WO2017211074A1 - 一种太阳能内红点瞄具 - Google Patents

一种太阳能内红点瞄具 Download PDF

Info

Publication number
WO2017211074A1
WO2017211074A1 PCT/CN2016/114015 CN2016114015W WO2017211074A1 WO 2017211074 A1 WO2017211074 A1 WO 2017211074A1 CN 2016114015 W CN2016114015 W CN 2016114015W WO 2017211074 A1 WO2017211074 A1 WO 2017211074A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrically connected
red dot
mcu
circuit
solar
Prior art date
Application number
PCT/CN2016/114015
Other languages
English (en)
French (fr)
Inventor
孙建华
汪东
郝志强
Original Assignee
西安华科光电有限公司
孙建华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安华科光电有限公司, 孙建华 filed Critical 西安华科光电有限公司
Publication of WO2017211074A1 publication Critical patent/WO2017211074A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G1/00Sighting devices
    • F41G1/30Reflecting-sights specially adapted for smallarms or ordnance
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies

Definitions

  • the invention belongs to the field of optoelectronic technology, and particularly relates to an inner red dot sight, especially a red point sight in solar energy.
  • red dot sights use batteries.
  • lithium batteries provide the power required for the operation of the red dot module.
  • the battery life is limited, it needs to be replaced, and the use cost is increased.
  • the electric energy, but this rechargeable battery needs a fixed socket for charging, and it takes a long time to be dedicated for charging, and there are still defects in inconvenient use and time consuming. If you can design an inner red dot sight that can be charged by solar energy, it can not only be charged anytime and anywhere, but also can use sufficient solar energy, which is not only environmentally friendly but also convenient and has a longer use time.
  • the object of the present invention is to overcome the problem that the existing red dot sighting device is inconvenient and time consuming.
  • the present invention provides a solar red dot sight, comprising a casing, an inner red dot module disposed in or on the casing, a battery disposed in the casing, and a casing disposed on the casing.
  • a brightness adjustment switch and a circuit board disposed in the casing, a solar cell disposed on the casing, and a super capacitor disposed in the casing for storing electric energy
  • the circuit board includes a processing chip MCU and an inner red dot control a circuit, a voltage stabilizing circuit, and a power switching circuit, wherein the MCU is electrically connected to the brightness adjusting switch, the inner red dot control circuit, and the battery;
  • the processing chip MCU adjusts an operating state of the inner red dot control circuit through a brightness adjustment switch
  • the solar cell is electrically connected to the power switching circuit and the MCU through a voltage stabilizing circuit, and is configured to provide working power of the MCU and the internal red dot control circuit;
  • the battery is a rechargeable battery, and the rechargeable battery is electrically connected to the MCU and the voltage stabilizing circuit through a power switching circuit for storing electrical energy provided by the solar battery or for supplying power required for the MCU and the internal red dot control circuit;
  • the super capacitor is electrically connected to the MCU and the voltage stabilizing circuit through the power switching circuit, and is used for storing electric energy provided by the solar cell or for supplying power required for the MCU and the internal red dot control circuit.
  • the solar red dot sighting device selects and sets the solar battery to cooperate with the rechargeable battery, and switches to supply power; or selects the solar battery to cooperate with the super capacitor and switches to supply power.
  • the voltage stabilizing circuit includes a voltage stabilizing circuit integrated module U1, resistors R1 and R2, and capacitors C1 and C2.
  • the pin 6 of the voltage stabilizing circuit integrated module U1 is electrically connected to the positive electrode of the solar cell, and the resistors R1 and R2 are connected.
  • the capacitor C1 is also connected in series between the pin 6 of the circuit integration module U1 and the ground;
  • the capacitor C2 is connected in series with the pin of the circuit integration module U1 Between 1 and the ground; the connection of the resistors R1 and R2 is provided with a sampling 1 which is electrically connected to the MCU.
  • the power switching circuit is a control current limiting switch circuit
  • the control current limiting switch circuit comprises a control switch, a second control switch, a resistor R4, a capacitor C3, a diode D1; an input end of the diode D1 and a tube of the circuit integration module U1
  • the pin 1 is electrically connected, and the output end of the pole tube D1 is electrically connected to the pin 18 of the MCU through the resistor R4; the control switch is respectively electrically connected to the output end of the diode D1, the positive pole of the rechargeable battery, and the pin 3 of the MCU.
  • the second control switch is electrically connected to the output end of the diode D1, the positive pole of the supercapacitor, and the pin 2 of the MCU, and the capacitor C3 is disposed between the pin 18 of the MCU and the ground.
  • the power switching circuit may also be a current limiting-balance circuit, which is a control circuit bridge formed by diodes D21, D22, D23, D24, and D25.
  • the inner red dot control circuit includes diodes D2, D3, and D4, resistors R5, R6, and R7, and an LED lamp.
  • the output end of the diode D2 is electrically connected to one end of the resistor R5, and the input end of the diode D2 and the tube of the MCU.
  • the pin 17 is electrically connected, and the other end of the resistor R5 is electrically connected to the input end of the LED lamp; the output end of the diode D3 is electrically connected to one end of the resistor R6, and the input end of the diode D3 is electrically connected to the pin 8 of the MCU, and the resistor R6 The other end is electrically connected to the input end of the LED lamp; the output end of the diode D4 is electrically connected to one end of the resistor R7.
  • the input end of the diode D4 is electrically connected to the pin 9 of the MCU, and the other end of the resistor R7 is electrically connected to the input end of the LED lamp; the output end of the LED lamp is electrically connected to the ground.
  • the brightness adjustment switch includes switches S1 and S2, one end of the switch S1 is electrically connected to the pin 11 of the MCU, and the other end is electrically connected to the ground end; one end of the switch S2 is electrically connected to the pin 10 of the MCU, and One end is electrically connected to the ground.
  • the invention has the advantages that the solar red dot sight provided by the invention provides a plurality of power supply modes for power supply, and can minimize the use of the battery, thereby reducing the loss of the battery, and can pass the detection.
  • the battery, super capacitor and solar power automatically select the power supply mode, and the power supply of the red dot can be automatically adjusted according to the voltage of the solar energy, which is convenient and saves power, and does not require frequent battery replacement or time consuming battery storage.
