WO2017212678A1 - 電流センサおよび電流センサモジュール - Google Patents

電流センサおよび電流センサモジュール Download PDF

Info

Publication number
WO2017212678A1
WO2017212678A1 PCT/JP2017/002488 JP2017002488W WO2017212678A1 WO 2017212678 A1 WO2017212678 A1 WO 2017212678A1 JP 2017002488 W JP2017002488 W JP 2017002488W WO 2017212678 A1 WO2017212678 A1 WO 2017212678A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor portion
conductor
magnetic sensor
current sensor
current
Prior art date
Application number
PCT/JP2017/002488
Other languages
English (en)
French (fr)
Inventor
清水 康弘
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2018522307A priority Critical patent/JP6696571B2/ja
Priority to CN201780014134.0A priority patent/CN108713148B/zh
Publication of WO2017212678A1 publication Critical patent/WO2017212678A1/ja
Priority to US16/136,325 priority patent/US10955443B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/063Magneto-impedance sensors; Nanocristallin sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • G01R33/072Constructional adaptation of the sensor to specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/096Magnetoresistive devices anisotropic magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R7/00Instruments capable of converting two or more currents or voltages into a single mechanical displacement
    • G01R7/02Instruments capable of converting two or more currents or voltages into a single mechanical displacement for forming a sum or a difference
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/10Measuring sum, difference or ratio

