WO2017208774A1 - Accelerator and particle beam irradiation apparatus - Google Patents

Accelerator and particle beam irradiation apparatus Download PDF

Info

Publication number
WO2017208774A1
WO2017208774A1 PCT/JP2017/017936 JP2017017936W WO2017208774A1 WO 2017208774 A1 WO2017208774 A1 WO 2017208774A1 JP 2017017936 W JP2017017936 W JP 2017017936W WO 2017208774 A1 WO2017208774 A1 WO 2017208774A1
Authority
WO
WIPO (PCT)
Prior art keywords
accelerator
trajectory
ion beam
ion source
ion
Prior art date
Application number
PCT/JP2017/017936
Other languages
French (fr)
Japanese (ja)
Inventor
孝義 関
孝道 青木
風太郎 えび名
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2017208774A1 publication Critical patent/WO2017208774A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/04Irradiation devices with beam-forming means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/08Arrangements for injecting particles into orbits

Definitions

  • the present invention relates to an accelerator for accelerating ions such as protons and carbon and a particle beam irradiation apparatus including the accelerator.
  • Patent Document 1 An apparatus for obtaining an ion beam of arbitrary energy in a circular accelerator is described in Patent Document 1.
  • This Patent Document 1 describes that “a beam guide made of a superconductor is installed behind a deflector, and the beam guide can be moved along with the deflector along the direction of radial rotation of particles”. .
  • the particle beam irradiation apparatus is roughly classified into a particle beam irradiation apparatus having a synchrotron as an accelerator and a particle beam irradiation apparatus having a cyclotron as an accelerator.
  • the particle beam irradiation apparatus having a cyclotron includes, for example, an ion source, a cyclotron, a beam transport system, a rotating gantry, and an irradiation apparatus.
  • the cyclotron has a vacuum vessel composed of a pair of opposed iron cores having a circular cross section, a high-frequency accelerator, and an extraction electromagnet.
  • the beam transport system is connected to the exit of the cyclotron, where an extraction electromagnet is arranged.
  • ions emitted from an ion source for example, heavy particle ions having a mass heavier than protons such as positive ions or carbon
  • the accelerated ion beam spirally circulates from the center of the iron core toward the inner side surface of the return yoke, and is emitted to the beam transport system by an extraction electromagnet provided at the periphery of the iron core.
  • the emitted ion beam passes through the beam transport system and is irradiated from the irradiation device to the cancerous part of the patient on the treatment table.
  • a take-out deflector is provided in the vicinity of the outer periphery of the acceleration electrode in order to take out accelerated particles. And the particle
  • Patent Document 1 described above describes a circular accelerator that obtains an ion beam of arbitrary energy without using this degrader.
  • the beam extraction mechanism described in Patent Document 1 requires a beam guide made of a superconductor, a mechanically moving deflector, and a beam deflector. For this reason, since a large-scale moving device in a vacuum is required, there is a problem that the device becomes very large and complicated.
  • An object of the present invention is to provide an accelerator capable of easily taking out a beam of an arbitrary energy over a wide range without using a large-scale moving device, and a particle beam irradiation apparatus including the accelerator. .
  • the present invention includes a plurality of means for solving the above-described problems.
  • an ion source an accelerating unit for accelerating an ion beam extracted from the ion source, and an orbit of the ion beam are provided.
  • FIG. 6 It is a figure which shows the whole structure of the particle beam irradiation apparatus of this invention. It is the side view which showed the outline of the circular accelerator which concerns on Example 1 of this invention. It is the top view which showed the outline of the plane of the circular accelerator shown in FIG. It is the perspective view which showed the outline of the magnetic pole of the circular accelerator shown in FIG. It is a cross-sectional view which shows the outline of the angle adjuster shown in FIG. It is a top view which shows the example of the track
  • Embodiment 1-3 which is a preferred embodiment of the accelerator and particle beam irradiation apparatus of the present invention, will be described below with reference to the drawings. First, the concept of an accelerator that is most suitable for the accelerator of the present invention will be described.
  • the inventors of the present invention have made various studies in order to realize an accelerator that can continuously extract an ion beam like a cyclotron and can extract an ion beam with different energy like a synchrotron.
  • the inventors of the present invention first focused on the mutual spacing of beam orbits of ion beams that circulate in the vacuum vessel of the cyclotron (in order to facilitate beam extraction) Widening the interval).
  • Increasing the interval between the beam orbits that is, increasing the interval between the beam orbits (turn separation) leads to an increase in the diameter of the vacuum vessel and an increase in the size of the cyclotron.
  • concentric beam orbits are drawn in a vacuum vessel, and it is difficult to ensure turn separation at high energy, making it difficult to efficiently emit ion beams with different energies. Met.
  • the cyclotron there is a beam passage region (plane) in which the radius gradually increases in a spiral shape, and the ion source is installed near the center of this region so that ions are incident on the circular orbit.
  • the present inventors move the beam incident point existing at the center of the beam passing region in the cyclotron toward the beam extraction port formed on the outer periphery of the beam passing region, that is, the beam incident point at the center of the beam passing region. Instead, we considered moving from a position shifted toward the beam outlet to the orbit. As a result, the distance between the beam orbits formed in the vacuum vessel becomes closer between the incident position of the ions entering the vacuum vessel and the beam extraction port (orbital integration region is formed), and beam extraction is performed. It has been found that at the position opposite to the mouth by 180 degrees, the distance between the beam orbits formed in the vacuum vessel can be widened contrary to the distance between the beam incident point and the beam extraction opening.
  • the present inventors have created a new accelerator capable of efficiently extracting ion beams having different energies by applying such a concept of beam orbit.
  • FIG. 1 is a diagram showing an overall configuration of a particle beam irradiation apparatus to which the present invention relates.
  • the particle beam irradiation apparatus 100 includes an accelerator 20, a beam transport system 60, an irradiation apparatus 70, a treatment table 40, and a control apparatus 50.
  • ions generated by the ion source 4 are accelerated by the accelerator 20 to be an ion beam.
  • the accelerated ion beam is emitted from the accelerator 20 and transported to the irradiation device 70 by the beam transport system 60.
  • the transported ion beam is shaped by the irradiation device 70 so as to match the shape of the affected part, and is irradiated to the target of the patient 45 lying on the treatment table 40 by a predetermined amount.
  • each device and equipment in the particle beam irradiation apparatus 100 including the accelerator 20 is controlled by the control device 50.
  • FIGS. 2 is a schematic side view of a circular accelerator to which the present invention is applied
  • FIG. 3 is a schematic plan view of FIG.
  • FIG. 4 is a perspective view schematically showing the magnetic pole.
  • FIG. 5 is a cross-sectional view schematically showing the angle adjuster.
  • FIG. 6 is a plan view showing an example of the trajectory of the ion beam when an angle adjuster for rotating the ion source is used.
  • FIG. 7 is a diagram showing the relationship between the rotation angle and extraction energy when the ion source is rotated.
  • FIG. 8 is a cross-sectional view showing an outline of the local magnetic field generator.
  • the accelerator 20 includes an ion source 4, a high-frequency electrode (acceleration unit) 3, a magnetic pole 1, a local magnetic field generation unit 2, a vacuum vessel 10, an annular coil 5, An extraction septum 11 is provided.
  • a high-frequency electrode 3 having a hollow inside is arranged symmetrically in the magnetic pole recess 1c, and a high-frequency power source 15 applies a high frequency from the outside. Using the electric field generated by this high frequency, the high frequency electrode 3 accelerates the ion beam extracted from the ion source 4.
  • the vacuum vessel 10 is disposed so as to be sandwiched between the magnetic poles 1 and forms a single vacuum vessel as a whole, and forms a main magnetic field 41 in the magnetic pole gap 43 by forming a magnetic circuit.
  • the vacuum container 10 is a nonmagnetic material.
  • the annular coil 5 is installed on the atmosphere side of the vacuum vessel 10 and is a coil for generating a main magnetic field 41 (B 0 ) in the magnetic pole gap 43 between the magnetic poles 1 by the magnetic pole 1.
  • the annular coil 5 may be a coil made of a normal conducting material or a coil made of a superconducting material.
  • the magnetic pole 1 has magnetic pole convex portions 1a and 1b and a magnetic pole concave portion 1c, and has a bilaterally symmetric and vertically asymmetrical structure when viewed from above.
  • the circulating frequency of the ion beam is, for example, 19.82 megahertz (MHz), and the magnetic pole 1 is set to generate an isochronous magnetic field that makes one round at the same time regardless of the energy.
  • the magnetic field acting on the beam along the beam trajectory is formed by the magnetic pole convex portions 1a and 1b so as to be a low magnetic field in the concave portion and a high magnetic field in the convex portion.
  • the shapes and heights of the magnetic pole protrusions 1a and 1b are set to directions and strengths that suppress the divergence of the ion beam in the magnetic pole gap 43 direction and the circulation direction.
  • the magnetic pole 1 is a magnetic material, such as iron.
  • the surface of the magnetic pole 1 that faces the magnetic pole gap 43 is symmetrical.
  • the center of the magnetic pole formed by the magnetic pole convex portions 1a and 1b and the magnetic pole concave portion 1c is located at a position biased from the center of the magnetic pole 1 to the beam extraction position 44, and the ion source 4 is disposed in the vicinity thereof. Due to such a biased arrangement structure, the magnetic pole 1 generates a trajectory aggregation region 18 in the orbit.
  • magnetic pole convex portions 1a and 1b are used, but there is no limitation as long as it is two or more poles.
  • the magnetic pole projections 1a and 1b can be provided with trim coils for fine adjustment of the magnetic field, and the trim coil current can be adjusted so as to ensure isochronism and stability of betatron oscillation. is there.
  • the “isochronous magnetic field” in the present invention means that the ion beam makes one round even if the energy of the accelerated ion beam increases and the radius of the beam orbit around the ion beam increases. It means a magnetic field that does not change time.
  • circular orbit means a plurality of annular orbits until ions emitted from the ion source 4 are extracted from the extraction position 44.
  • the ion source 4 is disposed in the magnetic pole 1, and is ionized by an electric field generated between the ground electrode 21 and the high frequency electrode 3 by applying a high frequency to the high frequency electrode 3 by the high frequency power supply 15. Ions generated in the source 4 are extracted into the accelerator 30.
  • the ion source 4 has an ion beam trajectory in order to change the ion beam trajectory at a later timing including the time of extraction from the ion source 4 in accordance with the ion beam extraction energy.
  • the angle adjuster 31 is attached as a changing unit that changes the angle within the incident trajectory adjusting unit 6.
  • the angle adjuster 31 includes a motor 31a and an attachment shaft 31b, and adjusts the extraction angle of ions extracted from the ion source 4 by rotating the ion source 4 attached to the attachment shaft 31b by a predetermined angle by the motor 31a.
  • the attachment shaft 31b of the ion source 4 has a vacuum sealing structure, and is configured to maintain a vacuum in the vacuum vessel 10.
