WO2017206571A1 - 一种采用激光扫描的目标定位方法及激光接收装置 - Google Patents

一种采用激光扫描的目标定位方法及激光接收装置 Download PDF

Info

Publication number
WO2017206571A1
WO2017206571A1 PCT/CN2017/077343 CN2017077343W WO2017206571A1 WO 2017206571 A1 WO2017206571 A1 WO 2017206571A1 CN 2017077343 W CN2017077343 W CN 2017077343W WO 2017206571 A1 WO2017206571 A1 WO 2017206571A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
rotation
receiving
rotation scanning
time
Prior art date
Application number
PCT/CN2017/077343
Other languages
English (en)
French (fr)
Inventor
何风行
吕铁汉
罗春
刘超
Original Assignee
陈朝阳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陈朝阳 filed Critical 陈朝阳
Publication of WO2017206571A1 publication Critical patent/WO2017206571A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves

Definitions

  • the present invention relates to the field of electronic technologies, and in particular, to a target positioning method and a laser receiving device using laser scanning.
  • Positioning technology is a supporting technology for applications such as location-based services and virtual reality. In order to improve the user experience, the accuracy and real-time requirements for positioning are getting higher and higher.
  • Laser is one of the main technical means to achieve precise target positioning due to its monochromaticity and directionality.
  • the main methods used by lasers for target location and tracking are:
  • typical applications include laser range finder, 2D (2 dimensional) laser radar, 3D (3 dimensional, 3D) laser radar.
  • the method requires accurate timing within nS (nanosecond) level, and has high requirements on light, machine and electricity.
  • the method adopts a spot spot, and the 3D space scan has a long time period and poor real-time performance.
  • the angle of arrival of the laser is measured by using the characteristics of good laser directivity, and then the target is positioned by the AoA method.
  • the method measures the time that the laser reaches the plurality of laser sensitive components by mounting a plurality of laser sensitive components on the target object.
  • the position and motion trajectory of the target are calculated by the position difference of each of the plurality of laser sensitive elements.
  • the method has strict requirements on the number and installation position of the laser sensitive components, resulting in a complicated structure of the device, which is not conducive to scale production and maintenance.
  • the prior art target positioning method has a problem that the requirements of the device are relatively high and the device structure is relatively complicated.
  • the invention provides a target positioning method and a laser receiving device using laser scanning, which are used to solve the problem that the prior art target positioning method has high requirements on the device and the device structure is relatively complicated.
  • an embodiment of the present invention provides a target positioning method using laser scanning, including:
  • the laser receiving device records a first time of receiving the synchronization signal transmitted by the first laser rotation scanning device, the first laser rotation scanning device being any one of N laser rotation scanning devices of the laser emitting device, the laser emitting device
  • the laser planes emitted by the N laser rotation scanning devices may intersect at one point and the N laser rotation scanning devices are sequentially activated, N is greater than or equal to 3;
  • the laser receiving device records a second time of receiving the laser signal emitted by the first laser rotation scanning device
  • the laser receiving device determines a receiving duration according to the first time and the second time, and the receiving duration is used to indicate a time interval from when the synchronization signal is received to when a laser signal is received;
  • the laser receiving device determines a position of the laser receiving device according to a rotation angle of the N laser rotating scanning devices, and positions a position of the laser receiving device as a target object, and the laser receiving device is located at the The location of the target object.
  • the laser receiving device records the first time of receiving the synchronization signal transmitted by the first laser rotation scanning device, and records the second time of receiving the laser signal emitted by the first laser rotation scanning device, according to Determining a receiving time length according to the first time and the second time, determining a rotation angle of the first laser rotation scanning device according to the receiving time length, and determining a laser receiving device according to a rotation angle of the N laser rotation scanning devices Position and position of the laser receiving device at a position of the target object, the laser receiving device being located at a position where the target object is located, wherein the first laser rotation scanning device is N laser rotation scanning devices of the laser emitting device Any of the laser faces emitted by the N laser rotating scanning devices of the laser emitting device The intersections may be at one point and the N laser rotary scanning devices are activated in sequence, N being greater than or equal to three.
  • the laser emitting device of the method only three or more laser rotating scanning devices are needed, and the positioning of the laser receiving device can be realized by receiving the synchronization signal and the laser signal emitted by the laser emitting device, thereby realizing the positioning of the target object.
  • the method is not high in requirements on light, machine and electricity, and the number of laser sensitive components in the laser receiving device only needs at least one, and thus the device structure is relatively simple.
  • the laser receiving device records the first time of receiving the synchronization signal transmitted by the first laser rotation scanning device, including:
  • the laser receiving device receives the synchronization signal through at least one laser sensitive component of the laser receiving device, and after receiving the synchronization signal, notifying a timing unit in the laser receiving device to record the first time ;
  • the laser receiving device records a second time of receiving the laser signal emitted by the first laser rotation scanning device, including:
  • the laser receiving device receives the laser signal through the at least one laser sensor, and after receiving the laser signal, notifies the timing unit to record the second time.
  • the determining, by the laser receiving device, the rotation angle of the first laser rotation scanning device according to the receiving duration comprising:
  • the laser receiving device uses the receiving time length as a rotation duration of the first laser rotation scanning device
  • the laser receiving device determines a rotation angle of the first laser rotation scanning device according to a rotation duration of the first laser rotation scanning device and a rotation speed of the first laser rotation scanning device.
  • the laser receiving device determines the position of the laser receiving device according to the rotation angle of the N laser rotating scanning devices, including:
  • the laser receiving device selects three laser rotation scanning devices from the N laser rotation scanning devices, and the laser surfaces emitted by the three laser rotation scanning devices may intersect at one point;
  • the laser receiving device determines the laser receiving device by a triangulation method according to a rotation angle of the three laser rotation scanning devices and a position where the three laser rotation scanning devices are located position.
  • the first laser rotation scanning device comprises a word line laser module, a DC brushless motor and a driver, a mirror device, and the mirror device is fixed to the DC brushless motor and the driver;
  • the laser signal is transmitted by the first laser rotation scanning device as follows, including:
  • the first laser rotation scanning device reflects the laser signal emitted by the one-line laser module to the monitoring area to form a laser surface by the mirror device, and drives the mirror surface by the rotation of the DC brushless motor and the driver
  • the rotation of the device causes the laser face to rotate to scan the monitoring area, the target object being located within the monitoring area.
