WO2017209469A1 - Electromagnet and manufacturing method therefor - Google Patents

Electromagnet and manufacturing method therefor Download PDF

Info

Publication number
WO2017209469A1
WO2017209469A1 PCT/KR2017/005589 KR2017005589W WO2017209469A1 WO 2017209469 A1 WO2017209469 A1 WO 2017209469A1 KR 2017005589 W KR2017005589 W KR 2017005589W WO 2017209469 A1 WO2017209469 A1 WO 2017209469A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnet
core
manufacturing
coil
thin
Prior art date
Application number
PCT/KR2017/005589
Other languages
French (fr)
Korean (ko)
Inventor
이종희
정의진
엄희윤
장기원
Original Assignee
주식회사 엔젤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엔젤 filed Critical 주식회사 엔젤
Publication of WO2017209469A1 publication Critical patent/WO2017209469A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material

Definitions

  • the present invention relates to an electromagnet and a manufacturing method thereof, and more particularly to an electromagnet having a high performance and efficiency of a core and a coil constituting the electromagnet and a manufacturing method thereof.
  • an electromagnet is composed of a core and a coil, and a conventional core is formed by powder metallurgy, and a circular coil is wound around the core and used.
  • the core formed by powder metallurgy has a problem that the saturation magnetic flux density and permeability are lowered because the density and distribution of iron are low.
  • the circular coil of the general type has a problem in that a large amount of voids are formed between the coils when wound around the core, thereby lowering the coil spot ratio and lowering the magnetic flux density relative to the volume.
  • the circular coil of the general form is subjected to enamel coating, the cooling efficiency is lowered, there was a problem of melting at high temperatures.
  • the present invention has been made to solve the problems of the prior art as described above, by manufacturing the core constituting the electromagnet by a powder injection molding method, to increase the density and distribution of iron in the core to increase the strength and rigidity,
  • the present invention provides an electromagnet capable of increasing the saturation magnetic flux density and permeability by a constant dispersion and a manufacturing method thereof.
  • the thin coil by coating the thin coil with a ceramic insulator, it provides an electromagnet that can easily heat dissipation of the coating layer and withstands melting even at high temperatures, and a method of manufacturing the same.
  • the coating distribution is even, the coating layer is thin, the heat dissipation effect is increased, it provides an electromagnet capable of minimizing voids and a method of manufacturing the same.
  • Electromagnet and a method for manufacturing the same according to the present invention, a plurality of cores are provided in an annular shape inside the motor; And a thin coil formed in a thin stripe shape and wound around an outer circumferential surface of the core, wherein the thin coil comprises: a copper plate provided in a thin stripe shape; And a graphene plate provided on an upper portion or a lower portion of the copper plate, and a coating layer provided on upper and lower portions of the copper plate and the graphene plate.
  • the core constituting the electromagnet by a powder injection molding method, by increasing the density and distribution of iron in the core to increase the strength and stiffness, to increase the saturation magnetic flux density and permeability by a constant dispersion
  • an electromagnet by increasing the density and distribution of iron in the core to increase the strength and stiffness, to increase the saturation magnetic flux density and permeability by a constant dispersion
  • an electromagnet and a method of manufacturing the same.
  • an electromagnet capable of increasing the coil spot ratio and minimizing voids and increasing the thermal conductivity and cooling efficiency is provided.
  • an electromagnet capable of easily dissipating heat of the coating layer and being able to withstand even at high temperatures without melting.
  • the coating distribution is even, the coating layer is thin, the heat dissipation effect is increased, it provides an electromagnet capable of minimizing voids and a method of manufacturing the same.
  • FIG. 1 is a view showing a state of an electromagnet and a method of manufacturing the same according to the present invention.
  • FIG. 2 is a view showing a state of the filter unit of the electromagnet and the manufacturing method according to the present invention.
  • FIG. 3 is a view showing a state in which the components of the electromagnet and the manufacturing method of the present invention are connected.
  • Figure 4 is a block diagram showing a step of manufacturing a core of the electromagnet and a method for manufacturing the same according to the present invention.
  • the electromagnet according to the present invention includes a core 20 and a thin coil 30.
  • the core 20 is provided.
  • the core 20 is provided in a square pillar shape, a plurality of annular inside the motor 10 is installed.
  • the motor 10 includes an axial motor, a radial motor, a claw pole motor, and the like.
  • the core 20 constitutes an electromagnet inside the motor 10 together with the following thin coil 30.
  • the core 20 may be formed in various shapes and is formed of a soft magnetic composite material.
  • the soft magnetic composite material is also called smc or soft magnetic composite.
  • the core 20 is manufactured by powder injection molding.
  • the powder injection molding is also called pim (powder injection molding) or mim (metal injection molding). Since the core 20 is manufactured by a powder injection molding method, the density of the metal is higher than that of the core manufactured by the conventional powder metallurgy method, thereby increasing the strength and rigidity. In addition, there is an effect of improving the saturation magnetic flux density and permeability.
  • the thin coil 30 is provided on the outer circumferential surface of the core 20.
  • the thin coil 30 is formed in a thin or thin plate shape and wound around the outer circumferential surface of the core 20.