Definitions

  • the present invention relates to a current sensor and a current sensor module.
  • Patent Document 1 JP 2010-48809 (Patent Document 1) as a prior document disclosing the configuration of a current sensor.
  • the conductor includes a first conductor portion and a second conductor portion. The first conductor portion and the second conductor portion are separated from each other. An intermediate space is formed between the first conductor portion and the second conductor portion.
  • the conductor is bent a plurality of times.
  • the conductor includes a first conductor part element, a second conductor part element, and a third conductor part element, which are arranged at a distance from each other.
  • a first magnetic sensor is disposed between the first conductor part element and the second conductor part element.
  • a second magnetic sensor is disposed between the second conductor part element and the third conductor part element.
  • the current sensor concerning a 2nd embodiment indicated in patent documents 1 has the 1st magnetic sensor and the 2nd magnetic sensor. The distance between is increased. When the distance between the first magnetic sensor and the second magnetic sensor is long, the difference in the strength of the external magnetic field applied to each of the first magnetic sensor and the second magnetic sensor becomes large. The variation of the measured value becomes large.
  • the present invention has been made in view of the above problems, and provides a current sensor and a current sensor module that are highly sensitive to a magnetic field generated by a current to be measured and have little variation in measurement values due to an external magnetic field.
  • the purpose is to do.
  • the current sensor includes a conductor through which a current to be measured flows, a length direction, a width direction orthogonal to the length direction, and a height direction orthogonal to the length direction and the width direction. And a first magnetic sensor and a second magnetic sensor for detecting the strength of the magnetic field generated by the current.
  • the conductor extends in the length direction and has a first conductor portion having a first end portion and a first other end portion in the length direction, and the length of the conductor while being spaced from the first conductor portion in the width direction.
  • a second conductor portion extending in the length direction and having a second end portion and a second other end portion in the length direction, and between the first conductor portion and the second conductor portion when viewed from the height direction.
  • Each of the first magnetic sensor and the second magnetic sensor includes a region between the first conductor portion and the second conductor portion in the width direction, and the height direction of both the first conductor portion and the second conductor portion. In the region including from one end to the other end.
  • the shortest distance between the first magnetic sensor and the first conductor portion is shorter than the shortest distance between the first magnetic sensor and the second conductor portion.
  • the shortest distance between the second magnetic sensor and the second conductor portion is shorter than the shortest distance between the second magnetic sensor and the first conductor portion.
  • the shortest distance between the first magnetic sensor and the first conductor portion is shorter than the shortest distance between the first magnetic sensor and the third conductor portion.
  • the shortest distance between the second magnetic sensor and the second conductor portion is shorter than the shortest distance between the second magnetic sensor and the third conductor portion.
  • the apparatus further includes a calculation unit that calculates the value of the current by calculating the detection value of the first magnetic sensor and the detection value of the second magnetic sensor. In the first magnetic sensor and the second magnetic sensor, the detected values of the magnetic fields are out of phase with each other.
  • the calculation unit is a subtractor or a differential amplifier.
  • the apparatus further includes a calculation unit that calculates the value of the current by calculating the detection value of the first magnetic sensor and the detection value of the second magnetic sensor.
  • the calculation unit is an adder or a summing amplifier.
  • each of the first conductor portion and the second conductor portion has a plate shape.
  • the first virtual plane including the surface of the first conductor portion on the second conductor portion side and the second virtual plane including the surface of the second conductor portion on the first conductor portion side are mutually connected. Parallel.
  • a part of the first conductor part and a part of the second conductor part are opposed to each other.
  • the positions of the first conductor portion and the second conductor portion are shifted from each other in the height direction as viewed from the width direction.
  • each of the first conductor portion and the second conductor portion has a plate shape.
  • the first virtual plane including the surface of the first conductor portion on the second conductor portion side and the second virtual plane including the surface of the second conductor portion on the first conductor portion side are mutually connected. Crossed.
  • the 3rd conductor part is extended in the said length direction. In one form of this invention, the 3rd conductor part is extended in the said length direction and the said width direction.
  • the 3rd conductor part has plate shape. In one form of this invention, seeing from the said length direction, the 3rd conductor part has the shape bent in convex shape on the opposite side to the 1st conductor part side in the said height direction.
  • the shape bent into the convex shape is a curved shape. In one embodiment of the present invention, the shape bent in the convex shape is a bent shape.
  • the current sensor further includes a substrate on which the first magnetic sensor and the second magnetic sensor are mounted, and a housing that houses the substrate.
  • the housing is fixed to the conductor.
  • the housing is in contact with each of the first conductor portion, the second conductor portion, and the third conductor portion.
  • a current sensor module includes the plurality of current sensors. Each conductor of the plurality of current sensors is arranged in parallel.
  • a plurality of current sensors are arranged at intervals in the height direction.
  • the region between the first conductor portion and the second conductor portion in the width direction of one current sensor faces the third conductor portion of the other current sensor.
  • a plurality of current sensors are arranged at intervals in the length direction while being arranged at intervals in the width direction.
  • the region between the first conductor portion and the second conductor portion in the width direction of one current sensor is the same as the first conductor portion in the width direction of the other current sensor. It opposes the said area
  • the current sensor in the current sensor, it is possible to reduce the variation in the measured value due to the external magnetic field while increasing the sensitivity to the magnetic field generated by the current to be measured.
  • FIG. 6 is a graph showing a relationship between a component (mT) in the Z-axis direction of a magnetic flux density on a virtual straight line extending in the Y-axis direction from a start point S to an end point E in FIG. 5 and a distance (mm) from the start point S. .
  • FIG. 17 It is a perspective view which shows the external appearance of the conductor with which the current sensor which concerns on Embodiment 6 of this invention is provided. It is the side view which looked at the conductor of FIG. 17 from the arrow XVIII direction. It is the top view which looked at the conductor of FIG. 17 from the arrow XIX direction. It is the front view which looked at the conductor of FIG. 17 from the arrow XX direction. It is a perspective view which shows the external appearance of the conductor with which the current sensor which concerns on Embodiment 7 of this invention is provided. It is the side view which looked at the conductor of FIG. 21 from the arrow XXII direction. It is the top view which looked at the conductor of FIG. 21 from arrow XXIII direction.
  • FIG. 29 is a graph showing the relationship between the component (mT) in the Z-axis direction of the magnetic flux density on the virtual straight line L extending in the Y-axis direction from the start point S to the end point E in FIG. 29 and the distance (mm) from the start point S. is there.
  • FIG. 1 is a perspective view showing an appearance of a current sensor according to Embodiment 1 of the present invention.
  • FIG. 2 is a front view of the current sensor of FIG. 1 viewed from the direction of arrow II.
  • FIG. 3 is a development view showing a shape before the conductor included in the current sensor according to the first embodiment of the present invention is bent.
  • FIG. 4 is a circuit diagram showing a circuit configuration of the current sensor according to Embodiment 1 of the present invention. 1 to 3, the length direction of the conductor is shown as the X-axis direction, the width direction of the conductor is shown as the Y-axis direction, and the height direction of the conductor is shown as the Z-axis direction.
  • the current to be measured flows, and the length direction (X-axis direction) and the width orthogonal to the length direction (X-axis direction) are shown.
  • a conductor 110 having a direction (Y-axis direction), a height direction (Z-axis direction) perpendicular to the length direction (X-axis direction) and the width direction (Y-axis direction), and a magnetic field generated by the current
  • a first magnetic sensor 120a and a second magnetic sensor 120b that detect strength are provided.
  • the conductor 110 extends in the length direction (X-axis direction) and includes a first conductor portion 111 having a first end 111a and a first other end 111b in the length direction (X-axis direction), and a width direction ( The second end 112a and the second other end 112b in the length direction (X-axis direction) extend in the length direction (X-axis direction) while being spaced from the first conductor portion 111 in the Y-axis direction).
  • the second conductor portion 112 having the first conductor portion 111 and the second conductor portion 112 as viewed from the height direction (Z-axis direction) and from the length direction (X-axis direction).
  • the third end portion 113a and the third other end in the length direction (X-axis direction) are located on one side in the height direction (Z-axis direction) with respect to the first conductor portion 111 and the second conductor portion 112. And a third conductor portion 113 having a portion 113b.
  • the third other end portion 113b is connected to one end in the height direction (Z-axis direction) of the first other end portion 111b, the first conductor portion 111 and the third conductor portion 113 are connected to each other. Yes. Specifically, the first other end portion 111 b and the third other end portion 113 b are connected to each other by the fourth conductor portion 114.
  • the fourth conductor portion 114 is a part of the conductor 110.
  • the fourth conductor portion 114 extends in the height direction (Z-axis direction).
  • the third end portion 113a is connected to one end in the height direction (Z-axis direction) of the second end portion 112a, whereby the second conductor portion 112 and the third conductor portion 113 are connected to each other. Specifically, the second end 112a and the third end 113a are connected to each other by the fifth conductor 115.
  • the fifth conductor portion 115 is a part of the conductor 110.
  • the fifth conductor portion 115 extends in the height direction (Z-axis direction).
  • each of the first conductor portion 111 and the second conductor portion 112 has a plate shape.
  • the first virtual plane including the surface on the second conductor portion 112 side of the first conductor portion 111 and the surface on the first conductor portion 111 side of the second conductor portion 112 are included.
  • the second virtual planes are parallel to each other.
  • a part of the first conductor part 111 and a part of the second conductor part 112 face each other in the width direction (Y-axis direction).
  • Y-axis direction When viewed from the width direction (Y-axis direction), a part of the first conductor part 111 and a part of the second conductor part 112 overlap each other in the height direction (Z-axis direction).
  • the third conductor portion 113 extends in the length direction (X-axis direction).
  • the third conductor portion 113 has a plate shape.
  • the conductor 110 before being bent has a first conductor portion 111 and a second conductor extending in the length direction (X-axis direction) with an interval in the width direction (Y-axis direction). Part 112 and third conductor part 113 are included.
  • the conductor 110 before being bent further includes a fourth conductor portion 114 that extends in the width direction (Y-axis direction) and connects the first conductor portion 111 and the third conductor portion 113.
  • the conductor 110 before bending further includes a fifth conductor portion 115 that extends in the width direction (Y-axis direction) and connects the second conductor portion 112 and the third conductor portion 113.
  • the dimensions of the first conductor portion 111, the second conductor portion 112, and the third conductor portion 113 in the width direction (Y-axis direction) are the same.
  • the thickness of the conductor 110 is uniform throughout. Therefore, the flow path area through which the current flows is constant in the first conductor portion 111, the second conductor portion 112, and the third conductor portion 113.
  • the dimension in the width direction (Y-axis direction) of the third conductor part 113 may be smaller than the dimension in the width direction (Y-axis direction) of each of the first conductor part 111 and the second conductor part 112.
  • the conductor 110 is made of copper.
  • the material of the conductor 110 is not limited to this, and may be a metal such as silver, aluminum, or iron, or an alloy containing these metals.
  • the conductor 110 may be subjected to a surface treatment.
  • a surface treatment For example, at least one plating layer made of a metal such as nickel, tin, silver, or copper, or an alloy containing these metals may be provided on the surface of the conductor 110.
  • the conductor 110 is formed by press working.
  • the conductor 110 before being bent is mountain-folded at each of the two fold lines B shown in FIG. 3 to form the conductor 110 having the shape shown in FIGS.
  • the two folding lines B are located on both ends of the third conductor portion 113 in the width direction (Y-axis direction).
  • each of the fourth conductor portion 114 and the fifth conductor portion is bent so that the outer surface side extends compared to the inner surface side.
  • the conductor 110 having the shape shown in FIGS. 1 and 2 is formed.
  • the method for forming the conductor 110 is not limited to this, and the conductor 110 may be formed by cutting or casting.
  • the first magnetic sensor 120 a and the second magnetic sensor 120 b are mounted on one substrate 130.
  • the substrate 130 is a printed wiring board, and is composed of a base material made of an electrically insulating material such as glass epoxy or alumina, and a wiring formed by patterning a metal foil such as copper provided on the surface of the base material. Has been.
  • the thickness of the substrate 130 is, for example, about 1.6 mm.
  • the first magnetic sensor 120 a is mounted on one main surface of the substrate 130.
  • the second magnetic sensor 120 b is mounted on the other main surface of the substrate 130.
  • Each of the first magnetic sensor 120a and the second magnetic sensor 120b is mounted on the substrate 130 together with electronic components such as an amplifier and a passive element.
  • Electronic components such as an amplifier and a passive element constitute an arithmetic circuit that calculates signals from the first magnetic sensor 120a and the second magnetic sensor 120b. 1 and 2, the amplifier and the passive element are not shown.
  • the amplifier and the passive element may be mounted on a substrate different from the substrate 130 on which each of the first magnetic sensor 120a and the second magnetic sensor 120b is mounted.
  • one main surface of the substrate 130 and the surface of the first conductor portion 111 on the second conductor portion 112 side are parallel to each other.
  • the other main surface of the substrate 130 and the surface of the second conductor portion 112 on the first conductor portion 111 side are parallel to each other.
  • the substrate 130 is at an intermediate position between the surface of the first conductor portion 111 on the second conductor portion 112 side and the surface of the second conductor portion 112 on the first conductor portion 111 side. Has been placed.
  • Each of the first magnetic sensor 120a and the second magnetic sensor 120b includes a region Ty between the first conductor portion 111 and the second conductor portion 112 in the width direction (Y-axis direction), and the first conductor portion 111 and the second magnetic sensor 120b.
  • the two conductor portions 112 are located in a region Tz including from one end to the other end in both height directions (Z-axis direction).
  • the region Ty extends from the position of the second end 112a of the second conductor 112 to the position of the first other end 111b of the first conductor 111 in the length direction (X-axis direction). Yes.
  • the shortest distance between the first magnetic sensor 120a and the first conductor portion 111 is shorter than the shortest distance between the first magnetic sensor 120a and the second conductor portion 112.
  • the shortest distance between the second magnetic sensor 120 b and the second conductor portion 112 is shorter than the shortest distance between the second magnetic sensor 120 b and the first conductor portion 111.
  • the shortest distance between the first magnetic sensor 120a and the first conductor portion 111 is shorter than the shortest distance between the first magnetic sensor 120a and the third conductor portion 113.
  • the shortest distance between the second magnetic sensor 120 b and the second conductor portion 112 is shorter than the shortest distance between the second magnetic sensor 120 b and the third conductor portion 113.
  • Each of the first magnetic sensor 120a and the second magnetic sensor 120b has a detection axis 2 and is arranged so that the detection axis 2 faces the height direction (Z-axis direction).
  • Each of the first magnetic sensor 120a and the second magnetic sensor 120b outputs a positive value when a magnetic field directed in one direction of the detection axis 2 is detected, and in a direction opposite to the one direction of the detection axis 2. It has an odd function input / output characteristic in which a negative value is output when a directed magnetic field is detected.
  • each of the first magnetic sensor 120a and the second magnetic sensor 120b includes a Wheatstone bridge type bridge circuit including four AMR (Anisotropic Magneto Resistance) elements.
  • AMR Anaisotropic Magneto Resistance
  • Each of the first magnetic sensor 120a and the second magnetic sensor 120b is replaced with an AMR element, instead of GMR (Giant Magneto Resistance), TMR (Tunnel Magneto Resistance), BMR (Ballistic Magneto Resistance), CMR (Colossal Magneto Resistance). It may have a magnetoresistive element.
  • each of the first magnetic sensor 120a and the second magnetic sensor 120b may have a half bridge circuit composed of two magnetoresistive elements.
  • a magnetic sensor having a Hall element a magnetic sensor having an MI (Magneto Impedance) element using a magnetic impedance effect, a fluxgate type magnetic sensor, or the like is used.
  • MI Magnetic Impedance
  • Magnetic elements such as a magnetoresistive element and a Hall element may be packaged with a resin, or may be potted with a silicone resin or an epoxy resin.
  • the plurality of magnetic elements When a plurality of magnetic elements are packaged, the plurality of magnetic elements may be packaged in one, or each of the plurality of magnetic elements may be packaged separately. In addition, a plurality of magnetic elements and electronic components may be integrated and packaged together.
  • the AMR element has an odd function input / output characteristic by including a barber pole type electrode.
  • each of the magnetoresistive elements of the first magnetic sensor 120a and the second magnetic sensor 120b includes a barber pole type electrode, thereby making a predetermined angle with respect to the magnetization direction of the magnetoresistive film in the magnetoresistive element. It is biased so that a current flows in the direction it forms.
  • the magnetoresistive film is composed of a thin film of magnetic material such as permalloy.
  • the magnetization direction of the magnetoresistive film is determined by the shape anisotropy of the magnetoresistive film.
  • the method of adjusting the magnetization direction of the magnetoresistive film is not limited to the method using the shape anisotropy of the magnetoresistive film, but a method of arranging a permanent magnet in the vicinity of the magnetoresistive film constituting the AMR element, or AMR A method of providing exchange coupling in the magnetoresistive film constituting the element may be used.
  • the permanent magnet may be composed of a sintered magnet, a bonded magnet or a thin film.