  • Charging, when the solar power is sufficient not only can the operating power of the MCU and the internal red dot control circuit be satisfied, but also the rechargeable battery can be charged, and the battery is not required to be charged, thereby saving power.
  • Figure 1 is a schematic diagram of a solar powered internal red dot sight.
  • FIG. 2 is a schematic block diagram of a control scheme 1 for three types of power supply cases in a solar red dot sight.
  • FIG. 3 is a power supply circuit diagram of a control scheme 1 of three types of power supply cases in a solar red dot sight.
  • FIG. 4 is a schematic block diagram of the second control mode of the three power supply cases in the solar red dot sight.
  • FIG. 5 is a power supply circuit diagram of the second control mode of the three power supply cases in the solar red dot sight.
  • FIG. 6 is a schematic block diagram of a first power supply scheme of a solar battery and a rechargeable battery in a solar red dot sight.
  • Figure 7 is a solution for the two power supply modes of the solar cell and the rechargeable battery in the solar red dot sight. Electrical circuit diagram.
  • FIG. 8 is a schematic block diagram of a second power supply scheme of a solar cell and a rechargeable battery in a solar red dot sight.
  • FIG. 9 is a power supply circuit diagram of two power supply modes of a solar cell and a rechargeable battery in a solar red dot sight.
  • the present embodiment provides a solar powered internal red dot sight shown in FIG. 1 , including a housing, being disposed in the housing or An inner red dot module on the housing, a battery disposed in the housing, a brightness adjustment switch 2 disposed on the housing, and a circuit board disposed in the housing, the solar battery 1 disposed on the housing, and further including a supercapacitor for storing electrical energy within the housing;
  • the circuit board includes a processing chip MCU, an internal red dot control circuit, a voltage stabilizing circuit, and a power switching circuit, and the MCU is electrically connected to the brightness adjusting switch 2, the inner red dot control circuit, and the battery, respectively;
  • the brightness adjusting switch 2 includes switches S1 and S2, and the switches S1 and S2 correspond to the “+, —” buttons shown in FIG. 1 , and the switch S1 One end is electrically connected to the pin 11 of the MCU, and the other end is electrically connected to the ground end.
  • One end of the switch S2 is electrically connected to the pin 10 of the MCU, and the other end is electrically connected to the ground end, so that the inner red can be adjusted through the switches S1 and S2.
  • the working state of the point; the MCU is also electrically connected to the inner red dot control circuit for controlling the inner red dot.
  • the solar red dot sight is provided with three power supply modes, namely solar battery power supply, battery power supply and super capacitor power supply.
  • the solar battery is electrically connected to the power switching circuit and the MCU through the voltage stabilizing circuit, and is used for providing working power of the MCU and the internal red dot control circuit;
  • the battery is a rechargeable battery, and the rechargeable battery is connected
  • the power switching circuit is electrically connected to the MCU and the voltage stabilizing circuit respectively for storing the electric energy provided by the solar cell or for supplying power required for the MCU and the internal red dot control circuit;
  • the super capacitor is respectively connected to the MCU and the voltage regulator through the power switching circuit
  • the electrical connection of the circuit is used to store the electrical energy provided by the solar cell or to provide the power required for the operation of the MCU and the internal red dot control circuit.
  • the voltage stabilizing circuit includes a voltage stabilizing circuit integrated module U1, resistors R1 and R2, and capacitors C1 and C2.
  • the pin 6 of the voltage stabilizing circuit integrated module U1 is electrically connected to the positive electrode of the solar cell.
  • R1 and R2 are connected in series between the pin 6 and the ground of the circuit integration module U1;
  • the capacitor C1 is also connected in series between the pin 6 of the circuit integration module U1 and the ground;
  • the capacitor C2 is connected in series to the circuit integration module.
  • the pin 1 of the U1 is connected to the ground; the connection of the resistors R1 and R2 is provided with a sample 1 which is electrically connected to the MCU.
  • the power switching circuit is a control-current limiting switch circuit
  • the control-current limiting switch circuit comprises a control switch, a second control switch, a resistor R4, a capacitor C3, a diode D1; an input end of the diode D1 and a tube of the circuit integration module U1
  • the pin 1 is electrically connected, and the output end of the pole tube D1 is electrically connected to the pin 18 of the MCU through the resistor R4; the control switch is respectively electrically connected to the output end of the diode D1, the positive pole of the rechargeable battery, and the pin 3 of the MCU.
  • the second control switch is electrically connected to the output end of the diode D1, the positive pole of the supercapacitor, and the pin 2 of the MCU, and the capacitor C3 is disposed between the pin 18 of the MCU and the ground.
  • the inner red dot control circuit includes diodes D2, D3, D4, resistors R5, R6, R7, and an LED lamp.
  • the output of the diode D2 is electrically connected to one end of the resistor R5, and the input terminal of the diode D2 and the pin 17 of the MCU.
  • the other end of the resistor R5 is electrically connected to the input end of the LED lamp; the output end of the diode D3 is electrically connected to one end of the resistor R6, the input end of the diode D3 is electrically connected to the pin 8 of the MCU, and the other end of the resistor R6 One end is electrically connected to the input end of the LED lamp; the output end of the diode D4 is electrically connected to one end of the resistor R7, the input end of the diode D4 is electrically connected to the pin 9 of the MCU, and the other end of the resistor R7 is connected to the input end of the LED lamp. Electrical connection; the output end of the LED lamp is electrically connected to the ground.
  • the switch includes switches S1 and S2. One end of the switch S1 is electrically connected to the pin 11 of the MCU, and the other end is electrically connected to the ground. One end of the switch S2 is electrically connected to the pin 10 of the MCU, and the other end is connected to the ground. Electrical connection.
  • the pin 15 of the MCU is electrically connected to the VDD terminal through resistors R8 and R9.
