WO2017209435A1 - 크랙 함유 투명 전도성 박막을 구비하는 고감도 센서 및 그의 제조 방법 - Google Patents

크랙 함유 투명 전도성 박막을 구비하는 고감도 센서 및 그의 제조 방법 Download PDF

Info

Publication number
WO2017209435A1
WO2017209435A1 PCT/KR2017/005401 KR2017005401W WO2017209435A1 WO 2017209435 A1 WO2017209435 A1 WO 2017209435A1 KR 2017005401 W KR2017005401 W KR 2017005401W WO 2017209435 A1 WO2017209435 A1 WO 2017209435A1
Authority
WO
WIPO (PCT)
Prior art keywords
high sensitivity
sensitivity sensor
transparent
sensor
thin film
Prior art date
Application number
PCT/KR2017/005401
Other languages
English (en)
French (fr)
Inventor
이태민
최용환
이건희
최만수
Original Assignee
재단법인 멀티스케일 에너지시스템 연구단
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 멀티스케일 에너지시스템 연구단, 서울대학교산학협력단 filed Critical 재단법인 멀티스케일 에너지시스템 연구단
Priority to US16/305,179 priority Critical patent/US11796403B2/en
Priority to CN201780032925.6A priority patent/CN109196320B/zh
Publication of WO2017209435A1 publication Critical patent/WO2017209435A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a high sensitivity sensor having a crack-containing transparent conductive thin film and a method for manufacturing the same, and using a transparent conductive thin film having fine cracks, which can be applied to high precision measurement or artificial skin for detecting tension and pressure. It relates to a sensitivity sensor.
  • a high sensitivity sensor is a device that detects a minute signal and delivers it as data such as an electrical signal, which is one of the components required in the modern industry.
  • capacitive sensors piezoelectric sensors, strain gauges and the like are known as sensors for measuring pressure and tensile force.
  • Strain gauge sensor which is a conventional tensile sensor, detects mechanical change as an electrical signal. When it is attached to the surface of a machine or structure, the strain gauge sensor is used to measure the change in fine dimension, that is, the strain. It is possible to know the stress which is important for confirming the strength and the safety from the size of the strain.
  • the strain gauge measures the deformation of the surface of the workpiece as the resistance value of the metal resistance element changes.
  • the resistance value of the metal material increases with increasing force from the outside and decreases with compression. It is applied as a sensing element of a sensor for converting physical quantities such as force, pressure, acceleration, displacement, and torque into electrical signals, and is widely used for measurement control as well as experiment and research.
  • strain gauge sensors are susceptible to corrosion due to the use of metal wires, are not only very sensitive, but also have low output values, requiring additional circuitry to compensate for small signals, and semiconductor tension sensors are heat sensitive.
  • the sensor has an opaque limit depending on the material used.
  • the sensor may be driven only in a specific environment, or may be affected by various environmental factors, such as deterioration of accuracy of the measured value, and at the same time, it may be difficult to secure a constant measured value during repeated driving.
  • these sensors are difficult to manufacture a flexible structure due to its own structural problems, there is a problem of limited application range due to the opaque characteristics.
  • the technical problem to be solved in the present invention is a transparent that can detect the change in tension and pressure applicable to various fields because the accuracy of the measured value is maintained even after repeated use while being less affected by the environment, and has flexibility and transparency It is to provide a high sensitivity sensor.
  • Another technical problem to be solved by the present invention is to provide a method of manufacturing the transparent high sensitivity sensor.
  • the transparent conductive thin film includes a crack having a crack surface facing each other and at least some of the surfaces in contact with each other,
  • a transparent high-sensitivity sensor for measuring an external stimulus by measuring an electrical change caused by a change in contact area or a short circuit or re-contact as the crack plane moves according to an external physical stimulus.
  • It provides a method of manufacturing a transparent high sensitivity sensor comprising the step of inducing a crack by stretching the conductive thin film.
  • the transparent high-sensitivity sensor of the present invention can measure tension and / or pressure with high sensitivity using a transparent conductive thin film formed with cracks on one surface of the support, and has flexibility and transparency, which can be applied to various fields.
  • the transparent high-sensitivity sensor as described above may be applied to high precision measurement or artificial skin, and may be utilized as a positioning detecting sensor by pixelating the sensor, thereby providing a biometric device through precision measurement field, human skin, etc. It can be usefully used in fields such as measurement sensor of human motion and display panel sensor.
  • the high-sensitivity sensor can be mass-produced in a simple process, thereby having a very high economy.
  • FIG. 1 is a schematic diagram illustrating the operating principle of a sensor with a crack-containing transparent conductive thin film.
  • FIG. 2 is a photograph showing a high sensitivity sensor having a crack-containing transparent conductive thin film.
  • FIG. 3 is a schematic diagram showing that the bonding structure of cracks is opened when an external stimulus is applied to a high sensitivity sensor having a crack-containing transparent conductive thin film.
  • FIG. 4 is an FESEM image observed after 2% tensioning of a high sensitivity sensor with a crack containing transparent conductive thin film.
  • FIG. 5 is a graph showing the transmittance before and after crack generation of a highly sensitive sensor with a crack-containing transparent conductive thin film.
  • FIG. 6 is a graph showing the change in electrical resistance over time of a high sensitivity sensor with a crack-containing transparent conductive thin film (ITO thickness: 600 nm, 2% elongation, gauge factor: 4000).
  • FIG. 7 is a graph showing a change in electrical resistance according to a change in strain, indicating hysteresis and reproducibility of a high sensitivity sensor having a crack-containing transparent conductive thin film (red: stretching operation, black: contracting operation).
  • FIG. 8 is a graph showing a change in electrical resistance according to the pressure of the high sensitivity sensor having a transparent conductive thin film containing cracks.
  • FIG. 9 shows a pressure sensor pixel of a high sensitivity sensor with a crack containing transparent conductive thin film.