  • the synchronization signal is transmitted by the first laser rotation scanning device as follows:
  • the first laser rotation scanning device detects the DC brushless motor and the driver rotates to an initial angle at which a scan needs to be started by an angle sensor in the first laser rotation scanning device, and transmits the synchronization signal to the synchronization module to The monitoring area.
  • the laser emitting device comprises three laser rotating scanning devices, wherein the mirror devices of the two laser rotating scanning devices rotate in a horizontal direction and are at the same horizontal line as a word line laser module; and another laser rotating scanning device The mirror device in the middle rotates in the vertical direction and is in the same vertical line as the word line laser module.
  • an embodiment of the present invention provides a laser receiving apparatus, including:
  • a timing unit for recording a first time of receiving a synchronization signal transmitted by the first laser rotation scanning device the first laser rotation scanning device being any one of N laser rotation scanning devices of the laser emitting device, the laser The laser planes emitted by the N laser rotation scanning devices of the transmitting device may intersect at one point and the N laser rotation scanning devices are sequentially activated, N is greater than or equal to 3; recording the laser signals emitted by the first laser rotation scanning device a second time; and determining a reception duration according to the first time and the second time, the reception duration being used to indicate a time interval between receiving the synchronization signal and receiving the laser signal;
  • a positioning unit configured to determine a rotation angle of the first laser rotation scanning device according to the receiving time length; determine the laser receiving according to a rotation angle of the N laser rotation scanning devices The position of the device and the position of the laser receiving device as the position of the target object, the laser receiving device being located at the position where the target object is located.
  • the laser receiving device further includes at least one laser sensitive component, configured to: after receiving the synchronization signal, notify the timing unit to record the first time; and after receiving the laser signal Notifying the timing unit to record the second time;
  • the timing unit is configured to: record the first time after receiving the notification of the at least one laser sensitive component; and record the second time after receiving the notification of the at least one laser sensitive component.
  • the positioning unit is specifically configured to:
  • the rotation angle of the first laser rotation scanning device is determined according to the rotation duration of the first laser rotation scanning device and the rotation speed of the first laser rotation scanning device.
  • the positioning unit is further configured to:
  • the laser surfaces emitted by the three laser rotation scanning devices may intersect at one point;
  • the position of the laser receiving device is determined by a triangulation method according to the rotation angle of the three laser rotation scanning devices and the position where the three laser rotation scanning devices are located.
  • the first laser rotation scanning device comprises a word line laser module, a DC brushless motor and a driver, a mirror device, and the mirror device is fixed to the DC brushless motor and the driver;
  • the word line laser module is configured to emit a laser signal to the mirror device
  • the mirror device is configured to reflect a laser signal emitted by the word line laser module to a monitoring area to form a laser surface;
  • the brushless DC motor and the driver are configured to drive the rotation of the mirror device by the rotation of the DC brushless motor and the driver, so that the laser surface rotates to scan the monitoring area, and the target object is located in the monitoring within the area.
  • the first laser rotation scanning device further includes an angle sensor for notifying the synchronization mode when detecting the DC brushless motor and the driver rotating to an initial angle that needs to start scanning
  • the block transmits the synchronization signal to the monitoring area.
  • the laser emitting device comprises three laser rotating scanning devices, wherein the mirror devices of the two laser rotating scanning devices rotate in a horizontal direction and are at the same horizontal line as a word line laser module; and another laser rotating scanning device The mirror device in the middle rotates in the vertical direction and is in the same vertical line as the word line laser module.
  • the present invention also provides a laser receiving apparatus, comprising:
  • At least one processor and,
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to enable the at least one processor to perform the method of any of the above first aspects.
  • the structure of the laser receiving device includes at least one processor configured to support the laser receiving device to perform a corresponding function in the target positioning method of the first aspect described above.
  • the laser receiving device can also include a memory for coupling with the processor that holds the program instructions and data necessary for the laser receiving device.
  • an embodiment of the present invention further provides a non-transitory computer readable storage medium, where the non-transitory computer readable storage medium stores computer instructions for causing the computer to perform the first aspect described above Any of the methods described.
  • an embodiment of the present invention further provides a computer program product, the computer program product comprising a computing program stored on a non-transitory computer readable storage medium, the computer program comprising program instructions, when the program instruction When executed by a computer, the computer is caused to perform the method of the first aspect described above.
  • FIG. 1 is a flowchart of a target positioning method using laser scanning according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a laser emitting device of the first type according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a laser rotation scanning device in a laser emitting device of a type II according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a triangulation method according to an embodiment of the present invention.
  • FIG. 5 is a detailed flowchart of a target positioning method using laser scanning according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a laser receiving apparatus according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a laser receiving apparatus according to an embodiment of the present invention.
  • a target positioning method using laser scanning includes:
  • Step 101 The laser receiving device records a first time when the synchronization signal transmitted by the first laser rotation scanning device is received, and the first laser rotation scanning device is any one of N laser rotation scanning devices of the laser emitting device, The laser surface emitted by the N laser rotation scanning devices of the laser emitting device may intersect at one point and the N laser rotation scanning devices are sequentially activated, N is greater than or equal to 3;
  • Step 102 The laser receiving device records a second time when the laser signal emitted by the first laser rotation scanning device is received;
  • Step 103 The laser receiving device determines to connect according to the first time and the second time. Receiving a duration, the receiving duration being used to indicate a time interval from when the synchronization signal is received to when the laser signal is received;
  • Step 104 The laser receiving device determines a rotation angle of the first laser rotation scanning device according to the receiving time length
  • Step 105 The laser receiving device determines a position of the laser receiving device according to a rotation angle of the N laser rotating scanning devices, and positions a position of the laser receiving device as a target object, and the laser receiving device Located at the location of the target object.
  • the target positioning system includes a laser emitting device and a laser receiving device, and the laser emitting device includes N laser rotating scanning devices, and N is an integer greater than or equal to 3, that is, in the present invention, the laser
  • the transmitting device includes at least three laser rotating scanning devices, and the at least three laser rotating scanning devices may be mounted as a unitary structure, or a plurality of laser rotating scanning devices in the laser emitting device may be independently distributed with each other. Faced with two types of laser emitting devices introduced separately.
  • the at least three laser rotation scanning devices are mounted as a unitary structure
  • one laser emitting device is equipped with at least three laser rotating scanning devices.