  • the system When the system is powered on, it detects the battery power, supercapacitor and solar battery power, and detects the power supply to the red dot. If the solar power is greater than the red dot power requirement, the battery is cut off and the power is divided. The battery and the super capacitor are charged; if the solar power is equivalent to the internal red dot power requirement, the charging mode of the battery and the super capacitor is cut off, and all the solar energy is supplied to the inner red dot; if the solar power is less than the inner red dot power requirement, the first The supercapacitor is used to supplement the solar power supply. If the combination of solar energy and supercapacitor is still unable to meet the power demand for the red dot operation, then the battery is powered to meet the internal red dot power supply requirements.
  • This mode of operation can set the maximum protection of the battery and reduce the number of times the battery is charged and discharged. Since the super capacitor can be charged and discharged in an infinite number of times, the service life of the rechargeable battery is affected by the number of times of charging, and the number of times of charging and discharging of the battery is minimized, thereby prolonging the service life of the battery; and the three power supply modes can be used to enhance the battery life. The reliability of the power supply of the red dot sight has better effect.
  • the solar red dot sight can automatically select the power supply mode by detecting the battery power and the solar power, and can automatically adjust the power supply of the red dot according to the voltage of the solar energy, which is convenient and saves power, and does not Need to change the battery frequently or take time to charge the battery.
  • the solar power supply is sufficient, it can not only meet the working power of the MCU and the internal red dot control circuit, but also charge the rechargeable battery without special charging of the battery. The electric energy.
  • the solar-powered inner red dot sight shown in this embodiment adopts a current limiting-flat
  • the balance circuit replaces the control-current limiting switch circuit to switch the power supply state of the solar cell, the super capacitor, and the rechargeable battery, so that it provides the power required for the operation of the MCU and the internal red dot control circuit.
  • the current limiting-balance circuit is a control circuit bridge composed of diodes D21, D22, D23, D24, and D25, and the diodes D21, D22, D23, D24, and D25 are connected to a battery and a super capacitor. Between the solar cell and the MCU, the specific connection method is shown in Figure 5. This eliminates the need for the MCU to collect power information.
  • the control mode is controlled by the voltages across the diodes D21, D22, D23, D24, and D25 to regulate the power supply. State, according to the battery, super capacitor, solar battery power information, automatic power output and supplementary adjustment.
  • the battery power When the system is powered on, if the solar energy is greater than the internal red dot power requirement, the battery power is cut off, and at the same time, part of the electric energy is charged to the battery and the super capacitor; if the solar power is equivalent to the internal red dot power requirement, all are given by the solar energy.
  • Red dot power supply if the solar energy is less than the internal red dot power requirement, first take power from the super capacitor to supplement the solar power supply. If the combination of solar energy and super capacitor is still unable to meet the power demand for the red dot operation, Take power from the battery to meet the internal red dot power requirements.
  • This mode of operation allows for maximum protection of the battery and reduces battery usage. Since the super capacitor can be charged and discharged in an infinite number of times, the service life of the rechargeable battery is affected by the number of times of charging, and the number of times of use of the battery is minimized, thereby prolonging the service life of the battery; and the three power supply modes can be switched to be used.
  • the red dot sight has the reliability of power supply and has better use effect.
  • the power supply system of the solar-powered red dot sight selects the voltage of the voltage regulator chip to be equal to the battery charging voltage; the power supply of the red dot is used by the user to manually adjust the brightness of the red dot according to the specific conditions of the environment.
  • the diode D1 in the balancing circuit can automatically distribute the energy, as follows:
  • the battery When the solar energy is greater than the internal red dot power requirement, the battery is powered off, and at the same time, part of the electrical energy is charged to the rechargeable battery;
  • the battery power supply is cut off by the solar energy to supply the red dot
  • the battery When the solar energy is less than the internal red dot power requirement, the battery is powered to meet the internal red dot power supply requirements.
  • the solution shown in this embodiment does not require the MCU to actually detect that the diode D1 in the power balance circuit of the solar cell can automatically charge and discharge according to the power supply state of the solar cell.
  • the scheme can also automatically select the power supply mode by detecting the battery power and the solar power, and can automatically adjust the power supply of the red dot according to the voltage of the solar energy.
  • the MCU and the inner red dot control circuit can be satisfied.
  • the working power, and the ability to charge the rechargeable battery does not require special charging of the battery, saving energy.
  • the power supply mode of the solar red dot sight can be selected, and the solar red dot sight can be selected to set the solar battery 1 to cooperate with the rechargeable battery, and switch to supply power; or select solar energy.
  • the battery 1 is matched with the super capacitor and switched to supply power.
  • FIG. 6 and Figure 7 show the circuit block diagram and schematic diagram of the MCU control and current-limiting switch to adjust the two power supply modes of the solar cell and the rechargeable battery.
  • the two solar power supply modes can also realize the above-mentioned solar red dot sight. It is powered by solar cells and functions to charge and store rechargeable batteries. In addition, it only needs to replace the rechargeable battery with a super capacitor. It can also use solar cells and super capacitors to achieve two modes of power supply mode.
  • FIG. 8 and Figure 9 show the circuit block diagram and schematic diagram of the control circuit bridge control-current limiting switch using diodes D21, D22, D23, D24, D25 to adjust the two power supply modes of solar cell and rechargeable battery.
  • the two solar power supply methods can also realize the above-mentioned solar red dot sighting device, which is capable of charging and storing energy through the solar battery and charging the rechargeable battery; in addition, it is only necessary to replace the rechargeable battery with a super capacitor, and the solar battery can also be used.
  • the super capacitor can also implement the mode of power storage for two power modes.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种太阳能内红点瞄具,包括壳体、设置在壳体内或壳体上的内红点模组、设置在壳体内的电池、设置在壳体上的亮度调节开关(2)和设置在壳体内的电路板,设置在壳体上的太阳能电池(1),还包括设置在壳体内的用于存储电能的超级电容,所述电路板上包括处理芯片MCU、内红点控制电路、稳压电路、电源切换电路;该太阳能内红点瞄具提供了多种供电方式进行供电,可以根据太阳能的电压自动调整内红点的供电电量,不仅方便,而且节省了电能,而且不需要频繁更换电池或者耗费时间对蓄电池进行充电,能够对可充电电池进行充电,不需要专门对蓄电池进行充电,节省了电能。