  • the trajectory immediately after extraction is controlled as a region for changing the trajectory of the ion beam at a later timing including the time of extraction from the ion source 4 according to the extraction energy of the ion beam
  • An incident trajectory adjustment unit 6 is defined for changing the trajectory so that it can be easily taken out.
  • the incident trajectory adjusting unit 6 means a range within one round after being extracted from the ion source 4.
  • FIG. 6 shows an example of a state in which the trajectory of the ion beam is changed by the rotation of the ion source 4 in the incident trajectory adjustment unit 6.
  • an electric field is generated between the ground electrode 21 and the high-frequency electrode 3.
  • An ion beam is extracted from the ion source 4 by the generated electric field and accelerated by the electric field generated by the high-frequency electrode 3.
  • the angle of the ion beam is extracted by the angle between the high-frequency electrode 3 and the extraction surface of the ion source 4 by rotating and fixing the ion source 4 to a predetermined angle by the angle adjuster 31. It can be changed to any value. For example, when the extraction angle of the ion beam is 0 degree, the track 7a before change shown in FIG. 6 is obtained, and the track 7b after change is obtained by rotating the ion source 4.
  • FIG. 7 shows an example of the result of analyzing the extraction energy of the beam energy and the rotation angle of the ion source 4 when the acceleration condition by the high-frequency electrode 3 is constant and the local magnetic field generator 2 is used together.
  • the local magnetic field generator 2 is arranged in the orbit of the magnetic pole recess 1 c on the opposite side of 180 ° on the side where the orbit aggregation region 18 where the beam orbits 7 are aggregated is formed. ing.
  • the local magnetic field generator 2 is disposed opposite to the space in which the ion beam passes in the direction of the magnetic pole gap 43, and a magnetic field (B m ) for extracting the ion beam is partially disposed on the orbit. Is generated.
  • the local magnetic field generating unit 2 can be formed, for example, by being sandwiched by an annular coil or two or more independent wires, and the position and number are determined in accordance with the number of extracted energy.
  • the ion beam deflected by the magnetic field generated by the local magnetic field generator 2 is transported to the extraction position 44.
  • the ion beam transported to the extraction position 44 is extracted outside the magnetic pole 1 by the extraction septum 11.
  • the extraction septum 11 operates in the same manner regardless of whether a magnetic field or an electric field is used.
  • Accelerator 20 configured as described above operates as follows.
  • the ion beam extracted from the ion source 4 and incident from the center of the magnetic pole convex portions 1a and 1b performs a spiral motion by the main magnetic field 41 formed by the magnetic pole convex portions 1a and 1b and the magnetic pole concave portion 1c.
  • Each time it passes through the high-frequency electrode 3 during the spiral motion it is accelerated by the electric field generated at the high-frequency electrode 3, and the energy is increased.
  • the shape and height of the magnetic pole protrusions 1a and 1b are set to such an orientation and intensity as to suppress the divergence of the beam in the magnetic pole gap 43 direction and the circulation direction, and the ion beam can have any energy at the same time. It is set to make one round.
  • the magnetic field acting on the beam along the beam trajectory is a low magnetic field in the concave portion and a high magnetic field in the convex portion due to the magnetic pole convex portions 1a and 1b.
  • the strength of the magnetic field along the beam trajectory is added, and the average value of the magnetic field along the trajectory is proportional to the relativistic gamma factor ( ⁇ factor) of the beam.
  • the betatron oscillation is stably performed in the direction perpendicular to the orbital plane and the orbital plane of the beam.
  • the orbiting beam is deflected by the local magnetic field 42 generated by the local magnetic field generator 2 that has reached the extraction energy. As a result, the orbiting beam deviates from the orbit and moves to the extraction position 44.
  • the direction of the local magnetic field 42 is determined by the energy in the same direction as the main magnetic field 41 or in the opposite direction. Since the incident beam trajectory in the vicinity of the ion source 4 is changed by rotating the ion source 4, an ion beam having a predetermined beam energy can be easily extracted even if the intensity of the local magnetic field 42 is reduced. Further, since the orbiting ion beam trajectory is gathered at the take-out position 44, deflection and take-out toward the take-out position 44 can be performed with a smaller local magnetic field 42 than the trajectory that is not gathered.
  • the beam movement adjustment to the extraction position 44 has been described for the case where both the local magnetic field generation unit 2 and the incident trajectory adjustment unit 6 are used, but each may be used alone.
  • the magnetic field that can be generated by the local magnetic field generation unit 2 is 0.02 Tesla (T) when a commonly used wire is used, and the incident trajectory adjustment unit 6 compensates for the insufficient displacement.
  • the energy can be switched at high speed.
  • a plurality of local magnetic field generating units 2 are arranged from the center to the outer peripheral direction in accordance with the energy to be extracted, the energy can be switched without moving the local magnetic field generating unit 2.
  • the ion beam can be extracted in half a circle, but there is no problem even if the ion beam is extracted after a plurality of rounds. As a result, it is possible to take out by adjusting the local magnetic field intensity and the incident trajectory.
  • the accelerator 20 includes the ion source 4, the ion source 4, and the ion source 4.
  • the magnetic field generator 2 and an angle adjuster 31 that changes the trajectory of the ion beam in the incident trajectory adjuster 6 are provided.
  • the accelerator 20 is configured to change the trajectory of the ion beam at the subsequent timing including the time of extraction from the ion source 4 by the angle adjuster 31 according to the extraction energy of the ion beam.
  • the ion source 4 can be appropriately adjusted so that the ion beam has a predetermined energy, and the ion beam can be taken out at a higher speed and without using a large-scale apparatus. Yes. Moreover, since the ion beam is extracted by the local magnetic field generator 2, the ion beam having a predetermined beam energy can be easily extracted even if the intensity of the local magnetic field 42 generated by the local magnetic field generator 2 is reduced.
  • the magnetic pole 1 is formed so as to generate the trajectory aggregation region 18 in the orbit, the circulating ion beam trajectory is aggregated at the extraction position 44, so that there are fewer local areas than non-aggregated orbits.
  • the magnetic field 42 can be deflected to the beam extraction position 44, which makes extraction very easy.
  • a predetermined magnetic field can be obtained by using a magnetic field generated by the local magnetic field generator 2.
  • the ion beam of energy can be deflected stably and easily toward the beam extraction position 44 on the orbital aggregation region 18 side.
  • the ion beam trajectory can be changed with a simple configuration by using the angle adjuster 31 that rotates the ion source 4 as a changing unit that changes the trajectory of the ion beam in the incident trajectory adjusting unit 6.
  • An ion beam having a predetermined beam energy can be obtained more easily.
  • the structure of the angle adjuster 31 can be simplified.
  • the trajectory is changed when ions are extracted from the ion source 4, the trajectory can be changed stably and reliably.
  • FIG. 9 is a schematic cross-sectional view of the configuration of the circular accelerator according to the present embodiment in which the trajectory changing electrode is arranged in the incident trajectory adjusting unit 6.
  • the trajectory changing electrode 32a disposed opposite to the ion beam immediately after being extracted from the ion source 4 is used as a changing unit that changes the trajectory of the ion beam in the incident trajectory adjusting unit 6.
  • 32b is disposed in a portion corresponding to the magnetic pole recess 1c so as to face the portion parallel to the vertical direction.
  • the trajectory change electrodes 32a and 32b change the trajectory by deflecting the ion beam that has been drawn from the ion source 4 and has just passed through the high-frequency electrode 3 once.
  • the trajectory change electrode 32a when a positive potential is applied to the trajectory change electrode 32a and a negative potential that is the reverse potential of the trajectory change electrode 32a is applied to the trajectory change electrode 32b, the ion beam having a positive charge is changed from the pre-change trajectory 7a shown in FIG.
  • the track 7b can be changed.
  • the trajectory can be changed in the opposite direction by changing the polarity.
  • the orbital change electrodes 32a and 32b may be installed at any number of weeks. However, energy increases and the voltage required for deflection increases with each lap, so that one round after extraction from the ion source 4 occurs. Positions within are the most appropriate.
  • the trajectory changing electrodes 32a and 32b for generating the electric field for changing the trajectory of the ion beam extracted from the ion source 4 are used. It is possible to change the trajectory at high speed by turning ON / OFF or changing the strength, and the time required for the change can be shortened.
  • the incident trajectory adjustment unit 6 can deflect the trajectory before the voltage required for deflection increases because it is within the range of one round after the extraction from the ion source 4 and changes the trajectory more easily. be able to.
  • Example 3 An accelerator and a particle beam irradiation apparatus according to Embodiment 3 of the present invention will be described with reference to FIG.
  • FIG. 10 the schematic of the cross section of the structure of the circular accelerator of a present Example which has arrange
  • the ion beam trajectory is changed in order to change the ion beam trajectory at subsequent timings including the time of extraction from the ion source 4 in accordance with the ion beam extraction energy.
  • An annular orbit changing electromagnet arranged opposite to the ion beam immediately after being extracted from the ion source 4 instead of the angle adjuster 31 of the first embodiment as a changing unit for changing the orbit within the incident orbit adjusting unit 6.
  • 33 is arranged in a portion corresponding to the magnetic pole recess 1c.
  • the trajectory changing electromagnets 33 are arranged facing each other with a space in the direction of the magnetic pole gap 43.
  • the trajectory changing electromagnet 33 changes the trajectory by deflecting the ion beam that is drawn from the ion source 4 and immediately passes through the high-frequency electrode 3 once.
  • the magnetic field generated by the trajectory changing electromagnet 33 is generated in a direction perpendicular to the paper surface of FIG.
  • the polarity of the generated magnetic field is changed according to the energy of the extracted ion beam.
  • the orbit change electromagnet 33 may be installed at any number of weeks, but the energy increases with each lap and the magnetic field required for deflection increases. A position within one lap is most appropriate.
  • Example 3 of the present invention substantially the same effect as the accelerator and particle beam irradiation apparatus of Example 1 described above can be obtained.
  • the magnetic field is turned on by using a trajectory changing electromagnet 33 that generates a magnetic field for changing the trajectory of the ion beam drawn from the ion source 4.
  • the trajectory can be changed at high speed by / OFF or changing the intensity, and the time required for the change can be shortened.
  • the incident trajectory adjustment unit 6 is within one round after extraction from the ion source 4, the trajectory can be deflected before the magnetic field required for deflection increases, and the trajectory can be changed more easily. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Particle Accelerators (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

