to CO 2 or H 2 O.
 また、このように後燃焼装置25により燃焼排ガス中における未燃成分ガスを燃焼させると、この後燃焼によって加熱された燃焼排ガスが前記の第2熱交換部32に導かれ、この加熱された燃焼排ガスにより、前記のように第2熱交換部32に導かれた燃焼用空気がさらに加熱されるようになり、後燃焼によって加熱された燃焼排ガスの熱も有効に利用されるようになる。なお、この実施形態においては、燃焼排ガスに残った未燃成分ガスを火炎によって燃焼させる後燃焼装置25を用いるようにしたが、後燃焼装置25はこのようなものに限定されず、電気加熱等によって燃焼排ガスに残った未燃成分ガスを燃焼させることもできる。 Further, when the unburned component gas in the combustion exhaust gas is burned by the post-combustion device 25 in this way, the combustion exhaust gas heated by the post-combustion is guided to the second heat exchange portion 32 and the heated combustion is carried out. As described above, the combustion air introduced to the second heat exchange unit 32 is further heated by the exhaust gas, and the heat of the combustion exhaust gas heated by the post-combustion is also effectively used. In this embodiment, although the post-combustion device 25 is used to burn the unburned component gas remaining in the combustion exhaust gas with a flame, the post-combustion device 25 is not limited to such a device, such as electric heating The unburned component gas remaining in the combustion exhaust gas can also be burned by
 また、前記のようなラジアントチューブバーナーユニットにおいて、図3に示すように、燃料ガス供給管21を通して燃焼バーナー部12に供給する燃料ガスの一部を、前記の排ガス処理部24よりも燃焼排ガスの排出方向上流側の位置に導く燃料ガス案内路26と、この燃料ガス案内路26を通して排ガス処理部24よりも燃焼排ガスの排出方向上流側の位置に案内する燃料ガスの量を制御する制御弁(制御手段)26aとを設けるようにすることができる。 Further, in the radiant tube burner unit as described above, as shown in FIG. 3, a part of the fuel gas supplied to the combustion burner unit 12 through the fuel gas supply pipe 21 is a part of the combustion exhaust gas than the exhaust gas processing unit 24. A fuel gas guiding passage 26 leading to a position on the upstream side in the discharge direction, and a control valve controlling the amount of fuel gas guided to a position on the upstream side in the discharge direction of the combustion exhaust gas from the exhaust gas processing unit 24 Control means) 26a can be provided.
 そして、このラジアントチューブバーナーユニットにおいては、前記の燃焼バーナー部12において燃焼された後の燃焼排ガスに含まれるNOxの量に対応させて、前記の制御弁26aにより、燃料ガス案内路26を通して案内する燃料ガスの量を制御するようにしている。 In this radiant tube burner unit, the control valve 26a guides the fuel gas through the fuel gas guide passage 26 in accordance with the amount of NOx contained in the combustion exhaust gas after being burned in the combustion burner section 12. The amount of fuel gas is controlled.
 ここで、前記のように燃料ガス供給管21と燃焼用空気供給管22とを通して燃焼バーナー部12に供給する燃料ガスと燃焼用空気とを供給するにあたり、燃焼用空気の量を多くし、例えば、空気比μが1.0を超えるようにして、燃料ガスを前記の燃焼バーナー部12において燃焼させた場合、十分な量の燃焼用空気によって燃料ガスが燃焼され、燃焼排ガス中におけるCOガスや炭化水素(HC)ガス等の未燃成分ガスが減少する一方、燃焼時にNOxが多く発生して、燃焼排ガス中にNOxが多く含まれるようになる。 Here, when supplying the fuel gas and the combustion air to be supplied to the combustion burner unit 12 through the fuel gas supply pipe 21 and the combustion air supply pipe 22 as described above, the amount of the combustion air is increased, for example, When the fuel gas is burned in the combustion burner section 12 so that the air ratio μ exceeds 1.0, the fuel gas is burned by a sufficient amount of combustion air, and CO gas in the combustion exhaust gas or While unburned component gas such as hydrocarbon (HC) gas decreases, a large amount of NOx is generated at the time of combustion, and a large amount of NOx is contained in the combustion exhaust gas.
