WO2017209080A1 - 圧電フィルム - Google Patents

圧電フィルム Download PDF

Info

Publication number
WO2017209080A1
WO2017209080A1 PCT/JP2017/019979 JP2017019979W WO2017209080A1 WO 2017209080 A1 WO2017209080 A1 WO 2017209080A1 JP 2017019979 W JP2017019979 W JP 2017019979W WO 2017209080 A1 WO2017209080 A1 WO 2017209080A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric film
coating layer
piezoelectric
layer
piezoelectricity
Prior art date
Application number
PCT/JP2017/019979
Other languages
English (en)
French (fr)
Inventor
浩史 別府
孝伸 矢野
基希 拝師
憲俊 木曽
智剛 梨木
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017104590A external-priority patent/JP2017216450A/ja
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020187028511A priority Critical patent/KR20190015188A/ko
Priority to CN201780033533.1A priority patent/CN109196673A/zh
Publication of WO2017209080A1 publication Critical patent/WO2017209080A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/077Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • H10N30/706Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
    • H10N30/708Intermediate layers, e.g. barrier, adhesion or growth control buffer layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors

Definitions

  • the present invention relates to a piezoelectric film.
  • a touch panel detects a two-dimensional position on the surface of a finger or pen that touches the surface of the touch panel.
  • finger or pen is simply referred to as “finger”, and the two-dimensional position on the surface of the touch panel of the finger or pen is referred to as “finger XY coordinates”.
  • the pressure touched by the finger cannot be detected.
  • the magnitude of the pressure touched by the finger is considered to be in the Z-axis direction and is referred to as the “Z coordinate of the finger”. That is, regardless of the magnitude of the pressure touched by the finger (Z coordinate of the finger) Only the XY coordinates of the finger touch position are detected.
  • Such a touch panel that can detect the pressure (Z coordinate of the finger) touched by a finger is described in, for example, Japanese Patent Application Laid-Open No. 2010-26938.
  • a laminate in which transparent electrodes are laminated on both sides of a piezoelectric layer containing a polyvinylidene fluoride-tetrafluoroethylene copolymer is used.
  • the thickness of the piezoelectric layer containing the polyvinylidene fluoride-tetrafluoroethylene copolymer is 20 ⁇ m to 300 ⁇ m.
  • the piezoelectric layer containing the polyvinylidene fluoride-tetrafluoroethylene copolymer of Patent Document 1 is described as being produced by a casting method or an extrusion method, a self-supporting film (a film not laminated on another film) )it is conceivable that.
  • Patent Document 1 describes that a piezoelectric layer containing a polyvinylidene fluoride-tetrafluoroethylene copolymer has a haze value (cloudiness value) of 5% to 7% and a total light transmittance of 95%.
  • the haze value and the total light transmittance in the examples of Patent Document 1 are values of the piezoelectric layer alone containing the polyvinylidene fluoride-tetrafluoroethylene copolymer before the transparent electrode is laminated.
  • the visibility of the image on the display on the back of the touch panel is affected at least by the haze value and the total light transmittance of the piezoelectric film. Since the piezoelectric layer containing the polyvinylidene fluoride-tetrafluoroethylene copolymer of Patent Document 1 has a large haze value, the visibility of the display image on the back surface of the touch panel may be lowered.
  • an object of the present invention is to realize a piezoelectric film having a small haze value and a high total light transmittance.
  • the piezoelectric film of the present invention includes a laminate of a base film and a piezoelectric coating layer.
  • the piezoelectric film of the present invention includes an undercoat layer between the base film and the coating layer having piezoelectricity.
  • the piezoelectric film of the present invention includes at least one optical adjustment layer on the surface of the coating layer having piezoelectricity opposite to the base film.
  • the at least one optical adjustment layer means that the optical adjustment layer may be a multilayer film having two or more layers.
  • the piezoelectric film of the present invention includes at least one first optical adjustment layer between the base film and the coating layer having piezoelectricity.
  • the at least one first optical adjustment layer means that the first optical adjustment layer may be a multilayer film of two or more layers.
  • the piezoelectric film of the present invention includes at least one second optical adjustment layer on the surface of the coating layer having piezoelectricity opposite to the first optical adjustment layer.
  • the term “at least one second optical adjustment layer” means that the second optical adjustment layer may be a multilayer film including two or more layers.
  • the piezoelectric film of the present invention includes at least one anti-blocking layer between the base film and the coating layer having piezoelectricity.
  • the at least one anti-blocking layer means that the anti-blocking layer may be a multilayer film having two or more layers.
  • the piezoelectric film of the present invention includes at least one anti-blocking layer on the surface of the base film opposite to the piezoelectric coating layer.
  • the piezoelectric film of the present invention includes at least one transparent adhesive layer on the surface of the coating layer having piezoelectricity opposite to the base film.
  • the at least one transparent adhesive layer means that the transparent adhesive layer may be a multilayer film having two or more layers.
  • the piezoelectric film of the present invention includes at least one transparent adhesive layer on the surface of the base film opposite to the piezoelectric coating layer.
  • the coating layer having piezoelectricity contains a fluororesin.
  • the fluororesin is a vinylidene fluoride polymer or a copolymer of two or more of (vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene).
  • the fluororesin is a copolymer of vinylidene fluoride and trifluoroethylene, and the molar ratio of vinylidene fluoride and trifluoroethylene contained in the copolymer is 100 is in the range of (50 to 85) :( 50 to 15).
  • the fluororesin is a copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene, and the vinylidene fluoride, trifluoroethylene, and chloro contained in the copolymer
  • the molar ratio of trifluoroethylene is in the range of (63 to 65) :( 27 to 29) :( 10 to 6), based on 100 as a whole.
  • the piezoelectric coating layer is a coating layer obtained by applying and drying a fluororesin solution on a substrate film.
  • the thickness of the coating layer having piezoelectricity is 0.5 ⁇ m to 20 ⁇ m.
  • the material of the base film is polyethylene terephthalate, polyethylene naphthalate, polyolefin, polycycloolefin, cycloolefin copolymer, polycarbonate, polyether sulfone, polyarylate, polyimide, polyamide, polystyrene, It is selected from at least one of polynorbornene.
  • the piezoelectric film of the present invention has a haze value of 5% or less.
  • the piezoelectric film of the present invention has a total light transmittance of 90% or more.
  • the piezoelectric layer of the present invention since the piezoelectric layer is formed by coating, the thickness of the piezoelectric layer is thinner than a piezoelectric layer made of a conventional self-supporting film. Therefore, the increase in the haze value and the decrease in the total light transmittance due to the piezoelectric layer are less than that of the piezoelectric layer made of a self-supporting film. As a result, a piezoelectric film having a small haze value and a high total light transmittance is realized.
  • the piezoelectric film of the present invention is used as a Z-coordinate detection piezoelectric film for a touch panel, it is possible to realize a touch panel having a Z-coordinate (finger pressing force) detection function with good display visibility on the back of the touch panel. it can.
  • FIG. 1 shows a first basic configuration of the piezoelectric film of the present invention.
  • the first basic configuration of the piezoelectric film of the present invention is a piezoelectric film 10 in which a base film 11 is laminated with a coating layer 12 having piezoelectricity.
  • An easy adhesion layer (not shown) may be laminated between the base film 11 and the coating layer 12 having piezoelectricity.
  • FIG. 2 shows a second basic configuration of the piezoelectric film of the present invention. Elements common to the first basic configuration are denoted by the same reference numerals.
  • a second basic configuration of the piezoelectric film of the present invention is a piezoelectric film 20 in which an undercoat layer 13 is laminated on a base film 11 and further a coating layer 12 having piezoelectricity is laminated on the undercoat layer 13. .
  • the undercoat layer 13 (or anchor coat layer) has a function of increasing the adhesion between the base film 11 and the coating layer 12 having piezoelectricity.
  • FIG. 3 shows a third basic configuration of the piezoelectric film of the present invention. Elements common to the first basic configuration are denoted by the same reference numerals.
  • a coating layer 12 having piezoelectricity is laminated on the base film 11, and at least one optical adjustment layer 14 is further laminated on the coating layer 12 having piezoelectricity.
  • This is a piezoelectric film 30.
  • the optical adjustment layer 14 (Index matching layer) (also referred to as a refractive index adjustment layer) has a function of adjusting the reflectance of the piezoelectric film 30.
  • An easy adhesion layer (not shown) may be laminated between the base film 11 and the coating layer 12 having piezoelectricity.
  • FIG. 4 shows a fourth basic configuration of the piezoelectric film of the present invention. Elements common to the first basic configuration are denoted by the same reference numerals.
  • the fourth basic configuration of the piezoelectric film of the present invention at least one first optical adjustment layer 15 is laminated on the base film 11, and further, at least one first optical adjustment layer 15 is piezoelectric.
  • the piezoelectric film 40 is formed by laminating a coating layer 12 having
  • FIG. 5 shows a fifth basic configuration of the piezoelectric film of the present invention. Elements common to the fourth basic configuration are denoted by the same reference numerals.
  • the fifth basic configuration of the piezoelectric film of the present invention at least one first optical adjustment layer 15 is laminated on the base film 11, and further, at least one first optical adjustment layer 15 is piezoelectric.
  • the piezoelectric film 50 is formed by laminating a coating layer 12 having, and further laminating at least one second optical adjustment layer 16 on the coating layer 12 having piezoelectricity.
  • FIG. 6 shows a sixth basic configuration of the piezoelectric film of the present invention. Elements common to the first basic configuration are denoted by the same reference numerals.
  • the sixth basic configuration of the piezoelectric film of the present invention is that a base film 11 is laminated with at least one anti-blocking layer 17, and further, at least one anti-blocking layer 17 has a piezoelectric coating layer 12.
  • the piezoelectric film 60 is laminated.
  • the anti-blocking layer 17 has a function of preventing the stacked or wound piezoelectric films 60 from being pressure-bonded (blocked).
  • FIG. 7 shows a seventh basic configuration of the piezoelectric film of the present invention. Elements common to the third basic configuration are denoted by the same reference numerals.
  • a coating layer 12 having piezoelectricity is laminated on one surface of the substrate film 11, and at least one optical adjustment layer 14 is further provided on the coating layer 12 having piezoelectricity.