  • all the laser rotating scanning devices are located at the same position, and all the laser rotating scanning devices can be treated as a whole, each laser
  • the rotary scanning device can emit a laser to face the monitoring area for scanning, and the laser surfaces emitted by the at least three laser rotating scanning devices can intersect at one point, as shown in FIG.
  • each laser rotation scanning device includes a word line laser module, a mirror device, a coupling, and a DC a brush motor and a driver
  • the word line laser module is configured to emit a laser signal to the mirror device
  • the mirror device is configured to reflect the laser signal emitted by the word line laser module to the mirror device to the monitoring area
  • the coupling device For fixing the mirror device to the DC brushless motor and driver, the DC brushless motor and driver can be used for uniform speed. Moving, rotating mirror means so as to drive, and thus can be realized for monitoring the laser scanning area.
  • the laser emitting device further comprises a synchronization module and a multi-axis linkage control module, and the synchronization module is configured to transmit a synchronization signal to the laser receiving device to realize the connection with the laser receiving device.
  • the initial angle synchronization, the multi-axis linkage control module controls the rotational speed of the DC brushless motor and the driver in each laser rotation scanning device, and is used to control the laser scanning sequence of all the laser rotation scanning devices.
  • Type 2 at least three laser rotation scanning devices included in the laser emitting device are independent devices
  • each laser rotation scanning device is a separate device, and the at least three laser rotation scanning devices may be located at the same location or at different locations, for example, assuming that the monitoring area is a room,
  • a plurality of laser rotating scanning devices can be respectively placed in each corner of the room, in the middle of the room, or in the ceiling of the room, thereby realizing laser scanning of the monitoring area by emitting laser signals from a plurality of positions. As shown in FIG.
  • each of the laser rotating scanning devices of the second type includes a synchronization module for transmitting a synchronization signal to the laser receiving device to realize the laser receiving device.
  • the initial angle between the two is synchronized.
  • All of the laser rotating scanning devices can communicate by means of a wired connection, or can communicate by means of wireless data transmission, and preferably, a total control device can be added to the monitoring area for the purpose and type one.
  • the multi-axis linkage control module has similar applications for controlling the rotational speed of the DC brushless motor and the driver in each of the laser rotary scanning devices, and for controlling the laser scanning sequence of all the laser rotary scanning devices.
  • the laser receiving device in the embodiment of the present invention is placed at a position where the target object is located, and receives a laser signal emitted by the plurality of laser rotating scanning devices, thereby determining a relative positional relationship between the laser receiving device and each of the laser rotating scanning devices. Further, the position of the laser receiving device is located, that is, the position where the target object is located is located.
  • the laser emitting device of the first type is taken as an example for description, that is, all the laser rotating scanning devices are installed as a unitary structure.
  • the principle is the same as that of the type 1 laser emitting device.
  • any of the laser rotating scanning devices in the laser emitting device will be collectively referred to as a first laser rotating scanning device.
  • the position of the laser emitting device should be deployed, for example, the laser emitting device is placed at a corner of the monitoring area, so that the monitoring area can be realized as long as the mirror device in the laser rotating scanning device is rotated by 45 degrees.
  • a 90-degree laser scan which achieves a complete laser scan of the monitored area.
  • the first laser rotation scanning device comprises a word line laser module, a DC brushless motor and a driver, a mirror device, and the mirror device is fixed to the DC brushless motor and the driver; the laser signal is The first laser rotation scanning device is configured to: the first laser rotation scanning device reflects the laser signal emitted by the one-line laser module to the monitoring area to form a laser surface through the mirror device, And rotating the mirror device by the rotation of the DC brushless motor and the driver, so that the laser surface rotates to scan the monitoring area, and the target object is located in the monitoring area.
  • a word line laser module in the first laser rotation scanning device emits a laser signal and hits the mirror device, and the mirror device reflects the laser signal into the monitoring area to form a laser surface, and the mirror device Fixed to the DC brushless motor and the driver.
  • the mirror device is fixed to the DC brushless motor and the driver through a coupling, and the DC brushless motor and the driver are driven by the multi-axis linkage control module.
  • the laser receiving device can certainly receive the laser signal emitted by the first laser rotating scanning device.
  • the multi-axis linkage control module controls a plurality of laser rotating scanning devices to respectively perform laser scanning on the monitoring area.
  • a plurality of laser rotating scanning devices For example, it is assumed that three laser rotating scanning devices are respectively represented by A, B, and C, Then, it is possible to control the periodic laser scanning of the monitoring area in the order of ABCABCABC-..., and only one laser rotation scanning device can perform laser scanning on the monitoring area at the same time.
  • the laser emitting device comprises three laser rotating scanning devices, wherein the mirror devices of the two laser rotating scanning devices rotate in a horizontal direction and are at the same horizontal line as a word line laser module; and another laser rotating scanning device The mirror device in the middle rotates in the vertical direction and is in the same vertical line as the word line laser module.
  • the mirror devices in the two laser rotating scanning devices can be horizontally oriented. Rotating and at the same horizontal line as the word line laser module, the mirror device in the other laser rotation scanning device rotates in the vertical direction and is in the same vertical line as the word line laser module, and its structure is as shown in FIG.
  • the mirror device in the laser rotating scanning device on both sides rotates in the horizontal direction
  • the mirror device in the middle laser rotating scanning device rotates in the vertical direction, so that the laser faces emitted by the three laser rotating scanning devices can intersect at a point. .
  • the above method is only a preferred mode. In practical applications, as long as the scanning directions of all the laser rotating scanning devices are not completely the same (such as various tilting deployment methods, etc.), there is such a deployment. The requirement is to ensure that the laser faces emitted by the individual laser rotating scanning devices can intersect at one point.
  • the distance between the two laser rotation scanning devices that rotate and emit the laser signal in the horizontal direction is greater than or equal to 0.05 m.
  • the laser receiving device is placed in the monitoring area, and when the laser receiving device receives the synchronization signal transmitted by the first laser rotating scanning device, the first time is recorded, wherein the first laser rotating scanning device is Any one of N laser rotation scanning devices of the laser emitting device, the laser faces emitted by the N laser rotating scanning devices of the laser emitting device may intersect at one point and the N laser rotating scanning devices are sequentially activated, N is greater than Equal to 3.
  • the synchronization signal is emitted by the first laser rotation scanning device as follows: the first laser rotation scanning device detects the position by an angle sensor in the first laser rotation scanning device When the DC brushless motor and the driver are rotated to an initial angle at which scanning is required to be initiated, the synchronization signal is transmitted to the monitoring area through the synchronization module.