  • the thin coil 30 includes a copper plate 31, a graphene plate 32, and a coating layer 33.
  • the copper plate 31 is provided in a thin strip shape.
  • the copper plate 31 may be provided in plurality in the vertical direction.
  • the graphene plate 32 is formed of graphene, and may be installed between one side or between the copper plates 31.
  • the graphene is a material that is more electrically conductive than copper and has a higher thermal conductivity than diamond, and may be formed of any material as long as it is installed in the thin coil 30 so as to be electrically conductive and increase thermal conductivity.
  • the coating layer 33 is provided on the upper and lower portions of the copper plate 31 and the graphene plate 32, and is provided on the upper or lower portion of the copper plate 31.
  • the coating layer 33 is composed of a ceramic insulator, and may be formed of any material as long as the performance of the thin coil 30 can be improved.
  • the copper plate 31, the graphene plate 32, and the coating layer 33 are combined to form the thin coil 30.
  • the thin coil 30 is formed of a single layer in which a copper plate 31, a graphene plate 32, and a coating layer 33 are combined, or a graphene plate installed between a plurality of copper plates 31 and the copper plate 31.
  • the copper plate 31 and the graphene plate 32 may be formed in a multilayered combination of coating layers 33 provided on upper and lower portions thereof.
  • the thin coil 30 may be formed only of the copper plate 31 and the coating layer 33.
  • the voids that may be formed between the thin coils 30 may be minimized, thereby increasing cooling efficiency. That is, due to the plurality of voids generated between the coils when the conventional coil is wound, since the heat is not stored and discharged in the voids, the cooling efficiency is solved and the cooling efficiency is increased.
  • the coil spot ratio is increased as compared with the conventional coil, thereby increasing the volume-to-volume efficiency.
  • the coil spot ratio refers to the ratio of the cross-sectional area of the conductor making the coil and the cross-sectional area of the entire coil.
  • the thin coil 30 Since the thin coil 30 is formed in a thin flat shape, it may be easily coated with a ceramic insulator.
  • the ceramic insulator refers to silicon, boron nitride, boron, zirconia and the like. Since the thin coil 30 is coated with a ceramic insulator, heat resistance is increased, so that the thin coil 30 does not melt or deform even at high temperatures. In addition, the conventional coil solves the cooling efficiency is lowered by the enamel coating, the cooling efficiency is increased.
  • the electromagnet is formed including a feedstock manufacturing step 110, an injection molding step 120, a binder removal step 130, a sintering step 140, and a coil winding step 150. .
  • the feedstock manufacturing step 110 by mixing a trace amount of boron nitride or boron, which serves as an insulating coating function and a surface active agent to the metal powder and polymer binder having different powder sizes, in the injection molding step 120 It is a step to prepare a feedstock of a suitable size to be used as a material.
  • the injection molding step 120 is a step of manufacturing the core 20 by injection molding the feedstock.
  • the core 20 manufactured in the injection molding step 120 is in a state in which the metal powder and the polymer binder are mixed.
  • the metal powder and the polymer binder constituting the core 20 may be formed more densely because the sizes of the powder grains are different from each other, and the core 20 collapses in the following sintering step 140. Is prevented.
  • the binder removal step 130 is a step of removing the polymer binder from the core 20 in which the metal powder and the polymer binder prepared in the injection molding step 120 are mixed.
  • a method of removing there is a method of using a chemical or heat treatment.
  • the core 20, which has passed through the binder removal step 130, is removed with the polymer binder, leaving only pure metal and ceramic insulators.
  • the sintering step 140 by applying a secondary heat to the core 20 remaining only pure metal and ceramic-based insulator through the binder removal step 130 to reduce the voids and further increase the density and strength of the final core You are done.
  • the coil winding step 150 is to wind the final core completed through the sintering step 130 with the thin coil 30.
  • the powder injection molding comprising the feedstock manufacturing step 11 to the sintering step 140 has a merit in that a small amount of boron nitride or boron is added to facilitate decomposition of the oxidized impurities in comparison with the conventional powder injection molding.
  • the coating distribution is even, the coating layer is thin, the heat dissipation effect is high, there is an advantage that the voids are minimized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electromagnets (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

The present invention relates to an electromagnet and a manufacturing method therefor and to: an electromagnet in which performance and efficiency of a core and a coil constituting the electromagnet are improved; and a manufacturing method therefor. An electromagnet and a manufacturing method therefor, according to the present invention, comprise: a plurality of cores provided into a ring shape inside a motor; and a thin coil formed into a thin band shape and wound on an outer circumferential surface of the core, wherein the thin coil comprises: a copper plate provided in a thin band shape; a graphene plate provided on or under the copper plate; and a coating layer provided on and under the copper plate and the graphene plate. According to one embodiment of the present invention, provided are: an electromagnet in which cores constituting the electromagnet are manufactured by a powder injection molding method, thereby enabling strength and stiffness to increase by increasing the density and distribution of iron inside the cores, and saturation magnetic flux density and magnetic permeability to be evenly distributed and increase; and a manufacturing method therefor.