Description

一种太阳能内红点瞄具 技术领域
本发明属于光电技术领域,具体涉及一种内红点瞄具,尤其是太阳能内红点瞄具。
背景技术
现有的内红点瞄具大多使用电池,如锂电池提供内红点模组工作所需的电能,电池寿命有限,需要更换,增加使用成本,也有实用可充电电池提供内红点工作所需的电能,但是这种充电电池需要固定的插座进行充电,需要比较长的时间专门用来充电,任然存在着使用不方便、浪费时间的缺陷。如果能设计一种可利用太阳能进行充电的内红点瞄具,不仅可以随时随地进行充电,而且可以利用充足的太阳能,不仅环保而且方便、具有更长的使用时间。
发明内容
本发明的目的是克服现有的内红点瞄具电充电不方便、浪费时间的问题。
为达上述目的,本发明提供了一种太阳能内红点瞄具,包括壳体、设置在壳体内或壳体上的内红点模组、设置在壳体内的电池、设置在壳体上的亮度调节开关和设置在壳体内的电路板,设置在壳体上的太阳能电池,还包括设置在壳体内的用于存储电能的超级电容,所述电路板上包括处理芯片MCU、内红点控制电路、稳压电路、电源切换电路,所述MCU分别与所述亮度调节开关、内红点控制电路、电池电连接;
所述处理芯片MCU通过亮度调节开关调节内红点控制电路的工作状态;
所述太阳能电池通过稳压电路分别与电源切换电路、MCU电连接,用于提供MCU、内红点控制电路的工作电能;
所述电池是可充电电池,该可充电电池通过电源切换电路分别与MCU、稳压电路电连接,用于存储太阳能电池提供的电能或者为MCU、内红点控制电路提供工作所需的电能;
所述超级电容通过电源切换电路分别与MCU、稳压电路电连接,用于存储太阳能电池提供的电能或者为MCU、内红点控制电路提供工作所需的电能。
该太阳能内红点瞄具选择设置太阳能电池与可充电电池配合、切换进行供电;或者选择设置太阳能电池与超级电容配合、切换进行供电。
所述稳压电路包括稳压电路集成模块U1、电阻R1、R2,电容C1、C2,所述稳压电路集成模块U1的管脚6与太阳能电池的正极电连接,所述电阻R1、R2串接在电路集成模块U1的管脚6与接地端之间;电容C1同样串接在电路集成模块U1的管脚6与接地端之间;所述电容C2串接在电路集成模块U1的管脚1与接地端之间;电阻R1、R2的连接处设置有采样1,该采样点1与MCU电连接。
所述电源切换电路为控制限流开关电路,该控制限流开关电路包括控制开关、第二控制开关,电阻R4,电容C3,二极管D1;所述二极管D1的输入端与电路集成模块U1的管脚1电连接,极管D1的输出端与通过电阻R4与与MCU的管脚18电连接;所述控制开关分别与二极管D1的输出端、可充电电池的正极、以及MCU的管脚3电连接;所述第二控制开关分别与二极管D1的输出端、可超级电容的正极、以及MCU的管脚2电连接,所述电容C3设置于MCU的管脚18与接地端之间。
所述电源切换电路还可是限流-平衡电路,该限流-平衡电路是二极管D21、D22、D23、D24、D25构成的控制电路桥。
所述内红点控制电路包括二极管D2、D3、D4,电阻R5、R6、R7,以及LED灯,所述二极管D2的输出端与电阻R5的一端电连接,二极管D2的输入端与MCU的管脚17电连接,电阻R5的另一端与LED灯的输入端电连接;所述二极管D3的输出端与电阻R6的一端电连接,二极管D3的输入端与MCU的管脚8电连接,电阻R6的另一端与LED灯的输入端电连接;所述二极管D4的输出端与电阻R7的一端电连接, 二极管D4的输入端与MCU的管脚9电连接,电阻R7的另一端与LED灯的输入端电连接;所述LED灯的输出端于接地端电连接。
所述亮度调节开关包括开关S1、S2,所述开关S1的一端与MCU的管脚11电连接,另一端与接地端电连接;所述开关S2的一端与MCU的管脚10电连接,另一端与接地端电连接。
本发明的优点是:本发明提供的这种太阳能内红点瞄具,提供了多种供电方式进行供电,而且能够最大限度的减少对电池的使用,从而减小对电池的损耗,能够通过检测电池、超级电容以及太阳电量的情况,自动选择供电方式,而且可以根据太阳能的电压自动调整内红点的供电电量,不仅方便,而且节省了电能,而且不需要频繁更换电池或者耗费时间对蓄电池进行充电,当太阳能供电充足的时候不仅能满足MCU和内红点控制电路的工作电能,而且能够对可充电电池进行充电,不需要专门对蓄电池进行充电,节省了电能。
下面结合附图和实施例对本发明做详细说明。
附图说明
图1是太阳能供电的内红点瞄具示意图。
图2是太阳能内红点瞄具三种供电案的控制方案一的示意框图。