  • the piezoelectric film 70 is laminated and has at least one anti-blocking layer 17 laminated on the other surface of the base film 11.
  • An easy adhesion layer (not shown) may be laminated between the base film 11 and the coating layer 12 having piezoelectricity.
  • FIG. 8 shows an eighth basic configuration of the piezoelectric film of the present invention. Elements common to the first basic configuration are denoted by the same reference numerals.
  • a coating layer 12 having piezoelectricity is laminated on the base film 11, and at least one transparent adhesive layer 18 is further laminated on the coating layer 12 having piezoelectricity.
  • the at least one transparent adhesive layer 18 may be at least one transparent adhesive layer.
  • An easy adhesion layer (not shown) may be laminated between the base film 11 and the coating layer 12 having piezoelectricity.
  • FIG. 9 shows a ninth basic configuration of the piezoelectric film of the present invention. Elements common to the eighth basic configuration are denoted by the same reference numerals.
  • a coating layer 12 having piezoelectricity is laminated on one surface of the substrate film 11, and at least one transparent adhesive layer 18 is formed on the other surface of the substrate film 11.
  • the at least one transparent adhesive layer 18 may be at least one transparent adhesive layer.
  • An easy adhesion layer (not shown) may be laminated between the base film 11 and the coating layer 12 having piezoelectricity.
  • the base film 11 is made of, for example, a polymer film such as polyethylene terephthalate, polyethylene naphthalate, polyolefin, polycycloolefin, cycloolefin copolymer, polycarbonate, polyether sulfone, polyarylate, polyimide, polyamide, polystyrene, and polynorbornene.
  • a polymer film such as polyethylene terephthalate, polyethylene naphthalate, polyolefin, polycycloolefin, cycloolefin copolymer, polycarbonate, polyether sulfone, polyarylate, polyimide, polyamide, polystyrene, and polynorbornene.
  • PET polyethylene terephthalate
  • the thickness of the base film 11 is preferably 10 ⁇ m to 200 ⁇ m, but is not limited thereto. However, if the thickness of the base film 11 is less than 10 ⁇ m, handling may be difficult. Moreover, when the thickness of the base film 11 exceeds 200 ⁇ m, it may be difficult to wind the piezoelectric film (10, 20, 30, 40, 50, 60, 70, 80, 90) into a roll. If the thickness of the substrate film 11 exceeds 200 ⁇ m, the piezoelectric film (10, 20, 30, 40, 50, 60, 70, 80, 90) may be too thick when mounted on a touch panel or the like. There is.
  • the material of the coating layer 12 having piezoelectricity is not particularly limited as long as the surface of the base film 11 can be coated in a thin film and the coated thin film has piezoelectricity. Absent.
  • the coating layer 12 having piezoelectricity desirably exhibits piezoelectricity without performing poling (polarization treatment), but may exhibit piezoelectricity after poling.
  • non-contact type poling and contact type poling as poling (polarization processing).
  • the coating layer 12 is polarized by subjecting the coating layer 12 to corona discharge treatment.
  • contact poling for example, the coating layer 12 is sandwiched between two metal plates, and a voltage is applied between the two metal plates to polarize the coating layer 12.
  • the coating layer 12 having piezoelectricity is made into a solution by dissolving the material of the coating layer 12 having piezoelectricity in a solvent, and is thinly applied to the surface of the base film 11 by a known coating apparatus such as a bar coater or a gravure coater. And then dried.
  • a material containing a fluororesin is preferably used as the material of the coating layer 12 having piezoelectricity.
  • the material containing a fluororesin include a vinylidene fluoride polymer, a vinylidene fluoride / trifluoroethylene copolymer, a vinylidene fluoride / trifluoroethylene / chlorotrifluoroethylene copolymer, hexafluoro Copolymer of propylene and vinylidene fluoride, copolymer of perfluorovinyl ether and vinylidene fluoride, copolymer of tetrafluoroethylene and vinylidene fluoride, copolymer of hexafluoropropylene oxide and vinylidene fluoride, hexafluoropropylene And a copolymer of tetrafluoroethylene and vinylidene fluoride.
  • the material containing a fluororesin is preferably a copolymer of vinylidene fluoride and trifluoroethylene, or a copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene.
  • a copolymer of vinylidene fluoride and trifluoroethylene is referred to as a binary copolymer.
  • a copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene is referred to as a ternary copolymer.
  • the molar ratio of vinylidene fluoride and trifluoroethylene is 100 as a whole.
  • (50 to 85): (50 to 15) is appropriate.
  • a copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene is used as a material for the coating layer 12 having piezoelectricity, vinylidene fluoride, trifluoroethylene
  • the molar ratio of chlorotrifluoroethylene is suitably in the range of (63 to 65) :( 27 to 29) :( 10 to 6) with 100 as a whole.
  • the thickness of the coating layer 12 having piezoelectricity is not limited, but in consideration of the optical characteristics described later, it is preferably 0.5 ⁇ m to 20 ⁇ m, more preferably 0.5 ⁇ m to 10 ⁇ m, and more preferably 0.5 ⁇ m to 5 ⁇ m. Further preferred. If the thickness of the coating layer 12 having piezoelectricity is less than 0.5 ⁇ m, the formed film may be incomplete. If the thickness of the coating layer 12 having piezoelectricity exceeds 20 ⁇ m, the optical characteristics (haze value and total light transmittance) may become inappropriate.
  • the transparent adhesive layer 18 is preferably made of an optical transparent adhesive.
  • the transparent adhesive layer 18 can be formed using a sheet of an optical transparent adhesive.
  • the transparent adhesive layer is preferably made of an optical transparent adhesive.
  • a liquid optical transparent adhesive can be applied and cured by irradiation with ultraviolet rays to form a transparent adhesive layer.
  • the refractive index of the transparent adhesive layer 18 or the transparent adhesive layer is preferably an intermediate value of the refractive indexes of the materials laminated on both sides thereof.
  • the haze value of the piezoelectric film is preferably 5% or less, more preferably 4% or less, further preferably 3% or less, and more preferably 2% or less.
  • the total light transmittance of the piezoelectric film is preferably 90% or more, more preferably 91% or more, and particularly preferably 92% or more. If the haze value of the piezoelectric film exceeds 5%, or if the total light transmittance is less than 90%, the image on the display may not be clearly visible.
  • a transparent electrode can be laminated
  • the optical adjustment layer 14 and the transparent electrode 20 are laminated on the piezoelectric film 10 of FIG.
  • the coating layer 12 having piezoelectricity in the base film 11 has a hard coat layer 22 having an anti-blocking function laminated on the surface on the tie side.
  • the transparent electrode 20 examples include indium-based composite oxides, typically indium tin composite oxide (ITO: Indium Tin Oxide), and indium zinc composite oxide, but doped with tetravalent metal ions or divalent metal ions.
  • ITO Indium Tin Oxide
  • Indium oxide In203
  • Indium composite oxides are characterized by high transmittance of 80% or more in the visible light region (380 to 780 nm) and low surface resistance per unit area (30 to 1000 ⁇ / ⁇ ).
  • the surface resistance value of the indium composite oxide is preferably 300 ⁇ / ⁇ (ohms per square) or less, and more preferably 150 ⁇ / ⁇ .
  • a transparent electrode having a low surface resistance is formed by, for example, forming an amorphous layer of an indium-based composite oxide on a cured resin layer by sputtering or vacuum evaporation, and then heat-treating it at 100 to 200 ° C. It is obtained by changing the crystalline layer to a crystalline layer.
  • the transparent electrode 20 is not limited to the above materials, and transparent conductive oxides such as tin zinc oxide, zinc oxide and fluorine-doped tin oxide, and conductive polymers such as polyethylenedioxythiophene can be used.
  • transparent conductive oxides such as tin zinc oxide, zinc oxide and fluorine-doped tin oxide, and conductive polymers such as polyethylenedioxythiophene can be used.
  • the thickness of the coating layer 12 having piezoelectricity examples are 0.5 to 10 ⁇ m, the thickness of the optical adjustment layer 14 is 80 to 160 nm, and the thickness of the transparent electrode 20 is 20 nm or more. Further, the refractive index of the coating layer 12 having piezoelectricity is 1.40 to 1.50, the refractive index of the optical adjustment layer 14 is 1.50 to 1.70, and the refractive index of the transparent electrode 20 is 1.90 to 2.50. 10 is an example. Further, the thickness of the base film 11 is set to 2 to 100 ⁇ m, and the refractive index is set to 1.50 to 1.70. By using the above thickness and refractive index, the difference in reflectance between the transparent electrode 20 and the optical adjustment layer 14 becomes 2.0% or less, and the appearance is improved.
  • the piezoelectric film 10 of Example 1 has the first basic configuration of the piezoelectric film of the present invention.
  • easy adhesion (not shown) is first formed on the surface of a substrate film 11 (polyethylene terephthalate film), and then a copolymer of vinylidene fluoride and trifluoroethylene (binary copolymer) is used. (Coupled) solution.
  • the thickness of the base film 11 (polyethylene terephthalate film) was 23 ⁇ m.
  • a vinylidene fluoride / trifluoroethylene copolymer (binary copolymer) is dissolved in methyl ethyl ketone by ultrasonic waves, and vinylidene fluoride and trifluoroethylene are dissolved.
  • a solution of this copolymer (binary copolymer) was prepared.
  • the molar ratio of vinylidene fluoride and trifluoroethylene contained in the copolymer of vinylidene fluoride and trifluoroethylene (binary copolymer) was 70/30.
  • a solution of a copolymer of vinylidene fluoride and trifluoroethylene (binary copolymer) was coated on the surface of the base film 11 (polyethylene terephthalate film) with a bar coater.
  • the base film 11 (polyethylene terephthalate film) and the undried coating layer were dried at 60 ° C. for 5 minutes to obtain a coating layer 12 having piezoelectricity.
  • the thickness of the coating layer 12 having piezoelectricity after drying was 1 ⁇ m.
  • Example 2 The piezoelectric film 10 of Example 2 has the first basic configuration of the piezoelectric film of the present invention.
  • the piezoelectric film 10 of Example 2 was produced in the same manner as the piezoelectric film 10 of Example 1 except that the thickness of the coating layer 12 having piezoelectricity after drying was 5 ⁇ m.
  • the piezoelectric film 10 of Example 3 has the first basic configuration of the piezoelectric film of the present invention.
  • the piezoelectric film 10 of Example 3 was produced in the same manner as the piezoelectric film 10 of Example 1 except that the thickness of the coating layer 12 having piezoelectricity after drying was 10 ⁇ m.
  • the piezoelectric film 10 of Example 4 has the first basic configuration of the piezoelectric film of the present invention.
  • the piezoelectric film 10 of Example 4 was produced in the same manner as the piezoelectric film 10 of Example 1 except that the thickness of the coating layer 12 having piezoelectricity after drying was 20 ⁇ m.
  • the piezoelectric film 10 of Example 5 has the first basic configuration of the piezoelectric film of the present invention.
  • the molar ratio of vinylidene fluoride and trifluoroethylene contained in the copolymer (binary copolymer) of vinylidene fluoride and trifluoroethylene is 75/25. Except for this, it was produced in the same manner as the piezoelectric film 10 of Example 1.
