WO2017209323A1 - 3차원 파형핀 및 이를 포함하는 열교환기 - Google Patents

3차원 파형핀 및 이를 포함하는 열교환기 Download PDF

Info

Publication number
WO2017209323A1
WO2017209323A1 PCT/KR2016/005765 KR2016005765W WO2017209323A1 WO 2017209323 A1 WO2017209323 A1 WO 2017209323A1 KR 2016005765 W KR2016005765 W KR 2016005765W WO 2017209323 A1 WO2017209323 A1 WO 2017209323A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
waveform
dimensional
pin
fluid
Prior art date
Application number
PCT/KR2016/005765
Other languages
English (en)
French (fr)
Inventor
강희찬
Original Assignee
군산대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 군산대학교산학협력단 filed Critical 군산대학교산학협력단
Publication of WO2017209323A1 publication Critical patent/WO2017209323A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/26Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/30Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples

Definitions

  • the present invention relates to a three-dimensional corrugated fin and a heat exchanger including the same, and more particularly, to a three-dimensional corrugated fin and a heat exchanger including the same in accordance with the speed of the fluid flowing along the three-dimensional corrugated fin.
  • FIG. 1 is a view showing a two-dimensional waveform pin according to the prior art.
  • a corrugated fin heat exchanger according to the prior art includes a plurality of circular or elliptical tubes and a plurality of corrugated fins bonded to the tubes.
  • the corrugated fin according to the prior art forms a corrugated structure on the heat dissipation surface in order to maximize the heat exchange efficiency.
  • a relatively easy heat transfer fluid flows in one direction in the tube, and a poor heat transfer fluid flows in one direction in the corrugated fin, and heat exchange is performed between the fluid passing through the tube and the fluid passing through the corrugated fin.
  • water or refrigerant flows in the tube, and a gas such as air flows between the corrugated fins.
  • a joint formed in such a way as expansion, brazing, welding, or bonding.
  • Corrugated fins are generally made of materials with high thermal conductivity and high ductility, such as aluminum or copper.
  • the tube is joined to the corrugated fins and exposed to the flow of gas.
  • the gas is relatively dense and viscous, so the arrangement of the tubes is generally staggered.
  • products related to the joining and processing of tubes and tubes are standardized so that the arrangement of the tubes is a fixed factor.
  • Corrugated fin heat exchangers are widely used in air-cooled condensers, evaporators for air conditioners, desalination plants, radiators, and hydrogen coolers in generators.
  • Fins with thin strips have good heat transfer over the same area.
  • the corrugated fin heat exchanger has advantages in terms of productivity and safety of operation compared to a heat exchanger having a cutout portion of a fin, such as a louver fin heat exchanger and an offset fin heat exchanger.
  • a shear mold for shearing a fin in a manufacturing process is essential.
  • the shear surface requires the management of precise tolerances within several percent of the pin thickness.
  • the corrugated fin heat exchanger It is essential for the corrugated fins to flow gas between the corrugated fins in the device that operates the heat exchanger.
  • the higher the velocity of the gas the more advantages in terms of heat transfer.
  • the corrugated fin heat exchanger has a small pressure loss and excellent heat transfer performance, which is an important criterion for determining the superiority of the corrugated fin heat exchanger.
  • Figure 2 is a side cross-sectional schematic diagram showing the flow of fluid flowing through the two-dimensional waveform pin according to the prior art when installed and operated.
  • a number of vortices occur between two-dimensional corrugated fins according to the prior art. These vortices are very nonlinear depending on the pitch, amplitude (or crest), and Reynolds number of the waveform.
  • the shape of the vortex shown in FIG. 2 is only two-dimensionally expressed, and the shape of the actual vortex is a three-dimensional shape. Therefore, the corrugated fin structure is also preferably formed in a three-dimensional structure.
  • Figure 3 is a diagram showing the analysis by analyzing the shear stress distribution generated when the fluid flows in the plate pin according to the prior art.
  • Figure 4 is a diagram showing the analysis of the shear stress distribution generated when the fluid flows in the two-dimensional corrugated fins according to the prior art.
  • Figure 4 shows a very improved aspect than the case of the flat plate. Specifically, it can be seen that the change of the shear stress is somewhat improved in the direction perpendicular to the flow direction of the fluid. However, it can be seen that the size and strength of the vortex is still large in the wake of the tube.
  • Still another object of the present invention is to provide a three-dimensional corrugated fin having a low pressure drop and a heat exchanger including the same.
  • Still another object of the present invention is to provide a heat exchanger including a corrugated fin that can fundamentally block a related device failure caused by scattering of an incision by providing a structure in which an incision is omitted.
  • Three-dimensional corrugated fins and a heat exchanger including the same for achieving the above object: a three-dimensional corrugated fins for heat exchangers formed so that a plurality of tube binding spheres have a staggered arrangement at regular intervals, the three-dimensional corrugation A plurality of wave structures are formed on the surface of the fin, and the wave structures are line symmetrical structures of the upstream portion and the downstream portion based on the imaginary line passing through the center of the tube binding port and orthogonal to the flow direction of the fluid.
  • the pitch of the waveform in the portion where the velocity of the fluid flowing along the 3D corrugation pin is high may be longer than that of the adjacent waveform.
  • the portion of the fast velocity of the fluid flowing along the three-dimensional corrugated pin, the two tube binding sphere adjacent to each other located in the center on an imaginary line in the direction orthogonal to the flow direction of the fluid May be between.
  • the waveform amplitude of the portion adjacent to the tube binding sphere may be larger than the waveform amplitude of the center portion between the tube binding spheres.
  • the amplitude of the waveform in the slow portion of the fluid flowing along the three-dimensional waveform pin may be greater than the amplitude of the adjacent waveform.
  • the pitch of the waveform in the slow portion of the fluid flowing along the three-dimensional waveform pin may be shorter than the pitch of the adjacent waveform.
  • the inner portion of the virtual circle having a diameter of 101% to 130% of the diameter of the tube binding hole is not formed with a wavy structure It may be a flat structure.
  • the portion adjacent to the front end of the tube which is perpendicularly opposed to the flow direction of the fluid, and the rear end and adjacent to the rear end of the tube located 180 degrees opposite to the front end At the portion, dimples may be formed.
  • the protruding direction of the dimple formed in the portion adjacent to the front end of the tube may be opposite to the protruding direction of the dimple formed in the portion adjacent to the rear end of the tube.
  • the size of the dimple formed at the portion adjacent to the rear end of the tube may be 1 to 50% larger than the size of the dimple formed at the portion adjacent to the front end of the tube.
  • the dimple has an elliptical structure on the side cross-section, the long diameter of the elliptical structure may be in a direction parallel to the flow direction of the fluid.
  • the width (W dimple ) of the dimple is 20 to 30% of the radius of the tube binding sphere
  • the length of the dimple (L dimple ) is 21 to 60% of the radius of the tube binding sphere
  • the formation height of the dimple ( H dimple ) may be 20 to 30% of the radius of the tube tie.
  • a projection in the corrugated fin, may be formed at 130 degrees to 160 degrees clockwise in the planar direction from the tip of the tube which is perpendicular to the flow direction of the fluid.
  • the protrusion may be formed at a position spaced apart from the center position of the tube binding sphere by a distance 1.5 to 1.7 times the radius of the tube binding sphere.
  • the protrusion may be formed in a width of 20 to 30% of the radius of the tube binding sphere.
  • the amplitude of the waveform in the portion adjacent to the tip of the tube that is perpendicular to the flow direction of the fluid may be smaller than the amplitude of the waveform of the peripheral portion have.
  • the three-dimensional corrugated pin further comprises a corrugated pin connecting portion for fixing the adjacent pins arranged to be spaced apart by a predetermined distance, the tube pins can be formed in the corrugated pin connecting portion have.
  • the tube fasteners are arranged in a plurality of rows and columns based on the flow direction of the fluid of the three-dimensional corrugated fin, the cut may be formed between the columns formed by the plurality of tube fasteners.
  • an even number of waveforms may be formed between the cut portion and another adjacent cut portion.
  • the present invention can also provide a heat exchanger comprising the three-dimensional corrugated fins.
  • FIG. 1 is a view showing a two-dimensional waveform pin according to the prior art.
  • Figure 2 is a side cross-sectional view showing the flow of the fluid flowing through when a plurality of two-dimensional corrugated fins according to the prior art is installed and operated.
  • Figure 3 is a view showing the analysis of the shear stress distribution generated when the fluid flows in the plate pin according to the prior art.
  • Figure 4 is a diagram showing the analysis of the shear stress distribution generated when the fluid flows in the two-dimensional corrugated fins according to the prior art.
  • Figure 5 is a perspective view showing a three-dimensional waveform pin in accordance with an embodiment of the present invention.
  • FIG. 6 is a partial plan view illustrating a portion of the 3D corrugated pin shown in FIG. 5.
  • FIG. 7 is a cross-sectional view taken along a line A1-A1 of FIG. 6.
  • FIG. 8 is a cross-sectional view taken along the line A2-A2 of FIG. 6.
  • FIG. 9 is a cross-sectional view taken along line A3-A3 in FIG. 6.
  • FIG. 10 is a cross-sectional view taken along the line B1-B1 of FIG. 6.
  • FIG. 11 is a cross-sectional view taken along the line B2-B2 in FIG. 6.
  • FIG. 12 is a cross-sectional view taken along the line B3-B3 in FIG. 6.
  • FIG. 13 is a schematic plan view showing a state in which a portion adjacent to a tube binding hole of a three-dimensional corrugated fin according to an embodiment of the present invention is partitioned by an imaginary line.
  • FIG. 14 is an enlarged view of a portion C of FIG. 13.
  • 15 is a perspective view showing a three-dimensional corrugated pin according to another embodiment of the present invention.
  • FIG. 16 is a partially enlarged view illustrating a portion of the 3D waveform pin illustrated in FIG. 15.
  • FIG. 17 is a plan view illustrating the tube fastener and the dimple illustrated in FIG. 16.
  • 19 is a diagram illustrating an analysis of shear stress distribution generated when a fluid flows through a three-dimensional corrugated fin according to an embodiment of the present invention.
  • 20 is a diagram illustrating an analysis of shear stress distribution generated when a fluid flows through a three-dimensional corrugated pin according to another embodiment of the present invention.
  • Figure 5 is a perspective view showing a three-dimensional waveform pin in accordance with an embodiment of the present invention.
  • the three-dimensional corrugated fin 100 is a fin for a heat exchanger, in which a plurality of tube binding holes 101 are staggered at regular intervals, and includes a flow of fluid flowing between the tubes. It is characterized in that the amplitude (or crest) and the pitch (pitch) of the curved surface of the waveform is adjusted so that the shape of the corrugated pin is balanced.
  • the three-dimensional waveform pin 100 may be configured to include a waveform pin connecting portion 130 for fixing the waveform pin 100 disposed adjacent to be spaced apart by a predetermined distance.
