WO2017209417A1 - 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2017209417A1
WO2017209417A1 PCT/KR2017/005161 KR2017005161W WO2017209417A1 WO 2017209417 A1 WO2017209417 A1 WO 2017209417A1 KR 2017005161 W KR2017005161 W KR 2017005161W WO 2017209417 A1 WO2017209417 A1 WO 2017209417A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
rach
terminal
control information
uplink
Prior art date
Application number
PCT/KR2017/005161
Other languages
English (en)
French (fr)
Inventor
이길봄
정재훈
김규석
안민기
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/306,389 priority Critical patent/US11297608B2/en
Publication of WO2017209417A1 publication Critical patent/WO2017209417A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the following description relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting uplink control information related to beam mismatch in a wireless communication system.
  • Ultra-high frequency wireless communication systems using millimeter wave are configured such that the center frequency operates at a few GHz to several tens of GHz. Due to the characteristics of the center frequency, path loss may be prominent in the shadow area in the mmWave communication system. In consideration of such path attenuation, the beamforming of the signal transmitted to the terminal in the mmWave communication system needs to be carefully designed, and the occurrence of beam mismatch needs to be controlled and prevented.
  • an object of the present invention is to solve the beam mismatch of the terminal from the base station in a wireless communication system.
  • Still another object of the present invention is to improve communication efficiency in the process of transmitting information to the base station by the terminal to resolve the beam mismatch.
  • Still another object of the present invention is to stabilize the process of requesting information for resolving beam mismatch from the base station to the terminal.
  • an information transmission method includes: determining that a beam mismatch has occurred from a base station; When the beam mismatch occurs, the base station receives a RACH preamble requesting an uplink resource for feedback of beam-related control information through a resource specifically allocated to the terminal for transmission of a random access channel (RACH) preamble from the base station. Transmitting to; Receiving a message including UL assignment information for feedback of the beam related control information from the base station; And transmitting uplink control information including the beam related control information through an uplink resource allocated to the base station.
  • RACH random access channel
  • the base station for solving the technical problem includes a transmitter, a receiver, and a processor operating in connection with the transmitter and the receiver, the processor determines that a beam mismatch has occurred from the base station, In case of occurrence, the RACH preamble requesting an uplink resource for feedback of beam-related control information is transmitted to the base station through a resource allocated to the terminal for random access channel (RACH) preamble transmission from the base station.
  • RACH random access channel
  • the message including the uplink allocation information may be transmitted through a RACH response or a physical downlink control channel (PDCCH).
  • a RACH response or a physical downlink control channel (PDCCH).
  • PDCH physical downlink control channel
  • the RACH preamble may be defined by at least one of a subband, a transmission timing, and an orthogonal cover code (OCC) of the sequence, in addition to the root value and the cyclic shift value of the sequence.
  • OCC orthogonal cover code
  • the transmission timing may specify one or more of a plurality of RACH time base resources.
  • the plurality of RACH time base resources may include a plurality of RACH Orthogonal Frequency Division Multiplexing (RAC) symbols.
  • the transmission of the uplink control information may include transmitting the uplink control information multiplexed in the transmission region of the uplink data channel.
  • the message including the uplink allocation information may include a field consisting of 1 bit indicating whether to allow the transmission of the beam-related information.
  • the beam related control information may include beam state information (BSI).
  • BBI beam state information
  • the beam mismatch of the terminal from the base station in the wireless communication system can be resolved to improve the radio connection quality of the mmWave communication system.
  • the terminal can stably trigger a procedure for resolving the beam mismatch.
  • 1 is a diagram illustrating a Doppler spectrum.
  • FIG. 2 is a diagram illustrating narrow beamforming according to the invention.
  • 3 is a diagram illustrating Doppler spectra when narrow beamforming is performed.
  • FIG. 4 is a diagram illustrating an example of a synchronization signal service zone of a base station.
  • 5 is an example of a frame structure proposed in a communication environment using mmWave.
  • OVSF Orthogonal Variable Spreading Factor
  • FIG. 7 is a diagram illustrating an example of an arrangement of terminals.
  • FIG. 8 is a diagram illustrating a resource area structure used in a communication system using mmWave.
  • RACH random access channel
  • FIG. 10 is a flowchart illustrating an information transmission method according to an exemplary embodiment.
  • FIG. 11 is a diagram illustrating a field configuration method according to a proposed embodiment.
  • OCC orthogonal cover code
  • FIG. 13 is a diagram illustrating a configuration of a terminal and a base station according to the proposed embodiment.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some of the components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment, or may be replaced with corresponding components or features of another embodiment.
  • the base station is meant as a terminal node of a network that directly communicates with a mobile station.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • various operations performed for communication with a mobile station in a network consisting of a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station.
  • the 'base station' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an advanced base station (ABS), or an access point.
  • a 'mobile station (MS)' may be a user equipment (UE), a subscriber station (SS), a mobile subscriber station (MSS), a mobile terminal, an advanced mobile station (AMS), a terminal. (Terminal) or a station (STAtion, STA) and the like can be replaced.
  • UE user equipment
  • SS subscriber station
  • MSS mobile subscriber station
  • AMS advanced mobile station
  • Terminal or a station (STAtion, STA) and the like can be replaced.
  • the transmitting end refers to a fixed and / or mobile node that provides a data service or a voice service
  • the receiving end refers to a fixed and / or mobile node that receives a data service or a voice service. Therefore, in uplink, a mobile station may be a transmitting end and a base station may be a receiving end. Similarly, in downlink, a mobile station may be a receiving end and a base station may be a transmitting end.
  • the description that the device communicates with the 'cell' may mean that the device transmits and receives a signal with the base station of the cell. That is, a substantial target for the device to transmit and receive a signal may be a specific base station, but for convenience of description, it may be described as transmitting and receiving a signal with a cell formed by a specific base station.
  • the description of 'macro cell' and / or 'small cell' may not only mean specific coverage, but also 'macro base station supporting macro cell' and / or 'small cell supporting small cell', respectively. It may mean 'base station'.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802.xx system, 3GPP system, 3GPP LTE system and 3GPP2 system. That is, obvious steps or parts which are not described among the embodiments of the present invention may be described with reference to the above documents.
  • the error value of the oscillator of the terminal and the base station is defined as a requirement, and is described as follows.
  • the UE modulated carrier frequency shall be accurate to within ⁇ 0.1 PPM observed over a period of one time slot (0.5 ms) compared to the carrier frequency received from the E-UTRA Node B
  • Frequency error is the measure of the difference between the actual BS transmit frequency and the assigned frequency.
  • the maximum difference of the oscillator between the base station and the terminal is ⁇ 0.1ppm, and when an error occurs in one direction, a maximum offset value of 0.2 ppm may occur.
  • This offset value is multiplied by the center frequency and converted into Hz units for each center frequency.
  • the CFO value is differently represented by subcarrier spacing, and in general, even when a large CFO value is large, the effect of the OFDM system with a sufficiently large subcarrier spacing is relatively small. Therefore, the actual CFO value (absolute value) needs to be expressed as a relative value affecting the OFDM system, which is called a normalized CFO.
  • the normalized CFO is expressed by dividing the CFO value by the subcarrier spacing. Table 2 below shows the CFO and normalized CFO for each center frequency and oscillator error value.
  • Center frequency (subcarrier spacing) Oscillator offset ⁇ 0.05 ppm ⁇ 0.1 ppm ⁇ 10 ppm ⁇ 20 ppm 2 GHz (15 kHz) ⁇ 100 Hz ( ⁇ 0.0067) ⁇ 200 Hz ( ⁇ 0.0133) ⁇ 20 kHz ( ⁇ 1.3) ⁇ 40 kHz ( ⁇ 2.7) 30 GHz (104.25 kHz) ⁇ 1.5 kHz ( ⁇ 0.014) ⁇ 3 kHz ( ⁇ 0.029) ⁇ 300 kHz ( ⁇ 2.9) ⁇ 600 kHz ( ⁇ 5.8) 60 GHz (104.25 kHz) ⁇ 3 kHz ( ⁇ 0.029) ⁇ 6 kHz ( ⁇ 0.058) ⁇ 600 kHz ( ⁇ 5.8) ⁇ 1.2 MHz ( ⁇ 11.5)
  • a subcarrier spacing (15 kHz) is assumed for a center frequency of 2 GHz (for example, LTE Rel-8 / 9/10), and a subcarrier spacing of 104.25 kHz for a center frequency of 30 GHz or 60 GHz. This prevents performance degradation considering the Doppler effect for each center frequency.
  • Table 2 above is a simple example and it is apparent that other subcarrier spacings may be used for the center frequency.
  • Doppler dispersion causes dispersion in the frequency domain, resulting in distortion of the received signal at the receiver's point of view.
  • Doppler dispersion It can be expressed as.
  • v is the moving speed of the terminal
  • means the wavelength of the center frequency of the transmitted radio waves.
  • means the angle between the received radio wave and the moving direction of the terminal. In the following description, it is assumed that 0 is 0.
  • the coherence time is in inverse proportion to the Doppler variance. If the coherence time is defined as a time interval in which the correlation value of the channel response in the time domain is 50% or more, It is expressed as In a wireless communication system, Equation 1 below is mainly used which represents a geometric mean between the equation for Doppler variance and the equation for coherence time.
  • 1 is a diagram illustrating a Doppler spectrum.
  • the Doppler spectrum or Doppler power spectrum density, which represents a change in the Doppler value according to the frequency change, may have various shapes according to a communication environment.
  • a communication environment such as downtown
  • the Doppler spectrum appears in the U-shape as shown in FIG. 1 shows the center frequency
  • the maximum Doppler variance U-shaped Doppler spectra are shown.
  • FIG. 2 is a diagram showing narrow beamforming according to the present invention
  • FIG. 3 is a diagram showing Doppler spectrum when narrow beamforming is performed.
  • an antenna array including a plurality of antennas may be installed in a small space with a small antenna. This feature enables pin-point beamforming, pencil beamforming, narrow beamforming, or thin beamforming using tens to hundreds of antennas. This narrow beamforming means that the received signal is received only at a certain angle, not in the same direction.
  • FIG. 2A illustrates a case where the Doppler spectrum is U-shaped according to a signal received in an equal direction
  • FIG. 2B illustrates a case where narrow beamforming using a plurality of antennas is performed.
  • the Doppler spectrum also appears narrower than the U-shape due to the reduced angular spread.
  • FIG. 3 it can be seen that Doppler variance appears only in a certain band when the narrow beamforming is performed.
  • the center frequency operates in the band of several GHz to several tens of GHz. This characteristic of the center frequency makes the influence of the CFO due to the Doppler effect or the oscillator difference between the transmitter / receiver caused by the movement of the terminal more serious.
  • FIG. 4 is a diagram illustrating an example of a synchronization signal service zone of a base station.
  • the terminal performs synchronization with the base station by using a downlink (DL) synchronization signal transmitted by the base station.
  • DL downlink
  • timing and frequency are synchronized between the base station and the terminal.
  • the base station transmits the synchronization signal by configuring the beam width as wide as possible so that terminals in a specific cell can receive and use the synchronization signal.
  • path loss is greater than that of a low frequency band in synchronizing signal transmission. That is, in the case of a system using a high frequency band, a cell radius that can be supported compared to a conventional cellular system (for example, LTE / LTE-A) using a relatively low frequency band (for example, 6 GHz or less). This is greatly toned.
  • a conventional cellular system for example, LTE / LTE-A
  • a relatively low frequency band for example, 6 GHz or less
  • a synchronization signal transmission method using beamforming may be used.
  • the cell radius is increased, but the beam width is reduced. Equation 2 below shows the change in the received signal SINR according to the beam width.
  • Equation 2 is the beam width according to the beamforming If received decreases, the received SINR is Fold improvement.
  • Another method for solving the reduction of the cell radius may be considered to repeatedly transmit the same sync signal. This method requires additional resource allocation on the time axis, but has the advantage of increasing the cell radius without reducing the beam width.
  • the base station allocates resources to each terminal by scheduling frequency resources and time resources located in a specific area.
  • this specific zone is defined as a sector.
  • A1, A2, A3, and A4 represent sectors having a radius of 0 to 200 m and widths of 0 to 15 ', 15 to 30', 30 to 45 ', and 45 to 60', respectively.
  • B1, B2, B3, and B4 represent sectors having a radius of 200 to 500 m and widths of 0 to 15 ', 15 to 30', 30 to 45 ', and 45 to 60', respectively.
  • sector 1 is defined as ⁇ A1, A2, A3, A4 ⁇
  • sector 2 is defined as ⁇ A1, A2, A3, A4, B1, B2, B3, B4 ⁇ .
  • the synchronization signal service area of the current base station is sector 1, it is assumed that an additional power of 6 dB or more is required for transmission of the synchronization signal in order for the base station to service the synchronization signal in sector 2.
  • the base station can obtain an additional gain of 6 dB using the beamforming technique to serve sector 2.
  • the service radius can be increased from A1 to B1.
  • A2, A3, and A4 cannot be serviced at the same time. Therefore, when beamforming is performed, a synchronization signal should be separately transmitted to the A2 to B2, A3 to B3, and A4 to B4 sectors. In other words, the base station must transmit a synchronization signal four times beamforming to serve sector 2.
  • the base station can transmit the synchronization signal to all sectors 2, but must transmit the synchronization signal four times on the time axis.
  • the resources required to service sector 2 are the same for both beamforming and iterative transmission.
  • the beam width is narrow, it is difficult for a terminal moving at a high speed or a terminal at the boundary of a sector to stably receive a synchronization signal. Instead, if the ID of the beam in which the terminal is located can be distinguished, there is an advantage that the terminal can determine its own position through a synchronization signal.
  • the repetitive transmission scheme since the beam width is wide, it is very unlikely that the terminal misses the synchronization signal. Instead, the terminal cannot determine its location.
  • 5 is an example of a frame structure proposed in a communication environment using mmWave.
  • one frame consists of Q subframes and one subframe consists of P slots.
  • One slot consists of T OFDM symbols.
  • the first subframe in the frame uses the 0 th slot (slot indicated by 'S') for synchronization purposes.
  • the 0 th slot is composed of A OFDM symbols for timing and frequency synchronization, B OFDM symbols for beam scanning, and C OFDM symbols for informing the UE of system information. The remaining D OFDM symbols are used for data transmission to each terminal.
  • Q, P, T, S, A, B, C, and D may each be arbitrary values and may be values set by a user or automatically set on a system.
  • Equation (3) Denotes the length of an OFDM symbol, the length of a cyclic prefix (CP), and the index of an OFDM symbol, respectively. Denotes a vector of the received signal at the receiver. At this time, Cold signal vector of From the first Vector defined by the first element.
  • the algorithm of Equation 3 operates under the condition that two adjacent OFDM received signals in time are the same.
  • Such an algorithm can use a sliding window method, which can be implemented with low complexity, and has a strong characteristic of frequency offset.
  • Equation 4 represents an algorithm for performing timing synchronization by using a correlation between a received signal and a signal transmitted by a base station.
  • Equation 4 denotes a signal transmitted by the base station and is a signal vector previously promised between the terminal and the base station. Equation 4 may produce better performance than Equation 3, but may not be implemented as a sliding window method, and thus requires high complexity. It also has a feature that is vulnerable to frequency offset.
  • Beam scanning refers to the operation of the transmitter and / or receiver to find the direction of the beam that maximizes the receiver's received SINR.
  • the base station determines the direction of the beam through beam scanning before transmitting data to the terminal.
  • FIG. 4 illustrates a sector served by one base station divided into eight regions.
  • the base station transmits beams in the areas (A1 + B1), (A2 + B2), (A3 + B3), and (A4 + B4), respectively, and the terminal can distinguish beams transmitted by the base station.
  • the beam scanning process can be embodied in four processes. First, i) the base station transmits a beam in four areas in sequence. ii) The terminal determines the beam that is determined to be the most suitable among the beams in view of the received SINR. iii) The terminal feeds back information on the selected beam to the base station. iv) The base station transmits data using the beam having the feedback direction. Through the above beam scanning process, the UE can receive downlink data through the beam with optimized reception SINR.
  • the Zadoff-Chu sequence is called a chu sequence or ZC sequence and is defined by Equation 5 below.
  • N is the length of the sequence
  • r is the root value
  • a characteristic of the ZC sequence is that all elements have the same size (constant amplitude).
  • the DFT results of the ZC sequence also appear the same for all elements.
  • Equation 6 the ZC sequence and the cyclic shifted version of the ZC sequence have a correlation as shown in Equation 6.
  • the ZC sequence also has a zero auto-correlation property, it is also expressed as having a constant Amplitude Zero Auto Correlation (CAZAC).
  • Hadamard matrix is defined as Equation 8 below.
  • Equation (8) Denotes the size of the matrix.
  • Equation 9 It can be seen from Equation 9 that the columns are orthogonal to each other.
  • the OVSF code is generated based on the Hadamard matrix and has a specific rule.
  • the first code when branching to the right side of the OVSF code (lower branch), the first code repeats the upper code on the left side twice (mother code), and the second code repeats the high code code once and inverts it once. Is generated. 6 shows a tree structure of the OVSF code.
  • All of these OVSF codes are orthogonal except for the relationship between adjacent higher and lower codes on the code tree.
  • the code [1 -1 1 -1] is orthogonal to [1 1], [1 1 1 1], and [1 1 -1 -1].
  • the OVSF code has the same length as the code length. That is, in FIG. 6, it can be seen that the length of a specific code is equal to the total number of branches to which the corresponding code belongs.
  • RACH random access channel
  • the base station defines a parameter called 'preambleInitialReceivedTargetPower', and broadcasts the parameter to all terminals in the cell through SIB (System Information Block) 2.
  • SIB System Information Block
  • the UE calculates a path loss using a reference signal, and determines the transmission power of the RACH signal by using the calculated path loss and the 'preambleInitialReceivedTargetPower' parameter as shown in Equation 10 below.
  • P_PRACH_Initial, P_CMAX, and PL represent the transmission power of the RACH signal, the maximum transmission power of the terminal, and the path loss, respectively.
  • Equation 10 it is assumed that the maximum transmit power of the terminal is 23 dBm and the RACH reception power of the base station is -104 dBm. In addition, it is assumed that the terminal is arranged as shown in FIG.
  • the terminal calculates a path loss using the received synchronization signal and the beam scanning signal, and determines the transmission power based on this.
  • Table 3 shows the path loss of the terminal and its transmission power.
  • the RACH signal must be transmitted with a very small power (-44 dBm) to match the RACH reception power.
  • the path loss is large, but the required transmission power is 6 dBm.
  • phase noise related to the present invention Jitter occurring on the time axis appears as phase noise on the frequency axis. This phase noise randomly changes the phase of the received signal on the time axis as shown in Equation 11 below.
  • Equation (11) The parameters represent the phase rotation values due to the received signal, time axis signal, frequency axis signal, and phase noise, respectively.
  • Equation 12 Equation 12 below is derived.