  • the piezoelectric film 10 of Example 6 has the first basic configuration of the piezoelectric film of the present invention.
  • the piezoelectric film 10 of Example 6 was produced in the same manner as the piezoelectric film 10 of Example 5 except that the thickness of the coating layer 12 having piezoelectricity after drying was 5 ⁇ m.
  • Example 7 The piezoelectric film 10 of Example 7 has the first basic configuration of the piezoelectric film of the present invention.
  • the piezoelectric film 10 of Example 7 was produced in the same manner as the piezoelectric film 10 of Example 5 except that the thickness of the coating layer 12 having piezoelectricity after drying was 10 ⁇ m.
  • the piezoelectric film 10 of Example 8 has the first basic configuration of the piezoelectric film of the present invention.
  • the piezoelectric film 10 of Example 8 is the piezoelectric film of Example 5 except that the thickness of the coating layer 12 having piezoelectricity after drying is 2 ⁇ m and the drying conditions are 135 ° C. and 5 minutes. It was produced in the same manner as film 10.
  • the piezoelectric film 10 of Example 9 has the first basic configuration of the piezoelectric film of the present invention.
  • the material of the coating layer 12 having piezoelectricity is a copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene (ternary copolymer).
  • ternary copolymer was produced in the same manner as the piezoelectric film 10 of Example 1.
  • the coating layer 12 having piezoelectricity In producing the coating layer 12 having piezoelectricity, first, a copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene (ternary copolymer) is dissolved in methyl isobutyl ketone at room temperature by ultrasonic waves. Then, a solution of a copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene (ternary copolymer) was prepared.
  • the molar ratio of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene contained in the copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene (ternary copolymer) is 64.2 / 27. 1 / 8.7.
  • a solution of a copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene was coated on the surface of the base film 11 (polyethylene terephthalate film) with a bar coater.
  • the base film 11 (polyethylene terephthalate film) and the undried coating layer were dried under a drying condition of 60 ° C. for 5 minutes to prepare a coating layer 12 having piezoelectricity.
  • the thickness of the coating layer 12 having piezoelectricity after drying was 1 ⁇ m.
  • the piezoelectric film 10 of Example 10 has the first basic configuration of the piezoelectric film of the present invention.
  • the piezoelectric film 10 of Example 10 was produced in the same manner as the piezoelectric film 10 of Example 9 except that the thickness of the coating layer 12 having piezoelectricity after drying was 5 ⁇ m.
  • the piezoelectric film of Comparative Example 1 is a self-supporting film (having no base film) having a thickness of 40 ⁇ m and made of a vinylidene fluoride polymer (polyvinylidene fluoride).
  • the piezoelectric film of Comparative Example 1 has a thickness of 40 ⁇ m after drying on a surface of a polyethylene terephthalate film obtained by ultrasonically dissolving a vinylidene fluoride polymer (polyvinylidene fluoride) in isobutyl ketone at room temperature. The film was coated, dried and then peeled off from the polyethylene terephthalate film.
  • Table 1 shows the configurations of the piezoelectric film examples and comparative examples of the present invention, the molar ratio and thickness of the piezoelectric coating layer, the haze value of the piezoelectric film, and the total light transmittance.
  • VDF vinylidene fluoride
  • TrFE trifluoroethylene
  • CTFE chlorotrifluoroethylene
  • PET polyethylene terephthalate
  • P () represents a copolymer. Therefore, “P (VDF-TrFE)” means “a copolymer of vinylidene fluoride and trifluoroethylene”.
  • PVDF-TrFE-CTFE means “a copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene”.
  • P (VDF-TrFE) / PET base film means “a copolymer of vinylidene fluoride and trifluoroethylene is coated on the surface of the base film 11 made of polyethylene terephthalate”.
  • P (VDF-TrFE-CTFE) / PET base film” is “the surface of the base film 11 made of polyethylene terephthalate is coated with a copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene” It means that.
  • PVDF means a polymer of vinylidene fluoride (polyvinylidene fluoride).
  • the piezoelectric films of Examples 1 to 4 have the same configuration and materials, but the thickness of the coating layer 12 having piezoelectricity is different.
  • the haze value tends to increase as the thickness of the coating layer 12 having piezoelectricity increases.
  • the haze value and the total light transmittance of the piezoelectric films of Examples 1 to 4 are all at a level with no problem.
  • the piezoelectric films of Examples 5 to 7 have the same configuration and materials, but the thickness of the coating layer 12 having piezoelectricity is different.
  • the haze value tends to slightly increase as the thickness of the coating layer 12 having piezoelectricity increases.
  • the haze values and total light transmittances of the piezoelectric films of Examples 5 to 7 are all at a level with no problem.
  • the piezoelectric film of Example 8 has the same configuration and material as the piezoelectric film of Example 5, and the thickness of the coating layer 12 is close, but the haze value is greatly different.
  • the reason why the haze value of the piezoelectric film of Example 8 is large is that the drying temperature is 135 ° C. (the drying temperature of other examples is 60 ° C.). Thus, when the drying temperature of the coating layer 12 is increased, the haze value of the piezoelectric film tends to increase.
  • the piezoelectric films of Example 9 and Example 10 have the same configuration and materials, but the thickness of the coating layer 12 having piezoelectricity is different. From Example 9 and Example 10, the haze value tends to increase as the thickness of the coating layer 12 having piezoelectricity increases. However, the haze values and total light transmittances of the piezoelectric films of Example 9 and Example 10 are all at a level with no problem.
  • the self-supporting film of the vinylidene fluoride polymer (polyvinylidene fluoride) of Comparative Example 1 has a considerably higher haze value than the piezoelectric films of Examples 1 to 10 of the present invention. Therefore, there is a high possibility that the visibility of the image on the display is lowered. However, the total light transmittance of the piezoelectric film of Comparative Example 1 is hardly different from the piezoelectric films of Examples 1 to 10 of the present invention. From Comparative Example 1, it can be seen that even if the haze value increases, the total light transmittance does not always decrease.
  • the film thickness of less than 1 ⁇ m was measured by observing the cross section using a transmission electron microscope (H-7650, manufactured by Hitachi, Ltd.). The thickness of the film or film exceeding 1 ⁇ m was measured using a film thickness meter (Digital Dial Gauge DG-205 manufactured by Peacock).
  • Example 11 to 16 Further, assuming that the transparent electrode 20 is laminated on the piezoelectric film 10 of the present application as shown in FIG. 10, the piezoelectricity when the optical adjustment layer 14 is disposed between the piezoelectric film 10 and the transparent electrode 20 is shown. The thickness and refractive index of the coating layer 12, the optical adjustment layer 14, and the transparent electrode 20 were measured.
  • the piezoelectric film 10 is the same as the above example, and is a PET film coated with a copolymer of vinylidene fluoride and trifluoroethylene.
  • the optical adjustment layer 14 may have a refractive index of 1.54, 1.62, 1.7. Since the manufacturing method differs depending on the refractive index, each refractive index will be described.
  • the refractive index is 1.54
  • a thermosetting resin having a weight ratio of 2: 2: 1 of melamine resin: alkyd resin: organosilane condensate (refractive index of light) is formed on one surface of the coating layer 12 having piezoelectricity.
  • n 1.54
  • the optical adjustment layer 14 having a thickness of 120 nm was formed.
  • an optical adjustment composition containing 47 parts by mass of ultraviolet curable resin, 57 parts by mass of zirconia oxide particles (median diameter 40 nm) and PGME on one surface of the coating layer 12 having piezoelectricity (Manufactured by JSR, “OPSTAR Z7412”, solid content: 12% by mass) was applied using a gravure coater, and immediately heated and dried at 60 ° C. for 1 minute in a windless state (less than 0.1 m / s). Then, the curing process was performed by irradiating ultraviolet rays with an integrated light amount of 250 mJ / cm 2 with a high-pressure mercury lamp.
  • the optical adjustment layer 14 having a thickness of 90, 120, or 150 nm and a refractive index of 1.62 was formed on the coating layer 12 having piezoelectricity.
  • melamine resin: alkyd resin: organosilane condensate 2: 2: 1
  • the mixing amount of the TiO 2 fine particles was adjusted so that the refractive index of the resin composition was 1.70.
  • the said resin composition was apply
  • the transparent electrode 20 was formed by sputtering indium tin oxide. The results are shown in Table 2.
  • the “first layer” is the piezoelectric coating layer 12
  • the “second layer” is the optical adjustment layer 14
  • the “third layer” is the transparent electrode 20.
  • the thickness of the coating layer 12 having piezoelectricity is 0.5 to 10 ⁇ m
  • the thickness of the optical adjustment layer 14 is 80 to 160 nm
  • the thickness of the transparent electrode 20 is 20 nm or more.
  • the refractive index of the coating layer 12 having piezoelectricity is 1.40 to 1.50
  • the refractive index of the optical adjustment layer 14 is 1.50 to 1.70
  • the refractive index of the transparent electrode 20 is 1.90 to 2.50. It is 10.
  • the difference in reflectance between the transparent electrode 20 and the optical adjustment layer 14 was 2% or less, and the appearance was good.
  • the transparent electrode 20 is etched into a desired electrode or the like as necessary.
  • the refractive index of the optical adjustment layer 14 was the portion where the transparent electrode 20 was removed by etching. Therefore, the reflectance difference was calculated
  • the optical adjustment layer 14 is obtained by diluting silica sol (Colcoat P, Colcoat P) with ethanol so that the solid content concentration becomes 2%. Is applied to one of the coating layers 12 having a property by a silica coating method, and then dried and cured at 150 ° C. for 2 minutes to form a layer having a thickness of 120 nm (SiO 2 film, light refractive index of 1.46). ) To form an optical adjustment layer 14.
  • the manufacturing method of the other configuration is the same as that of the example.
  • the transparent electrode 20 When the transparent electrode 20 is provided on the coating layer 12 having piezoelectricity, the transparent electrode 20 may be colored yellow or brown to impair the appearance.
  • the optical adjustment layer 14 As shown in Table 2, it was found that the difference in reflectance can be reduced and the appearance is not impaired. It has been found that even if a configuration in which the optical adjustment layer 14 and the transparent electrode 20 are laminated on the piezoelectric film 10 is disposed on the front surface of the display, the appearance of the display is hardly impaired.
  • the use of the piezoelectric film of the present invention is not limited, but it is particularly suitably used as a piezoelectric film for detecting the Z coordinate (pressure touched by a finger) of a touch panel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明の圧電フィルム10は基材フィルム11と圧電性を有するコーティング層12との積層体を備える。 圧電性を有するコーティング層12はフッ素樹脂を含む。フッ素樹脂は,フッ化ビニリデンの重合体,または,(フッ化ビニリデン,トリフルオロエチレン,クロロトリフルオロエチレン)のうちの2種類以上の共重合体である。圧電性を有するコーティング層12は,フッ素樹脂の溶液を基材フィルム11に塗布および乾燥して得られる。本発明の圧電フィルム10により,ヘイズ値が小さく,全光線透過率が高い圧電フィルムを実現する。