An accelerator 20 is provided with: an ion source 4; a high-frequency electrode 3 that accelerates an ion beam drawn out from the ion source 4; a magnetic pole 1 that generates an isochronous magnetic field and that is formed so as to generate the circulating orbit of the ion beam; a local magnetic field generation unit 2 that is arranged in the circulating orbit; and an angle adjuster 31 that changes the orbit of the ion beam within an incident orbit adjustment unit 6. With this, it is possible to provide: an accelerator that can easily extract a beam having an arbitrarily defined energy within a wide range without using a large moving device; and a particle beam irradiation apparatus provided with the accelerator.

Description

加速器および粒子線照射装置Accelerator and particle beam irradiation device
 本発明は、陽子や炭素等のイオンを加速する加速器とそれを備えた粒子線照射装置に関する。 The present invention relates to an accelerator for accelerating ions such as protons and carbon and a particle beam irradiation apparatus including the accelerator.
 円形加速器において任意エネルギーのイオンビームを得る装置が特許文献1に記載されている。この特許文献1には、「超伝導体からなるビームガイドを、ディフレクターの後ろに設置し、このビームガイドをディフレクターとともに、粒子の軌道回転半径方向に沿って移動自在とした」と記載されている。 An apparatus for obtaining an ion beam of arbitrary energy in a circular accelerator is described in Patent Document 1. This Patent Document 1 describes that “a beam guide made of a superconductor is installed behind a deflector, and the beam guide can be moved along with the deflector along the direction of radial rotation of particles”. .
特開平1-289100号公報Japanese Patent Laid-Open No. 1-289100
 粒子線照射装置は、大きく分けて、加速器としてシンクロトロンを有する粒子線照射装置と、加速器としてサイクロトロンを有する粒子線照射装置が知られている。 The particle beam irradiation apparatus is roughly classified into a particle beam irradiation apparatus having a synchrotron as an accelerator and a particle beam irradiation apparatus having a cyclotron as an accelerator.
 このうち、サイクロトロンを有する粒子線照射装置は、例えば、イオン源、サイクロトロン、ビーム輸送系、回転ガントリー及び照射装置を備える。サイクロトロンは、横断面が円形の一対の対向する鉄心で構成される真空容器、高周波加速装置及び取出し用電磁石を有する。ビーム輸送系は、取出し用電磁石が配置された、サイクロトロンの出射口に連絡されている。 Among these, the particle beam irradiation apparatus having a cyclotron includes, for example, an ion source, a cyclotron, a beam transport system, a rotating gantry, and an irradiation apparatus. The cyclotron has a vacuum vessel composed of a pair of opposed iron cores having a circular cross section, a high-frequency accelerator, and an extraction electromagnet. The beam transport system is connected to the exit of the cyclotron, where an extraction electromagnet is arranged.
 サイクロトロンを有する粒子線照射装置では、イオン源から出射されたイオン(例えば、陽イオンまたは炭素等の陽子より質量の重い重粒子イオン)が、サイクロトロンの鉄心の横断面の中心に入射され、高周波加速装置で加速される。加速されたイオンビームは、鉄心の中心からリターンヨークの内側の側面に向かって螺旋状に周回し、鉄心の周辺部に設けられた取出し用電磁石によりビーム輸送系に出射される。この出射されたイオンビームは、ビーム輸送系を通って照射装置から治療台上の患者のがんの患部に照射される。 In a particle beam irradiation apparatus having a cyclotron, ions emitted from an ion source (for example, heavy particle ions having a mass heavier than protons such as positive ions or carbon) are incident on the center of the cross section of the iron core of the cyclotron and are accelerated at high frequency. Accelerated with equipment. The accelerated ion beam spirally circulates from the center of the iron core toward the inner side surface of the return yoke, and is emitted to the beam transport system by an extraction electromagnet provided at the periphery of the iron core. The emitted ion beam passes through the beam transport system and is irradiated from the irradiation device to the cancerous part of the patient on the treatment table.
 このような一般的なサイクロトロンでは、加速された粒子を取り出すために取り出し用のディフレクターを加速電極の外周近傍に設置している。そしてこのディフレクターによって最大エネルギーまで加速された粒子を取り出し、円形加速器外に設置されたエネルギー吸収体(ディグレーダー)を用いて任意のエネルギーの粒子を得ている。そのため、任意のエネルギーのビームを取り出すために余分な構成を設ける必要があるとともに、高精度なビームエネルギー制御が難しいことから、所定エネルギーのビームの取り出しが難しいとの問題があった。 In such a general cyclotron, a take-out deflector is provided in the vicinity of the outer periphery of the acceleration electrode in order to take out accelerated particles. And the particle | grains accelerated to this maximum energy by this deflector are taken out, and the particle | grains of arbitrary energy are obtained using the energy absorber (degrader) installed outside the circular accelerator. For this reason, it is necessary to provide an extra configuration for extracting a beam of arbitrary energy, and it is difficult to control the beam energy with high accuracy.
 また、上述した特許文献1には、このディグレーダーを用いることなく任意エネルギーのイオンビームを得る円形加速器が記載されている。しかし、この特許文献1に記載されたビームの取り出しのための機構では、超電導体からなるビームガイドと、機械的に移動するディフレクターと、ビーム偏向器とが必要である。このため、真空中での大がかりな移動装置が必要になるため、装置が非常に大きくなり、また複雑になるという問題があった。 Further, Patent Document 1 described above describes a circular accelerator that obtains an ion beam of arbitrary energy without using this degrader. However, the beam extraction mechanism described in Patent Document 1 requires a beam guide made of a superconductor, a mechanically moving deflector, and a beam deflector. For this reason, since a large-scale moving device in a vacuum is required, there is a problem that the device becomes very large and complicated.
 本発明の目的は、大がかりな移動装置を用いることなく、容易にかつ広い範囲に渡った任意のエネルギーのビームを取り出すことが可能な加速器とそれを備えた粒子線照射装置を提供することにある。 An object of the present invention is to provide an accelerator capable of easily taking out a beam of an arbitrary energy over a wide range without using a large-scale moving device, and a particle beam irradiation apparatus including the accelerator. .
 本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、イオン源と、前記イオン源から引き出されたイオンビームを加速する加速部と、前記イオンビームの周回軌道を発生させるように形成された、等時性磁場を発生させる磁極と、前記周回軌道の中に配置された局所磁場発生部と、前記イオンビームの軌道を入射軌道調整部内で変更する変更部と、を備えたことを特徴とする。 The present invention includes a plurality of means for solving the above-described problems. For example, an ion source, an accelerating unit for accelerating an ion beam extracted from the ion source, and an orbit of the ion beam are provided. A magnetic pole for generating an isochronous magnetic field, a local magnetic field generation unit disposed in the orbit, and a change unit for changing the trajectory of the ion beam in the incident trajectory adjustment unit. , Provided.
 本発明によれば、複雑かつ大がかりな装置を用いることなく、容易にかつ広い範囲に渡って任意のエネルギーのビームを取り出すことができる。 According to the present invention, it is possible to easily extract a beam of any energy over a wide range without using a complicated and large-scale apparatus.
本発明の粒子線照射装置の全体構成を示す図である。It is a figure which shows the whole structure of the particle beam irradiation apparatus of this invention. 本発明の実施例1に係る円形加速器の概略を示した側面図である。It is the side view which showed the outline of the circular accelerator which concerns on Example 1 of this invention. 図2に示す円形加速器の平面の概略を示した平面図である。It is the top view which showed the outline of the plane of the circular accelerator shown in FIG. 図3に示す円形加速器の磁極の概略を示した斜視図である。It is the perspective view which showed the outline of the magnetic pole of the circular accelerator shown in FIG. 図3に示す角度調整器の概略を示す横断面図である。It is a cross-sectional view which shows the outline of the angle adjuster shown in FIG. 図3に示すイオン源を回転させる角度調整器を用いる場合のイオンビームの軌道の例を示す平面図である。It is a top view which shows the example of the track | orbit of an ion beam in the case of using the angle adjuster which rotates the ion source shown in FIG. 図6に示すイオン源を回転させた場合の回転角度と取り出しエネルギーの関係を示す図である。It is a figure which shows the relationship between the rotation angle at the time of rotating the ion source shown in FIG. 6, and extraction energy. 図3に示す局所磁場発生部の概略を示した横断面図である。It is the cross-sectional view which showed the outline of the local magnetic field generation part shown in FIG. 本発明の実施例2にかかる円形加速器における軌道変更電極の例を示す平面図である。It is a top view which shows the example of the orbit change electrode in the circular accelerator concerning Example 2 of this invention. 本発明の実施例3にかかる円形加速器における軌道変更電磁石の例を示す平面図である。It is a top view which shows the example of the orbit change electromagnet in the circular accelerator concerning Example 3 of this invention.
 以下に本発明の加速器および粒子線照射装置の好適な形態である実施例1-3を、図面を用いて説明する。最初に、本発明の加速器として最も適した構成の加速器のコンセプトについて説明する。 Embodiment 1-3, which is a preferred embodiment of the accelerator and particle beam irradiation apparatus of the present invention, will be described below with reference to the drawings. First, the concept of an accelerator that is most suitable for the accelerator of the present invention will be described.
 本発明者らは、サイクロトロンのようにイオンビームを連続的に取り出すことができ、かつシンクロトロンのようにエネルギーが異なるイオンビームを取り出すことができる加速器を実現するために種々の検討を行った。 The inventors of the present invention have made various studies in order to realize an accelerator that can continuously extract an ion beam like a cyclotron and can extract an ion beam with different energy like a synchrotron.
 本発明者らがまず着目したのは、ビーム取り出しが容易に行えるように、サイクロトロンの真空容器内を周回するイオンビームのビーム周回軌道の相互の間隔(真空容器の半径方向におけるビーム周回軌道相互の間隔)を広くすることであった。このビーム周回軌道の間隔を広くする、すなわち、ビーム周回軌道相互間の間隔(ターンセパレーション)を大きくすることは、真空容器の直径が大きくなり、サイクロトロンが大型化することにつながる。また、一般的なサイクロトロンでは、真空容器内で同心円状のビーム周回軌道を描いており、高エネルギーでのターンセパレーションの確保が困難なため、エネルギーが異なる各イオンビームを効率良く出射することが困難であった。 The inventors of the present invention first focused on the mutual spacing of beam orbits of ion beams that circulate in the vacuum vessel of the cyclotron (in order to facilitate beam extraction) Widening the interval). Increasing the interval between the beam orbits, that is, increasing the interval between the beam orbits (turn separation) leads to an increase in the diameter of the vacuum vessel and an increase in the size of the cyclotron. In general cyclotrons, concentric beam orbits are drawn in a vacuum vessel, and it is difficult to ensure turn separation at high energy, making it difficult to efficiently emit ion beams with different energies. Met.
 ここで、サイクロトロンでは、螺旋状に半径が徐々に拡大するビーム通過領域(平面)が存在し、イオン源はこの領域の中心近くに設置してイオンを周回軌道に入射するようにしている。本発明者らは、サイクロトロンにおいてビーム通過領域の中心に存在するビーム入射点を、ビーム通過領域外周に形成されるビーム取り出し口側に移動させること、すなわち、ビーム入射点をビーム通過領域の中心ではなくビーム取り出し口側にずれた位置から周回軌道中に移動させることを考えた。その結果、真空容器内へ入射されるイオンの入射位置とビーム取り出し口の間で真空容器内に形成されるビーム周回軌道相互の間隔が密になり(軌道集約領域が形成される)、ビーム取り出し口と180度反対側の位置では、ビーム入射点とビーム取り出し口の間隔とは逆に真空容器内に形成されるビーム周回軌道相互後の間隔を広くできることが分かった。 Here, in the cyclotron, there is a beam passage region (plane) in which the radius gradually increases in a spiral shape, and the ion source is installed near the center of this region so that ions are incident on the circular orbit. The present inventors move the beam incident point existing at the center of the beam passing region in the cyclotron toward the beam extraction port formed on the outer periphery of the beam passing region, that is, the beam incident point at the center of the beam passing region. Instead, we considered moving from a position shifted toward the beam outlet to the orbit. As a result, the distance between the beam orbits formed in the vacuum vessel becomes closer between the incident position of the ions entering the vacuum vessel and the beam extraction port (orbital integration region is formed), and beam extraction is performed. It has been found that at the position opposite to the mouth by 180 degrees, the distance between the beam orbits formed in the vacuum vessel can be widened contrary to the distance between the beam incident point and the beam extraction opening.