  • the tube binding hole 101 may be formed in the corrugated pin connecting portion 130.
  • the waveform structure is formed It may be a flat structure that is not.
  • FIG. 6 is a partial plan view showing a portion of the three-dimensional corrugated pin shown in FIG. 5, and a cutaway view of FIG. 6 is shown in FIGS. 7 to 12.
  • FIG. 13 is a schematic plan view showing a state in which a portion adjacent to the tube binding hole of the three-dimensional corrugated fin according to the embodiment of the present invention is divided by a virtual line, and FIG. 14 is enlarged in part C of FIG. 13. The figure is shown.
  • the width of the flow path is narrowest between the tube and the tubes (regions a5, a6, a7), and the flow velocity is fastest at this portion. While heat transfer is good in this area, friction is also very high.
  • the free-flow cross-sectional area is greatest in the areas a1, a2, a3, a8, a9, a10, passing through this stream and reaching the next tube, at which point the flow velocity is the slowest. Fluid flowing around the tube forms a vortex at the rear end (a8 region) of the tube.
  • the heat transfer efficiency is low in the region a8 in which this vortex is formed.
  • Vortex generated in the tube located upstream at normal flow velocity affects the tip region a1 of the tube immediately after the tube. Therefore, the region from the rear end region a8 of the tube to the front end region a1 of the next tube is a region with poor heat transfer.
  • the three-dimensional corrugated fin 100 significantly improves the heat transfer effect by adjusting the amplitude (or crest) and the pitch of the waveform in a region where heat transfer is weak.
  • the pitch of the waveform in the portion where the velocity of the fluid flowing along the three-dimensional corrugated fin 100 is high may be longer than the pitch of the adjacent waveform. In this case, it is possible to reduce the pressure drop in the wake and promote heat transfer.
  • the above-mentioned high speed portion of the fluid may be between two adjacent tube binding holes 102 and 103 which are centered on the imaginary line L1 in the direction orthogonal to the flow direction of the fluid. . If this part is confirmed in FIG. 14, it is a5, a6, a7 area
  • the waveform amplitudes of the tube binding ports 102 and 103 and the adjacent portions a5 and a7 are the center portions between the tube binding holes 102 and 103. It is preferable that it is larger than the waveform amplitude of (a6). In this case, it is possible to reduce the pressure drop in the wake and promote heat transfer.
  • the pitch of the waveform in the slow portion of the fluid flowing along the three-dimensional waveform pin 100 may be shorter than the pitch of the adjacent waveform. In this case, it is possible to reduce the pressure drop in the wake and promote heat transfer.
  • the above-mentioned slow velocity portion of the fluid is adjacent to the tip portion of the tube which is perpendicularly opposed to the flow direction of the fluid, and adjacent to the rear end portion of the tube located 180 degrees opposite to the tip portion of the tube. It may be part. If this part is confirmed in FIG. 14, it is a2 and a9 area
  • the amplitude of the waveform formed in the portion where the velocity of the fluid is slow is larger than the amplitude of the adjacent waveform. That is, it is preferable that the amplitude of the waveform formed in the a3 and a10 areas is smaller than the amplitude of the waveform formed in the a2 and a9 areas. In this case, it is possible to reduce the pressure drop in the wake and promote heat transfer.
  • the three-dimensional corrugated fin 100 according to the present embodiment has a waveform having a different structure from each other according to the velocity of the fluid.
  • Such a configuration can reduce shear stress evenly to all regions in a direction perpendicular to the flow direction of the fluid by adjusting the amplitude (or crest) or pitch of the waveform according to the velocity of the fluid, and the tube
  • the pressure drop in the wake can be significantly reduced, and the size and strength of the vortex formed in the wake of the tube can be significantly reduced.
  • the three-dimensional corrugated fin 100 according to the present embodiment may have a waveform having a different structure depending on the velocity of the fluid, thereby significantly improving heat transfer performance.
  • the upstream portion and the downstream portion are line-symmetrical based on the virtual line L1 in the direction orthogonal to the flow direction of the fluid passing through the center of the tube binding port 101. Structure can be achieved. In this case, it is possible to simplify the mold design to produce the three-dimensional corrugated pin 100.
  • the tube binding holes 101 are arranged in a plurality of rows and columns based on the flow direction of the fluid, and between the columns formed by the plurality of tube binding holes 101.
  • a cutout 104 may be formed at the.
  • an even number of waveforms may be formed between the cutout 104 and another adjacent cutout 105.
  • the three-dimensional corrugated pin 100 can simplify the mold design in manufacturing the three-dimensional corrugated pin, and at the same time, the manufacturing process can be simplified, resulting in a great advantage in quality control and productivity. And the manufacturing cost can be significantly reduced.
  • the projection 120 may be formed at a portion 130 to 160 degrees clockwise in a planar direction from the tip of the tube which is perpendicular to the flow direction of the fluid.
  • the protrusion 120 is preferably formed at a position spaced apart from the center position of the tube binding port 101 by a distance 1.5 to 1.7 times the radius (R) of the tube binding port 101.
  • the fluid surrounding the tube generates a vortex in the rear end region (a8 region) of the tube.
  • the flow of the fluid may be guided to the rear end region (a8 region) of the tube.
  • the above-mentioned protrusion 120 is preferably formed to have a width of 20 to 30% of the radius R of the tube binding port 101 so as to effectively guide the flow of the fluid.
  • the amplitude of the waveform in the portion (a1 region) adjacent to the tip of the tube which is perpendicular to the flow direction of the fluid can be made smaller than the amplitude of the waveform of the peripheral portion. In this case too, it is possible to reduce the size and strength of the vortices that can be produced at the leading and trailing ends of the tube.
  • FIG. 15 is a perspective view illustrating a three-dimensional corrugated pin according to another embodiment of the present invention
  • FIG. 16 is a partially enlarged view illustrating a portion of the three-dimensional corrugated pin shown in FIG. 15.
  • FIG. 17 is a plan view showing the tube fasteners and the dimples shown in FIG. 16, and
  • FIG. 18 is a cross-sectional view taken along the line D1-D1 shown in FIG.
  • the 3D waveform pin 100 may have a configuration further including a dimple 110.
  • the region adjacent to the front end of the tube (a1 region) and the region adjacent to the rear end of the tube (a8 region) are regions of low fluid flow rate and poor heat transfer.
  • the three-dimensional corrugated fin 100 according to the present embodiment forms the dimple 110 in an area (a1 and a8 area) where heat transfer is weak.
  • the dimple 110 as shown in Figs. 16 to 17, the portion adjacent to the front end of the tube to be perpendicularly opposed to the flow direction of the fluid, and in a direction opposite to the front end 180 degrees It may be formed in a portion adjacent to the rear end of the tube located.
  • the protruding direction of the dimple 111 formed at the portion adjacent to the front end of the tube is opposite to the protruding direction of the dimple 112 formed at the portion adjacent to the rear end of the tube. Can be.
  • the dimple 110 is an elliptical structure on the side cross-section, the long diameter of the elliptical structure is preferably a direction parallel to the flow direction of the fluid.
  • the size of the dimple 110 may be variously designed according to the flow rate of the fluid and the diameter of the tube binding port 101.
  • Width (W dimple) is the length (L dimple) of the radius (R) and by 20 to 30%
  • the dimple 110 of the tube coupling opening (101) of the dimples (110) according to the embodiment preferably present example is nine tubes bundled It may be 21 to 60% relative to the radius (R) of (101).
  • forming height (H dimple) of the dimple 110 may be 20 to 30% of the radius (R) of the tube coupling opening (101).
  • the dimples downstream of the tube form a larger size than the dimples upstream.
  • the size of the dimples 112 formed at the portion adjacent to the rear end of the tube may be 1 to 50% larger than the size of the dimples 111 formed at the portion adjacent to the front end of the tube.
  • Three-dimensional corrugated fin 100 including such a configuration, by forming a dimple (dimple) at a specific position where the flow rate is low and heat transfer is weak, to locally promote the mixing of the fluid to achieve the heat transfer enhancement effect Can be.
  • 19 is a diagram illustrating an analysis of shear stress distribution generated when a fluid flows through a three-dimensional corrugated pin according to an embodiment of the present invention.
  • the three-dimensional waveform pin shown in FIG. 19 is an analysis diagram when the dimple is not formed.
  • the distribution of the shear stress is relatively uniform except for some hot spots, and the entire fin surface area is uniformly utilized.
  • 20 is a diagram illustrating an analysis of the shear stress distribution generated when the fluid flows to the three-dimensional corrugated pin according to another embodiment of the present invention.
  • the three-dimensional waveform pin shown in FIG. 20 is an analysis diagram for the case where the dimple is formed.
  • the effective heat transfer length of the fluid is increased and consequently the heat transfer performance is significantly increased. Can be improved.
  • the three-dimensional corrugated fin of the present invention by forming a waveform formed in the portion located between the tube in a specific structure, it is possible to significantly reduce the pressure drop in the wake of the fluid relative to the tube, resulting in a heat transfer effect Can be improved.
  • the three-dimensional corrugation pin of the present invention by forming a projection at a specific position, it is possible to easily guide the flow of fluid to the wake of the tube, reduce the size and strength of the vortex formed in the wake of the tube, resulting This can achieve the effect of reducing the pressure drop and promoting heat transfer.
  • the three-dimensional corrugated fin of the present invention by forming a dimple at a specific position where the flow rate is low and the heat transfer is weak, it is possible to locally promote the mixing of the fluid to achieve a heat transfer increase effect.
  • the upstream portion and the downstream portion have a line symmetrical structure based on the imaginary line passing through the center of the tube binding sphere and orthogonal to the flow direction of the fluid, thereby producing a three-dimensional corrugated fin. Therefore, the mold design can be simplified, and at the same time, the manufacturing process can be simplified, and as a result, it is greatly advantageous for quality control and productivity, and can significantly reduce the manufacturing cost.
  • the three-dimensional corrugated fin of the present invention by forming a cut between the rows formed by a plurality of tube binding spheres, it is possible to simplify the mold design in the production of three-dimensional corrugated fins, and at the same time to simplify the manufacturing process As a result, it is greatly advantageous for quality control and productivity, and can significantly reduce the production cost.
  • the three-dimensional corrugated fin of the present invention by providing a structure in which the incision is omitted, it is possible to provide a corrugated fin and a heat exchanger including the same, which can fundamentally block the failure of the associated device due to scattering of the incision, the incision is omitted
  • the structure can greatly reduce the cost of production equipment, mold and quality control of the heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