  • FIG. 10 is a diagram illustrating a pressure sensor pixel in which a red bar observes a change in resistance of a portion where a pixel is pressed.
  • FIG. 11 is a graph showing a change in electric resistance of the pressure sensor pixel of FIG. 10 (when a pressure of 1.8 kPa is applied and a likelihood of 1.2 kPa is applied).
  • Transparent high sensitivity sensor support; And a transparent conductive thin film formed on at least one surface of the support, wherein the transparent conductive thin film includes a crack having a crack surface facing at least and in contact with each other, the crack according to an external physical stimulus. As the surface moves, the external magnetic pole is measured by measuring an electrical change caused by a change in contact area or a short circuit or recontact.
  • the transparent high sensitivity sensor is a sensor in which cracks formed in the transparent conductive thin film are spaced according to tension or pressure, thereby measuring the change in resistance of the conductive thin film, thereby measuring external tension or pressure.
  • the Young's modulus is also referred to as the 'elastic coefficient', and is a coefficient representing the relationship between the stress and the strain of the elastic material, and according to Hook's law, a linear elastic material has a constant value regardless of the magnitude of the stress. Indicates.
  • the difference in Young's modulus may be at least about 95 GPa or at least 100 GPa, preferably at least 111 GPa, at most 120 GPa, or at most 115 GPa, or at most 113 GPa.
  • a transparent conductive thin film having a large Young's modulus on a support having a small Young's modulus by using the above principle, artificially create a fine junction structure (interconnection) as a sensor for detecting a very small change in tension or pressure Will be utilized. That is, among the cracks formed in the transparent conductive thin film, cracks having cracks facing each other and at least some of the surfaces are in contact with each other are present. As the area is changed, the electrical resistance changes or an electrical short or an open is formed, thereby causing a large change in the resistance value on the conductive thin film. It can be used as a sensor.
  • the cracks present in the transparent conductive thin film may have a variety of forms, the extent to which the cracks may also vary depending on the thickness, formation conditions, etc. of the transparent conductive thin film is not particularly limited.
  • the support is preferably any one selected from the group consisting of polyethylene terephthalate (PET), polypropylene (PP), polyethylene (PE) and the like, and most preferably a combination thereof. May be polyethylene terephthalate (PET).
  • the transmittance of the support is preferably 85% or more, the thickness of the support may be 30 ⁇ m to 100 ⁇ m, it is preferable to use a Young's modulus of 3 GPa to 5 GPa.
  • the transparent conductive thin film is ZnO, ZnO: B, ZnO: Al, ZnO: H, SnO, SnO2, SnO2: F, Indium-Tin-Oxide (ITO) and fluorinated SnO (FTO) It is preferably one or a combination thereof selected from the group consisting of, and most preferably Indium-Tin-Oxide (ITO).
  • the transparent conductive thin film is not limited in thickness, but preferably has a thickness such that cracks can be formed by mechanical methods such as tensile and bending, and the conditions for forming such cracks are transparent. It may vary depending on the type of conductive thin film and the support.
  • the transparent conductive thin film preferably has a thickness of 0.1 nm to 1 ⁇ m, more preferably 100 nm to 1000 nm, even more preferably 450 nm to 600 nm.
  • the Young's modulus of the transparent conductive thin film may be 100 GPa to 120 GPa.
  • the crack is preferably generated in a direction perpendicular to the tensile direction. The reason is that cracks formed in the direction perpendicular to the tensile direction can maximize the effect of the change in resistance to tension.
  • the gauge factor of the transparent high sensitivity sensor may be 1 to 1 ⁇ 10 5 , preferably 4,000 to 5,000.
  • the gauge factor means a change rate of the resistance of the strain gauge with respect to the generated strain.
  • the transparent high sensitivity sensor of the present invention operates at a radius of 1 mm or more and a radius of 5 mm or less in a flexibility test. And it may be one having a transmittance of 80% or more, preferably 85% or more.
  • FIG. 2 shows a transparent high sensitivity sensor of the present invention.
  • the transparent high-sensitivity sensor of the present invention is excellent in flexibility so as not to have a sense of incongruity even when the palm is attached to the palm of the palm, and shows that the letters on the back have a transparency that is transparent.
  • the transparent high sensitivity sensor of the present invention can be applied to various fields such as artificial skin, display panel, and the like, and can be utilized as a positioning detecting sensor by pixelating the sensor.
  • ITO Indium-Tin-Oxide
  • the transmittances before and after crack generation of the sensor of Example 1 were compared.
  • the transmittance was measured by UV visible spectroscopy.
  • FIG. 6 illustrates a change in electrical resistance measured while stretching to a maximum of 2% and returning to an original state, that is, 0% strain state
  • FIG. 7 is a graph showing hysteresis and reproducibility of the sensor of Example 1.
  • FIG. 7 shows the change in resistance while loading the sensor of Example 1, which is increased by about 80 times or more from the initial resistance at 2%, and reversible change that returns to the original resistance value while unloading. Indicates. It can be seen that the sensitivity of the sensor, defined as resistance change / initial resistance / strain at 2% strain, is over GF: 4,000.
  • Figure 8 shows the change in the resistance value measured by changing the pressure in the sensor of Example 1 from 0kPa to 70kPa. Resistance value was found to change up to 80 times when the pressure is 70kPa.
  • Fig. 9 shows the pixels of the pressure sensor, and Figs. 10 and 11 show the change in the resistance of the pressed part of the rod. Specifically, it shows when the pressure of 1.8 kPa is applied to the sensor of Example 1 (left side), and when the pressure of 1.2 kPa is applied (right side).
  • finger motion recognition was performed by connecting the transparent electrode sensors to the nodes of the index finger and the middle finger, respectively.
  • the fist state was set to an initial state, and the transparent electrode sensor was bent at a radius of 3 mm.
  • the transparent electrode sensor is bent further to a radius of 5 mm, at which time the crack of the transparent electrode on the top of the transparent electrode sensor opens to change the resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