 そして、このように燃焼排ガス中にNOxが多く含まれるようになった場合には、前記の制御弁26aにより、前記の燃料ガス案内路26を通して排ガス処理部24よりも燃焼排ガスの排出方向上流側の位置に案内する燃料ガスの量を制御して、適当量の燃料ガスを排ガス処理部24よりも燃焼排ガスの排出方向上流側の位置に供給し、この燃料ガスを前記のNOxが多く含まれる燃焼排ガスと一緒にして、三元触媒を収容させた排ガス処理部24に導くようにする。このようにすると、排ガス処理部24に収容された三元触媒の作用によって、燃焼排ガス中におけるNOxが前記のように燃料ガス案内路26を通して燃料ガスと反応して、NOxがNに還元されるようになる。 When the combustion exhaust gas contains a large amount of NOx, the control valve 26a causes the fuel gas guide passage 26 to flow upstream of the exhaust gas processing portion 24 in the exhaust gas discharge direction. An appropriate amount of fuel gas is supplied to a position upstream of the exhaust gas processing unit 24 in the discharge direction of the combustion exhaust gas by controlling the amount of fuel gas guided to the position of. It is led to the exhaust gas processing unit 24 containing the three-way catalyst together with the combustion exhaust gas. In this way, the NOx in the combustion exhaust gas reacts with the fuel gas through the fuel gas guide path 26 as described above by the action of the three-way catalyst accommodated in the exhaust gas processing unit 24 and the NOx is reduced to N 2. Become so.
 なお、このように燃料ガス案内路26を通して燃料ガスを供給するようにした場合において、燃料ガス案内路26を通して排ガス処理部24に導かれる燃料ガスの量が多くなって、排ガス処理部24から未燃成分ガスが残った燃焼排ガスが排出される場合には、前記のように後燃焼装置25により、排ガス処理部24から排出された燃焼排ガス中における未燃成分ガスを燃焼させて、COやHOに酸化させた状態で排出させるようにすることができる。 In the case where the fuel gas is supplied through the fuel gas guide passage 26 in this manner, the amount of fuel gas led to the exhaust gas processing unit 24 through the fuel gas guide passage 26 is increased. when the flue gas retardant component gas remaining is discharged, the afterburning device 25 as described above, by burning unburned components gas in the combustion exhaust gas discharged from the exhaust gas treatment unit 24, CO 2 Ya It can be made to discharge in the state oxidized to H 2 O.
 次に、図4に示す本発明の実施形態における第1の工業炉1においては、前記の図3に示すラジアントチューブバーナーユニットのように、燃料ガス供給管21を通して燃焼バーナー部12に供給する燃料ガスの一部を、前記の排ガス処理部24よりも燃焼排ガスの排出方向上流側の位置に導く燃料ガス案内路26と、この燃料ガス案内路26を通して排ガス処理部24よりも燃焼排ガスの排出方向上流側の位置に案内する燃料ガスの量を制御する制御弁26aを設けたラジアントチューブバーナー10を用い、このようなラジアントチューブバーナー10を、工業炉1の炉壁1aに対して複数設けるようにしている。 Next, in the first industrial furnace 1 according to the embodiment of the present invention shown in FIG. 4, the fuel supplied to the combustion burner section 12 through the fuel gas supply pipe 21 as in the radiant tube burner unit shown in FIG. A fuel gas guiding path 26 for guiding a part of the gas to a position upstream of the exhaust gas processing unit 24 in the exhaust gas discharge direction, and a discharge direction of the combustion exhaust gas from the exhaust gas processing unit 24 through the fuel gas guide path 26 A plurality of such radiant tube burners 10 are provided to the furnace wall 1 a of the industrial furnace 1 using a radiant tube burner 10 provided with a control valve 26 a for controlling the amount of fuel gas guided to the upstream position. ing.
 そして、この第1の工業炉1においては、前記の各ラジアントチューブバーナー10において、それぞれ排ガス処理部24から排出される燃焼排ガスを導く各排気管23を合流させ、このように合流させた排気管23に前記の後燃焼装置25を設け、前記のように排ガス処理部24から未燃成分ガスが残った燃焼排ガスが排出される場合には、各排ガス処理部24から排出された燃焼排ガス中における未燃成分ガスを、この後燃焼装置25により燃焼させて、COやHOに酸化させるようにしている。 In the first industrial furnace 1, the exhaust pipes 23 for guiding the combustion exhaust gas discharged from the exhaust gas processing unit 24 are joined together in each of the radiant tube burners 10 described above, and the exhaust pipes thus joined together In the case where the afterburning apparatus 25 is provided at 23 and the combustion exhaust gas from which the unburned component gas remains is discharged from the exhaust gas processing unit 24 as described above, in the combustion exhaust gas discharged from each exhaust gas processing unit 24. The unburned component gas is then burned by the combustion device 25 to be oxidized to CO 2 or H 2 O.