Description

전자석 및 그 제조방법Electromagnet and its manufacturing method
본 발명은 전자석 및 그 제조방법에 관한 것으로, 전자석을 구성하는 코어 및 코일의 성능 및 효율이 상승한 전자석 및 그 제조방법에 관한 것이다.The present invention relates to an electromagnet and a manufacturing method thereof, and more particularly to an electromagnet having a high performance and efficiency of a core and a coil constituting the electromagnet and a manufacturing method thereof.
일반적으로, 전자석은 코어와 코일로 구성되는데, 종래의 코어는 분말야금법으로 형성되고, 코어에 원형의 코일을 권취하여 사용하였다. 하지만, 분말야금법에 의하여 형성된 코어는 철의 밀도와 분포도가 낮기 때문에 포화자속밀도와 투자율이 떨어지는 문제점이 있었다. 또한, 일반적인 형태의 원형 코일은 코어에 권취하였을 때 사이사이에 공극이 다량 형성되어 코일점적율이 낮아져서 체적대비 자속밀도가 낮아지는 문제점이 있었다. 또한, 일반적인 형태의 원형 코일은 에나멜코팅을 실시하여 냉각효율이 떨어지고, 고온에서 녹는 문제점이 있었다.In general, an electromagnet is composed of a core and a coil, and a conventional core is formed by powder metallurgy, and a circular coil is wound around the core and used. However, the core formed by powder metallurgy has a problem that the saturation magnetic flux density and permeability are lowered because the density and distribution of iron are low. In addition, the circular coil of the general type has a problem in that a large amount of voids are formed between the coils when wound around the core, thereby lowering the coil spot ratio and lowering the magnetic flux density relative to the volume. In addition, the circular coil of the general form is subjected to enamel coating, the cooling efficiency is lowered, there was a problem of melting at high temperatures.
본 발명은 상술한 바와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 전자석을 구성하는 코어를 분말사출성형 방식으로 제조함으로써, 코어 내부의 철의 밀도와 분포도를 높여서 강도 및 강성을 상승시키고, 포화자속밀도와 투자율을 일정 분산되어 증가시킬 수 있는 전자석 및 그 제조방법을 제공한다.The present invention has been made to solve the problems of the prior art as described above, by manufacturing the core constituting the electromagnet by a powder injection molding method, to increase the density and distribution of iron in the core to increase the strength and rigidity, The present invention provides an electromagnet capable of increasing the saturation magnetic flux density and permeability by a constant dispersion and a manufacturing method thereof.
또한, 코어에 감기는 코일을 박형코일로 형성함으로써, 코일점적율을 높이고 공극을 최소화하여 열전도율 및 냉각효율을 상승시킬 수 있는 전자석 및 그 제조방법을 제공한다.In addition, by forming a coil wound around the core with a thin coil, it provides an electromagnet and a method of manufacturing the same that can increase the coil spot ratio and minimize the voids to increase the thermal conductivity and cooling efficiency.
또한, 박형코일을 세라믹 절연체로 코팅함으로써, 코팅층의 열방출이 용이하고, 고온에서도 녹지 않고 견딜 수 있는 전자석 및 그 제조방법을 제공한다.In addition, by coating the thin coil with a ceramic insulator, it provides an electromagnet that can easily heat dissipation of the coating layer and withstands melting even at high temperatures, and a method of manufacturing the same.
또한, 분말사출성형 시에 보론나이트라이드 또는 붕소를 첨가함으로써, 코팅분포도가 고르고, 코팅층이 얇으며, 방열효과가 상승되고, 공극을 최소화 할 수 있는 전자석 및 그 제조방법을 제공한다.In addition, by adding boron nitride or boron during powder injection molding, the coating distribution is even, the coating layer is thin, the heat dissipation effect is increased, it provides an electromagnet capable of minimizing voids and a method of manufacturing the same.
본 발명이 해결하고자 하는 과제들은 이상에서 언급한 과제로 제한되지 않으며, 여기에 언급되지 않은 본 발명이 해결하려는 또 다른 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The problem to be solved by the present invention is not limited to the above-mentioned problem, another problem to be solved by the present invention not mentioned herein is to those skilled in the art from the following description. It will be clearly understood.
본 발명에 따른 전자석 및 그 제조방법은, 모터의 내부에 환형으로 복수개 설치되는 코어; 및 얇은 띠 모양으로 형성되어, 상기 코어의 외주면에 감기는 박형코일;을 포함하고, 상기 박형코일은, 얇은 띠 모양으로 마련되는 구리판; 및 상기 구리판의 상부 또는 하부에 마련되는 그래핀판;을 포함하며, 상기 구리판 및 그래핀판의 상하부에 마련되는 코팅층;을 포함하는 것을 특징으로 한다.Electromagnet and a method for manufacturing the same according to the present invention, a plurality of cores are provided in an annular shape inside the motor; And a thin coil formed in a thin stripe shape and wound around an outer circumferential surface of the core, wherein the thin coil comprises: a copper plate provided in a thin stripe shape; And a graphene plate provided on an upper portion or a lower portion of the copper plate, and a coating layer provided on upper and lower portions of the copper plate and the graphene plate.
본 발명의 일실시예에 따르면 전자석을 구성하는 코어를 분말사출성형 방식으로 제조함으로써, 코어 내부의 철의 밀도와 분포도를 높여서 강도 및 강성을 상승시키고, 포화자속밀도와 투자율을 일정 분산되어 증가시킬 수 있는 전자석 및 그 제조방법이 제공된다.According to an embodiment of the present invention by manufacturing the core constituting the electromagnet by a powder injection molding method, by increasing the density and distribution of iron in the core to increase the strength and stiffness, to increase the saturation magnetic flux density and permeability by a constant dispersion Provided are an electromagnet, and a method of manufacturing the same.