  • the kind of permanent magnet is not particularly limited, and isotropic ferrite magnets, anisotropic ferrite magnets, samarium cobalt magnets, alnico magnets, neodymium magnets, and the like can be used.
  • a magnetoresistive film may be formed on the permanent magnet. When viewed from the direction orthogonal to the main surface of the substrate 130, the magnetoresistive film may be disposed between the permanent magnets, or the permanent magnet may be disposed between the magnetoresistive films.
  • the magnetization direction of the magnetoresistive film in the magnetoresistive element of the first magnetic sensor 120a and the magnetization direction of the magnetoresistive film in the magnetoresistive element of the second magnetic sensor 120b are the same direction. Thereby, the fall of the output accuracy by the influence of an external magnetic field can be made small.
  • the current sensor 100 calculates the value of the current to be measured flowing through the conductor 110 by calculating the detection value of the first magnetic sensor 120a and the detection value of the second magnetic sensor 120b.
  • 190 is further provided.
  • the calculation unit 190 is a differential amplifier.
  • the calculation unit 190 may be a subtracter.
  • the operation of the current sensor 100 according to Embodiment 1 of the present invention will be described.
  • the first conductor 111 is moved from the first end 111a side in the length direction (X-axis direction) to the first other end 111b side as shown in FIGS.
  • Current 1a flows toward.
  • the current 1 a flows into the third other end 113 b of the third conductor 113 connected to the fourth conductor 114 through the fourth conductor 114 connected to the first conductor 111.
  • the current flowing into the third other end portion 113b of the third conductor portion 113 moves the third conductor portion 113 from the third other end portion 113b side in the length direction (X-axis direction) toward the third one end portion 113a side. It flows as current 1b.
  • the current 1 b flows into the second end portion 112 a of the second conductor portion 112 connected to the fifth conductor portion 115 through the fifth conductor portion 115 connected to the third conductor portion 113.
  • the current flowing into the second one end 112a of the second conductor 112 is a current flowing from the second end 112a side in the length direction (X-axis direction) toward the second other end 112b. It flows as 1c.
  • a magnetic field 1ae that circulates around the first conductor portion 111 is generated
  • a magnetic field 1ce that circulates around the second conductor portion 112 is generated
  • a magnetic field 1be is generated.
  • the first magnetic sensor 120a is located closer to the first conductor portion 111 in the region Ty and in the region Tz. Therefore, a magnetic field 1ae that circulates around the first conductor portion 111 is mainly applied to the first magnetic sensor 120a.
  • the second magnetic sensor 120b is located closer to the second conductor portion 112 in the region Ty and the region Tz. Therefore, the magnetic field 1ce that circulates around the second conductor portion 112 is mainly applied to the second magnetic sensor 120b.
  • the magnetic field 1be that circulates around the third conductor portion 113 is in the width direction orthogonal to the height direction (Z-axis direction) in which the detection axis 2 faces the first magnetic sensor 120a and the second magnetic sensor 120b. Applied mainly in (Y-axis direction). Therefore, each of the first magnetic sensor 120a and the second magnetic sensor 120b hardly detects the magnetic field 1be that goes around the third conductor portion 113.
  • FIG. 5 is a contour map showing the result of simulation analysis of the magnetic flux density distribution of the magnetic field generated around the conductor of the current sensor according to the first embodiment of the present invention.
  • the current sensor of FIG. 1 is shown in a cross-sectional view as seen from the direction of arrows VV. 6 shows the relationship between the component (mT) in the Z-axis direction of the magnetic flux density on the imaginary straight line extending in the Y-axis direction from the start point S to the end point E in FIG. 5 and the distance (mm) from the start point S. It is a graph to show.
  • the cross-sectional dimensions of the first conductor portion 111, the second conductor portion 112, and the third conductor portion 113 were 10 mm in width and 1.5 mm in thickness.
  • the position of the imaginary straight line in the height direction (Z-axis direction) is a position of 7.5 mm from the other end in the height direction (Z-axis direction) of each of the first conductor portion 111 and the second conductor portion 112 to one end side. It was.
  • the value of the current flowing through each of the first conductor portion 111, the second conductor portion 112, and the third conductor portion 113 was 600A.
  • a line having a magnetic flux density height direction (Z-axis direction) component of 40 mT is E1
  • a line of 32 mT is E2
  • a line of 24 mT is E3
  • a line of 16 mT is E4.
  • a line having a magnetic flux density height direction (Z-axis direction) of ⁇ 40 mT is represented by E11
  • a line of ⁇ 32 mT is represented by E12
  • a line of ⁇ 24 mT is represented by E13
  • a line of ⁇ 16 mT is represented by E14.
  • the component of the magnetic flux density in the height direction (Z-axis direction) indicates an upward magnetic flux in FIG. 5 as a positive value and a downward magnetic flux in FIG. 5 as a negative value.
  • the component in the height direction (Z-axis direction) of the magnetic flux density is a positive value at a position where the distance from the starting point is less than 5 mm, and the magnetic flux density at a position where the distance from the starting point is longer than 5 mm.
  • the component in the height direction (Z-axis direction) was negative.
  • the first magnetic sensor 120a is arranged at a position where the distance from the starting point is longer than 5 mm on the virtual straight line.
  • the second magnetic sensor 120b is disposed on the virtual straight line at a position where the distance from the starting point is less than 5 mm.
  • the direction of the magnetic flux of the magnetic field 1ae acting on the first magnetic sensor 120a and the direction of the magnetic flux of the magnetic field 1be acting on the second magnetic sensor 120b are opposite to each other, and the first magnetic sensor 120a and the second magnetic sensor Since the direction of the detection axis 2 of 120b is the same, the phase of the detection value of the first magnetic sensor 120a and the detection value of the second magnetic sensor 120b regarding the strength of the magnetic field generated by the current to be measured flowing through the conductor 110. Is the opposite phase. Accordingly, if the strength of the magnetic field detected by the first magnetic sensor 120a is a positive value, the strength of the magnetic field detected by the second magnetic sensor 120b is a negative value.
  • the detection value of the first magnetic sensor 120a and the detection value of the second magnetic sensor 120b are calculated by the calculation unit 190. Specifically, the calculation unit 190 subtracts the detection value of the second magnetic sensor 120b from the detection value of the first magnetic sensor 120a. From this result, the value of the current to be measured flowing through the conductor 110 is calculated.
  • the external magnetic field source is physically connected to the first magnetic sensor 120a and the first magnetic sensor 120a. It cannot be located between the two magnetic sensors 120b.
  • the direction of the magnetic field component in the direction of the detection axis 2 of the magnetic field applied from the external magnetic field source to the first magnetic sensor 120a and the detection axis of the magnetic field applied from the external magnetic field source to the second magnetic sensor 120b is the same direction. Therefore, if the strength of the external magnetic field detected by the first magnetic sensor 120a is a positive value, the strength of the external magnetic field detected by the second magnetic sensor 120b is also a positive value.
  • the calculation unit 190 subtracts the detection value of the second magnetic sensor 120b from the detection value of the first magnetic sensor 120a, so that the magnetic field from the external magnetic field source is hardly detected. That is, the influence of the external magnetic field is reduced.
  • the directions of the detection axes with positive detection values may be opposite to each other (opposite 180 °).
  • the strength of the external magnetic field detected by the first magnetic sensor 120a is a positive value
  • the strength of the external magnetic field detected by the second magnetic sensor 120b is a negative value.
  • the phase of the detection value of the first magnetic sensor 120a and the phase of the detection value of the second magnetic sensor 120b are in phase.
  • an adder or an addition amplifier is used as the calculation unit 190 instead of the differential amplifier.
  • the detected value of the first magnetic sensor 120a and the detected value of the second magnetic sensor 120b are added by an adder or an adding amplifier, thereby obtaining the absolute value of the detected value of the first magnetic sensor 120a.
  • the absolute value of the detection value of the second magnetic sensor 120b is subtracted. Thereby, the magnetic field from the external magnetic field source is hardly detected. That is, the influence of the external magnetic field is reduced.
  • the detected value of the first magnetic sensor 120a and the detected value of the second magnetic sensor 120b are added by an adder or an adding amplifier.
  • the value of the current to be measured is calculated.
  • an adder or an addition amplifier may be used as the calculation unit in place of the differential amplifier while the input / output characteristics of the first magnetic sensor 120a and the second magnetic sensor 120b have opposite polarities.
  • the current sensor 100 detects the magnetic field 1ae generated by the current 1a to be measured flowing through the first conductor portion 111 without branching the conductor 110 by the first magnetic sensor 120a.
  • the second magnetic sensor 120b detects the magnetic field 1ce generated by the current 1c to be measured flowing through the second conductor portion 112, thereby increasing the output of each of the first magnetic sensor 120a and the second magnetic sensor 120b.
  • the sensitivity of the current sensor 100 can be increased.
  • first magnetic sensor 120a and the second magnetic sensor 120b can be arranged close to each other, the difference in the intensity of the external magnetic field applied to each of the first magnetic sensor 120a and the second magnetic sensor 120b. The variation in the measured value of the current sensor 100 due to the external magnetic field can be reduced.
  • the magnetic field 1 ae and the magnetic field 1 be cancel each other on the surface side of the third conductor portion 113 opposite to the surface side adjacent to the first conductor portion 111 and the second conductor portion 112. Since the magnetic field 1be and the magnetic field 1ce cancel each other, the strength of the magnetic field generated outside the current sensor 100 can be reduced.
  • the width direction of the current sensor 100 (Y-axis direction). It can suppress that the width
  • the conductor 110 can be formed simply by bending a single flat plate made of a metal material or an alloy material shown in FIG. it can.
  • the current sensor 200 according to the second embodiment is mainly different from the current sensor 100 according to the first embodiment in the direction of the substrate and the direction of each detection axis of the first magnetic sensor and the second magnetic sensor with respect to the main surface of the substrate. Therefore, the same reference numerals are assigned to the same configurations as those of the current sensor 100 according to the first embodiment, and the description thereof is not repeated.
  • FIG. 7 is a front view showing the configuration of the current sensor according to the second embodiment of the present invention. In FIG. 7, the state seen from the same direction as FIG. 2 is shown.
  • the first magnetic sensor 220a and the second magnetic sensor 220b are mounted on one main surface of the substrate 230.
  • a surface of the third conductor 113 adjacent to the first conductor 111 and the second conductor 112 and one main surface of the substrate 230 are parallel to each other.
  • Each of the first magnetic sensor 220a and the second magnetic sensor 220b includes a region Ty between the first conductor portion 111 and the second conductor portion 112 in the width direction (Y-axis direction), and the first conductor portion 111 and the second magnetic sensor 220b.
  • the two conductor portions 112 are located in a region Tz including from one end to the other end in both height directions (Z-axis direction).
  • the region Ty extends from the position of the second end 112a of the second conductor 112 to the position of the first other end 111b of the first conductor 111 in the length direction (X-axis direction). Yes.
  • the shortest distance between the first magnetic sensor 220a and the first conductor portion 111 is shorter than the shortest distance between the first magnetic sensor 220a and the second conductor portion 112.
  • the shortest distance between the second magnetic sensor 220 b and the second conductor portion 112 is shorter than the shortest distance between the second magnetic sensor 220 b and the first conductor portion 111.
  • the shortest distance between the first magnetic sensor 220a and the first conductor portion 111 is shorter than the shortest distance between the first magnetic sensor 220a and the third conductor portion 113.
  • the shortest distance between the second magnetic sensor 220 b and the second conductor portion 112 is shorter than the shortest distance between the second magnetic sensor 220 b and the third conductor portion 113.
  • Each of the first magnetic sensor 220a and the second magnetic sensor 220b has a detection axis 2 and is arranged so that the detection axis 2 faces the height direction (Z-axis direction).
  • the first magnetic sensor 220a and the second magnetic sensor 220b can be placed closer together. Therefore, the difference in the intensity of the external magnetic field applied to each of the first magnetic sensor 220a and the second magnetic sensor 220b can be reduced, and variations in the measured value of the current sensor 200 due to the external magnetic field can be reduced.
  • Embodiment 3 a current sensor according to Embodiment 3 of the present invention will be described.
  • the current sensor 300 according to the third embodiment is different from the current sensor 100 according to the first embodiment only in that the substrate is housed in a housing, and therefore, the configuration that is the same as the current sensor 100 according to the first embodiment is described. The same reference numerals are attached and the description is not repeated.
  • FIG. 8 is a perspective view showing an appearance of a current sensor according to Embodiment 3 of the present invention.
  • the current sensor 300 according to the third embodiment of the present invention further includes a housing 350 that houses a substrate 130 on which the first magnetic sensor 120 a and the second magnetic sensor 120 b are mounted.
  • the casing 350 is provided with a flange portion 350f.
  • the flange portion 350f is provided with a through hole (not shown).
  • the second conductor portion 112 is provided with a through hole (not shown) at a position corresponding to the through hole of the flange portion 350f.
  • the flange portion 350f is disposed outside the region from the position of the second end portion 112a of the second conductor portion 112 to the position of the first other end portion 111b of the first conductor portion 111 in the length direction (X-axis direction). Has been.
  • the housing 350 and the conductor 110 can be fastened by screwing a bolt 370 inserted through the through hole of the flange portion 350f and the through hole of the second conductor portion 112 and a nut (not shown).
  • Each of the bolt 370 and the nut is made of a nonmagnetic material.
  • the bonding method of the housing 350 and the conductor 110 is not limited to the above, and may be heat welding using a resin or bonding using an adhesive.
  • the housing 350 may be fixed to the conductor 110 by providing the housing 350 with a locking portion that locks the conductor 110 and locking the locking portion to the conductor 110.
  • the casing 350 is in contact with each of the first conductor portion 111, the second conductor portion 112, and the third conductor portion 113.
  • each of the variation in the position of the first magnetic sensor 120a with respect to the first conductor portion 111 and the variation in the position of the second magnetic sensor 120b with respect to the second conductor portion 112 are reduced, and the sensitivity of the current sensor 300 is increased.
  • variations in measurement accuracy can be reduced.
  • the housing 350 can be protected from external force by the first conductor portion 111, the second conductor portion 112, and the third conductor portion 113.
  • the housing 350 is made of engineering plastics such as PPS (polyphenylene sulfide), PBT (polybutylene terephthalate resin), LCP (liquid crystal polymer), urethane or nylon. Since PPS has high heat resistance, it is preferable as a material of the casing 350 in consideration of heat generation of the conductor 110.
  • PPS polyphenylene sulfide
  • PBT polybutylene terephthalate resin
  • LCP liquid crystal polymer
  • urethane or nylon. Since PPS has high heat resistance, it is preferable as a material of the casing 350 in consideration of heat generation of the conductor 110.
  • FIG. 9 is a perspective view showing an appearance of a current sensor according to a modification of the third embodiment of the present invention.
  • a part of each of the housing 350 and the conductor 110 is sealed with an insulating resin 360.
  • the insulating resin 360 By insert molding using the insulating resin 360, a part of the first conductor part 111, a part of the second conductor part 112, the third conductor part 113, and the housing 350 can be sealed.
  • the material of the insulating resin 360 is a thermoplastic resin or a thermosetting resin, such as acrylonitrile butadiene styrene (ABS) resin, polyphenylene sulfide (PPS) resin, liquid crystal polymer (LCP), polybutylene terephthalate (PBT) resin, epoxy.
  • Resin or polyamide resin (PA) is preferable from the viewpoint of heat resistance and mold accuracy.
  • a part of the conductor 110 and the substrate 130 on which the first magnetic sensor 120a and the second magnetic sensor 120b are mounted may be sealed with the insulating resin 360 without providing the housing 350.
  • Embodiment 4 a current sensor according to Embodiment 4 of the present invention will be described.
  • the current sensor 400 according to the fourth embodiment is different from the current sensor 100 according to the first embodiment mainly in the length of the fifth conductor portion, the configuration similar to that of the current sensor 100 according to the first embodiment is described. The same reference numerals are attached and the description is not repeated.
  • FIG. 10 is a perspective view showing an appearance of a current sensor according to Embodiment 4 of the present invention.
  • FIG. 11 is a perspective view of the current sensor of FIG. 10 as viewed from the direction of the arrow XI.
  • FIG. 12 is a perspective view illustrating an appearance of a conductor included in a current sensor according to Embodiment 4 of the present invention.
  • the current to be measured flows, and the length direction (X-axis direction) and the width orthogonal to the length direction (X-axis direction) are shown.
  • a conductor 410 having a direction (Y-axis direction) and a height direction (Z-axis direction) orthogonal to a length direction (X-axis direction) and a width direction (Y-axis direction), and a magnetic field generated by the current
  • a first magnetic sensor 120a and a second magnetic sensor 120b that detect strength are provided.
  • the fifth conductor portion 415 of the conductor 410 is longer than the fifth conductor portion 115 of the conductor 110 according to the first embodiment. As a result, when viewed from the width direction (Y-axis direction), the positions of the first conductor portion 111 and the second conductor portion 112 are shifted from each other in the height direction (Z-axis direction).
  • the first magnetic sensor 120 a and the second magnetic sensor 120 b are mounted on one main surface of the substrate 130.
  • One main surface of the substrate 130 and the surface of the first conductor portion 111 on the second conductor portion 112 side are parallel to each other.
  • the other main surface of the substrate 130 and the surface of the second conductor portion 112 on the first conductor portion 111 side are parallel to each other.
  • Each of the first magnetic sensor 120a and the second magnetic sensor 120b includes a region Ty between the first conductor portion 111 and the second conductor portion 112 in the width direction (Y-axis direction), and the first conductor portion 111 and the second magnetic sensor 120b.
  • the two conductor portions 112 are located in a region Tz including from one end to the other end in both height directions (Z-axis direction).
  • the shortest distance between the first magnetic sensor 120a and the first conductor portion 111 is shorter than the shortest distance between the first magnetic sensor 120a and the second conductor portion 112.