Description

圧電フィルム
 本発明は圧電フィルムに関する。
 一般に、タッチパネルでは、タッチパネルの表面にタッチする指あるいはペンの表面上の2次元位置を検出する。(以後、「指あるいはペン」を単に「指」といい、指あるいはペンのタッチパネルの表面上の2次元位置を「指のXY座標」という。)この場合、指のタッチする圧力は検出できない。(以後、指のタッチする圧力の大きさをZ軸方向にとるものと考えて、「指のZ座標」という。)即ち、指のタッチする圧力(指のZ座標)の大小にかかわらず、検出されるのは、指のタッチ位置のXY座標のみである。
 しかし、タッチパネルで使用されるアプリケーションによっては、指のタッチする圧力(指のZ座標)の識別も必要な場合がある。通常の静電容量式タッチパネルでは、指が触れることにより、触れた位置が選択されると同時に、触れた位置にある命令が実行される。静電容量式タッチパネルの感度が非常に高い場合は、指が静電容量式タッチパネルに近づいただけで(指が触れなくても)、指に最も近い位置が選択されると同時に、その位置にある命令が実行される。しかし、例えば、工作機械の操作パネル等で、誤った命令の実行が許されない場合は、選択と実行が分離されていることが望ましい。即ち、指が触れることにより(あるいは指が近づくことにより)命令が選択されるが、それだけでは命令は実行されず、次に指で圧力を加えることにより、初めて命令が実行されることが、誤動作を防止するため望ましい。
 このような指のタッチする圧力(指のZ座標)も検出できるタッチパネルが、例えば、特許文献1(特開2010-26938)に記載されている。特許文献1のタッチパネルでは、ポリフッ化ビニリデン-四フッ化エチレン共重合体を含有する圧電体層の両面に、透明電極が積層された積層体が用いられる。ポリフッ化ビニリデン-四フッ化エチレン共重合体を含有する圧電体層の厚さは20μm~300μmである。特許文献1のポリフッ化ビニリデン-四フッ化エチレン共重合体を含有する圧電体層は、キャスティング法あるいは押し出し法で製造すると記載されているため、自立したフィルム(他のフィルムに積層されていないフィルム)と考えられる。
 特許文献1には、ポリフッ化ビニリデン-四フッ化エチレン共重合体を含有する圧電体層のヘイズ値(曇り値)は5%~7%、全光線透過率は95%と記載されている。この特許文献1の実施例のヘイズ値、全光線透過率は、透明電極が積層される前の、ポリフッ化ビニリデン-四フッ化エチレン共重合体を含有する圧電体層単独の値である。
 本願発明者の実験によると、タッチパネルの背面にあるディスプレイの画像の視認性は、少なくとも、圧電フィルムのヘイズ値と全光線透過率の影響を受ける。特許文献1のポリフッ化ビニリデン-四フッ化エチレン共重合体を含有する圧電体層はヘイズ値が大きいため、タッチパネルの背面にあるディスプレイの画像の視認性が低くなるおそれがある。
特開2010-26938号公報
 本願発明者の実験によると、タッチパネルの背面にあるディスプレイの画像の視認性の低下に対しては、全光線透過率よりもヘイズ値の方が影響が大きい。そこで本発明の目的は、ヘイズ値が小さく、更に、全光線透過率が高い圧電フィルムを実現することである。
 (1)本発明の圧電フィルムは、基材フィルムと圧電性を有するコーティング層との積層体を備える。
 (2)本発明の圧電フィルムは、基材フィルムと圧電性を有するコーティング層の間に、アンダーコート層を備える。
 (3)本発明の圧電フィルムは、圧電性を有するコーティング層の、基材フィルムと反対側の表面に、少なくとも1層の光学調整層を備える。少なくとも1層の光学調整層とは、光学調整層が2層以上の多層膜でもよいという意味である。
 (4)本発明の圧電フィルムは、基材フィルムと圧電性を有するコーティング層の間に、少なくとも1層の第1の光学調整層を備える。少なくとも1層の第1の光学調整層とは、第1の光学調整層が2層以上の多層膜でもよいという意味である。
 (5)本発明の圧電フィルムは、圧電性を有するコーティング層の、第1の光学調整層と反対側の表面に、少なくとも1層の第2の光学調整層を備える。少なくとも1層の第2の光学調整層とは、第2の光学調整層が2層以上の多層膜でもよいという意味である。
 (6)本発明の圧電フィルムは、基材フィルムと圧電性を有するコーティング層の間に、少なくとも1層のアンチブロッキング層を備える。少なくとも1層のアンチブロッキング層とは、アンチブロッキング層が2層以上の多層膜でもよいという意味である。
 (7)本発明の圧電フィルムは、基材フィルムの、圧電性を有するコーティング層と反対側の表面に、少なくとも1層のアンチブロッキング層を備える。
 (8)本発明の圧電フィルムは、圧電性を有するコーティング層の、基材フィルムと反対側の表面に、少なくとも1層の透明粘着層を備える。少なくとも1層の透明粘着層とは、透明粘着層が2層以上の多層膜でもよいという意味である。
 (9)本発明の圧電フィルムは、基材フィルムの、圧電性を有するコーティング層と反対側の表面に、少なくとも1層の透明粘着層を備える。
 (10)本発明の圧電フィルムにおいては、圧電性を有するコーティング層がフッ素樹脂を含む。
 (11)本発明の圧電フィルムにおいては、フッ素樹脂が、フッ化ビニリデンの重合体、または、(フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレン)のうちの2種類以上の共重合体である。
 (12)本発明の圧電フィルムにおいては、フッ素樹脂が、フッ化ビニリデンとトリフルオロエチレンの共重合体であって、共重合体に含まれるフッ化ビニリデンとトリフルオロエチレンのモル比が、全体を100として、(50~85):(50~15)の範囲である。
 (13)本発明の圧電フィルムにおいては、フッ素樹脂が、フッ化ビニリデンとトリフルオロエチレンとクロロトリフルオロエチレンの共重合体であって、共重合体に含まれるフッ化ビニリデンとトリフルオロエチレンとクロロトリフルオロエチレンのモル比が、全体を100として、(63~65):(27~29):(10~6)の範囲である。
 (14)本発明の圧電フィルムにおいては、圧電性を有するコーティング層が、フッ素樹脂の溶液を基材フィルムに塗布および乾燥して得られるコーティング層である。
 (15)本発明の圧電フィルムにおいては、圧電性を有するコーティング層の厚さが、0.5μm~20μmである。
 (16)本発明の圧電フィルムにおいては、基材フィルムの材料が、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリオレフィン、ポリシクロオレフィン、シクロオレフィンコポリマー、ポリカーボネート、ポリエーテルスルフォン、ポリアリレート、ポリイミド、ポリアミド、ポリスチレン、ポリノルボルネンの少なくとも1種から選択される。
 (17)本発明の圧電フィルムはヘイズ値が5%以下である。
 (18)本発明の圧電フィルムは全光線透過率が90%以上である。
 本発明の圧電フィルムにおいては、圧電体層がコーティングにより形成されるため、圧電体層の厚さが、従来の自立したフィルムからなる圧電体層より薄い。そのため、圧電体層によるヘイズ値の上昇と全光線透過率の低下が、自立したフィルムからなる圧電体層より少ない。その効果により、ヘイズ値が小さく、更に、全光線透過率が高い圧電フィルムが実現される。本発明の圧電フィルムを、タッチパネルのZ座標検出用圧電フィルムとして用いると、タッチパネルの背面にあるディスプレイの視認性が良好な、Z座標(指の押圧力)検出機能を有するタッチパネルを実現することができる。
本発明の圧電フィルムの第1の基本構成の模式図 本発明の圧電フィルムの第2の基本構成の模式図 本発明の圧電フィルムの第3の基本構成の模式図 本発明の圧電フィルムの第4の基本構成の模式図 本発明の圧電フィルムの第5の基本構成の模式図 本発明の圧電フィルムの第6の基本構成の模式図 本発明の圧電フィルムの第7の基本構成の模式図 本発明の圧電フィルムの第8の基本構成の模式図 本発明の圧電フィルムの第9の基本構成の模式図 本発明の圧電フィルムに透明電極を設けた構成を示す模式図
 [圧電フィルムの基本構成]
 図1に本発明の圧電フィルムの第1の基本構成を示す。本発明の圧電フィルムの第1の基本構成は、基材フィルム11に、圧電性を有するコーティング層12が積層されてなる圧電フィルム10である。基材フィルム11と圧電性を有するコーティング層12の間に、図示しない易接着層が積層されていてもよい。
 図2に本発明の圧電フィルムの第2の基本構成を示す。第1の基本構成と共通する要素には同じ符号を付す。本発明の圧電フィルムの第2の基本構成は、基材フィルム11にアンダーコート層13が積層され、更に、アンダーコート層13に圧電性を有するコーティング層12が積層されてなる圧電フィルム20である。アンダーコート層13(あるいはアンカーコート層)は、基材フィルム11と圧電性を有するコーティング層12との密着性を高くする機能がある。