크랙 함유 투명 전도성 박막을 구비하는 고감도 센서가 제공된다. 상기 고감도 센서는 지지체 상에 형성된 투명 전도성 박막에 미세 크랙을 형성하여 얻어지며, 상기 미세 크랙이 형성하는 미세 접합구조에서의 변화, 단락 또는 개방에 의한 전기적 저항변화의 측정으로 외부의 인장 및 압력을 측정하는 센서에 관한 것으로, 이와 같은 고감도 투명 전도성 크랙 센서는 정밀도가 높은 계측, 또는 인공 피부에 적용이 가능하며, 상기 센서를 픽셀화하여 포지셔닝 디텍팅 센서로도 활용 가능하여, 정밀 계측 분야, 인체 피부 등을 통한 생체 측정 디바이스, 사람의 모션의 측정 센서, 디스플레이 패널 센서 등의 분야에서 유용하게 사용할 수 있다.

Description

크랙 함유 투명 전도성 박막을 구비하는 고감도 센서 및 그의 제조 방법
본 발명은 크랙 함유 투명 전도성 박막을 구비하는 고감도 센서 및 그의 제조방법에 관한 것으로, 미세한 크랙이 형성된 투명 전도성 박막을 사용하여, 인장 및 압력을 감지하는 정밀도가 높은 계측 또는 인공 피부에 적용이 가능한 고 감도 센서에 관한 것이다.
일반적으로 고감도 센서는 미세한 신호를 감지하여 이를 전기적 신호 등의 데이터로 전달하는 장치로서 현대산업에서 필수적으로 요구되는 부품 중 하나이다.
이와 같은 센서 중 압력이나 인장력을 측정하는 센서로서는 정전용량(capacitive) 센서, 압전기(piezoelectric) 센서, 스트레인 게이지 등이 알려져 있다.
기존의 인장 센서인 스트레인 게이지 센서는 기계적인 미세한 변화를 전기신호로 해서 검출하는 센서로서, 기계나 구조물의 표면에 접착해두면, 그 표면에서 생기는 미세한 치수의 변화, 즉 스트레인(strain)을 측정하는 것이 가능하고, 스트레인의 크기로부터 강도나 안전성을 확인하는데 중요한 응력을 알 수 있다.
또한, 스트레인 게이지는 금속저항소자의 저항치 변화에 따라 피 측정물의 표면의 변형을 측정하는 것으로, 일반적으로 금속 재료의 저항치는 외부로부터의 힘에 따라 늘어나면 증가하고 압축되면 감소하는 성질을 가지고 있으며, 힘, 압력, 가속도, 변위 및 토크(torque) 등의 물리량을 전기신호로 바꾸기 위한 센서의 수감 소자로도 응용되고, 실험, 연구뿐만 아니라 계측제어용으로도 널리 이용되고 있다.
최근 인공 피부 등의 센서를 인체에 적용하는 연구가 활발히 진행 중에 있다. 이때 필요한 센서의 특성으로 굴곡이 많은 인체에 적용시키기 위한 플렉시블한 특성과 인체 적용에 있어 거부감이 없도록 투명한 특성이 요구된다.
그러나, 기존의 스트레인 게이지 센서는 금속선을 이용함에 따라, 부식에 약하며, 민감도가 매우 떨어질 뿐만 아니라, 출력 값이 작아서, 작은 신호를 보상하기 위해, 추가 회로가 필요하며, 반도체 인장 센서는 열에 민감한 단점을 가진다. 또한 상기의 센서는 사용되는 재료에 의해 불투명한 한계가 있다.
상기와 같은 문제점에 의해서. 상기의 센서는 특정 환경에서만 구동이 가능하거나, 다양한 환경적 요인에 의해 영향을 받아 측정값의 정확성이 저하되는 등의 문제가 존재함과 동시에 반복 구동시 일정한 측정 값을 확보하기 곤란한 문제가 있다. 특히 최근 활발히 연구가 진행 중인 인공 피부에 요구되는 특성을 고려해 봤을 때, 이들 센서는 자체의 구조적인 문제로 인하여 플렉시블 구조체를 제조하기 곤란하며, 불투명한 특성으로 응용범위가 제한적인 문제가 있다.
따라서, 이러한 문제점을 보완할 수 있는 새로운 고감도 센서의 개발이 요구된다.
본 발명에서 해결하고자 하는 기술적 과제는 환경에 의한 영향을 적게 받으면서 반복적인 사용에도 측정값의 정확도가 유지되며, 유연성 및 투명성을 가지고 있어 다양한 분야에 응용 가능한 인장 및 압력의 변화를 감지할 수 있는 투명 고감도 센서를 제공하는 것이다.
본 발명이 해결하고자 하는 다른 기술적 과제는 상기 투명 고감도 센서의 제조방법을 제공하는 것이다.
상기의 기술적 과제를 해결하기 위해서 본 발명은,
투명 지지체; 및
상기 지지체의 적어도 일면 상에 형성되는 투명 전도성 박막을 구비하며,
상기 투명 전도성 박막은, 서로 마주하면서 적어도 일부 면이 서로 접촉하고 있는 크랙면을 갖는 크랙을 포함하고,
외부 물리적 자극에 따라 상기 크랙면이 이동하면서 접촉면적이 변화하거나 단락 혹은 재접촉에 의해 발생되는 전기적 변화의 측정에 의한 외부자극을 측정하는 투명 고감도 센서를 제공한다.