 本発明者らは、このようなビーム周回軌道の考え方を適用することによって、エネルギーが異なるイオンビームを効率良く取り出すことができる新たな加速器を創成した。 The present inventors have created a new accelerator capable of efficiently extracting ion beams having different energies by applying such a concept of beam orbit.
 以上に述べた本発明者らが新たに創成した加速器に好適に適用することができる本発明の実施例を、図面を用いて以下に説明する。 Embodiments of the present invention that can be suitably applied to the accelerator newly created by the present inventors as described above will be described below with reference to the drawings.
 <実施例1> 
 本発明の加速器および粒子線照射装置の実施例1を、図1乃至図8を用いて説明する。最初に、粒子線照射装置の全体構成および関連する装置の構成について図1を用いて説明する。図1は、本発明が関係する粒子線照射装置の全体構成を示す図である。
<Example 1>
A first embodiment of an accelerator and a particle beam irradiation apparatus according to the present invention will be described with reference to FIGS. Initially, the whole structure of a particle beam irradiation apparatus and the structure of a related apparatus are demonstrated using FIG. FIG. 1 is a diagram showing an overall configuration of a particle beam irradiation apparatus to which the present invention relates.
 図1において、粒子線照射装置100は、加速器20、ビーム輸送系60、照射装置70、治療台40、および制御装置50を備える。 1, the particle beam irradiation apparatus 100 includes an accelerator 20, a beam transport system 60, an irradiation apparatus 70, a treatment table 40, and a control apparatus 50.
 粒子線照射装置100では、イオン源4で発生させたイオンを加速器20で加速してイオンビームとする。加速されたイオンビームは加速器20から出射され、ビーム輸送系60により照射装置70まで輸送される。輸送されたイオンビームは照射装置70で患部形状に合致するように整形され、治療台40に横になった患者45の標的に対して所定量照射される。 In the particle beam irradiation apparatus 100, ions generated by the ion source 4 are accelerated by the accelerator 20 to be an ion beam. The accelerated ion beam is emitted from the accelerator 20 and transported to the irradiation device 70 by the beam transport system 60. The transported ion beam is shaped by the irradiation device 70 so as to match the shape of the affected part, and is irradiated to the target of the patient 45 lying on the treatment table 40 by a predetermined amount.
 これら加速器20をはじめとした粒子線照射装置100内の各装置,機器の動作は、制御装置50によって制御される。 The operation of each device and equipment in the particle beam irradiation apparatus 100 including the accelerator 20 is controlled by the control device 50.
 次に加速器20の構造について図2乃至図8を用いて説明する。図2は本発明を適用した円形加速器の概略側面図で、図3は図2の概略平面図である。図4は磁極の概略を示した斜視図である。図5は角度調整器の概略を示す横断面図である。図6はイオン源を回転させる角度調整器を用いる場合のイオンビームの軌道の例を示す平面図である。図7はイオン源を回転させた場合の回転角度と取り出しエネルギーの関係を示す図である。図8は局所磁場発生部の概略を示した横断面図である。 Next, the structure of the accelerator 20 will be described with reference to FIGS. 2 is a schematic side view of a circular accelerator to which the present invention is applied, and FIG. 3 is a schematic plan view of FIG. FIG. 4 is a perspective view schematically showing the magnetic pole. FIG. 5 is a cross-sectional view schematically showing the angle adjuster. FIG. 6 is a plan view showing an example of the trajectory of the ion beam when an angle adjuster for rotating the ion source is used. FIG. 7 is a diagram showing the relationship between the rotation angle and extraction energy when the ion source is rotated. FIG. 8 is a cross-sectional view showing an outline of the local magnetic field generator.
 図2および図3に示すように、加速器20は、イオン源4と、高周波電極(加速部)3と、磁極1と、局所磁場発生部2と、真空容器10と、円環状コイル5と、取り出しセプタム11とを備えている。 As shown in FIGS. 2 and 3, the accelerator 20 includes an ion source 4, a high-frequency electrode (acceleration unit) 3, a magnetic pole 1, a local magnetic field generation unit 2, a vacuum vessel 10, an annular coil 5, An extraction septum 11 is provided.
 真空容器10の内部には、内部が中空となる高周波電極3が磁極凹部1cの部分に左右対称に配置されており、高周波電源15により外部から高周波を加えるようになっている。この高周波により発生した電場を用いて高周波電極3はイオン源4から引き出されたイオンビームを加速する。 Inside the vacuum vessel 10, a high-frequency electrode 3 having a hollow inside is arranged symmetrically in the magnetic pole recess 1c, and a high-frequency power source 15 applies a high frequency from the outside. Using the electric field generated by this high frequency, the high frequency electrode 3 accelerates the ion beam extracted from the ion source 4.
 真空容器10は磁極1によって挟まれるように配置されており、全体としてひとつの真空容器を形成するとともに、磁気回路を構成することで磁極ギャップ43に主磁場41を発生させる。真空容器10は非磁性体である。 The vacuum vessel 10 is disposed so as to be sandwiched between the magnetic poles 1 and forms a single vacuum vessel as a whole, and forms a main magnetic field 41 in the magnetic pole gap 43 by forming a magnetic circuit. The vacuum container 10 is a nonmagnetic material.
 円環状コイル5は真空容器10の大気側に設置されており、磁極1によって磁極1間の磁極ギャップ43に主磁場41(B)を発生させるためのコイルである。円環状コイル5は常電導材料によるコイルでも超電導材料によるコイルでも構わない。 The annular coil 5 is installed on the atmosphere side of the vacuum vessel 10 and is a coil for generating a main magnetic field 41 (B 0 ) in the magnetic pole gap 43 between the magnetic poles 1 by the magnetic pole 1. The annular coil 5 may be a coil made of a normal conducting material or a coil made of a superconducting material.
 磁極1は、図4に示すように、磁極凸部1a,1bおよび磁極凹部1cを有しており、上面から見たときに左右対称、上下非対称の構造となっている。イオンビームの周回周波数は例えば19.82メガヘルツ(MHz)などで、磁極1はどのエネルギーでも同一時間で1周する等時性磁場を発生させるように設定されている。例えば、ビームの軌道に沿ってビームに作用する磁場は、磁極凸部1a,1bにより凹部では低磁場、凸部では高磁場となるように形成されている。磁極凸部1a,1bの形状および高さは、磁極ギャップ43方向と周回方向のイオンビームの発散を抑えるような向き、強度に設定される。磁極1は磁性体で、例えば鉄などである。磁極1の磁極ギャップ43に対向する面は対称形状である。磁極凸部1a,1b、磁極凹部1cで形成される磁極の中心は磁極1中心からビームの取り出し位置44に偏った位置にあり、その近傍にイオン源4が配置されている。このような偏った配置構造により、磁極1は周回軌道中に軌道集約領域18を発生させる。 As shown in FIG. 4, the magnetic pole 1 has magnetic pole convex portions 1a and 1b and a magnetic pole concave portion 1c, and has a bilaterally symmetric and vertically asymmetrical structure when viewed from above. The circulating frequency of the ion beam is, for example, 19.82 megahertz (MHz), and the magnetic pole 1 is set to generate an isochronous magnetic field that makes one round at the same time regardless of the energy. For example, the magnetic field acting on the beam along the beam trajectory is formed by the magnetic pole convex portions 1a and 1b so as to be a low magnetic field in the concave portion and a high magnetic field in the convex portion. The shapes and heights of the magnetic pole protrusions 1a and 1b are set to directions and strengths that suppress the divergence of the ion beam in the magnetic pole gap 43 direction and the circulation direction. The magnetic pole 1 is a magnetic material, such as iron. The surface of the magnetic pole 1 that faces the magnetic pole gap 43 is symmetrical. The center of the magnetic pole formed by the magnetic pole convex portions 1a and 1b and the magnetic pole concave portion 1c is located at a position biased from the center of the magnetic pole 1 to the beam extraction position 44, and the ion source 4 is disposed in the vicinity thereof. Due to such a biased arrangement structure, the magnetic pole 1 generates a trajectory aggregation region 18 in the orbit.
 なお、本実施例では4個の磁極凸部1a,1bを使用しているが、2極以上であれば制限はない。また、図示していないが磁極凸部1a,1bには磁場の微調整用のトリムコイルを設け、等時性とベータトロン振動の安定を確保するようにトリムコイル電流を調整することも可能である。 In this embodiment, four magnetic pole convex portions 1a and 1b are used, but there is no limitation as long as it is two or more poles. Although not shown, the magnetic pole projections 1a and 1b can be provided with trim coils for fine adjustment of the magnetic field, and the trim coil current can be adjusted so as to ensure isochronism and stability of betatron oscillation. is there.
 なお、本発明における「等時性磁場」とは、上述のように、加速されるイオンビームのエネルギーが増加してこのイオンビームが周回するビーム周回軌道の半径が大きくなってもイオンビームが一周する時間が変わらない磁場のことを意味する。 As described above, the “isochronous magnetic field” in the present invention means that the ion beam makes one round even if the energy of the accelerated ion beam increases and the radius of the beam orbit around the ion beam increases. It means a magnetic field that does not change time.
 また、「周回軌道」とは、イオン源4から出射されたイオンが取り出し位置44から取り出されるまでの複数の環状の軌道のことを意味する。 Also, “circular orbit” means a plurality of annular orbits until ions emitted from the ion source 4 are extracted from the extraction position 44.
 イオン源4は、図2に示すように、磁極1内に配置されており、高周波電源15によって高周波を高周波電極3に与えることで接地電極21と高周波電極3との間に発生する電場によりイオン源4内で生成したイオンが加速器30内に引き出される。 As shown in FIG. 2, the ion source 4 is disposed in the magnetic pole 1, and is ionized by an electric field generated between the ground electrode 21 and the high frequency electrode 3 by applying a high frequency to the high frequency electrode 3 by the high frequency power supply 15. Ions generated in the source 4 are extracted into the accelerator 30.
 イオン源4には、図5に示すように、イオンビームの取り出しエネルギーに応じてイオン源4からの引き出し時を含めたそれ以後のタイミングでイオンビームの軌道を変更するために、イオンビームの軌道を入射軌道調整部6内で変更する変更部として、角度調整器31が取り付けられている。 As shown in FIG. 5, the ion source 4 has an ion beam trajectory in order to change the ion beam trajectory at a later timing including the time of extraction from the ion source 4 in accordance with the ion beam extraction energy. The angle adjuster 31 is attached as a changing unit that changes the angle within the incident trajectory adjusting unit 6.
 角度調整器31はモータ31aと取り付け軸31bとからなり、モータ31aによって取り付け軸31bに取り付けられたイオン源4を所定の角度だけ回転させることでイオン源4から引き出されるイオンの引き出し角度を調整する。イオン源4の取り付け軸31bは真空封止構造を有しており、真空容器10内の真空を保つように構成されている。 The angle adjuster 31 includes a motor 31a and an attachment shaft 31b, and adjusts the extraction angle of ions extracted from the ion source 4 by rotating the ion source 4 attached to the attachment shaft 31b by a predetermined angle by the motor 31a. . The attachment shaft 31b of the ion source 4 has a vacuum sealing structure, and is configured to maintain a vacuum in the vacuum vessel 10.
 イオン源4の周囲には、イオンビームの取り出しエネルギーに応じてイオン源4からの引き出し時を含めたそれ以後のタイミングでイオンビームの軌道を変更するための領域として出射直後の軌道を制御し、取り出しが容易になるように軌道を変更する入射軌道調整部6が定義されている。この入射軌道調整部6は、イオン源4から引き出し後1周以内の範囲のことを意味する。 Around the ion source 4, the trajectory immediately after extraction is controlled as a region for changing the trajectory of the ion beam at a later timing including the time of extraction from the ion source 4 according to the extraction energy of the ion beam, An incident trajectory adjustment unit 6 is defined for changing the trajectory so that it can be easily taken out. The incident trajectory adjusting unit 6 means a range within one round after being extracted from the ion source 4.
 図6に入射軌道調整部6にイオン源4の回転によりイオンビームの軌道を変更する様子の一例を示す。 FIG. 6 shows an example of a state in which the trajectory of the ion beam is changed by the rotation of the ion source 4 in the incident trajectory adjustment unit 6.