  • Equation (12) The parameters represent Common Phase Error (CPE) and Inter Cell Interference (ICI), respectively. At this time, the larger the correlation between phase noise, the larger the CPE of Equation 12.
  • CPE is a kind of carrier frequency offset (CFO) in a WLAN system, but from the viewpoint of the terminal, the CPE and the CFO can be similarly interpreted.
  • the UE removes the CPE / CFO, which is the phase noise on the frequency axis by estimating the CPE / CFO, and the process of estimating the CPE / CFO for the received signal is a process that must be preceded for accurate decoding of the received signal.
  • the base station may transmit a predetermined signal to the terminal so that the terminal can accurately estimate the CPE / CFO, this signal may be a pilot signal shared in advance between the terminal and the base station as a signal for removing phase noise.
  • the data signal may be a changed or duplicated signal.
  • a series of signals for removing phase noise are collectively called a phase compensation reference signal (PCRS) or a phase noise reference signal (PNRS).
  • FIG. 8 is a diagram illustrating a resource area structure used in the mmWave communication system.
  • a communication system using an ultra high frequency band such as mmWave uses a frequency band different in physical properties from the conventional LTE / LTE-A communication system. Accordingly, in a communication system using an ultra high frequency band, a resource structure of a form different from that of the resource region used in the conventional communication system is being discussed. 8 shows an example of a downlink resource structure of a new communication system.
  • the first two (or three) OFDM symbols 810 is assigned to a control channel (eg, a physical downlink control channel (PDCCH)) similarly to the prior art, the next one OFDM symbol 820 is assigned a DeModulation Reference Signal (DMRS), and the remaining OFDM symbols ( 830 may be assigned a data channel (eg, a Physical Downlink Shared Channel (PDSCH)).
  • a control channel eg, a physical downlink control channel (PDCCH)
  • DMRS DeModulation Reference Signal
  • PDSCH Physical Downlink Shared Channel
  • the PCRS or PNRS for CPE (or CFO) estimation described above in the resource region structure as shown in FIG. 8 may be loaded on some REs in the region 830 to which the data channel is allocated and transmitted to the terminal.
  • This signal is a signal for removing phase noise and may be a pilot signal or a signal whose data signal is changed or duplicated as described above.
  • the terminal determines that the beam mismatch is large from the signal received from the base station, the terminal should transmit information related to beamforming to the base station to solve the beam mismatch.
  • beamforming related information (or beam related control information) transmitted by the terminal to the base station is referred to as BSI (Beam State Information).
  • the terminal may transmit the BSI to the base station.
  • the BSI may include all information on a beam currently beamformed with respect to the UE, such as information on a beam index and information on a beam reception power.
  • the BSI may include information on a beam preferred by the UE (eg, Beam index, etc.). Therefore, the transmission of the BSI may be understood as a process in which the UE informs the base station of a large beam mismatch.
  • the terminal in order for the terminal to transmit the BSI to the base station, receiving the uplink grant from the base station must be preceded. Therefore, in order for the terminal to transmit beamforming related information (BSI) to the base station, a process of first notifying that the UL grant is required for transmitting the BSI is required.
  • BSI beamforming related information
  • the terminal may transmit a signal for requesting a UL grant before transmitting the BSI to the base station.
  • a signal for requesting a UL grant may be a scheduling request (SR), and when the SR is received from the UE, the base station may transmit an xPUSCH (x-Physical Uplink Shared Channel) UL grant through an x-Physical Downlink Control Channel (xPDCCH). Send in response to the terminal.
  • SR scheduling request
  • xPUSCH x-Physical Uplink Shared Channel
  • xPDCCH x-Physical Downlink Control Channel
  • a field that allows multiplexing of control information is defined in a UL grant transmitted by the base station.
  • this field is referred to as a UL feedback request field.
  • the base station allows the terminal to multiplex and transmit uplink control information (eg, BSI) (ie, piggyback)
  • the value of the UL feedback request field is activated to '1'. If the UE does not allow transmission of uplink control information (eg, BSI), the value of the UL feedback request field is deactivated to '0'.
  • the values of the UL feedback request fields are set to '1' and '0', which is merely an example, and the values of the corresponding fields are set opposite to the above examples or set to different values, thereby allowing the terminal to multiplex control information. It may be set to a bit value that allows or disallows the process of transmitting.
  • the UE when the UE checks the value of the UL feedback request field and is allowed to transmit the uplink control information, the UE multiplexes beam-related uplink control information (UCI) with data through the xPUSCH and transmits the data to the base station.
  • the beam-related UCI may be the above-described BSI, and may be information that informs the base station that the beam mismatch is so large that beamforming needs to be adjusted or re-executed.
  • the timing synchronization between the terminal and the base station may be greatly shifted, and the signal to noise ratio (SNR) level may also be significantly different from the case where no beam mismatch occurs. Therefore, even if the terminal transmits a signal for requesting a UL grant for BSI transmission to the base station by using a conventional SR resource (eg, SR resource defined in the LTE standard), the base station signals a request for the UL grant transmitted by the terminal. (Eg, SR preamble) may not be properly received.
  • a conventional SR resource eg, SR resource defined in the LTE standard
  • the UE triggers BSI transmission using a random access channel (RACH) resource instead of an SR.
  • RACH random access channel
  • the RACH resource refers to a resource allocated for the purpose of performing random access.
  • the terminal uses a random access purpose (for example, the purpose of forming a radio link as an initial access (RRC IDLE-> RRC CONNECTED)), the purpose of reconfiguring a radio link after the radio link failure, and a new cell in a handover
  • a random access purpose for example, the purpose of forming a radio link as an initial access (RRC IDLE-> RRC CONNECTED)
  • RRC IDLE-> RRC CONNECTED initial access
  • the base station may define a dedicated RACH resource by changing at least one of a root value, a cyclic shift value, a subband, and a transmission time point of the RACH sequence. Subsequently, the base station may allocate UE-specific allocation of dedicated RACH resources through downlink control information (DCI) or radio resource control (RRC) signaling.
  • DCI downlink control information
  • RRC radio resource control
  • the base station may designate one or more of the RACH time axis resources as a transmission time of a specific terminal.
  • the plurality of RACH time base resources may be composed of a plurality of RACH OFDM symbols.
  • the UE transmits an allocated dedicated RACH resource to the base station, and the base station feeds back a UCI through an x-PUS (x-Physical Uplink Shared Channel) according to the dedicated RACH preamble received from the terminal.
  • x-PUS x-Physical Uplink Shared Channel
  • Equation 13 shows a process of generating a RACH preamble.
  • equation (13) Denotes the n th element of the ZC sequence whose root value is u.
  • v is a cyclic shift value, Denote each subband in which the RACH sequence is transmitted.
  • b indicates an OFDM symbol index (or a sequence index within a RACH subframe) in which the RACH is transmitted.
  • the base station is u, v, May be combined to generate a unique RACH preamble, and the generated RACH preamble may be UE-specifically allocated.
  • the UE may transmit the allocated dedicated RACH preamble to the base station, and when the dedicated RACH preamble is received from any UE, the base station allocates resources for feeding back the UCI from the UE. It can be appreciated that it is requested.
  • the base station may designate a time point at which the RACH preamble can be transmitted to the UE. That is, the UE-specifically allocated RACH preamble may specifically allocate a transmission time of the RACH preamble to the UE in addition to a value (root value, a cyclic shift value) and a subband specifying the sequence.
  • the base station may designate one or more of the RACH time axis resources as a transmission time of a specific terminal.
  • the plurality of RACH time base resources may be composed of a plurality of RACH OFDM symbols.
  • RACH subframe 9 shows a structure of a RACH subframe associated with a proposed embodiment.
  • one RACH subframe consists of five RACH resources, and each RACH resource consists of two sequences. That is, ten RACH sequences are defined in one RACH subframe.
  • the value b described in Equation 13 indicates each RACH sequence index in FIG. 9, and the value c in Equation 13 denotes a weight multiplied by each sequence.
  • 10 is a flowchart illustrating an information transmission method according to an exemplary embodiment. 10 illustrates operations of a terminal and a base station after the UE-specific RACH preamble is allocated according to the above-described process.
  • the UE determines that there is a beam mismatch and needs to transmit beam related uplink control information (for example, BSI) to the base station
  • the UE performs RACH preamble to the base station by using a dedicated RACH resource preassigned to the base station. It transmits (S1010).
  • the RACH preamble may be interpreted as a signal indicating that the UE needs feedback of the UCI including the BSI to the base station.
  • the base station determines that a beam mismatch occurs in the terminal as a request from the terminal is received.
  • the base station defines the aforementioned UL feedback request field (or, xPUSCH UCI feedback request field) and sets the value of the corresponding field to 0 or 1 and transmits the value to the terminal (S1020).
  • the UL feedback request field (or the xPUSCH UCI feedback request field) is a RACH response or PDCCH transmitted by the base station in response to the RACH preamble of the UE (hereinafter, for convenience of description, a response signal for the RACH preamble) May be transmitted as a RACH response).
  • the UL feedback request field may be used for indicating whether to allow BSI transmission from the terminal.
  • the UL feedback request (or xPUSCH UCI feedback request) may refer to a process of requesting the base station to multiplex and transmit the UCI including the BSI to the UE.
  • the UL feedback request field (or the xPUSCH UCI feedback request field) may be transmitted to the UE periodically or aperiodically.
  • the base station may transmit a UL feedback request field (or an xPUSCH UCI feedback request field) by transmitting a DCI to the terminal.
  • the UE If the UE is allowed to multiplex and transmit the BSI by checking the value of the UL feedback request field (or the xPUSCH UCI feedback request field), the UE multiplexes beam-related information including the BSI to the xPUSCH and transmits the information to the base station (S1030). .
  • the value of the field received in S1020 is not a value for requesting the BSI transmission, the terminal does not transmit the BSI to the base station.
  • the subsequent RACH process is not performed. That is, after the RACH preamble / response transmission and reception, the UE transmits the BRC to the base station instead of transmitting the RRC connection request message or the RRC completion message.
  • the system overhead is relatively low because the idle RACH resource can be utilized when there is room in the idle RACH resource.
  • the RACH process is stably performed.
  • the base station has a higher probability of receiving a request than when using the SR.
  • the terminal may align timing with the base station.
  • stable beam recovery can be performed for beam mismatches that may occur when the terminal transitions from the dormant state (or DRX, Discontinuous Reception mode) to the active state.
  • 11 is a diagram illustrating a field configuration method according to a proposed embodiment. 11 illustrates an example of a configuration of an UL feedback request field (or an xPUSCH UCI feedback request field) of a base station described above.
  • a UL feedback request field (or an xPUSCH UCI feedback request field) is defined in an RACH response that is not a UL grant.
  • the base station receiving the dedicated RACH preamble transmitted by the terminal determines the specific field value of the RACH response signal to be transmitted to the terminal as 1.
  • This field may be configured as 1 bit as described above, and is illustrated in FIG. 11 as being implemented as the first bit of the RACH response, but is not limited thereto and may be implemented as the middle or last bit of the RACH response.
  • the value of the bit '1' may mean requesting (ie, permitting) multiplexing and transmission of the BSI, and the value of '0' may mean not requesting (ie, disallowing).
  • the meaning of the bit value may correspond to the opposite.
  • FIG. 12 is a diagram illustrating a method of applying an orthogonal cover code (OCC) according to a proposed embodiment.
  • OCC orthogonal cover code
  • another dedicated RACH resource may be defined by applying the OCC to the repetition structure defined in the RACH preamble.
  • the same sequence (same root value and cyclic shift value), the same subband, and the same transmission time point are allocated to the terminal A and the terminal B.
  • the c value of the even / odd sequence of the terminal A is defined as 1 and 1.
  • FIG. 12 the c value of the even / odd sequence of the terminal B is defined as 1 and -1. This embodiment is shown in FIG. 12.
  • the base station may designate one or more of the RACH time axis resources as a transmission time of a specific terminal.
  • the plurality of RACH time base resources may be composed of a plurality of RACH OFDM symbols.
  • the RACH preamble allocated to the terminal A and the RACH preamble allocated to the terminal B are distinguished from each other. That is, when OCC [1 1] is allocated to UE A and OCC [1 -1] is allocated to UE B, since the two OCCs are orthogonal to each other, the BS can distinguish the RACH preambles of the two UEs from each other.
  • the c value may have a value of 1 or -1
  • the embodiment of Figure 12 corresponds to the content.
  • the present invention proposes a method for the terminal to transmit the beam-related uplink control information (eg, BSI).
  • the beam-related uplink control information eg, BSI
  • the UE transmits the RACH preamble through a RACH resource set in advance (eg, set by the LTE standard).
  • the RACH preamble may be determined by any sequence.
  • the RACH resource does not need to be defined UE uniquely.
  • a predetermined RACH resource is a contention-based RACH resource has the disadvantage that all terminals are available. In other words, since all terminals can transmit and receive signals through the (competition based) RACH resource, signal collision may occur.
  • the base station receiving any RACH preamble (or RACH preamble) transmitted through the RACH resource transmits a RAR (RACH Response) to the UE.
  • RAR RACH Response
  • the terminal transmits an RRC connection request message to the base station by using the UL resource indicated by the RAR.
  • the signal transmission and reception method may be performed according to a random access procedure defined in the conventional LTE standard.
  • the UE transmits the ID information allocated from the Common-Radio Network Temporary Identity (C-RNTI) or the base station in the RRC connection request message to the base station so that the RRC connection request message is UL initial access (UL initial access) purpose. This may indicate that the beam recovery purpose is not.
  • C-RNTI Common-Radio Network Temporary Identity
  • UL initial access UL initial access
  • the UE in the RRC IDLE state may transmit an RRC connection request message to the base station to request an uplink initial access, wherein the RRC connection request message includes an arbitrary ID ( Example: random ID).
  • the base station may check the ID information included in the received RRC connection request message to determine whether the RRC connection request message is an uplink initial access purpose or beam recovery purpose.
  • the base station can know that the terminal is already in the RRC connection state by receiving the RRC connection request message including the C-RNTI, similar to step S1020 the base station defines a UL feedback request field (or, xPUSCH UCI feedback request field) The value of the corresponding field is set to 1 and transmitted to the terminal.
  • step S1030 the UE multiplexes beam-related information including the BSI to the xPUSCH and transmits the same to the base station.
  • the terminal according to the present invention may transmit a signal through the UE-specific RACH resources or contention-based RACH resources in order to trigger the UL grant for BSI transmission.
  • the UE may be allocated a dedicated RACH resource capable of transmitting a UL grant for BSI feedback and may not be allocated.
  • the UE may request a UL grant for BSI feedback from the base station by transmitting a RACH preamble through the allocated dedicated RACH resource.
  • the UE transmits the RACH preamble to the base station through the contention-based RACH resources, and RRC connection request message including the C-RNTI through the UL resource indicated by the RAR received from the base station
  • the UL grant for the BSI feedback may be requested to the base station by transmitting the.
  • the present invention proposes a method of defining xPUSCH resource request signaling for UCI feedback by using a PUCCH format 1 resource.
  • This PUCCH format 1 simply represents a PUCCH format for SR only.
  • PUCCH format 2 may be applied to the method. That is, PUCCH format 2 may also be defined as signaling for xPUSCH resource request for UCI feedback.
  • FIG. 13 is a diagram illustrating a configuration of a terminal and a base station according to an embodiment of the present invention.
  • the terminal 100 and the base station 200 may include radio frequency (RF) units 110 and 210, processors 120 and 220, and memories 130 and 230, respectively.
  • FIG. 13 illustrates only a 1: 1 communication environment between the terminal 100 and the base station 200, a communication environment may also be established between a plurality of terminals and a plurality of base stations.
  • the base station 200 illustrated in FIG. 13 may be applied to both the macro cell base station and the small cell base station.
  • Each RF unit 110, 210 may include a transmitter 112, 212 and a receiver 114, 214, respectively.
  • the transmitting unit 112 and the receiving unit 114 of the terminal 100 are configured to transmit and receive signals with the base station 200 and other terminals, and the processor 120 is functionally connected with the transmitting unit 112 and the receiving unit 114.
  • the transmitter 112 and the receiver 114 may be configured to control a process of transmitting and receiving signals with other devices.
  • the processor 120 performs various processes on the signal to be transmitted and transmits the signal to the transmitter 112, and performs the process on the signal received by the receiver 114.
  • the processor 120 may store information included in the exchanged message in the memory 130.
  • the terminal 100 can perform the method of various embodiments of the present invention described above.
  • the transmitter 212 and the receiver 214 of the base station 200 are configured to transmit and receive signals with other base stations and terminals, and the processor 220 is functionally connected to the transmitter 212 and the receiver 214 to transmit the signal. 212 and the receiver 214 may be configured to control the process of transmitting and receiving signals with other devices.
  • the processor 220 may perform various processing on the signal to be transmitted, transmit the signal to the transmitter 212, and may perform processing on the signal received by the receiver 214. If necessary, the processor 220 may store information included in the exchanged message in the memory 230. With such a structure, the base station 200 may perform the method of the various embodiments described above.
  • Processors 120 and 220 of the terminal 100 and the base station 200 respectively instruct (eg, control, coordinate, manage, etc.) the operation in the terminal 100 and the base station 200.
  • Respective processors 120 and 220 may be connected to memories 130 and 230 that store program codes and data.
  • the memories 130 and 230 are coupled to the processors 120 and 220 to store operating systems, applications, and general files.
  • the processor 120 or 220 of the present invention may also be referred to as a controller, a microcontroller, a microprocessor, a microcomputer, or the like.
  • the processors 120 and 220 may be implemented by hardware or firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • the above-described method may be written as a program executable on a computer, and may be implemented in a general-purpose digital computer which operates the program using a computer readable medium.
  • the structure of the data used in the above-described method can be recorded on the computer-readable medium through various means.
  • Program storage devices that may be used to describe storage devices that include executable computer code for performing the various methods of the present invention should not be understood to include transient objects, such as carrier waves or signals. do.
  • the computer readable medium includes a storage medium such as a magnetic storage medium (eg, a ROM, a floppy disk, a hard disk, etc.), an optical reading medium (eg, a CD-ROM, a DVD, etc.).
  • the above description can be applied to various wireless communication systems including not only 3GPP LTE and LTE-A systems, but also IEEE 802.16x and 802.11x systems. Furthermore, the proposed method can be applied to mmWave communication system using ultra high frequency band.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