  • the shortest distance between the second magnetic sensor 120 b and the second conductor portion 112 is shorter than the shortest distance between the second magnetic sensor 120 b and the first conductor portion 111.
  • the shortest distance between the first magnetic sensor 120a and the first conductor portion 111 is shorter than the shortest distance between the first magnetic sensor 120a and the third conductor portion 113.
  • the shortest distance between the second magnetic sensor 120 b and the second conductor portion 112 is shorter than the shortest distance between the second magnetic sensor 120 b and the third conductor portion 113.
  • a magnetic field 1ae that circulates around the first conductor portion 111 is generated, a magnetic field 1ce that circulates around the second conductor portion 112 is generated, and the third conductor portion 113 circulates according to the so-called right-handed screw law.
  • a magnetic field 1be is generated.
  • the first magnetic sensor 120a is located closer to the first conductor portion 111 in the region Ty and in the region Tz. Therefore, a magnetic field 1ae that circulates around the first conductor portion 111 is mainly applied to the first magnetic sensor 120a.
  • the second magnetic sensor 120b is located closer to the second conductor portion 112 in the region Ty and the region Tz. Therefore, the magnetic field 1ce that circulates around the second conductor portion 112 is mainly applied to the second magnetic sensor 120b.
  • the magnetic field 1ae when the position of the first conductor portion 111 and the second conductor portion 112 is shifted from each other in the height direction (Z-axis direction) when viewed from the width direction (Y-axis direction), the magnetic field 1ae. Hardly enters the surface of the second conductor portion 112 on the first conductor portion 111 side, and the magnetic field 1ce hardly enters the surface of the first conductor portion 111 on the second conductor portion 112 side. As a result, the eddy current loss that occurs when the magnetic field 1ae enters the surface on the first conductor portion 111 side of the second conductor portion 112, and the surface on the second conductor portion 112 side of the first conductor portion 111 that has the magnetic field 1ce. The eddy current loss that occurs when it enters the can be reduced. Thereby, the output fall of the current sensor 400 can be suppressed, and the frequency characteristic of the current sensor 400 can be improved.
  • the current sensor according to the fifth embodiment is the same as the current sensor 100 according to the first embodiment because the lengths of the fourth conductor portion and the fifth conductor portion are mainly different from the current sensor 100 according to the first embodiment. About a certain structure, the same referential mark is attached
  • FIG. 13 is a perspective view showing an appearance of a conductor provided in the current sensor according to the fifth embodiment of the present invention.
  • FIG. 14 is a side view of the conductor of FIG. 13 viewed from the direction of arrow XIV.
  • FIG. 15 is a plan view of the conductor of FIG. 13 viewed from the direction of the arrow XV.
  • FIG. 16 is a front view of the conductor of FIG. 13 viewed from the direction of the arrow XVI.
  • each of the fourth conductor portion 514 and the fifth conductor portion 515 of the conductor 510 included in the current sensor according to the fifth embodiment of the present invention extends in the width direction (Y-axis direction). A portion and a portion extending in the height direction (Z-axis direction) are included. That is, each of the fourth conductor portion 514 and the fifth conductor portion 515 is bent.
  • a portion extending in the height direction (Z-axis direction) of the fourth conductor portion 514 of the conductor 510 is shorter than the fourth conductor portion 114 of the conductor 110 according to the first embodiment.
  • a portion of the conductor 510 that extends in the height direction (Z-axis direction) of the fifth conductor portion 515 is shorter than the fifth conductor portion 115 of the conductor 110 according to the first embodiment.
  • Embodiment 6 a current sensor according to Embodiment 6 of the present invention will be described. Note that the current sensor according to the sixth embodiment is different from the current sensor 100 according to the first embodiment mainly in the shape of the third conductor portion, and therefore the same reference is made to the configuration that is the same as the current sensor 100 according to the first embodiment. The description will not be repeated with reference numerals.
  • FIG. 17 is a perspective view showing an appearance of a conductor provided in the current sensor according to Embodiment 6 of the present invention.
  • FIG. 18 is a side view of the conductor of FIG. 17 as viewed from the direction of arrow XVIII.
  • FIG. 19 is a plan view of the conductor of FIG. 17 as viewed from the direction of the arrow XIX.
  • FIG. 20 is a front view of the conductor of FIG. 17 as viewed from the direction of the arrow XX.
  • the third conductor portion 613 of the conductor 610 included in the current sensor according to Embodiment 6 of the present invention has a height direction (Z-axis direction) when viewed from the length direction (X-axis direction).
  • ) Has a shape bent convexly on the opposite side to the first conductor portion 111 side.
  • the shape bent in the convex shape is a curved shape.
  • the third conductor portion 613 is located between the first conductor portion 111 and the second conductor portion 112 when viewed from the height direction (Z-axis direction), and a third end portion in the length direction (X-axis direction) 613a and a third other end 613b.
  • the third conductor portion 613 has the curved shape described above, the shortest distance between each of the first magnetic sensor 120a and the second magnetic sensor 120b and the third conductor portion 613 is increased.
  • the magnetic field that circulates around the conductor portion 613 can be made difficult to be applied to each of the first magnetic sensor 120a and the second magnetic sensor 120b.
  • Embodiment 7 a current sensor according to Embodiment 7 of the present invention will be described.
  • the current sensor according to the seventh embodiment is different from the current sensor 100 according to the first embodiment mainly in the shape of the conductor, and thus the same reference numerals are assigned to the same configurations as those of the current sensor 100 according to the first embodiment. I will not repeat the explanation.
  • FIG. 21 is a perspective view showing an appearance of a conductor provided in the current sensor according to the seventh embodiment of the present invention.
  • FIG. 22 is a side view of the conductor of FIG. 21 as seen from the direction of arrow XXII.
  • FIG. 23 is a plan view of the conductor of FIG. 21 viewed from the direction of arrow XXIII.
  • FIG. 24 is a front view of the conductor of FIG. 21 as viewed from the direction of the arrow XXIV.
  • the conductor 710 provided in the current sensor according to the seventh embodiment of the present invention extends in the length direction (X-axis direction) and has a first end in the length direction (X-axis direction).
  • a first conductor portion 711 having a portion 711a and a first other end portion 711b, and extending in the length direction (X-axis direction) while being spaced apart from the first conductor portion 711 in the width direction (Y-axis direction)
  • the third other end portion 713b is connected to one end in the height direction (Z-axis direction) of the first other end portion 711b, so that the first conductor portion 711 and the third conductor portion 713 are connected to each other. Yes. Specifically, the first other end 711 b and the third other end 713 b are connected to each other by a fourth conductor portion 714.
  • the fourth conductor portion 714 is a part of the conductor 710.
  • the third end portion 713a is connected to one end in the height direction (Z-axis direction) of the second end portion 712a, whereby the second conductor portion 712 and the third conductor portion 713 are connected to each other. Specifically, the second end portion 712a and the third end portion 713a are connected to each other by a fifth conductor portion 715.
  • the fifth conductor portion 715 is a part of the conductor 710.
  • each of the first conductor portion 711 and the second conductor portion 712 has a plate shape.
  • the first virtual plane including the surface of the first conductor portion 711 on the second conductor portion 712 side and the surface of the second conductor portion 712 on the first conductor portion 711 side are included.
  • the second virtual plane intersects with each other.
  • the angle formed by the first virtual plane and the second virtual plane is, for example, 60 °.
  • the third conductor portion 713 extends in the length direction (X-axis direction). When viewed from the length direction (X-axis direction), the third conductor portion 713 has a shape bent in a convex shape on the side opposite to the first conductor portion 711 side in the height direction (Z-axis direction). . In the present embodiment, the bent shape is a bent shape.
  • the fourth conductor portion 714 extends along the first virtual plane.
  • the fifth conductor portion 715 extends along the second virtual plane.
  • Each of the first magnetic sensor 120a and the second magnetic sensor 120b includes a region Ty between the first conductor portion 711 and the second conductor portion 712 in the width direction (Y-axis direction), and the first conductor portion 711 and the second conductor portion 712.
  • the two conductor portions 712 are located in a region Tz including both ends from one end to the other end in the height direction (Z-axis direction).
  • the shortest distance between the first magnetic sensor 120a and the first conductor portion 711 is shorter than the shortest distance between the first magnetic sensor 120a and the second conductor portion 712.
  • the shortest distance between the second magnetic sensor 120b and the second conductor portion 712 is shorter than the shortest distance between the second magnetic sensor 120b and the first conductor portion 711.
  • the shortest distance between the first magnetic sensor 120a and the first conductor portion 711 is shorter than the shortest distance between the first magnetic sensor 120a and the third conductor portion 713.
  • the shortest distance between the second magnetic sensor 120b and the second conductor portion 712 is shorter than the shortest distance between the second magnetic sensor 120b and the third conductor portion 713.
  • the current sensor can be reduced in size.
  • Embodiment 8 The current sensor according to Embodiment 8 of the present invention will be described below. Note that the current sensor according to the eighth embodiment is different from the current sensor according to the fifth embodiment mainly in the shape of the third conductor portion. The description will not be repeated.
  • FIG. 25 is a perspective view showing an appearance of a conductor provided in the current sensor according to the eighth embodiment of the present invention.
  • FIG. 26 is a side view of the conductor of FIG. 25 viewed from the direction of arrow XXVI.
  • FIG. 27 is a plan view of the conductor of FIG. 25 viewed from the direction of arrow XXVII.
  • FIG. 28 is a front view of the conductor of FIG. 25 as seen from the direction of arrow XXVIII.
  • the third conductor portion 813 of the conductor 810 included in the current sensor according to the eighth embodiment of the present invention extends in the length direction (X-axis direction) and the width direction (Y-axis direction). is doing. That is, the third conductor portion 813 extends so as to intersect the first conductor portion 111 and the second conductor portion 112 at an angle other than a right angle when viewed from the height direction (Z-axis direction). When viewed from the height direction (Z-axis direction), the angle at which each of the first conductor portion 111 and the second conductor portion 112 intersects the third conductor portion 813 is, for example, 30 °.
  • FIG. 29 is a contour map showing the result of simulation analysis of the magnetic flux density distribution of the magnetic field generated around the conductor of the current sensor according to the eighth embodiment of the present invention.
  • FIG. 30 shows the relationship between the Z-axis direction component (mT) of the magnetic flux density on the virtual straight line L extending in the Y-axis direction from the start point S to the end point E in FIG. It is a graph which shows.
  • the cross-sectional dimensions of the first conductor portion 111, the second conductor portion 112, and the third conductor portion 813 were 10 mm in width and 1.5 mm in thickness.
  • the position of the virtual straight line L in the height direction (Z-axis direction) is a distance M from the surface of the third conductor portion 813 adjacent to the first conductor portion 111 and the second conductor portion 112.
  • the value of the current flowing through each of the first conductor portion 111, the second conductor portion 112, and the third conductor portion 113 was 600A.
  • the line having a magnetic flux density height direction (Z-axis direction) component of 40 mT is indicated by E1
  • the line of 32 mT is indicated by E2
  • the line of 24 mT is indicated by E3
  • the line of 16 mT is indicated by E4.
  • a line having a magnetic flux density height direction (Z-axis direction) of ⁇ 40 mT is represented by E11
  • a line of ⁇ 32 mT is represented by E12
  • a line of ⁇ 24 mT is represented by E13
  • a line of ⁇ 16 mT is represented by E14.
  • the component of the magnetic flux density in the height direction (Z-axis direction) indicates an upward magnetic flux in FIG. 28 as a positive value and a downward magnetic flux in FIG. 28 as a negative value.
  • the sign is reversed.
  • the component in the height direction (Z-axis direction) of the magnetic flux density is a positive value at a position where the distance from the starting point is less than 6 mm, and the magnetic flux density at a position where the distance from the starting point is longer than 6 mm.
  • the component in the height direction (Z-axis direction) was negative.
  • the first magnetic sensor 120a is arranged on the virtual straight line L at a position where the distance from the starting point S is longer than 6 mm.
  • the second magnetic sensor 120b is disposed on the virtual straight line L at a position where the distance from the starting point S is less than 6 mm.
  • the phase of the detection value of the first magnetic sensor 120a and the phase of the detection value of the second magnetic sensor 120b are opposite in phase. Accordingly, if the strength of the magnetic field detected by the first magnetic sensor 120a is a positive value, the strength of the magnetic field detected by the second magnetic sensor 120b is a negative value.
  • the detection value of the first magnetic sensor 120a and the detection value of the second magnetic sensor 120b are calculated by the calculation unit 190. Specifically, the calculation unit 190 subtracts the detection value of the second magnetic sensor 120b from the detection value of the first magnetic sensor 120a. From this result, the value of the current to be measured flowing through the conductor 810 is calculated.
  • the third conductor portion 813 is formed in a shape that connects the fourth conductor portion 514 and the fifth conductor portion 515 in the shortest length, the current density flowing through the third conductor portion 813 To increase the frequency characteristics of the current sensor.
  • Embodiment 9 a current sensor according to Embodiment 9 of the present invention will be described.
  • the current sensor according to the ninth embodiment is the same as the current sensor 100 according to the first embodiment because the positions of the fourth conductor portion and the fifth conductor portion are mainly different from the current sensor 100 according to the first embodiment.
  • the same reference numerals are assigned to the configurations, and the description thereof is not repeated.
  • FIG. 31 is a perspective view showing the appearance of a conductor provided in the current sensor according to Embodiment 9 of the present invention.
  • FIG. 32 is a side view of the conductor of FIG. 31 viewed from the direction of arrow XXXII.
  • FIG. 33 is a plan view of the conductor of FIG. 31 as viewed from the direction of arrow XXXIII.
  • FIG. 34 is a front view of the conductor of FIG. 31 as viewed from the direction of arrow XXXIV.
  • each of the fourth conductor portion 914 and the fifth conductor portion 915 of the conductor 910 included in the current sensor according to the ninth embodiment of the present invention extends in the width direction (Y-axis direction). ing.
  • the first other end portion 111b and the third other end portion 113b are connected to each other by the fourth conductor portion 914.
  • the fifth conductor portion 915 By the fifth conductor portion 915, the second end portion 112a and the third end portion 113a are connected to each other.
  • FIG. 35 is a perspective view showing an appearance of a current sensor module according to Embodiment 10 of the present invention.
  • the current sensor module 1000 As shown in FIG. 35, the current sensor module 1000 according to the tenth embodiment of the present invention is applied to a three-phase three-wire wiring such as an inverter, for example.
  • the current sensor module 1000 includes three current sensors 300.
  • the number of current sensors 300 included in the current sensor module 1000 is three. However, the number is not limited to this, and may be any number.
  • the conductors 110 of the three current sensors 300 are arranged in parallel.
  • the current sensor module 1000 further includes a base 1080 to which three conductors 110 are attached.
  • Each of first phase electrode 1011, second phase electrode 1012, and third phase electrode 1013 is fixed to base 1080 by bolts 1070.
  • the first conductor portion 111 of the first current sensor 300 is connected to the electrode 1011.
  • the first conductor portion 111 of the second current sensor 300 is connected to the electrode 1012.
  • the first conductor portion 111 of the third current sensor 300 is connected to the electrode 1013.
  • the three current sensors 300 are arranged at intervals in the height direction (Z-axis direction). In the current sensors 300 adjacent to each other, a region Ty between the first conductor portion 111 and the second conductor portion 112 in the width direction (Y-axis direction) of one current sensor 300 is the same as that of the other current sensor 300. It faces the third conductor portion 113.
  • the casing 350 of the first current sensor 300 faces the third conductor portion 113 of the second current sensor 300.
  • the casing 350 of the second current sensor 300 faces the third conductor portion 113 of the third current sensor 300.
  • the third conductor portion 113 of the other current sensor 300 includes the first conductor portion 111 of one current sensor 300 and The second conductor portion 112 is located on the other side in the height direction (Z-axis direction).
  • the strength of the magnetic field generated on the surface side of the third conductor portion 113 opposite to the surface side adjacent to the first conductor portion 111 and the second conductor portion 112 is reduced. Therefore, even if the current sensor module 1000 is configured as described above, an error occurs in the measurement value of the first current sensor 300 due to the magnetic field that circulates around the third conductor portion 113 of the second current sensor 300, and the third It is possible to suppress an error in the measurement value of the second current sensor 300 due to the magnetic field that circulates around the third conductor portion 113 of the current sensor 300.
  • FIG. 36 is a perspective view showing an arrangement of conductors of a current sensor module according to a modification of the tenth embodiment of the present invention. In FIG. 36, only the conductor of the current sensor module is illustrated.
  • three conductors 510 are arranged in parallel.
  • the three conductors 510 are arranged at intervals in the length direction (X-axis direction) while being arranged at intervals in the width direction (Y-axis direction).
  • the region Ty between the first conductor portion 111 and the second conductor portion 112 in the width direction (Y-axis direction) of one current sensor is the width direction of the other current sensor ( It is opposed to the region Ty between the first conductor portion 111 and the second conductor portion 112 in the Y-axis direction) in the length direction (X-axis direction).
  • the region Ty of one current sensor and the region Ty of the other current sensor are aligned in the length direction (X-axis direction).
  • the third conductor portion 113 of one current sensor and the third conductor portion 113 of the other current sensor are located on the same plane, but the present invention is not limited to this.
  • the region Ty and the region Ty of the other current sensor may be shifted from each other in the height direction (Z-axis direction) within a range in which the region Ty faces each other in the length direction (X-axis direction).
  • an error occurs in the measurement value of the first current sensor due to the magnetic field that circulates around the third conductor portion 113 of the second current sensor, and It can suppress that an error arises in the measured value of the 2nd current sensor by the magnetic field which goes around the 3rd conductor part 113 of the 3rd current sensor. Further, since the three conductors 510 can be arranged close to each other, the current sensor module 1000a can be reduced in size.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