또한, 코어에 감기는 코일을 박형코일로 형성함으로써, 코일점적율을 높이고 공극을 최소화하여 열전도율 및 냉각효율을 상승시킬 수 있는 전자석 및 그 제조방법이 제공된다.In addition, by forming a coil wound around the core with a thin coil, an electromagnet capable of increasing the coil spot ratio and minimizing voids and increasing the thermal conductivity and cooling efficiency is provided.
또한, 박형코일을 세라믹 절연체로 코팅함으로써, 코팅층의 열방출이 용이하고, 고온에서도 녹지 않고 견딜 수 있는 전자석 및 그 제조방법이 제공된다.In addition, by coating the thin coil with a ceramic insulator, there is provided an electromagnet capable of easily dissipating heat of the coating layer and being able to withstand even at high temperatures without melting.
또한, 분말사출성형 시에 보론나이트라이드 또는 붕소를 첨가함으로써, 코팅분포도가 고르고, 코팅층이 얇으며, 방열효과가 상승되고, 공극을 최소화 할 수 있는 전자석 및 그 제조방법을 제공한다.In addition, by adding boron nitride or boron during powder injection molding, the coating distribution is even, the coating layer is thin, the heat dissipation effect is increased, it provides an electromagnet capable of minimizing voids and a method of manufacturing the same.
도 1은 본 발명에 의한 전자석 및 그 제조방법의 모습을 나타낸 도면이다.1 is a view showing a state of an electromagnet and a method of manufacturing the same according to the present invention.
도 2는 본 발명에 의한 전자석 및 그 제조방법의 필터부의 모습을 나타낸 도면이다.2 is a view showing a state of the filter unit of the electromagnet and the manufacturing method according to the present invention.
도 3은 본 발명에 의한 전자석 및 그 제조방법의 부품들이 연결되는 모습을 나타낸 도면이다.3 is a view showing a state in which the components of the electromagnet and the manufacturing method of the present invention are connected.
도 4는 본 발명에 의한 전자석 및 그 제조방법의 코어가 제조되는 단계를 나타낸 블록도이다.Figure 4 is a block diagram showing a step of manufacturing a core of the electromagnet and a method for manufacturing the same according to the present invention.
이상과 같은 본 발명에 대한 해결하고자 하는 과제, 과제의 해결 수단, 발명의 효과를 포함한 구체적인 사항들은 다음에 기재할 실시예 및 도면들에 포함되어 있다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다.Specific matters including the problem to be solved, the solution to the problem, and the effects of the present invention as described above are included in the embodiments and drawings to be described below. Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings.
이하, 첨부된 도면을 참조하여 본 발명을 보다 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail the present invention.
도 1 내지 도 3에 도시된 바와 같이, 본 발명에 따른 전자석은 코어(20) 및 박형코일(30)을 포함한다.As shown in FIGS. 1 to 3, the electromagnet according to the present invention includes a core 20 and a thin coil 30.
먼저, 코어(20)가 마련된다.First, the core 20 is provided.
구체적으로, 도 1 및 도 2에 도시된 바와 같이, 상기 코어(20)는 사각 기둥 모양으로 마련되어, 모터(10)의 내부에 환형으로 복수개 설치된다. 상기 모터(10)는 축방향모터, 레디얼모터, 크로폴 모터 등을 포함한다. 상기 코어(20)는 하기 박형코일(30)과 함께 상기 모터(10)의 내부에서 전자석을 구성한다. 상기 코어(20)는 다양한 모양으로 형성될 수 있고, 연자성복합재료로 형성된다. 상기 연자성복합재료는 smc 또는 soft magnetic composite으로도 불려진다.Specifically, as shown in Figures 1 and 2, the core 20 is provided in a square pillar shape, a plurality of annular inside the motor 10 is installed. The motor 10 includes an axial motor, a radial motor, a claw pole motor, and the like. The core 20 constitutes an electromagnet inside the motor 10 together with the following thin coil 30. The core 20 may be formed in various shapes and is formed of a soft magnetic composite material. The soft magnetic composite material is also called smc or soft magnetic composite.
상기 코어(20)는 분말사출성형 방식으로 제조된다. 상기 분말사출성형은 pim(powder injection molding) 또는 mim(metal injection molding)으로도 불려진다. 상기 코어(20)가 분말사출성형 방식으로 제조되어, 종래의 분말야금법으로 제조되는 코어보다 금속의 밀도가 높아지기 때문에 강도 및 강성이 높아지는 효과가 있다. 또한 포화자속밀도와 투자율 향상되는 효과가 있다.The core 20 is manufactured by powder injection molding. The powder injection molding is also called pim (powder injection molding) or mim (metal injection molding). Since the core 20 is manufactured by a powder injection molding method, the density of the metal is higher than that of the core manufactured by the conventional powder metallurgy method, thereby increasing the strength and rigidity. In addition, there is an effect of improving the saturation magnetic flux density and permeability.
다음으로, 상기 코어(20)의 외주면에 박형코일(30)이 마련된다.Next, the thin coil 30 is provided on the outer circumferential surface of the core 20.
구체적으로, 도 1 및 도 3에 도시된 바와 같이, 상기 박형코일(30)은 박형 또는 얇은 판 모양으로 형성되어, 상기 코어(20)의 외주면에 감겨진다. 상기 박형코일(30)은 구리판(31), 그래핀판(32), 코팅층(33)을 포함한다.Specifically, as shown in FIGS. 1 and 3, the thin coil 30 is formed in a thin or thin plate shape and wound around the outer circumferential surface of the core 20. The thin coil 30 includes a copper plate 31, a graphene plate 32, and a coating layer 33.