기지국으로부터의 빔 불일치가 발생했음을 판단하고, 기지국으로 빔 불일치를 나타내는 빔 관련 정보를 전송하기 위하여 단말 특정적으로 할당된 RACH 프리엠블을 기지국으로 전송하고, 기지국으로부터 빔 관련 정보의 전송을 요청하는 메시지(예: RACH 응답)을 수신하며, 기지국으로 빔 관련 정보를 포함하는 상향링크 제어 정보를 전송하는 정보 전송 방법 및 단말이 개시된다.

Description

무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 이를 위한 장치
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 구체적으로는 무선 통신 시스템에서 빔 불일치에 관련된 상향링크 제어 정보를 전송하는 방법 및 그 장치에 대한 것이다.
밀리미터 웨이브(mmWave)를 이용한 초고주파 무선 통신 시스템은 중심 주파수가 수 GHz 내지 수십 GHz에서 동작하도록 구성된다. 이러한 중심 주파수의 특성으로 인하여 mmWave 통신 시스템에서는 음영 지역에서 경로 감쇄(path loss)가 두드러지게 나타날 수 있다. 이러한 경로 감쇄를 고려할 때, mmWave 통신 시스템에서 단말로 전송되는 신호의 빔포밍(beamforming)은 정교하게 설계되어야할 뿐 아니라, 빔 불일치의 발생이 제어되고 방지될 필요가 있다.
본 발명은 상기한 바와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 무선 통신 시스템에서 기지국으로부터 단말의 빔 불일치를 해결하기 위한 것이다.
본 발명의 또 다른 목적은 단말이 빔 불일치를 해결하기 위한 정보를 기지국에 전송하는 과정의 통신 효율을 개선하는 것이다.
본 발명의 또 다른 목적은 기지국이 단말에 빔 불일치를 해결하기 위한 정보를 요청하는 과정을 안정화하는 것이다.
본 발명에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 발명의 실시 예들로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.
상기 기술적 과제를 해결하기 위한 정보 전송 방법은, 기지국으로부터의 빔 불일치(beam mismatch)가 발생했음을 판단하는 단계; 상기 빔 불일치가 발생한 경우, 상기 기지국으로부터 RACH(Random Access Channel) 프리엠블 전송을 위해 단말 특정적으로 할당 받은 자원을 통해 빔 관련 제어 정보의 피드백을 위한 상향링크 자원을 요청하는 RACH 프리엠블을 상기 기지국으로 전송하는 단계; 상기 기지국으로부터 상기 빔 관련 제어 정보의 피드백을 위한 상향링크 할당 (UL Assignment) 정보를 포함하는 메시지를 수신하는 단계; 및 상기 기지국으로 할당된 상향링크 자원을 통해 상기 빔 관련 제어 정보를 포함하는 상향링크 제어 정보를 전송하는 단계를 포함한다.
상기 기술적 과제를 해결하기 위한 기지국은, 송신부, 수신부, 및 송신부 및 수신부와 연결되어 동작하는 프로세서를 포함하되, 프로세서는, 기지국으로부터의 빔 불일치(beam mismatch)가 발생했음을 판단하고, 상기 빔 불일치가 발생한 경우, 상기 기지국으로부터 RACH(Random Access Channel) 프리엠블 전송을 위해 단말 특정적으로 할당 받은 자원을 통해 빔 관련 제어 정보의 피드백을 위한 상향링크 자원을 요청하는 RACH 프리엠블을 상기 기지국으로 전송하고, 상기 기지국으로부터 상기 빔 관련 제어 정보의 피드백을 위한 상향링크 할당 (UL Assignment) 정보를 포함하는 메시지를 수신하고, 상기 기지국으로 할당된 상향링크 자원을 통해 상기 빔 관련 제어 정보를 포함하는 상향링크 제어 정보를 전송하도록 구성된다.
여기서, 상기 상향링크 할당 정보를 포함하는 메시지는, RACH 응답 또는 물리 하향링크 제어 채널 (PDCCH)를 통해 전송될 수 있다.
또한, 상기 RACH 프리엠블은 시퀀스의 루트 값 및 순환 시프트 값에 더하여, 서브밴드, 전송 타이밍 및 시퀀스의 OCC(Orthogonal Cover Code) 중 적어도 하나에 의해 정의될 수 있다.
이때, 상기 전송 타이밍은 복수의 RACH 시간 축 자원 중 하나 이상을 지정할 수 있다. 특히, 상기 복수의 RACH 시간 축 자원은, 복수의 RACH OFDM (Orthogonal Frequency Division Multiplexing) 심볼을 포함할 수 있다.
여기서, 상기 상향링크 제어 정보의 전송은 상기 상향링크 제어 정보가 상향링크 데이터 채널의 전송 영역에 멀티플렉싱되어 전송되는 것을 포함할 수 있다.
또한, 상기 상향링크 할당 정보를 포함하는 메시지는 상기 빔 관련 정보의 전송 허용 여부를 나타내는 1비트로 구성되는 필드를 포함할 수 있다.
또한, 상기 빔 관련 제어 정보는 BSI (Beam State Information)을 포함할 수 있다.
본 발명의 실시 예들에 따르면 다음과 같은 효과를 기대할 수 있다.
첫째로, 무선 통신 시스템에서 기지국으로부터 단말의 빔 불일치가 해결되어 mmWave 통신 시스템의 무선 연결 품질이 향상될 수 있다.
둘째로, 빔 불일치를 해결하기 위한 정보를 송수신하는 시그널링 오버헤드가 줄어들 수 있다.
셋째로, 통신 환경이 불안정한 경우에도 단말이 빔 불일치를 해결하기 위한 절차를 안정적으로 트리거링할 수 있다.
본 발명의 실시 예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 발명의 실시 예들에 대한 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 발명을 실시함에 따른 의도하지 않은 효과들 역시 본 발명의 실시 예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.
이하에 첨부되는 도면들은 본 발명에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 발명에 대한 실시 예들을 제공한다. 다만, 본 발명의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시 예로 구성될 수 있다. 각 도면에서의 참조 번호(reference numerals)들은 구조적 구성요소(structural elements)를 의미한다.
도 1은 도플러 스펙트럼을 도시하는 도면이다.
도 2는 발명과 관련된 좁은 빔포밍(narrow beamforming)을 도시하는 도면이다.
도 3은 좁은 빔포밍이 수행될 경우의 도플러 스펙트럼을 도시하는 도면이다.
도 4는 기지국의 동기 신호 서비스 구역의 예시를 도시하는 도면이다.
도 5는 mmWave를 사용하는 통신 환경에서 제안하는 프레임 구조의 예이다.
도 6은 OVSF(Orthogonal Variable Spreading Factor) 코드의 구조를 도시한다.
도 7은 단말의 배치 상황을 예로 들어 설명하는 도면이다.
도 8은 mmWave를 사용하는 통신 시스템에서 이용되는 자원 영역 구조를 도시하는 도면이다.
도 9는 제안하는 실시 예와 관련된 RACH(Random Access Channel) 서브프레임의 구조를 도시하는 도면이다.
도 10은 제안하는 실시 예에 따른 정보 전송 방법을 도시하는 흐름도이다.
도 11은 제안하는 실시 예에 따른 필드 구성 방법을 도시하는 도면이다.
도 12는 제안하는 실시 예에 따른 OCC(Orthogonal Cover Code) 적용 방법을 도시하는 도면이다.
도 13은 제안하는 실시 예와 관련된 단말 및 기지국의 구성을 도시하는 도면이다.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.
이하의 실시 예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성할 수도 있다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 본 발명의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 발명을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.
본 명세서에서 본 발명의 실시 예들은 기지국과 이동국 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 이동국과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 이동국과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국(fixed station), Node B, eNode B(eNB), 발전된 기지국(Advanced Base Station, ABS) 또는 액세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
또한, '이동국(Mobile Station, MS)'은 UE(User Equipment), SS(Subscriber Station), MSS(Mobile Subscriber Station), 이동 단말(Mobile Terminal), 발전된 이동단말(Advanced Mobile Station, AMS), 단말(Terminal) 또는 스테이션(STAtion, STA) 등의 용어로 대체될 수 있다.
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미한다. 따라서, 상향링크에서는 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크에서는 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다.
또한, 디바이스가 '셀'과 통신을 수행한다는 기재는 디바이스가 해당 셀의 기지국과 신호를 송수신하는 것을 의미할 수 있다. 즉, 디바이스가 신호를 송신하고 수신하는 실질적인 대상은 특정 기지국이 될 수 있으나, 기재의 편의상 특정 기지국에 의해 형성되는 셀과 신호를 송수신하는 것으로 기재될 수 있다. 마찬가지로, '매크로 셀' 및/또는 '스몰 셀' 이라는 기재는 각각 특정한 커버리지(coverage)를 의미할 수 있을 뿐 아니라, '매크로 셀을 지원하는 매크로 기지국' 및/또는 '스몰 셀을 지원하는 스몰 셀 기지국'을 의미할 수도 있다.
본 발명의 실시 예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP 시스템, 3GPP LTE 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시 예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다.
또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다. 특히, 본 발명의 실시 예들은 IEEE 802.16 시스템의 표준 문서인 P802.16e-2004, P802.16e-2005, P802.16.1, P802.16p 및 P802.16.1b 표준 문서들 중 하나 이상에 의해 뒷받침될 수 있다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
또한, 본 발명의 실시 예들에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
1. 초고주파 대역을 이용한 통신 시스템
LTE(Long Term Evolution)/LTE-A(LTE Advanced) 시스템에서는 단말과 기지국의 오실레이터의 오차값을 요구사항(requirement)로 규정하며, 아래와 같이 기술한다.
- UE side frequency error (in TS 36.101)
The UE modulated carrier frequency shall be accurate to within ±0.1 PPM observed over a period of one time slot (0.5 ms) compared to the carrier frequency received from the E-UTRA Node B
- eNB side frequency error (in TS 36.104)
Frequency error is the measure of the difference between the actual BS transmit frequency and the assigned frequency.
한편, 기지국의 종류에 따른 오실레이터 정확도는 아래의 표 1과 같다.
BS class Accuracy
Wide Area BS ±0.05 ppm
Local Area BS ±0.1 ppm
Home BS ±0.05 ppm
따라서, 기지국과 단말 간의 오실레이터의 최대 차이는 ±0.1ppm 으로, 한쪽 한쪽 방향으로 오차가 발생하였을 경우 최대 0.2ppm의 오프셋 값이 발생할 수 있다. 이러한 오프셋 값은 중심 주파수와 곱해짐으로써 각 중심 주파수에 맞는 Hz 단위로 변환된다.
한편, OFDM(Orthogonal Frequency Division Multiplexing) 시스템에서는 CFO 값이 서브캐리어 간격(subcarrier spacing)에 의해 다르게 나타나며, 일반적으로 큰 CFO 값이라 하더라도 서브캐리어 간격이 충분히 큰 OFDM 시스템에서 미치는 영향은 상대적으로 작다. 따라서, 실제 CFO 값(절대값)은 OFDM 시스템에 영향을 주는 상대적인 값으로 표현될 필요가 있으며, 이를 정규화된 CFO(normalized CFO)라 한다. 정규화된 CFO는 CFO 값을 서브캐리어 간격으로 나눈 값으로 표현되며, 아래의 표 2는 각 중심 주파수와 오실레이터의 오차 값에 대한 CFO와 정규화된 CFO를 나타낸다.
Center frequency(subcarrier spacing) Oscillator Offset
±0.05 ppm ±0.1 ppm ±10 ppm ±20 ppm
2GHz (15kHz) ±100Hz(±0.0067) ±200Hz(±0.0133) ±20kHz(±1.3) ±40kHz(±2.7)
30GHz (104.25kHz) ±1.5kHz(±0.014) ±3kHz(±0.029) ±300kHz(±2.9) ±600kHz(±5.8)
60GHz (104.25kHz) ±3kHz(±0.029) ±6kHz(±0.058) ±600kHz(±5.8) ±1.2MHz(±11.5)
표 2에서 중심 주파수가 2GHz인 경우(예를 들어, LTE Rel-8/9/10)에는 서브캐리어 간격(15kHz)를 가정하였으며, 중심 주파수가 30GHz, 60GHz인 경우에는 서브캐리어 간격을 104.25kHz를 사용함으로써 각 중심 주파수에 대해 도플러 영향을 고려한 성능 열화를 방지하였다. 위의 표 2는 단순한 예시이며, 중심 주파수에 대해 다른 서브캐리어 간격이 사용될 수 있음은 자명하다.
한편, 단말이 고속으로 이동하는 상황이나 고주파수 대역에서 이동하는 상황에서는 도플러 분산(Doppler spread) 현상이 크게 발생한다. 도플러 분산은 주파수 영역에서의 분산을 유발하며, 결과적으로 수신기 입장에서 수신 신호의 왜곡을 발생시킨다. 도플러 분산은
Figure PCTKR2017005161-appb-I000001
로 표현될 수 있다. 이때, v는 단말의 이동 속도이며, λ는 전송되는 전파의 중심 주파수의 파장을 의미한다. θ는 수신되는 전파와 단말의 이동 방향 사이의 각도를 의미한다. 이하에서는 θ가 0인 경우를 전제로 설명한다.