測定対象の電流が流れ、長さ方向、この長さ方向と直交する幅方向(Y軸方向)、および、上記長さ方向と幅方向(Y軸方向)とに直交する高さ方向(Z軸方向)を有する導体(110)と、上記電流により発生する磁界の強さを検出する、第1磁気センサ(120a)および第2磁気センサ(120b)とを備える。第1磁気センサ(120a)および第2磁気センサ(120b)の各々は、幅方向(Y軸方向)における第1導体部(111)と第2導体部(112)との間の領域(Ty)、かつ、第1導体部(111)および第2導体部(112)の両方の高さ方向(Z軸方向)における一端から他端までを含む領域(Tz)、に位置している。

Description

電流センサおよび電流センサモジュール
 本発明は、電流センサおよび電流センサモジュールに関する。
 電流センサの構成を開示した先行文献として、特開2010-48809号公報(特許文献1)がある。特許文献1に記載された第1実施形態に係る電流センサにおいては、導体が第1導体部と第2導体部とから構成されている。第1導体部と第2導体部とは、互いに離間している。第1導体部と第2導体部との間に、中間空間が形成されている。磁気センサが設けられた支持体が中間空間に挿入されることにより、磁気センサが導体の磁界内かつ中間空間の外部に配置されている。
 特許文献1に記載された第2実施形態に係る電流センサは、導体が複数回曲げられている。導体は、互いに間隔をあけて並ぶ、第1導体部要素と第2導体部要素と第3導体部要素とを含む。第1導体部要素と第2導体部要素との間に、第1磁気センサが配置されている。第2導体部要素と第3導体部要素との間に、第2磁気センサが配置されている。
特開2010-48809号公報
 特許文献1に記載された第1実施形態に係る電流センサにおいては、導体が、第1導体部と第2導体部とに分岐しているため、導体を流れる電流は、第1導体部と第2導体部とに分かれて流れる。そのため、第1導体部の周囲に発生する磁界の強さ、および、第2導体部の周囲に発生する磁界の強さの各々は、分岐していない部分の導体の周囲に発生する磁界の強さより弱くなる。その結果、磁気センサに印加される磁界の強さが弱いため、磁気センサの出力が低くなり、電流センサの感度が低くなる。
 特許文献1に記載された第2実施形態に係る電流センサは、第1磁気センサと第2磁気センサとの間に、第2導体部要素が位置するため、第1磁気センサと第2磁気センサとの間の距離が長くなる。第1磁気センサと第2磁気センサとの間の距離が長い場合、第1磁気センサおよび第2磁気センサの各々に印加される外部磁界の強さの差が大きくなるため、外部磁界による電流センサの測定値のばらつきが大きくなる。
 本発明は上記の問題点に鑑みてなされたものであって、測定対象の電流によって発生する磁界に対して感度が高く、外部磁界による測定値のばらつきが少ない、電流センサおよび電流センサモジュールを提供することを目的とする。
 本発明に基づく電流センサは、測定対象の電流が流れ、長さ方向、この長さ方向と直交する幅方向、および、上記長さ方向と上記幅方向とに直交する高さ方向を有する導体と、上記電流により発生する磁界の強さを検出する、第1磁気センサおよび第2磁気センサとを備える。導体は、上記長さ方向に延在して上記長さ方向における第1一端部および第1他端部を有する第1導体部と、上記幅方向において第1導体部に間隔をあけつつ上記長さ方向に延在して上記長さ方向における第2一端部および第2他端部を有する第2導体部と、上記高さ方向から見て、第1導体部と第2導体部との間に位置し、かつ、上記長さ方向から見て、第1導体部および第2導体部に対して上記高さ方向の一方側に位置し、上記長さ方向における第3一端部および第3他端部を有する第3導体部とを含む。第3他端部が、第1他端部と接続されている。第3一端部が、第2一端部と接続されている。第1磁気センサおよび第2磁気センサの各々は、上記幅方向における第1導体部と第2導体部との間の領域、かつ、第1導体部および第2導体部の両方の上記高さ方向における一端から他端までを含む領域、に位置している。
 本発明の一形態においては、第1磁気センサと第1導体部との最短距離は、第1磁気センサと第2導体部との最短距離より短い。第2磁気センサと第2導体部との最短距離は、第2磁気センサと第1導体部との最短距離より短い。
 本発明の一形態においては、第1磁気センサと第1導体部との最短距離は、第1磁気センサと第3導体部との最短距離より短い。第2磁気センサと第2導体部との最短距離は、第2磁気センサと第3導体部との最短距離より短い。
 本発明の一形態においては、第1磁気センサの検出値と第2磁気センサの検出値とを演算することにより上記電流の値を算出する算出部をさらに備える。第1磁気センサと第2磁気センサとは、上記磁界の各々の検出値が互いに逆相である。算出部が減算器または差動増幅器である。
 本発明の一形態においては、第1磁気センサの検出値と第2磁気センサの検出値とを演算することにより上記電流の値を算出する算出部をさらに備える。第1磁気センサと第2磁気センサとは、上記磁界の各々の検出値が互いに同相である。算出部が加算器または加算増幅器である。
 本発明の一形態においては、第1導体部および第2導体部の各々が、板状の形状を有する。上記長さ方向から見て、第1導体部の第2導体部側の面を含む第1仮想平面と、第2導体部の第1導体部側の面を含む第2仮想平面とが、互いに平行である。
 本発明の一形態においては、第1導体部の一部と第2導体部の一部とが、互いに対向している。
 本発明の一形態においては、上記幅方向から見て、第1導体部と第2導体部との位置が、上記高さ方向において互いにずれている。
 本発明の一形態においては、第1導体部および第2導体部の各々が、板状の形状を有している。上記長さ方向から見て、第1導体部の第2導体部側の面を含む第1仮想平面と、第2導体部の第1導体部側の面を含む第2仮想平面とが、互いに交差している。
 本発明の一形態においては、第3導体部が、上記長さ方向に延在している。
 本発明の一形態においては、第3導体部が、上記長さ方向および上記幅方向に延在している。
 本発明の一形態においては、第3導体部が、板状の形状を有している。
 本発明の一形態においては、上記長さ方向から見て、第3導体部が、上記高さ方向において第1導体部側とは反対側に凸状に曲がった形状を有している。
 本発明の一形態においては、上記凸状に曲がった形状が、湾曲形状である。
 本発明の一形態においては、上記凸状に曲がった形状が、屈曲形状である。
 本発明の一形態においては、電流センサは、第1磁気センサおよび第2磁気センサが実装された基板と、基板を収容する筐体とをさらに備える。筐体は、導体に固定されている。
 本発明の一形態においては、筐体が、第1導体部、第2導体部および第3導体部の各々と接している。
 本発明に基づく電流センサモジュールは、上記の複数の電流センサを備える。複数の電流センサの各々の導体が、並列に配置されている。
 本発明の一形態においては、複数の電流センサが、上記高さ方向において互いに間隔をあけて並んでいる。互いに隣接している電流センサ同士において、一方の電流センサの上記幅方向における第1導体部と第2導体部との間の上記領域は、他方の電流センサの第3導体部と対向している。
 本発明の一形態においては、複数の電流センサが、上記幅方向において互いに間隔をあけて並びつつ、上記長さ方向において互いに間隔をあけて並んでいる。互いに隣接している電流センサ同士において、一方の電流センサの上記幅方向における第1導体部と第2導体部との間の上記領域は、他方の電流センサの上記幅方向における第1導体部と第2導体部との間の上記領域と、上記長さ方向において対向している。
 本発明によれば、電流センサにおいて、測定対象の電流によって発生する磁界に対して感度を高くしつつ、外部磁界による測定値のばらつきを少なくすることができる。
本発明の実施形態1に係る電流センサの外観を示す斜視図である。 図1の電流センサを矢印II方向から見た正面図である。 本発明の実施形態1に係る電流センサが備える導体が折り曲げられる前の形状を示す展開図である。 本発明の実施形態1に係る電流センサの回路構成を示す回路図である。 本発明の実施形態1に係る電流センサの導体の周辺に発生する磁界の磁束密度の分布をシミュレーション解析した結果を示す等高線図である。 図5中の始点Sから終点EまでY軸方向に延在する仮想直線上における磁束密度のZ軸方向の成分(mT)と、始点Sからの距離(mm)との関係を示すグラフである。 本発明の実施形態2に係る電流センサの構成を示す正面図である。 本発明の実施形態3に係る電流センサの外観を示す斜視図である。 本発明の実施形態3の変形例に係る電流センサの外観を示す斜視図である。 本発明の実施形態4に係る電流センサの外観を示す斜視図である。 図10の電流センサを矢印XI方向から見た斜視図である。 本発明の実施形態4に係る電流センサが備える導体の外観を示す斜視図である。 本発明の実施形態5に係る電流センサが備える導体の外観を示す斜視図である。 図13の導体を矢印XIV方向から見た側面図である。 図13の導体を矢印XV方向から見た平面図である。 図13の導体を矢印XVI方向から見た正面図である。 本発明の実施形態6に係る電流センサが備える導体の外観を示す斜視図である。 図17の導体を矢印XVIII方向から見た側面図である。 図17の導体を矢印XIX方向から見た平面図である。 図17の導体を矢印XX方向から見た正面図である。 本発明の実施形態7に係る電流センサが備える導体の外観を示す斜視図である。 図21の導体を矢印XXII方向から見た側面図である。 図21の導体を矢印XXIII方向から見た平面図である。 図21の導体を矢印XXIV方向から見た正面図である。 本発明の実施形態8に係る電流センサが備える導体の外観を示す斜視図である。 図25の導体を矢印XXVI方向から見た側面図である。 図25の導体を矢印XXVII方向から見た平面図である。 図25の導体を矢印XXVIII方向から見た正面図である。 本発明の実施形態8に係る電流センサの導体の周辺に発生する磁界の磁束密度の分布をシミュレーション解析した結果を示す等高線図である。 図29中の始点Sから終点EまでY軸方向に延在する仮想直線L上における磁束密度のZ軸方向の成分(mT)と、始点Sからの距離(mm)との関係を示すグラフである。 本発明の実施形態9に係る電流センサが備える導体の外観を示す斜視図である。 図31の導体を矢印XXXII方向から見た側面図である。 図31の導体を矢印XXXIII方向から見た平面図である。 図31の導体を矢印XXXIV方向から見た正面図である。 本発明の実施形態10に係る電流センサモジュールの外観を示す斜視図である。 本発明の実施形態10の変形例に係る電流センサモジュールの導体の配置を示す斜視図である。
 以下、本発明の各実施形態に係る電流センサおよび電流センサモジュールについて図を参照して説明する。以下の実施形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。
 (実施形態1)
 図1は、本発明の実施形態1に係る電流センサの外観を示す斜視図である。図2は、図1の電流センサを矢印II方向から見た正面図である。図3は、本発明の実施形態1に係る電流センサが備える導体が折り曲げられる前の形状を示す展開図である。図4は、本発明の実施形態1に係る電流センサの回路構成を示す回路図である。図1~3においては、導体の長さ方向をX軸方向、導体の幅方向をY軸方向、導体の高さ方向をZ軸方向として示している。
 図1~3に示すように、本発明の実施形態1に係る電流センサ100は、測定対象の電流が流れ、長さ方向(X軸方向)、長さ方向(X軸方向)と直交する幅方向(Y軸方向)、および、長さ方向(X軸方向)と幅方向(Y軸方向)とに直交する高さ方向(Z軸方向)を有する導体110と、上記電流により発生する磁界の強さを検出する、第1磁気センサ120aおよび第2磁気センサ120bとを備える。
 導体110は、長さ方向(X軸方向)に延在して長さ方向(X軸方向)における第1一端部111aおよび第1他端部111bを有する第1導体部111と、幅方向(Y軸方向)において第1導体部111に間隔をあけつつ長さ方向(X軸方向)に延在して長さ方向(X軸方向)における第2一端部112aおよび第2他端部112bを有する第2導体部112と、高さ方向(Z軸方向)から見て、第1導体部111と第2導体部112との間に位置し、かつ、長さ方向(X軸方向)から見て、第1導体部111および第2導体部112に対して高さ方向(Z軸方向)の一方側に位置し、長さ方向(X軸方向)における第3一端部113aおよび第3他端部113bを有する第3導体部113とを含む。
 第3他端部113bが、第1他端部111bの高さ方向(Z軸方向)における一端と接続されていることにより、第1導体部111と第3導体部113とが互いに接続されている。具体的には、第1他端部111bと第3他端部113bとは、第4導体部114によって互いに接続されている。第4導体部114は、導体110の一部である。第4導体部114は、高さ方向(Z軸方向)に延在している。
 第3一端部113aが、第2一端部112aの高さ方向(Z軸方向)における一端と接続されていることにより、第2導体部112と第3導体部113とが互いに接続されている。具体的には、第2一端部112aと第3一端部113aとは、第5導体部115によって互いに接続されている。第5導体部115は、導体110の一部である。第5導体部115は、高さ方向(Z軸方向)に延在している。
 本実施形態においては、第1導体部111および第2導体部112の各々が、板状の形状を有する。長さ方向(X軸方向)から見て、第1導体部111の第2導体部112側の面を含む第1仮想平面と、第2導体部112の第1導体部111側の面を含む第2仮想平面とが、互いに平行である。第1導体部111の一部と第2導体部112の一部とが、幅方向(Y軸方向)において、互いに対向している。幅方向(Y軸方向)から見て、第1導体部111の一部と第2導体部112の一部とは、高さ方向(Z軸方向)において互いに重なっている。第3導体部113は、長さ方向(X軸方向)に延在している。第3導体部113は、板状の形状を有している。
 図3に示すように、折り曲げる前の導体110は、互いに幅方向(Y軸方向)に間隔をあけて長さ方向(X軸方向)に各々延在する、第1導体部111、第2導体部112および第3導体部113を含んでいる。折り曲げる前の導体110は、幅方向(Y軸方向)に延在して第1導体部111と第3導体部113とを接続する第4導体部114をさらに含んでいる。折り曲げる前の導体110は、幅方向(Y軸方向)に延在して第2導体部112と第3導体部113とを接続する第5導体部115をさらに含んでいる。
 折り曲げる前の導体110において、第1導体部111、第2導体部112および第3導体部113の各々の幅方向(Y軸方向)の寸法は、同等である。導体110の厚さは、全体的に均一である。よって、上記電流が流れる流路面積は、第1導体部111、第2導体部112および第3導体部113において一定である。なお、第3導体部113の幅方向(Y軸方向)の寸法が、第1導体部111および第2導体部112の各々の幅方向(Y軸方向)の寸法より小さくてもよい。
 本実施形態においては、導体110は、銅で構成されている。ただし、導体110の材料はこれに限られず、銀、アルミニウム若しくは鉄などの金属、またはこれらの金属を含む合金でもよい。
 導体110は、表面処理が施されていてもよい。たとえば、ニッケル、錫、銀若しくは銅などの金属、またはこれらの金属を含む合金からなる、少なくとも1層のめっき層が、導体110の表面に設けられていてもよい。
 本実施形態においては、プレス加工により導体110を形成している。折り曲げる前の導体110が、図3に示す2本の折り曲げ線Bの各々にて山折りされることにより、図1,2に示す形状の導体110が形成されている。2本の折り曲げ線Bは、第3導体部113の幅方向(Y軸方向)の両端上に位置している。具体的には、2本の折り曲げ線Bに沿ってプレス加工することにより、第4導体部114および第5導体部の各々が、外表面側が内表面側に比べて延びるように屈曲させされることにより、図1,2に示す形状の導体110が形成されている。ただし、導体110の形成方法はこれに限られず、切削加工または鋳造などにより導体110を形成してもよい。
 図1,2に示すように、本実施形態においては、第1磁気センサ120aおよび第2磁気センサ120bは、1つの基板130に実装されている。基板130は、プリント配線板であり、ガラスエポキシまたはアルミナなどの電気絶縁性材料の基材と、基材の表面上に設けられた銅などの金属箔がパターニングされて形成された配線とから構成されている。基板130の厚さは、たとえば、1.6mm程度である。
 第1磁気センサ120aは、基板130の一方の主面上に実装されている。第2磁気センサ120bは、基板130の他方の主面上に実装されている。第1磁気センサ120aおよび第2磁気センサ120bの各々は、アンプおよび受動素子などの電子部品と共に基板130に実装されている。アンプおよび受動素子などの電子部品は、第1磁気センサ120aおよび第2磁気センサ120bからの信号を演算する演算回路を構成している。なお、図1,2においては、アンプおよび受動素子は図示していない。ただし、アンプおよび受動素子は、第1磁気センサ120aおよび第2磁気センサ120bの各々が実装されている基板130とは異なる基板に、実装されていてもよい。
 図2に示すように、基板130の一方の主面と、第1導体部111の第2導体部112側の面とは、互いに平行である。基板130の他方の主面と、第2導体部112の第1導体部111側の面とは、互いに平行である。基板130は、幅方向(Y軸方向)において、第1導体部111の第2導体部112側の面と、第2導体部112の第1導体部111側の面との、中間の位置に配置されている。
 第1磁気センサ120aおよび第2磁気センサ120bの各々は、幅方向(Y軸方向)における第1導体部111と第2導体部112との間の領域Ty、かつ、第1導体部111および第2導体部112の両方の高さ方向(Z軸方向)における一端から他端までを含む領域Tz、に位置している。上記領域Tyは、長さ方向(X軸方向)において、第2導体部112の第2一端部112aの位置から、第1導体部111の第1他端部111bの位置まで、延在している。
 第1磁気センサ120aと第1導体部111との最短距離は、第1磁気センサ120aと第2導体部112との最短距離より短い。第2磁気センサ120bと第2導体部112との最短距離は、第2磁気センサ120bと第1導体部111との最短距離より短い。
 第1磁気センサ120aと第1導体部111との最短距離は、第1磁気センサ120aと第3導体部113との最短距離より短い。第2磁気センサ120bと第2導体部112との最短距離は、第2磁気センサ120bと第3導体部113との最短距離より短い。
 第1磁気センサ120aおよび第2磁気センサ120bの各々は、検出軸2を有し、検出軸2が高さ方向(Z軸方向)に向くように配置されている。
 第1磁気センサ120aおよび第2磁気センサ120bの各々は、検出軸2の一方向に向いた磁界を検出した場合に正の値で出力し、かつ、検出軸2の一方向とは反対方向に向いた磁界を検出した場合に負の値で出力する、奇関数入出力特性を有している。
 図4に示すように、本実施形態に係る電流センサ100において、第1磁気センサ120aおよび第2磁気センサ120bの各々は、4つのAMR(Anisotropic Magneto Resistance)素子からなるホイートストンブリッジ型のブリッジ回路を有する。なお、第1磁気センサ120aおよび第2磁気センサ120bの各々が、AMR素子に代えて、GMR(Giant Magneto Resistance)、TMR(Tunnel Magneto Resistance)、BMR(Ballistic Magneto Resistance)、CMR(Colossal Magneto Resistance)などの磁気抵抗素子を有していてもよい。