 図3に本発明の圧電フィルムの第3の基本構成を示す。第1の基本構成と共通する要素には同じ符号を付す。本発明の圧電フィルムの第3の基本構成は、基材フィルム11に圧電性を有するコーティング層12が積層され、更に、圧電性を有するコーティング層12に少なくとも1層の光学調整層14が積層されてなる圧電フィルム30である。光学調整層14(Index matching layer)(屈折率調整層ともいう)は、圧電フィルム30の反射率を調整する機能がある。基材フィルム11と圧電性を有するコーティング層12の間に、図示しない易接着層が積層されていてもよい。
 図4に本発明の圧電フィルムの第4の基本構成を示す。第1の基本構成と共通する要素には同じ符号を付す。本発明の圧電フィルムの第4の基本構成は、基材フィルム11に、少なくとも1層の第1の光学調整層15が積層され、更に、少なくとも1層の第1の光学調整層15に圧電性を有するコーティング層12が積層されてなる圧電フィルム40である。
 図5に本発明の圧電フィルムの第5の基本構成を示す。第4の基本構成と共通する要素には同じ符号を付す。本発明の圧電フィルムの第5の基本構成は、基材フィルム11に、少なくとも1層の第1の光学調整層15が積層され、更に、少なくとも1層の第1の光学調整層15に圧電性を有するコーティング層12が積層され、更に、圧電性を有するコーティング層12に少なくとも1層の第2の光学調整層16が積層されてなる圧電フィルム50である。
 図6に本発明の圧電フィルムの第6の基本構成を示す。第1の基本構成と共通する要素には同じ符号を付す。本発明の圧電フィルムの第6の基本構成は、基材フィルム11に、少なくとも1層のアンチブロッキング層17が積層され、更に、少なくとも1層のアンチブロッキング層17に圧電性を有するコーティング層12が積層されてなる圧電フィルム60である。アンチブロッキング層17は、積み重ねられた、あるいは、巻回された圧電フィルム60どうしが圧着(ブロッキング)することを防止する機能がある。
 図7に本発明の圧電フィルムの第7の基本構成を示す。第3の基本構成と共通する要素には同じ符号を付す。本発明の圧電フィルムの第7の基本構成は、基材フィルム11の一面に圧電性を有するコーティング層12が積層され、更に、圧電性を有するコーティング層12に少なくとも1層の光学調整層14が積層され、基材フィルム11の他面に、少なくとも1層のアンチブロッキング層17が積層されてなる圧電フィルム70である。基材フィルム11と圧電性を有するコーティング層12の間に、図示しない易接着層が積層されていてもよい。
 図8に本発明の圧電フィルムの第8の基本構成を示す。第1の基本構成と共通する要素には同じ符号を付す。本発明の圧電フィルムの第8の基本構成は、基材フィルム11に圧電性を有するコーティング層12が積層され、更に、圧電性を有するコーティング層12に少なくとも1層の透明粘着層18が積層されてなる圧電フィルム80である。少なくとも1層の透明粘着層18は、少なくとも1層の透明接着層でもよい。基材フィルム11と圧電性を有するコーティング層12の間に、図示しない易接着層が積層されていてもよい。
 図9に本発明の圧電フィルムの第9の基本構成を示す。第8の基本構成と共通する要素には同じ符号を付す。本発明の圧電フィルムの第9の基本構成は、基材フィルム11の一面に、圧電性を有するコーティング層12が積層され、基材フィルム11の他面に、少なくとも1層の透明粘着層18が積層されてなる圧電フィルム90である。少なくとも1層の透明粘着層18は、少なくとも1層の透明接着層でもよい。基材フィルム11と圧電性を有するコーティング層12の間に、図示しない易接着層が積層されていてもよい。
 [基材フィルム]
 基材フィルム11は、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリオレフィン、ポリシクロオレフィン、シクロオレフィンコポリマー、ポリカーボネート、ポリエーテルスルフォン、ポリアリレート、ポリイミド、ポリアミド、ポリスチレン、ポリノルボルネンなどの高分子フィルムからなる。基材フィルム11の材料はこれらに限定されることはないが、透明性、耐熱性、および機械特性に優れるポリエチレンテレフタレート(PET)が好ましい。
 基材フィルム11の厚さは、好ましくは、10μm~200μmであるが、これに限定されることはない。但し基材フィルム11の厚さが10μm未満であると取り扱いが困難になるおそれがある。また基材フィルム11の厚さが200μmを超えると、圧電フィルム(10,20,30,40,50,60,70,80,90)を巻回してロールにするのが難しくなるおそれがある。また基材フィルム11の厚さが200μmを超えると、圧電フィルム(10,20,30,40,50,60,70,80,90)をタッチパネル等に実装したときに厚さが厚くなりすぎるおそれがある。
 [圧電性を有するコーティング層]
 圧電性を有するコーティング層12の材料は、基材フィルム11の表面に薄膜状にコーティングすることが可能であって、コーティング後の薄膜が圧電性を有するものであれば、特に限定されることはない。圧電性を有するコーティング層12は、ポーリング(分極処理)を行なわなくても圧電性を示すものが望ましいが、ポーリング後に圧電性を示すものでもよい。
 ポーリング(分極処理)として非接触式のポーリングと接触式のポーリングがある。非接触式のポーリングでは、例えば、コーティング層12をコロナ放電処理することによりコーティング層12を分極させる。接触式のポーリングでは、例えば、2枚の金属板でコーティング層12を挟み、2枚の金属板の間に電圧を印加してコーティング層12を分極させる。
 圧電性を有するコーティング層12は、例えば、圧電性を有するコーティング層12の材料を溶媒に溶解させて溶液とし、バーコーターやグラビアコーターなどの既知のコーティング装置によって基材フィルム11の表面に薄く一様にコーティングし、その後乾燥させて得られる。
 [圧電性を有するコーティング層の材料]
 圧電性を有するコーティング層12の材料は、例えば、フッ素樹脂を含む材料が好適に用いられる。フッ素樹脂を含む材料を具体的に例示すると、フッ化ビニリデンの重合体、フッ化ビニリデンとトリフルオロエチレンの共重合体、フッ化ビニリデンとトリフルオロエチレンとクロロトリフルオロエチレンの共重合体、ヘキサフルオロプロピレンとビニリデンフロライドの共重合体、パーフルオロビニルエーテルとビニリデンフロライドの共重合体、テトラフルオロエチレンとビニリデンフロライドの共重合体、ヘキサフルオロプロピレンオキシドとビニリデンフロライドの共重合体、ヘキサフルオロプロピレンとテトラフルオロエチレンとビニリデンフロライドの共重合体が挙げられる。これらのポリマーは、単独でも混合体でも用いることができる。
 フッ素樹脂を含む材料は、好ましくは、フッ化ビニリデンとトリフルオロエチレンの共重合体、あるいは、フッ化ビニリデンとトリフルオロエチレンとクロロトリフルオロエチレンの共重合体である。フッ化ビニリデンとトリフルオロエチレンの共重合体を2元系共重合体ということにする。フッ化ビニリデンとトリフルオロエチレンとクロロトリフルオロエチレンの共重合体を3元系共重合体ということにする。
 フッ化ビニリデンとトリフルオロエチレンの共重合体(2元系共重合体)を、圧電性を有するコーティング層12の材料として用いる場合は、フッ化ビニリデンとトリフルオロエチレンのモル比は、全体を100として、(50~85):(50~15)の範囲が適切である。
 また、フッ化ビニリデンとトリフルオロエチレンとクロロトリフルオロエチレンの共重合体(3元系共重合体)を、圧電性を有するコーティング層12の材料として用いる場合は、フッ化ビニリデンとトリフルオロエチレンとクロロトリフルオロエチレンのモル比は、全体を100として、(63~65):(27~29):(10~6)の範囲が適切である。
 [圧電性を有するコーティング層の厚さ]
 圧電性を有するコーティング層12の厚さが限定されることはないが、後述する光学特性を考慮すると、0.5μm~20μmが好ましく、0.5μm~10μmがより好ましく、0.5μm~5μmがさらに好ましい。圧電性を有するコーティング層12の厚さが0.5μm未満であると、形成された膜が不完全になるおそれがある。圧電性を有するコーティング層12の厚さが20μmを超えると、光学特性(ヘイズ値および全光線透過率)が不適切になるおそれがある。
 [透明粘着層]
 透明粘着層18は光学透明粘着剤からなることが好ましい。例えば、光学透明粘着剤のシートを用いて透明粘着層18を形成することができる。また透明接着層は光学透明接着剤からなることが好ましい。例えば、液状の光学透明接着剤を塗布し、紫外線を照射して硬化させ、透明接着層を形成することができる。透明粘着層18あるいは透明接着層の屈折率は、その両側に積層された材料の各々の屈折率の中間的な値であることが望ましい。そのように透明粘着層18あるいは透明接着層の屈折率を選択することにより、透明粘着層18あるいは透明接着層と、その両側に積層された材料との界面における光の反射を抑えることができる。
