WO2017212646A1 - Wick - Google Patents

Wick Download PDF

Info

Publication number
WO2017212646A1
WO2017212646A1 PCT/JP2016/067400 JP2016067400W WO2017212646A1 WO 2017212646 A1 WO2017212646 A1 WO 2017212646A1 JP 2016067400 W JP2016067400 W JP 2016067400W WO 2017212646 A1 WO2017212646 A1 WO 2017212646A1
Authority
WO
WIPO (PCT)
Prior art keywords
wick
fluid
porosity
liquid phase
case
Prior art date
Application number
PCT/JP2016/067400
Other languages
French (fr)
Japanese (ja)
Inventor
博治 小林
三輪 真一
宏之 柴田
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to PCT/JP2016/067400 priority Critical patent/WO2017212646A1/en
Priority to JP2018522289A priority patent/JPWO2017212646A1/en
Publication of WO2017212646A1 publication Critical patent/WO2017212646A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure

Definitions

  • the technology disclosed in this specification relates to a wick of a loop heat pipe.
  • JP-A-2002-181469 discloses a structure of an evaporator used in a high temperature part.
  • JP-A-2002-181469 is referred to as Patent Document 1.
  • the evaporator includes a metal cylindrical case and a wick disposed in the cylindrical case.
  • the wick is a cylindrical porous body, and includes a wick inner space that is open at one end in the axial direction (longitudinal direction) and closed at the other end.
  • the liquid phase fluid is introduced into the wick internal space through the opening of the wick.
  • a gas phase flow path through which the gas phase fluid moves is provided.
  • the liquid phase fluid moves from the wick inner space into the wick by capillary action.
  • the fluid changes from the liquid phase to the gas phase and moves to the gas phase flow path.
  • the gas phase fluid moves to the low temperature part (condensation part) through the gas phase flow path.
  • the present specification provides a technique for realizing a wick in which an increase in internal pressure is suppressed.
  • the wick disclosed in this specification is used in an evaporator of a loop heat pipe.
  • the wick is a cylindrical porous body, one of which is open in the axial direction and the other is closed. Further, the wick has a larger porosity in the outer portion than in the inner portion in the orthogonal direction orthogonal to the axial direction.
  • the wick disclosed in this specification is a cylindrical porous body. There is a space in the portion surrounded by the porous body. There are also spaces (voids) inside the porous body. In the following description, the space surrounded by the porous body is referred to as “inside wick space”, and the inside of the porous body is referred to as “inside wick” for distinction.
  • the porosity in the outer part is larger than the inner part in the orthogonal direction (in the radial direction in the case of a cylinder), so even if the fluid changes from the liquid phase to the gas phase, the pressure rise inside the wick is suppressed.
  • the movement of the liquid phase fluid existing in the wick inner space into the wick is not hindered.
  • the wick can realize a smooth movement of the fluid and can improve the efficiency of heat transfer.
  • the pressure rise inside a wick can also be suppressed by enlarging the porosity of the porous body which comprises a wick as a whole. However, in that case, the capillary phenomenon is less likely to occur, and the movement of fluid inside the wick is suppressed.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG.
  • grains which comprise the wick of an Example is shown.
  • the wick disclosed herein can be used in a loop heat pipe evaporator.
  • the loop heat pipe may include an evaporator, a condenser, a steam pipe, and a liquid pipe.
  • the vapor pipe is connected to the outlet of the evaporator and the inlet of the condenser
  • the liquid pipe is connected to the outlet of the condenser and the inlet of the evaporator.
  • the evaporator is arranged in the high temperature part
  • the condenser is arranged in the low temperature part.
  • a fluid (working fluid) is enclosed in the loop heat pipe.
  • the fluid changes from the liquid phase to the gas phase in the evaporator and changes from the gas phase to the liquid phase in the condenser. Therefore, the gas phase fluid (steam) passes through the steam pipe, and the liquid phase fluid (liquid) passes through the liquid pipe.
  • a reservoir tank for temporarily storing the liquid phase fluid may be disposed in the middle of the liquid pipe.
  • the evaporator has a case and a wick placed in the case.
  • the wick may be fitted in the case.
  • a flow path for moving the gas phase fluid is provided between the case and the wick.
  • the flow path may extend from one end to the other end in the axial direction (longitudinal direction) of the wick.
  • one flow path may be provided, or a plurality of flow paths may be provided.
  • a plurality of grooves may be provided on the inner peripheral surface of the case (or a plurality of protrusions may be provided on the inner peripheral surface of the case) to form a plurality of flow paths.
  • a plurality of grooves may be provided on the outer peripheral surface of the wick (or a plurality of protrusions are provided on the outer peripheral surface of the wick), and a plurality of flow paths may be formed.
  • the case may be made of a material having high thermal conductivity, for example, metal.
  • Preferred materials for the case include copper (Cu), aluminum (Al), alloys thereof, SUS (stainless steel), and the like.
  • the wick is columnar.
  • the wick may be prismatic or cylindrical. From the viewpoint of realizing high strength and uniform heat conduction, the wick is preferably cylindrical.
  • the wick has a cylindrical shape, and a space (inner wick space) exists inside.
  • the wick is a porous body.
  • the porous body constituting the wick includes communication holes that develop capillary action with respect to the fluid.
  • One end of the wick in the axial direction is open, and the other end is closed. From the open end of the wick, the liquid phase fluid is introduced into the wick inner space. Since the other end of the wick is closed, the liquid phase fluid in the wick inner space moves into the wick by capillary action. Inside the wick, the liquid phase fluid changes to a gas phase fluid.
  • the wick material resin, metal, ceramics, or the like can be used. From the viewpoint of obtaining good strength and durability, the wick material is preferably a metal or a ceramic. Also, ceramics are particularly preferable as the wick material from the viewpoint of obtaining good heat resistance and corrosion resistance.
  • the porosity of the wick is not uniform in the orthogonal direction (in the case of a cylindrical shape, the radial direction) orthogonal to the axial direction of the wick. In the orthogonal direction, the porosity of the outer portion of the wick is greater than the inner portion.
  • the fluid changes to the gas phase at the outer part of the wick.
  • the fluid expands in volume as it changes from the liquid phase to the gas phase.
  • the porosity of the outer part of the wick is preferably 2% or more larger than the inner part, more preferably 4% or more, and particularly preferably 6% or more.
  • the porosity of the inner part of the wick is preferably 35% or more.
  • the inner part is in contact with the liquid phase fluid. When the porosity of the inner portion is less than 35%, the movement resistance of the liquid phase fluid inside the wick increases, and the fluid may not easily move smoothly.
  • the porosity of the inner part of the wick is more preferably 40% or more, and particularly preferably 45% or more. Further, the porosity of the inner part of the wick is preferably 65% or less. If the inner porosity exceeds 65%, the strength decreases and the wick can be damaged by resistance when the liquid fluid moves.
  • the porosity of the inner part of the wick is more preferably 55% or less, and particularly preferably 50% or less.
  • the porosity of the outer portion of the wick is preferably 70% or less.
  • the wick may have a larger pore size in the outer part than in the inner part.
  • the wick has a larger porosity in the outer portion than in the inner portion and a larger pore diameter in the outer portion.
  • the pore diameter of the outer part of the wick is preferably 0.2 ⁇ m or more larger than the inner part, more preferably 0.5 ⁇ m or more, and particularly preferably 1.0 ⁇ m or more.