 また、この第1の工業炉1においては、前記の後燃焼装置25よりも燃焼排ガスの排出方向下流側における排気管23に径が大きくなった径大部23aを設け、この径大部23a内に前記の第2熱交換部32を設け、送風装置33により燃焼用空気案内管34を通して、燃焼用空気を前記の第2熱交換部32に導くようにしている。 Further, in the first industrial furnace 1, the exhaust pipe 23 on the downstream side in the discharge direction of the combustion exhaust gas from the post-combustion device 25 is provided with a large diameter portion 23a having a large diameter, and the inside of the large diameter portion 23a The second heat exchange section 32 is provided, and the combustion air is introduced to the second heat exchange section 32 through the combustion air guide pipe 34 by the blower 33.
 そして、この第1の工業炉1においては、前記のように第2熱交換部32に導かれた燃焼用空気を、この第2熱交換部32において、前記の径大部23aに導かれた排ガス処理部24からの燃焼排ガスの熱や、前記の後燃焼装置25における後燃焼された後の燃焼排ガスの熱によって加熱させ、このように燃焼用空気を加熱させた後の燃焼排ガスを、前記の排気管23を通して煙突23bから排出させるようにしている。 Then, in the first industrial furnace 1, the combustion air led to the second heat exchange section 32 as described above is led to the large diameter section 23 a in the second heat exchange section 32. The combustion exhaust gas after being heated by the heat of the combustion exhaust gas from the exhaust gas processing unit 24 or the heat of the combustion exhaust gas after being post-combusted in the above-described post-combustion device 25 and heating the combustion air in this way is It is made to discharge from chimney 23b through the exhaust pipe 23 of this.
 また、前記のように第2熱交換部32において加熱された燃焼用空気を、第2熱交換部32よりも下流側における燃焼用空気案内管34を通して、各ラジアントチューブバーナー10における前記の第1熱交換部31に導くようにしている。 Further, as described above, the combustion air heated in the second heat exchange section 32 is passed through the combustion air guide pipe 34 on the downstream side of the second heat exchange section 32 to form the first air in each radiant tube burner 10. It leads to the heat exchange part 31.
 そして、この第1熱交換部31において、前記のように第2熱交換部32において加熱された燃焼用空気を、排ガス処理部24に導かれる前の燃焼排ガスの熱によってさらに加熱させ、このように加熱させた燃焼用空気を前記の燃焼用空気供給管22を通して燃焼バーナー部12に供給し、前記のように加熱された燃焼用空気と燃料ガスとを混合させて、燃料ガスを燃焼させるようにしている。 Then, in the first heat exchange unit 31, the combustion air heated in the second heat exchange unit 32 as described above is further heated by the heat of the combustion exhaust gas before being introduced to the exhaust gas processing unit 24, and the like To supply the combustion air heated to the combustion burner section 12 through the combustion air supply pipe 22 so that the combustion air heated as described above is mixed with the fuel gas to burn the fuel gas. I have to.
 なお、図4に示す第1の工業炉1においては、前記のように各ラジアントチューブバーナー10における排ガス処理部24から排出される燃焼排ガスを導く各排気管23を合流させ、このように合流させた排気管23に後燃焼装置25と第2熱交換部32とを設けるようにしたが、前記の図3に示すラジアントチューブバーナーユニットのように、各ラジアントチューブバーナー10に、それぞれ後燃焼装置25と第2熱交換部32とを個別に設けるようにすることもできる。 In the first industrial furnace 1 shown in FIG. 4, as described above, the exhaust pipes 23 for guiding the combustion exhaust gas discharged from the exhaust gas processing unit 24 in each radiant tube burner 10 are merged and merged in this way The post-combustion device 25 and the second heat exchange section 32 are provided in the exhaust pipe 23, but the post-combustion device 25 is provided for each radiant tube burner 10 as in the radiant tube burner unit shown in FIG. And the second heat exchange unit 32 can be provided separately.