 [圧電フィルムの光学特性]
 一般に、圧電フィルムのヘイズ値が大きくなっても、光は吸収されず散乱することがあるため、全光線透過率は低下しないことがある。しかし、圧電フィルムの全光線透過率は低下しなくても、ヘイズ値が大きくなるに従って、ディスプレイ画像の視認性は低下する。そのため圧電フィルムの全光線透過率の値だけでは、ディスプレイ画像の視認性は判断できない。本願発明者の実験によると、ディスプレイ画像の視認性を確保するためには、圧電フィルムのヘイズ値は5%以下が好ましく、4%以下がより好ましく、3%以下がさらに好ましく、2%以下が特に好ましく、1%以下が特段に好ましい。また、圧電フィルムの全光線透過率は90%以上が好ましく、91%以上がより好ましく、92%以上が特に好ましい。圧電フィルムのヘイズ値が5%を超える場合、あるいは、全光線透過率が90%未満の場合、ディスプレイの画像が明瞭に視認できなくなるおそれがある。
 [透明電極]
 また、本願の圧電フィルム10に透明電極を積層し、透明電極で圧電性を有するコーティング層12の電位の変化を検出することができる。たとえば、図10のように、図1の圧電フィルム10に光学調整層14と透明電極20を積層する。また、基材フィルム11における圧電性を有するコーティング層12のはタイ側の面にアンチブロッキング機能を有するハードコート層22を積層している。
 透明電極20は、インジウム系複合酸化物、代表的にはインジウムスズ複合酸化物(ITO:Indium Tin Oxide)、インジウム亜鉛複合酸化物が挙げられるが、4価金属イオンまたは2価金属イオンがドープされた酸化インジウム(In203)が挙げられる。インジウム系複合酸化物は、可視光領域(380~780nm)で透過率が80%以上と高く、かつ単位面積当たりの表面抵抗が低い(30~1000Ω/□)という特徴を有している。
 上記インジウム系複合酸化物の表面抵抗値は、好ましくは300Ω/□(ohms per square)以下であり、さらに好ましくは150Ω/□である。表面抵抗の小さい透明電極は、たとえば、スパッタリング法または真空蒸着法により、インジウム系複合酸化物の非晶質層を硬化樹脂層上に形成した後、100~200℃で加熱処理して、非晶質層を結晶質層に変化することにより得られる。
 透明電極20は上記の材料に限定されず、スズ亜鉛酸化物、酸化亜鉛、フッ素ドープスズ酸化物などの透明導電性酸化物、ポリエチレンジオキシチオフェンなどの導電性高分子、を用いることができる。
 圧電性を有するコーティング層12の厚さとして0.5~10μm、光学調整層14の厚さとして80~160nm、透明電極20の厚さとして20nm以上を一例としてあげられる。また、圧電性を有するコーティング層12の屈折率として1.40~1.50、光学整層14の屈折率として1.50~1.70、透明電極20の屈折率として1.90~2.10が一例としてあげられる。また、基材フィルム11の厚さを2~100μm、屈折率を1.50~1.70にする。以上の厚さと屈折率にすることで、透明電極20と光学調整層14の反射率差が2.0%以下になり、見栄えが良くなる。
 [実施例1]
 実施例1の圧電フィルム10は、本発明の圧電フィルムの第1の基本構成からなる。実施例1の圧電フィルム10は、基材フィルム11(ポリエチレンテレフタレートフィルム)の表面に、まず図示しない易接着を形成し、次にフッ化ビニリデンとトリフルオロエチレンの共重合体(2元系共重合体)の溶液をコーティングして作製された。基材フィルム11(ポリエチレンテレフタレートフィルム)の厚さは23μmであった。
 圧電性を有するコーティング層12を作製するにあたり、まず、フッ化ビニリデンとトリフルオロエチレンの共重合体(2元系共重合体)を、メチルエチルケトンに超音波により溶解し、フッ化ビニリデンとトリフルオロエチレンの共重合体(2元系共重合体)の溶液を作製した。フッ化ビニリデンとトリフルオロエチレンの共重合体(2元系共重合体)に含まれる、フッ化ビニリデンとトリフルオロエチレンのモル比は、70/30であった。
 次に、フッ化ビニリデンとトリフルオロエチレンの共重合体(2元系共重合体)の溶液を、バーコーターによって、基材フィルム11(ポリエチレンテレフタレートフィルム)の表面にコーティングした。次に、基材フィルム11(ポリエチレンテレフタレートフィルム)および未乾燥のコーティング層を、60℃、5分の乾燥条件で乾燥して、圧電性を有するコーティング層12を得た。乾燥後の圧電性を有するコーティング層12の厚さは1μmであった。
 [実施例2]
 実施例2の圧電フィルム10は、本発明の圧電フィルムの第1の基本構成からなる。実施例2の圧電フィルム10は、乾燥後の圧電性を有するコーティング層12の厚さが5μmであることを除いては、実施例1の圧電フィルム10と同様にして作製された。
 [実施例3]
 実施例3の圧電フィルム10は、本発明の圧電フィルムの第1の基本構成からなる。実施例3の圧電フィルム10は、乾燥後の圧電性を有するコーティング層12の厚さが10μmであることを除いては、実施例1の圧電フィルム10と同様にして作製された。
 [実施例4]
 実施例4の圧電フィルム10は、本発明の圧電フィルムの第1の基本構成からなる。実施例4の圧電フィルム10は、乾燥後の圧電性を有するコーティング層12の厚さが20μmであることを除いては、実施例1の圧電フィルム10と同様にして作製された。
 [実施例5]
 実施例5の圧電フィルム10は、本発明の圧電フィルムの第1の基本構成からなる。実施例5の圧電フィルム10は、フッ化ビニリデンとトリフルオロエチレンの共重合体(2元系共重合体)に含まれる、フッ化ビニリデンとトリフルオロエチレンのモル比が75/25であることを除いては、実施例1の圧電フィルム10と同様にして作製された。
 [実施例6]
 実施例6の圧電フィルム10は、本発明の圧電フィルムの第1の基本構成からなる。実施例6の圧電フィルム10は、乾燥後の圧電性を有するコーティング層12の厚さが5μmであることを除いては、実施例5の圧電フィルム10と同様にして作製された。
 [実施例7]
 実施例7の圧電フィルム10は、本発明の圧電フィルムの第1の基本構成からなる。実施例7の圧電フィルム10は、乾燥後の圧電性を有するコーティング層12の厚さが10μmであることを除いては、実施例5の圧電フィルム10と同様にして作製された。
 [実施例8]
 実施例8の圧電フィルム10は、本発明の圧電フィルムの第1の基本構成からなる。実施例8の圧電フィルム10は、乾燥後の圧電性を有するコーティング層12の厚さが2μmであること、および乾燥条件が135℃、5分であることを除いては、実施例5の圧電フィルム10と同様にして作製された。
 [実施例9]
 実施例9の圧電フィルム10は、本発明の圧電フィルムの第1の基本構成からなる。実施例9の圧電フィルム10は、圧電性を有するコーティング層12の材料が、フッ化ビニリデンとトリフルオロエチレンとクロロトリフルオロエチレンの共重合体(3元系共重合体)であることを除いては、実施例1の圧電フィルム10と同様にして作製された。
 圧電性を有するコーティング層12を作製するにあたり、まず、フッ化ビニリデンとトリフルオロエチレンとクロロトリフルオロエチレンの共重合体(3元系共重合体)を、常温のメチルイソブチルケトンに超音波により溶解し、フッ化ビニリデンとトリフルオロエチレンとクロロトリフルオロエチレンの共重合体(3元系共重合体)の溶液を作製した。フッ化ビニリデンとトリフルオロエチレンとクロロトリフルオロエチレンの共重合体(3元系共重合体)に含まれる、フッ化ビニリデンとトリフルオロエチレンとクロロトリフルオロエチレンのモル比は、64.2/27.1/8.7であった。
 次にフッ化ビニリデンとトリフルオロエチレンとクロロトリフルオロエチレンの共重合体(3元系共重合体)の溶液を、バーコーターによって、基材フィルム11(ポリエチレンテレフタレートフィルム)の表面にコーティングした。次に、基材フィルム11(ポリエチレンテレフタレートフィルム)および未乾燥のコーティング層を、60℃、5分の乾燥条件で乾燥して、圧電性を有するコーティング層12を作製した。乾燥後の圧電性を有するコーティング層12の厚さは1μmであった。
 [実施例10]
 実施例10の圧電フィルム10は、本発明の圧電フィルムの第1の基本構成からなる。実施例10の圧電フィルム10は、乾燥後の圧電性を有するコーティング層12の厚さが5μmであることを除いては、実施例9の圧電フィルム10と同様にして作製された。
 [比較例1]
 比較例1の圧電フィルムは、フッ化ビニリデンの重合体(ポリフッ化ビニリデン)の、厚さ40μmの自立したフィルム(基材フィルムを有しない)からなる。比較例1の圧電フィルムは、フッ化ビニリデンの重合体(ポリフッ化ビニリデン)を、常温のイソブチルケトンに超音波により溶解した溶液を、ポリエチレンテレフタレートフィルムの表面に、乾燥後の厚さが40μmとなるようにコーティングし、乾燥後、ポリエチレンテレフタレートフィルムから剥がして作製された。