상기의 다른 기술적 과제를 해결하기 위하여 본 발명은,
지지체의 적어도 일면 상에 투명 전도성 박막을 형성하는 단계; 및
상기 전도성 박막을 인장하여 크랙을 유도하는 단계를 포함하는 투명 고감도 센서의 제조방법을 제공한다.
본 발명의 투명 고감도 센서는 지지체의 일면 상에 크랙이 형성된 투명 전도성 박막을 이용하여, 높은 감도로 인장 및/또는 압력을 측정 할 수 있을 뿐만 아니라, 유연성 및 투명성을 가지고 있어 여러 분야에 응용 가능하다. 상기와 같은 투명 고감도 센서는 정밀도가 높은 계측, 또는 인공 피부에 적용이 가능하며, 상기 센서를 픽셀화하여 포지셔닝 디텍팅 센서로도 활용 가능하여, 정밀 계측 분야, 인체 피부 등을 통한 생체 측정 디바이스, 사람의 모션의 측정 센서, 디스플레이 패널 센서 등의 분야에서 유용하게 사용할 수 있다.
또한, 상기 고감도 센서는 간단한 공정으로 대량 생산이 가능하므로 매우 높은 경제성을 갖는다.
도 1은 크랙 함유 투명 전도성 박막을 구비한 센서의 작동원리를 설명하는 개략도이다.
도 2는 크랙 함유 투명 전도성 박막을 구비한 고감도 센서를 나타내는 사진이다.
도 3은 크랙 함유 투명 전도성 박막을 구비한 고감도 센서에 외부자극을 가했을 때 크랙의 접합 구조가 개방되는 것을 나타낸 모식도이다.
도 4는 크랙 함유 투명 전도성 박막을 구비한 고감도 센서의 2% 인장 후에 관측한 FESEM 이미지이다.
도 5는 크랙 함유 투명 전도성 박막을 구비한 고감도 센서의 크랙 생성 전 후의 투과율을 나타내는 그래프이다.
도 6은 크랙 함유 투명 전도성 박막을 구비한 고감도 센서의 시간에 따른 전기 저항 변화를 나타내는 그래프이다(ITO thickness: 600 nm, 2% 연신, gauge factor: 4000).
도 7은 크랙 함유 투명 전도성 박막을 구비한 고감도 센서의 이력현상 및 재현성을 나타내는, 연신(strain) 변화에 따른 전기저항 변화를 나타내는 그래프이다(빨간색: 늘어나는 동작, 검정색: 수축하는 동작).
도 8은 크랙 함유 투명 전도성 박막을 구비한 고감도 센서의 압력에 따른 전기저항 변화를 나타내는 그래프이다.
도 9는 크랙 함유 투명 전도성 박막을 구비한 고감도 센서의 압력 센서 픽셀을 나타낸다.
도 10은 빨간색 막대가 픽셀을 누른 부분의 저항 변화를 관찰한 압력 센서 픽셀을 나타내는 도면이다.
도 11은 도 10의 압력 센서 픽셀의 전기저항 변화를 나타내는 그래프이다(좌도: 1.8kPa의 압력을 가했을 때, 우도:1.2kPa의 압력을 가했을 때).
도 12는 본 발명에 따른 센서의 유연성 테스트 실험 결과를 나타낸다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
이하, 본 발명의 구현예에 따른 크랙 함유 투명 전도성 박막을 구비하는 고감도 센서에 대하여 보다 상세하게 설명한다.
본 발명의 일 구현예에 따른 투명 고감도 센서는 지지체; 및 상기 지지체의 적어도 일면 상에 형성되는 투명 전도성 박막을 구비하며, 상기 투명 전도성 박막은, 서로 마주하면서 적어도 일부 면이 서로 접촉하고 있는 크랙면을 갖는 크랙을 포함하고, 외부 물리적 자극에 따라 상기 크랙면이 이동하면서 접촉면적이 변화하거나 단락 혹은 재접촉에 의해 발생되는 전기적 변화의 측정에 의한 외부자극을 측정하는 것을 특징으로 한다.
상기 투명 고감도 센서는 투명한 전도성 박막에 형성된 크랙이 인장이나 압력에 따라 간격이 벌어지며 그에 따른 전도성 박막의 저항 변화를 측정하여 외부의 인장이나 압력을 계측하는 센서이다.
본 발명에 있어서 영계수(Young's modulus)는 '탄성계수'라고도 하며, 탄성재료의 응력도와 변형도와의 관계를 나타내는 계수로서 후크의 법칙에 따라 선형 탄성재료의 경우에는 응력도의 크기에 관계없이 일정한 값을 나타낸다.