3차원 파형핀 및 이를 포함하는 열교환기가 개시된다. 본 발명의 실시예에 따른 3차원 파형핀(100)은, 다수의 튜브 결속구(101)가 일정한 간격으로 엇갈림 배열을 갖도록 형성된 열교환기용 3차원 파형핀(100)으로서, 상기 3차원 파형핀(100)의 표면에는 다수의 파형(wave) 구조가 형성되어 있고, 상기 파형 구조는, 튜브 결속구(101)의 중심을 지나고 유체의 흐름방향과 직교하는 방향의 가상 선(L1)을 기준으로 상류 부분과 하류 부분이 선대칭구조이며, 상기 3차원 파형핀(100)을 따라 흐르는 유체의 속도가 빠른 부분에서의 파형의 피치는, 인접하는 파형의 피치보다 긴 것을 구성의 요지로 한다. 본 발명의 3차원 파형핀에 따르면, 유체의 유효 열전달 길이를 증가시킬 수 있어, 결과적으로 열전달 성능을 현저히 향상시킬 수 있다.

Description

3차원 파형핀 및 이를 포함하는 열교환기
본 발명은 3차원 파형핀 및 이를 포함하는 열교환기에 관한 것으로서, 보다 상세하게는 3차원 파형핀을 따라 흐르는 유체의 속도에 따라 파형 구조를 달리한 3차원 파형핀 및 이를 포함하는 열교환기에 관한 것이다.
도 1에는 종래 기술에 따른 2차원 파형핀을 나타내는 그림이 도시되어 있다.
도 1을 참조하면, 종래 기술에 따른 파형핀 열교환기의 경우, 다수의 원형 또는 타원형 튜브와, 튜브와 접합된 다수의 파형핀을 구비한다.
도 1에 도시된 바와 같이, 종래 기술에 따른 파형핀은 열교환 효율을 극대화하기 위하여 방열면에 파형 구조를 형성하고 있다.
일반적으로 튜브에는 상대적으로 열전달이 용이한 유체가 일측 방향으로 흐르며, 파형핀에는 열전달이 잘 되지 않는 유체가 일측 방향으로 흐르면서, 튜브를 지나는 유체와 파형핀을 지나는 유체 사이에 열교환이 이루어진다. 일반적으로 튜브 내에는 물이나 냉매가 흐르며 파형핀 사이에는 공기와 같은 기체가 흐른다.
튜브와 파형핀 사이에는 확관, 브레이징, 용접, 접착과 같은 방식으로 형성된 접합부가 마련된다.
튜브의 경우 통상적으로 철, 구리 또는 알루미늄 재질이 사용된다. 파형핀은 알루미늄이나 구리와 같이 열전도율이 높고 연성이 큰 재질이 사용되는 것이 일반적이다.
튜브는 파형핀과 접합되어 기체의 흐름에 노출된다. 기체는 상대적으로 밀도와 점성이 낮아 튜브의 배열은 엇갈림 배열이 일반적이다. 또한 파형핀 열교환기에서 튜브 그리고 튜브의 접합과 가공에 관련한 제품은 표준화되어서 튜브의 배열은 고정인자이다.
파형핀 열교환기는 공기냉각 응축기, 공조기용 증발기, 담수설비, 방열기, 발전기의 수소냉각기 등에서는 널리 사용된다.
루우버핀 옵셋핀과 같이 얇은 스트립을 포함한 핀은 동일 면적에 대하여 열전달 성능은 우수하다. 그러나 파형핀 열교환기는 루버핀 열교환기 옵셋핀 열교환기와 같이 핀의 절개부를 갖는 열교환기에 비하여 생산성과 운전의 안전성 측면에 장점이 있다. 즉, 절개부를 갖는 열교환기의 경우에 제조 공정에서 핀을 전단하는 전단금형이 필수적이다. 핀의 전단면에서 버(bur)와 같이 제품에 결정적인 저해요소를 방지하기 위하여 전단면은 핀 두께의 수 퍼센트 이내의 정교한 공차의 관리가 필요하다. 또한 전단 공구의 주기적인 교체, 이로 인한 비용의 증가 및 금형의 교체에 따른 생산 기간의 단축과 같은 문제가 야기된다. 또한 발전기 냉각기와 같이 수십 년간 매우 안정적인 운전환경이 요구되는 경우에는 얇은 스트립의 비산으로 인한 사고로 인하여 발전소 전체가 중단되는 사태가 발생할 수 있다.
파형핀을 열교환기를 운용하는 장치에서 파형핀 사이에 기체를 흐르게 하는 것은 필수적이며 기체의 속도가 클수록 열전달 측면에서 장점이 많다. 그러나 속도가 증가하면 기체의 흐름을 유지하는데 압력손실이 증가하게 되고 휀의 운전비용이 증가한다. 따라서 파형핀 열교환기에서는 압력손실은 작고 열전달 성능은 우수한 파형구조는 파형핀 열교환기의 제품의 우수성을 판별하는 중요한 기준이 된다.
도 2에는 종래 기술에 따른 2차원 파형핀이 복수개 설치되어 운용될 경우, 이를 통해 흐르는 유체의 흐름을 나타내는 측단면 모식도가 도시되어 있다.
도 2에 도시된 바와 같이, 종래 기술에 따른 2차원 파형핀 사이에는 다수의 와류가 발생한다. 이러한 와류는 파형의 피치, 진폭(또는 파고) 및 Reynolds수에 따라 매우 비선형성이 크다.
도 2에 도시된 와류의 형상은 이차원적으로 표현된 것일 뿐, 실제 와류의 형상은 3차원 형상이다. 따라서, 파형핀 구조 역시 3차원 구조로 형성함이 바람직하다.
도 3에는 종래 기술에 따른 평판핀에 유체를 유동시킬 경우 발생되는 전단응력 분포를 분석하여 나타낸 그림이 도시되어 있다.
도 3에서 확인할 수 있는 바와 같이, 평판핀의 경우 튜브 후류에서 와류의 크기와 강도가 매우 큼을 알 수 있다. 또한, 유체의 흐름 방향과 수직을 이루는 방향으로 마찰(shear stress)의 변화가 매우 큼을 알 수 있다.
따라서, 이러한 양상을 보이는 평판핀의 경우, 열교환 효율이 매우 낮다는 문제점을 가지고 있다.
이러한 문제점을 해결하기 위해, 평판핀에 파형 구조를 형성시킨 2차원 파형핀이 개발되었다.
도 4에는 종래 기술에 따른 2차원 파형핀에 유체를 유동시킬 경우 발생되는 전단응력 분포를 분석하여 나타낸 그림이 도시되어 있다.
도 4에서 확인할 수 있는 바와 같이, 평판핀의 경우보다 매우 호전된 양상을 보이고 있다. 구체적으로, 유체의 흐름 방향과 수직을 이루는 방향으로 마찰(shear stress)의 변화가 다소 개선된 것을 확인할 수 있다. 그러나, 튜브 후류에서 와류의 크기와 강도가 여전히 큼을 확인할 수 있다.
따라서, 상기 언급한 바와 같이, 종래 기술에 따른 열교환기용 핀에 대한 여러 문제점을 해결할 수 있는 기술이 필요한 실정이다.
본 발명의 목적은, 열전달 성능이 높은 3차원 파형핀 및 이를 포함하는 열교환기를 제공하는 것이다.
본 발명의 또 다른 목적은, 압력강하가 낮은 3차원 파형핀 및 이를 포함하는 열교환기를 제공하는 것이다.
본 발명의 또 다른 목적은, 절개부가 생략된 구조를 구비함으로써 절개부 비산에 따른 관련 장치 고장을 원천적으로 차단할 수 있는 파형핀 및 이를 포함하는 열교환기를 제공하는 것이다.
이러한 목적을 달성하기 위한 본 발명의 일 측면에 따른 3차원 파형핀 및 이를 포함하는 열교환기는: 다수의 튜브 결속구가 일정한 간격으로 엇갈림 배열을 갖도록 형성된 열교환기용 3차원 파형핀으로서, 상기 3차원 파형핀의 표면에는 다수의 파형(wave) 구조가 형성되어 있고, 상기 파형 구조는, 튜브 결속구의 중심을 지나고 유체의 흐름방향과 직교하는 방향의 가상 선을 기준으로 상류 부분과 하류 부분이 선대칭구조이며, 상기 3차원 파형핀을 따라 흐르는 유체의 속도가 빠른 부분에서의 파형의 피치는, 인접하는 파형의 피치보다 긴 구조일 수 있다.