 上述のように、接地電極21と高周波電極3の間に電場を発生させる。発生した電場によってイオン源4からイオンビームが引き出され、高周波電極3によって発生した電場により加速される。その際に、本実施例では、角度調整器31によってイオン源4を所定の角度に回転・固定することで、高周波電極3とイオン源4の引き出し面との角度によって引き出されるイオンビームの角度を任意の値に変更することができる。例えばイオンビームの引き出し角度が0度の場合は図6に示す変更前軌道7aとなり、イオン源4を回転させることで変更後軌道7bとなる。 As described above, an electric field is generated between the ground electrode 21 and the high-frequency electrode 3. An ion beam is extracted from the ion source 4 by the generated electric field and accelerated by the electric field generated by the high-frequency electrode 3. In this case, in this embodiment, the angle of the ion beam is extracted by the angle between the high-frequency electrode 3 and the extraction surface of the ion source 4 by rotating and fixing the ion source 4 to a predetermined angle by the angle adjuster 31. It can be changed to any value. For example, when the extraction angle of the ion beam is 0 degree, the track 7a before change shown in FIG. 6 is obtained, and the track 7b after change is obtained by rotating the ion source 4.
 高周波電極3による加速条件を一定とし、局所磁場発生部2と併用した場合のビームエネルギーの取り出しエネルギーとイオン源4の回転角について解析した結果の一例を図7に示す。 FIG. 7 shows an example of the result of analyzing the extraction energy of the beam energy and the rotation angle of the ion source 4 when the acceleration condition by the high-frequency electrode 3 is constant and the local magnetic field generator 2 is used together.
 図7に示すように、例えば引き出し角度を0.17ラジアンとするようイオン源4を回転させることで、70メガ・エレクトロン・ボルト(MeV)のビームが取り出すことができる。また、引き出し角度を0.215ラジアンとするようイオン源4を回転させることで85MeVのビームを、引き出し角度を0.24ラジアンとするようイオン源4を回転させることで95MeVのビームを、それぞれ取り出すことができる。局所磁場発生部2は、図2および図8に示すように、ビーム周回軌道7が集約した軌道集約領域18が形成された側の180度反対側の磁極凹部1cの周回軌道の中に配置されている。この局所磁場発生部2は、磁極ギャップ43方向にイオンビームが通過する空間を開けて対向して配置されており、周回軌道上の一部に、イオンビームを取り出すための取り出し磁場(B)を発生させる。局所磁場発生部2は、例えば環状コイルや独立した2線以上で挟んで形成することも可能で、取り出すエネルギーの数に合わせて位置と個数が決定される。 As shown in FIG. 7, for example, by rotating the ion source 4 so that the extraction angle is 0.17 radians, a beam of 70 mega electron volts (MeV) can be extracted. Further, by rotating the ion source 4 so that the extraction angle is 0.215 radians, a beam of 85 MeV is extracted, and by rotating the ion source 4 so that the extraction angle is 0.24 radians, a beam of 95 MeV is extracted. be able to. As shown in FIGS. 2 and 8, the local magnetic field generator 2 is arranged in the orbit of the magnetic pole recess 1 c on the opposite side of 180 ° on the side where the orbit aggregation region 18 where the beam orbits 7 are aggregated is formed. ing. The local magnetic field generator 2 is disposed opposite to the space in which the ion beam passes in the direction of the magnetic pole gap 43, and a magnetic field (B m ) for extracting the ion beam is partially disposed on the orbit. Is generated. The local magnetic field generating unit 2 can be formed, for example, by being sandwiched by an annular coil or two or more independent wires, and the position and number are determined in accordance with the number of extracted energy.
 局所磁場発生部2により発生された磁場により偏向されたイオンビームは取り出し位置44に輸送される。取り出し位置44に輸送されたイオンビームは、取り出しセプタム11によって磁極1外部へと取り出される。取り出しセプタム11は、磁場を使用しても電場を使用しても同様の動作をする。 The ion beam deflected by the magnetic field generated by the local magnetic field generator 2 is transported to the extraction position 44. The ion beam transported to the extraction position 44 is extracted outside the magnetic pole 1 by the extraction septum 11. The extraction septum 11 operates in the same manner regardless of whether a magnetic field or an electric field is used.
 上記により構成された加速器20は以下のように動作する。 Accelerator 20 configured as described above operates as follows.
 イオン源4から引き出され磁極凸部1a,1bの中心部より入射したイオンビームは、磁極凸部1a,1b、磁極凹部1cで形成された主磁場41により螺旋運動を行う。螺旋運動中に高周波電極3を通過するごとに高周波電極3で発生した電場によって加速され、エネルギーが増加し、回転半径を増加させて真空容器10内を周回運動する。この際、磁極凸部1a,1bの形状および高さは、磁極ギャップ43方向と周回方向のビームの発散を抑えるような向き、強度に設定されており、またイオンビームがどのエネルギーでも同一時間で1周するように設定されている。また、ビームの軌道に沿ってビームに作用する磁場は磁極凸部1a,1bにより凹部では低磁場、凸部では高磁場となっている。このようにビーム軌道に沿って磁場の強弱をつけ、さらに軌道に沿った磁場の平均値をビームの相対論的ガンマ・ファクター(γファクター)に比例させているため、周回ビームの周回時間をエネルギーに依らず一定としつつ、ビームの軌道面内と軌道面に対して垂直な方向で安定にベータトロン振動する。 The ion beam extracted from the ion source 4 and incident from the center of the magnetic pole convex portions 1a and 1b performs a spiral motion by the main magnetic field 41 formed by the magnetic pole convex portions 1a and 1b and the magnetic pole concave portion 1c. Each time it passes through the high-frequency electrode 3 during the spiral motion, it is accelerated by the electric field generated at the high-frequency electrode 3, and the energy is increased. At this time, the shape and height of the magnetic pole protrusions 1a and 1b are set to such an orientation and intensity as to suppress the divergence of the beam in the magnetic pole gap 43 direction and the circulation direction, and the ion beam can have any energy at the same time. It is set to make one round. The magnetic field acting on the beam along the beam trajectory is a low magnetic field in the concave portion and a high magnetic field in the convex portion due to the magnetic pole convex portions 1a and 1b. In this way, the strength of the magnetic field along the beam trajectory is added, and the average value of the magnetic field along the trajectory is proportional to the relativistic gamma factor (γ factor) of the beam. The betatron oscillation is stably performed in the direction perpendicular to the orbital plane and the orbital plane of the beam.
 周回するビームは、取り出しエネルギーに達したところの局所磁場発生部2によって発生した局所磁場42によって軌道が偏向される。これにより周回ビームは周回軌道から逸脱し、取り出し位置44へと移動する。局所磁場42の向きはエネルギーによって主磁場41と同方向・逆方向が決められる。イオン源4近傍の入射ビーム軌道をイオン源4を回転させることで変更してあるため、局所磁場42の強度を低減しても所定のビームエネルギーのイオンビームを容易に取り出すことができる。また、周回するイオンビーム軌道が取り出し位置44で集約していることから、集約していない軌道に比べ少ない局所磁場42で取り出し位置44に向けた偏向・取り出しが可能となる。 The orbiting beam is deflected by the local magnetic field 42 generated by the local magnetic field generator 2 that has reached the extraction energy. As a result, the orbiting beam deviates from the orbit and moves to the extraction position 44. The direction of the local magnetic field 42 is determined by the energy in the same direction as the main magnetic field 41 or in the opposite direction. Since the incident beam trajectory in the vicinity of the ion source 4 is changed by rotating the ion source 4, an ion beam having a predetermined beam energy can be easily extracted even if the intensity of the local magnetic field 42 is reduced. Further, since the orbiting ion beam trajectory is gathered at the take-out position 44, deflection and take-out toward the take-out position 44 can be performed with a smaller local magnetic field 42 than the trajectory that is not gathered.
 取り出し位置44へのビーム移動調整は局所磁場発生部2と入射軌道調整部6の両方を使用する場合について説明したが、それぞれを単独で使用しても構わない。例えば、局所磁場発生部2で発生できる磁場は、常用される線材を使用した場合、0.02テスラ(T)となり、不足する変位量を入射軌道調整部6で補うように使用する。 The beam movement adjustment to the extraction position 44 has been described for the case where both the local magnetic field generation unit 2 and the incident trajectory adjustment unit 6 are used, but each may be used alone. For example, the magnetic field that can be generated by the local magnetic field generation unit 2 is 0.02 Tesla (T) when a commonly used wire is used, and the incident trajectory adjustment unit 6 compensates for the insufficient displacement.
 このように磁場を用いてビームの取り出しを行うことにより、摺動部を用いる必要がなく、高速にエネルギーの切り替えができる。また、局所磁場発生部2を取り出すエネルギーに応じた数だけ中心から外周方向へ複数配置すれば局所磁場発生部2を移動することなくエネルギーの切り替えが可能となる。なお、イオンビームの取り出しは半周で取り出しも可能であるが、複数回周回したのちに取り出しても問題ない。これにより、より少ない局所磁場強度と入射軌道の調整で取り出しが可能となる。 Thus, by extracting a beam using a magnetic field, it is not necessary to use a sliding portion, and energy can be switched at high speed. Further, if a plurality of local magnetic field generating units 2 are arranged from the center to the outer peripheral direction in accordance with the energy to be extracted, the energy can be switched without moving the local magnetic field generating unit 2. The ion beam can be extracted in half a circle, but there is no problem even if the ion beam is extracted after a plurality of rounds. As a result, it is possible to take out by adjusting the local magnetic field intensity and the incident trajectory.
 次に、本実施例の効果について説明する。 Next, the effect of this embodiment will be described.
 上述した本発明の実施例1では、加速器20と、加速器20から出射されたイオンビームを照射する照射装置70と、を備えた粒子線照射装置100において、加速器20は、イオン源4と、イオン源4から引き出されたイオンビームを加速する高周波電極3と、イオンビームの周回軌道を発生させるように形成された、等時性磁場を発生させる磁極1と、周回軌道の中に配置された局所磁場発生部2と、イオンビームの軌道を入射軌道調整部6内で変更する角度調整器31と、を備えている。この加速器20は、角度調整器31により、イオンビームの取り出しエネルギーに応じてイオン源4からの引き出し時を含めたそれ以後のタイミングでイオンビームの軌道を変更するように構成されている。 In the first embodiment of the present invention described above, in the particle beam irradiation apparatus 100 including the accelerator 20 and the irradiation apparatus 70 that irradiates the ion beam emitted from the accelerator 20, the accelerator 20 includes the ion source 4, the ion source 4, and the ion source 4. A high-frequency electrode 3 for accelerating the ion beam extracted from the source 4, a magnetic pole 1 for generating an isochronous magnetic field formed so as to generate an orbit of the ion beam, and a local disposed in the orbit The magnetic field generator 2 and an angle adjuster 31 that changes the trajectory of the ion beam in the incident trajectory adjuster 6 are provided. The accelerator 20 is configured to change the trajectory of the ion beam at the subsequent timing including the time of extraction from the ion source 4 by the angle adjuster 31 according to the extraction energy of the ion beam.
 このため、イオンビームを所定のエネルギーになるようにイオン源4を適宜調整することができ、従来に比べてより高速で、且つ大掛かりな装置を用いることなくイオンビームを取り出すことが可能となっている。また、局所磁場発生部2によってイオンビームを取り出しているため、局所磁場発生部2によって発生させる局所磁場42の強度を低減しても所定のビームエネルギーのイオンビームを容易に取り出すことができる。 Therefore, the ion source 4 can be appropriately adjusted so that the ion beam has a predetermined energy, and the ion beam can be taken out at a higher speed and without using a large-scale apparatus. Yes. Moreover, since the ion beam is extracted by the local magnetic field generator 2, the ion beam having a predetermined beam energy can be easily extracted even if the intensity of the local magnetic field 42 generated by the local magnetic field generator 2 is reduced.
 また、磁極1は、周回軌道中に軌道集約領域18を発生させるように形成されたため、周回するイオンビーム軌道が取り出し位置44で集約されていることから、集約していない軌道に比べて少ない局所磁場42でビームの取り出し位置44まで偏向させることができ、取り出しが非常に容易となる。特に、軌道集約領域18ではビーム周回軌道相互の間隔は従来に比べて狭くなっているため、イオンビームのエネルギーが広範囲にわたっていても、局所磁場発生部2で発生させる磁場等を用いることにより所定のエネルギーのイオンビームを軌道集約領域18側のビームの取り出し位置44に向けて安定、かつ容易に偏向させることができる。 In addition, since the magnetic pole 1 is formed so as to generate the trajectory aggregation region 18 in the orbit, the circulating ion beam trajectory is aggregated at the extraction position 44, so that there are fewer local areas than non-aggregated orbits. The magnetic field 42 can be deflected to the beam extraction position 44, which makes extraction very easy. In particular, since the distance between the beam orbits is narrower than in the conventional case in the orbital aggregation region 18, even if the energy of the ion beam is wide, a predetermined magnetic field can be obtained by using a magnetic field generated by the local magnetic field generator 2. The ion beam of energy can be deflected stably and easily toward the beam extraction position 44 on the orbital aggregation region 18 side.