영계수(Young's modulus)가 작은 물질 위에 영계수가 큰 물질이 놓일 경우, 그 물질을 인장했을 때 서로 다른 영계수 차이에 의해 영계수가 큰 물질에서 크랙이 발생한다. 영계수의 차이는 약 95GPa 이상 또는 100GPa 이상일 수 있고, 바람직하게는 111 GPa 이상, 120 GPa 이하, 또는 115 GPa 이하, 또는 113 GPa 이하일 수 있다. 본 발명에서는 상기와 같은 원리를 이용하여 영계수가 작은 지지체 상에 영계수가 큰 투명 전도성 박막을 형성하여, 미세 접합 구조(interconnection)를 인위적으로 만들고 이를 통해 매우 작은 인장 또는 압력의 변화를 감지하는 센서로 활용하게 된다. 즉, 투명 전도성 박막에 형성시킨 크랙 중에 서로 마주하면서 적어도 일부면이 서로 접촉하고 있는 크랙면을 갖는 크랙이 존재하게 되고 인장이나 압력 변화와 같은 외부 자극을 가할 경우 접촉되어 있던 크랙면이 이동하면서 접촉 면적이 바뀜에 따라 전기적 저항이 변화하거나 전기적 단락(short)이나 개방(open)이 형성되어 상기 전도성 박막상의 저항값의 변화가 크게 발생하게 되며, 이를 검출함으로써 상기 투명 전도성 박막 구조체를 인장센서, 압력센서 등으로 활용이 가능하게 된다.
일 구현예에 따르면, 상기 투명 전도성 박막에 존재하는 크랙은 다양한 형태를 가질 수 있으며, 상기 크랙이 발생하는 정도 또한 투명 전도성 박막의 두께, 형성 조건 등에 따라 달라질 수 있으며 특별히 제한되지 않는다.
본 발명의 투명 고감도 센서에 있어서, 상기 지지체는 폴리에틸렌테레프탈레이트(PET), 폴리프로필렌(PP) 및 폴리에틸렌(PE) 등으로 이루어지는 그룹으로부터 선택되는 어느 하나 또는 이들의 조합인 것이 바람직하며, 가장 바람직하게는 폴리에틸렌테레프탈레이트(PET)일 수 있다.
일 실시예에 따르면, 지지체의 투과도는 85% 이상인 것이 바람직하고, 지지체의 두께는 30 μm 내지 100 μm 일 수 있고, 영계수가 3 GPa 내지 5 GPa 인 것을 사용하는 것이 바람직하다.
본 발명의 투명 고감도 센서에 있어서, 상기 투명 전도성 박막은 ZnO, ZnO:B, ZnO:Al, ZnO:H, SnO, SnO2, SnO2:F, Indium-Tin-Oxide(ITO) 및 fluorinated SnO(FTO) 등으로 이루어지는 그룹으로부터 선택되는 어느 하나 또는 이들의 조합인 것이 바람직하며, 가장 바람직하게는 Indium-Tin-Oxide(ITO)일 수 있다.
일 구현예에 따르면, 상기 투명 전도성 박막은 그 두께가 한정되는 것은 아니나 인장 및 구부림 등의 기계적 방법에 의해 크랙이 형성될 수 있는 정도의 두께를 갖는 것이 바람직하며, 이와 같은 크랙의 형성 조건은 투명 전도성 박막 및 지지체의 종류에 따라 달라질 수 있다.
본 발명의 투명 고감도 센서에 있어서, 상기 투명 전도성 박막의 두께가 0.1 nm 내지 1 ㎛ 인 것이 바람직하며, 더욱 바람직하게는 100 nm 내지 1000 nm, 더욱 더 바람직하게는 450 nm 내지 600 nm 일 수 있다. 또한, 투명 전도성 박막의 영계수는 100 GPa 내지 120 GPa 일 수 있다.
일 실시예에 따르면, 상기 크랙은 인장방향에 대해 수직한 방향으로 생기는 것이 바람직하다. 그 이유는 인장방향에 수직한 방향으로 형성된 크랙은 인장에 대한 저항 변화의 효과가 극대화 될 수 있기 때문이다.
본 발명의 투명 고감도 센서에 있어서, 상기 투명 고감도 센서의 게이지 팩터가(gauge factor) 1 내지 1 x 105 일 수 있으며, 바람직하게는 4,000 내지 5,000 일 수 있다.
본 발명에 있어서 게이지 팩터란 발생한 스트레인(strain)에 대한 스트레인 게이지의 저항 변화율을 의미한다.
본 발명의 투명 고감도 센서에 있어서, 상기 투명 고감도 센서는 유연성 테스트에서 반경 1 mm 이상 반경 5 mm 이하에서 동작하는 것을 확인하였다. 그리고 80 % 이상, 바람직하게는 85% 이상의 투과도를 갖는 것일 수 있다.
예를 들어, 도 2에는 본 발명의 투명 고감도 센서가 도시되어 있다. 도 2에서 확인할 수 있듯이 본 발명의 투명 고감도 센서는 손바닥에 부착하여 손바닥을 오므렸다 폈다 하여도 위화감이 없을 정도로 유연성이 뛰어나며, 뒷면의 글씨가 투명하게 비칠 정도의 투명성을 가지는 것을 나타낸다.
상기와 같은 특성에 의해서 본 발명의 투명 고감도 센서는 인공 피부, 디스플레이 패널 등의 다양한 분야에서 응용할 수 있으며, 상기 센서를 픽셀화 하여 포지셔닝 디텍팅 센서로도 활용 가능하다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 본 기술 분야에서 통상의 지식을 가진 자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 자명한 것이다.
<실시예 1> 투명 고감도 센서의 제작