본 발명의 일 실시예에 있어서, 상기 3차원 파형핀을 따라 흐르는 유체의 속도가 빠른 부분은, 유체의 흐름방향과 직교하는 방향의 가상 선 상에 중심이 위치하는 서로 인접하는 두 개의 튜브 결속구 사이일 수 있다.
이 경우, 상기 두 개의 튜브 결속구 사이에 있어서, 튜브 결속구와 인접하는 부분의 파형 진폭은, 튜브 결속구 사이의 정중앙 부분의 파형 진폭보다 큰 것일 수 있다.
본 발명의 일 실시예에 있어서, 상기 3차원 파형핀을 따라 흐르는 유체의 속도가 느린 부분에서의 파형의 진폭은 인접하는 파형의 진폭보다 큰 것일 수 있다.
또한, 상기 3차원 파형핀을 따라 흐르는 유체의 속도가 느린 부분에서의 파형의 피치는 인접하는 파형의 피치보다 짧은 것일 수 있다.
이때, 상기 3차원 파형핀을 따라 흐르는 유체의 속도가 느린 부분은, 유체의 흐름 방향과 수직으로 맞부딪히는 튜브의 선단부와 인접하는 부분, 및 상기 튜브의 선단부와 180도 반대방향에 위치하는 튜브의 후단부와 인접하는 부분일 수 있다.
본 발명의 일 실시예에 있어서, 상기 3차원 파형핀의 튜브 결속구와 인접하는 부분에 있어서, 튜브 결속구의 직경 대비 101 % 내지 130 % 의 직경을 가지는 가상 원 내측 부분은 파형 구조가 형성되어 있지 않은 평평한 구조일 수 있다.
본 발명의 일 실시예에 있어서, 상기 3차원 파형핀에 있어서, 유체의 흐름 방향과 수직으로 맞부딪히는 튜브의 선단부와 인접하는 부분, 및 선단부와 180도 반대방향에 위치하는 튜브의 후단부와 인접하는 부분에, 딤플(dimple)이 형성될 수 있다.
이 경우, 상기 튜브의 선단부와 인접하는 부분에 형성된 딤플의 돌출방향은, 튜브의 후단부와 인접하는 부분에 형성된 딤플의 돌출방향과 서로 정반대방향일 수 있다.
또한, 상기 튜브의 후단부와 인접하는 부분에 형성된 딤플의 크기는, 튜브의 선단부와 인접하는 부분에 형성된 딤플의 크기 대비 1 내지 50 % 더 큰 것일 수 있다.
또한, 상기 딤플은 측단면상 타원형 구조이고, 상기 타원형 구조의 장경은 유체의 흐름방향과 평행한 방향일 수 있다.
이때, 상기 딤플의 폭(Wdimple)은, 튜브 결속구의 반경 대비 20 내지 30 %이고, 상기 딤플의 길이(Ldimple)는, 튜브 결속구의 반경 대비 21 내지 60 %이고, 상기 딤플의 형성 높이(Hdimple)는, 튜브 결속구의 반경 대비 20 내지 30 %일 수 있다.
본 발명의 일 실시예에 있어서, 상기 파형핀에 있어서, 유체의 흐름 방향과 수직으로 맞부딪히는 튜브의 선단부로부터 평면상 시계방향으로 130도 내지 160도 부분에는, 돌기가 형성될 수 있다.
이 경우, 상기 돌기는, 튜브 결속구의 반경 대비 1.5 배 내지 1.7 배의 거리만큼 튜브 결속구의 중심 위치로부터 이격된 위치에 형성될 수 있다.
또한, 상기 돌기는 튜브 결속구의 반경 대비 20 내지 30 %의 폭으로 형성될 수 있다.
본 발명의 일 실시예에 있어서, 상기 3차원 파형핀에 있어서, 유체의 흐름 방향과 수직으로 맞부딪히는 튜브의 선단부와 인접하는 부분에서의 파형의 진폭은, 주변 부분의 파형의 진폭보다 작은 것일 수 있다.
본 발명의 일 실시예에 있어서, 상기 3차원 파형핀은, 인접하여 배치된 파형핀을 소정 거리만큼 이격되도록 고정시키는 파형핀 연결부를 더 포함하고, 상기 파형핀 연결부에 튜브 결속구가 형성될 수 있다.
본 발명의 일 실시예에 있어서, 상기 3차원 파형핀의 유체의 흐름방향을 기준으로 튜브 결속구는 다수의 행과 열로 배열되고, 다수의 튜브 결속구가 형성하는 열 사이에 절단부가 형성될 수 있다.
이 경우, 상기 절단부와 인접하는 또 다른 절단부 사이에는 짝수 개수의 파형이 형성될 수 있다.
본 발명은 또한, 상기 3차원 파형핀을 포함하는 것을 특징으로 하는 열교환기를 제공할 수 있다.
도 1은 종래 기술에 따른 2차원 파형핀을 나타내는 그림이다.
도 2는 종래 기술에 따른 2차원 파형핀이 복수개 설치되어 운용될 경우, 이를 통해 흐르는 유체의 흐름을 나타내는 측단면 모식도이다.
도 3은 종래 기술에 따른 평판핀에 유체를 유동시킬 경우 발생되는 전단응력 분포를 분석하여 나타낸 그림이다.
도 4는 종래 기술에 따른 2차원 파형핀에 유체를 유동시킬 경우 발생되는 전단응력 분포를 분석하여 나타낸 그림이다.
도 5는 본 발명의 일 실시예에 따른 3차원 파형핀을 나타내는 사시도이다.
도 6은 도 5에 도시된 3차원 파형핀의 일부분을 나타내는 부분 평면도이다.
도 7은 도 6의 A1-A1선 절단면도이다.
도 8은 도 6의 A2-A2선 절단면도이다.
도 9는 도 6의 A3-A3선 절단면도이다.
도 10은 도 6의 B1-B1선 절단면도이다.
도 11은 도 6의 B2-B2선 절단면도이다.
도 12는 도 6의 B3-B3선 절단면도이다.
도 13은 본 발명의 일 실시예에 따른 3차원 파형핀의 튜브 결속구와 인접하는 부분을 가상의 선으로 구획한 모습을 나타내는 평면 모식도이다.
도 14는 도 13의 C 부분 확대도이다.
도 15는 본 발명의 또 다른 실시예에 따른 3차원 파형핀을 나타내는 사시도이다.
도 16은 도 15에 도시된 3차원 파형핀의 일부분을 나타내는 부분 확대도이다.
도 17은 도 16에 도시된 튜브 결속구와 딤플을 나타내는 평면도이다.
도 18은 도 17에 도시된 D1-D1선 절단면도이다.
도 19는 본 발명의 일 실시예에 따른 3차원 파형핀에 유체를 유동시킬 경우 발생되는 전단응력 분포를 분석하여 나타낸 그림이다.
도 20은 본 발명의 또 다른 실시예에 따른 3차원 파형핀에 유체를 유동시킬 경우 발생되는 전단응력 분포를 분석하여 나타낸 그림이다.
이하 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정하여 해석되어서는 아니되며, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
본 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다. 본 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
도 5에는 본 발명의 일 실시예에 따른 3차원 파형핀을 나타내는 사시도가 도시되어 있다.
도 5를 참조하면, 본 실시예에 따른 3차원 파형핀(100)은, 다수의 튜브 결속구(101)가 일정한 간격으로 엇갈림 배열을 갖도록 형성된 열교환기용 핀으로서, 튜브 사이를 흐르는 유체의 흐름과 파형핀의 형상이 조화를 이루도록 파형의 굴곡면의 진폭(또는 파고)과 피치(pitch)를 조정한 것을 특징으로 한다.