  • the pore diameter is obtained by measuring the pore diameter distribution and calculating the average pore diameter.
  • the pore diameter (average pore diameter) can be measured using a mercury intrusion method.
  • the pore diameter of the inner part of the wick is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, particularly preferably 1.0 ⁇ m in order to suppress an increase in the movement resistance of the liquid phase fluid. That's it.
  • the pore diameter of the inner part of the wick is preferably 5 ⁇ m or less, more preferably 4 ⁇ m or less, and particularly preferably 3 ⁇ m or less in order to maintain the capillary force. Note that the pore diameter of the outer portion of the wick is preferably 7 ⁇ m or less.
  • the condenser has a structure in which the fluid changes from the gas phase to the liquid phase by heat dissipation.
  • the condenser may be a single metal pipe.
  • positioned in a case may be sufficient as a condenser like an evaporator.
  • the case and wick of the condenser can be appropriately selected within the range described for the case and wick of the evaporator.
  • the material of the steam pipe and the liquid pipe can be appropriately selected according to the type of fluid and the environment (temperature, etc.) in which the loop heat pipe is used.
  • each of the steam pipe and the liquid pipe may be made of resin, metal, or ceramics (ceramic dense body).
  • water, ammonia, or an organic solvent can be used as the fluid.
  • the organic solvent acetone, alcohol, chlorofluorocarbon, glycol ethers, naphthalene, diethyldiphenyl, and the like can be used.
  • a fluid that changes from a liquid phase to a gas phase in a temperature range where the loop heat pipe is used can be appropriately selected.
  • the loop heat pipe 100 will be described with reference to FIG.
  • the loop heat pipe 100 includes an evaporator 2, a vapor pipe 4, a condenser 6, a liquid pipe 8, and a reservoir 10.
  • the steam pipe 4 is connected between the outlet 2 b of the evaporator 2 and the inlet 6 a of the condenser 6.
  • the liquid pipe 8 connects between the outlet 2 b of the condenser 6 and the inlet 2 a of the evaporator 2.
  • the reservoir 10 is connected to the middle of the liquid pipe 8.
  • a fluid (working fluid) is sealed in the loop heat pipe 100.
  • the evaporator 2 is arranged in the high temperature part.
  • a liquid phase fluid is introduced into the evaporator 2 from the liquid pipe 8.
  • the liquid phase fluid is heated and changed into a gas phase fluid.
  • the gas phase fluid moves in the direction of the arrow 20 in the vapor pipe 4 and is introduced into the condenser 6. Details of the evaporator 2 will be described later.
  • the condenser 6 is arranged in the low temperature part.
  • the gas phase fluid is cooled and changed into a liquid phase fluid.
  • the liquid phase fluid moves in the direction of the arrow 30 in the liquid pipe 8 and is introduced into the evaporator 2.
  • the liquid phase fluid is temporarily stored in the reservoir 10 and then introduced into the evaporator 2.
  • the reservoir 10 stabilizes the amount of liquid phase fluid introduced into the evaporator 2. As the fluid circulates in the loop heat pipe 100, heat moves from the high temperature portion to the low temperature portion.
  • the evaporator 2 will be described with reference to FIGS.
  • the evaporator 2 includes a case 50 and a wick 52.
  • Case 50 is made of metal, and wick 52 is made of ceramics.
  • the case 50 is cylindrical, and an inlet 2a is provided at one end in the longitudinal direction (Y-axis direction), and an outlet 2b is provided at the other end.
  • the inlet 2a is connected to the liquid pipe 8, and the outlet 2b is connected to the steam pipe 4 (see also FIG. 1).
  • the wick 52 has a cylindrical shape and is disposed in the case 50.
  • the wick 52 is open at one end 52a in the Y-axis direction and closed at the other end 52b.
  • the end 52a is in contact with the case 50 on the inlet 2a side so as to surround the inlet 2a. Therefore, the wick space 58 communicates with the liquid pipe 8.
  • the end 52b is not in contact with the case 50.
  • the outer periphery of the wick 52 is in contact with the inner periphery of the case 50 (see FIG. 3).
  • the wick 52 is fitted in the case 50 by shrink fitting.
  • a plurality of grooves 60 are provided on the outer periphery of the wick 52.
  • FIG. 3 shows four grooves 60 as an example.
  • the groove 60 extends from one end to the other end in the Y-axis direction.
  • the groove 60 forms a partial space 54 between the inner periphery of the case 50 and the outer periphery of the wick 52.
  • the space 54 is a flow path for a gas phase fluid and communicates with the outlet 2b.
  • a liquid phase fluid is introduced from the liquid pipe 8 into the wick space 58.
  • An arrow 32 indicates the flow of the liquid phase fluid.
  • the liquid phase fluid moves in the direction of the arrow 34 from the inner portion toward the outer portion of the wick 52 by capillary action. Inside the wick 52, the liquid phase fluid receives heat, and the liquid phase fluid changes to a gas phase fluid.
  • the gas phase fluid moves in the direction of arrow 36 with the space 54 directed toward the outlet 2b. Further, the vapor phase vapor moves to the vapor pipe 4 (see FIG. 1) through the outlet 2b as indicated by an arrow 38.
  • FIG. 4 schematically shows the internal structure of the wick 52.
  • the wick 52 is a porous body composed of a plurality of particles.
  • the diameter of the particles constituting the outer portion 52d (space 54 side) of the wick 52 is larger than the diameter of the particles constituting the inner portion 52c (wick inner space 58 side).
  • the wick 52 has a two-layer structure with different particle diameters in the thickness direction (X-axis and Z-axis directions).
  • Such a two-layer structure can be realized by, for example, forming the outer portion 52d in a cylindrical shape by extrusion, and then forming the inner portion 52c inside the outer portion 52d by, for example, a slip casting method.
  • the porosity and the pore diameter change discontinuously at the boundary between the inner portion 52c and the outer portion 52d. Note that both the outer portion 52d and the inner portion 52c can be formed by slip casting.
  • the outer portion 52d of the wick 52 has a higher porosity than the inner portion 52c. Specifically, the porosity of the outer portion 52d is about 55%, and the porosity of the inner portion 52c is about 50%.
  • the outer portion 52d of the wick 52 has a larger pore diameter than the inner portion 52c. Specifically, the outer portion 52d has a pore diameter of about 3 ⁇ m, and the inner portion 52c has a pore diameter of about 2 ⁇ m.
  • Wick 52 The advantages of Wick 52 will be described. As described above, the porosity of the outer portion 52d of the wick 52 is larger than that of the inner portion 52c. Therefore, when the fluid changes from the liquid phase to the gas phase at the outer portion 52d of the wick 52, the pressure increase inside the wick 52 due to volume expansion is suppressed, and the inner portion 52c of the wick 52 where the liquid phase fluid exists is suppressed. Application of pressure is suppressed. The movement of the liquid phase fluid from the wick inner space 58 into the wick 52 is not hindered, and cooling can be performed efficiently.
  • the pore diameter of the outer portion 52d is larger than the pore diameter of the inner portion 52c. With such a structure, an increase in pressure inside the wick 52 can be suppressed, and structural destruction of the wick can be suppressed along with volume expansion.
  • the particle size of the outer portion 52d is larger than the particle size of the inner portion 52c.
  • a wick provided with two layers having different porosity and pore diameter in the thickness direction has been described.
  • three or more layers having different porosity and pore diameter may be provided.
  • the porosity and the pore diameter may change continuously, and the “layer” may not be formed.
  • the pore diameter and the particle diameter do not necessarily have to be different.
  • the porosity of the outer portion of the wick is larger than that of the inner portion in the thickness direction.