 また、図5に示す本発明の実施形態における第2の工業炉1においては、燃焼用空気を送風装置33により、各ラジアントチューブバーナー10における前記の第1熱交換部31に燃焼用空気案内管34を通して導き、各第1熱交換部31において加熱された燃焼用空気を、それぞれ前記の燃焼用空気供給管22を通して各ラジアントチューブバーナー10における燃焼バーナー部12に供給し、各燃焼バーナー部12において、それぞれ燃料ガスと加熱された燃焼用空気とを混合させて、燃料ガスを各ラジアントチューブ11内で燃焼させ、燃焼後の燃焼排ガスをラジアントチューブ11の他端部から排気管23を通して煙突(図示せず)等から排出させるようにしている。 Further, in the second industrial furnace 1 according to the embodiment of the present invention shown in FIG. 5, the combustion air is introduced into the first heat exchanging portion 31 of each radiant tube burner 10 by the air blower 33. 34, the combustion air heated in each first heat exchange section 31 is supplied to the combustion burner section 12 in each radiant tube burner 10 through the combustion air supply pipe 22, and each combustion burner section 12 The fuel gas and the heated combustion air are mixed respectively, the fuel gas is burned in each radiant tube 11, and the flue gas after combustion is passed through the exhaust pipe 23 from the other end of the radiant tube 11 through a chimney (see FIG. It is made to discharge from (not shown) etc.
 ここで、この第2の工業炉1においても、前記の図4に示した第1の工業炉1と同様に、図3に示すように、燃料ガス供給管21を通して燃焼バーナー部12に供給する燃料ガスの一部を、前記の排ガス処理部24よりも燃焼排ガスの排出方向上流側の位置に導く燃料ガス案内路26と、この燃料ガス案内路26を通して排ガス処理部24よりも燃焼排ガスの排出方向上流側の位置に案内する燃料ガスの量を制御する制御弁26aを設けたラジアントチューブバーナー10を用い、このようなラジアントチューブバーナー10を、工業炉1の炉壁1aに対して複数設けるようにしている。 Here, in the second industrial furnace 1 as well as the first industrial furnace 1 shown in FIG. 4, as shown in FIG. 3, the combustion burner section 12 is supplied through the fuel gas supply pipe 21. A fuel gas guiding passage 26 for guiding a part of the fuel gas to a position upstream of the exhaust gas processing unit 24 in the exhaust gas discharge direction, and a discharge of the combustion exhaust gas from the exhaust gas processing unit 24 through the fuel gas guide passage 26 Using a radiant tube burner 10 provided with a control valve 26a for controlling the amount of fuel gas guided to a position upstream in the direction, and providing a plurality of such radiant tube burners 10 to the furnace wall 1a of the industrial furnace 1 I have to.
 そして、この第2の工業炉1においても、前記の各ラジアントチューブバーナー10において、それぞれ排ガス処理部24から排出される燃焼排ガスを導く各排気管23を合流させ、このように合流させた排気管23に前記の後燃焼装置25を設け、前記のように排ガス処理部24から未燃成分ガスが残った燃焼排ガスが排出される場合には、各排ガス処理部24から排出された燃焼排ガス中における未燃成分ガスを、この後燃焼装置25により燃焼させて、COやHOに酸化させるようにしている。 Then, in the second industrial furnace 1 as well, in the radiant tube burners 10 described above, the exhaust pipes 23 for guiding the combustion exhaust gas discharged from the exhaust gas processing unit 24 are joined together, and the exhaust pipes thus joined together In the case where the afterburning apparatus 25 is provided at 23 and the combustion exhaust gas from which the unburned component gas remains is discharged from the exhaust gas processing unit 24 as described above, in the combustion exhaust gas discharged from each exhaust gas processing unit 24. The unburned component gas is then burned by the combustion device 25 to be oxidized to CO 2 or H 2 O.
 また、この第2の工業炉1においても、前記の第1の工業炉1と同様に、前記の後燃焼装置25よりも燃焼排ガスの排出方向下流側における排気管23に径が大きくなった径大部23aを設け、この径大部23a内に前記の第2熱交換部32を設けるようにしている。 Further, in the second industrial furnace 1 as well as the first industrial furnace 1 described above, the diameter of the exhaust pipe 23 at the downstream side of the exhaust gas discharge direction from the post-combustion device 25 is larger. The large portion 23a is provided, and the second heat exchange portion 32 is provided in the large diameter portion 23a.
 ここで、第2の工業炉1においては、鋼帯等の長尺状の処理物(図示せず)を連続して処理するために、前記の処理物を予備加熱するため予備加熱帯1cを、前記の工業炉1と案内路1bを介して連通するように設けている。 Here, in the second industrial furnace 1, the preheating zone 1c is used to preheat the processed material so as to continuously process the elongated processed material (not shown) such as a steel strip. It is provided to communicate with the industrial furnace 1 via the guide path 1b.