이때, 코히어런스 타임(coherence time)은 도플러 분산과 반비례하는 관계에 있다. 만약, 코히어런스 타임을 시간 영역에서 채널 응답의 상관관계(correlation) 값이 50% 이상인 시간 간격으로 정의하는 경우,
Figure PCTKR2017005161-appb-I000002
로 표현된다. 무선 통신 시스템에서는 도플러 분산에 대한 수식과 코히어런스 타임에 대한 수식 간의 기하 평균(geometric mean)을 나타내는 아래의 수학식 1이 주로 이용된다.
Figure PCTKR2017005161-appb-M000001
도 1은 도플러 스펙트럼을 도시하는 도면이다.
주파수 변화에 따른 도플러 값의 변화를 나타내는 도플러 스펙트럼(Doppler spectrum, 또는 도플러 파워 스펙트럼 밀도(Doppler power spectrum density))는 통신 환경에 따라 다양한 모양을 가질 수 있다. 일반적으로, 도심지와 같이 산란(scattering)이 많이 발생하는 환경에서, 수신 신호가 모든 방향으로 동일한 파워로 수신된다면 도플러 스펙트럼은 도 1과 같은 U-형태로 나타난다. 도 1은 중심 주파수를 라 하고 최대 도플러 분산 값을
Figure PCTKR2017005161-appb-I000004
라 할 때의 U-형태 도플러 스펙트럼을 도시한다.
도 2는 발명과 관련된 좁은 빔포밍을 도시하는 도면이며, 도 3은 좁은 빔포밍이 수행될 경우의 도플러 스펙트럼을 도시하는 도면이다.
초고주파 무선 통신 시스템은 중심 주파수가 매우 높은 대역에 위치하기 때문에, 안테나의 크기가 작고 작은 공간 내에 복수의 안테나로 구성되는 안테나 어레이를 설치할 수 있는 특징이 있다. 이러한 특징으로 인해 수십 내지 수백 개의 안테나를 이용한 핀포인트 빔포밍(pin-point beamforming), 펜슬 빔포밍(pencil beamforming), 좁은 빔포밍(narrow beamforming), 또는 얇은 빔포밍(sharp beamforming)이 가능해진다. 이러한 좁은 빔포밍은 수신되는 신호가 등방향이 아닌 일정한 각도로만 수신된다는 것을 의미한다.
도 2(a)는 등방향으로 수신되는 신호에 따라 도플러 스펙트럼이 U-형태로 나타나는 경우를 도시하며, 도 2(b)는 복수의 안테나를 이용한 좁은 빔포밍이 수행되는 경우를 도시한다.
이와 같이, 좁은 빔포밍을 수행하면 줄어든 angular spread로 인하여 도플러 스펙트럼도 U-형태 보다 좁게 나타난다. 도 3에 도시된 바와 같이, 좁은 빔포밍이 수행되는 경우의 도플러 스펙트럼은 일정 대역에서만 도플러 분산이 나타남을 알 수 있다.
앞서 설명한 초고주파 대역을 이용하는 무선 통신 시스템은 중심 주파수가 수 GHz 내지 수십 GHz 대역에서 동작한다. 이러한 중심주파수의 특성은 단말의 이동에 따라 발생하는 도플러 효과나 송신기/수신기 간의 오실레이터 차이로 인한 CFO의 영향을 더욱 심각하게 한다.
도 4는 기지국의 동기 신호 서비스 구역의 예시를 도시하는 도면이다.
단말은 기지국이 전송하는 하향링크(Downlink, DL) 동기 신호(synchronization signal)를 이용하여 기지국과 동기화를 수행한다. 이러한 동기화 과정에서는 기지국과 단말 간에 타이밍(timing) 과 주파수가 동기화된다. 동기화 과정에서 특정 셀 내의 단말들이 동기 신호를 수신하고 이용할 수 있도록, 기지국은 빔폭을 최대한 넓게 구성하여 동기 신호를 전송한다.
한편, 고주파 대역을 이용하는 mmWave 통신 시스템의 경우, 동기 신호 전송에 있어서 저주파 대역을 이용하는 경우에 비해 경로 감쇄(path loss)가 더 크게 나타난다. 즉, 고주파 대역을 이용하는 시스템의 경우, 상대적으로 낮은 주파수 대역(예를 들어, 6GHz 이하)을 이용하는 종래의 셀룰러 시스템(예를 들어, LTE/LTE-A)에 비해 지원할 수 있는 셀 반경(radius)이 큰 폭으로 축호된다.
이러한 셀 반경의 축소를 해결하기 위한 하나의 방법으로서, 빔포밍(beam forming)을 이용한 동기 신호 전송 방법이 이용될 수 있다. 빔포밍이 이용되는 경우 셀 반경은 증가하지만, 빔 폭이 줄어드는 단점이 있다. 아래의 수학식 2는 빔 폭에 따른 수신 신호 SINR 의 변화를 나타낸다.
Figure PCTKR2017005161-appb-M000002
수학식 2은 빔포밍에 따라 빔 폭이
Figure PCTKR2017005161-appb-I000005
배 감소하는 경우, 수신 SINR이
Figure PCTKR2017005161-appb-I000006
배 향상됨을 나타낸다.
이러한 빔포밍 방식 이외에, 셀 반경의 축소를 해결하기 위한 또다른 방법으로서 동일한 동기 신호를 반복하여 전송하는 방식 또한 고려해볼 수 있다. 이러한 방식의 경우, 시간축으로 추가적인 자원할당이 필요하지만, 빔 폭의 감소 없이도 셀 반경을 증가시킬 수 있다는 장점이 있다.
한편, 기지국은 특정 구역 내에 위치하는 주파수 자원 및 시간 자원을 스케쥴링함으로써 각 단말들에 자원을 할당한다. 이하에서는 이러한 특정 구역을 섹터(sector)라 정의한다. 도 4에 도시된 섹터에서 A1, A2, A3, A4는 반경 0~200m 이고 각각 폭이 0~15', 15~30', 30~45', 45~60'인 섹터들을 나타낸다. B1, B2, B3, B4는 반경 200~500m이고 각각 폭이 0~15', 15~30', 30~45', 45~60'인 섹터들을 나타낸다. 도 4에 도시된 내용들을 바탕으로, 섹터 1을 {A1, A2, A3, A4} 로 정의하고, 섹터 2를 {A1, A2, A3, A4, B1, B2, B3, B4}라 정의한다. 또한, 현재 기지국의 동기 신호 서비스 구역이 섹터 1인 경우, 기지국이 섹터 2에 동기 신호를 서비스하기 위해서는 동기 신호의 전송에 6dB 이상의 추가 파워가 요구된다고 가정한다.
먼저, 기지국은 섹터 2를 서비스하기 위하여 빔포밍 기법을 이용하여 6dB의 추가 이득을 얻을 수 있다. 이러한 빔포밍 과정을 통해 서비스 반경을 A1에서 B1까지 늘릴 수 있다. 그러나, 빔포밍을 통해 빔 폭이 줄어들기 때문에, A2, A3, A4는 동시에 서비스할 수 없게 된다. 따라서, 빔포밍이 수행되는 경우 A2~B2, A3~B3, A4~B4 섹터에 동기 신호가 각각 별도로 전송되어야 한다. 다시 말해서, 기지국은 섹터 2를 서비스하기 위해 동기 신호를 4번에 걸쳐 빔포밍을 수행해가며 전송해야만 한다.
반면, 앞서 설명한 동기 신호의 반복 전송을 생각해보면, 기지국이 동기 신호를 섹터 2 전부에 전송할 수 있지만, 시간축 상에서 동기 신호를 4번 반복하여 전송해야 한다. 결과적으로, 섹터 2를 서비스하기 위해 필요한 자원은 빔포밍 방식과 반복 전송 방식 모두에 있어서 동일하다.
그러나, 빔포밍 방식의 경우 빔폭이 좁기 때문에 빠른 속도로 이동하는 단말이나 섹터의 경계에 있는 단말이 안정적으로 동기 신호를 수신하기 어렵다. 그 대신에, 단말이 위치하는 빔의 ID를 구분할 수 있다면, 동기 신호를 통해 단말이 자신의 위치를 파악할 수 있다는 장점이 있다. 반면, 반복 전송 방식의 경우 빔 폭이 넓어서 단말이 동기 신호를 놓칠 가능성은 매우 낮다. 그 대신, 단말이 자신의 위치를 파악할 수는 없게 된다.
도 5는 mmWave를 사용하는 통신 환경에서 제안하는 프레임 구조의 예이다.
먼저, 하나의 프레임은 Q 개의 서브프레임으로 구성되며, 하나의 서브프레임은 P 개의 슬롯으로 구성된다. 하나의 슬롯은 T 개의 OFDM 심볼들로 구성된다. 이때, 다른 서브프레임들과는 달리, 프레임 내에서 첫 번째 서브프레임은 0 번째 슬롯('S'로 표시된 슬롯)을 동기화 용도로 사용한다. 이러한 0번째 슬롯은 타이밍과 주파수 동기를 위한 A개의 OFDM 심볼들, 빔 스캐닝을 위한 B 개의 OFDM 심볼들, 시스템 정보를 단말에 알리기 위한 C 개의 OFDM 심볼들로 구성된다. 나머지 D 개의 OFDM 심볼들은 각 단말에 데이터 전송을 위해 사용된다.
한편, 이러한 프레임 구조는 단순한 예시에 불과하며, Q, P, T, S, A, B, C, D는 각각 임의의 값으로서, 사용자에 의해 설정되거나 시스템 상에서 자동적으로 설정되는 값일 수 있다.
이하에서는 기지국과 단말 간의 타이밍 동기화 알고리즘에 대해 설명한다. 도 5에서 기지국이 동일한 동기 신호를 A 번 반복 전송하는 경우를 생각해본다. 단말은 기지국이 전송한 동기 신호를 바탕으로, 수학식 3의 알고리즘을 이용하여 타이밍 동기화를 수행한다.
Figure PCTKR2017005161-appb-M000003
수학식 3에서
Figure PCTKR2017005161-appb-I000007
,
Figure PCTKR2017005161-appb-I000008
는 각각 OFDM 심볼의 길이, CP(Cyclic Prefix)의 길이, OFDM 심볼의 인덱스를 나타낸다.
Figure PCTKR2017005161-appb-I000009
은 수신기에서 수신 신호의 벡터를 의미한다. 이때,
Figure PCTKR2017005161-appb-I000010
식은 수신 신호 벡터
Figure PCTKR2017005161-appb-I000011
Figure PCTKR2017005161-appb-I000012
번째부터
Figure PCTKR2017005161-appb-I000013
번째까지의 요소들로 정의되는 벡터이다.
수학식 3의 알고리즘은 시간적으로 인접한 2개의 OFDM 수신 신호가 동일하다는 조건에서 동작한다. 이러한 알고리즘은 슬라이딩 윈도우(sliding window) 방식을 이용할 수 있어 낮은 복잡도로 구현이 가능하며, 주파수 오프셋에 강한 특징을 갖는다.
한편, 아래의 수학식 4는 수신 신호와 기지국이 전송한 신호 간의 상관관계를 이용함으로써 타이밍 동기화를 수행하는 알고리즘을 나타낸다.
Figure PCTKR2017005161-appb-M000004
수학식 4에서 s는 기지국이 전송한 신호를 의미하며, 단말과 기지국 사이에 미리 약속된 신호 벡터이다. 수학식 4의 방식은 수학식 3에 비해 더 좋은 성능을 낳을 수 있으나, 슬라이딩 윈도우 방식으로 구현될 수 없어 복잡도가 높게 요구된다. 또한, 주파수 오프셋에 취약한 특징을 갖는다.
타이밍 동기화 방식의 설명에 이어서, 빔 스캐닝 과정을 설명한다. 빔 스캐닝(beam scanning)이란 수신기의 수신 SINR을 최대화하는 빔의 방향을 찾는 송신기 및/또는 수신기의 동작을 의미한다. 예를 들어, 기지국은 단말에 데이터를 전송하기 전에 빔 스캐닝을 통해 빔의 방향을 결정한다.
도 4를 예로 들어 더 설명하면, 도 4에서는 하나의 기지국이 서비스하는 섹터를 8 개의 영역으로 나누어 도시한다. 이때, 기지국은 (A1+B1), (A2+B2), (A3+B3), (A4+B4) 영역에 각각 빔을 전송하며, 단말은 기지국이 전송하는 빔들을 구분이 가능하다. 이러한 조건에서, 빔 스캐닝 과정은 4가지 과정으로 구체화될 수 있다. 먼저, i) 기지국은 4개의 영역에 차례로 빔을 전송한다. ii) 단말은 수신 SINR 관점에서 빔들 중 가장 적합하다고 판단되는 빔을 결정한다. iii) 단말은 선택된 빔에 대한 정보를 기지국으로 피드백한다. iv) 기지국은 피드백된 방향을 갖는 빔을 이용하여 데이터를 전송한다. 위의 빔 스캐닝 과정을 통해 단말은 수신 SINR이 최적화된 빔을 통해 하향링크 데이터를 수신할 수 있게 된다.
이하에서는 Zadoff-Chu 시퀀스에 대해 설명한다. Zadoff-Chu 시퀀스는 추(chu) 시퀀스 또는 ZC 시퀀스라 불리며, 아래의 수학식 5로 정의된다.
Figure PCTKR2017005161-appb-M000005
수학식 5에서 N은 시퀀스의 길이, r은 루트 값,
Figure PCTKR2017005161-appb-I000014
은 ZC 시퀀스의 n 번째 요소를 나타낸다. ZC 시퀀스가 갖는 특징으로는, 먼저 모든 요소의 크기가 동일하다는 점을 들 수 있다(constant amplitude). 또한, ZC 시퀀스의 DFT 결과 또한 모든 요소에 대해 동일하게 나타난다.
다음으로, ZC 시퀀스와 ZC 시퀀스의 순환 시프팅(cyclic shifting)된 버전 은 수학식 6과 같은 상관관계를 갖는다.
Figure PCTKR2017005161-appb-M000006
수학식 6에서
Figure PCTKR2017005161-appb-I000015
Figure PCTKR2017005161-appb-I000016
를 i 만큼 순환 시프팅한 시퀀스이며, ZC 시퀀스의 자기 상관관계가 i=j인 경우를 제외하고는 0임을 나타낸다. 또한, ZC 시퀀스는 zero auto-correlation 특성 또한 가져, CAZAC (Constant Amplitude Zero Auto Correlation)특성을 갖는다고 표현하기도 한다.
ZC 시퀀스의 마지막 특징으로, 시퀀스의 길이 N과 서로소인 루트 값을 갖는 ZC 시퀀스들 간에는 아래의 수학식 7과 같은 상관관계를 갖는다.
Figure PCTKR2017005161-appb-M000007
수학식 7에서
Figure PCTKR2017005161-appb-I000017
는 N과 서로소이다. 예를 들어, N=111인 경우,
Figure PCTKR2017005161-appb-I000018
은 수학식 7을 항상 만족한다. 수학식 6의 자기 상관관계와는 달리, ZC 시퀀스의 상호 상관관계는 완전히 0이 되지는 않는다.
ZC 시퀀스에 이어 하다마드(Hadamard) 행렬을 설명한다. 하다마드 행렬은 아래의 수학식 8과 같이 정의된다.
Figure PCTKR2017005161-appb-M000008
수학식 8에서
Figure PCTKR2017005161-appb-I000019
는 행렬의 크기를 나타낸다. 하다마드 행렬은 사이즈 n과 무관하게 항상
Figure PCTKR2017005161-appb-I000020
을 만족하는 단위 행렬(unitary matrix)이다. 또한, 하다마드 행렬에서 모든 열(column)과 모든 행(row)끼리는 서로 직교한다. 일 예로, n=4인 경우 하다마드 행렬은 수학식 9와 같이 정의된다.
Figure PCTKR2017005161-appb-M000009
수학식 9로부터 각 열들끼리, 각 행들끼리 서로 직교함을 알 수 있다.
도 6은 OVSF(Orthogonal Variable Spreading Factor) 코드의 구조를 도시한다. OVSF 코드는 하다마드 행렬을 기반으로 생성되는 코드이며, 특정한 규칙을 갖는다.
먼저, OVSF 코드에서 오른쪽으로 분기할 때(lower branch), 첫 번째 코드는 좌측의 상위 코드(mother code)를 그대로 2번 반복하며, 두 번째 코드는 상위 코드를 1번 반복하고 반전하여 1번 반복함으로써 생성된다. 도 6은 OVSF 코드의 트리 구조(tree structure)를 나타낸다.
이러한 OVSF 코드는 코드 트리 상의 인접한 상위 코드와 하위 코드(child code) 간의 관계를 제외하고는 모두 직교성이 보장된다. 예를 들어, 도 6에서 [1 -1 1 -1] 코드는 [1 1], [1 1 1 1], [1 1 -1 -1]과 모두 직교한다. 또한, OVSF 코드는 코드의 길이와 사용 가능한 코드의 개수가 동일하다. 즉, 도 6에서 특정 코드의 길이와 해당 코드가 속한 분기(branch)에서의 총 개수가 동일함을 확인할 수 있다.