Abstract

A wick for use in a loop heat pipe evaporator. The wick is a cylindrical porous body. The wick is open on one side in the axial direction and closed on the other. In a direction that is perpendicular to the axial direction, an outside portion of the wick is more porous than an inside portion thereof.

Description

ウィックWick
 本明細書に開示する技術は、ループヒートパイプのウィックに関する。 The technology disclosed in this specification relates to a wick of a loop heat pipe.
 高温部で流体を液相から気相に変化させ、低温部で気相から液相に変化させることにより、熱移動を行うループヒートパイプが知られている。特開2002-181469号公報は、高温部で用いる蒸発器の構造を開示している。以下、特開2002-181469号公報を、特許文献1と称する。蒸発器は、金属製の筒状ケースと、筒状ケース内に配置されているウィックを備えている。ウィックは、筒状の多孔質体であり、軸方向(長手方向)の一端が開口し、他端が閉口しているウィック内空間を備えている。液相の流体は、ウィックの開口よりウィック内空間に導入される。筒状ケースとウィックの間には、気相流体が移動する気相流路が設けられている。液相の流体は、毛細管現象により、ウィック内空間からウィック内部に移動する。流体は、ウィック内部で受熱することにより、液相から気相に変化し、気相流路に移動する。気相流体は、気相流路を通って低温部(凝縮部)に移動する。 A loop heat pipe that performs heat transfer by changing a fluid from a liquid phase to a gas phase in a high temperature part and from a gas phase to a liquid phase in a low temperature part is known. Japanese Patent Application Laid-Open No. 2002-181469 discloses a structure of an evaporator used in a high temperature part. Hereinafter, JP-A-2002-181469 is referred to as Patent Document 1. The evaporator includes a metal cylindrical case and a wick disposed in the cylindrical case. The wick is a cylindrical porous body, and includes a wick inner space that is open at one end in the axial direction (longitudinal direction) and closed at the other end. The liquid phase fluid is introduced into the wick internal space through the opening of the wick. Between the cylindrical case and the wick, a gas phase flow path through which the gas phase fluid moves is provided. The liquid phase fluid moves from the wick inner space into the wick by capillary action. By receiving heat inside the wick, the fluid changes from the liquid phase to the gas phase and moves to the gas phase flow path. The gas phase fluid moves to the low temperature part (condensation part) through the gas phase flow path.
 流体が液相から気相に変化するときに、流体の体積が増加する。流体の体積増加に伴ってウィック内部(多孔質体の内部)の圧力が上昇すると、液相の流体がウィック内空間からウィック内部に移動しにくくなる。そのため、ウィック内部の圧力上昇を抑制する技術が求められている。本明細書は、内部圧力の上昇が抑制されたウィックを実現する技術を提供する。 When the fluid changes from the liquid phase to the gas phase, the volume of the fluid increases. When the pressure inside the wick (inside the porous body) increases as the fluid volume increases, it becomes difficult for the liquid-phase fluid to move from the wick space into the wick. Therefore, there is a need for a technique for suppressing the pressure increase inside the wick. The present specification provides a technique for realizing a wick in which an increase in internal pressure is suppressed.
 本明細書で開示するウィックは、ループヒートパイプの蒸発器で用いられる。ウィックは、筒状の多孔質体であり、軸方向の一方が開口し、他方が閉口している。また、ウィックは、軸方向に直交する直交方向において、外側部分の気孔率が内側部分より大きい。 The wick disclosed in this specification is used in an evaporator of a loop heat pipe. The wick is a cylindrical porous body, one of which is open in the axial direction and the other is closed. Further, the wick has a larger porosity in the outer portion than in the inner portion in the orthogonal direction orthogonal to the axial direction.
 上記のように、本明細書で開示するウィックは、筒状の多孔質体である。多孔質体で囲まれた部分には空間が存在する。また、多孔質体の内部にも空間(空隙)が存在する。以下の説明では、多孔質体で囲まれた空間を「ウィック内空間」と称し、多孔質体の内部を「ウィック内部」と称して区別する。 As described above, the wick disclosed in this specification is a cylindrical porous body. There is a space in the portion surrounded by the porous body. There are also spaces (voids) inside the porous body. In the following description, the space surrounded by the porous body is referred to as “inside wick space”, and the inside of the porous body is referred to as “inside wick” for distinction.
 上記のウィックは、直交方向(円筒の場合、径方向)において、外側部分の気孔率が内側部分より大きいので、流体が液相から気相に変化しても、ウィック内部の圧力上昇が抑制される。ウィック内空間に存在する液相流体のウィック内部への移動が阻害されない。上記ウィックは、流体のスムーズな移動を実現し、熱伝達の効率を向上させることができる。なお、ウィックを構成する多孔質体の気孔率を全体的に大きくすることにより、ウィック内部の圧力上昇を抑制することもできる。しかしながら、その場合、毛細管現象が生じにくくなり、ウィック内部における流体の移動が抑制される。上記のように内側部分の気孔率を小さくし、外側部分の気孔率を大きくすることによって、液相流体のウィック内部への移動を抑制することなく、ウィック内部の圧力上昇を抑制することができる。 In the above wick, the porosity in the outer part is larger than the inner part in the orthogonal direction (in the radial direction in the case of a cylinder), so even if the fluid changes from the liquid phase to the gas phase, the pressure rise inside the wick is suppressed. The The movement of the liquid phase fluid existing in the wick inner space into the wick is not hindered. The wick can realize a smooth movement of the fluid and can improve the efficiency of heat transfer. In addition, the pressure rise inside a wick can also be suppressed by enlarging the porosity of the porous body which comprises a wick as a whole. However, in that case, the capillary phenomenon is less likely to occur, and the movement of fluid inside the wick is suppressed. By reducing the porosity of the inner portion and increasing the porosity of the outer portion as described above, it is possible to suppress an increase in pressure inside the wick without suppressing the movement of the liquid phase fluid into the wick. .
実施例のループヒートパイプの概略図を示す。The schematic of the loop heat pipe of an Example is shown. 実施例の蒸発器の断面図を示す。Sectional drawing of the evaporator of an Example is shown. 図2のIII-III線に沿った断面図を示す。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 実施例のウィックを構成する粒子の概略図を示す。The schematic of the particle | grains which comprise the wick of an Example is shown.
 以下、本明細書で開示される技術の特徴を整理する。なお、以下に記す事項は、各々単独で技術的な有用性を有している。 The following summarizes the features of the technology disclosed in this specification. The items described below have technical usefulness independently.
 本明細書で開示するウィックは、ループヒートパイプの蒸発器で用いることができる。ループヒートパイプは、蒸発器と、凝縮器と、蒸気管と、液管を備えていてよい。この場合、蒸気管は蒸発器の出口と凝縮器の入口に接続され、液管は凝縮器の出口と蒸発器の入口に接続される。蒸発器は高温部に配置され、凝縮器は低温部に配置される。ループヒートパイプ内には、流体(作動流体)が封入される。流体は、蒸発器で液相から気相に変化し、凝縮器で気相から液相に変化する。そのため、蒸気管を気相流体(蒸気)が通過し、液管を液相流体(液体)が通過する。なお、液管の中間に、液相流体を一時的に貯留するためのリザーバタンクを配置してもよい。 The wick disclosed herein can be used in a loop heat pipe evaporator. The loop heat pipe may include an evaporator, a condenser, a steam pipe, and a liquid pipe. In this case, the vapor pipe is connected to the outlet of the evaporator and the inlet of the condenser, and the liquid pipe is connected to the outlet of the condenser and the inlet of the evaporator. The evaporator is arranged in the high temperature part, and the condenser is arranged in the low temperature part. A fluid (working fluid) is enclosed in the loop heat pipe. The fluid changes from the liquid phase to the gas phase in the evaporator and changes from the gas phase to the liquid phase in the condenser. Therefore, the gas phase fluid (steam) passes through the steam pipe, and the liquid phase fluid (liquid) passes through the liquid pipe. A reservoir tank for temporarily storing the liquid phase fluid may be disposed in the middle of the liquid pipe.