또한, 본 실시예에 따른 3차원 파형핀(100)은, 인접하여 배치된 파형핀(100)을 소정 거리만큼 이격되도록 고정시키는 파형핀 연결부(130)를 포함하는 구성일 수 있다. 이때, 파형핀 연결부(130)에 튜브 결속구(101)가 형성될 수 있다.
또한, 3차원 파형핀(100)의 튜브 결속구(101)와 인접하는 부분에 있어서, 튜브 결속구(101)의 직경 대비 101 % 내지 130 % 의 직경을 가지는 가상 원 내측 부분은 파형 구조가 형성되어 있지 않은 평평한 구조일 수 있다.
이하에서는 도 6 내지 도 14를 참고하여, 본 실시예에 따른 3차원 파형핀(100)의 구조에 대해 상세히 설명하기로 한다.
도 6에는 도 5에 도시된 3차원 파형핀의 일부분을 나타내는 부분 평면도가 도시되어 있으며, 도 7내지 도 12에는 도 6의 절단면도가 도시되어 있다. 또한, 도 13에는 본 발명의 일 실시예에 따른 3차원 파형핀의 튜브 결속구와 인접하는 부분을 가상의 선으로 구획한 모습을 나타내는 평면 모식도가 도시되어 있고, 도 14에는 도 13의 C 부분 확대도가 도시되어 있다.
우선, 도 13 및 도 14를 참조하면, 튜브와 튜브 사이(a5, a6, a7 영역)에서 유로의 폭이 가장 좁으며, 이 부분에서 유속이 가장 빠르다. 이 영역에서는 열전달이 잘 이루어지는 반면, 마찰도 매우 크다. 이 흐름을 지나 다음 튜브에 도달하는 a1, a2, a3, a8, a9, a10 영역에서 자유흐름 단면적이 가장 크며, 이 지점에서 유속이 가장 느리다. 튜브를 감싸고 흐르는 유체는 튜브의 후단부(a8 영역)에서 와류를 형성한다. 이 와류가 형성되는 영역(a8)에서 열전달 효율이 낮다. 통상의 유속에서 상류에 위치한 튜브에서 발생한 와류는 튜브 바로 다음 튜브의 선단부 영역(a1)까지 영향을 미친다. 따라서, 튜브의 후단부 영역(a8)부터 다음 튜브의 선단부 영역(a1)까지의 영역은 열전달이 취약한 영역이다.
본 실시예에 따른 3차원 파형핀(100)은 열전달이 취약한 영역에 대한 파형의 진폭(또는 파고)과 피치를 조절함으로써, 열전달 효과를 현저히 향상시키고 있다.
구체적으로, 3차원 파형핀(100)을 따라 흐르는 유체의 속도가 빠른 부분에서의 파형의 피치는, 인접하는 파형의 피치보다 길 수 있다. 이 경우, 후류에서의 압력강하를 줄이고 열전달을 촉진할 수 있다.
이때, 상기 언급한 유체의 속도가 빠른 부분은, 유체의 흐름방향과 직교하는 방향의 가상 선(L1) 상에 중심이 위치하는 서로 인접하는 두 개의 튜브 결속구(102, 103) 사이일 수 있다. 이 부분을 도 14에서 확인하면, a5, a6, a7 영역이다.
또한, 두 개의 튜브 결속구(102, 103) 사이에 있어서, 튜브 결속구(102, 103)와 인접하는 부분(a5, a7)의 파형 진폭은, 튜브 결속구(102, 103) 사이의 정중앙 부분(a6)의 파형 진폭보다 큼이 바람직하다. 이 경우, 후류에서의 압력강하를 줄이고 열전달을 촉진할 수 있다.
반면, 3차원 파형핀(100)을 따라 흐르는 유체의 속도가 느린 부분에서의 파형의 피치는, 인접하는 파형의 피치보다 짧을 수 있다. 이 경우, 후류에서의 압력강하를 줄이고 열전달을 촉진할 수 있다.
이때, 상기 언급한 유체의 속도가 느린 부분은, 유체의 흐름 방향과 수직으로 맞부딪히는 튜브의 선단부와 인접하는 부분, 및 상기 튜브의 선단부와 180도 반대방향에 위치하는 튜브의 후단부와 인접하는 부분일 수 있다. 이 부분을 도 14에서 확인하면, a2, a9 영역이다.
또한, 유체의 속도가 느린 부분 즉, a2, a9 영역에 형성된 파형의 진폭은 인접하는 파형의 진폭보다 큼이 바람직하다. 즉, a3, a10 영역에 형성된 파형의 진폭은 a2, a9 영역에 형성된 파형의 진폭보다 작음이 바람직하다. 이 경우, 후류에서의 압력강하를 줄이고 열전달을 촉진할 수 있다.
이상에서 설명한 바와 같이, 본 실시예에 따른 3차원 파형핀(100)은 유체의 속도에 따라 서로 상이한 구조의 파형을 가지고 있다. 이러한, 구성은, 유체의 속도에 따라 파형의 진폭(또는 파고) 내지 피치를 조절함으로써, 유체의 흐름 방향과 수직을 이루는 방향으로 마찰(shear stress)을 모든 영역에 대해서 균등하게 줄일 수 있고, 튜브 후류에서의 압력강하를 현저히 줄일 수 있으며, 튜브 후류에서 형성되는 와류의 크기와 강도를 현저히 저감시킬 수 있다. 결과적으로 본 실시예에 따른 3차원 파형핀(100)은 유체의 속도에 따라 서로 상이한 구조의 파형을 가지도록 함으로써, 열전달 성능을 현저히 향상시킬 수 있다.
한편, 본 실시예에 따른 3차원 파형핀(100)은, 튜브 결속구(101)의 중심을 지나고 유체의 흐름방향과 직교하는 방향의 가상 선(L1)을 기준으로 상류 부분과 하류 부분이 선대칭구조를 이룰 수 있다. 이 경우, 3차원 파형핀(100)을 제작할 수 있는 금형설계를 단순화 할 수 있다.
또한, 본 실시예에 따른 3차원 파형핀(100)은 유체의 흐름방향을 기준으로 튜브 결속구(101)는 다수의 행과 열로 배열되고, 다수의 튜브 결속구(101)가 형성하는 열 사이에 절단부(104)가 형성될 수 있다.
이때, 절단부(104)와 인접하는 또 다른 절단부(105) 사이에는 짝수 개수의 파형이 형성됨이 바람직하다. 이 경우, 3차원 파형핀(100)을 제작할 수 있는 금형설계를 단순화 할 수 있다.
따라서, 본 실시예에 따른 3차원 파형핀(100)은, 3차원 파형핀 제작에 있어서 금형설계를 단순화 할 수 있고, 이와 동시에 제작공정 역시 간소화 할 수 있어, 결과적으로 품질관리와 생산성에 크게 유리하며, 제작 비용을 현저히 절감시킬 수 있다.
또 다른 실시예에 따른 3차원 파형핀(100)의 경우, 유체의 흐름 방향과 수직으로 맞부딪히는 튜브의 선단부로부터 평면상 시계방향으로 130도 내지 160도 부분에 돌기(120)가 형성될 수 있다. 이때, 돌기(120)는, 튜브 결속구(101)의 반경(R) 대비 1.5 배 내지 1.7 배의 거리만큼 튜브 결속구(101)의 중심 위치로부터 이격된 위치에 형성됨이 바람직하다.
도 13 및 도 14와 함께 참조하면, 튜브를 감싸고 흐르는 유체는 튜브의 후단부 영역(a8 영역)에서 와류를 발생시킨다. 이때, a11 영역에 돌기(120)를 형성시키게 되면, 유체의 흐름을 튜브의 후단부 영역(a8 영역)으로 안내할 수 있다. 결과적으로, 튜브 후단부 영역(a8 영역)에서 발생되는 와류의 크기와 강도를 감소시킬 수 있으며, 와류의 감소에 따라서 압력강하의 저감과 열전달 촉진 효과를 달성할 수 있다.
상기 언급한 돌기(120)는, 유체의 흐름을 효과적으로 안내할 수 있도록, 튜브 결속구(101)의 반경(R) 대비 20 내지 30 %의 폭으로 형성됨이 바람직하다.