 また、第1磁気センサ120aおよび第2磁気センサ120bの各々が、2つの磁気抵抗素子からなるハーフブリッジ回路を有していてもよい。その他にも、第1磁気センサ120aおよび第2磁気センサ120bとして、ホール素子を有する磁気センサ、磁気インピーダンス効果を利用するMI(Magneto Impedance)素子を有する磁気センサまたはフラックスゲート型磁気センサなどを用いることができる。磁気抵抗素子およびホール素子などの磁気素子は、樹脂パッケージされていてもよく、または、シリコーン樹脂若しくはエポキシ樹脂などでポッティングされていてもよい。
 複数の磁気素子がパッケージされている場合、複数の磁気素子が1つにパッケージされていてもよいし、複数の磁気素子の各々が別々にパッケージされていてもよい。また、複数の磁気素子と電子部品とが集積された状態で、1つにパッケージされていてもよい。
 本実施形態においては、AMR素子は、バーバーポール型電極を含むことによって、奇関数入出力特性を有している。具体的には、第1磁気センサ120aおよび第2磁気センサ120bの各々の磁気抵抗素子は、バーバーポール型電極を含むことにより、磁気抵抗素子における磁気抵抗膜の磁化方向に対して所定の角度をなす方向に電流が流れるようにバイアスされている。磁気抵抗膜は、パーマロイなどの磁性体の薄膜で構成されている。
 磁気抵抗膜の磁化方向は、磁気抵抗膜の形状異方性によって決まる。なお、磁気抵抗膜の磁化方向を調整する方法として、磁気抵抗膜の形状異方性を用いる方法に限られず、AMR素子を構成する磁気抵抗膜の近傍に永久磁石を配置する方法、または、AMR素子を構成する磁気抵抗膜において交換結合を設ける方法などを用いてもよい。
 永久磁石は、焼結磁石、ボンド磁石または薄膜で構成されていてもよい。永久磁石の種類は、特に限定されず、等方性フェライト磁石、異方性フェライト磁石、サマリウムコバルト磁石、アルニコ磁石またはネオジム磁石などを用いることができる。
 永久磁石上に磁気抵抗膜が形成されていてもよい。基板130の主面に直交する方向から見て、磁気抵抗膜が永久磁石に挟まれるように配置されていてもよいし、永久磁石が磁気抵抗膜に挟まれるように配置されていてもよい。1つの永久磁石によって複数の磁気抵抗膜にバイアス磁界を印加することにより、第1磁気センサ120aおよび第2磁気センサ120bの各々を小型化することができる。
 第1磁気センサ120aの磁気抵抗素子における磁気抵抗膜の磁化方向と、第2磁気センサ120bの磁気抵抗素子における磁気抵抗膜の磁化方向とは、同一方向である。これにより、外部磁界の影響による出力精度の低下を小さくすることができる。
 図4に示すように、電流センサ100は、第1磁気センサ120aの検出値と第2磁気センサ120bの検出値とを演算することにより導体110を流れる測定対象の電流の値を算出する算出部190をさらに備える。本実施形態においては、算出部190は、差動増幅器である。ただし、算出部190が減算器であってもよい。
 以下、本発明の実施形態1に係る電流センサ100の動作について説明する。測定対象の電流が導体110を流れることにより、図1,2に示すように、第1導体部111を長さ方向(X軸方向)の第1一端部111a側から第1他端部111b側に向けて電流1aが流れる。その電流1aは、第1導体部111に接続された第4導体部114を通じて、第4導体部114に接続された第3導体部113の第3他端部113bに流入する。第3導体部113の第3他端部113bに流入した電流は、第3導体部113を長さ方向(X軸方向)の第3他端部113b側から第3一端部113a側に向けて電流1bとして流れる。その電流1bは、第3導体部113に接続された第5導体部115を通じて、第5導体部115に接続された第2導体部112の第2一端部112aに流入する。第2導体部112の第2一端部112aに流入した電流は、第2導体部112を長さ方向(X軸方向)の第2一端部112a側から第2他端部112b側に向けて電流1cとして流れる。
 図2に示すように、いわゆる右ねじの法則によって、第1導体部111を周回する磁界1aeが発生し、第2導体部112を周回する磁界1ceが発生し、第3導体部113を周回する磁界1beが発生する。
 上記のように、第1磁気センサ120aは、領域Ty内かつ領域Tz内において、第1導体部111寄りに位置している。そのため、第1磁気センサ120aには、第1導体部111を周回する磁界1aeが主に印加される。第2磁気センサ120bは、領域Ty内かつ領域Tz内において、第2導体部112寄りに位置している。そのため、第2磁気センサ120bには、第2導体部112を周回する磁界1ceが主に印加される。
 なお、第3導体部113を周回する磁界1beは、第1磁気センサ120aおよび第2磁気センサ120bの各々には、検出軸2が向いている高さ方向(Z軸方向)と直交する幅方向(Y軸方向)に主に印加される。そのため、第1磁気センサ120aおよび第2磁気センサ120bの各々は、第3導体部113を周回する磁界1beをほとんど検出しない。
 図5は、本発明の実施形態1に係る電流センサの導体の周辺に発生する磁界の磁束密度の分布をシミュレーション解析した結果を示す等高線図である。図5においては、図1の電流センサをV-V線矢印方向から見た断面視にて示している。図6は、図5中の始点Sから終点EまでY軸方向に延在する仮想直線上における磁束密度のZ軸方向の成分(mT)と、始点Sからの距離(mm)との関係を示すグラフである。
 シミュレーション解析においては、第1導体部111、第2導体部112および第3導体部113の各々の断面の寸法は、幅が10mm、厚さが1.5mmとした。上記仮想直線の高さ方向(Z軸方向)における位置は、第1導体部111および第2導体部112の各々の高さ方向(Z軸方向)における他端から一端側に7.5mmの位置とした。第1導体部111、第2導体部112および第3導体部113の各々を流れる電流の値を600Aとした。
 図5においては、磁束密度の高さ方向(Z軸方向)の成分が、40mTである線をE1、32mTである線をE2、24mTである線をE3、16mTである線をE4で示している。磁束密度の高さ方向(Z軸方向)の成分が、-40mTである線をE11、-32mTである線をE12、-24mTである線をE13、-16mTである線をE14で示している。磁束密度の高さ方向(Z軸方向)の成分は、図5中の上向きの磁束を正の値、図5中の下向きの磁束を負の値で示している。
 図6に示すように、仮想直線上の始点Sと終点Eとの中間となる、始点からの距離が5mmの位置を境にして、磁束密度の高さ方向(Z軸方向)の成分の符号が逆になっている。具体的には、始点からの距離が5mm未満の位置においては、磁束密度の高さ方向(Z軸方向)の成分が正の値となり、始点からの距離が5mmより長い位置においては、磁束密度の高さ方向(Z軸方向)の成分が負の値となっていた。
 第1磁気センサ120aは、仮想直線上において始点からの距離が5mmより長い位置に配置されている。第2磁気センサ120bは、仮想直線上において始点からの距離が5mm未満の位置に配置されている。
 よって、第1磁気センサ120aに作用する磁界1aeの磁束の向きと、第2磁気センサ120bに作用する磁界1beの磁束の向きとが、互いに反対であり、第1磁気センサ120aと第2磁気センサ120bの検出軸2の向きが同じであるため、導体110を流れる測定対象の電流により発生する磁界の強さについて、第1磁気センサ120aの検出値の位相と、第2磁気センサ120bの検出値の位相とは、逆相である。従って、第1磁気センサ120aの検出した磁界の強さを正の値とすると、第2磁気センサ120bの検出した磁界の強さは負の値となる。
 第1磁気センサ120aの検出値と第2磁気センサ120bの検出値とは、算出部190にて演算される。具体的には、算出部190は、第1磁気センサ120aの検出値から第2磁気センサ120bの検出値を減算する。この結果から、導体110を流れた測定対象の電流の値が算出される。
 本実施形態に係る電流センサ100においては、第1磁気センサ120aと第2磁気センサ120bとの間に基板130が位置しているため、外部磁界源は、物理的に第1磁気センサ120aと第2磁気センサ120bとの間に位置することができない。
 そのため、外部磁界源から第1磁気センサ120aに印加される磁界のうちの検出軸2の方向における磁界成分の向きと、外部磁界源から第2磁気センサ120bに印加される磁界のうちの検出軸2の方向における磁界成分の向きとは、同じ向きとなる。よって、第1磁気センサ120aの検出した外部磁界の強さを正の値とすると、第2磁気センサ120bの検出した外部磁界の強さも正の値となる。
 その結果、算出部190が第1磁気センサ120aの検出値から第2磁気センサ120bの検出値を減算することにより、外部磁界源からの磁界は、ほとんど検出されなくなる。すなわち、外部磁界の影響が低減される。
 本実施形態の変形例として、第1磁気センサ120aおよび第2磁気センサ120bにおいて、検出値が正となる検出軸の方向を互いに反対方向(180°反対)にしてもよい。この場合、第1磁気センサ120aの検出する外部磁界の強さを正の値とすると、第2磁気センサ120bの検出する外部磁界の強さは負の値となる。
 一方、導体110を流れる測定対象の電流により発生する磁界の強さについて、第1磁気センサ120aの検出値の位相と、第2磁気センサ120bの検出値の位相とは同相となる。
 本変形例においては、算出部190として差動増幅器に代えて加算器または加算増幅器を用いる。外部磁界の強さについては、第1磁気センサ120aの検出値と第2磁気センサ120bの検出値とを加算器または加算増幅器によって加算することにより、第1磁気センサ120aの検出値の絶対値と、第2磁気センサ120bの検出値の絶対値とが減算される。これにより、外部磁界源からの磁界は、ほとんど検出されなくなる。すなわち、外部磁界の影響が低減される。
 一方、導体110を流れる電流により発生する磁界の強さについては、第1磁気センサ120aの検出値と第2磁気センサ120bの検出値とを加算器または加算増幅器によって加算することにより、導体110を流れた測定対象の電流の値が算出される。
 このように、第1磁気センサ120aと第2磁気センサ120bとの入出力特性を互いに逆の極性にしつつ、差動増幅器に代えて加算器または加算増幅器を算出部として用いてもよい。
 上記のように、本実施形態に係る電流センサ100は、導体110を分岐させることなく、第1導体部111を測定対象の電流1aが流れることにより発生した磁界1aeを第1磁気センサ120aによって検出し、第2導体部112を測定対象の電流1cが流れることにより発生した磁界1ceを第2磁気センサ120bによって検出することにより、第1磁気センサ120aおよび第2磁気センサ120bの各々の出力を高く維持して、電流センサ100の感度を高くすることができる。
 また、第1磁気センサ120aと第2磁気センサ120bとを互いに接近させて配置することができるため、第1磁気センサ120aおよび第2磁気センサ120bの各々に印加される外部磁界の強さの差を低減して、外部磁界による電流センサ100の測定値のばらつきを少なくすることができる。
 さらに、図2に示すように、第3導体部113の第1導体部111および第2導体部112に隣接している面側とは反対の面側において、磁界1aeと磁界1beとが互いに打ち消し合い、磁界1beと磁界1ceとが互いに打ち消し合うため、電流センサ100の外部に発生する磁界の強さを低減できる。
 本実施形態に係る電流センサ100においては、第1磁気センサ120aと第2磁気センサ120bとの間に、導体の一部が位置していないことにより、電流センサ100の幅方向(Y軸方向)の幅が厚くなることを抑制できる。
 本実施形態に係る電流センサ100においては、図3に示す金属材料または合金材料からなる1枚の平板を、プレス加工によって折り曲げるのみで導体110を形成できるため、導体110を容易に形成することができる。
 (実施形態2)
 以下、本発明の実施形態2に係る電流センサについて説明する。なお、実施形態2に係る電流センサ200は、基板の向き並びに第1磁気センサおよび第2磁気センサの各々の検出軸の基板の主面に対する向きが主に実施形態1に係る電流センサ100と異なるため、実施形態1に係る電流センサ100と同様である構成については同じ参照符号を付してその説明を繰り返さない。
 図7は、本発明の実施形態2に係る電流センサの構成を示す正面図である。図7においては、図2と同一の方向から見た状態を示している。
 図7に示すように、本発明の実施形態2に係る電流センサ200においては、第1磁気センサ220aおよび第2磁気センサ220bは、基板230の一方の主面上に実装されている。第3導体部113の第1導体部111および第2導体部112に隣接している面と、基板230の一方の主面とは、互いに平行である。
 第1磁気センサ220aおよび第2磁気センサ220bの各々は、幅方向(Y軸方向)における第1導体部111と第2導体部112との間の領域Ty、かつ、第1導体部111および第2導体部112の両方の高さ方向(Z軸方向)における一端から他端までを含む領域Tz、に位置している。上記領域Tyは、長さ方向(X軸方向)において、第2導体部112の第2一端部112aの位置から、第1導体部111の第1他端部111bの位置まで、延在している。
 第1磁気センサ220aと第1導体部111との最短距離は、第1磁気センサ220aと第2導体部112との最短距離より短い。第2磁気センサ220bと第2導体部112との最短距離は、第2磁気センサ220bと第1導体部111との最短距離より短い。
 第1磁気センサ220aと第1導体部111との最短距離は、第1磁気センサ220aと第3導体部113との最短距離より短い。第2磁気センサ220bと第2導体部112との最短距離は、第2磁気センサ220bと第3導体部113との最短距離より短い。
 第1磁気センサ220aおよび第2磁気センサ220bの各々は、検出軸2を有し、検出軸2が高さ方向(Z軸方向)に向くように配置されている。
 本発明の実施形態2に係る電流センサ200においては、第1磁気センサ220aと第2磁気センサ220bとの間に基板230が位置していないため、第1磁気センサ220aと第2磁気センサ220bとを互いにさらに接近させて配置することができる。そのため、第1磁気センサ220aおよび第2磁気センサ220bの各々に印加される外部磁界の強さの差を低減して、外部磁界による電流センサ200の測定値のばらつきを少なくすることができる。
 (実施形態3)
 以下、本発明の実施形態3に係る電流センサについて説明する。なお、実施形態3に係る電流センサ300は、基板が筐体に収容されている点のみ実施形態1に係る電流センサ100と異なるため、実施形態1に係る電流センサ100と同様である構成については同じ参照符号を付してその説明を繰り返さない。
 図8は、本発明の実施形態3に係る電流センサの外観を示す斜視図である。図8に示すように、本発明の実施形態3に係る電流センサ300は、第1磁気センサ120aおよび第2磁気センサ120bが実装された基板130を収容する筐体350をさらに備えている。筐体350には、フランジ部350fが設けられている。フランジ部350fには、図示しない貫通孔が設けられている。第2導体部112には、フランジ部350fの貫通孔に対応する位置に、図示しない貫通孔が設けられている。フランジ部350fは、長さ方向(X軸方向)において、第2導体部112の第2一端部112aの位置から第1導体部111の第1他端部111bの位置までの領域の外側に配置されている。
 フランジ部350fの貫通孔および第2導体部112の貫通孔を挿通したボルト370と図示しないナットとを螺合させることにより、筐体350と導体110とを締結することができる。ボルト370およびナットの各々は、非磁性材料で構成されている。なお、筐体350と導体110との接合方法は、上記に限られず、樹脂を用いた熱溶着、または、接着剤を用いた接着でもよい。もしくは、筐体350に、導体110に係止する係止部を設け、係止部を導体110に係止することにより、筐体350を導体110に固定してもよい。
 本実施形態においては、筐体350が、第1導体部111、第2導体部112および第3導体部113の各々と接している。これにより、第1導体部111に対する第1磁気センサ120aの位置のばらつき、および、第2導体部112に対する第2磁気センサ120bの位置のばらつきの各々を低減して、電流センサ300の感度を高めつつ測定精度のばらつきを低減することができる。その結果、電流センサ300の測定再現性および量産性を高めることができる。また、第1導体部111、第2導体部112および第3導体部113によって、筐体350を外力から保護することができる。
 筐体350は、PPS(ポリフェニレンサルファイド)、PBT(ポリブチレンテレフタレート樹脂)、LCP(液晶ポリマー)、ウレタンまたはナイロンなどのエンジニアリングプラスチックで構成されている。PPSは、耐熱性が高いため、導体110の発熱を考慮した場合、筐体350の材料として好ましい。
 なお、筐体350および導体110の各々の一部を、絶縁樹脂で封止してもよい。図9は、本発明の実施形態3の変形例に係る電流センサの外観を示す斜視図である。図9に示すように、本発明の実施形態3の変形例に係る電流センサ300aにおいては、筐体350および導体110の各々の一部が、絶縁樹脂360によって封止されている。絶縁樹脂360を用いてインサート成形することにより、第1導体部111の一部、第2導体部112の一部、第3導体部113および筐体350を封止することができる。
 絶縁樹脂360の材料としては、熱可塑性樹脂または熱硬化性樹脂であって、アクリロニトリルブタジエンスチレン(ABS)樹脂、ポリフェニレンサルファイド(PPS)樹脂、液晶ポリマー(LCP)、ポリブチレンテレフタレート(PBT)樹脂、エポキシ樹脂またはポリアミド樹脂(PA)などが、耐熱性およびモールド精度の観点から好ましい。
 なお、筐体350を設けずに、導体110の一部と、第1磁気センサ120aおよび第2磁気センサ120bが実装された基板130とを、絶縁樹脂360によって封止してもよい。
 (実施形態4)
 以下、本発明の実施形態4に係る電流センサについて説明する。なお、実施形態4に係る電流センサ400は、第5導体部の長さが主に、実施形態1に係る電流センサ100と異なるため、実施形態1に係る電流センサ100と同様である構成については同じ参照符号を付してその説明を繰り返さない。
 図10は、本発明の実施形態4に係る電流センサの外観を示す斜視図である。図11は、図10の電流センサを矢印XI方向から見た斜視図である。図12は、本発明の実施形態4に係る電流センサが備える導体の外観を示す斜視図である。
 図10~11に示すように、本発明の実施形態4に係る電流センサ400は、測定対象の電流が流れ、長さ方向(X軸方向)、長さ方向(X軸方向)と直交する幅方向(Y軸方向)、および、長さ方向(X軸方向)と幅方向(Y軸方向)とに直交する高さ方向(Z軸方向)を有する導体410と、上記電流により発生する磁界の強さを検出する、第1磁気センサ120aおよび第2磁気センサ120bとを備える。
 導体410の第5導体部415は、実施形態1に係る導体110の第5導体部115より長い。その結果、幅方向(Y軸方向)から見て、第1導体部111と第2導体部112との位置が、高さ方向(Z軸方向)において互いにずれている。
 第1磁気センサ120aおよび第2磁気センサ120bは、基板130の一方の主面上に実装されている。基板130の一方の主面と、第1導体部111の第2導体部112側の面とは、互いに平行である。基板130の他方の主面と、第2導体部112の第1導体部111側の面とは、互いに平行である。