 蒸発器は、ケースと、ケース内に配置されるウィックを備えている。ウィックは、ケース内に嵌められていてよい。ケースとウィックの間には、気相流体が移動するための流路が設けられている。流路は、ウィックの軸方向(長手方向)の一端から他端まで伸びていてよい。なお、ウィックの周方向において、1個の流路が設けられていてもよいし、複数の流路が設けられていてもよい。ケースの内周面に複数の溝を設け(あるいは、ケースの内周面に複数の突起を設け)、複数の流路が形成されていてよい。また、ウィックの外周面に複数の溝を設け(あるいは、ウィックの外周面に複数の突起を設け)、複数の流路が形成されていてもよい。ケースとウィックの各々の製造、ケースとウィックの組み立て性を考慮すると、ウィックの外周面に複数の溝を設け、複数の流路を実現することが好ましい。 The evaporator has a case and a wick placed in the case. The wick may be fitted in the case. Between the case and the wick, a flow path for moving the gas phase fluid is provided. The flow path may extend from one end to the other end in the axial direction (longitudinal direction) of the wick. In the circumferential direction of the wick, one flow path may be provided, or a plurality of flow paths may be provided. A plurality of grooves may be provided on the inner peripheral surface of the case (or a plurality of protrusions may be provided on the inner peripheral surface of the case) to form a plurality of flow paths. Further, a plurality of grooves may be provided on the outer peripheral surface of the wick (or a plurality of protrusions are provided on the outer peripheral surface of the wick), and a plurality of flow paths may be formed. In consideration of the manufacture of the case and the wick and the assemblability of the case and the wick, it is preferable to provide a plurality of channels by providing a plurality of grooves on the outer peripheral surface of the wick.
 ケースは、熱伝導率の高い材料、例えば、金属製であってよい。ケースの好ましい材料として、銅(Cu)、アルミニウム(Al)、それらの合金、あるいは、SUS(ステンレススチール)等が挙げられる。 The case may be made of a material having high thermal conductivity, for example, metal. Preferred materials for the case include copper (Cu), aluminum (Al), alloys thereof, SUS (stainless steel), and the like.
 ウィックは、柱状である。ウィックは、角柱状であってもよいし、円柱状であってもよい。高強度、均一な熱伝導を実現するという観点より、ウィックは円柱状であることが好ましい。ウィックは筒状であり、内側には空間(ウィック内空間)が存在する。また、ウィックは、多孔質体である。ウィックを構成する多孔質体は、流体に対して毛細管現象を発現する連通孔を含んでいる。ウィックの軸方向の一端は開口しており、他端は閉口している。ウィックの開口端より、液相流体がウィック内空間に導入される。ウィックの他端は閉口されているので、ウィック内空間の液相流体は、毛細管現象によってウィック内部に移動する。ウィック内部では、液相流体が気相流体に変化する。ウィックの材料は、樹脂、金属、セラミックス等を用いることができる。良好な強度、耐久性が得られるという観点より、ウィックの材料は金属またはセラミックスが好ましい。また、良好な耐熱性、耐食性も得られるという観点よりウィックの材料はセラミックスが特に好ましい。 Wick is columnar. The wick may be prismatic or cylindrical. From the viewpoint of realizing high strength and uniform heat conduction, the wick is preferably cylindrical. The wick has a cylindrical shape, and a space (inner wick space) exists inside. The wick is a porous body. The porous body constituting the wick includes communication holes that develop capillary action with respect to the fluid. One end of the wick in the axial direction is open, and the other end is closed. From the open end of the wick, the liquid phase fluid is introduced into the wick inner space. Since the other end of the wick is closed, the liquid phase fluid in the wick inner space moves into the wick by capillary action. Inside the wick, the liquid phase fluid changes to a gas phase fluid. As the wick material, resin, metal, ceramics, or the like can be used. From the viewpoint of obtaining good strength and durability, the wick material is preferably a metal or a ceramic. Also, ceramics are particularly preferable as the wick material from the viewpoint of obtaining good heat resistance and corrosion resistance.
 ウィックの気孔率は、ウィックの軸方向に直交する直交方向(円柱状の場合、径方向)において均一ではない。直交方向において、ウィックの外側部分の気孔率が内側部分より大きい。流体は、ウィックの外側部分で気相に変化する。流体は、液相から気相に変化するときに体積膨張する。ウィックの外側部分の気孔率を内側部分より大きくすることによって、ウィック内部の圧力上昇を抑制することができ、また、気相流体がウィックの内側部分に圧力を加えることを抑制することができる。その結果、ウィック内空間からウィック内部への液相流体の移動が阻害されない。ウィックの外側部分の気孔率は、内側部分より2%以上大きいことが好ましく、4%以上大きいことがより好ましく、6%以上大きいことが特に好ましい。 The porosity of the wick is not uniform in the orthogonal direction (in the case of a cylindrical shape, the radial direction) orthogonal to the axial direction of the wick. In the orthogonal direction, the porosity of the outer portion of the wick is greater than the inner portion. The fluid changes to the gas phase at the outer part of the wick. The fluid expands in volume as it changes from the liquid phase to the gas phase. By making the porosity of the outer part of the wick larger than that of the inner part, it is possible to suppress an increase in pressure inside the wick, and it is possible to suppress the gas phase fluid from applying pressure to the inner part of the wick. As a result, the movement of the liquid phase fluid from the space inside the wick to the inside of the wick is not hindered. The porosity of the outer part of the wick is preferably 2% or more larger than the inner part, more preferably 4% or more, and particularly preferably 6% or more.
 ウィックの内側部分の気孔率は、35%以上であることが好ましい。内側部分は、液相流体と接触する。内側部分の気孔率が35%未満の場合、ウィック内部における液相流体の移動抵抗が大きくなり、流体がスムーズに移動しにくくなることがある。ウィックの内側部分の気孔率は、40%以上であることがより好ましく、45%以上であることが特に好ましい。また、ウィックの内側部分の気孔率は、65%以下であることが好ましい。内側の気孔率が65%を超えると、強度が低下し、液相流体が移動する際の抵抗によってウィックが損傷することが起こり得る。ウィックの内側部分の気孔率は、55%以下であることがより好ましく、50%以下であることが特に好ましい。なお、ウィックの外側部分の気孔率は、70%以下であることが好ましい。 The porosity of the inner part of the wick is preferably 35% or more. The inner part is in contact with the liquid phase fluid. When the porosity of the inner portion is less than 35%, the movement resistance of the liquid phase fluid inside the wick increases, and the fluid may not easily move smoothly. The porosity of the inner part of the wick is more preferably 40% or more, and particularly preferably 45% or more. Further, the porosity of the inner part of the wick is preferably 65% or less. If the inner porosity exceeds 65%, the strength decreases and the wick can be damaged by resistance when the liquid fluid moves. The porosity of the inner part of the wick is more preferably 55% or less, and particularly preferably 50% or less. The porosity of the outer portion of the wick is preferably 70% or less.