  • the angle The sensor is a photoelectric encoder, a Hall sensor or a photoelectric switch.
  • the synchronization module can be notified to send a synchronization signal to the monitoring area, optionally
  • the synchronization signal is a radio frequency signal, a scintillation light signal or a wired signal, so that the receiving device records the first time after receiving the synchronization signal, the first time indicating that the first laser rotation scanning device is currently in an initial state Angle position.
  • the laser receiving device records a first time of receiving the synchronization signal transmitted by the first laser rotation scanning device, comprising: the laser receiving device receiving the photo by at least one of the laser receiving devices And synchronizing the signal, and after receiving the synchronization signal, notifying the timing unit in the laser receiving device to record the first time.
  • the first laser rotation scanning device includes at least one laser sensor for receiving the synchronization signal, and a timing unit for recording the first time.
  • the laser sensitive component in the laser receiving device is the least Only one is needed, of course, it can be multiple. If there are more than one, only one of them can work normally. In practical applications, the laser sensitive component can be a photodiode, a phototransistor, or the like. Therefore, in the embodiment of the present invention, by reducing the number of laser sensitive components in the laser receiving device, the structural complexity of the laser receiving device is greatly reduced, and the accuracy of positioning of the laser receiving device is ensured.
  • step 102 when the laser receiving device receives the laser signal emitted by the first laser rotating scanning device, the second time is recorded, and the second time is used to indicate that the laser receiving device receives the first laser rotating scanning device. The time of the laser signal.
  • the laser receiving device records a second time of receiving the laser signal emitted by the first laser rotation scanning device, comprising: the laser receiving device is sensitive by the at least one laser The sensing element receives the laser signal and, upon receiving the laser signal, notifies the timing unit to record the second time.
  • the laser receiving device determines the receiving duration according to the first time and the second time, and the receiving duration is used to indicate the time from when the synchronization signal is received to when the laser signal is received. interval.
  • the laser receiving device determines the rotation angle of the first laser rotation scanning device according to the receiving time length.
  • the determining, by the laser receiving device, the rotation angle of the first laser rotation scanning device according to the receiving time length comprising: the laser receiving device using the receiving time length as the first laser rotation scanning device
  • the rotation time of the first laser rotation scanning device is determined according to the rotation duration of the first laser rotation scanning device and the rotation speed of the first laser rotation scanning device.
  • the statistical reception time of the timing unit in the current receiving device is 1.25 milliseconds, it indicates that the DC brushless motor and the driver have selected 22.5 degrees, and thus it can be determined that the laser receiving device is at the 45-degree angular position of the first laser rotation scanning device.
  • the laser receiving device determines the position of the laser receiving device based on the rotation angle of the N laser rotating scanning devices, and sets the position of the laser receiving device as the target object, the laser The receiving device is located at a location where the target object is located.
  • the laser receiving device determines a position of the laser receiving device according to a rotation angle of the N laser rotating scanning devices, and the laser receiving device selects three from the N laser rotating scanning devices.
  • a laser rotation scanning device wherein the laser faces emitted by the three laser rotation scanning devices can intersect at one point; the laser receiving device rotates the scanning device according to the rotation angle of the three lasers and the three laser rotation scanning devices
  • the position of the laser receiving device is determined by a triangulation method.
  • FIG. 4 it is a schematic diagram of a triangulation method, wherein the example in FIG. 4 includes three
  • the laser rotates the scanning device and is located on the same horizontal line, wherein the laser signal emitted by the laser rotating scanning device A and the laser rotating scanning device C scans the monitoring region in the horizontal direction, and the laser signal emitted by the laser rotating scanning device B is in the vertical direction
  • the monitoring area is scanned, and the positions of the laser rotation scanning device A, the laser rotation scanning device B, and the laser rotation scanning device C in the coordinate system are (a, 0, 0), (0, 0, 0), (c, 0), respectively.
  • the laser receiving device determines that the rotation angle of the laser rotation scanning device A is ⁇ , the rotation angle of the laser rotation scanning device B is ⁇ , and the rotation angle of the laser rotation scanning device C is ⁇ , assuming that the position of the laser receiving device is D ( x, y, z), you can calculate the coordinates of D by the following formula:
  • the position at which the laser receiving device is located can be solved as D(x, y, z), and since the laser receiving device is located at the target object The position, so the position of the laser receiving device is obtained, and the position of the target object can be known.
  • the laser receiving device records the first time of receiving the synchronization signal transmitted by the first laser rotation scanning device, and records the second time of receiving the laser signal emitted by the first laser rotation scanning device, according to Determining a receiving time length according to the first time and the second time, determining a rotation angle of the first laser rotation scanning device according to the receiving time length, and determining a laser receiving device according to a rotation angle of the N laser rotation scanning devices Position and position of the laser receiving device at a position of the target object, the laser receiving device being located at a position where the target object is located, wherein the first laser rotation scanning device is N laser rotation scanning devices of the laser emitting device
  • the laser faces emitted by the N laser rotating scanning devices of the laser emitting device may intersect at one point and the N laser rotating scanning devices are sequentially activated, N being greater than or equal to 3.
  • the in the laser emitting device of the method only three or more laser rotating scanning devices are needed, and the positioning of the laser receiving device can be realized by receiving the synchronization signal and the laser signal emitted by the laser emitting device, thereby realizing the positioning of the target object.
  • the method is not required for light, machine and electricity, and the number of laser sensitive components in the laser receiving device only needs at least one, and thus the device structure is relatively simple.
  • a target positioning method using laser scanning according to an embodiment of the present invention is described in detail below, as shown in FIG. 5, including:
  • Step 501 The laser receiving device receives the synchronization signal transmitted by the first laser rotation scanning device through at least one laser sensitive component of the laser receiving device, and notifies the timing in the laser receiving device after receiving the synchronization signal.
  • the unit records the first time, the first laser rotation scanning device is any one of N laser rotation scanning devices of the laser emitting device, and the laser surfaces emitted by the N laser rotation scanning devices of the laser emitting device may intersect At one point and the N laser rotation scanning devices are sequentially activated, N is greater than or equal to 3;
  • Step 502 The laser receiving device receives the laser signal emitted by the first laser rotation scanning device by the at least one laser sensor, and after receiving the laser signal, notifying the timing unit to record the second time;
  • Step 503 The laser receiving device determines a receiving duration according to the first time and the second time, where the receiving duration is used to indicate a time interval from when the synchronization signal is received to when the laser signal is received;
  • Step 504 The laser receiving device uses the receiving duration as the rotation duration of the first laser rotation scanning device
  • Step 505 The laser receiving device determines a rotation angle of the first laser rotation scanning device according to a rotation duration of the first laser rotation scanning device and a rotation speed of the first laser rotation scanning device.