 そして、この第2の工業炉1においては、前記の予備加熱帯1c内における雰囲気ガスを、送風装置41により雰囲気ガス循環管42を通して前記の第2熱交換部32に導き、この第2熱交換部32において、前記の径大部23aに導かれた排ガス処理部24からの燃焼排ガスの熱や、前記の後燃焼装置25における後燃焼された後の燃焼排ガスの熱によって加熱させ、このように加熱された雰囲気ガスを、雰囲気ガス循環管42を通して予備加熱帯1c内に戻すようにして、予備加熱帯1c内における雰囲気ガスを、第2熱交換部32において加熱させて循環させるようにしている。 Then, in the second industrial furnace 1, the atmosphere gas in the preheating zone 1 c is guided by the blower 41 through the atmosphere gas circulation pipe 42 to the second heat exchange unit 32, and the second heat exchange is performed. In the portion 32, the heat of the combustion exhaust gas from the exhaust gas processing portion 24 led to the large diameter portion 23a and the heat of the combustion exhaust gas after the post-combustion in the post-combustion device 25 are heated, and thus The atmosphere gas in the preheating zone 1c is heated and circulated in the second heat exchange unit 32 so that the heated atmosphere gas is returned to the inside of the preheating zone 1c through the atmosphere gas circulation pipe 42. .
 また、このように第2熱交換部32において雰囲気ガスを加熱させた後の燃焼排ガスを、前記の排気管23を通して煙突(図示せず)から排出させるようにしている。 Further, the combustion exhaust gas after the atmosphere gas is heated in the second heat exchange section 32 as described above is discharged from the chimney (not shown) through the exhaust pipe 23.
 なお、前記の第1及び第2の工業炉1においては、図3に示すラジアントチューブバーナーユニットのように、燃料ガス供給管21を通して燃焼バーナー部12に供給する燃料ガスの一部を、前記の排ガス処理部24よりも燃焼排ガスの排出方向上流側の位置に導く燃料ガス案内路26と、この燃料ガス案内路26を通して排ガス処理部24よりも燃焼排ガスの排出方向上流側の位置に案内する燃料ガスの量を制御する制御弁26aとを設けると共に、各排ガス処理部24から排出される燃焼排ガスを導く排気管23に後燃焼装置25を設けるようにしたが、必ずしもこれらを設ける必要はない。 In the first and second industrial furnaces 1, as in the radiant tube burner unit shown in FIG. 3, a part of the fuel gas supplied to the combustion burner section 12 through the fuel gas supply pipe 21 is A fuel gas guiding path 26 leading to a position on the upstream side of the exhaust gas discharge direction with respect to the exhaust gas processing unit 24 and a fuel guiding to a upstream side of the exhaust gas discharge direction from the exhaust gas processing unit 24 through the fuel gas guide path 26 Although the control valve 26a for controlling the amount of gas is provided, and the post-combustion device 25 is provided in the exhaust pipe 23 for guiding the combustion exhaust gas discharged from each exhaust gas processing unit 24, these need not necessarily be provided.
1   :工業炉
1a  :炉壁
1b  :案内路
1c  :予備加熱帯
10  :ラジアントチューブバーナー
11  :ラジアントチューブ
12  :燃焼バーナー部
21  :燃料ガス供給管
22  :燃焼用空気供給管
23  :排気管
23a :径大部
23b :煙突
24  :排ガス処理部
25  :後燃焼装置
25a :燃焼用燃料ガス供給管
25b :後燃焼用空気供給管
26  :燃料ガス案内路
26a :制御弁(制御手段)
31  :第1熱交換部(第1熱交換手段)
32  :第2熱交換部(第2熱交換手段)
33  :送風装置
34  :燃焼用空気案内管
41  :送風装置
42  :雰囲気ガス循環管
1: Industrial furnace 1a: Furnace wall 1b: Guideway 1c: Preheating zone 10: Radiant tube burner 11: Radiant tube 12: Combustion burner section 21: Fuel gas supply pipe 22: Combustion air supply pipe 23: Exhaust pipe 23a: Large diameter portion 23b: chimney 24: exhaust gas processing unit 25: post combustion device 25a: fuel gas supply pipe for combustion 25b: air supply pipe for post combustion 26: fuel gas guide passage 26a: control valve (control means)
31: first heat exchange unit (first heat exchange means)
32: Second heat exchange unit (second heat exchange means)
33: Air blower 34: Air guide pipe 41 for combustion: Air blower 42: Atmosphere gas circulation pipe