이와 같은 원리를 적용하여, 유체의 흐름 방향과 수직으로 맞부딪히는 튜브의 선단부와 인접하는 부분(a1 영역)에서의 파형의 진폭은, 주변 부분의 파형의 진폭보다 작도록 할 수 있다. 이 경우 역시, 튜브의 선단부와 후단부에 생성될 수 있는 와류의 크기와 강도를 감소시킬 수 있다.
도 15에는 본 발명의 또 다른 실시예에 따른 3차원 파형핀을 나타내는 사시도가 도시되어 있고, 도 16에는 도 15에 도시된 3차원 파형핀의 일부분을 나타내는 부분 확대도가 도시되어 있다. 또한, 도 17에는 도 16에 도시된 튜브 결속구와 딤플을 나타내는 평면도가 도시되어 있고, 도 18에는 도 17에 도시된 D1-D1선 절단면도가 도시되어 있다.
이들 도면을 참조하면, 본 실시예에 따른 3차원 파형핀(100)은, 딤플(dimple, 110)을 더 포함하는 구성일 수 있다.
앞서 설명한 바와 같이, 튜브의 선단부와 인접한 영역(a1 영역)과 튜브의 후단부와 인접한 영역(a8 영역)은, 유체의 유속이 낮고 열전달이 취약한 영역이다. 본 실시예에 따른 3차원 파형핀(100)은 이러한 열전달이 취약한 영역(a1, a8 영역)에 딤플(110)을 형성하고 있다.
구체적으로, 본 실시예에 따른 딤플(110)은, 도 16 내지 도 17에 도시된 바와 같이, 유체의 흐름 방향과 수직으로 맞부딪히는 튜브의 선단부와 인접하는 부분, 및 선단부와 180도 반대방향에 위치하는 튜브의 후단부와 인접하는 부분에 형성될 수 있다.
또한, 유속이 낮거나 핀 피치가 작은 경우에는, 유체의 난류 강도가 낮으므로, 딤플의 돌출방향을 달리하여 열전달 효율을 향상시킬 수 있다. 구체적으로, 도 16에 도시된 바와 같이, 튜브의 선단부와 인접하는 부분에 형성된 딤플(111)의 돌출방향은, 튜브의 후단부와 인접하는 부분에 형성된 딤플(112)의 돌출방향과 서로 정반대방향일 수 있다.
이때 딤플(110)은 측단면상 타원형 구조이고, 타원형 구조의 장경은 유체의 흐름방향과 평행한 방향임이 바람직하다.
더욱 구체적으로, 딤플(110)의 형성 크기는 유체의 유속과 튜브 결속구(101)의 직경에 따라 다양하게 설계될 수 있다.
바람직하게 본 실시예에 따른 딤플(110)의 폭(Wdimple)은 튜브 결속구(101)의 반경(R) 대비 20 내지 30 %이고, 딤플(110)의 길이(Ldimple)는 튜브 결속구(101)의 반경(R) 대비 21 내지 60 %일 수 있다. 또한, 딤플(110)의 형성 높이(Hdimple)는 튜브 결속구(101)의 반경(R) 대비 20 내지 30 %일 수 있다.
또한, 튜브 하류의 딤플이 상류의 딤플보다 큰 크기로 형성함이 바람직하다. 구체적으로, 튜브의 후단부와 인접하는 부분에 형성된 딤플(112)의 크기는, 튜브의 선단부와 인접하는 부분에 형성된 딤플(111)의 크기 대비 1 내지 50 % 더 크게 할 수 있다.
이러한 구성을 포함하는 본 실시예에 따른 3차원 파형핀(100)은, 유속이 낮고 열전달이 취약한 특정 위치에 딤플(dimple)을 형성시킴으로써, 국부적으로 유체의 혼합을 촉진하여 열전달 증대 효과를 달성할 수 있다.
도 19에는 본 발명의 일 실시예에 따른 3차원 파형핀에 유체를 유동시킬 경우 발생되는 전단응력 분포를 분석하여 나타낸 그림이 도시되어 있다.
도 19에 도시된 3차원 파형핀은 딤플이 형성되어 있지 않은 경우에 대한 분석 그림이다.
도 4 및 도 19에서 확인할 수 있는 바와 같이, 튜브 후류에 생성되는 와류가 크기와 강도가 종래 기술 대비 현저히 저감된 것을 확인할 수 있다.
또한, 일부 국소위치(hot spot)을 제외하고 마찰(shear stress)의 분포가 비교적 균일하며, 전체 핀 표면적을 골고루 활용함을 확인할 수 있다.
도 20에는 본 발명의 또 다른 실시예에 따른 3차원 파형핀에 유체를 유동시킬 경우 발생되는 전단응력 분포를 분석하여 나타낸 그림이 도시되어 있다.
도 20에 도시된 3차원 파형핀은 딤플이 형성된 경우에 대한 분석 그림이다.
도 4 및 도 20에서 확인할 수 있는 바와 같이, 튜브 후류에 생성되는 와류가 크기와 강도가 종래 기술 대비 현저히 저감된 것을 확인할 수 있다.
이상의 본 발명의 상세한 설명에서는 그에 따른 특별한 실시예에 대해서만 기술하였다. 하지만 본 발명은 상세한 설명에서 언급되는 특별한 형태로 한정되는 것이 아닌 것으로 이해되어야 하며, 오히려 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.
즉, 본 발명은 상술한 특정의 실시예 및 설명에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능하며, 그와 같은 변형은 본 발명의 보호 범위 내에 있게 된다.
이상에서 설명한 바와 같이, 본 발명의 3차원 파형핀에 따르면, 3차원 파형핀을 따라 흐르는 유체의 속도에 따라 파형의 구조를 서로 달리함으로써, 유체의 유효 열전달 길이를 증가하고 결과적으로 열전달 성능을 현저히 향상시킬 수 있다.
또한, 본 발명의 3차원 파형핀에 따르면, 튜브 사이에 위치하는 부분에 형성된 파형을 특정 구조로 형성시킴으로써, 튜브를 기준으로 유체의 후류에서의 압력강하를 현저히 줄일 수 있고, 결과적으로 열전달 효과를 향상시킬 수 있다.
또한, 본 발명의 3차원 파형핀에 따르면, 특정 위치에 돌기를 형성시킴으로써, 유체의 흐름을 튜브 후류로 손쉽게 안내할 수 있고, 튜브 후류에서 형성되는 와류의 크기와 강도를 감소시킬 수 있으며, 결과적으로 압력강하의 저감과 열전달 촉진 효과를 달성할 수 있다.
또한, 본 발명의 3차원 파형핀에 따르면, 유속이 낮고 열전달이 취약한 특정 위치에 딤플(dimple)을 형성시킴으로써, 국부적으로 유체의 혼합을 촉진하여 열전달 증대 효과를 달성할 수 있다.
또한, 본 발명의 3차원 파형핀에 따르면, 튜브 결속구의 중심을 지나고 유체의 흐름방향과 직교하는 방향의 가상 선을 기준으로 상류 부분과 하류부분이 선대칭구조를 구비함으로써, 3차원 파형핀 제작에 있어서 금형설계를 단순화 할 수 있고, 이와 동시에 제작공정 역시 간소화 할 수 있어, 결과적으로 품질관리와 생산성에 크게 유리하며, 제작 비용을 현저히 절감시킬 수 있다.
또한, 본 발명의 3차원 파형핀에 따르면, 다수의 튜브 결속구가 형성하는 열 사이에 절단부를 형성함으로써, 3차원 파형핀 제작에 있어서 금형설계를 단순화 할 수 있고, 이와 동시에 제작공정 역시 간소화 할 수 있어, 결과적으로 품질관리와 생산성에 크게 유리하며, 제작 비용을 현저히 절감시킬 수 있다.
또한, 본 발명의 3차원 파형핀에 따르면, 절개부가 생략된 구조를 구비함으로써 절개부 비산에 따른 관련 장치 고장을 원천적으로 차단할 수 있는 파형핀 및 이를 포함하는 열교환기를 제공할 수 있으며, 절개부가 생략된 구조는 열교환기의 생산 설비, 금형 그리고 품질관리의 비용을 크게 절감할 수 있다.