Figure JPOXMLDOC01-appb-T000001
 表1に本発明の圧電フィルムの実施例と比較例の圧電フィルムの構成、圧電性を有するコーティング層のモル比と厚さ、圧電フィルムのヘイズ値と全光線透過率を示す。表1中、VDFはフッ化ビニリデン、TrFEはトリフルオロエチレン、CTFEはクロロトリフルオロエチレン、PETはポリエチレンテレフタレートを示す。P(  )は共重合体を示す。従って、「P(VDF-TrFE)」は、「フッ化ビニリデンとトリフルオロエチレンの共重合体」という意味である。「P(VDF-TrFE-CTFE)」は、「フッ化ビニリデンとトリフルオロエチレンとクロロトリフルオロエチレンの共重合体」という意味である。「P(VDF-TrFE)/PET基材フィルム」は、「フッ化ビニリデンとトリフルオロエチレンの共重合体を、ポリエチレンテレフタレートからなる基材フィルム11の表面にコーティングした」という意味である。「P(VDF-TrFE-CTFE)/PET基材フィルム」は、「フッ化ビニリデンとトリフルオロエチレンとクロロトリフルオロエチレンの共重合体を、ポリエチレンテレフタレートからなる基材フィルム11の表面にコーティングした」という意味である。PVDFはフッ化ビニリデンの重合体(ポリフッ化ビニリデン)を意味する。
 実施例1~実施例4の圧電フィルムは、構成および材料は同じであるが、圧電性を有するコーティング層12の厚さが異なる。実施例1~実施例4を比較すると、圧電性を有するコーティング層12の厚さが厚くなるに従って、ヘイズ値が上昇する傾向が見られる。しかし、実施例1~実施例4の圧電フィルムのヘイズ値と全光線透過率は、全て問題の無いレベルである。
 実施例5~実施例7の圧電フィルムは、構成および材料は同じであるが、圧電性を有するコーティング層12の厚さが異なる。実施例5~実施例7を比較すると、圧電性を有するコーティング層12の厚さが厚くなるに従って、ヘイズ値が僅かに上昇する傾向が見られる。しかし、実施例5~実施例7の圧電フィルムのヘイズ値と全光線透過率は、全て問題の無いレベルである。
 実施例8の圧電フィルムは、実施例5の圧電フィルムと、構成および材料は同じであり、コーティング層12の厚さも近いが、ヘイズ値は大きく異なる。実施例8の圧電フィルムのヘイズ値が大きい原因は、乾燥温度が135℃であることによる(他の実施例の乾燥温度は60℃である)。このように、コーティング層12の乾燥温度を高くすると、圧電フィルムのヘイズ値が大きくなる傾向がある。
 実施例9と実施例10の圧電フィルムは、構成および材料は同じであるが、圧電性を有するコーティング層12の厚さが異なる。実施例9と実施例10から、圧電性を有するコーティング層12の厚さが厚くなるに従って、ヘイズ値が上昇する傾向が見られる。しかし、実施例9と実施例10の圧電フィルムのヘイズ値と全光線透過率は、全て問題の無いレベルである。
 比較例1のフッ化ビニリデンの重合体(ポリフッ化ビニリデン)の自立したフィルムは、本発明の実施例1~実施例10の圧電フィルムに比べて、ヘイズ値がかなり大きい。そのため、ディスプレイの画像の視認性が低くなるおそれが大きい。しかし、比較例1の圧電フィルムの全光線透過率は、本発明の実施例1~実施例10の圧電フィルムとほとんど違わない。比較例1から、ヘイズ値が大きくなっても、全光線透過率が低下するとは限らないことが分かる。
 [測定方法]
 (厚さ)
 1μm未満の膜の厚さは、透過型電子顕微鏡(日立製作所製H-7650)を用いて、断面を観察して測定した。1μmを超える膜あるいはフィルムの厚さは、膜厚計(Peacock社製デジタルダイアルゲージDG-205)を用いて測定した。
 [ヘイズ値、全光線透過率]
 ヘイズ値、全光線透過率は、Direct Reading Haze Computer (Suga Test Instruments社製HGM-ZDP)を用いて測定した。
 [実施例11~16]
 また、図10のように、本願の圧電フィルム10に透明電極20が積層される場合を想定して、圧電フィルム10と透明電極20との間に光学調整層14を配置し場合の圧電性を有するコーティング層12、光学調整層14、透明電極20の厚さおよび屈折率を測定した。圧電フィルム10は上記実施例と同じで、PETフィルムにフッ化ビニリデンとトリフルオロエチレンの共重合体をコーティングしたものである。
 光学調整層14は下の表に2に示すように、屈折率が1.54、1.62、1.7の場合がある。屈折率によって製造方法が異なるので屈折率ごとに説明する。屈折率が1.54の場合、圧電性を有するコーティング層12の一方の面に、メラミン樹脂:アルキド樹脂:有機シラン縮合物の重量比2:2:1の熱硬化型樹脂(光の屈折率n=1.54)により、厚さが120nmの光学調整層14を形成した。
 屈折率が1.62の場合、圧電性を有するコーティング層12の一方の面に、紫外線硬化性樹脂47質量部、酸化ジルコニア粒子(メジアン径40nm)57質量部およびPGMEを含有した光学調整組成物(JSR社製、「オプスターZ7412」、固形分12質量%)をグラビアコーターを用いて塗布し、無風状態(0.1m/s未満)で直ちに60℃で1分間加熱乾燥した。その後、高圧水銀ランプにて、積算光量250mJ/cmの紫外線を照射して硬化処理を実施した。この方法により、厚み90、120、または150nmで屈折率1.62の光学調整層14を、圧電性を有するコーティング層12の上に形成した。
 屈折率が1.7の場合、メラミン樹脂、アルキド樹脂及び有機シラン縮合物からなる熱硬化型樹脂(重量比で、メラミン樹脂:アルキド樹脂:有機シラン縮合物=2:2:1)にTiO(屈折率=2.35)の微粒子を混合した樹脂組成物を調製した。この際、上記樹脂組成物の屈折率が1.70となるようにTiO微粒子の混合量を調整した。そして、圧電性を有するコーティング層12の上に上記樹脂組成物を塗工し、これを硬化させて、厚み150nmの光学調整層14(屈折率1.70)を形成した。
 また、透明電極20は、インジウムスズ酸化物をスパッタリングによって成膜した。その結果を表2に示すが、「第1層」が圧電性を有するコーティング層12、「第2層」が光学調整層14、「第3層」が透明電極20である。
 各実施例は上記のように圧電性を有するコーティング層12の厚さが0.5~10μm、光学調整層14の厚さが80~160nm、透明電極20の厚さが20nm以上になっている。また、圧電性を有するコーティング層12の屈折率が1.40~1.50、光学調整層14の屈折率が1.50~1.70、透明電極20の屈折率が1.90~2.10になっている。透明電極20と光学調整層14の反射率差は2%以下であり、見栄えは良かった。
 なお、必要に応じて透明電極20はエッチングされて所望の電極等になる。上記屈折率を求める際、光学調整層14の屈折率は透明電極20をエッチングによって取り除いた部分を用いた。そのため、各屈折率から空気と透明電極20、空気と光学調整層14の反射率を求めることで、反射率差を求めた。
 [比較例2~3]
 実施例11~16に対する比較例として、光学調整層14の無い場合(比較例2)と光学調整層14の屈折率が1.5より小さい場合(比較例3)をおこなった。光学調整層14が無い場合、反射率差は透明電極20と圧電性を有するコーティング層12の差である。反射率差が2%より大きくなり、見栄えが悪くなった。
 なお、屈折率が1.46の場合(比較例4)の光学調整層14は、シリカゾル(コルコート(株)製,コルコートP)を、固形分濃度2%になるようにエタノールで希釈し、圧電性を有するコーティング層12の一方の上に、シリカコート法により塗布し、その後、150℃で2分間乾燥、硬化させて、厚さが120nmの層(SiO膜,光の屈折率1.46)を形成して光学調整層14とした。比較例において他の構成の製造方法は実施例と同じである。
Figure JPOXMLDOC01-appb-T000002
 圧電性を有するコーティング層12の上に透明電極20を備えることで透明電極20によって黄色または茶色に呈色して見栄えを損ねる場合がある。上記実施例のように光学調整層14を設け、透明電極20、光学調整層14、圧電性を有するコーティング層12の厚さおよび屈折率を上述した値の範囲になるように調節することで、表2のように反射率差を小さくでき、見栄えを損ねないことがわかった。圧電フィルム10に光学調整層14と透明電極20を積層した構成をディスプレイの前面に配置してもディスプレイの見栄えを損ないにくいことがわかった。
 本発明の圧電フィルムの利用に制限はないが、特にタッチパネルのZ座標(指のタッチする圧力)を検出するための圧電フィルムとして好適に用いられる。
10、20,30,40,50,60,70,80,90  圧電フィルム
11  基材フィルム
12  圧電性を有するコーティング層
13  アンダーコート層
14  光学調整層
15  第1の光学調整層
16  第2の光学調整層
17  アンチブロッキング層
18  透明粘着層
20  透明電極
22  アンチブロッキング機能を有するハードコート層