图3是太阳能内红点瞄具三种供电案的控制方案一的供电电路图。
图4是太阳能内红点瞄具三种供电案的控制方式二的示意框图。
图5是太阳能内红点瞄具三种供电案的控制方式二的供电电路图。
图6是太阳能内红点瞄具的太阳能电池与可充电电池两种供电方式方案一的示意框图。
图7是太阳能内红点瞄具的太阳能电池与可充电电池两种供电方式方案一的供 电电路图。
图8是太阳能内红点瞄具的太阳能电池与可充电电池两种供电方式方案二的示意框图。
图9是太阳能内红点瞄具的太阳能电池与可充电电池两种供电方式方案二的供电电路图。
附图标记说明:1、太阳能电池;2、亮度调节开关。
具体实施方式
实施例1:
为了克服现有的内红点瞄具电充电不方便、浪费时间的问题,本实施例提供了一种图1所示的太阳能供电的内红点瞄具,包括壳体、设置在壳体内或壳体上的内红点模组、设置在壳体内的电池、设置在壳体上的亮度调节开关2和设置在壳体内的电路板,设置在壳体上的太阳能电池1,还包括设置在壳体内的用于存储电能的超级电容;
由图2可见,电路板上包括处理芯片MCU、内红点控制电路、稳压电路、电源切换电路,MCU分别与所述亮度调节开关2、内红点控制电路、电池电连接;
MCU、内红点控制电路、电池均设置于内红点瞄具的内部,亮度调节开关2包括开关S1、S2,开关S1、S2对应图1所示的“+、-”按键,开关S1的一端与MCU的管脚11电连接,另一端与接地端电连接,开关S2的一端与MCU的管脚10电连接,另一端与接地端电连接,这样就可以通过开关S1、S2调节内红点的工作状态;MCU还与内红点控制电路电连接,用于对内红点进行控制。
该太阳能内红点瞄具设置有三种供电方式,分别为太阳能电池供电、电池供电以及超级电容供电。太阳能电池通过稳压电路分别与电源切换电路、MCU电连接,用于提供MCU、内红点控制电路的工作电能;电池是可充电电池,该可充电电池通 过电源切换电路分别与MCU、稳压电路电连接,用于存储太阳能电池提供的电能或者为MCU、内红点控制电路提供工作所需的电能;超级电容通过电源切换电路分别与MCU、稳压电路电连接,用于存储太阳能电池提供的电能或者为MCU、内红点控制电路提供工作所需的电能。
如图3所示,稳压电路包括稳压电路集成模块U1、电阻R1、R2,电容C1、C2,所述稳压电路集成模块U1的管脚6与太阳能电池的正极电连接,所述电阻R1、R2串接在电路集成模块U1的管脚6与接地端之间;电容C1同样串接在电路集成模块U1的管脚6与接地端之间;所述电容C2串接在电路集成模块U1的管脚1与接地端之间;电阻R1、R2的连接处设置有采样1,该采样点1与MCU电连接。
电源切换电路为控制-限流开关电路,该控制-限流开关电路包括控制开关、第二控制开关,电阻R4,电容C3,二极管D1;所述二极管D1的输入端与电路集成模块U1的管脚1电连接,极管D1的输出端与通过电阻R4与与MCU的管脚18电连接;所述控制开关分别与二极管D1的输出端、可充电电池的正极、以及MCU的管脚3电连接;所述第二控制开关分别与二极管D1的输出端、可超级电容的正极、以及MCU的管脚2电连接,所述电容C3设置于MCU的管脚18与接地端之间。
内红点控制电路包括二极管D2、D3、D4,电阻R5、R6、R7,以及LED灯,所述二极管D2的输出端与电阻R5的一端电连接,二极管D2的输入端与MCU的管脚17电连接,电阻R5的另一端与LED灯的输入端电连接;所述二极管D3的输出端与电阻R6的一端电连接,二极管D3的输入端与MCU的管脚8电连接,电阻R6的另一端与LED灯的输入端电连接;所述二极管D4的输出端与电阻R7的一端电连接,二极管D4的输入端与MCU的管脚9电连接,电阻R7的另一端与LED灯的输入端电连接;所述LED灯的输出端于接地端电连接。
开关包括开关S1、S2,所述开关S1的一端与MCU的管脚11电连接,另一端与接地端电连接;所述开关S2的一端与MCU的管脚10电连接,另一端与接地端电连接。
MCU的管脚15通过有电阻R8、R9与VDD端电连接。
当***上电后,检测电池电量、超级电容和太阳能电池的电量情况,同时检测自身给内红点供电的电量,若太阳能电量大于内红点电量要求时,切断电池供电,同时分部分电能给电池、超级电容进行充电;若太阳能电量与内红点电量要求相当时,切断电池、超级电容的充电模式,全部由太阳能给内红点供电;若太阳能电量小于内红点电量要求时,先从超级电容进行取电补充太阳能供电的不足,如果太阳能和超级电容两者结合依然无法满足内红点工作所需的电能需求,再从电池取电,以便满足内红点供电要求。这种工作模式的设定可以最大限度的保护电池,减小电池的充放电次数。由于超级电容可以无限次数的充放电,而充电电池的使用寿命受充电次数的影响,最大限度的减小电池的充放电次数,可以延长电池的使用寿命;而且三种供电模式切换使用,可以增强内红点瞄具的电源供电的可靠性,具有更好地使用效果。