 更に、イオンビームの軌道を入射軌道調整部6内で変更する変更部として、イオン源4を回転させる角度調整器31を用いることで、簡易な構成により、イオンビームの軌道を変更することができ、所定のビームエネルギーのイオンビームをより容易に得ることができる。また、軌道中に挿入物がなく、周回を妨げることがないため、高精度なビーム制御が可能となる。 Furthermore, the ion beam trajectory can be changed with a simple configuration by using the angle adjuster 31 that rotates the ion source 4 as a changing unit that changes the trajectory of the ion beam in the incident trajectory adjusting unit 6. An ion beam having a predetermined beam energy can be obtained more easily. In addition, since there is no insert in the orbit and the circulation is not hindered, highly accurate beam control is possible.
 また、イオン源4は、磁極1内に収容されたことにより、角度調整器31の構造を簡易にすることができる。 Further, since the ion source 4 is accommodated in the magnetic pole 1, the structure of the angle adjuster 31 can be simplified.
 更に、イオン源4からのイオンの引き出し時にビームの軌道を変更しているため、軌道の変更を安定かつ確実に行うことができる。 Furthermore, since the beam trajectory is changed when ions are extracted from the ion source 4, the trajectory can be changed stably and reliably.
 <実施例2> 
 本発明の実施例2の加速器および粒子線照射装置を図9を用いて説明する。実施例1と同じ構成には同一の符号を示し、説明は省略する。以下の実施例においても同様とする。図9に、入射軌道調整部6に軌道変更電極を配置した本実施例の円形加速器の構成の断面の概略図を示す。
<Example 2>
An accelerator and a particle beam irradiation apparatus according to Embodiment 2 of the present invention will be described with reference to FIG. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. The same applies to the following embodiments. FIG. 9 is a schematic cross-sectional view of the configuration of the circular accelerator according to the present embodiment in which the trajectory changing electrode is arranged in the incident trajectory adjusting unit 6.
 図9に示すように、本実施例の加速器では、イオンビームの取り出しエネルギーに応じてイオン源4からの引き出し時を含めたそれ以後のタイミングでイオンビームの軌道を変更するために、実施例1の角度調整器31に替わって、イオンビームの軌道を入射軌道調整部6内で変更する変更部として、イオン源4から引き出された直後のイオンビームに対向して配置された軌道変更電極32a,32bが磁極凹部1cに相当する部分に、鉛直方向に平行に対向して配置されている。この軌道変更電極32a,32bによって、イオン源4から引き出され、高周波電極3を1回通過した直後のイオンビームを偏向することで軌道を変更する。軌道変更電極32aには例えば正電位、軌道変更電極32bには軌道変更電極32aの逆電位となる負電位を与えた場合、正電荷を持つイオンビームは図9に示す変更前軌道7aから変更後軌道7bへ変更することができる。また、極性を変えることで反対方向へ軌道を変更させることができる。 As shown in FIG. 9, in the accelerator of the present embodiment, in order to change the trajectory of the ion beam at subsequent timings including the time of extraction from the ion source 4 according to the extraction energy of the ion beam, Instead of the angle adjuster 31, the trajectory changing electrode 32a disposed opposite to the ion beam immediately after being extracted from the ion source 4 is used as a changing unit that changes the trajectory of the ion beam in the incident trajectory adjusting unit 6. 32b is disposed in a portion corresponding to the magnetic pole recess 1c so as to face the portion parallel to the vertical direction. The trajectory change electrodes 32a and 32b change the trajectory by deflecting the ion beam that has been drawn from the ion source 4 and has just passed through the high-frequency electrode 3 once. For example, when a positive potential is applied to the trajectory change electrode 32a and a negative potential that is the reverse potential of the trajectory change electrode 32a is applied to the trajectory change electrode 32b, the ion beam having a positive charge is changed from the pre-change trajectory 7a shown in FIG. The track 7b can be changed. In addition, the trajectory can be changed in the opposite direction by changing the polarity.
 なお、軌道変更電極32a,32bは高周波電極3内に設置しても問題ない。 It should be noted that there is no problem even if the trajectory changing electrodes 32 a and 32 b are installed in the high frequency electrode 3.
 また、軌道変更電極32a,32bの設置位置は何週目でも構わないが、周回を重ねるごとにエネルギーが増加し、偏向に必要な電圧が増加することから、イオン源4からの引き出し後1周以内の位置が最も適切である。 The orbital change electrodes 32a and 32b may be installed at any number of weeks. However, energy increases and the voltage required for deflection increases with each lap, so that one round after extraction from the ion source 4 occurs. Positions within are the most appropriate.
 その他の構成・動作は前述した実施例1の加速器および粒子線照射装置と略同じ構成・動作であり、詳細は省略する。 Other configurations / operations are substantially the same configurations / operations as the accelerator and particle beam irradiation apparatus of the first embodiment described above, and the details are omitted.
 本発明の実施例2の加速器および粒子線照射装置においても、前述した実施例1の加速器および粒子線照射装置とほぼ同様な効果が得られる。 In the accelerator and the particle beam irradiation apparatus according to the second embodiment of the present invention, substantially the same effects as those of the accelerator and the particle beam irradiation apparatus according to the first embodiment described above can be obtained.
 また、イオンビームの軌道を入射軌道調整部6内で変更する変更部として、イオン源4から引き出されたイオンビームの軌道変更用の電場を発生させる軌道変更電極32a,32bを用いることにより、電場のON/OFFや強度の変更により軌道の変更を高速で行うことができ、変更に要する時間を短くすることができる。 Further, as the changing unit for changing the trajectory of the ion beam in the incident trajectory adjusting unit 6, the trajectory changing electrodes 32a and 32b for generating the electric field for changing the trajectory of the ion beam extracted from the ion source 4 are used. It is possible to change the trajectory at high speed by turning ON / OFF or changing the strength, and the time required for the change can be shortened.
 更に、入射軌道調整部6は、イオン源4から引き出し後1周以内の範囲であることで、偏向に要する電圧が高くなる前に軌道を偏向することができ、より容易に軌道の変更を行うことができる。 Furthermore, the incident trajectory adjustment unit 6 can deflect the trajectory before the voltage required for deflection increases because it is within the range of one round after the extraction from the ion source 4 and changes the trajectory more easily. be able to.
 <実施例3> 
 本発明の実施例3の加速器および粒子線照射装置を図10を用いて説明する。図10に、入射軌道調整部6に軌道変更電磁石を配置した本実施例の円形加速器の構成の断面の概略図を示す。
<Example 3>
An accelerator and a particle beam irradiation apparatus according to Embodiment 3 of the present invention will be described with reference to FIG. In FIG. 10, the schematic of the cross section of the structure of the circular accelerator of a present Example which has arrange | positioned the trajectory change electromagnet to the incident trajectory adjustment part 6 is shown.
 図10に示すように、本実施例の加速器では、イオンビームの取り出しエネルギーに応じてイオン源4からの引き出し時を含めたそれ以後のタイミングでイオンビームの軌道を変更するために、イオンビームの軌道を入射軌道調整部6内で変更する変更部として、実施例1の角度調整器31に替わって、イオン源4から引き出された直後のイオンビームに対向して配置された環状の軌道変更電磁石33が磁極凹部1cに相当する部分に配置されている。この軌道変更電磁石33は、磁極ギャップ43方向に空間を開けて対向して配置されている。この軌道変更電磁石33によって、イオン源4から引き出され、高周波電極3を1回通過した直後のイオンビームを偏向することで軌道を変更する。軌道変更電磁石33により発生する磁場は図10の紙面上に垂直な方向に発生する。発生する磁場の極性は、取り出すイオンビームのエネルギーに合わせて変更する。 As shown in FIG. 10, in the accelerator according to the present embodiment, the ion beam trajectory is changed in order to change the ion beam trajectory at subsequent timings including the time of extraction from the ion source 4 in accordance with the ion beam extraction energy. An annular orbit changing electromagnet arranged opposite to the ion beam immediately after being extracted from the ion source 4 instead of the angle adjuster 31 of the first embodiment as a changing unit for changing the orbit within the incident orbit adjusting unit 6. 33 is arranged in a portion corresponding to the magnetic pole recess 1c. The trajectory changing electromagnets 33 are arranged facing each other with a space in the direction of the magnetic pole gap 43. The trajectory changing electromagnet 33 changes the trajectory by deflecting the ion beam that is drawn from the ion source 4 and immediately passes through the high-frequency electrode 3 once. The magnetic field generated by the trajectory changing electromagnet 33 is generated in a direction perpendicular to the paper surface of FIG. The polarity of the generated magnetic field is changed according to the energy of the extracted ion beam.
 なお、軌道変更電磁石33の設置位置は何週目に設置しても構わないが、周回を重ねるごとにエネルギーが増加し、偏向に必要な磁場が増加することから、イオン源4からの引き出し後1周以内の位置が最も適切である。 The orbit change electromagnet 33 may be installed at any number of weeks, but the energy increases with each lap and the magnetic field required for deflection increases. A position within one lap is most appropriate.
 その他の構成・動作は前述した実施例1の加速器および粒子線照射装置と略同じ構成・動作であり、詳細は省略する。 Other configurations / operations are substantially the same configurations / operations as the accelerator and particle beam irradiation apparatus of the first embodiment described above, and the details are omitted.
 本発明の実施例3の加速器および粒子線照射装置においても、前述した実施例1の加速器および粒子線照射装置とほぼ同様な効果が得られる。 Also in the accelerator and particle beam irradiation apparatus of Example 3 of the present invention, substantially the same effect as the accelerator and particle beam irradiation apparatus of Example 1 described above can be obtained.
 また、イオンビームの軌道を入射軌道調整部6内で変更する変更部として、イオン源4から引き出されたイオンビームの軌道変更用の磁場を発生させる軌道変更電磁石33を用いることにより、磁場のON/OFFや強度の変更により軌道の変更を高速で行うことができ、変更に要する時間を短くすることができる。 Further, as a changing unit for changing the trajectory of the ion beam in the incident trajectory adjusting unit 6, the magnetic field is turned on by using a trajectory changing electromagnet 33 that generates a magnetic field for changing the trajectory of the ion beam drawn from the ion source 4. The trajectory can be changed at high speed by / OFF or changing the intensity, and the time required for the change can be shortened.
 更に、入射軌道調整部6は、イオン源4から引き出し後1周以内の範囲であることで、偏向に要する磁場が増加する前に軌道を偏向することができ、より容易に軌道の変更を行うことができる。 Furthermore, since the incident trajectory adjustment unit 6 is within one round after extraction from the ion source 4, the trajectory can be deflected before the magnetic field required for deflection increases, and the trajectory can be changed more easily. be able to.
 <その他> 
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明をわかりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えことが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
<Others>
In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
1…磁極
1a,1b…磁極凸部
1c…磁極凹部
2…局所磁場発生部
3…高周波電極(加速部)
4…イオン源
5…円環状コイル
6…入射軌道調整部
7…ビーム周回軌道
7a…変更前軌道
7b…変更後軌道
10…真空容器
11…セプタム
15…高周波電源
20…加速器
21…接地電極
31…角度調整器(変更部)
31a…モータ
31b…取り付け軸
32a,32b…軌道変更電極(変更部)
33…軌道変更電磁石(変更部)
40…治療台
41…主磁場
42…局所磁場
43…磁極ギャップ
44…取り出し位置
45…患者
50…制御装置
60…ビーム輸送系
70…照射装置
100…粒子線照射装置
DESCRIPTION OF SYMBOLS 1 ... Magnetic pole 1a, 1b ... Magnetic pole convex part 1c ... Magnetic pole recessed part 2 ... Local magnetic field generation | occurrence | production part 3 ... High frequency electrode (acceleration part)
4 ... Ion source 5 ... Circular coil 6 ... Incident trajectory adjustment unit 7 ... Beam orbit 7a ... Pre-change trajectory 7b ... Post-change trajectory 10 ... Vacuum vessel 11 ... Septum 15 ... High frequency power source 20 ... Accelerator 21 ... Ground electrode 31 ... Angle adjuster (change part)
31a ... Motor 31b ... Mounting shafts 32a, 32b ... Orbit change electrode
33 ... Orbit change electromagnet (change part)
40 ... treatment table 41 ... main magnetic field 42 ... local magnetic field 43 ... magnetic pole gap 44 ... extraction position 45 ... patient 50 ... control device 60 ... beam transport system 70 ... irradiation device 100 ... particle beam irradiation device