도 7은 단말의 배치 상황을 예로 들어 설명하는 도면이다. 도 7에서는 RACH(Random Access CHannel)에 대해 설명한다.
LTE 시스템의 경우, 단말들이 전송한 RACH 신호가 기지국으로 도착할 때, 기지국이 수신한 단말들의 RACH 신호 파워는 동일해야 한다. 이를 위해, 기지국은 'preambleInitialReceivedTargetPower'라는 파라미터를 정의함으로써, SIB(System Information Block)2를 통해 해당 셀 내의 모든 단말에 파라미터를 방송한다. 단말은 기준 신호(reference signal)을 이용하여 경로 손실을 계산하며, 계산된 경로 손실과 'preambleInitialReceivedTargetPower' 파라미터를 아래의 수학식 10과 같이 이용함으로써 RACH 신호의 송신 파워를 결정한다.
Figure PCTKR2017005161-appb-M000010
수학식 10에서 P_PRACH_Initial, P_CMAX, PL은 각각 RACH 신호의 송신 파워, 단말의 최대 송신 파워, 경로 손실을 나타낸다.
수학식 10을 예로 들어 설명하면, 단말의 최대 전송 가능한 파워는 23dBm 이고 기지국의 RACH 수신 파워는 -104dBm 이라고 가정한다. 또한, 도 7에 도시된 바와 같이 단말이 배치된 상황을 가정한다.
먼저, 단말은 수신 동기 신호와 빔 스캐닝 신호를 이용하여 경로 손실을 계산하며, 이를 바탕으로 송신 파워를 결정한다. 아래의 표 3은 단말의 경로 손실과 그에 따른 송신 파워를 나타낸다.
단말 preambleInitialReceived TargetPower 경로 손실 필요한 송신파워 송신 파워 추가 필요 파워
K1 -104dBm 60dB -44dBm -44dBm 0dBm
K2 -104dBm 110dB 6dBm 6dBm 0dBm
K3 -104dBm 130dB 26dBm 23dMb 3dBm
표 3에서 K1 단말의 경우 경로 손실이 매우 작지만, RACH 수신 파워를 맞추기 위해 매우 작은 파워(-44dBm)로 RACH 신호를 전송해야 한다. 한편, K2 단말의 경우 경로 손실이 크지만, 필요 송신 파워는 6dBm이다. 그러나, K3단말의 경우 경로 손실이 매우 커, 필요한 송신 파워가 단말의 P_CMAX=23dBm을 초과하게 된다. 이러한 경우, 단말은 최대 송신 파워인 23dBm으로 전송해야만 하며, 단말의 RACH 액세스 성공률은 3dB 열화된다.
이어서, 본 발명과 관련된 위상 잡음(phase noise)에 대해 설명한다. 시간축 상에서 발생하는 지터(jitter)는 주파수축 상에서 위상 잡음으로 나타난다. 이러한 위상 잡음은 시간축 상의 수신 신호의 위상을 아래 수학식 11과 같이 무작위로 변경시킨다.
Figure PCTKR2017005161-appb-M000011
수학식 11에서
Figure PCTKR2017005161-appb-I000021
파라미터들은 각각 수신 신호, 시간축 신호, 주파수축 신호, 위상 잡음으로 인한 위상 회전(phase rotation) 값을 나타낸다. 수학식 11에서의 수신 신호가 DFT(Discrete Fourier Transform) 과정을 거치는 경우, 아래의 수학식 12가 도출된다.
Figure PCTKR2017005161-appb-M000012
수학식 12에서
Figure PCTKR2017005161-appb-I000022
파라미터들은 각각 CPE(Common Phase Error) 및 ICI(Inter Cell Interference)를 나타낸다. 이때, 위상 잡음 간의 상관관계가 클수록 수학식 12의 CPE 가 큰 값을 갖게 된다. 이러한 CPE는 무선랜 시스템에서의 CFO(Carrier Frequency Offset)의 일종이지만, 단말 입장에서는 위상 잡음이라는 관점에서 CPE와 CFO를 유사하게 해석할 수 있다.
단말은 CPE/CFO를 추정함으로써 주파수축 상의 위상 잡음인 CPE/CFO를 제거하게 되며, 단말이 수신 신호에 대해 CPE/CFO를 추정하는 과정은 수신 신호의 정확한 디코딩을 위해 선행되어야 하는 과정이다. 이에 따라, 단말이 CPE/CFO를 정확하게 추정할 수 있도록 기지국은 소정의 신호를 단말로 전송해줄 수 있으며, 이러한 신호는 위상 잡음을 제거하기 위한 신호로써 단말과 기지국 간에 미리 공유된 파일럿 신호가 될 수도 있고 데이터 신호가 변경되거나 복제된 신호일 수도 있다. 이하에서는 위상 잡음을 제거하기 위한 일련의 신호를 총칭하여 PCRS(Phase Compensation Reference Signal) 또는 PNRS(Phase Noise Reference Signal)라 부른다.
도 8은 mmWave 통신 시스템에서 이용되는 자원 영역 구조를 도시하는 도면이다. mmWave와 같은 초고주파 대역을 이용하는 통신 시스템은 종래의 LTE/LTE-A 통신 시스템과는 물리적 성질이 다른 주파수 대역을 사용한다. 이에 따라, 초고주파 대역을 이용하는 통신 시스템에서는 종래 통신 시스템에서 이용되는 자원 영역의 구조와 다른 형태의 자원 구조가 논의되고 있다. 도 8은 새로운 통신 시스템의 하향링크 자원 구조의 예를 도시한다.
가로축으로 14개의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼과 세로축으로 12개의 서브캐리어(subcarrier)로 구성되는 RB(Resource block) 쌍(RB pair)을 고려할 때, 첫 2개(또는 3개)의 OFDM 심볼(810)은 종래와 유사하게 제어채널(예를 들어, PDCCH(Physical Downlink Control Channel))에 할당되고, 다음 1개의 OFDM 심볼(820)은 DMRS(DeModulation Reference Signal)이 할당되고, 나머지 OFDM 심볼(830)은 데이터채널(예를 들어, PDSCH(Physical Downlink Shared Channel))이 할당될 수 있다.
한편, 도 8과 같은 자원 영역 구조에서 앞서 설명한CPE(또는, CFO) 추정을 위한 PCRS 또는 PNRS는 데이터채널이 할당되는 영역 830의 일부 RE(Resource Element)에 실려 단말로 전송될 수 있다. 이러한 신호는 위상 잡음을 제거하기 위한 신호이며, 앞서 설명했듯이 파일럿 신호가 될 수도 있고 데이터 신호가 변경되거나 복제된 신호일 수도 있다.
2. 제안하는 정보 전송 방법
상술한 바와 같이 mmWave 대역을 이용하는 통신 시스템에서는 기지국에 의한 단말로의 빔포밍이 중요하다. 이는, 고주파 대역을 이용할수록 경로 감쇄가 더 크게 나타나기 때문이다. 따라서, 만약 단말이 기지국으로부터 수신한 신호로부터 빔 불일치(beam mismatch)가 크다고 판단한 경우, 단말은 빔 불일치를 해결하기 위하여 기지국으로 빔포밍에 관련된 정보를 전송해야 한다.
이하에서는, 단말이 기지국으로 빔포밍 관련된 정보를 전송하기 위한 실시 예를 제안한다. 설명의 편의상, 이하 설명에서는 단말이 기지국으로 전송하는 빔포밍 관련 정보 (또는 빔 관련 제어 정보)를 BSI(Beam State Information)라 통칭 한다.
이에, 단말은 빔 불일치의 정도가 크다고 판단한 경우 기지국으로 BSI를 전송할 수 있다. 이러한 BSI는 빔 인덱스에 대한 정보, 빔 수신 파워에 대한 정보 등 단말에 대해서 현재 빔포밍된 빔에 대한 정보를 모두 포함할 수 있으며, 일 예로 상기 BSI는 단말이 선호하는 빔에 대한 정보 (예: 빔 인덱스 등)를 포함할 수 있다. 따라서, BSI가 전송된다는 것은 단말이 기지국으로 빔 불일치가 큼을 알리는 과정으로 이해될 수 있다.
한편, 단말이 BSI를 기지국으로 전송하기 위해서는 기지국으로부터 상향링크 그랜트를 수신하는 것이 선행되어야 한다. 따라서, 단말이 기지국으로 빔포밍 관련 정보(BSI)를 전송하기 위해서는, 단말이BSI를 전송하기 위해 UL 그랜트가 필요함을 알리는 과정이 먼저 요구된다.
단말은 기지국으로 BSI를 전송하기에 앞서서 UL 그랜트를 요청하는 신호를 전송할 수 있다. 이와 같이 UL 그랜트를 요청하는 신호는 SR(Scheduling Request)가 될 수 있으며, 기지국은 단말로부터 SR이 수신되면 xPDCCH(x-Physical Downlink Control Channel)를 통해서 xPUSCH(x-Physical Uplink Shared Channel) UL 그랜트를 단말에 응답하여 전송한다.
이때, 기지국이 전송하는 UL 그랜트에는 제어 정보 멀티플렉싱을 허용하는 필드가 정의되며, 이하에서는 이 필드를 UL 피드백 요청 필드(UL feedback request field)라 한다. 기지국이 단말로 하여금 상향링크 제어 정보(예를 들어, BSI)를 멀티플렉싱하여 전송함(즉, 피기백(piggyback))을 허용하는 경우 UL 피드백 요청 필드의 값이 '1'로 활성화되며, 기지국이 단말로 하여금 상향링크 제어 정보(예를 들어, BSI)의 전송을 허용하지 않는 경우 UL 피드백 요청 필드의 값이 '0'으로 비활성화된다. UL 피드백 요청 필드의 값이 '1' 및 '0' 로 설정되는 것은 단순한 예시에 불과하며, 해당 필드의 값은 상술한 예와 반대로 설정되거나 다른 값으로 설정되어, 단말로 하여금 제어 정보를 멀티플렉싱하여 전송하는 과정을 허용하거나 허용하지 않는 비트 값으로 설정될 수 있다.
한편, 단말이 UL 피드백 요청 필드의 값을 확인하고 상향링크 제어 정보의 전송이 허용된 경우, 단말은 xPUSCH를 통해서 빔 관련 UCI(Uplink Control Information)를 데이터와 멀티플렉싱하여 기지국으로 전송한다. 이러한 빔 관련 UCI는 상술한 BSI가 될 수 있으며, 기지국으로 하여금 빔 불일치가 커서 빔포밍이 조절되거나 재수행되어야 할 필요가 있음을 알리는 정보가 될 수 있다.
이상에서 설명한 과정에 있어서, 빔 불일치가 발생하는 경우 단말과 기지국 간의 타이밍 동기가 크게 어긋날 수 있으며 SNR(Signal to Noise Ratio) 레벨 또한 빔 불일치가 발생하지 않은 경우와 상대적으로 크게 다를 가능성이 높다. 따라서, 단말이 종래의 SR 자원(예: LTE 표준에서 정의된 SR 자원)을 이용하여 BSI 전송을 위한 UL 그랜트를 요청하는 신호를 기지국에 전송하더라도, 기지국은 단말이 전송한 UL 그랜트를 요청하는 신호 (예: SR 프리엠블)를 정상적으로 수신하지 못할 수 있다.
이하에서는 상술한 내용을 고려하여, 단말이 SR이 아닌 RACH(Random Access Channel) 자원을 이용하여 BSI 전송을 트리거링하는 실시 예를 제안한다. 여기서 RACH 자원이란, 랜덤 엑세스 (Random Access)를 수행하기 위한 목적으로 할당되는 자원을 의미한다. 즉, 본 발명에서는 단말이 랜덤 엑세스 목적 (예: 초기 접속으로서 무선링크를 형성하려는 목적 (RRC IDLE -> RRC CONNECTED), 무선링크 실패 이후 무선링크를 재형성하려는 목적, 핸드오버에서 새로운 셀과의 상향링크 동기를 형성하려는 목적, 단말이 RRC_CONNECTED 상태에 있으나 상향링크가 동기화되지 않았을 때 상향링크 동기를 형성하려는 목적 등)으로 사용 가능한 RACH 자원을 이용하여 BSI 전송을 트리거링하는 방법에 대하여 설명한다.
제안하는 실시 예에서, 기지국은 RACH 시퀀스의 루트 값, 순환 시프트(cyclic shift) 값, 서브밴드(subband) 및 전송 시점 중 적어도 하나를 다르게 하여 전용 RACH 자원을 정의할 수 있다. 이어, 기지국은 전용 RACH 자원을 DCI(Downlink Control Information) 또는 RRC(Radio Resource Control) 시그널링을 통해 단말 특정적으로(UE-specific) 할당할 수 있다.
여기서, 기지국은 특정 단말의 전송 시점으로써 RACH 시간 축 자원 중 하나 이상을 지정할 수 있다. 이때, 상기 복수의 RACH 시간 축 자원은 복수의 RACH OFDM 심볼로 구성될 수 있다.
이때, 단말은 빔 불일치가 발생한 경우 할당된 전용 RACH 자원을 기지국에 전송하며, 기지국은 단말로부터 수신된 전용 RACH 프리엠블에 따라 특정 UE가 xPUSCH(x-Physical Uplink Shared Channel)를 통해 UCI를 피드백하여 전송하고자 함을 인지할 수 있다.
Figure PCTKR2017005161-appb-M000013
수학식 13은 RACH 프리엠블을 생성하는 과정을 나타낸다. 수학식 13에서
Figure PCTKR2017005161-appb-I000023
은 루트 값이 u인 ZC 시퀀스의 n 번째 요소(element)를 나타낸다. v는 순환 시프트 값,
Figure PCTKR2017005161-appb-I000024
는 RACH 시퀀스가 전송되는 서브밴드를 각각 나타낸다. b는 RACH가 전송되는 서브프레임 내의 OFDM 심볼 인덱스(또는, RACH 서브프레임 내의 시퀀스 인덱스)를 나타낸다.
기지국은 u, v,
Figure PCTKR2017005161-appb-I000025
를 조합하여 고유한 RACH 프리엠블을 생성할 수 있으며, 생성된 RACH 프리엠블을 단말 특정적으로 할당할 수 있다. 이때, 단말은 빔 불일치가 발생했다고 판단되면, 할당된 전용 RACH 프리엠블을 기지국에 전송할 수 있고, 기지국은 임의의 단말로부터 전용 RACH 프리엠블이 수신되면 해당 단말로부터 UCI를 피드백하기 위한 자원의 할당이 요청됨을 인지할 수 있다.
기지국이 RACH 프리엠블을 단말 특정적으로 할당하는 과정에서, 기지국은 RACH 프리엠블을 전송할 수 있는 시점을 단말에 지정할 수도 있다. 즉, 단말 특정적으로 할당되는 RACH 프리엠블은 시퀀스를 특정하는 값(루트 값, 순환 시프트 값) 및 서브밴드 외에도 RACH 프리엠블의 전송 시점을 단말에게 특정적으로 할당할 수 있다.
여기서, 기지국은 특정 단말의 전송 시점으로써 RACH 시간 축 자원 중 하나 이상을 지정할 수 있다. 이때, 상기 복수의 RACH 시간 축 자원은 복수의 RACH OFDM 심볼로 구성될 수 있다.
도 9는 제안하는 실시 예와 관련된 RACH 서브프레임의 구조를 도시한다. 도 9에서 하나의 RACH 서브프레임은 5개의 RACH 자원들로 구성되며, 각 RACH 자원들은 2개의 시퀀스로 구성된다. 즉, 하나의 RACH 서브프레임 내에는 10 개의 RACH 시퀀스가 정의된다. 앞서 수학식 13에서 설명한 b 값이 도 9에서 각각의 RACH 시퀀스 인덱스를 나타내며, 수학식 13의 c 값은 각각의 시퀀스에 곱해지는 가중치(weight)를 의미한다. 짝수번째 시퀀스에 대해서는 항상 c=1이며, 홀수번째 시퀀스에 대해서 c 는 1 또는 -1로 정의된다. 이하에서 특별한 설명이 없는 한 c=1인 것으로 설명한다.
도 10은 제안하는 실시 예에 따른 정보 전송 방법을 도시하는 흐름도이다. 도 10은 앞서 설명한 과정에 따라 단말 특정적인 RACH 프리엠블이 할당된 이후 단말 및 기지국의 동작을 도시한다.
먼저, 단말은 빔 불일치가 발생하여 빔 관련 상향링크 제어 정보(예를 들어, BSI)를 기지국으로 전송할 필요가 있다고 판단하는 경우, 자신에게 미리 할당된 전용 RACH 자원을 이용하여 기지국으로 RACH 프리엠블을 전송한다(S1010). 이러한 RACH 프리엠블은 단말이 기지국으로 BSI를 포함하는 UCI의 피드백이 필요함을 알리는 신호로 해석될 수 있다.