 ウィックは、外側部分の気孔径が内側部分より大きくてよい。外側部分の気孔径を内側部分より大きくすることによっても、気相流体がウィックの内側部分に圧力を加えることを抑制することができる。好ましくは、ウィックは、外側部分の気孔率が内側部分より大きいとともに、外側部分の気孔径が内側部分より大きい。ウィックの外側部分の気孔径は、内側部分より0.2μm以上大きいことが好ましく、0.5μm以上大きいことがより好ましく、1.0μm以上大きいことが特に好ましい。なお、気孔径は、細孔径分布を測定し、平均細孔径を計算することによって得られる。気孔径(平均細孔径)は、水銀圧入法を用いて測定することができる。 The wick may have a larger pore size in the outer part than in the inner part. By making the pore diameter of the outer portion larger than that of the inner portion, the gas phase fluid can be prevented from applying pressure to the inner portion of the wick. Preferably, the wick has a larger porosity in the outer portion than in the inner portion and a larger pore diameter in the outer portion. The pore diameter of the outer part of the wick is preferably 0.2 μm or more larger than the inner part, more preferably 0.5 μm or more, and particularly preferably 1.0 μm or more. The pore diameter is obtained by measuring the pore diameter distribution and calculating the average pore diameter. The pore diameter (average pore diameter) can be measured using a mercury intrusion method.
 ウィックの内側部分の気孔径は、液相流体の移動抵抗が増大することを抑制するため、0.1μm以上であることが好ましく、より好ましくは0.5μm以上であり、特に好ましくは1.0μm以上である。また、ウィックの内側部分の気孔径は、毛細管力を維持するために、5μm以下であることが好ましく、より好ましくは4μm以下であり、特に好ましくは3μm以下である。なお、ウィックの外側部分の気孔径は、7μm以下であることが好ましい。 The pore diameter of the inner part of the wick is preferably 0.1 μm or more, more preferably 0.5 μm or more, particularly preferably 1.0 μm in order to suppress an increase in the movement resistance of the liquid phase fluid. That's it. The pore diameter of the inner part of the wick is preferably 5 μm or less, more preferably 4 μm or less, and particularly preferably 3 μm or less in order to maintain the capillary force. Note that the pore diameter of the outer portion of the wick is preferably 7 μm or less.
 凝縮器は、放熱によって流体が気相から液相に変化する構造を備えている。特に限定されるものではないが、凝縮器は、金属製の単管であってよい。あるいは、凝縮器は、蒸発器と同様に、ケースと、ケース内に配置されるウィックを備えた構造であってもよい。この場合、凝縮器のケース及びウィックは、上記した蒸発器のケース及びウィックで説明した範囲内のものを適宜選択することができる。 The condenser has a structure in which the fluid changes from the gas phase to the liquid phase by heat dissipation. Although not particularly limited, the condenser may be a single metal pipe. Or the structure provided with the case and the wick arrange | positioned in a case may be sufficient as a condenser like an evaporator. In this case, the case and wick of the condenser can be appropriately selected within the range described for the case and wick of the evaporator.
 蒸気管および液管の材料は、流体の種類、ループヒートパイプを使用する環境(温度等)に応じて、適宜選択することができる。例えば、蒸気管および液管の各々は、樹脂製、、金属製、あるいはセラミックス(セラミックス緻密体)製であってよい。なお、流体は、水、アンモニア、有機溶媒を用いることができる。有機溶媒の一例として、アセトン、アルコール、フロン、グリコールエーテル類、ナフタレン、ジエチルジフェニル等を用いることができる。流体は、ループヒートパイプが使用される温度域で液相から気相に変化するものを適宜選択することができる。 The material of the steam pipe and the liquid pipe can be appropriately selected according to the type of fluid and the environment (temperature, etc.) in which the loop heat pipe is used. For example, each of the steam pipe and the liquid pipe may be made of resin, metal, or ceramics (ceramic dense body). Note that water, ammonia, or an organic solvent can be used as the fluid. As an example of the organic solvent, acetone, alcohol, chlorofluorocarbon, glycol ethers, naphthalene, diethyldiphenyl, and the like can be used. As the fluid, a fluid that changes from a liquid phase to a gas phase in a temperature range where the loop heat pipe is used can be appropriately selected.
 図1を参照し、ループヒートパイプ100について説明する。ループヒートパイプ100は、蒸発器2と、蒸気管4と、凝縮器6と、液管8と、リザーバ10を備えている。蒸気管4は、蒸発器2の出口2bと凝縮器6の入口6aの間を接続している。また、液管8は、凝縮器6の出口2bと蒸発器2の入口2aの間を接続している。リザーバ10は、液管8の中間に接続されている。ループヒートパイプ100内には、流体(作動流体)が封止されている。 The loop heat pipe 100 will be described with reference to FIG. The loop heat pipe 100 includes an evaporator 2, a vapor pipe 4, a condenser 6, a liquid pipe 8, and a reservoir 10. The steam pipe 4 is connected between the outlet 2 b of the evaporator 2 and the inlet 6 a of the condenser 6. The liquid pipe 8 connects between the outlet 2 b of the condenser 6 and the inlet 2 a of the evaporator 2. The reservoir 10 is connected to the middle of the liquid pipe 8. A fluid (working fluid) is sealed in the loop heat pipe 100.
 蒸発器2は、高温部に配置される。蒸発器2には、液管8より液相流体が導入される。蒸発器2では、液相流体が加熱されて気相流体に変化する。気相流体は、蒸気管4内を矢印20方向に移動し、凝縮器6に導入される。蒸発器2の詳細は後述する。 The evaporator 2 is arranged in the high temperature part. A liquid phase fluid is introduced into the evaporator 2 from the liquid pipe 8. In the evaporator 2, the liquid phase fluid is heated and changed into a gas phase fluid. The gas phase fluid moves in the direction of the arrow 20 in the vapor pipe 4 and is introduced into the condenser 6. Details of the evaporator 2 will be described later.
 凝縮器6は、低温部に配置される。凝縮器6では、気相流体が冷却されて液相流体に変化する。液相流体は、液管8内を矢印30方向に移動し、蒸発器2に導入される。なお、液相流体は、リザーバ10に一時的に貯留された後、蒸発器2に導入される。リザーバ10により、蒸発器2への液相流体の導入量が安定する。流体がループヒートパイプ100内を循環することによって、高温部から低温部に熱が移動する。 The condenser 6 is arranged in the low temperature part. In the condenser 6, the gas phase fluid is cooled and changed into a liquid phase fluid. The liquid phase fluid moves in the direction of the arrow 30 in the liquid pipe 8 and is introduced into the evaporator 2. The liquid phase fluid is temporarily stored in the reservoir 10 and then introduced into the evaporator 2. The reservoir 10 stabilizes the amount of liquid phase fluid introduced into the evaporator 2. As the fluid circulates in the loop heat pipe 100, heat moves from the high temperature portion to the low temperature portion.
 図2及び図3を参照し、蒸発器2について説明する。蒸発器2は、ケース50と、ウィック52を備えている。ケース50は金属製であり、ウィック52はセラミックス製である。ケース50は、円筒状であり、長手方向(Y軸方向)の一端に入口2aが設けられており、他端に出口2bが設けられている。入口2aは液管8と接続しており、出口2bは蒸気管4と接続している(図1も参照)。ウィック52は、円筒状であり、ケース50内に配置されている。ウィック52は、Y軸方向の一方の端部52aが開口しており、他方の端部52bが閉口している。端部52aは、入口2a側で、入口2aを囲った状態でケース50に接触している。そのため、ウィック内空間58は、液管8と連通している。なお、端部52bは、ケース50と非接触である。 The evaporator 2 will be described with reference to FIGS. The evaporator 2 includes a case 50 and a wick 52. Case 50 is made of metal, and wick 52 is made of ceramics. The case 50 is cylindrical, and an inlet 2a is provided at one end in the longitudinal direction (Y-axis direction), and an outlet 2b is provided at the other end. The inlet 2a is connected to the liquid pipe 8, and the outlet 2b is connected to the steam pipe 4 (see also FIG. 1). The wick 52 has a cylindrical shape and is disposed in the case 50. The wick 52 is open at one end 52a in the Y-axis direction and closed at the other end 52b. The end 52a is in contact with the case 50 on the inlet 2a side so as to surround the inlet 2a. Therefore, the wick space 58 communicates with the liquid pipe 8. The end 52b is not in contact with the case 50.
 ウィック52の外周は、ケース50の内周と接触している(図3を参照)。ウィック52は、焼きばめによって、ケース50内に嵌められている。また、複数の溝60が、ウィック52の外周に設けられている。図3は、一例として、4個の溝60を示している。溝60は、Y軸方向の一端から他端まで伸びている。溝60によって、ケース50の内周とウィック52の外周の間に、部分的な空間54が形成される。空間54は、気相流体の流路であり、出口2bと連通している。 The outer periphery of the wick 52 is in contact with the inner periphery of the case 50 (see FIG. 3). The wick 52 is fitted in the case 50 by shrink fitting. A plurality of grooves 60 are provided on the outer periphery of the wick 52. FIG. 3 shows four grooves 60 as an example. The groove 60 extends from one end to the other end in the Y-axis direction. The groove 60 forms a partial space 54 between the inner periphery of the case 50 and the outer periphery of the wick 52. The space 54 is a flow path for a gas phase fluid and communicates with the outlet 2b.