 第1磁気センサ120aおよび第2磁気センサ120bの各々は、幅方向(Y軸方向)における第1導体部111と第2導体部112との間の領域Ty、かつ、第1導体部111および第2導体部112の両方の高さ方向(Z軸方向)における一端から他端までを含む領域Tz、に位置している。
 第1磁気センサ120aと第1導体部111との最短距離は、第1磁気センサ120aと第2導体部112との最短距離より短い。第2磁気センサ120bと第2導体部112との最短距離は、第2磁気センサ120bと第1導体部111との最短距離より短い。
 第1磁気センサ120aと第1導体部111との最短距離は、第1磁気センサ120aと第3導体部113との最短距離より短い。第2磁気センサ120bと第2導体部112との最短距離は、第2磁気センサ120bと第3導体部113との最短距離より短い。
 図11に示すように、いわゆる右ねじの法則によって、第1導体部111を周回する磁界1aeが発生し、第2導体部112を周回する磁界1ceが発生し、第3導体部113を周回する磁界1beが発生する。
 上記のように、第1磁気センサ120aは、領域Ty内かつ領域Tz内において、第1導体部111寄りに位置している。そのため、第1磁気センサ120aには、第1導体部111を周回する磁界1aeが主に印加される。第2磁気センサ120bは、領域Ty内かつ領域Tz内において、第2導体部112寄りに位置している。そのため、第2磁気センサ120bには、第2導体部112を周回する磁界1ceが主に印加される。
 上記のように、幅方向(Y軸方向)から見て、第1導体部111と第2導体部112との位置が、高さ方向(Z軸方向)において互いにずれていることにより、磁界1aeは、第2導体部112の第1導体部111側の面にほとんど進入せず、磁界1ceは、第1導体部111の第2導体部112側の面にほとんど進入しない。その結果、磁界1aeが第2導体部112の第1導体部111側の面に進入した際に発生する渦電流損、および、磁界1ceが第1導体部111の第2導体部112側の面に進入した際に発生する渦電流損を低減することができる。これにより、電流センサ400の出力低下を抑制でき、電流センサ400の周波数特性を向上できる。
 (実施形態5)
 以下、本発明の実施形態5に係る電流センサについて説明する。なお、実施形態5に係る電流センサは、第4導体部および第5導体部の長さが主に、実施形態1に係る電流センサ100と異なるため、実施形態1に係る電流センサ100と同様である構成については同じ参照符号を付してその説明を繰り返さない。
 図13は、本発明の実施形態5に係る電流センサが備える導体の外観を示す斜視図である。図14は、図13の導体を矢印XIV方向から見た側面図である。図15は、図13の導体を矢印XV方向から見た平面図である。図16は、図13の導体を矢印XVI方向から見た正面図である。
 図13~16に示すように、本発明の実施形態5に係る電流センサが備える導体510の第4導体部514および第5導体部515の各々は、幅方向(Y軸方向)に延在する部分と高さ方向(Z軸方向)に延在する部分とを含んでいる。すなわち、第4導体部514および第5導体部515の各々は、屈曲している。
 導体510の第4導体部514の高さ方向(Z軸方向)に延在する部分は、実施形態1に係る導体110の第4導体部114より短い。導体510の第5導体部515の高さ方向(Z軸方向)に延在する部分は、実施形態1に係る導体110の第5導体部115より短い。これにより、電流センサを小型化することができる。
 (実施形態6)
 以下、本発明の実施形態6に係る電流センサについて説明する。なお、実施形態6に係る電流センサは、第3導体部の形状が主に、実施形態1に係る電流センサ100と異なるため、実施形態1に係る電流センサ100と同様である構成については同じ参照符号を付してその説明を繰り返さない。
 図17は、本発明の実施形態6に係る電流センサが備える導体の外観を示す斜視図である。図18は、図17の導体を矢印XVIII方向から見た側面図である。図19は、図17の導体を矢印XIX方向から見た平面図である。図20は、図17の導体を矢印XX方向から見た正面図である。
 図17~20に示すように、本発明の実施形態6に係る電流センサが備える導体610の第3導体部613は、長さ方向(X軸方向)から見て、高さ方向(Z軸方向)において第1導体部111側とは反対側に凸状に曲がった形状を有している。本実施形態においては、上記凸状に曲がった形状が、湾曲形状である。第3導体部613は、高さ方向(Z軸方向)から見て、第1導体部111と第2導体部112との間に位置し、長さ方向(X軸方向)における第3一端部613aおよび第3他端部613bを有している。
 第3導体部613が上記の湾曲形状を有していることにより、第1磁気センサ120aおよび第2磁気センサ120bの各々と第3導体部613との間の最短距離が長くなるため、第3導体部613を周回する磁界が、第1磁気センサ120aおよび第2磁気センサ120bの各々に印加されにくくすることができる。
 (実施形態7)
 以下、本発明の実施形態7に係る電流センサについて説明する。なお、実施形態7に係る電流センサは、導体の形状が主に、実施形態1に係る電流センサ100と異なるため、実施形態1に係る電流センサ100と同様である構成については同じ参照符号を付してその説明を繰り返さない。
 図21は、本発明の実施形態7に係る電流センサが備える導体の外観を示す斜視図である。図22は、図21の導体を矢印XXII方向から見た側面図である。図23は、図21の導体を矢印XXIII方向から見た平面図である。図24は、図21の導体を矢印XXIV方向から見た正面図である。
 図21~24に示すように、本発明の実施形態7に係る電流センサが備える導体710は、長さ方向(X軸方向)に延在して長さ方向(X軸方向)における第1一端部711aおよび第1他端部711bを有する第1導体部711と、幅方向(Y軸方向)において第1導体部711に間隔をあけつつ長さ方向(X軸方向)に延在して長さ方向(X軸方向)における第2一端部712aおよび第2他端部712bを有する第2導体部712と、高さ方向(Z軸方向)から見て、第1導体部711と第2導体部712との間に位置し、長さ方向(X軸方向)における第3一端部713aおよび第3他端部713bを有する第3導体部713とを含む。
 第3他端部713bが、第1他端部711bの高さ方向(Z軸方向)における一端と接続されていることにより、第1導体部711と第3導体部713とが互いに接続されている。具体的には、第1他端部711bと第3他端部713bとは、第4導体部714によって互いに接続されている。第4導体部714は、導体710の一部である。
 第3一端部713aが、第2一端部712aの高さ方向(Z軸方向)における一端と接続されていることにより、第2導体部712と第3導体部713とが互いに接続されている。具体的には、第2一端部712aと第3一端部713aとは、第5導体部715によって互いに接続されている。第5導体部715は、導体710の一部である。
 本実施形態においては、第1導体部711および第2導体部712の各々が、板状の形状を有している。長さ方向(X軸方向)から見て、第1導体部711の第2導体部712側の面を含む第1仮想平面と、第2導体部712の第1導体部711側の面を含む第2仮想平面とが、互いに交差している。第1仮想平面と第2仮想平面とのなす角度は、たとえば、60°である。
 第3導体部713は、長さ方向(X軸方向)に延在している。長さ方向(X軸方向)から見て、第3導体部713は、高さ方向(Z軸方向)において第1導体部711側とは反対側に凸状に曲がった形状を有している。本実施形態においては、上記凸状に曲がった形状が、屈曲形状である。第4導体部714は、第1仮想平面に沿って延在している。第5導体部715は、第2仮想平面に沿って延在している。
 第1磁気センサ120aおよび第2磁気センサ120bの各々は、幅方向(Y軸方向)における第1導体部711と第2導体部712との間の領域Ty、かつ、第1導体部711および第2導体部712の両方の高さ方向(Z軸方向)における一端から他端までを含む領域Tz、に位置している。
 第1磁気センサ120aと第1導体部711との最短距離は、第1磁気センサ120aと第2導体部712との最短距離より短い。第2磁気センサ120bと第2導体部712との最短距離は、第2磁気センサ120bと第1導体部711との最短距離より短い。
 第1磁気センサ120aと第1導体部711との最短距離は、第1磁気センサ120aと第3導体部713との最短距離より短い。第2磁気センサ120bと第2導体部712との最短距離は、第2磁気センサ120bと第3導体部713との最短距離より短い。
 導体710が上記の形状を有していることにより、電流センサを小型化することができる。
 (実施形態8)
 以下、本発明の実施形態8に係る電流センサについて説明する。なお、実施形態8に係る電流センサは、第3導体部の形状が主に、実施形態5に係る電流センサと異なるため、実施形態5に係る電流センサと同様である構成については同じ参照符号を付してその説明を繰り返さない。
 図25は、本発明の実施形態8に係る電流センサが備える導体の外観を示す斜視図である。図26は、図25の導体を矢印XXVI方向から見た側面図である。図27は、図25の導体を矢印XXVII方向から見た平面図である。図28は、図25の導体を矢印XXVIII方向から見た正面図である。
 図25~28に示すように、本発明の実施形態8に係る電流センサが備える導体810の第3導体部813は、長さ方向(X軸方向)および幅方向(Y軸方向)に延在している。すなわち、第3導体部813は、高さ方向(Z軸方向)から見て、第1導体部111および第2導体部112に対して直角以外の角度で交差するように延在している。高さ方向(Z軸方向)から見て、第1導体部111および第2導体部112の各々と第3導体部813とが交差する角度は、たとえば、30°である。
 図29は、本発明の実施形態8に係る電流センサの導体の周辺に発生する磁界の磁束密度の分布をシミュレーション解析した結果を示す等高線図である。図30は、図29中の始点Sから終点EまでY軸方向に延在する仮想直線L上における磁束密度のZ軸方向の成分(mT)と、始点Sからの距離(mm)との関係を示すグラフである。
 シミュレーション解析においては、第1導体部111、第2導体部112および第3導体部813の各々の断面の寸法は、幅が10mm、厚さが1.5mmとした。図28に示すように、仮想直線Lの高さ方向(Z軸方向)における位置は、第3導体部813の第1導体部111および第2導体部112に隣接している面からの距離Mが7.25mmの位置とした。第1導体部111、第2導体部112および第3導体部113の各々を流れる電流の値を600Aとした。
 図29においては、磁束密度の高さ方向(Z軸方向)の成分が、40mTである線をE1、32mTである線をE2、24mTである線をE3、16mTである線をE4で示している。磁束密度の高さ方向(Z軸方向)の成分が、-40mTである線をE11、-32mTである線をE12、-24mTである線をE13、-16mTである線をE14で示している。磁束密度の高さ方向(Z軸方向)の成分は、図28中の上向きの磁束を正の値、図28中の下向きの磁束を負の値で示している。
 図30に示すように、仮想直線L上の始点Sと終点Eとの中間となる、始点からの距離が6mmの位置を境にして、磁束密度の高さ方向(Z軸方向)の成分の符号が逆になっている。具体的には、始点からの距離が6mm未満の位置においては、磁束密度の高さ方向(Z軸方向)の成分が正の値となり、始点からの距離が6mmより長い位置においては、磁束密度の高さ方向(Z軸方向)の成分が負の値となっていた。
 第1磁気センサ120aは、仮想直線L上において始点Sからの距離が6mmより長い位置に配置されている。第2磁気センサ120bは、仮想直線L上において始点Sからの距離が6mm未満の位置に配置されている。
 よって、第1磁気センサ120aに作用する磁界1aeの磁束の向きと、第2磁気センサ120bに作用する磁界1beの磁束の向きとが、互いに反対であるため、導体810を流れる測定対象の電流により発生する磁界の強さについて、第1磁気センサ120aの検出値の位相と、第2磁気センサ120bの検出値の位相とは、逆相である。従って、第1磁気センサ120aの検出した磁界の強さを正の値とすると、第2磁気センサ120bの検出した磁界の強さは負の値となる。
 第1磁気センサ120aの検出値と第2磁気センサ120bの検出値とは、算出部190にて演算される。具体的には、算出部190は、第1磁気センサ120aの検出値から第2磁気センサ120bの検出値を減算する。この結果から、導体810を流れた測定対象の電流の値が算出される。
 本実施形態に係る電流センサにおいては、第3導体部813が、第4導体部514と第5導体部515とを最短で結ぶ形状で形成されているため、第3導体部813を流れる電流密度を高くして、電流センサの周波数特性を向上できる。
 (実施形態9)
 以下、本発明の実施形態9に係る電流センサについて説明する。なお、実施形態9に係る電流センサは、第4導体部および第5導体部の位置が主に、実施形態1に係る電流センサ100と異なるため、実施形態1に係る電流センサ100と同様である構成については同じ参照符号を付してその説明を繰り返さない。
 図31は、本発明の実施形態9に係る電流センサが備える導体の外観を示す斜視図である。図32は、図31の導体を矢印XXXII方向から見た側面図である。図33は、図31の導体を矢印XXXIII方向から見た平面図である。図34は、図31の導体を矢印XXXIV方向から見た正面図である。
 図31~34に示すように、本発明の実施形態9に係る電流センサが備える導体910の第4導体部914および第5導体部915の各々は、幅方向(Y軸方向)に延在している。
 第4導体部914によって、第1他端部111bと第3他端部113bとが互いに接続されている。第5導体部915によって、第2一端部112aと第3一端部113aとが互いに接続されている。
 (実施形態10)
 以下、本発明の実施形態10に係る電流センサモジュールについて説明する。図35は、本発明の実施形態10に係る電流センサモジュールの外観を示す斜視図である。
 図35に示すように、本発明の実施形態10に係る電流センサモジュール1000は、たとえばインバータなどの3相3線式の配線に適用される。電流センサモジュール1000は、3つの電流センサ300を備える。本実施形態においては、電流センサモジュール1000が備える電流センサ300の数は、3つであるが、これに限られず、複数であればよい。
 3つの電流センサ300の各々の導体110は、並列に配置されている。電流センサモジュール1000は、3つの導体110が取り付けられるベース1080をさらに備える。ベース1080には、第1相の電極1011、第2相の電極1012および第3相の電極1013の各々が、ボルト1070によって固定されている。
 3つの電流センサ300のうちの第1の電流センサ300の第1導体部111が、電極1011に接続されている。3つの電流センサ300のうちの第2の電流センサ300の第1導体部111が、電極1012に接続されている。3つの電流センサ300のうちの第3の電流センサ300の第1導体部111が、電極1013に接続されている。
 3つの電流センサ300は、高さ方向(Z軸方向)において互いに間隔をあけて並んでいる。互いに隣接している電流センサ300同士において、一方の電流センサ300の幅方向(Y軸方向)における第1導体部111と第2導体部112との間の領域Tyは、他方の電流センサ300の第3導体部113と対向している。第1の電流センサ300の筐体350が、第2の電流センサ300の第3導体部113と対向している。第2の電流センサ300の筐体350が、第3の電流センサ300の第3導体部113と対向している。
 すなわち、互いに隣接している電流センサ300同士において、長さ方向(X軸方向)から見て、他方の電流センサ300の第3導体部113は、一方の電流センサ300の第1導体部111および第2導体部112に対して、高さ方向(Z軸方向)の他方側に位置している。
 上記のように、第3導体部113の第1導体部111および第2導体部112に隣接している面側とは反対の面側に発生する磁界の強さが低減されている。そのため、電流センサモジュール1000を上記の構成にしても、第2の電流センサ300の第3導体部113を周回する磁界によって第1の電流センサ300の測定値に誤差が生ずること、および、第3の電流センサ300の第3導体部113を周回する磁界によって第2の電流センサ300の測定値に誤差が生ずることを抑制できる。
 なお、複数の電流センサの配置は、上記に限られない。図36は、本発明の実施形態10の変形例に係る電流センサモジュールの導体の配置を示す斜視図である。図36においては、電流センサモジュールのうちの導体のみを図示している。
 図36に示すように、本発明の実施形態10の変形例に係る電流センサモジュール1000aにおいては、3つの導体510が並列に配置されている。3つの導体510は、幅方向(Y軸方向)において互いに間隔をあけて並びつつ、長さ方向(X軸方向)において互いに間隔をあけて並んでいる。互いに隣接している電流センサ同士において、一方の電流センサの幅方向(Y軸方向)における第1導体部111と第2導体部112との間の領域Tyは、他方の電流センサの幅方向(Y軸方向)における第1導体部111と第2導体部112との間の領域Tyと、長さ方向(X軸方向)において対向している。
 一方の電流センサの領域Tyと他方の電流センサの領域Tyとは、長さ方向(X軸方向)に並んでいる。本変形例においては、一方の電流センサの第3導体部113と他方の電流センサの第3導体部113とは、同一平面上に位置しているが、これに限られず、一方の電流センサの領域Tyと他方の電流センサの領域Tyとが長さ方向(X軸方向)において互いに対向する範囲内で、高さ方向(Z軸方向)において互いにずれて位置していてもよい。
 本発明の実施形態10の変形例に係る電流センサモジュール1000aにおいても、第2の電流センサの第3導体部113を周回する磁界によって第1の電流センサの測定値に誤差が生ずること、および、第3の電流センサの第3導体部113を周回する磁界によって第2の電流センサの測定値に誤差が生ずることを抑制できる。また、3つの導体510を近接して配置できるため、電流センサモジュール1000aを小型化できる。
 上述した実施形態の説明において、組み合わせ可能な構成を相互に組み合わせてもよい。
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1a,1b,1c 電流、1ae,1be,1ce 磁界、2 検出軸、100,200,300,300a,400 電流センサ、110,410,510,610,710,810,910 導体、111,711 第1導体部、111a,711a 第1一端部、111b,711b 第1他端部、112,712 第2導体部、112a,712a 第2一端部、112b,712b 第2他端部、113,613,713,813 第3導体部、113a,613a,713a 第3一端部、113b,613b,713b 第3他端部、114,514,714,914 第4導体部、115,415,515,715,915 第5導体部、120a,220a 第1磁気センサ、120b,220b 第2磁気センサ、130,230 基板、190 算出部、350 筐体、350f フランジ部、360 絶縁樹脂、370,1070 ボルト、1000,1000a 電流センサモジュール、1011,1012,1013 電極、1080 ベース。