구리판(31)은 얇은 띠 모양으로 마련된다. 상기 구리판(31)은 상하 방향으로 이격되어 복수개 마련될 수 있다.The copper plate 31 is provided in a thin strip shape. The copper plate 31 may be provided in plurality in the vertical direction.
그래핀판(32)은 그래핀으로 형성되어, 상기 구리판(31)의 일측 또는 사이사이에 설치될 수 있다. 상기 그래핀은 구리보다 전기가 잘 통하고, 다이아몬드보다 열전도성이 높은 재료로써, 상기 박형코일(30)에 설치되어 전기가 잘 통하고 열전도성을 높일 수 있다면 어떠한 재료로도 형성 가능하다.The graphene plate 32 is formed of graphene, and may be installed between one side or between the copper plates 31. The graphene is a material that is more electrically conductive than copper and has a higher thermal conductivity than diamond, and may be formed of any material as long as it is installed in the thin coil 30 so as to be electrically conductive and increase thermal conductivity.
코팅층(33)은 상기 구리판(31) 및 그래핀판(32)의 상하부에 마련되어, 상기 구리판(31)의 상부 또는 하부에 마련된다. 상기 코팅층(33)은 세라믹계 절연체로 구성되며, 상기 박형코일(30)의 성능이 향상될 수 있다면 어떠한 재료로든 형성 가능하다.The coating layer 33 is provided on the upper and lower portions of the copper plate 31 and the graphene plate 32, and is provided on the upper or lower portion of the copper plate 31. The coating layer 33 is composed of a ceramic insulator, and may be formed of any material as long as the performance of the thin coil 30 can be improved.
상기 구리판(31), 그래핀판(32), 코팅층(33)은 결합되어 상기 박형코일(30)을 형성한다. 상기 박형코일(30)은 구리판(31), 그래핀판(32), 코팅층(33)이 결합된 단층으로 형성되거나, 복수개의 구리판(31), 상기 구리판(31)의 사이사이에 설치되는 그래핀판(32), 상기 구리판(31) 및 그래핀판(32)의 상하부에 마련되는 코팅층(33)이 결합된 다층으로 형성될 수 있다. 또는, 상기 박형코일(30)은 상기 구리판(31) 및 코팅층(33)으로만 형성될 수 있다.The copper plate 31, the graphene plate 32, and the coating layer 33 are combined to form the thin coil 30. The thin coil 30 is formed of a single layer in which a copper plate 31, a graphene plate 32, and a coating layer 33 are combined, or a graphene plate installed between a plurality of copper plates 31 and the copper plate 31. 32, the copper plate 31 and the graphene plate 32 may be formed in a multilayered combination of coating layers 33 provided on upper and lower portions thereof. Alternatively, the thin coil 30 may be formed only of the copper plate 31 and the coating layer 33.
상기 박형코일(30)이 박형으로 형성되어, 상기 코어(20)에 권취 되었을 때, 상기 박형코일(30)의 사이사이에 형성될 수 있는 공극이 최소화 되기 때문에 냉각효율이 높아질 수 있다. 즉, 종래의 일반적인 코일이 권취 되었을 때 코일 사이사이에 발생되는 다수의 공극으로 인하여, 상기 공극에 열이 저장되어 배출되지 않기 때문에 냉각효율이 떨어지는 문제를 해결하여 냉각효율이 높아지는 것이다. 또한, 상기 박형코일(30)이 권취되었을 때, 공극이 최소화되기 때문에 종래의 일반적인 코일에 비하여 코일점적율이 상승하여, 체적대비 효율이 증가하는 효과가 있다. 상기 코일점적율은 코일을 만들고 있는 도체의 단면적과 코일 전체의 단면적의 비를 뜻하는 것으로, 상기 박형코일(30)로 전자석을 구성하였을 경우, 일반적인 코일이 비하여 동일부피에 약 40%더 감을 수 있기 때문에 열전도율과 열방출이 높아지는 효과가 있는 것이다.When the thin coil 30 is formed in a thin shape and wound around the core 20, the voids that may be formed between the thin coils 30 may be minimized, thereby increasing cooling efficiency. That is, due to the plurality of voids generated between the coils when the conventional coil is wound, since the heat is not stored and discharged in the voids, the cooling efficiency is solved and the cooling efficiency is increased. In addition, when the thin coil 30 is wound, since the void is minimized, the coil spot ratio is increased as compared with the conventional coil, thereby increasing the volume-to-volume efficiency. The coil spot ratio refers to the ratio of the cross-sectional area of the conductor making the coil and the cross-sectional area of the entire coil. When the electromagnet is composed of the thin coil 30, the coil coil may be wound about 40% more in the same volume than the general coil. As a result, the thermal conductivity and heat dissipation are increased.
상기 박형코일(30)은 박형의 평면 형태로 형성되기 때문에 세라믹 절연체로 용이하게 코팅될 수 있다. 상기 세라믹 절연체는 규소, 보론나이트라이드, 붕소, 지르코니아 등을 말한다. 상기 박형코일(30)이 세라믹 절연체로 코팅되어 내열성이 증가하기 때문에, 고온에서도 녹거나 변형되지 않는 효과가 있다. 또한, 종래의 코일이 에나멜 코팅으로 냉각효율이 떨어지는 것을 해결하여 냉각효율이 높아진다.Since the thin coil 30 is formed in a thin flat shape, it may be easily coated with a ceramic insulator. The ceramic insulator refers to silicon, boron nitride, boron, zirconia and the like. Since the thin coil 30 is coated with a ceramic insulator, heat resistance is increased, so that the thin coil 30 does not melt or deform even at high temperatures. In addition, the conventional coil solves the cooling efficiency is lowered by the enamel coating, the cooling efficiency is increased.
상기와 같이 구성되는 전자석을 제조하는 방법에 대해 살펴보면 다음과 같다.Looking at the method for producing an electromagnet configured as described above are as follows.