Claims (20)

  1. 다수의 튜브 결속구(101)가 일정한 간격으로 엇갈림 배열을 갖도록 형성된 열교환기용 3차원 파형핀(100)으로서,
    상기 3차원 파형핀(100)의 표면에는 다수의 파형(wave) 구조가 형성되어 있고,
    상기 파형 구조는, 튜브 결속구(101)의 중심을 지나고 유체의 흐름방향과 직교하는 방향의 가상 선(L1)을 기준으로 상류 부분와 하류 부분이 선대칭구조이며,
    상기 3차원 파형핀(100)을 따라 흐르는 유체의 속도가 빠른 부분에서의 파형의 피치는, 인접하는 파형의 피치보다 긴 것을 특징으로 하는 3차원 파형핀(100).
  2. 제 1 항에 있어서,
    상기 3차원 파형핀(100)을 따라 흐르는 유체의 속도가 빠른 부분은,
    유체의 흐름방향과 직교하는 방향의 가상 선(L1) 상에 중심이 위치하는 서로 인접하는 두 개의 튜브 결속구(102, 103) 사이인 것을 특징으로 하는 3차원 파형핀.
  3. 제 2 항에 있어서,
    상기 두 개의 튜브 결속구(102, 103) 사이에 있어서,
    튜브 결속구(102, 103)와 인접하는 부분의 파형 진폭은, 튜브 결속구(102, 103) 사이의 정중앙 부분의 파형 진폭보다 큰 것을 특징으로 하는 3차원 파형핀.
  4. 제 1 항에 있어서,
    상기 3차원 파형핀(100)을 따라 흐르는 유체의 속도가 느린 부분에서의 파형의 진폭은 인접하는 파형의 진폭보다 큰 것을 특징으로 하는 3차원 파형핀.
  5. 제 1 항에 있어서,
    상기 3차원 파형핀을 따라 흐르는 유체의 속도가 느린 부분에서의 파형의 피치는 인접하는 파형의 피치보다 짧은 것을 특징으로 하는 3차원 파형핀.
  6. 제 4 항 또는 제 5 항에 있어서,
    상기 3차원 파형핀(100)을 따라 흐르는 유체의 속도가 느린 부분은,
    유체의 흐름 방향과 수직으로 맞부딪히는 튜브의 선단부와 인접하는 부분, 및 상기 튜브의 선단부와 180도 반대방향에 위치하는 튜브의 후단부와 인접하는 부분인 것을 특징으로 하는 3차원 파형핀.
  7. 제 1 항에 있어서,
    상기 3차원 파형핀(100)의 튜브 결속구(101)와 인접하는 부분에 있어서,
    튜브 결속구(101)의 직경 대비 101 % 내지 130 % 의 직경을 가지는 가상 원 내측 부분은 파형 구조가 형성되어 있지 않은 평평한 구조인 것을 특징으로 하는 3차원 파형핀.
  8. 제 1 항에 있어서,
    상기 3차원 파형핀(100)에 있어서, 유체의 흐름 방향과 수직으로 맞부딪히는 튜브의 선단부와 인접하는 부분, 및 선단부와 180도 반대방향에 위치하는 튜브의 후단부와 인접하는 부분에, 딤플(dimple, 110)이 형성되어 있는 것을 특징으로 하는 3차원 파형핀.
  9. 제 8 항에 있어서,
    상기 튜브의 선단부와 인접하는 부분에 형성된 딤플(111)의 돌출방향은, 튜브의 후단부와 인접하는 부분에 형성된 딤플(112)의 돌출방향과 서로 정반대방향인 것을 특징으로 하는 3차원 파형핀.
  10. 제 8 항에 있어서,
    상기 튜브의 후단부와 인접하는 부분에 형성된 딤플(112)의 크기는, 튜브의 선단부와 인접하는 부분에 형성된 딤플(111)의 크기 대비 1 내지 50 % 더 큰 것을 특징으로 하는 3차원 파형핀.
  11. 제 8 항에 있어서,
    상기 딤플(110)은 측단면상 타원형 구조이고,
    상기 타원형 구조의 장경은 유체의 흐름방향과 평행한 방향인 것을 특징으로 하는 3차원 파형핀.
  12. 제 11 항에 있어서,
    상기 딤플(110)의 폭(Wdimple)은, 튜브 결속구(101)의 반경(R) 대비 20 내지 30 %이고,
    상기 딤플(110)의 길이(Ldimple)는, 튜브 결속구(101)의 반경(R) 대비 21 내지 60 %이고,
    상기 딤플(110)의 형성 높이(Hdimple)는, 튜브 결속구(101)의 반경(R) 대비 20 내지 30 %인 것을 특징으로 하는 3차원 파형핀.
  13. 제 1 항에 있어서,
    상기 3차원 파형핀(100)에 있어서, 유체의 흐름 방향과 수직으로 맞부딪히는 튜브의 선단부로부터 평면상 시계방향으로 130도 내지 160도 부분에는, 돌기(120)가 형성되어 있는 것을 특징으로 하는 3차원 파형핀.
  14. 제 13 항에 있어서,
    상기 돌기(120)는, 튜브 결속구(101)의 반경(R) 대비 1.5 배 내지 1.7 배의 거리만큼 튜브 결속구(101)의 중심 위치로부터 이격된 위치에 형성되어 있는 것을 특징으로 하는 3차원 파형핀.
  15. 제 13 항에 있어서,
    상기 돌기(120)는 튜브 결속구(101)의 반경(R) 대비 20 내지 30 %의 폭으로 형성되어 있는 것을 특징으로 하는 3차원 파형핀.
  16. 제 1 항에 있어서,
    상기 3차원 파형핀(100)에 있어서, 유체의 흐름 방향과 수직으로 맞부딪히는 튜브의 선단부와 인접하는 부분에서의 파형의 진폭은, 주변 부분의 파형의 진폭보다 작은 것을 특징으로 하는 3차원 파형핀.
  17. 제 1 항에 있어서,
    상기 3차원 파형핀(100)은,
    인접하여 배치된 파형핀(100)을 소정 거리만큼 이격되도록 고정시키는 파형핀 연결부(130)를 더 포함하고,
    상기 파형핀 연결부(130)에 튜브 결속구(101)가 형성되어 있는 것을 특징으로 하는 3차원 파형핀.
  18. 제 1 항에 있어서,
    상기 3차원 파형핀(100)의 유체의 흐름방향을 기준으로 튜브 결속구(101)는 다수의 행과 열로 배열되고,
    다수의 튜브 결속구(101)가 형성하는 열 사이에 절단부(104)가 형성되어 있는 것을 특징으로 하는 3차원 파형핀.
  19. 제 18 항에 있어서,
    상기 절단부(104)와 인접하는 또 다른 절단부(105) 사이에는 짝수 개수의 파형이 형성되어 있는 것을 특징으로 하는 3차원 파형핀.
  20. 제 1 항 내지 제 19 항 중 어느 한 항에 따른 3차원 파형핀(100)을 포함하는 것을 특징으로 하는 열교환기.
PCT/KR2016/005765 2016-05-31 2016-05-31 3차원 파형핀 및 이를 포함하는 열교환기 WO2017209323A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0067302 2016-05-31
KR1020160067302A KR20170135417A (ko) 2016-05-31 2016-05-31 3차원 파형핀 및 이를 포함하는 열교환기