Claims (7)

  1.  ラジアントチューブの一端部における燃焼バーナー部に燃料ガスと燃焼用空気とを供給し、前記の燃焼バーナー部において燃料ガスをラジアントチューブ内で燃焼させて、燃焼後の燃焼排ガスをラジアントチューブの他端部から排出させるラジアントチューブバーナーを備えたラジアントチューブバーナーユニットにおいて、前記のラジアントチューブにおける燃焼排ガスの排出方向下流側の位置に、三元触媒を収容させた排ガス処理部を設けると共に、前記の排ガス処理部よりも燃焼排ガスの排出方向上流側の位置に、燃焼排ガスの熱によって燃焼バーナー部に供給する燃焼用空気を加熱させる第1熱交換手段を設け、さらに前記の排ガス処理部よりも燃焼排ガスの排出方向下流側の位置に、排ガス処理部から排出される燃焼排ガスの熱によって燃焼バーナー部に供給する燃焼用空気を加熱させる第2熱交換手段を設けたことを特徴とするラジアントチューブバーナーユニット。 The fuel gas and the combustion air are supplied to the combustion burner section at one end of the radiant tube, and the fuel gas is burned in the radiant tube in the combustion burner section, and the combustion exhaust gas after combustion is the other end of the radiant tube In the radiant tube burner unit provided with a radiant tube burner for exhausting the gas, an exhaust gas processing unit containing a three-way catalyst is provided at a position downstream of the radiant gas in the radiant tube in the radiant tube, and the exhaust gas treatment unit The first heat exchange means for heating the combustion air supplied to the combustion burner portion by the heat of the combustion exhaust gas is provided at a position upstream of the exhaust gas discharge direction than the combustion exhaust gas, and the exhaust gas discharge from the exhaust gas processing portion Heat of the combustion exhaust gas discharged from the exhaust gas processing unit at a position downstream of the Thus radiant tube burner unit, characterized in that a second heat exchange means for heating the combustion air supplied to the combustion burner unit.
  2.  請求項1に記載のラジアントチューブバーナーユニットにおいて、前記の第2熱交換手段によって加熱された燃焼用空気を前記の第1熱交換手段に導き、この第1熱交換手段において、第2熱交換手段から導かれた加熱された燃焼用空気を燃焼排ガスの熱によりさらに加熱させて、前記の燃焼バーナー部に供給させ、前記の排ガス処理部に収容させた三元触媒により、燃焼排ガスに含まれる窒素酸化物を燃焼排ガスに含まれる未燃成分ガスによって還元させることを特徴とするラジアントチューブバーナーユニット。 The radiant tube burner unit according to claim 1, wherein the combustion air heated by the second heat exchange means is introduced to the first heat exchange means, and in the first heat exchange means, the second heat exchange means The nitrogen contained in the combustion exhaust gas is further heated by the heat of the combustion exhaust gas and supplied to the combustion burner section and the three-way catalyst contained in the exhaust gas processing section causes the nitrogen contained in the combustion exhaust gas to be heated. A radiant tube burner unit characterized in that oxides are reduced by unburned component gases contained in combustion exhaust gas.
  3.  請求項1又は請求項2に記載のラジアントチューブバーナーユニットにおいて、前記の燃焼バーナー部に供給する燃料ガスの一部を前記の排ガス処理部よりも燃焼排ガスの排出方向上流側の位置に導く燃料ガス案内路と、この燃料ガス案内路を通して案内する燃料ガスの量を制御する制御手段とを設けたことを特徴とするラジアントチューブバーナーユニット。 The radiant tube burner unit according to claim 1 or 2, wherein a part of the fuel gas supplied to the combustion burner section is led to a position upstream of the exhaust gas processing section in the exhaust gas discharge direction than the exhaust gas processing section. A radiant tube burner unit comprising a guideway and control means for controlling the amount of fuel gas guided through the fuel gas guideway.