Claims (9)

  1.  イオン源と、
     前記イオン源から引き出されたイオンビームを加速する加速部と、
     前記イオンビームの周回軌道を発生させるように形成された、等時性磁場を発生させる磁極と、
     前記周回軌道の中に配置された局所磁場発生部と、
     前記イオンビームの軌道を入射軌道調整部内で変更する変更部と、を備えた
     ことを特徴とする加速器。
    An ion source;
    An acceleration unit for accelerating an ion beam extracted from the ion source;
    A magnetic pole for generating an isochronous magnetic field formed to generate a circular orbit of the ion beam;
    A local magnetic field generator disposed in the orbit,
    An accelerator comprising: a changing unit that changes a trajectory of the ion beam in an incident trajectory adjusting unit.
  2.  請求項1に記載の加速器において、
     前記磁極は、前記周回軌道中に軌道集約領域を発生させるように形成された
     ことを特徴とする加速器。
    The accelerator according to claim 1,
    The accelerator is characterized in that the magnetic pole is formed so as to generate a trajectory aggregation region in the orbit.
  3.  請求項1に記載の加速器において、
     前記変更部は、前記イオン源を回転させる角度調整器である
     ことを特徴とする加速器。
    The accelerator according to claim 1,
    The accelerator is an angle adjuster that rotates the ion source.
  4.  請求項3に記載の加速器において、
     前記イオン源は、前記磁極内に収容された
     ことを特徴とする加速器。
    The accelerator according to claim 3,
    The accelerator is characterized in that the ion source is accommodated in the magnetic pole.
  5.  請求項1項記載の加速器において、
     前記変更部は、前記イオン源から引き出された前記イオンビームの軌道変更用の電場を発生させる電極である
     ことを特徴とする加速器。
    The accelerator according to claim 1,
    The accelerator is an electrode that generates an electric field for changing the trajectory of the ion beam extracted from the ion source.
  6.  請求項1項記載の加速器において、
     前記変更部は、前記イオン源から引き出された前記イオンビームの軌道変更用の磁場を発生させる電磁石である
     ことを特徴とする加速器。
    The accelerator according to claim 1,
    The accelerator is an electromagnet that generates a magnetic field for changing the trajectory of the ion beam extracted from the ion source.
  7.  請求項1項記載の加速器において、
     前記入射軌道調整部は、前記イオン源から引き出し後1周以内の範囲である
     ことを特徴とする加速器。
    The accelerator according to claim 1,
    The accelerator according to claim 1, wherein the incident trajectory adjusting unit is within a range of one round after being extracted from the ion source.
  8.  請求項1に記載された加速器と、
     前記加速器から出射された前記イオンビームを照射する照射装置と、を備えた
     ことを特徴とする粒子線照射装置。
    An accelerator according to claim 1;
    An irradiation apparatus that irradiates the ion beam emitted from the accelerator. A particle beam irradiation apparatus, comprising:
  9.  イオン源と、
     前記イオン源から出射されたイオンビームを加速する加速部と、
     前記イオンビームの周回軌道を発生させるように形成された、等時性磁場を発生させる磁極と、
     前記周回軌道の中に配置された局所磁場発生部と、を備え、
     前記イオンビームの取り出しエネルギーに応じて前記イオン源からの引き出し時を含めたそれ以後のタイミングで前記イオンビームの軌道を変更する
     ことを特徴とする加速器。
    An ion source;
    An acceleration unit for accelerating the ion beam emitted from the ion source;
    A magnetic pole for generating an isochronous magnetic field formed to generate a circular orbit of the ion beam;
    A local magnetic field generator disposed in the orbit,
    An accelerator that changes the trajectory of the ion beam at a later timing including the time of extraction from the ion source in accordance with the extraction energy of the ion beam.
PCT/JP2017/017936 2016-06-02 2017-05-11 Accelerator and particle beam irradiation apparatus WO2017208774A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-110552 2016-06-02
JP2016110552A JP6663618B2 (en) 2016-06-02 2016-06-02 Accelerator and particle beam irradiation device