이어서, 기지국은 단말로부터의 요청이 수신됨에 따라 단말에 빔 불일치가 발생했음을 판단한다. 기지국은 상술한 UL 피드백 요청 필드(또는, xPUSCH UCI 피드백 요청 필드)를 정의하여 해당 필드의 값을 0 또는 1로 설정하여 단말에게 전송한다(S1020). 이때, UL 피드백 요청 필드(또는, xPUSCH UCI 피드백 요청 필드)는 단말의 RACH 프리엠블에 응답하여 기지국이 전송하는 RACH 응답(RACH response) 또는 PDCCH(이하, 설명의 편의상 상기 RACH 프리엠블에 대한 응답 신호는 RACH 응답이라고 표현한다)에 포함되어 단말로 전송될 수 있다. 여기서, 상기 UL 피드백 요청 필드는 단말로부터의 BSI 전송 허용 여부를 나타내는 용도로 활용될 수 있다.
한편, UL 피드백 요청(또는, xPUSCH UCI 피드백 요청)은 기지국이 단말에게 BSI를 포함하는 UCI를 멀티플렉싱하여 전송할 것을 요청하는 과정을 의미할 수 있다. UL 피드백 요청 필드(또는, xPUSCH UCI 피드백 요청 필드)는 주기적 또는 비주기적으로 단말에게 전송될 수 있다. 또한, S1020 에서 기지국이 RACH 응답을 전송하는 대신 단말로 DCI를 전송하여 UL 피드백 요청 필드(또는, xPUSCH UCI 피드백 요청 필드)를 전달할 수도 있다.
단말은 UL 피드백 요청 필드(또는, xPUSCH UCI 피드백 요청 필드)의 값을 확인하여 BSI를 멀티플렉싱하여 전송하는 것이 허락된 경우, BSI를 포함하는 빔 관련 정보를 xPUSCH 에 멀티플렉싱하여 기지국으로 전송한다(S1030). 물론, S1020에서 수신된 필드의 값이 BSI 전송을 요청하는 값이 아닌 경우, 단말은 BSI를 기지국으로 전송하지 않는다. 이러한 과정에서 주목해야 할 점은, 단말과 기지국 간에 RACH 프리엠블 및 RACH 응답이 송수신 되었음에도 불구하고, 이후의 RACH 과정이 수행되지 않는다는 점이다. 즉, RACH 프리엠블/응답의 송수신에 이어서 단말이 RRC 연결 요청 메시지를 전송하거나 기지국이 RRC 완료 메시지를 전송하는 대신, 단말이 기지국으로 BSI를 전송하는 과정이 수행된다.
상술한 실시 예에 의하면, 유휴 RACH 자원에 여유가 있는 경우 유휴 RACH 자원을 활용할 수 있어서 시스템 오버헤드가 상대적으로 적다는 장점이 있다. 또한, 단말이 기지국과 RRC 연결된 상태에 있더라도 빔 불일치로 인해 타이밍이 맞지 않는 경우에 있어서도 RACH 과정은 안정적으로 수행된다는 점에서, SR을 이용하는 경우에 비해 기지국이 요청을 수신할 확률이 높다. 나아가, 기지국으로부터 RACH 응답이 수신되기 때문에 단말이 기지국과의 타이밍을 정렬(align)할 수도 있다는 장점이 있다. 또한, 단말이 dormant 상태(또는, DRX, Discontinuous Reception 모드)에서 활성 상태로 천이할 때 발생할 수 있는 빔 불일치에 대해 안정적인 빔 회복(recovery)이 수행될 수 있다는 장점도 있다.
도 11은 제안하는 실시 예에 따른 필드 구성 방법을 도시하는 도면이다. 도 11은 앞서 설명한 기지국의 UL 피드백 요청 필드(또는, xPUSCH UCI 피드백 요청 필드)의 구성 예를 도시한다.
도 11에 도시된 바와 같이, 제안하는 실시 예에서는 UL 피드백 요청 필드(또는, xPUSCH UCI 피드백 요청 필드)가 UL 그랜트가 아닌 RACH 응답에 정의된다. 단말이 전송하는 전용 RACH 프리엠블을 수신한 기지국은 단말로 전송할 RACH 응답 신호의 특정 필드 값을 1로 결정한다. 이러한 필드는 앞서 설명했듯이 1비트로 구성될 수 있으며, 도 11에는 RACH 응답의 맨 처음 비트로 구현되는 것으로 도시되나, 이에 한정되지 않고 RACH 응답의 중간이나 마지막 비트로 구현될 수도 있다. 또한, 비트의 값이 '1'인 것은 BSI의 멀티플렉싱 및 전송을 요청(즉, 허락)하는 것이고, '0'인 것은 요청하지 않음(즉, 허락하지 않음)을 의미할 수 있다. 물론, 비트 값과 의미하는 바는 반대로 대응될 수도 있다.
도 12는 제안하는 실시 예에 따른 OCC(Orthogonal Cover Code) 적용 방법을 도시하는 도면이다. 앞서 제안한 실시 예에서, RACH 프리엠블 내에 정의되는 반복 구조에 OCC를 적용하여 또 다른 전용 RACH 자원을 정의할 수도 있다.
만약 단말 A 및 단말 B에게 동일한 시퀀스(동일한 루트 값 및 순환 시프트 값), 동일한 서브밴드 및 동일한 전송 시점이 할당된 경우를 가정한다. 또한, 단말 A의 짝수/홀수번째 시퀀스의 c 값은 1, 1 로 정의한다. 반면, 단말 B의 짝수/홀수번째 시퀀스의 c 값은 1, -1로 정의한다. 이러한 실시 예가 도 12에 도시된다.
여기서, 기지국은 특정 단말의 전송 시점으로써 RACH 시간 축 자원 중 하나 이상을 지정할 수 있다. 이때, 상기 복수의 RACH 시간 축 자원은 복수의 RACH OFDM 심볼로 구성될 수 있다.
도 12에 도시된 바와 같이 시퀀스에 적용되는 OCC 를 구분하는 경우, 단말 A에 할당되는 RACH 프리엠블과 단말 B에 할당되는 RACH 프리엠블은 서로 구별된다. 즉, 단말 A에는 OCC [1 1]를 할당하고 단말 B에는 OCC [1 -1]을 할당하는 경우, 두 OCC는 서로 직교하기 때문에 기지국이 두 단말의 RACH 프리엠블들을 서로 구별해낼 수 있다. 한편, 수학식 13에서 b가 홀수인 경우 c 값은 1 또는 -1을 가질 수 있음을 설명한 바 있으며, 도 12의 실시 예가 해당 내용에 대응된다.
추가적인 실시예에서, 단말이 기지국으로부터 전용 RACH 자원을 할당 받지 못한 경우, 본 발명에서는 상기 단말이 빔 관련 상향링크 제어 정보 (예: BSI)를 전송하는 방법을 제안한다.
앞선 실시예와 달리, 단말은 RACH 프리엠블을 미리 설정된 (예: LTE 표준에 의해 설정된) RACH 자원을 통해 전송한다. 이때, 상기 RACH 프리엠블은 임의의 시퀀스로 결정될 수 있다. 이 경우, 앞선 실시예와 달리 RACH 자원이 별도로 단말 고유하게 정의될 필요가 없다는 장점이 있다. 다만, 미리 설정된 RACH 자원은 경쟁 기반 RACH 자원으로써 모든 단말이 이용 가능하다는 단점이 있다. 다시 말해, 모든 단말이 상기 (경쟁 기반) RACH 자원을 통해 신호를 송수신할 수 있음으로써, 신호 충돌(collision)이 발생할 수 있다.
상기 RACH 자원을 통해 전송된 임의의 RACH 프리엠블 (또는 RACH 프리엠블)을 수신한 기지국은 단말에게 RAR (RACH Response)를 전송한다.
이어, 단말은 상기 RAR이 지시하는 UL 자원을 이용하여 RRC 연결 요청 (RRC connection request) 메시지를 기지국으로 전송한다.
여기서, 상기 신호 송수신 방법은 종래 LTE 표준에서 정의된 랜덤 엑세스 절차에 따라 수행될 수 있다.
다만, 상기 단말은 상기 RRC 연결 요청 메시지 내 C-RNTI (Common - Radio Network Temporary Identity) 또는 기지국으로부터 할당 받은 ID 정보를 기지국으로 전송함으로써 상기 RRC 연결 요청 메시지가 상향링크 초기 접근 (UL initial access) 목적이 아닌 빔 복구 목적임을 나타낼 수 있다.
참고로, 종래 LTE 표준에서 정의된 랜덤 엑세스 절차에 따라 RRC IDLE 상태의 단말은 상향링크 초기 접근을 요청하기 위해 RRC 연결 요청 메시지를 기지국으로 전송할 수 있는데, 이때 상기 RRC 연결 요청 메시지에는 임의의 ID (예: random ID)가 포함된다. 이때, 기지국은 수신된 RRC 연결 요청 메시지에 포함된 ID 정보를 확인하여 상기 RRC 연결 요청 메시지가 상향링크 초기 접근 목적 또는 빔 복구 목적인지 여부를 확인할 수 있다.
이에, 기지국은 C-RNTI를 포함한 RRC 연결 요청 메시지를 수신함으로써 단말이 이미 RRC 연결 상태임을 알 수 있고, S1020 단계와 유사하게 기지국은 UL 피드백 요청 필드(또는, xPUSCH UCI 피드백 요청 필드)를 정의하여 해당 필드의 값을 1로 설정하여 단말에게 전송한다.
이에 대응하여, S1030 단계와 유사하게 단말은 BSI를 포함하는 빔 관련 정보를 xPUSCH 에 멀티플렉싱하여 기지국으로 전송한다.
정리하면, 본 발명에 따른 단말은 BSI 전송을 위한 UL 그랜트를 트리거링하기 위하여 단말 특정 RACH 자원 또는 경쟁 기반 RACH 자원을 통해 신호를 전송할 수 있다.
실시예에 따라, 단말은 BSI 피드백을 위한 UL 그랜트를 전송할 수 있는 전용 RACH 자원을 할당 받을 수 있고, 할당 받지 못할 수도 있다. 이때, 전용 RACH 자원을 할당 받은 경우, 상기 단말은 할당 받은 전용 RACH 자원을 통해 RACH 프리엠블을 전송함으로써 BSI 피드백을 위한 UL 그랜트를 기지국에 요청할 수 있다. 또는, 전용 RACH 자원을 할당 받지 못한 경우, 상기 단말은 경쟁 기반 RACH 자원을 통해 RACH 프리엠블을 기지국으로 전송하고, 기지국으로부터 수신된 RAR이 지시하는 UL 자원을 통해 C-RNTI를 포함한 RRC 연결 요청 메시지를 전송함으로써 BSI 피드백을 위한 UL 그랜트를 기지국에 요청할 수 있다.
추가적으로, 본 발명에서는 PUCCH 포맷 1자원을 활용하여, UCI 피드백 용 xPUSCH 자원 요청 시그널링을 정의하는 방안을 제안한다.
종래 LTE 표준에 따르면, 하나의 RB에 (12X7=84REs) 총 36개의 PUCCH 포맷 1이 정의된다. 이러한 PUCCH 포맷 1은 단순히 SR만을 위한 PUCCH 포맷을 나타낸다.
이를 16개로 구분하며, 각 PUCCH 포맷에 추가 1 비트를 추가함으로써, SR 뿐만 아니라 UCI 피드백 용 xPUSCH 자원 요청을 위한 시그널링할 수 있다.
또한, PUCCH 포맷 2을 상기 방법에 적용할 수 있다. 즉, PUCCH 포맷 2 또한 UCI 피드백 용 xPUSCH 자원 요청을 위한 시그널링으로 정의될 수 있다.
이상에서는 RACH 프리엠블에 대해 서브밴드와 전송 타이밍 등을 추가적으로 정의함으로써 단말 전용의 RACH 프리엠블을 할당하는 과정과, UCI(예를 들어, BSI)의 피드백을 위한 트리거링 과정에 대해 설명하였다. 이러한 과정에 따르면, 단말은 빔 불일치가 발생하더라도 기지국에 안정적으로 빔 관련 정보를 전달할 수 있게 되어, 빔 회복 절차가 효율적으로 수행될 수 있다.
3. 장치 구성
도 13은 본 발명의 일 실시 예와 관련된 단말 및 기지국의 구성을 도시하는 도면이다. 도 13에서 단말(100) 및 기지국(200)은 각각 무선 주파수(RF) 유닛(110, 210), 프로세서(120, 220) 및 메모리(130, 230)를 포함할 수 있다. 도 13에서는 단말(100)와 기지국(200) 간의 1:1 통신 환경만을 도시하였으나, 다수의 단말과 다수의 기지국 간에도 통신 환경이 구축될 수 있다. 또한, 도 13에 도시된 기지국(200)은 매크로 셀 기지국과 스몰 셀 기지국에 모두 적용될 수 있다.
각 RF 유닛(110, 210)은 각각 송신부(112, 212) 및 수신부(114, 214)를 포함할 수 있다. 단말(100)의 송신부(112) 및 수신부(114)는 기지국(200) 및 다른 단말들과 신호를 송신 및 수신하도록 구성되며, 프로세서(120)는 송신부(112) 및 수신부(114)와 기능적으로 연결되어 송신부(112) 및 수신부(114)가 다른 기기들과 신호를 송수신하는 과정을 제어하도록 구성될 수 있다. 또한, 프로세서(120)는 전송할 신호에 대한 각종 처리를 수행한 후 송신부(112)로 전송하며, 수신부(114)가 수신한 신호에 대한 처리를 수행한다.
필요한 경우 프로세서(120)는 교환된 메시지에 포함된 정보를 메모리(130)에 저장할 수 있다. 이와 같은 구조를 가지고 단말(100)은 이상에서 설명한 본 발명의 다양한 실시 형태의 방법을 수행할 수 있다.
기지국(200)의 송신부(212) 및 수신부(214)는 다른 기지국 및 단말들과 신호를 송신 및 수신하도록 구성되며, 프로세서(220)는 송신부(212) 및 수신부(214)와 기능적으로 연결되어 송신부(212) 및 수신부(214)가 다른 기기들과 신호를 송수신하는 과정을 제어하도록 구성될 수 있다. 또한, 프로세서(220)는 전송할 신호에 대한 각종 처리를 수행한 후 송신부(212)로 전송하며 수신부(214)가 수신한 신호에 대한 처리를 수행할 수 있다. 필요한 경우 프로세서(220)는 교환된 메시지에 포함된 정보를 메모리(230)에 저장할 수 있다. 이와 같은 구조를 가지고 기지국(200)은 앞서 설명한 다양한 실시 형태의 방법을 수행할 수 있다.
단말(100) 및 기지국(200) 각각의 프로세서(120, 220)는 각각 단말(100) 및 기지국(200)에서의 동작을 지시(예를 들어, 제어, 조정, 관리 등)한다. 각각의 프로세서들(120, 220)은 프로그램 코드들 및 데이터를 저장하는 메모리(130, 230)들과 연결될 수 있다. 메모리(130, 230)는 프로세서(120, 220)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일(general files)들을 저장한다.
본 발명의 프로세서(120, 220)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서(120, 220)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다.
하드웨어를 이용하여 본 발명의 실시 예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(120, 220)에 구비될 수 있다.
한편, 상술한 방법은, 컴퓨터에서 실행될 수 있는 프로그램으로 작성 가능하고, 컴퓨터 판독 가능 매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 또한, 상술한 방법에서 사용된 데이터의 구조는 컴퓨터 판독 가능 매체에 여러 수단을 통하여 기록될 수 있다. 본 발명의 다양한 방법들을 수행하기 위한 실행 가능한 컴퓨터 코드를 포함하는 저장 디바이스를 설명하기 위해 사용될 수 있는 프로그램 저장 디바이스들은, 반송파(carrier waves)나 신호들과 같이 일시적인 대상들은 포함하는 것으로 이해되지는 않아야 한다. 상기 컴퓨터 판독 가능 매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드 디스크 등), 광학적 판독 매체(예를 들면, 시디롬, DVD 등)와 같은 저장 매체를 포함한다.
본원 발명의 실시 예 들과 관련된 기술 분야에서 통상의 지식을 가진 자는 상기 기재의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로, 개시된 방법들은 한정적인 관점이 아닌 설명적 관점에서 고려되어야 한다. 본 발명의 범위는 발명의 상세한 설명이 아닌 특허청구 범위에 나타나며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
상술한 내용은 3GPP LTE, LTE-A 시스템뿐 아니라, 그 외에도 IEEE 802.16x, 802.11x 시스템을 포함하는 다양한 무선 통신 시스템에 적용하는 것이 가능하다. 나아가, 제안한 방법은 초고주파 대역을 이용하는 mmWave 통신 시스템에도 적용될 수 있다.