Claims (18)

  1.  基材フィルムと圧電性を有するコーティング層との積層体を備えた圧電フィルム。
  2.  前記基材フィルムと前記圧電性を有するコーティング層の間に、アンダーコート層を備えた請求項1に記載の圧電フィルム。
  3.  前記圧電性を有するコーティング層の、前記基材フィルムと反対側の表面に、少なくとも1層の光学調整層を備えた請求項1に記載の圧電フィルム。
  4.  前記基材フィルムと前記圧電性を有するコーティング層の間に、少なくとも1層の第1の光学調整層を備えた請求項1に記載の圧電フィルム。
  5.  前記圧電性を有するコーティング層の、前記第1の光学調整層と反対側の表面に、少なくとも1層の第2の光学調整層を備えた請求項4に記載の圧電フィルム。
  6.  前記基材フィルムと前記圧電性を有するコーティング層の間に、少なくとも1層のアンチブロッキング層を備えた請求項1に記載の圧電フィルム。
  7.  前記基材フィルムの、前記圧電性を有するコーティング層と反対側の表面に、少なくとも1層のアンチブロッキング層を備えた請求項3に記載の圧電フィルム。
  8.  前記圧電性を有するコーティング層の、前記基材フィルムと反対側の表面に、少なくとも1層の透明粘着層を備えた請求項1に記載の圧電フィルム。
  9.  前記基材フィルムの、前記圧電性を有するコーティング層と反対側の表面に、少なくとも1層の透明粘着層を備えた請求項1に記載の圧電フィルム。
  10.  前記圧電性を有するコーティング層がフッ素樹脂を含む請求項1~9のいずれかに記載の圧電フィルム。
  11.  前記フッ素樹脂が、フッ化ビニリデンの重合体、または、(フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレン)のうちの2種類以上の共重合体である請求項10に記載の圧電フィルム。
  12.  前記フッ素樹脂が、フッ化ビニリデンとトリフルオロエチレンの共重合体であって、前記共重合体に含まれる前記フッ化ビニリデンと前記トリフルオロエチレンのモル比が、全体を100として、(50~85):(50~15)の範囲である請求項11に記載の圧電フィルム。
  13.  前記フッ素樹脂が、フッ化ビニリデンとトリフルオロエチレンとクロロトリフルオロエチレンの共重合体であって、前記共重合体に含まれる前記フッ化ビニリデンと前記トリフルオロエチレンと前記クロロトリフルオロエチレンのモル比が、全体を100として、(63~65):(27~29):(10~6)の範囲である請求項11に記載の圧電フィルム。
  14.  前記圧電性を有するコーティング層が、前記フッ素樹脂の溶液を前記基材フィルムに塗布および乾燥して得られるコーティング層である請求項10~13のいずれかに記載の圧電フィルム。
  15.  前記圧電性を有するコーティング層の厚さが、0.5μm~20μmである請求項1~14のいずれかに記載の圧電フィルム。
  16.  前記基材フィルムの材料が、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリオレフィン、ポリシクロオレフィン、シクロオレフィンコポリマー、ポリカーボネート、ポリエーテルスルフォン、ポリアリレート、ポリイミド、ポリアミド、ポリスチレン、ポリノルボルネンの少なくとも1種から選択される請求項1~15のいずれかに記載の圧電フィルム。
  17.  ヘイズ値が5%以下である請求項1~16のいずれかに記載の圧電フィルム。
  18.  全光線透過率が90%以上である請求項1~17のいずれかに記載の圧電フィルム。
PCT/JP2017/019979 2016-05-30 2017-05-30 圧電フィルム WO2017209080A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187028511A KR20190015188A (ko) 2016-05-30 2017-05-30 압전 필름
CN201780033533.1A CN109196673A (zh) 2016-05-30 2017-05-30 压电薄膜

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-107050 2016-05-30
JP2016107050 2016-05-30
JP2017104590A JP2017216450A (ja) 2016-05-30 2017-05-26 圧電フィルム
JP2017-104590 2017-05-26

Publications (1)

Publication Number Publication Date
WO2017209080A1 true WO2017209080A1 (ja) 2017-12-07

Family

ID=60477912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019979 WO2017209080A1 (ja) 2016-05-30 2017-05-30 圧電フィルム

Country Status (1)

Country Link
WO (1) WO2017209080A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381546B2 (en) * 2014-02-26 2019-08-13 Daikin Industries, Ltd. Bimorph-type piezoelectric film
WO2023219090A1 (ja) * 2022-05-11 2023-11-16 株式会社クレハ 積層圧電フィルム、デバイス、及び積層圧電フィルムの製造方法
EP3943292B1 (en) * 2019-03-20 2024-07-10 Nitto Denko Corporation Laminated piezoelectric device, and a method for manufacturing the piezoelectric device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130062998A1 (en) * 2011-09-09 2013-03-14 Dvx, Llc Piezopolymer transducer with matching layer
WO2014168188A1 (ja) * 2013-04-10 2014-10-16 三井化学株式会社 積層体
WO2015053345A1 (ja) * 2013-10-08 2015-04-16 ダイキン工業株式会社 透明圧電パネル
JP2015215734A (ja) * 2014-05-09 2015-12-03 日東電工株式会社 タッチパネル用シートセンサー
JP2015214053A (ja) * 2014-05-09 2015-12-03 日東電工株式会社 積層体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130062998A1 (en) * 2011-09-09 2013-03-14 Dvx, Llc Piezopolymer transducer with matching layer
WO2014168188A1 (ja) * 2013-04-10 2014-10-16 三井化学株式会社 積層体
WO2015053345A1 (ja) * 2013-10-08 2015-04-16 ダイキン工業株式会社 透明圧電パネル
JP2015215734A (ja) * 2014-05-09 2015-12-03 日東電工株式会社 タッチパネル用シートセンサー
JP2015214053A (ja) * 2014-05-09 2015-12-03 日東電工株式会社 積層体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381546B2 (en) * 2014-02-26 2019-08-13 Daikin Industries, Ltd. Bimorph-type piezoelectric film
EP3943292B1 (en) * 2019-03-20 2024-07-10 Nitto Denko Corporation Laminated piezoelectric device, and a method for manufacturing the piezoelectric device
WO2023219090A1 (ja) * 2022-05-11 2023-11-16 株式会社クレハ 積層圧電フィルム、デバイス、及び積層圧電フィルムの製造方法

Similar Documents

Publication Publication Date Title
TWI733819B (zh) 附透明電極之壓電膜及壓力感測器
JP6579245B2 (ja) 静電容量式タッチパネル付き表示装置
JP6879826B2 (ja) タッチセンサ
JP2017216450A (ja) 圧電フィルム
KR102401028B1 (ko) 정전 용량식 터치 패널 부착 표시 장치
JP4966924B2 (ja) 透明導電性フィルム、透明導電性積層体及びタッチパネル、並びに透明導電性フィルムの製造方法
TWI628578B (zh) Display device with capacitive touch panel
TWI746560B (zh) 觸碰感測器
JP7050469B2 (ja) 圧電フィルムおよび圧電センサ
JP2010027294A (ja) 透明導電性フィルム及びタッチパネル
TWI616797B (zh) Display device with capacitive touch panel
WO2017209080A1 (ja) 圧電フィルム
WO2017209081A1 (ja) 透明電極付き圧電フィルムおよび圧力センサ
JP7050426B2 (ja) 圧電センサおよびその圧電センサを用いたディスプレイ
WO2017209082A1 (ja) 圧電センサおよびその圧電センサを用いたディスプレイ
TWI808671B (zh) 導電性壓電積層膜及製造方法
US20140071533A1 (en) Transparent Conductive FILM And Touch Panel Provided With Same
CN118044357A (zh) 透明导电压电膜、触摸面板以及透明导电压电膜的制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187028511

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806635

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17806635

Country of ref document: EP

Kind code of ref document: A1