  • Step 506 the laser receiving device selects three laser rotation scanning devices from the N laser rotation scanning devices, and the laser surfaces emitted by the three laser rotation scanning devices may intersect at one point;
  • Step 507 The laser receiving device determines the position of the laser receiving device by a triangulation method according to a rotation angle of the three laser rotation scanning devices and a position where the three laser rotation scanning devices are located.
  • the laser receiving device records the first time of receiving the synchronization signal transmitted by the first laser rotation scanning device, and records the second time of receiving the laser signal emitted by the first laser rotation scanning device, according to Determining a receiving time length according to the first time and the second time, determining a rotation angle of the first laser rotation scanning device according to the receiving time length, and determining a laser receiving device according to a rotation angle of the N laser rotation scanning devices Position and position of the laser receiving device at a position of the target object, the laser receiving device being located at a position where the target object is located, wherein the first laser rotation scanning device is N laser rotation scanning devices of the laser emitting device
  • the laser faces emitted by the N laser rotating scanning devices of the laser emitting device may intersect at one point and the N laser rotating scanning devices are sequentially activated, N being greater than or equal to 3.
  • the laser emitting device of the method only three or more laser rotating scanning devices are needed, and the positioning of the laser receiving device can be realized by receiving the synchronization signal and the laser signal emitted by the laser emitting device, thereby realizing the positioning of the target object.
  • the method is not high in requirements on light, machine and electricity, and the number of laser sensitive components in the laser receiving device only needs at least one, and thus the device structure is relatively simple.
  • the embodiment of the present invention further provides a laser receiving device, as shown in FIG. 6, comprising:
  • a timing unit 601 configured to record a first time of receiving a synchronization signal transmitted by the first laser rotation scanning device, the first laser rotation scanning device being any one of N laser rotation scanning devices of the laser emitting device, The laser surface emitted by the N laser rotation scanning devices of the laser emitting device may intersect at one point and the N laser rotation scanning devices are sequentially activated, N is greater than or equal to 3; recording receives the laser light emitted by the first laser rotation scanning device a second time of the signal; and determining a reception duration according to the first time and the second time, the reception duration being used to indicate a time interval from when the synchronization signal is received to when the laser signal is received;
  • a positioning unit 602 configured to determine a rotation angle of the first laser rotation scanning device according to the receiving time length; determine a position of the laser receiving device according to a rotation angle of the N laser rotation scanning devices, and The position of the laser receiving device is the position of the target object, and the laser receiving device is located at the position where the target object is located.
  • the laser receiving device further includes at least one laser sensor 603, configured to: after receiving the synchronization signal, notify the timing unit to record the first time; and receive the laser signal Afterwards, notifying the timing unit to record the second time;
  • the timing unit 601 is specifically configured to: record the first time after receiving the notification of the at least one laser sensitive component; and record the second time after receiving the notification of the at least one laser sensitive component .
  • the positioning unit 602 is specifically configured to:
  • the rotation angle of the first laser rotation scanning device is determined according to the rotation duration of the first laser rotation scanning device and the rotation speed of the first laser rotation scanning device.
  • the positioning unit 602 is further configured to:
  • the laser surfaces emitted by the three laser rotation scanning devices may intersect at one point;
  • the position of the laser receiving device is determined by a triangulation method according to the rotation angle of the three laser rotation scanning devices and the position where the three laser rotation scanning devices are located.
  • the first laser rotation scanning device comprises a word line laser module, a DC brushless motor and a driver, a mirror device, and the mirror device is fixed to the DC brushless motor and the driver;
  • the word line laser module is configured to emit a laser signal to the mirror device
  • the mirror device is configured to reflect a laser signal emitted by the word line laser module to a monitoring area to form a laser surface;
  • the brushless DC motor and the driver are configured to drive the rotation of the mirror device by the rotation of the DC brushless motor and the driver, so that the laser surface rotates to scan the monitoring area, and the target object is located in the monitoring within the area.
  • the first laser rotation scanning device further includes an angle sensor, configured to notify the synchronization module to transmit the synchronization signal to the ground when detecting the DC brushless motor and the driver rotating to an initial angle that needs to start scanning The monitoring area.
  • the laser emitting device comprises three laser rotating scanning devices, wherein the mirror devices of the two laser rotating scanning devices rotate in a horizontal direction and are at the same horizontal line as a word line laser module; and another laser rotating scanning device The mirror device in the middle rotates in the vertical direction and is in the same vertical line as the word line laser module.
  • the distance between the two laser rotation scanning devices that rotate and emit the laser signal in the horizontal direction is greater than or equal to 0.05 m.
  • the synchronization signal is a radio frequency signal, a scintillation optical signal or a wired signal.
  • the angle sensor is a photoelectric encoder, a Hall sensor or a photoelectric switch.
  • the laser receiving device records the first time of receiving the synchronization signal transmitted by the first laser rotation scanning device, and records the second time of receiving the laser signal emitted by the first laser rotation scanning device, according to the first Determining a receiving time length at a time and the second time, determining a rotation angle of the first laser rotation scanning device according to the receiving time length, and determining a position of the laser receiving device according to a rotation angle of the N laser rotation scanning devices, And setting a position of the laser receiving device at a position of the target object, wherein the first laser rotation scanning device is any one of N laser rotation scanning devices of the laser emitting device The laser surface emitted by the N laser rotation scanning devices of the laser emitting device may intersect at one point and the N laser rotation scanning devices are sequentially activated, and N is greater than or equal to 3.
  • the positioning of the laser receiving device can be realized by receiving the synchronization signal and the laser signal emitted by the laser emitting device, thereby realizing the target object.
  • the positioning of the method is not high on light, machine and electricity, and the number of laser sensitive components in the laser receiving device only needs at least one, so the device structure is relatively simple.
  • a laser receiving apparatus 700 according to an embodiment of the present invention is provided.
  • Schematic diagram of the hardware structure including:
  • processors 710 and memory 720 one processor 710 is taken as an example in FIG.
  • the laser receiving apparatus that performs the target positioning method may further include: an input device 730 and an output device 740.