도 4에 도시된 바와 같이, 상기 전자석은 피드스탁 제조단계(110), 사출 성형 단계(120), 바인더 제거 단계(130), 소결 단계(140), 코일 권취 단계(150)를 포함하여 형성된다.As shown in FIG. 4, the electromagnet is formed including a feedstock manufacturing step 110, an injection molding step 120, a binder removal step 130, a sintering step 140, and a coil winding step 150. .
먼저, 피드스탁 제조단계(110)는, 분발 사이즈가 서로 다른 금속 분말과 고분자 바인더에, 절연코팅기능과 계면활성역할을 하는 보론나이트라이드나 붕소를 미량 혼합하여, 하기 사출 성형 단계(120)에서 재료로 사용될 수 있도록 알맞은 크기의 피드스탁을 제조하는 단계이다. First, the feedstock manufacturing step 110, by mixing a trace amount of boron nitride or boron, which serves as an insulating coating function and a surface active agent to the metal powder and polymer binder having different powder sizes, in the injection molding step 120 It is a step to prepare a feedstock of a suitable size to be used as a material.
다음으로, 사출 성형 단계(120)는, 상기 피드스탁을 사출 성형하여, 상기 코어(20) 형상으로 제조하는 단계이다. 상기 사출 성형 단계(120)에서 제조되는 상기 코어(20)는 상기 금속 분말과 고분자 바인더가 섞여있는 상태이다. 또한, 상기 코어(20)를 구성하는 상기 금속 분말과 고분자 바인더는 분말 알갱이의 크기가 서로 다르기 때문에, 더욱 고밀도로 형성될 수 있고, 하기 소결 단계(140)에서 상기 코어(20)가 붕괴되는 것이 방지된다.Next, the injection molding step 120 is a step of manufacturing the core 20 by injection molding the feedstock. The core 20 manufactured in the injection molding step 120 is in a state in which the metal powder and the polymer binder are mixed. In addition, the metal powder and the polymer binder constituting the core 20 may be formed more densely because the sizes of the powder grains are different from each other, and the core 20 collapses in the following sintering step 140. Is prevented.
다음으로, 바인더 제거 단계(130)는, 상기 사출 성형 단계(120)에서 제조된 상기 금속 분말과 고분자 바인더가 섞여 있는 상기 코어(20)에서 상기 고분자 바인더를 제거하는 단계이다. 제거하는 방법으로는 약품을 이용하거나 열처리를 하는 방법이 있다. 상기 바인더 제거 단계(130)를 거친 상기 코어(20)는 상기 고분자 바인더가 제거되어 순수한 금속과 세라믹계 절연체만 남게 된다.Next, the binder removal step 130 is a step of removing the polymer binder from the core 20 in which the metal powder and the polymer binder prepared in the injection molding step 120 are mixed. As a method of removing, there is a method of using a chemical or heat treatment. The core 20, which has passed through the binder removal step 130, is removed with the polymer binder, leaving only pure metal and ceramic insulators.
다음으로, 소결 단계(140)는, 상기 바인더 제거 단계(130)를 거쳐서 순수한 금속과 세라믹계 절연체만 남은 상기 코어(20)에 제차 열을 가하여 공극을 줄이고 밀도증가와 강도가 더욱 증가한 최종 코어를 완성하게 된다.Next, the sintering step 140, by applying a secondary heat to the core 20 remaining only pure metal and ceramic-based insulator through the binder removal step 130 to reduce the voids and further increase the density and strength of the final core You are done.
다음으로, 코일 권취 단계(150)는, 상기 소결 단계(130)를 거쳐서 완성된 최종 코어를 상기 박형코일(30)로 권취하는 것이다.Next, the coil winding step 150 is to wind the final core completed through the sintering step 130 with the thin coil 30.
상기의 피드스탁 제조단계(11) ~ 소결 단계(140)로 이루어지는 분말사출성형은 보론나이트라이드 또는 붕소를 미량 첨가하여, 종래의 분말사출성형과 대비하여 산화불순물의 분해가 용이해지는 장점이 있다. 또한, 계면활성제 역할을 하기 때문에 코팅분포도가 고르고 코팅층이 얇으며, 방열효과가 높아지고, 공극이 최소화되는 장점이 있다.The powder injection molding comprising the feedstock manufacturing step 11 to the sintering step 140 has a merit in that a small amount of boron nitride or boron is added to facilitate decomposition of the oxidized impurities in comparison with the conventional powder injection molding. In addition, since it serves as a surfactant, the coating distribution is even, the coating layer is thin, the heat dissipation effect is high, there is an advantage that the voids are minimized.
이와 같이, 상술한 본 발명의 기술적 구성은 본 발명이 속하는 기술분야의 당업자가 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.As such, the technical configuration of the present invention described above can be understood by those skilled in the art that the present invention can be implemented in other specific forms without changing the technical spirit or essential features of the present invention.
그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타나며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Therefore, the above-described embodiments are to be understood as illustrative and not restrictive in all respects, and the scope of the present invention is indicated by the following claims rather than the detailed description, and the meaning and scope of the claims and their All changes or modifications derived from an equivalent concept should be construed as being included in the scope of the present invention.
10 : 모터10: motor
20 : 코어20: core
30 : 박형코일30: thin coil
31 : 구리판31 copper plate
32 : 그래핀판32: graphene plate
33 : 코팅층33: coating layer
110 : 피드스탁 제조단계110: feedstock manufacturing step
120 : 사출 성형 단계120: injection molding step
130 : 바인더 제거 단계130: binder removal step
140 : 소결 단계140: sintering step
150 : 코일 권취 단계150: coil winding step