Publications (1)

Publication Number Publication Date
WO2017208774A1 true WO2017208774A1 (en) 2017-12-07

Family

ID=60477462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017936 WO2017208774A1 (en) 2016-06-02 2017-05-11 Accelerator and particle beam irradiation apparatus

Country Status (2)

Country Link
JP (1) JP6663618B2 (en)
WO (1) WO2017208774A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04155800A (en) * 1990-10-19 1992-05-28 Sumitomo Heavy Ind Ltd Device for displaying region where beam adjustment parameter can be set
JPH09115697A (en) * 1995-10-17 1997-05-02 Rikagaku Kenkyusho Ion extraction part in cyclotron, and adjustment method thereof
JPH11238599A (en) * 1998-02-23 1999-08-31 Mitsubishi Electric Corp Cyclotron apparatus
JP2006004941A (en) * 2004-06-18 2006-01-05 General Electric Co <Ge> Method and apparatus for arranging and regulating ion source
JP2010218886A (en) * 2009-03-17 2010-09-30 Sumitomo Heavy Ind Ltd Charged particle beam irradiation control device, and charged particle beam irradiation method
JP2015065102A (en) * 2013-09-26 2015-04-09 株式会社日立製作所 Circular accelerator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04155800A (en) * 1990-10-19 1992-05-28 Sumitomo Heavy Ind Ltd Device for displaying region where beam adjustment parameter can be set
JPH09115697A (en) * 1995-10-17 1997-05-02 Rikagaku Kenkyusho Ion extraction part in cyclotron, and adjustment method thereof
JPH11238599A (en) * 1998-02-23 1999-08-31 Mitsubishi Electric Corp Cyclotron apparatus
JP2006004941A (en) * 2004-06-18 2006-01-05 General Electric Co <Ge> Method and apparatus for arranging and regulating ion source
JP2010218886A (en) * 2009-03-17 2010-09-30 Sumitomo Heavy Ind Ltd Charged particle beam irradiation control device, and charged particle beam irradiation method
JP2015065102A (en) * 2013-09-26 2015-04-09 株式会社日立製作所 Circular accelerator

Also Published As

Publication number Publication date
JP2017216190A (en) 2017-12-07
JP6663618B2 (en) 2020-03-13

Similar Documents

Publication Publication Date Title
JP4713799B2 (en) Isochronous sector-focused cyclotron and method for extracting charged particles from the cyclotron
JP4653489B2 (en) Cyclotron and how to use it
CN109923946B (en) Circular accelerator
JPH11513528A (en) Method for extracting charged particles from isochronous cyclotron and apparatus applying this method
WO2019097721A1 (en) Particle beam therapy system, accelerator, and method for operating accelerator
JP6341655B2 (en) Circular accelerator and heavy ion beam therapy system
WO2017145259A1 (en) Heavy particle radiation therapy apparatus
JP2019096404A (en) Circular accelerator and particle therapy system
WO2019093110A1 (en) Circular accelerator and particle beam treatment system
WO2020044604A1 (en) Particle beam accelerator and particle beam therapy system
JP2017220333A (en) Accelerator and particle beam irradiation device
WO2017208774A1 (en) Accelerator and particle beam irradiation apparatus
WO2018096648A1 (en) Accelerator and particle beam irradiation device
WO2022168484A1 (en) Accelerator and particle beam therapy system
US10850132B2 (en) Particle therapy system
WO2018092483A1 (en) Accelerator, particle beam irradiation device, and method for extracting beam
JP2012142139A (en) Ion beam generation method and ion beam generation apparatus
JP2022026175A (en) Accelerator and particle beam therapy equipment
JP4276160B2 (en) Circular charged particle accelerator and method of operating the circular charged particle accelerator
JP7303138B2 (en) Circular accelerator, particle beam therapy system, isotope production system, and radiopharmaceutical production system
JP7176982B2 (en) Neutron generator and neutron generation method
TW201927366A (en) Accelerator and particle beam therapy apparatus
JP4296001B2 (en) Circular accelerator
WO2023013458A1 (en) Circular accelerator and particle beam treatment system
WO2024127698A1 (en) Accelerator electromagnet, accelerator, and particle beam therapy system

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806332

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17806332

Country of ref document: EP

Kind code of ref document: A1