  • the processor 710, the memory 720, the input device 730, and the output device 740 may be connected by a bus or other means, as exemplified by a bus connection in FIG.
  • the memory 720 is used as a non-volatile computer readable storage medium, and can be used for storing non-volatile software programs, non-volatile computer-executable programs, and modules, such as program instructions corresponding to the target positioning method in the embodiment of the present invention. / Module (for example, timing unit 601, positioning unit 602 shown in FIG. 6).
  • the processor 710 executes various functional applications and data processing of the server by running non-volatile software programs, instructions, and modules stored in the memory 720, that is, implementing the target positioning method in the above method embodiments.
  • the memory 720 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created by use of the processing device operated according to the list item, and the like. .
  • memory 720 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • memory 720 can optionally include memory remotely located relative to processor 710 that can be connected to the processing device of the list item operation over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Input device 730 can receive input digital or character information and generate key signal inputs related to user settings and function control of the laser receiving device.
  • the output device 740 can include a display device such as a display screen.
  • the one or more modules are stored in the memory 720, and when executed by the one or more processors 710, perform a target location method in any of the above method embodiments.
  • the above product can perform the method provided by the embodiment of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • the above product can perform the method provided by the embodiment of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • the method provided by the example can perform the method provided by the embodiment of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • the at least one processor 710 is configured to: record a first time of receiving a synchronization signal transmitted by the first laser rotation scanning device, wherein the first laser rotation scanning device is any one of N laser rotation scanning devices of the laser emitting device a laser surface emitted by the N laser rotation scanning devices of the laser emitting device may intersect at a point and the N laser rotation scanning devices are sequentially activated, N is greater than or equal to 3; recording receives the first laser rotation scanning a second time of the laser signal emitted by the device; and determining a reception duration according to the first time and the second time, the reception duration being used to indicate between receiving the synchronization signal and receiving the laser signal a time interval; determining a rotation angle of the first laser rotation scanning device according to the reception time length; determining a position of the laser receiving device according to a rotation angle of the N laser rotation scanning devices, and receiving the laser light
  • the position of the device is the position of the target object, and the laser receiving device is located at the position where the target object is located.
  • the laser receiving device further includes at least one laser sensitive component, configured to: after receiving the synchronization signal, notify the timing unit to record the first time; and after receiving the laser signal Notifying the timing unit to record the second time;
  • the processor 710 is specifically configured to: record the first time after receiving the notification of the at least one laser sensitive component; and record the second time after receiving the notification of the at least one laser sensitive component.
  • the processor 710 is specifically configured to: use the receiving duration as a rotation duration of the first laser rotation scanning device; rotate a rotation duration of the scanning device according to the first laser and the first The rotation speed of the laser rotating scanning device determines the rotation angle of the first laser rotation scanning device.