这种太阳能内红点瞄具,能够通过检测电池电量以及太阳电量的情况,自动选择供电方式,而且可以根据太阳能的电压自动调整内红点的供电电量,不仅方便,而且节省了电能,而且不需要频繁更换电池或者耗费时间对蓄电池进行充电,当太阳能供电充足的时候不仅能满足MCU和内红点控制电路的工作电能,而且能够对可充电电池进行充电,不需要专门对蓄电池进行充电,节省了电能。
实施例2:
与实施例1不同,本实施例所示的太阳能供电的内红点瞄具,通过采用限流-平 衡电路代替控制-限流开关电路进行太阳能电池与、超级电容、可充电电池供电状态的切换,以便其提供MCU、内红点控制电路的工作所需的电能。
如图4、图5所示,该限流-平衡电路是二极管D21、D22、D23、D24、D25构成的控制电路桥,所述二极管D21、D22、D23、D24、D25连接于电池、超级电容、太阳能电池与MCU之间,具体连接方式如图5所示,这样就不需要MCU采集电量信息,其控制方式通过二极管D21、D22、D23、D24、D25的两端的电压进行检测,来调节供电状态,根据电池、超级电容、太阳能电池的电量信息,自动进行电能的输出与补充调节。
当***上电后,若太阳能电量大于内红点电量要求时,切断电池供电,同时分部分电能给电池、超级电容进行充电;若太阳能电量与内红点电量要求相当时,全部由太阳能给内红点供电;若太阳能电量小于内红点电量要求时,先从超级电容进行取电补充太阳能供电的不足,如果太阳能和超级电容两者结合依然无法满足内红点工作所需的电能需求,再从电池取电,以便满足内红点供电要求。
这种工作模式的设定可以最大限度的保护电池,减小电池的使用次数。由于超级电容可以无限次数的充放电,而充电电池的使用寿命受充电次数的影响,最大限度的减小电池的使用次数,可以延长电池的使用寿命;而且三种供电模式切换使用,可以增强内红点瞄具的电源供电的可靠性,具有更好地使用效果。
工作时,首先太阳能供电的内红点瞄具的供电***选择稳压芯片的电压等于电池充电电压;内红点的供电电量使用者根据使用环境的具体情况,使用者手动调节内红点亮度。
上电后,根据当前内红点消耗电量情况,平衡电路中的二极管D1可自动分配电能,具体如下:
当太阳能电量大于内红点电量要求时,切断电池供电,同时分部分电能给可充电电池进行充电;
当太阳能电量与内红点电量要求相当时,切断电池供电全部由太阳能给内红点供电;
当太阳能电量小于内红点电量要求时,从电池取电,满足内红点供电要求。
该实施例所示的方案,不需要MCU实际检测太阳能电池的供电电量平衡电路中的二极管D1可自动根据太阳能电池的供电状态进行充电、放电的情况。
该方案同样可以通过检测电池电量以及太阳电量的情况,自动选择供电方式,而且可以根据太阳能的电压自动调整内红点的供电电量,当太阳能供电充足的时候不仅能满足MCU和内红点控制电路的工作电能,而且能够对可充电电池进行充电,不需要专门对蓄电池进行充电,节省了电能。
实施例3:
上述实施例1与实施例2所提供的太阳能内红点瞄具的供电方式,同样可以选择该太阳能内红点瞄具选择设置太阳能电池1与可充电电池配合、切换进行供电;或者选择设置太阳能电池1与超级电容配合、切换进行供电。
如图6、图7所示为采用MCU控制控制-限流开关调节太阳能电池和充电电池两种供电模式的电路原理框图及示意图,采用两种供电方式同样可以实现上述太阳能内红点瞄具在通过太阳能电池供电和给可充电电池进行充电储能的功能;另外只需要将充电电池替换为超级电容,同样也可以采用太阳能电池和超级电容亦可实现两种供电模式供电储能的模式。
如图8、图9所示为采用二极管D21、D22、D23、D24、D25构成的控制电路桥控制-限流开关调节太阳能电池和充电电池两种供电模式的电路原理框图及示意图, 采用两种供电方式同样可以实现上述太阳能内红点瞄具在通过太阳能电池供电和给可充电电池进行充电储能的功能;另外只需要将充电电池替换为超级电容,同样也可以采用太阳能电池和超级电容亦可实现两种供电模式供电储能的模式。
以上例举仅仅是对本发明的举例说明,并不构成对本发明的保护范围的限制,凡是与本发明相同或相似的设计均属于本发明的保护范围之内。