Claims (16)

  1. mmWave 통신 시스템에서 단말이 빔 관련 상향링크 제어 정보를 전송하는 방법에 있어서,
    기지국으로부터의 빔 불일치(beam mismatch)가 발생했음을 판단하는 단계;
    상기 빔 불일치가 발생한 경우, 상기 기지국으로부터 RACH(Random Access Channel) 프리엠블 전송을 위해 단말 특정적으로 할당 받은 자원을 통해 빔 관련 제어 정보의 피드백을 위한 상향링크 자원을 요청하는 RACH 프리엠블을 상기 기지국으로 전송하는 단계;
    상기 기지국으로부터 상기 빔 관련 제어 정보의 피드백을 위한 상향링크 할당 (UL Assignment) 정보를 포함하는 메시지를 수신하는 단계; 및
    상기 기지국으로 할당된 상향링크 자원을 통해 상기 빔 관련 제어 정보를 포함하는 상향링크 제어 정보를 전송하는 단계;를 포함하는, 정보 전송 방법.
  2. 제 1항에 있어서,
    상기 상향링크 할당 정보를 포함하는 메시지는,
    RACH 응답 또는 물리 하향링크 제어 채널 (PDCCH)를 통해 전송되는, 정보 전송 방법.
  3. 제 1항에 있어서,
    상기 RACH 프리엠블은 시퀀스의 루트 값 및 순환 시프트 값에 더하여, 서브밴드, 전송 타이밍 및 시퀀스의 OCC(Orthogonal Cover Code) 중 적어도 하나에 의해 정의되는 것인, 정보 전송 방법.
  4. 제3항에 있어서,
    상기 전송 타이밍은 복수의 RACH 시간 축 자원 중 하나 이상을 지정하는 것인, 정보 전송 방법.
  5. 제4항에 있어서,
    상기 복수의 RACH 시간 축 자원은, 복수의 RACH OFDM (Orthogonal Frequency Division Multiplexing) 심볼을 포함하는, 정보 전송 방법.
  6. 제1항에 있어서,
    상기 상향링크 제어 정보를 전송하는 단계는, 상기 상향링크 제어 정보를 상향링크 데이터 채널의 전송 영역에 멀티플렉싱하여 전송하는 것인, 정보 전송 방법.
  7. 제1항에 있어서,
    상기 상향링크 할당 정보를 포함하는 메시지는 상기 빔 관련 정보의 전송 허용 여부를 나타내는 1비트로 구성되는 필드를 포함하는 것인, 정보 전송 방법.
  8. 제1항에 있어서,
    상기 빔 관련 제어 정보는 BSI (Beam State Information)을 포함하는, 정보 전송 방법.
  9. mmWave 통신 시스템에서 상향링크 제어 정보를 전송하는 단말에 있어서,
    송신부;
    수신부; 및
    상기 송신부 및 상기 수신부와 연결되어 동작하는 프로세서를 포함하되,
    상기 프로세서는,
    기지국으로부터의 빔 불일치(beam mismatch)가 발생했음을 판단하고,
    상기 빔 불일치가 발생한 경우, 상기 기지국으로부터 RACH(Random Access Channel) 프리엠블 전송을 위해 단말 특정적으로 할당 받은 자원을 통해 빔 관련 제어 정보의 피드백을 위한 상향링크 자원을 요청하는 RACH 프리엠블을 상기 기지국으로 전송하고,
    상기 기지국으로부터 상기 빔 관련 제어 정보의 피드백을 위한 상향링크 할당 (UL Assignment) 정보를 포함하는 메시지를 수신하고,
    상기 기지국으로 할당된 상향링크 자원을 통해 상기 빔 관련 제어 정보를 포함하는 상향링크 제어 정보를 전송하도록 구성되는, 단말.
  10. 제 9항에 있어서,
    상기 상향링크 할당 정보를 포함하는 메시지는,
    RACH 응답 또는 물리 하향링크 제어 채널 (PDCCH)를 통해 전송되는, 단말.
  11. 제 9항에 있어서,
    상기 RACH 프리엠블은 시퀀스의 루트 값 및 순환 시프트 값에 더하여, 서브밴드, 전송 타이밍 및 시퀀스의 OCC(Orthogonal Cover Code) 중 적어도 하나에 의해 정의되는 것인, 단말.
  12. 제11항에 있어서,
    상기 전송 타이밍은 복수의 RACH 시간 축 자원 중 하나 이상을 지정하는 것인, 단말.
  13. 제12항에 있어서,
    상기 복수의 RACH 시간 축 자원은, 복수의 RACH OFDM (Orthogonal Frequency Division Multiplexing) 심볼을 포함하는, 단말.
  14. 제9항에 있어서,
    상기 프로세서는, 상기 상향링크 제어 정보를 상향링크 데이터 채널의 전송 영역에 멀티플렉싱하여 전송하는, 단말.
  15. 제9항에 있어서,
    상기 상향링크 할당 정보를 포함하는 메시지는 상기 빔 관련 정보의 전송 허용 여부를 나타내는 1비트로 구성되는 필드를 포함하는 것인, 단말.
  16. 제9항에 있어서,
    상기 빔 관련 제어 정보는 BSI (Beam State Information)을 포함하는, 단말.
PCT/KR2017/005161 2016-06-03 2017-05-18 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 이를 위한 장치 WO2017209417A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/306,389 US11297608B2 (en) 2016-06-03 2017-05-18 Method for transmitting uplink control information in wireless communication system and device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662345012P 2016-06-03 2016-06-03
US62/345,012 2016-06-03