  • the processor 710 is further configured to: select three laser rotation scanning devices from the N laser rotation scanning devices, and the laser surfaces emitted by the three laser rotation scanning devices may intersect at one point; The rotation angles of the three laser rotation scanning devices and the positions of the three laser rotation scanning devices determine the position of the laser receiving device by a triangulation method.
  • the first laser rotation scanning device comprises a word line laser module and a DC brushless horse. And a driver, a mirror device, and the mirror device is fixed to the DC brushless motor and the driver;
  • the word line laser module is configured to emit a laser signal to the mirror device
  • the mirror device is configured to reflect a laser signal emitted by the word line laser module to a monitoring area to form a laser surface;
  • the brushless DC motor and the driver are configured to drive the rotation of the mirror device by the rotation of the DC brushless motor and the driver, so that the laser surface rotates to scan the monitoring area, and the target object is located in the monitoring within the area.
  • the first laser rotation scanning device further includes an angle sensor, configured to notify the synchronization module to transmit the synchronization signal to the ground when detecting the DC brushless motor and the driver rotating to an initial angle that needs to start scanning The monitoring area.
  • the laser emitting device comprises three laser rotating scanning devices, wherein the mirror devices of the two laser rotating scanning devices rotate in a horizontal direction and are at the same horizontal line as a word line laser module; and another laser rotating scanning device The mirror device in the middle rotates in the vertical direction and is in the same vertical line as the word line laser module.
  • Embodiments of the present invention also provide a non-transitory computer readable storage medium storing computer instructions for causing the computer to perform the target of any of the above Positioning method.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
  • Embodiments of the present invention also provide a computer program product comprising a computing program stored on a non-transitory computer readable storage medium, the computer program comprising program instructions, when the program instructions are executed by a computer Causing the computer to perform the Target location method.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

一种采用激光扫描的目标定位方法及激光接收装置(700),包括:激光接收装置(700)记录接收到第一激光旋转扫描装置发射的同步信号的第一时间及接收到激光信号的第二时间,确定接收时长并根据接收时长确定第一激光旋转扫描装置的旋转角度,根据N个激光旋转扫描装置的旋转角度确定激光接收装置(700)的位置(与目标对象位置相同),第一激光旋转扫描装置为激光发射装置的N个激光旋转扫描装置中的任一个,N大于等于3。只需要至少三个激光旋转扫描装置,即可实现对激光接收装置(700)定位,对光、机、电要求不高,并且激光接收装置(700)中的激光敏感元件(603)的数量只需要至少一个就可以,因而装置结构比较简单。

Description

一种采用激光扫描的目标定位方法及激光接收装置
本申请要求在2016年5月31日提交中华人民共和国知识产权局、申请号为201610379036.4,发明名称为“一种采用激光扫描的目标定位方法及激光接收装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电子技术领域,尤其涉及一种采用激光扫描的目标定位方法及激光接收装置。
背景技术
定位技术是基于位置的服务、虚拟现实等应用的支撑技术。为提升用户体验,对定位的精准性、实时性要求越来越高。激光由于单色性、方向性好,是实现目标精准定位的主要技术手段之一。目前激光用于目标定位和跟踪的主要方法有:
1)基于测量激光飞行时间(ToF,Time of Flight)的方法,典型应用有激光测距仪,2D(2dimensional,二维)激光雷达,3D(3dimensional,三维)激光雷达。该方法要求达到nS(纳秒)级以内的精准计时,对光、机、电都有较高要求。而且该方法采用点光斑,3D空间扫描的时间周期长、实时性差。
2)基于测量激光到达角度(AoA,Angle of Arrival)的方法,利用激光方向性好的特点,测量激光的到达角度,然后用AoA方法进行目标定位。该方法通过在目标对象上安装多个激光敏感元件,分别测量出激光到达多个激光敏感元件的时间。通过各个多个激光敏感元件的位置差,计算出目标的位置和运动轨迹。该方法对激光敏感元件的数量及安装位置有苛刻要求,导致装置结构复杂,不利于规模生产和维护。
综上所述,现有技术目标定位方法存在对设备的要求比较高,装置结构比较复杂的问题。
发明内容
本发明提供一种采用激光扫描的目标定位方法及激光接收装置,用以解决现有技术目标定位方法存在对设备的要求比较高,装置结构比较复杂的问题。
第一方面,本发明实施例提供一种采用激光扫描的目标定位方法,包括:
激光接收装置记录接收到第一激光旋转扫描装置发射的同步信号的第一时间,所述第一激光旋转扫描装置为激光发射装置的N个激光旋转扫描装置中的任一个,所述激光发射装置的N个激光旋转扫描装置发射的激光面可相交于一点且所述N个激光旋转扫描装置按顺序启动,N大于等于3;
所述激光接收装置记录接收到所述第一激光旋转扫描装置发射的激光信号的第二时间;
所述激光接收装置根据所述第一时间和所述第二时间,确定接收时长,所述接收时长用于表示自接收到所述同步信号至接收到激光信号之间的时间间隔;
所述激光接收装置根据所述接收时长,确定所述第一激光旋转扫描装置的旋转角度;
所述激光接收装置根据所述N个激光旋转扫描装置的旋转角度,确定所述激光接收装置的位置,并将所述激光接收装置的位置作为目标对象的位置,所述激光接收装置位于所述目标对象所在的位置。
本发明实施例提供的方法,激光接收装置记录接收到第一激光旋转扫描装置发射的同步信号的第一时间,记录接收到所述第一激光旋转扫描装置发射的激光信号的第二时间,根据所述第一时间和所述第二时间确定接收时长,根据所述接收时长,确定所述第一激光旋转扫描装置的旋转角度,以及根据N个激光旋转扫描装置的旋转角度,确定激光接收装置的位置,并将激光接收装置的位置作为目标对象的位置,所述激光接收装置位于所述目标对象所在的位置,其中,第一激光旋转扫描装置为激光发射装置的N个激光旋转扫描装置中的任一个,所述激光发射装置的N个激光旋转扫描装置发射的激光面 可相交于一点且所述N个激光旋转扫描装置按顺序启动,N大于等于3。该方法的激光发射装置中只需要三个或三个以上的激光旋转扫描装置,就可以通过接收激光发射装置发射的同步信号及激光信号实现对激光接收装置的定位,从而实现对目标对象的定位,该方法对光、机、电要求不高,并且激光接收装置中的激光敏感元件的数量只需要至少一个就可以,因而装置结构比较简单。