Claims (7)

  1. 一种太阳能内红点瞄具,包括壳体、设置在壳体内或壳体上的内红点模组、设置在壳体内的电池、设置在壳体上的亮度调节开关(2)和设置在壳体内的电路板,设置在壳体上的太阳能电池(1),其特征在于:还包括设置在壳体内的用于存储电能的超级电容,所述电路板上包括处理芯片MCU、内红点控制电路、稳压电路、电源切换电路,所述MCU分别与所述亮度调节开关(2)、内红点控制电路、电池电连接;
    所述处理芯片MCU通过亮度调节开关(2)调节内红点控制电路的工作状态;
    所述太阳能电池通过稳压电路分别与电源切换电路、MCU电连接,用于提供MCU、内红点控制电路的工作电能;
    所述电池是可充电电池,该可充电电池通过电源切换电路分别与MCU、稳压电路电连接,用于存储太阳能电池提供的电能或者为MCU、内红点控制电路提供工作所需的电能;
    所述超级电容通过电源切换电路分别与MCU、稳压电路电连接,用于存储太阳能电池提供的电能或者为MCU、内红点控制电路提供工作所需的电能。
  2. 如权利要求1所述的太阳能内红点瞄具,其特征在于:该太阳能内红点瞄具选择设置太阳能电池(1)与可充电电池配合、切换进行供电;或者选择设置太阳能电池(1)与超级电容配合、切换进行供电。
  3. 如权利要求1所述的太阳能内红点瞄具,其特征在于:所述稳压电路包括稳压电路集成模块U1、电阻R1、R2,电容C1、C2,所述稳压电路集成模块U1的管脚6与太阳能电池的正极电连接,所述电阻R1、R2串接在电路集成模块U1的管脚6与接地端之间;电容C1同样串接在电路集成模块U1的管脚6与接地端之间;所述电容C2串接在电路集成模块U1的管脚1与接地端之间;电阻R1、R2的连接处设置有 采样1,该采样点1与MCU电连接。
  4. 如权利要求1所述的太阳能内红点瞄具,其特征在于:所述电源切换电路为控制限流开关电路,该控制限流开关电路包括控制开关、第二控制开关,电阻R4,电容C3,二极管D1;所述二极管D1的输入端与电路集成模块U1的管脚1电连接,极管D1的输出端与通过电阻R4与与MCU的管脚18电连接;所述控制开关分别与二极管D1的输出端、可充电电池的正极、以及MCU的管脚3电连接;所述第二控制开关分别与二极管D1的输出端、可超级电容的正极、以及MCU的管脚2电连接,所述电容C3设置于MCU的管脚18与接地端之间。
  5. 如权利要求1所述的太阳能内红点瞄具,其特征在于:所述电源切换电路还可是限流-平衡电路,该限流-平衡电路是二极管D21、D22、D23、D24、D25构成的控制电路桥。
  6. 如权利要求1所述的太阳能内红点瞄具,其特征在于:所述内红点控制电路包括二极管D2、D3、D4,电阻R5、R6、R7,以及LED灯,所述二极管D2的输出端与电阻R5的一端电连接,二极管D2的输入端与MCU的管脚17电连接,电阻R5的另一端与LED灯的输入端电连接;所述二极管D3的输出端与电阻R6的一端电连接,二极管D3的输入端与MCU的管脚8电连接,电阻R6的另一端与LED灯的输入端电连接;所述二极管D4的输出端与电阻R7的一端电连接,二极管D4的输入端与MCU的管脚9电连接,电阻R7的另一端与LED灯的输入端电连接;所述LED灯的输出端于接地端电连接。
  7. 如权利要求1所述的太阳能内红点瞄具,其特征在于:所述亮度调节开关(2)包括开关S1、S2,所述开关S1的一端与MCU的管脚11电连接,另一端与接地端电连接;所述开关S2的一端与MCU的管脚10电连接,另一端与接地端电连接。
PCT/CN2016/114015 2016-06-06 2016-12-31 一种太阳能内红点瞄具 WO2017211074A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201620535771.5 2016-06-06
CN201620535771.5U CN205718670U (zh) 2016-06-06 2016-06-06 一种太阳能内红点瞄具

Publications (1)