Claims (5)

  1. 모터의 내부에 환형으로 복수개 설치되는 코어;및A plurality of cores annularly installed inside the motor; and
    얇은 띠 모양으로 형성되어, 상기 코어의 외주면에 감기는 박형코일;을 포함하고,It is formed in a thin strip, coiled around the outer peripheral surface of the core; including;
    상기 박형코일은,The thin coil,
    얇은 띠 모양으로 마련되는 구리판;및Copper plate provided in a thin strip shape; And
    상기 구리판의 상부 또는 하부에 마련되는 그래핀판;을 포함하며,It includes; Graphene plate provided on the upper or lower portion of the copper plate,
    상기 구리판 및 그래핀판의 상하부에 마련되는 코팅층;을 포함하는 것을 특징으로 하는 전자석.Electromagnet comprising a; coating layer provided on the upper and lower portions of the copper plate and graphene plate.
  2. 제1항에 있어서,The method of claim 1,
    상기 코팅층은 세라믹계 절연체로 코팅되는 것을 특징으로 하는 전자석.The coating layer is electromagnet, characterized in that the coating with a ceramic insulator.
  3. 제1항에 있어서,The method of claim 1,
    상기 코어는 연자성복합재료나 규소강판으로 형성되는 것을 특징으로 하는 전자석.The core is an electromagnet, characterized in that formed of a soft magnetic composite material or silicon steel sheet.
  4. 제1항에 있어서,The method of claim 1,
    상기 코어는 분말사출성형 방식으로 제조되는 것을 특징으로 하는 전자석.The core is electromagnet, characterized in that the powder injection molding method.
  5. 금속 분말, 고분자 바인더, 보론나이트라이드 또는 붕소를 혼합하여 피드스탁을 제조하는 단계;Preparing a feedstock by mixing a metal powder, a polymer binder, boron nitride or boron;
    상기 피드스탁을 모터에 설치되는 코어 형상으로 사출 성형하는 단계;Injection molding the feedstock into a core shape installed in a motor;
    사출 성형으로 상기 코어가 만들어진 후에 상기 코어의 바인더를 제거하는 단계;Removing the binder of the core after the core is made by injection molding;
    상기 바인더가 제거된 코어를 소결하여 최종 코어를 완성하는 단계;Sintering the core from which the binder is removed to complete a final core;
    상기 최종으로 완성된 코어에 박형코일을 권취하는 단계;를 포함하는 것을 특징으로 하는 전자석의 제조방법.Winding the thin coil on the finally completed core; manufacturing method of an electromagnet comprising a.
PCT/KR2017/005589 2016-05-30 2017-05-29 Electromagnet and manufacturing method therefor WO2017209469A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0066496 2016-05-30
KR1020160066496A KR101850107B1 (en) 2016-05-30 2016-05-30 The Electromagnet And The Production Method