Claims (20)

  1.  測定対象の電流が流れ、長さ方向、該長さ方向と直交する幅方向、および、前記長さ方向と前記幅方向とに直交する高さ方向を有する導体と、
     前記電流により発生する磁界の強さを検出する、第1磁気センサおよび第2磁気センサとを備え、
     前記導体は、
     前記長さ方向に延在して前記長さ方向における第1一端部および第1他端部を有する第1導体部と、
     前記幅方向において前記第1導体部に間隔をあけつつ前記長さ方向に延在して前記長さ方向における第2一端部および第2他端部を有する第2導体部と、
     前記高さ方向から見て、前記第1導体部と前記第2導体部との間に位置し、かつ、前記長さ方向から見て、前記第1導体部および前記第2導体部に対して前記高さ方向の一方側に位置し、前記長さ方向における第3一端部および第3他端部を有する第3導体部とを含み、
     前記第3他端部が、前記第1他端部と接続されており、
     前記第3一端部が、前記第2一端部と接続されており、
     前記第1磁気センサおよび前記第2磁気センサの各々は、前記幅方向における前記第1導体部と前記第2導体部との間の領域、かつ、前記第1導体部および前記第2導体部の両方の前記高さ方向における一端から他端までを含む領域、に位置している、電流センサ。
  2.  前記第1磁気センサと前記第1導体部との最短距離は、前記第1磁気センサと前記第2導体部との最短距離より短く、
     前記第2磁気センサと前記第2導体部との最短距離は、前記第2磁気センサと前記第1導体部との最短距離より短い、請求項1に記載の電流センサ。
  3.  前記第1磁気センサと前記第1導体部との最短距離は、前記第1磁気センサと前記第3導体部との最短距離より短く、
     前記第2磁気センサと前記第2導体部との最短距離は、前記第2磁気センサと前記第3導体部との最短距離より短い、請求項2に記載の電流センサ。
  4.  前記第1磁気センサの検出値と前記第2磁気センサの検出値とを演算することにより前記電流の値を算出する算出部をさらに備え、
     前記第1磁気センサと前記第2磁気センサとは、前記磁界の各々の検出値が互いに逆相であり、
     前記算出部が減算器または差動増幅器である、請求項1から請求項3のいずれか1項に記載の電流センサ。
  5.  前記第1磁気センサの検出値と前記第2磁気センサの検出値とを演算することにより前記電流の値を算出する算出部をさらに備え、
     前記第1磁気センサと前記第2磁気センサとは、前記磁界の各々の検出値が互いに同相であり、
     前記算出部が加算器または加算増幅器である、請求項1から請求項3のいずれか1項に記載の電流センサ。
  6.  前記第1導体部および前記第2導体部の各々が、板状の形状を有し、
     前記長さ方向から見て、前記第1導体部の第2導体部側の面を含む第1仮想平面と、前記第2導体部の第1導体部側の面を含む第2仮想平面とが、互いに平行である、請求項1から請求項5のいずれか1項に記載の電流センサ。
  7.  前記第1導体部の一部と前記第2導体部の一部とが、互いに対向している、請求項1から請求項6のいずれか1項に記載の電流センサ。
  8.  前記幅方向から見て、前記第1導体部と前記第2導体部との位置が、前記高さ方向において互いにずれている、請求項1から請求項6のいずれか1項に記載の電流センサ。
  9.  前記第1導体部および前記第2導体部の各々が、板状の形状を有し、
     前記長さ方向から見て、前記第1導体部の第2導体部側の面を含む第1仮想平面と、前記第2導体部の第1導体部側の面を含む第2仮想平面とが、互いに交差している、請求項1から請求項5のいずれか1項に記載の電流センサ。
  10.  前記第3導体部が、前記長さ方向に延在している、請求項1から請求項9のいずれか1項に記載の電流センサ。
  11.  前記第3導体部が、前記長さ方向および前記幅方向に延在している、請求項1から請求項9のいずれか1項に記載の電流センサ。
  12.  前記第3導体部が、板状の形状を有している、請求項1から請求項11のいずれか1項に記載の電流センサ。
  13.  前記長さ方向から見て、前記第3導体部が、前記高さ方向において第1導体部側とは反対側に凸状に曲がった形状を有している、請求項1から請求項11のいずれか1項に記載の電流センサ。
  14.  前記凸状に曲がった形状が、湾曲形状である、請求項13に記載の電流センサ。
  15.  前記凸状に曲がった形状が、屈曲形状である、請求項13に記載の電流センサ。
  16.  前記第1磁気センサおよび前記第2磁気センサが実装された基板と、
     前記基板を収容する筐体とをさらに備え、
     前記筐体は、前記導体に固定されている、請求項1から請求項15のいずれか1項に記載の電流センサ。
  17.  前記筐体が、前記第1導体部、前記第2導体部および前記第3導体部の各々と接している、請求項16に記載の電流センサ。
  18.  請求項1から請求項17のいずれか1項に記載の複数の電流センサを備え、
     前記複数の電流センサの各々の前記導体が、並列に配置されている、電流センサモジュール。
  19.  前記複数の電流センサが、前記高さ方向において互いに間隔をあけて並んでおり、
     互いに隣接している電流センサ同士において、一方の電流センサの前記幅方向における前記第1導体部と前記第2導体部との間の前記領域は、他方の電流センサの前記第3導体部と対向している、請求項18に記載の電流センサモジュール。
  20.  前記複数の電流センサが、前記幅方向において互いに間隔をあけて並びつつ、前記長さ方向において互いに間隔をあけて並んでおり、
     互いに隣接している電流センサ同士において、一方の電流センサの前記幅方向における前記第1導体部と前記第2導体部との間の前記領域は、他方の電流センサの前記幅方向における前記第1導体部と前記第2導体部との間の前記領域と、前記長さ方向において対向している、請求項18に記載の電流センサモジュール。
PCT/JP2017/002488 2016-06-09 2017-01-25 電流センサおよび電流センサモジュール WO2017212678A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018522307A JP6696571B2 (ja) 2016-06-09 2017-01-25 電流センサおよび電流センサモジュール
CN201780014134.0A CN108713148B (zh) 2016-06-09 2017-01-25 电流传感器以及电流传感器模块
US16/136,325 US10955443B2 (en) 2016-06-09 2018-09-20 Current sensor and current sensor module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016115328 2016-06-09
JP2016-115328 2016-06-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/136,325 Continuation US10955443B2 (en) 2016-06-09 2018-09-20 Current sensor and current sensor module

Publications (1)

Publication Number Publication Date
WO2017212678A1 true WO2017212678A1 (ja) 2017-12-14

Family

ID=60577783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002488 WO2017212678A1 (ja) 2016-06-09 2017-01-25 電流センサおよび電流センサモジュール

Country Status (4)

Country Link
US (1) US10955443B2 (ja)
JP (1) JP6696571B2 (ja)
CN (1) CN108713148B (ja)
WO (1) WO2017212678A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113508304A (zh) * 2019-03-28 2021-10-15 莱姆国际股份有限公司 磁芯在初级导体条片上的电流变送器
US20220178972A1 (en) * 2019-03-15 2022-06-09 Tdk Corporation Current sensor
US20220308126A1 (en) * 2021-03-24 2022-09-29 Showa Denko K.K. Magnetic sensor
JP2023505863A (ja) * 2019-12-25 2023-02-13 アルプスアルパイン株式会社 電流センサ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3757594T3 (pl) * 2018-11-02 2022-10-17 Lg Energy Solution, Ltd. Urządzenie i sposób do diagnozowania czujnika prądu
WO2021002835A1 (en) * 2019-06-30 2021-01-07 Halliburton Energy Services, Inc. Directional sensor with means for adjusting cancellation of interfering electromagnetic field
CN110441718B (zh) * 2019-07-31 2024-05-14 中国地质大学(武汉) 宽频带感应式磁场传感器
JP2022039744A (ja) * 2020-08-28 2022-03-10 株式会社東芝 電流センサ
US11885834B2 (en) * 2020-09-03 2024-01-30 Texas Instruments Incorporated Magnetic current sensing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4559495A (en) * 1981-03-26 1985-12-17 Lgz Landis & Gyr Zug Ag Transducer free of any magnetic core for contactless current measurement
JP2007183221A (ja) * 2006-01-10 2007-07-19 Denso Corp 電流センサ
JP2009222696A (ja) * 2008-03-17 2009-10-01 Kohshin Electric Corp 多相電流の検出装置
JP2010048809A (ja) * 2008-08-25 2010-03-04 Robert Seuffer Gmbh & Co Kg 電流検出装置
JP2015184175A (ja) * 2014-03-25 2015-10-22 株式会社日本自動車部品総合研究所 電流センサ及び電流センサセット
JP2016099111A (ja) * 2014-11-18 2016-05-30 トヨタ自動車株式会社 電流センサ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH670004A5 (ja) * 1986-02-10 1989-04-28 Landis & Gyr Ag
ATE59480T1 (de) * 1986-09-29 1991-01-15 Landis & Gyr Betriebs Ag Messwandler zum messen des in einem elektrischen leiter fliessenden stromes.
JP3696448B2 (ja) * 1999-09-02 2005-09-21 矢崎総業株式会社 電流検出器
JP3631925B2 (ja) * 1999-09-07 2005-03-23 矢崎総業株式会社 電流検出器及びこれを用いた電気接続箱
DE19946935B4 (de) 1999-09-30 2004-02-05 Daimlerchrysler Ag Vorrichtung zur induktiven Strommessung mit mindestens einem Differenzsensor
DE10100597A1 (de) * 2001-01-09 2002-07-18 Bosch Gmbh Robert Vorrichtung, Strommesser und Kraftfahrzeug
KR100746546B1 (ko) * 2001-11-01 2007-08-06 아사히 가세이 일렉트로닉스 가부시끼가이샤 전류 센서 및 전류 센서 제조 방법
TWI289679B (en) * 2001-11-26 2007-11-11 Asahi Kasei Denshi Kk Current sensor
JP5366418B2 (ja) * 2008-03-24 2013-12-11 東光東芝メーターシステムズ株式会社 電流検出器およびこれを用いた電力量計
JP5417404B2 (ja) * 2011-09-26 2014-02-12 トヨタ自動車株式会社 電流検出装置
JP5971398B2 (ja) * 2013-02-27 2016-08-17 株式会社村田製作所 電流センサおよびそれを内蔵した電子機器
JP2015036636A (ja) 2013-08-12 2015-02-23 アルプス・グリーンデバイス株式会社 電流センサ
US9134351B2 (en) * 2013-12-11 2015-09-15 Eaton Corporation Bi-directional direct current sensing circuit and current sensing assembly including the same
US9846180B2 (en) * 2013-12-11 2017-12-19 Eaton Corporation Current sensing assembly employing magnetic sensors
JP2015132534A (ja) 2014-01-14 2015-07-23 株式会社東海理化電機製作所 電流検出装置
KR20160016191A (ko) * 2014-08-04 2016-02-15 현대모비스 주식회사 전류센서-전력전도체 조립체의 크기 최적화 구조

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4559495A (en) * 1981-03-26 1985-12-17 Lgz Landis & Gyr Zug Ag Transducer free of any magnetic core for contactless current measurement
JP2007183221A (ja) * 2006-01-10 2007-07-19 Denso Corp 電流センサ
JP2009222696A (ja) * 2008-03-17 2009-10-01 Kohshin Electric Corp 多相電流の検出装置
JP2010048809A (ja) * 2008-08-25 2010-03-04 Robert Seuffer Gmbh & Co Kg 電流検出装置
JP2015184175A (ja) * 2014-03-25 2015-10-22 株式会社日本自動車部品総合研究所 電流センサ及び電流センサセット
JP2016099111A (ja) * 2014-11-18 2016-05-30 トヨタ自動車株式会社 電流センサ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220178972A1 (en) * 2019-03-15 2022-06-09 Tdk Corporation Current sensor
CN113508304A (zh) * 2019-03-28 2021-10-15 莱姆国际股份有限公司 磁芯在初级导体条片上的电流变送器
JP2023505863A (ja) * 2019-12-25 2023-02-13 アルプスアルパイン株式会社 電流センサ
JP7356591B2 (ja) 2019-12-25 2023-10-04 アルプスアルパイン株式会社 電流センサ
US20220308126A1 (en) * 2021-03-24 2022-09-29 Showa Denko K.K. Magnetic sensor

Also Published As

Publication number Publication date
JP6696571B2 (ja) 2020-05-20
US20190018046A1 (en) 2019-01-17
JPWO2017212678A1 (ja) 2018-11-22
US10955443B2 (en) 2021-03-23
CN108713148A (zh) 2018-10-26
CN108713148B (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
WO2017212678A1 (ja) 電流センサおよび電流センサモジュール
CN107533089B (zh) 电流传感器
CN107250813B (zh) 电流传感器
JP5867235B2 (ja) 磁気センサ装置
JP6276283B2 (ja) 磁気通貨検証ヘッド
US10274523B2 (en) Current sensor including a first current sensor and a second current sensor unit
WO2013153986A1 (ja) 磁気センサ装置
WO2017061206A1 (ja) 電流センサおよびこれを備える電力変換装置
US10267825B2 (en) Current sensor including a housing surrounded by bent portions of primary conductors
JP6540802B2 (ja) 電流センサ
JP6311790B2 (ja) 電流センサ
JP2012215405A (ja) 磁気センサ装置
WO2016035606A1 (ja) 電流センサ
CN109328307B (zh) 磁传感器以及具备该磁传感器的电流传感器
WO2015174247A1 (ja) 電流センサ
JP5154335B2 (ja) 電流センサ
JP6051459B2 (ja) 電流センサ
JP6980166B1 (ja) 磁気センサ装置
JP2017026573A (ja) 電流センサ
JP2015031647A (ja) 電流センサおよびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018522307

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17809862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17809862

Country of ref document: EP

Kind code of ref document: A1