Publications (1)

Publication Number Publication Date
WO2017209323A1 true WO2017209323A1 (ko) 2017-12-07

Family

ID=60478715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005765 WO2017209323A1 (ko) 2016-05-31 2016-05-31 3차원 파형핀 및 이를 포함하는 열교환기

Country Status (2)

Country Link
KR (1) KR20170135417A (ko)
WO (1) WO2017209323A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110207529B (zh) * 2019-05-24 2020-03-31 西安交通大学 一种采用变高度连续凸起的高强度换热翅片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221463B1 (en) * 1998-07-08 2001-04-24 Eugene W. White Three-dimensional film structures and methods
JP3367353B2 (ja) * 1996-11-12 2003-01-14 松下電器産業株式会社 フィン付き熱交換器
JP2004036938A (ja) * 2002-07-01 2004-02-05 Matsushita Electric Ind Co Ltd 熱交換器およびその熱交換器を備えた空気調和機
US20090199585A1 (en) * 2006-03-23 2009-08-13 Matsushita Electric Industrial Co., Ltd. Fin-tube heat exchanger, fin for heat exchanger, and heat pump apparatus
KR20150074749A (ko) * 2013-12-24 2015-07-02 엘지전자 주식회사 열교환기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3367353B2 (ja) * 1996-11-12 2003-01-14 松下電器産業株式会社 フィン付き熱交換器
US6221463B1 (en) * 1998-07-08 2001-04-24 Eugene W. White Three-dimensional film structures and methods
JP2004036938A (ja) * 2002-07-01 2004-02-05 Matsushita Electric Ind Co Ltd 熱交換器およびその熱交換器を備えた空気調和機
US20090199585A1 (en) * 2006-03-23 2009-08-13 Matsushita Electric Industrial Co., Ltd. Fin-tube heat exchanger, fin for heat exchanger, and heat pump apparatus
KR20150074749A (ko) * 2013-12-24 2015-07-02 엘지전자 주식회사 열교환기

Also Published As

Publication number Publication date
KR20170135417A (ko) 2017-12-08

Similar Documents

Publication Publication Date Title
EP0887612B1 (en) Heat transfer structure
US6819561B2 (en) Finned-tube heat exchangers and cold plates, self-cooling electronic component systems using same, and methods for cooling electronic components using same
US8955333B2 (en) Heat exchange bulkhead
EP2829715A1 (en) Plate-fin type egr cooler with heat insulation function
WO2019120278A1 (zh) 一种外翅片换热管及其使用方法
KR20160042182A (ko) 열교환기용 튜브
WO2018103255A1 (zh) 空调室内机换热器和空调室内机
WO2017209323A1 (ko) 3차원 파형핀 및 이를 포함하는 열교환기
JP2000111277A (ja) 2重配管式熱交換器
JP5498143B2 (ja) 曲折ルーバー状放熱ユニットを用いたヒートシンク
US20130168042A1 (en) Heat exchanger having corrugated sheets
CN216308704U (zh) 换热管和换热器
KR20190034075A (ko) 배기가스 냉각기 및 배기가스 냉각기를 구비한 배기가스 재순환 시스템
CN210292947U (zh) 一种热交换器
EP3240376B1 (en) Cabinet
JP2011003708A (ja) コルゲート状放熱ユニットを用いた熱交換器
CN211457869U (zh) 应用于医疗设备的水冷散热器
JP6845401B2 (ja) 冷却装置およびその冷却装置を備えた冷却システム
WO2023068452A1 (ko) 열교환기
CN111479449B (zh) 一种电子设备风冷机箱的冷却介质分配装置
CN111146165A (zh) 冷却体以及带有冷却体的冷却装置
CN212340018U (zh) 一种间接空冷散热器管束
CN217694115U (zh) 一种散热器
CN209861462U (zh) 一种用于电子元件的风冷式散热装置
CN210664073U (zh) 具有辅助换热功能的换热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16904122

Country of ref document: EP

Kind code of ref document: A1