Publication Number Publication Date
WO2017211074A1 true WO2017211074A1 (zh) 2017-12-14

Family

ID=57302531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/114015 WO2017211074A1 (zh) 2016-06-06 2016-12-31 一种太阳能内红点瞄具

Country Status (2)

Country Link
CN (1) CN205718670U (zh)
WO (1) WO2017211074A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109405645A (zh) * 2018-12-20 2019-03-01 西安华科光电有限公司 一种自适应亮度调节电路及内红点瞄具
US20210349300A1 (en) * 2020-05-08 2021-11-11 Primary Arms, Llc Fixed magnification optical aiming device for a firearm
US20230032342A1 (en) * 2021-05-27 2023-02-02 Meprolight (1990) Ltd. Renewable energy powered weapon sight

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205718670U (zh) * 2016-06-06 2016-11-23 西安华科光电有限公司 一种太阳能内红点瞄具
CN106440939B (zh) * 2016-06-06 2023-12-26 西安华科光电有限公司 一种太阳能内红点瞄具
CN112013715A (zh) * 2020-09-17 2020-12-01 西安华科光电有限公司 一种led出射光调整机构及其内红点瞄具

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102780240A (zh) * 2011-12-19 2012-11-14 洛阳理工学院 储存太阳能的混合蓄电装置
CN103868409A (zh) * 2014-03-02 2014-06-18 西安华科光电有限公司 一种太阳能供电的内红点瞄具
CN104167781A (zh) * 2014-07-31 2014-11-26 国家电网公司 一种风光互补发电储能控制***
US20150198415A1 (en) * 2014-01-13 2015-07-16 Leupold & Stevens, Inc. Reflex sight adjustments, battery compartment lid, and accessory mounting features
CN104901408A (zh) * 2015-06-15 2015-09-09 山东信通电子股份有限公司 利用超级电容延长蓄电池寿命的太阳能供电方法及装置
CN205718670U (zh) * 2016-06-06 2016-11-23 西安华科光电有限公司 一种太阳能内红点瞄具
CN106440939A (zh) * 2016-06-06 2017-02-22 西安华科光电有限公司 一种太阳能内红点瞄具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102780240A (zh) * 2011-12-19 2012-11-14 洛阳理工学院 储存太阳能的混合蓄电装置
US20150198415A1 (en) * 2014-01-13 2015-07-16 Leupold & Stevens, Inc. Reflex sight adjustments, battery compartment lid, and accessory mounting features
CN103868409A (zh) * 2014-03-02 2014-06-18 西安华科光电有限公司 一种太阳能供电的内红点瞄具
CN104167781A (zh) * 2014-07-31 2014-11-26 国家电网公司 一种风光互补发电储能控制***
CN104901408A (zh) * 2015-06-15 2015-09-09 山东信通电子股份有限公司 利用超级电容延长蓄电池寿命的太阳能供电方法及装置
CN205718670U (zh) * 2016-06-06 2016-11-23 西安华科光电有限公司 一种太阳能内红点瞄具
CN106440939A (zh) * 2016-06-06 2017-02-22 西安华科光电有限公司 一种太阳能内红点瞄具

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109405645A (zh) * 2018-12-20 2019-03-01 西安华科光电有限公司 一种自适应亮度调节电路及内红点瞄具
CN109405645B (zh) * 2018-12-20 2024-03-29 西安华科光电有限公司 一种自适应亮度调节电路及内红点瞄具
US20210349300A1 (en) * 2020-05-08 2021-11-11 Primary Arms, Llc Fixed magnification optical aiming device for a firearm
US20230032342A1 (en) * 2021-05-27 2023-02-02 Meprolight (1990) Ltd. Renewable energy powered weapon sight

Also Published As

Publication number Publication date
CN205718670U (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
WO2017211074A1 (zh) 一种太阳能内红点瞄具
CN106440939B (zh) 一种太阳能内红点瞄具
CN202395487U (zh) 一种便携式太阳能电源
CN103427821A (zh) 实现零待机电流的电源管理装置
CN103227502A (zh) 一种智能电池
CN112105122B (zh) 一种锂电led灯的恒流控制与过放电保护电路
CN201854485U (zh) 集成的应急照明及监控装置
CN205579440U (zh) 一种应用有太阳能的楼宇供电***
CN205579439U (zh) 一种太阳能楼宇供电***
CN110504504B (zh) 一种基于单芯片的电池电量指示电路
CN103917029A (zh) 具有备用供电***的灯具
CN113966052A (zh) 一种智能控制电路
CN203912259U (zh) 具有备用供电***的灯具
CN207801562U (zh) 低压下法拉电容驱动阀门装置
CN111628560A (zh) 一种太阳能电源
CN206442559U (zh) 一种led驱动电路
CN216565681U (zh) 一种灯具的光源供电电路及灯具
CN210372956U (zh) 一种不间断电源灯
CN204795792U (zh) 一种蜡烛灯驱动电源
CN219164259U (zh) 一种蓝牙耳机指示灯供电电路及蓝牙耳机
CN211930934U (zh) 开关调色温的led驱动电源及其恒流控制器
CN107834691B (zh) 一种微电脑***电源应急转换电路
CN201435856Y (zh) 一种单线制智能开关
CN220043716U (zh) 灯控电路及应急灯
CN219999647U (zh) 一种基于ai语音识别芯片的检修小灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16904522

Country of ref document: EP

Kind code of ref document: A1