30 μm 두께의 PET 필름(영계수: 3 GPa) 위에 600 nm 두께의 ITO(Indium-Tin-Oxide)를 스퍼터(sputter) 공정을 통해 증착하였다. 증착조건은 200W, 45 mins, 비가열(no heating)로 하였다.
이 때 ITO는 비정질 상태로 놓아두었다(비정질 ITO의 영계수:116 GPa). ITO를 정질화하면 쉽게 단락되어 센서로서 작용할 수 없기 때문이다. 그 후, 제작한 센서에 인장을 가해 인위적으로 크랙을 발생시켰다. 이때, 크랙은 인장방향과 수직한 방향으로 형성되었다. 그 후, 센서에 전기적 신호를 연결할 수 있도록 전도성 폴리머를 이용해 전선을 부착하였다. 이와 같이 제작한 투명 고감도 센서를 도 1 및 도 2에 도시하였다. 도 3은 상기 투명 고감도 센서가 동작함에 따라 크랙이 벌어지는 것을 나타낸다.
<실험예 1> 크랙의 FESEM 분석
실시예 1의 센서를 2% 인장한 후에, 크랙 부분의 FESEM 이미지를 분석하였다.
분석 결과는 도 4에 나타내었으며, 도 4에 나타난 바와 같이 크랙은 인장방향과 수직으로 형성된 것을 확인 할 수 있었다.
<실험예 2> 크랙 생성 전과 후의 투과율 비교
실시예 1의 센서의 크랙 생성 전과 생성 후의 투과율을 비교하였다. 투과율은 UV visible spectroscopy 로 측정하였다.
분석 결과는 도 5에 나타내었으며, 도 5에 나타낸 바와 같이 크랙 생성 전과 크랙 생성 후의 투과율 변화가 거의 없는 것을 확인할 수 있었다.
<실험예 3> 스트레인 변화에 따른 저항값의 변화
실시예 1의 센서에 인장을 가하면서 전류를 가하여 저항의 변화를 측정하였다. 구체적으로 도 6은 최대 2%까지 인장하였다가 다시 원래 상태 즉 0% 스트레인 상태로 가면서 측정한 전기저항의 변화를 나타낸 것이고, 도 7은 실시예 1의 센서의 이력현상 및 재현성을 나타내는 그래프이다.
도 6에 나타낸 바와 같이, 실시예 1의 센서를 최대 2%까지 인장하였다가 다시 원래 상태 즉 0% 스트레인 상태로 가면서 측정한 전기저항을 측정하였을 때, 전기저항의 변화가 초기 저항의 약 80배까지 변화함을 알 수 있었으며, 반복적으로 같은 형태의 저항 변화를 재현성 있게 얻을 수 있었다. 이는 서로 접촉하고 있던 크랙면이 스트레인이 가해짐에 따라 이동하면서 접촉 면적이 적어지고, 결국은 이격되면서 전기 저항이 급격하게 증가하는 데에 기인하며, 스트레인을 제거함에 따라 센서가 수축되면서 이격되었던 크랙면이 접촉하게 되고, 접촉면적이 증가함에 따라 저항이 줄어들면서 원래 상태로 돌아온다.
도 7은 상기 실시예 1의 센서를 인장(loading)하면서 저항의 변화를 측정한 것으로서 2%에서 초기 저항의 약 80배 이상 증가하며, 스트레인을 제거하면서(unloading) 원래 저항 값으로 돌아오는 가역적 변화를 나타낸다. 2% 스트레인에서 저항변화/초기저항/스트레인으로 정의되는 센서의 감도가 GF: 4,000 이상인 것을 알 수 있다.
<실험예 4> 압력 변화에 따른 저항값의 변화
실시예 1의 센서에 압력을 가하면서 압력의 변화에 따른 저항의 변화를 측정하였다.
도 8은 실시예 1의 센서에 압력을 0kPa 에서 70kPa까지 변화 시켜가면서 측정한 저항값의 변화를 나타낸다. 저항값은 압력이 70kPa 일 때 최대 80배까지 변화함을 알 수 있었다. 도 9는 압력 센서의 픽셀을 나타내며, 도 10 및 11은 막대기가 누른 부분의 저항이 변화하는 것을 나타낸다. 구체적으로 실시예 1의 센서에 1.8 kPa 의 압력을 가했을 때(좌도) 및 1.2 kPa의 압력을 가했을 때(우도)를 나타낸다.
<실험예 5>
도 12 에 도시된 바와 같이, 투명 전극 센서를 검지와 중지의 마디에 각각 연결하여 손가락 동작 인식을 시행하였다. 손을 주먹 진 상태를 초기 상태로 설정하였으며, 이 때 투명 전극 센서는 반경 3 mm 으로 굽혀져 있는 상태이다. 손을 펼쳤을 경우 투명 전극 센서는 반경 5 mm 로 더 굽혀지며, 이 때 투명 전극 센서의 상단에 있는 투명 전극의 크랙이 벌어져 저항이 변한다. 상기 언급한 실험을 통해 투명 전극 센서가 손가락 동작을 인식할 수 있음을 확인했으며, 또한 반경 5 mm 에서 사용가능함을 확인하였다.
이상으로 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (16)