  4.  請求項1~請求項3の何れか1項に記載のラジアントチューブバーナーユニットにおいて、前記の排ガス処理部と前記の第2熱交換手段との間に、前記の排ガス処理部から排出された燃焼排ガスに含まれる未燃成分ガスを燃焼させる後燃焼装置を設けたことを特徴とするラジアントチューブバーナーユニット。 The radiant tube burner unit according to any one of claims 1 to 3, wherein the combustion exhaust gas discharged from the exhaust gas processing unit between the exhaust gas processing unit and the second heat exchange means. What is claimed is: 1. A radiant tube burner unit comprising a post-combustion device for burning unburned component gas contained therein.
  5.  ラジアントチューブバーナーユニットが複数設けられた工業炉において、請求項1~請求項4の何れか1項に記載のラジアントチューブバーナーユニットを用いたことを特徴とする工業炉。 An industrial furnace provided with a plurality of radiant tube burner units, wherein the radiant tube burner unit according to any one of claims 1 to 4 is used.
  6.  請求項5に記載した工業炉において、前記の各ラジアントチューブバーナーユニットにおける各排ガス処理部よりも燃焼排ガスの排出方向下流側の位置に、各排ガス処理部から排出される燃焼排ガスの熱によって、各ラジアントチューブバーナーユニットにおける燃焼バーナー部に供給する燃焼用空気を加熱させる1つの第2熱交換手段を設けたことを特徴とする工業炉。 The industrial furnace according to claim 5, wherein the heat of the combustion exhaust gas discharged from each exhaust gas processing unit is provided at a position downstream of the exhaust gas processing unit in each radiant tube burner unit in the emission direction of the combustion exhaust gas. An industrial furnace provided with one second heat exchange means for heating combustion air supplied to a combustion burner section in a radiant tube burner unit.
  7.  ラジアントチューブバーナーユニットが複数設けられた工業炉における各ラジアントチューブバーナーユニットにおいて、各ラジアントチューブの燃焼排ガスの排出方向下流側の位置に三元触媒を収容させた排ガス処理部を設け、各排ガス処理部よりも燃焼排ガスの排出方向上流側の位置に、それぞれ各燃焼バーナー部に供給する燃焼用空気を燃焼排ガスの熱によって加熱させる第1熱交換手段を設ける一方、各ラジアントチューブバーナーユニットにおける排ガス処理部よりも燃焼排ガスの排出方向下流側の位置に、各排ガス処理部から排出される燃焼排ガスの熱によって予備加熱帯における雰囲気ガスを加熱させる第2熱交換手段を設け、予備加熱帯における雰囲気ガスを、この第2熱交換手段により加熱させて循環させることを特徴とする工業炉。 In each radiant tube burner unit in an industrial furnace provided with a plurality of radiant tube burner units, an exhaust gas processing unit containing a three-way catalyst is provided at a position downstream of the radiant gas in the exhaust gas discharge direction of each radiant tube. While the first heat exchange means for heating the combustion air supplied to the respective combustion burners with the heat of the combustion exhaust gas is provided at a position upstream of the exhaust gas discharge direction than the combustion exhaust gas, the exhaust gas processing unit in each radiant tube burner unit The second heat exchange means for heating the atmospheric gas in the preheating zone by the heat of the combustion exhaust gas discharged from each exhaust gas processing unit is provided at a position downstream of the exhaust gas discharge direction than the combustion exhaust gas. , It is characterized by heating by this 2nd heat exchange means and making it circulate. Industrial furnace for.
PCT/JP2017/012320 2016-06-07 2017-03-27 Radiant tube burner unit, and industrial furnace WO2017212744A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016113151A JP6521905B2 (en) 2016-06-07 2016-06-07 Radiant tube burner unit and industrial furnace
JP2016-113151 2016-06-07