 ウィック内空間58には、液管8から液相流体が導入される。矢印32は、液相流体の流れを示している。液相流体は、毛細管現象によって、ウィック52の内部を内側部分から外側部分に向けて、矢印34方向に移動する。ウィック52の内部では、液相流体が受熱し、液相流体が気相流体に変化する。気相流体は、空間54を出口2bに向けて矢印36方向に移動する。また、気相蒸気は、矢印38に示すように、出口2bを通じて蒸気管4(図1を参照)に移動する。 A liquid phase fluid is introduced from the liquid pipe 8 into the wick space 58. An arrow 32 indicates the flow of the liquid phase fluid. The liquid phase fluid moves in the direction of the arrow 34 from the inner portion toward the outer portion of the wick 52 by capillary action. Inside the wick 52, the liquid phase fluid receives heat, and the liquid phase fluid changes to a gas phase fluid. The gas phase fluid moves in the direction of arrow 36 with the space 54 directed toward the outlet 2b. Further, the vapor phase vapor moves to the vapor pipe 4 (see FIG. 1) through the outlet 2b as indicated by an arrow 38.
 図4は、ウィック52の内部構造を模式的に示している。ウィック52は、複数の粒子で構成された多孔質体である。図4から明らかなように、ウィック52の外側部分52d(空間54側)を構成する粒子の径は、内側部分52c(ウィック内空間58側)を構成する粒子の径より大きい。ウィック52は、厚み方向(X軸、Z軸方向)において、粒子径の異なる2層構造を有している。このような2層構造は、例えば押出形成により外側部分52dを円筒状に形成した後、例えばスリップキャスト法により外側部分52dの内側に内側部分52cを形成することによって実現することができる。ウィック52は、内側部分52cと外側部分52dの境界において、気孔率及び気孔径が不連続に変化している。なお、外側部分52dと内側部分52cの双方をスリップキャスト法により形成することもできる。 FIG. 4 schematically shows the internal structure of the wick 52. The wick 52 is a porous body composed of a plurality of particles. As is apparent from FIG. 4, the diameter of the particles constituting the outer portion 52d (space 54 side) of the wick 52 is larger than the diameter of the particles constituting the inner portion 52c (wick inner space 58 side). The wick 52 has a two-layer structure with different particle diameters in the thickness direction (X-axis and Z-axis directions). Such a two-layer structure can be realized by, for example, forming the outer portion 52d in a cylindrical shape by extrusion, and then forming the inner portion 52c inside the outer portion 52d by, for example, a slip casting method. In the wick 52, the porosity and the pore diameter change discontinuously at the boundary between the inner portion 52c and the outer portion 52d. Note that both the outer portion 52d and the inner portion 52c can be formed by slip casting.
 ウィック52の外側部分52dは、内側部分52cよりも気孔率が大きい。具体的には、外側部分52dの気孔率は約55%であり、内側部分52cの気孔率は約50%である。また、ウィック52の外側部分52dは、内側部分52cよりも気孔径が大きい。具体的には、外側部分52dの気孔径は約3μmであり、内側部分52cの気孔径は約2μmである。 The outer portion 52d of the wick 52 has a higher porosity than the inner portion 52c. Specifically, the porosity of the outer portion 52d is about 55%, and the porosity of the inner portion 52c is about 50%. The outer portion 52d of the wick 52 has a larger pore diameter than the inner portion 52c. Specifically, the outer portion 52d has a pore diameter of about 3 μm, and the inner portion 52c has a pore diameter of about 2 μm.
 ウィック52の利点を説明する。上記したように、ウィック52の外側部分52dの気孔率は、内側部分52cより大きい。そのため、ウィック52の外側部分52dで流体が液相から気相に変化したときに、体積膨張に起因するウィック52内部の圧力上昇が抑制され、液相流体が存在するウィック52の内側部分52cに圧力が加わることが抑制される。ウィック内空間58からウィック52内部への液相流体の移動が妨げられず、効率よく冷却を行うことができる。 The advantages of Wick 52 will be described. As described above, the porosity of the outer portion 52d of the wick 52 is larger than that of the inner portion 52c. Therefore, when the fluid changes from the liquid phase to the gas phase at the outer portion 52d of the wick 52, the pressure increase inside the wick 52 due to volume expansion is suppressed, and the inner portion 52c of the wick 52 where the liquid phase fluid exists is suppressed. Application of pressure is suppressed. The movement of the liquid phase fluid from the wick inner space 58 into the wick 52 is not hindered, and cooling can be performed efficiently.
 ウィック52の他の利点を説明する。外側部分52dの気孔径は、内側部分52cの気孔径より大きい。このような構造によって、ウィック52の内部の圧力上昇を抑制するこことができるとともに、体積膨張に伴ってウィックの構造破壊も抑制することができる。また、外側部分52dの粒子径は、内側部分52cの粒子径より大きい。外側部分52dと内側部分52cの粒子径を変化させることにより、容易に外側部分52dと内側部分52cの気孔率、気孔径を変化させることができる。 Other advantages of Wick 52 will be described. The pore diameter of the outer portion 52d is larger than the pore diameter of the inner portion 52c. With such a structure, an increase in pressure inside the wick 52 can be suppressed, and structural destruction of the wick can be suppressed along with volume expansion. The particle size of the outer portion 52d is larger than the particle size of the inner portion 52c. By changing the particle diameters of the outer part 52d and the inner part 52c, the porosity and the pore diameter of the outer part 52d and the inner part 52c can be easily changed.
 上記実施例では、厚み方向(軸方向に直交する方向)において、気孔率・気孔径の異なる部分が2層設けられたウィックについて説明した。しかしながら、気孔率・気孔径の異なる部分を3層以上を設けてもよい。また、厚み方向において、気孔率・気孔径が連続的に変化し、「層」を形成していなくてもよい。また、厚み方向において、気孔径・粒子径は、必ずしも異なっている必要はない。例えば、ウィックを構成する粒子の粒子径が内側部分と外側部分で同じであっても、焼成によって消失する材料(典型的に有機物の造孔材)を外側部分を製造する際に原料に加え、内側部分を製造する際にその消失材料を原料に加えない(あるいは、外側部分より少量加える)ことによって、気孔率を変化させることもできる。重要なことは、厚み方向において、ウィックの外側部分の気孔率が内側部分より大きいことである。 In the above embodiment, a wick provided with two layers having different porosity and pore diameter in the thickness direction (direction orthogonal to the axial direction) has been described. However, three or more layers having different porosity and pore diameter may be provided. Further, in the thickness direction, the porosity and the pore diameter may change continuously, and the “layer” may not be formed. In the thickness direction, the pore diameter and the particle diameter do not necessarily have to be different. For example, even if the particle diameter of the particles constituting the wick is the same in the inner part and the outer part, a material that disappears by firing (typically an organic pore former) is added to the raw material when producing the outer part, The porosity can also be changed by not adding the disappearing material to the raw material (or adding a smaller amount than the outer part) when producing the inner part. What is important is that the porosity of the outer portion of the wick is larger than that of the inner portion in the thickness direction.
 以上、本発明の実施形態について詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 As mentioned above, although embodiment of this invention was described in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology illustrated in the present specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