  1. 투명 지지체; 및
    상기 지지체의 적어도 일면 상에 형성되는 투명 전도성 박막을 구비하며,
    상기 투명 전도성 박막은, 서로 마주하면서 적어도 일부 면이 서로 접촉하고 있는 크랙면을 갖는 크랙을 포함하고,
    외부 물리적 자극에 따라 상기 크랙면이 이동하면서 접촉면적이 변화하거나 단락 혹은 재접촉에 의해 발생되는 전기적 변화의 측정에 의한 외부자극을 측정하는 투명 고감도 센서.
  2. 제 1항에 있어서,
    상기 지지체의 영계수(Young's modulus)가 투명 전도성 박막의 영계수보다 작은 것인 투명 고감도 센서.
  3. 제 2항에 있어서,
    상기 지지체는 폴리에틸렌테레프탈레이트(PET), 폴리프로필렌(PP) 및 폴리에틸렌(PE) 등으로 이루어지는 그룹으로부터 선택되는 어느 하나 또는 이들의 조합인 것인 투명 고감도 센서.
  4. 제 1항에 있어서,
    상기 투명 전도성 박막은 ZnO, ZnO:B, ZnO:Al, ZnO:H, SnO, SnO2, SnO2:F, ITO 및 fluorinated SnO(FTO) 등으로 이루어지는 그룹으로부터 선택되는 어느 하나 또는 이들의 조합인 것인 투명 고감도 센서.
  5. 제 1항에 있어서,
    상기 크랙은 상기 지지체와 상기 투명 전도성 박막의 영계수 차이에 의해 형성된 것인 투명 고감도 센서.
  6. 제 5항에 있어서,
    상기 크랙은 나노 수준의 미세 크랙인 것인 투명 고감도 센서.
  7. 제 1항에 있어서,
    외부자극에 의해 상기 크랙의 전기적 단락 또는 개방이 발생하여 상기 전도성 박막의 전기적 저항값이 변화되는 것을 특징으로 하는 투명 고감도 센서.
  8. 제 7항에 있어서,
    상기 외부자극이 인장 및 압력 중 어느 하나 또는 이들의 조합인 것인 투명 고감도 센서.
  9. 제 1항에 있어서,
    상기 투명 전도성 박막의 두께가 0.1 nm 내지 1 ㎛ 인 것인 투명 고감도 센서.
  10. 제 1항에 있어서,
    상기 투명 고감도 센서의 게이지 팩터가 1 내지 1x105 인 것인 투명 고감도 센서.
  11. 제 1항에 있어서,
    상기 고감도 센서는 반경 1 mm 이상의 유연성 및 80 % 이상의 투과도를 가지는 것인 투명 고감도 센서.
  12. 제 1항 내지 제 11항 중 어느 한 항에 따른 투명 고감도 센서를 구비하는 압력센서.
  13. 제 1항 내지 제 11항 중 어느 한 항에 따른 투명 고감도 센서를 구비하는 인장센서.
  14. 제 1항 내지 제 11항 중 어느 한 항에 따른 투명 고감도 센서를 구비하는 인공 피부.
  15. 제 1항 내지 제 11항 중 어느 한 항에 따른 투명 고감도 센서를 구비하는 투명 디스플레이 패널.
  16. 지지체의 적어도 일면 상에 투명 전도성 박막을 형성하는 단계; 및
    상기 전도성 박막에 크랙을 유도하는 단계를 포함하는 제 1항의 투명 고감도 센서의 제조방법.
PCT/KR2017/005401 2016-05-30 2017-05-24 크랙 함유 투명 전도성 박막을 구비하는 고감도 센서 및 그의 제조 방법 WO2017209435A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/305,179 US11796403B2 (en) 2016-05-30 2017-05-24 High-sensitivity sensor having crack-containing transparent conductive thin film and method for preparing same
CN201780032925.6A CN109196320B (zh) 2016-05-30 2017-05-24 具有带裂缝的透明导电薄膜的高灵敏度传感器及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160066677A KR101840114B1 (ko) 2016-05-30 2016-05-30 크랙 함유 투명 전도성 박막을 구비하는 고감도 센서 및 그의 제조 방법
KR10-2016-0066677 2016-05-30