Publications (1)

Publication Number Publication Date
WO2017209469A1 true WO2017209469A1 (en) 2017-12-07

Family

ID=60477644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005589 WO2017209469A1 (en) 2016-05-30 2017-05-29 Electromagnet and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR101850107B1 (en)
WO (1) WO2017209469A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102158474B1 (en) 2019-09-09 2020-09-22 주식회사 알앤디웨어 Laboratory electromagnet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120037289A (en) * 2010-10-11 2012-04-19 현대자동차주식회사 Motor assembly of vehicle having stator core manufactured soft magnetic powder
JP2012144421A (en) * 2010-12-21 2012-08-02 Meijo Univ Graphene wiring structure
WO2016006943A1 (en) * 2014-07-09 2016-01-14 재단법인대구경북과학기술원 Metal nanowire having core-shell structure coated with graphene, and manufacturing method therefor
KR20160016393A (en) * 2014-08-05 2016-02-15 전정호 The generator is equipped with a high efficiency using a metal and a non-metallic nanomaterials scooter
JP2016039191A (en) * 2014-08-05 2016-03-22 株式会社カネカ coil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120037289A (en) * 2010-10-11 2012-04-19 현대자동차주식회사 Motor assembly of vehicle having stator core manufactured soft magnetic powder
JP2012144421A (en) * 2010-12-21 2012-08-02 Meijo Univ Graphene wiring structure
WO2016006943A1 (en) * 2014-07-09 2016-01-14 재단법인대구경북과학기술원 Metal nanowire having core-shell structure coated with graphene, and manufacturing method therefor
KR20160016393A (en) * 2014-08-05 2016-02-15 전정호 The generator is equipped with a high efficiency using a metal and a non-metallic nanomaterials scooter
JP2016039191A (en) * 2014-08-05 2016-03-22 株式会社カネカ coil

Also Published As

Publication number Publication date
KR101850107B1 (en) 2018-04-20
KR20170135104A (en) 2017-12-08

Similar Documents

Publication Publication Date Title
WO2020190121A1 (en) Reception coil for wireless charging of transportation means and power reception apparatus for wireless charging of transportation means
WO2017171265A1 (en) Coil pattern, method for forming same, and chip device including same
US20180130600A1 (en) Metal matrix composite wire, power inductor, and preparation methods for same
JP2607023B2 (en) Manufacturing method of magnetic device
CN206460860U (en) High-tension transformer and electron electric power device
CN103493157B (en) Cable and include its electromagnetic equipment
WO2013165166A1 (en) Magnetic sheet having wireless charging radiator function, method of manufacturing the same, and wireless charging device using the same
US20100255282A1 (en) High temperature resistant insulating composition, insulating wire and magnetic element
WO2017209469A1 (en) Electromagnet and manufacturing method therefor
WO2021010714A1 (en) Method for manufacturing fe-based soft magnetic alloy and fe-based soft magnetic alloy manufactured thereby
CN103531273A (en) Special-shaped transposed conductor
CN103177850B (en) Inductor
WO2018117595A1 (en) Magnetic core, coil component, and electronic component including same
CN201143553Y (en) Electromagnetic agitator
WO2016021938A1 (en) Power inductor
WO2019231142A1 (en) Magnetic sheet and wireless power module comprising same
CN112309677B (en) Transformer structure and manufacturing method thereof
CN210271966U (en) End plate bonding insulation structure
KR20140076282A (en) Soft magnetic core and manufacturing method of the same
WO2019151730A1 (en) Ferrite core and coil component comprising same
WO2022177349A1 (en) Magnetic core and coil component comprising same
CN110783091A (en) Preparation method of nanocrystalline FeSiBCr magnetic powder core
WO2016021818A1 (en) Power inductor
WO2017078496A1 (en) Soft-magnetic alloy
CN107644731A (en) Power transformer comprising insulating materials and the method for manufacturing this transformer

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806962

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17806962

Country of ref document: EP

Kind code of ref document: A1