Publications (1)

Publication Number Publication Date
WO2017212744A1 true WO2017212744A1 (en) 2017-12-14

Family

ID=60578588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012320 WO2017212744A1 (en) 2016-06-07 2017-03-27 Radiant tube burner unit, and industrial furnace

Country Status (3)

Country Link
JP (1) JP6521905B2 (en)
TW (2) TWI736499B (en)
WO (1) WO2017212744A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107759231A (en) * 2017-11-13 2018-03-06 戴承萍 A kind of high-low temperature circular sintering method of electron ceramic material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108800969A (en) * 2018-06-07 2018-11-13 无锡顺鼎阿泰克科技有限公司 A kind of coke-stove gas total oxygen kiln combustion control system
CN109947152A (en) * 2019-04-03 2019-06-28 上海颐柏科技股份有限公司 A kind of gas fired radiant tubes temperature control system and its control method
CN109871052A (en) * 2019-04-03 2019-06-11 上海颐柏科技股份有限公司 A kind of electrothermal radiation tube temperature control equipment and its control method
MX2022009073A (en) 2020-02-10 2022-08-15 Jfe Steel Corp Radiant tube burner, radiant tube, and method for designing radiant tube burner.

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS481980U (en) * 1971-05-25 1973-01-11
JPS491986U (en) * 1972-04-07 1974-01-09
US4225121A (en) * 1979-03-23 1980-09-30 Holcroft Energy efficient heat-treating furnace system
JPS55155739A (en) * 1979-05-23 1980-12-04 Toyota Central Res & Dev Lab Inc Exhaust gas purifying catalyzer
JPS5892703A (en) * 1981-11-28 1983-06-02 Daido Steel Co Ltd Combustion apparatus
JPS62202908A (en) * 1986-03-03 1987-09-07 Sumitomo Metal Ind Ltd Heating furnace provided with radiant tube
JPS63173613U (en) * 1987-05-01 1988-11-10
JPH01296003A (en) * 1988-05-24 1989-11-29 Tokyo Gas Co Ltd Tube burner
JPH04281102A (en) * 1990-12-28 1992-10-06 Koyo Rindobaagu Kk Device for both heating and generation of environmental gas
JPH0526408A (en) * 1991-07-16 1993-02-02 Sumitomo Metal Ind Ltd Radiant tube burner and its combustion method
JP2001241619A (en) * 2000-03-01 2001-09-07 Osaka Gas Co Ltd Method for purifying flue gas in radiant tube burner
US7399458B1 (en) * 2005-11-18 2008-07-15 Callidus Technologies Inc. Fired equipment with catalytic converter and method of operating same
JP2013178013A (en) * 2012-02-28 2013-09-09 Jfe Steel Corp Radiant tube burner
JP2014074566A (en) * 2012-10-05 2014-04-24 Kanto Yakin Kogyo Co Ltd Heat treat furnace of steel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230278A (en) * 2009-03-27 2010-10-14 Osaka Gas Co Ltd Tube type heating burner and heating device including the same
JP5554259B2 (en) * 2011-02-09 2014-07-23 中外炉工業株式会社 Recuperator

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS481980U (en) * 1971-05-25 1973-01-11
JPS491986U (en) * 1972-04-07 1974-01-09
US4225121A (en) * 1979-03-23 1980-09-30 Holcroft Energy efficient heat-treating furnace system
JPS55155739A (en) * 1979-05-23 1980-12-04 Toyota Central Res & Dev Lab Inc Exhaust gas purifying catalyzer
JPS5892703A (en) * 1981-11-28 1983-06-02 Daido Steel Co Ltd Combustion apparatus
JPS62202908A (en) * 1986-03-03 1987-09-07 Sumitomo Metal Ind Ltd Heating furnace provided with radiant tube
JPS63173613U (en) * 1987-05-01 1988-11-10
JPH01296003A (en) * 1988-05-24 1989-11-29 Tokyo Gas Co Ltd Tube burner
JPH04281102A (en) * 1990-12-28 1992-10-06 Koyo Rindobaagu Kk Device for both heating and generation of environmental gas
JPH0526408A (en) * 1991-07-16 1993-02-02 Sumitomo Metal Ind Ltd Radiant tube burner and its combustion method
JP2001241619A (en) * 2000-03-01 2001-09-07 Osaka Gas Co Ltd Method for purifying flue gas in radiant tube burner
US7399458B1 (en) * 2005-11-18 2008-07-15 Callidus Technologies Inc. Fired equipment with catalytic converter and method of operating same
JP2013178013A (en) * 2012-02-28 2013-09-09 Jfe Steel Corp Radiant tube burner
JP2014074566A (en) * 2012-10-05 2014-04-24 Kanto Yakin Kogyo Co Ltd Heat treat furnace of steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107759231A (en) * 2017-11-13 2018-03-06 戴承萍 A kind of high-low temperature circular sintering method of electron ceramic material

Also Published As

Publication number Publication date
TWI746538B (en) 2021-11-21
TW201743013A (en) 2017-12-16
TWI736499B (en) 2021-08-11
JP6521905B2 (en) 2019-05-29
JP2017219235A (en) 2017-12-14
TW202129199A (en) 2021-08-01

Similar Documents

Publication Publication Date Title
WO2017212744A1 (en) Radiant tube burner unit, and industrial furnace
JP6525908B2 (en) Radiant tube burner equipment
JP6521908B2 (en) Industrial furnace
JP6525909B2 (en) Industrial furnace
CN106979529B (en) Combustion treatment apparatus
JP2017166721A (en) Heat treatment furnace
JP2014048020A (en) Continuous type heating furnace
JP5171065B2 (en) Continuous heating furnace
JP7408255B2 (en) Heat treatment method for heating furnace, continuous heating furnace and batch heating furnace
JP6526076B2 (en) Heat storage type combustion equipment
JP2019196855A5 (en)
KR20200030066A (en) How to reduce nitrogen oxides in strip processing furnaces
KR102498261B1 (en) Method for reducing nitrogen oxides in strip processing furnaces
JP2008170050A (en) Heating furnace
KR20230166891A (en) An exhaust system in an industrial furnace
JP5404533B2 (en) Combustion control method of heat storage combustion type heat treatment furnace
JPH09126413A (en) Processing method of combustion gas in re-burning combustion method
JP2001116209A (en) LOW NOx RADIANT TUBE BURNER SYSTEM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17809928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17809928

Country of ref document: EP

Kind code of ref document: A1