Claims (4)

  1.  ループヒートパイプの蒸発器で用いるウィックであって、
     筒状の多孔質体であり、
     軸方向の一方が開口し、他方が閉口しており、
     軸方向に直交する直交方向において、外側部分の気孔率が内側部分より大きい、ウィック。
    A wick used in a loop heat pipe evaporator,
    A cylindrical porous body,
    One of the axial directions is open, the other is closed,
    A wick in which the porosity of the outer portion is greater than the inner portion in the orthogonal direction orthogonal to the axial direction.
  2.  前記直交方向において、内側部分から外側部分に向けて気孔率が不連続に変化している請求項1に記載のウィック。 The wick according to claim 1, wherein the porosity changes discontinuously from the inner part toward the outer part in the orthogonal direction.
  3.  前記直交方向において、外側部分を構成する粒子の径が、内側部分を構成する粒子の径より大きい請求項1又は2に記載のウィック。 The wick according to claim 1 or 2, wherein, in the orthogonal direction, the diameter of the particles constituting the outer portion is larger than the diameter of the particles constituting the inner portion.
  4.  前記直交方向において、外側部分の気孔径が内側部分より大きい請求項1から3のいずれか一項に記載のウィック。 The wick according to any one of claims 1 to 3, wherein a pore diameter of an outer portion is larger than an inner portion in the orthogonal direction.
PCT/JP2016/067400 2016-06-10 2016-06-10 Wick WO2017212646A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/067400 WO2017212646A1 (en) 2016-06-10 2016-06-10 Wick
JP2018522289A JPWO2017212646A1 (en) 2016-06-10 2016-06-10 Wick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/067400 WO2017212646A1 (en) 2016-06-10 2016-06-10 Wick