Publications (1)

Publication Number Publication Date
WO2017209435A1 true WO2017209435A1 (ko) 2017-12-07

Family

ID=60478823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005401 WO2017209435A1 (ko) 2016-05-30 2017-05-24 크랙 함유 투명 전도성 박막을 구비하는 고감도 센서 및 그의 제조 방법

Country Status (4)

Country Link
US (1) US11796403B2 (ko)
KR (1) KR101840114B1 (ko)
CN (1) CN109196320B (ko)
WO (1) WO2017209435A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113758614A (zh) * 2021-08-26 2021-12-07 重庆大学 一种液态金属压力传感器及其压力值标定方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102117950B1 (ko) * 2018-11-08 2020-06-02 계명대학교 산학협력단 바이오센서용 전극 제조방법 및 그 바이오센서용 전극
CN113650330B (zh) * 2021-09-13 2022-05-13 大连理工大学 柔性聚合物表面金属纳米裂纹的自动化制造装置及使用方法
CN118140113A (zh) * 2022-05-19 2024-06-04 深圳市韶音科技有限公司 传感器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140011444A (ko) * 2012-07-13 2014-01-28 서울대학교산학협력단 나노입자를 포함하는 전자소자의 제조방법
KR20140078704A (ko) * 2011-09-24 2014-06-25 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 인공 피부 및 탄성 스트레인 센서
KR20150064707A (ko) * 2013-12-03 2015-06-11 재단법인 멀티스케일 에너지시스템 연구단 크랙 함유 전도성 박막을 구비하는 고감도 센서 및 그의 제조방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923801B2 (en) * 2007-04-18 2011-04-12 Invisage Technologies, Inc. Materials, systems and methods for optoelectronic devices
US9056584B2 (en) * 2010-07-08 2015-06-16 Gentex Corporation Rearview assembly for a vehicle
JP5486683B2 (ja) * 2010-11-04 2014-05-07 東海ゴム工業株式会社 曲げセンサ
CN103411712B (zh) * 2013-07-18 2015-12-16 电子科技大学 接触应力传感器
JP6539204B2 (ja) 2014-12-24 2019-07-03 日本メクトロン株式会社 感圧素子および圧力センサ
CN205050572U (zh) * 2015-10-28 2016-02-24 汕头市东通光电材料有限公司 一种防雾耐热手机导电薄膜
KR101898604B1 (ko) * 2015-11-30 2018-09-13 재단법인 멀티스케일 에너지시스템 연구단 직선으로 유도된 크랙 함유 고감도 센서 및 그의 제조 방법
CN105552113B (zh) * 2016-02-29 2018-07-13 北京大学 一种辐射敏感场效应晶体管及其制备方法
CN105609642A (zh) * 2016-04-08 2016-05-25 常州天合光能有限公司 具有纳米线透明导电衬底的钙钛矿太阳电池及制备方法
KR102044152B1 (ko) * 2017-02-24 2019-11-13 성균관대학교산학협력단 크랙 치유 고분자를 포함하는 크랙 센서 및 이를 포함하는 전자 소자
US11552057B2 (en) * 2017-12-20 2023-01-10 Seoul Viosys Co., Ltd. LED unit for display and display apparatus having the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140078704A (ko) * 2011-09-24 2014-06-25 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 인공 피부 및 탄성 스트레인 센서
KR20140011444A (ko) * 2012-07-13 2014-01-28 서울대학교산학협력단 나노입자를 포함하는 전자소자의 제조방법
KR20150064707A (ko) * 2013-12-03 2015-06-11 재단법인 멀티스케일 에너지시스템 연구단 크랙 함유 전도성 박막을 구비하는 고감도 센서 및 그의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIM, JIN-YEOL ET AL.: "A Study on the Resistance and Crack Propagation of ITO/PET Sheet with 20 nm Thick ITO Film.", JOURNAL OF THE KOREAN CERAMIC SOCIETY, vol. 46, no. 1, January 2009 (2009-01-01), pages 86 - 93, XP055447345 *
PARK, BYEONG-HAK ET AL.: "Ultrasensitive Sensors Inspired the Nature", POLYMER SCIENCE AND TECHNOLOGY, vol. 26, no. 4, August 2015 (2015-08-01) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113758614A (zh) * 2021-08-26 2021-12-07 重庆大学 一种液态金属压力传感器及其压力值标定方法

Also Published As

Publication number Publication date
KR20170135175A (ko) 2017-12-08
US11796403B2 (en) 2023-10-24
CN109196320A (zh) 2019-01-11
US20200240860A1 (en) 2020-07-30
CN109196320B (zh) 2021-07-02
KR101840114B1 (ko) 2018-03-19

Similar Documents

Publication Publication Date Title
WO2017209435A1 (ko) 크랙 함유 투명 전도성 박막을 구비하는 고감도 센서 및 그의 제조 방법
Kramer et al. Soft curvature sensors for joint angle proprioception
Dahiya et al. Tactile sensing technologies
Su et al. Digitalized self-powered strain gauge for static and dynamic measurement
WO2017039350A1 (ko) 민감도가 향상된 변형감지센서
Chen et al. Matrix-addressed flexible capacitive pressure sensor with suppressed crosstalk for artificial electronic skin
CN108491109A (zh) 显示面板、显示装置及其显示面板的驱动方法
Jun et al. A pressure-induced bending sensitive capacitor based on an elastomer-free, extremely thin transparent conductor
CN112092018B (zh) 一种触觉传感器、机械手
US20220216809A1 (en) Electronic sensing apparatus and a method of producing the electronic sensing apparatus
WO2012165839A9 (ko) 미세섬모의 인터락킹을 이용한 가역적 전기커넥터, 이를 이용한 다기능 센서 및 그 제작방법
JP2012058159A (ja) センサ装置および分布測定装置
Kim et al. Design of flexible tactile sensor based on three-component force and its fabrication
KR102256241B1 (ko) 전단 및 수직 응력 감지 센서 및 이의 제조 방법
CN109186819A (zh) 一种mems压力传感器模组
Lee et al. Pressure-sensitive strain sensor based on a single percolated Ag nanowire layer embedded in colorless polyimide
WO2018128513A1 (ko) 머신러닝을 이용한 센싱 방법과 센싱 시스템
CN218545975U (zh) 一种可测拉伸及扭转柔性传感器
WO2012115349A2 (ko) 정전영량 방식의 터치스크린을 이용한 생테분자의 검출방법
CN205909784U (zh) 电阻式应变片的封装结构
Du et al. Flexible Piezoresistive Sensor with High Strain Sensitivity and Pressure Insensitivity for Motion Monitoring
WO2023027303A1 (ko) 정전저항식 터치 센서
Huang et al. A novel wearable tactile sensor array designed for fingertip motion recognition
Noda et al. Stretchable force sensor array using conductive liquid
KR102120924B1 (ko) 고감도 복합 센서 및 이를 이용한 센서 측정 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17806928

Country of ref document: EP

Kind code of ref document: A1