Publications (1)

Publication Number Publication Date
WO2017209417A1 true WO2017209417A1 (ko) 2017-12-07

Family

ID=60478831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005161 WO2017209417A1 (ko) 2016-06-03 2017-05-18 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US11297608B2 (ko)
WO (1) WO2017209417A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020200035A1 (zh) * 2019-03-29 2020-10-08 华为技术有限公司 传输上行控制信息的方法及装置
CN111771418A (zh) * 2018-02-15 2020-10-13 高通股份有限公司 用于由用户设备进行的波束故障恢复请求的***和方法
EP3836712A4 (en) * 2018-08-10 2021-11-03 Huawei Technologies Co., Ltd. DIRECT ACCESS METHOD, DEVICE AND DEVICE AND STORAGE MEDIUM

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180049772A (ko) * 2016-11-03 2018-05-11 삼성전자주식회사 DSRC/IEEE 802.11p 와 LTE-V2X 공존을 위한 해결방법
CN108633043B (zh) * 2017-03-24 2021-06-29 中兴通讯股份有限公司 波束恢复的处理方法及装置
CN110769505B (zh) * 2018-07-26 2023-04-18 维沃移动通信有限公司 随机接入方法、终端及网络设备
CN111757503A (zh) * 2019-03-28 2020-10-09 北京三星通信技术研究有限公司 一种资源确定方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140056256A1 (en) * 2011-08-12 2014-02-27 Samsung Electronics Co., Ltd. Apparatus and method for adaptive beam-forming in wireless communication system
US20140091968A1 (en) * 2009-09-08 2014-04-03 Google Inc. System and method for adaptive beamforming for specific absorption rate control
KR20140129625A (ko) * 2013-04-30 2014-11-07 삼성전자주식회사 빔포밍 시스템에서 최적의 송수신 빔 제공 방법 및 장치

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5588594B2 (ja) * 2007-12-26 2014-09-10 富士通株式会社 無線通信システムにおける通信方法並びに無線端末及び無線基地局
US8068458B2 (en) * 2008-08-19 2011-11-29 Telefonaktiebolaget L M Ericson (Publ) Random access preamble selection
EP2345276A1 (en) * 2008-09-18 2011-07-20 Nokia Siemens Networks OY Inter-cell coordination for feeding relay nodes
US20100322096A1 (en) * 2009-06-23 2010-12-23 Chia-Chun Hsu Method of improving component carrier identification in a random access procedure in a wireless communication system and related communication device
EP2582075A4 (en) * 2010-06-09 2015-10-14 Lg Electronics Inc METHOD AND DEVICE FOR SENDING AND RECEIVING CHANNEL STATUS INFORMATION IN A WIRELESS COMMUNICATION SYSTEM SUPPORTING MULTIPLE SUPPORTS
CN102082636B (zh) * 2010-08-16 2013-05-08 电信科学技术研究院 一种信道状态信息csi反馈指示方法和基站及***
US9585083B2 (en) * 2011-06-17 2017-02-28 Samsung Electronics Co., Ltd. Apparatus and method for supporting network entry in a millimeter-wave mobile broadband communication system
US8958412B2 (en) * 2012-05-11 2015-02-17 Samsung Electronics Co., Ltd. Methods and apparatus for uplink timing alignment in system with large number of antennas
KR101443650B1 (ko) * 2012-06-15 2014-09-23 엘지전자 주식회사 채널 상태 정보를 전송하는 방법 및 사용자기기와 채널 상태 정보를 수신하는 방법 및 기지국
GB2506752A (en) * 2012-10-03 2014-04-09 Korea Electronics Telecomm Detecting lte uplink random access preamble
US9468022B2 (en) * 2012-12-26 2016-10-11 Samsung Electronics Co., Ltd. Method and apparatus for random access in communication system with large number of antennas
WO2014139174A1 (en) * 2013-03-15 2014-09-18 Qualcomm Incorporated Improved random access procedure with beamforming in lte
JP6272988B2 (ja) * 2013-04-15 2018-01-31 アイディーエーシー ホールディングス インコーポレイテッド ミリ波(mmw)デュアル接続のための不連続受信(drx)方式
KR102118693B1 (ko) * 2013-06-24 2020-06-03 삼성전자주식회사 무선 통신 시스템에서 랜덤 액세스를 위한 적응적 송신 빔 패턴 결정 장치 및 방법
EP3123802B1 (en) * 2014-03-25 2018-10-03 Telefonaktiebolaget LM Ericsson (publ) System and method for beam-based physical random-access
US10355761B2 (en) * 2014-10-07 2019-07-16 Mediatek Inc. Beam administration methods for cellular/wireless networks
KR101810633B1 (ko) * 2014-12-19 2017-12-19 한국전자통신연구원 셀룰러 이동통신시스템에서의 시스템 운용 방법 및 장치
US10090905B2 (en) * 2014-12-29 2018-10-02 Electronics And Telecommunications Research Institute Method and apparatus for transmitting pilot in multi-antenna communication system, and method and apparatus for allocating pilot in multi-antenna communication system
US20170215117A1 (en) * 2015-04-07 2017-07-27 Samsung Electronics Co., Ltd. Method and apparatus for handover in wireless communication system using beamforming
CN107615868B (zh) * 2015-05-27 2021-10-26 瑞典爱立信有限公司 随机接入前置码信号构建
WO2017022870A1 (en) * 2015-08-03 2017-02-09 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication system
CN107925605B (zh) * 2015-09-10 2021-01-15 苹果公司 针对5g rat中的基于波束的无小区操作的随机接入过程
US10499434B2 (en) * 2015-09-25 2019-12-03 Intel Corporation Mobile terminal device and method for processing signals
EP3381134A1 (en) * 2015-11-23 2018-10-03 Nokia Solutions and Networks Oy User device beamforming training in wireless networks
WO2017146274A1 (ko) * 2016-02-22 2017-08-31 한국과학기술원 Bdma 시스템에서의 랜덤 액세스 방법 및 패턴/편파 bdma 시스템에서의 랜덤 액세스 방법
US10630410B2 (en) * 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140091968A1 (en) * 2009-09-08 2014-04-03 Google Inc. System and method for adaptive beamforming for specific absorption rate control
US20140056256A1 (en) * 2011-08-12 2014-02-27 Samsung Electronics Co., Ltd. Apparatus and method for adaptive beam-forming in wireless communication system
KR20140129625A (ko) * 2013-04-30 2014-11-07 삼성전자주식회사 빔포밍 시스템에서 최적의 송수신 빔 제공 방법 및 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Beam-based Design Framework for New Radio", RI-164874, 3GPP TSG-RAN WG1 #85, 14 May 2016 (2016-05-14), XP051096289 *
LG ELECTRONICS: "Random Access Preamble in LAA", RL-164500, 3GPP TSG RAN WG1 MEETING #85, 14 May 2016 (2016-05-14), XP051096421 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111771418A (zh) * 2018-02-15 2020-10-13 高通股份有限公司 用于由用户设备进行的波束故障恢复请求的***和方法
CN111771418B (zh) * 2018-02-15 2024-01-09 高通股份有限公司 用于由用户设备进行的波束故障恢复请求的***和方法
US11895695B2 (en) 2018-02-15 2024-02-06 Qualcomm Incorporated System and method for beam failure recovery request by user equipment
EP3836712A4 (en) * 2018-08-10 2021-11-03 Huawei Technologies Co., Ltd. DIRECT ACCESS METHOD, DEVICE AND DEVICE AND STORAGE MEDIUM
US11882603B2 (en) 2018-08-10 2024-01-23 Huawei Technologies Co., Ltd. Random access method, apparatus, device, and storage device
WO2020200035A1 (zh) * 2019-03-29 2020-10-08 华为技术有限公司 传输上行控制信息的方法及装置
US11917614B2 (en) 2019-03-29 2024-02-27 Huawei Technologies Co., Ltd. Uplink control information transmission method and apparatus

Also Published As

Publication number Publication date
US20200196301A1 (en) 2020-06-18
US11297608B2 (en) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2017188591A1 (ko) 무선 통신 시스템에서 위상 잡음 추정을 위한 신호 전송 방법
WO2017213382A1 (ko) 무선 통신 시스템에서 위상 잡음 추정을 위한 신호 전송 방법
WO2017209417A1 (ko) 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 이를 위한 장치
WO2021157998A1 (en) Method and apparatus for performing communication in wireless communication system
WO2020060371A1 (en) Method and apparatus for supporting multiple message a sizes and uplink coverage for two step random access procedure
WO2019098770A1 (ko) 물리 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치
WO2021162398A1 (en) Method and apparatus for random access procedure in wireless communication system
WO2018143738A1 (ko) 무선 통신 시스템에서 grant-free 리소스에 관련된 신호 송수신 방법 및 장치
WO2018030847A1 (en) Method and apparatus for transmitting/receiving positioning reference signal in wireless communication system
WO2021066379A1 (en) Method and apparatus for random access procedure
WO2018030809A1 (ko) Nb-iot에서 페이징 신호를 수신하는 방법 및 랜덤 액세스 절차를 수행하는 방법
WO2016153182A1 (ko) 무선 통신 시스템에서 밀리미터 웨이브 셀에 엑세스하는 방법 및 이를 위한 장치
WO2013125873A1 (ko) 무선 통신 시스템에서 초기 접속 방법 및 장치
WO2017023066A1 (ko) 랜덤 액세스 수행 방법 및 mtc 기기
WO2016013901A1 (ko) 단말 간 통신을 지원하는 무선 통신 시스템에서 파워 제어 방법 및 이를 위한 장치
WO2019031864A1 (ko) 랜덤 접속 과정을 수행하는 방법 및 이를 위한 장치
WO2016195292A1 (ko) Mmwave 대역을 이용하는 무선 통신 시스템에서 적응적 전송시점의 랜덤 액세스 수행 방법
WO2016167447A1 (ko) 무선 통신 시스템에서의 동기 신호 송수신 방법
WO2018048250A1 (ko) 무선 통신 시스템에서 빔 조정을 수행하는 방법 및 장치
WO2018186711A1 (ko) 무선 통신 시스템에서 단말이 다중 안테나를 이용하여 CDD(cyclic delay diversity)에 따른 통신을 수행하는 방법 및 이를 위한 장치
WO2017150813A1 (ko) 무선 통신 시스템에서 제어 채널을 송수신하는 방법 및 이를 지원하는 장치
WO2021125725A1 (en) Method and apparatus for handling system information request in wireless communication system
WO2020060193A1 (ko) 무선통신 시스템에서 데이터를 송수신하는 방법 및 장치
WO2022092801A1 (ko) 사이드링크 통신 제어 방법 및 그 장치
EP3497872A1 (en) Method and apparatus for transmitting/receiving positioning reference signal in wireless communication system

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806910

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17806910

Country of ref document: EP

Kind code of ref document: A1