Publications (1)

Publication Number Publication Date
WO2017212646A1 true WO2017212646A1 (en) 2017-12-14

Family

ID=60578986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067400 WO2017212646A1 (en) 2016-06-10 2016-06-10 Wick

Country Status (2)

Country Link
JP (1) JPWO2017212646A1 (en)
WO (1) WO2017212646A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020038032A (en) * 2018-09-04 2020-03-12 セイコーエプソン株式会社 Cooling device and projector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222481A (en) * 2002-01-30 2003-08-08 Samsung Electro Mech Co Ltd Heat pipe and method of manufacturing the same
US20110000646A1 (en) * 2009-07-03 2011-01-06 Foxconn Technology Co., Ltd. Loop heat pipe
JP2012132613A (en) * 2010-12-21 2012-07-12 Fujitsu Ltd Loop type heat pipe and information processing apparatus
JP2013243249A (en) * 2012-05-21 2013-12-05 Denso Corp Heat transfer surface for ebullient cooling and ebullient cooling device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3591339B2 (en) * 1998-11-16 2004-11-17 三菱電機株式会社 Loop type heat pipe
JP2002303494A (en) * 2001-04-02 2002-10-18 Mitsubishi Electric Corp Evaporator and loop type heat pipe employing the same
JP4196574B2 (en) * 2002-03-22 2008-12-17 三菱電機株式会社 Capillary force driven two-phase fluid loop, evaporator and heat transport method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222481A (en) * 2002-01-30 2003-08-08 Samsung Electro Mech Co Ltd Heat pipe and method of manufacturing the same
US20110000646A1 (en) * 2009-07-03 2011-01-06 Foxconn Technology Co., Ltd. Loop heat pipe
JP2012132613A (en) * 2010-12-21 2012-07-12 Fujitsu Ltd Loop type heat pipe and information processing apparatus
JP2013243249A (en) * 2012-05-21 2013-12-05 Denso Corp Heat transfer surface for ebullient cooling and ebullient cooling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020038032A (en) * 2018-09-04 2020-03-12 セイコーエプソン株式会社 Cooling device and projector

Also Published As

Publication number Publication date
JPWO2017212646A1 (en) 2019-04-04

Similar Documents

Publication Publication Date Title
JP4627212B2 (en) Cooling device with loop heat pipe
Xu et al. Modulated porous wick evaporator for loop heat pipes: Experiment
US7866374B2 (en) Heat pipe with capillary wick
Sajjad et al. Enhanced pool boiling of dielectric and highly wetting liquids–A review on surface engineering
US11114713B2 (en) Thermal management systems for battery cells and methods of their manufacture
US20200149823A1 (en) Heat pipe
US8622117B2 (en) Heat pipe including a main wick structure and at least one auxiliary wick structure
US20070006993A1 (en) Flat type heat pipe
US11480394B2 (en) Heat pipes having wick structures with variable permeability
US20140054014A1 (en) Heat pipe and method for making the same
US20070240852A1 (en) Heat pipe with heat reservoirs at both evaporating and condensing sections thereof
JP2017227382A (en) Wick
JP7169923B2 (en) Heat exchanger
US20100155031A1 (en) Heat pipe and method of making the same
CN218744851U (en) Vapor chamber, heat sink device, and electronic device
JP2015121373A (en) Heat pipe
JPWO2016121778A1 (en) Heat storage container and heat storage device provided with heat storage container
WO2017212646A1 (en) Wick
JP2017072340A (en) heat pipe
JP2012233625A (en) Loop heat pipe, and method for manufacturing the same
JP6843158B2 (en) Wick
CN104296570A (en) Heat pipe
Davletbaev et al. Experimental investigation of the heat exchange intensity
JP2007147194A (en) Heat pipe and its manufacturing method
JP6960651B2 (en) Electronics, heat exchangers and evaporators

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018522289

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16904680

Country of ref document: EP

Kind code of ref document: A1