可选地,所述激光接收装置记录接收到第一激光旋转扫描装置发射的同步信号的第一时间,包括:
所述激光接收装置通过所述激光接收装置中的至少一个激光敏感元件接收所述同步信号,并在接收到所述同步信号后,通知所述激光接收装置中的计时单元记录所述第一时间;
所述激光接收装置记录接收到所述第一激光旋转扫描装置发射的激光信号的第二时间,包括:
所述激光接收装置通过所述至少一个激光敏感元件接收所述激光信号,并在接收到所述激光信号后,通知所述计时单元记录所述第二时间。
可选地,所述激光接收装置根据所述接收时长,确定所述第一激光旋转扫描装置的旋转角度,包括:
所述激光接收装置将所述接收时长,作为所述第一激光旋转扫描装置的旋转时长;
所述激光接收装置根据所述第一激光旋转扫描装置的旋转时长及所述第一激光旋转扫描装置的转速,确定所述第一激光旋转扫描装置的旋转角度。
可选地,所述激光接收装置根据所述N个激光旋转扫描装置的旋转角度,确定所述激光接收装置的位置,包括:
所述激光接收装置从所述N个激光旋转扫描装置中选择三个激光旋转扫描装置,所述三个激光旋转扫描装置发射的激光面可相交于一点;
所述激光接收装置根据所述三个激光旋转扫描装置的旋转角度及所述三个激光旋转扫描装置所在的位置,通过三角定位法确定所述激光接收装置的 位置。
可选地,所述第一激光旋转扫描装置包含一字线激光模组、直流无刷马达及驱动器、镜面装置,且所述镜面装置固定在所述直流无刷马达及驱动器;
所述激光信号是由所述第一激光旋转扫描装置按如下方式发射的,包括:
所述第一激光旋转扫描装置通过所述镜面装置将所述一字线激光模组发射的激光信号反射到监测区域形成激光面,并通过所述直流无刷马达及驱动器的转动带动所述镜面装置的旋转,使得激光面旋转扫描所述监测区域,所述目标对象位于所述监测区域内。
可选地,所述同步信号是由所述第一激光旋转扫描装置按如下方式发射的:
所述第一激光旋转扫描装置通过所述第一激光旋转扫描装置中的角度传感器检测到所述直流无刷马达及驱动器旋转到需要启动扫描的初始角度时,通过同步模块发射所述同步信号到所述监测区域。
可选地,所述激光发射装置包含三个激光旋转扫描装置,其中两个激光旋转扫描装置中的镜面装置沿水平方向旋转且与一字线激光模组位于同一水平线;另外一个激光旋转扫描装置中的镜面装置沿竖直方向进行旋转且与一字线激光模组位于同一竖直线。
第二方面,本发明实施例提供一种激光接收装置,包括:
计时单元,用于记录接收到第一激光旋转扫描装置发射的同步信号的第一时间,所述第一激光旋转扫描装置为激光发射装置的N个激光旋转扫描装置中的任一个,所述激光发射装置的N个激光旋转扫描装置发射的激光面可相交于一点且所述N个激光旋转扫描装置按顺序启动,N大于等于3;记录接收到所述第一激光旋转扫描装置发射的激光信号的第二时间;以及根据所述第一时间和所述第二时间,确定接收时长,所述接收时长用于表示自接收到所述同步信号至接收到激光信号之间的时间间隔;
定位单元,用于根据所述接收时长,确定所述第一激光旋转扫描装置的旋转角度;根据所述N个激光旋转扫描装置的旋转角度,确定所述激光接收 装置的位置,并将所述激光接收装置的位置作为目标对象的位置,所述激光接收装置位于所述目标对象所在的位置。
可选地,所述激光接收装置还包括至少一个激光敏感元件,用于:在接收到所述同步信号后,通知所述计时单元记录所述第一时间;以及在接收到所述激光信号后,通知所述计时单元记录所述第二时间;
所述计时单元,具体用于:在接收到所述至少一个激光敏感元件的通知后记录所述第一时间;以及在接收到所述至少一个激光敏感元件的通知后记录所述第二时间。
可选地,所述定位单元,具体用于:
将所述接收时长,作为所述第一激光旋转扫描装置的旋转时长;
根据所述第一激光旋转扫描装置的旋转时长及所述第一激光旋转扫描装置的转速,确定所述第一激光旋转扫描装置的旋转角度。
可选地,所述定位单元,还用于:
从所述N个激光旋转扫描装置中选择三个激光旋转扫描装置,所述三个激光旋转扫描装置发射的激光面可相交于一点;
根据所述三个激光旋转扫描装置的旋转角度及所述三个激光旋转扫描装置所在的位置,通过三角定位法确定所述激光接收装置的位置。
可选地,所述第一激光旋转扫描装置包含一字线激光模组、直流无刷马达及驱动器、镜面装置,且所述镜面装置固定在所述直流无刷马达及驱动器;
所述一字线激光模组用于发射激光信号到所述镜面装置;
所述镜面装置,用于将所述一字线激光模组发射的激光信号反射到监测区域形成激光面;
所述直流无刷马达及驱动器,用于通过所述直流无刷马达及驱动器的转动带动所述镜面装置的旋转,使得所述激光面旋转扫描所述监测区域,所述目标对象位于所述监测区域内。
可选地,所述第一激光旋转扫描装置还包括角度传感器,用于在检测到所述直流无刷马达及驱动器旋转到需要启动扫描的初始角度时,通知同步模 块发射所述同步信号到所述监测区域。
可选地,所述激光发射装置包含三个激光旋转扫描装置,其中两个激光旋转扫描装置中的镜面装置沿水平方向旋转且与一字线激光模组位于同一水平线;另外一个激光旋转扫描装置中的镜面装置沿竖直方向进行旋转且与一字线激光模组位于同一竖直线。
第三方面,本发明还提供一种激光接收装置,包括:
至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利上述第一方面任一所述方法。
在一种可能的设计中,激光接收装置的结构中包括至少一个处理器,所述处理器被配置为支持激光接收装置执行上述第一方面的目标定位方法中相应的功能。激光接收装置中还可以包括存储器,所述存储器用于与处理器耦合,其保存激光接收装置必要的程序指令和数据。
第四方面,本发明实施例还提供一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令用于使所述计算机执行上述第一方面任一所述方法。
第五方面,本发明实施例还提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述第一方面的方法。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性 的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种采用激光扫描的目标定位方法流程图;
图2为本发明实施例提供的类型一的激光发射装置示意图;
图3为本发明实施例提供的类型二的激光发射装置中的激光旋转扫描装置示意图;
图4为本发明实施例提供的三角定位法示意图;
图5为本发明实施例提供的一种采用激光扫描的目标定位方法详细流程图;
图6为本发明实施例提供的一种激光接收装置示意图;
图7为本发明实施例提供的一种激光接收装置示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
下面结合说明书附图对本发明实施例作进一步详细描述。
如图1所示,本发明实施例提供的一种采用激光扫描的目标定位方法,包括:
步骤101、激光接收装置记录接收到第一激光旋转扫描装置发射的同步信号的第一时间,所述第一激光旋转扫描装置为激光发射装置的N个激光旋转扫描装置中的任一个,所述激光发射装置的N个激光旋转扫描装置发射的激光面可相交于一点且所述N个激光旋转扫描装置按顺序启动,N大于等于3;
步骤102、所述激光接收装置记录接收到所述第一激光旋转扫描装置发射的激光信号的第二时间;
步骤103、所述激光接收装置根据所述第一时间和所述第二时间,确定接 收时长,所述接收时长用于表示自接收到所述同步信号至接收到激光信号之间的时间间隔;
步骤104、所述激光接收装置根据所述接收时长,确定所述第一激光旋转扫描装置的旋转角度;
步骤105、所述激光接收装置根据所述N个激光旋转扫描装置的旋转角度,确定所述激光接收装置的位置,并将所述激光接收装置的位置作为目标对象的位置,所述激光接收装置位于所述目标对象所在的位置。
在本发明实施例中,目标定位***包含激光发射装置和激光接收装置,并且激光发射装置包含N个激光旋转扫描装置,N为大于或等于3的整数,也就是说,在本发明中,激光发射装置中包含至少三个激光旋转扫描装置,并且所述至少三个激光旋转扫描装置可以是安装为一体结构,也可以是激光发射装置中的多个激光旋转扫描装置相互之间独立分布,下面对两种类型的激光发射装置分别介绍。
类型一、所述至少三个激光旋转扫描装置安装为一体结构
即一个激光发射装置内部安装有至少三个激光旋转扫描装置,在使用的时候,所有的激光旋转扫描装置都是位于同一个位置,所有的激光旋转扫描装置可以当做一个整体来看待,每个激光旋转扫描装置都可以发射出激光面对监测区域进行扫描,所述至少三个激光旋转扫描装置发射出的激光面可以相交于一点,如图2所示,为类型一的激光发射装置示意图,其中,示例性地给出了其中包含三个激光旋转扫描装置(实际应用中,可以多于三个),每个激光旋转扫描装置包含有一字线激光模组、镜面装置、联轴器、直流无刷马达及驱动器,所述一字线激光模组用于发射激光信号到镜面装置,所述镜面装置用于将一字线激光模组发射到镜面装置的激光信号反射到监测区域,联轴器用于将镜面装置固定于直流无刷马达及驱动器,直流无刷马达及驱动器可进行匀速转动,从而带动镜面装置的旋转,因而可实现对监测区域进行激光扫描。此外激光发射装置中还包含一个同步模块和一个多轴联动控制模块,同步模块用于发射同步信号给激光接收装置,实现与激光接收装置之间 的初始角度同步,多轴联动控制模块控制每个激光旋转扫描装置中的直流无刷马达及驱动器的转速,以及用于实现对所有激光旋转扫描装置的激光扫描顺序进行控制。
类型二、激光发射装置包含的至少三个激光旋转扫描装置分别为独立装置
在该类型中,每个激光旋转扫描装置是一个单独的装置,所述至少三个激光旋转扫描装置可以位于同一个位置,也可以位于不同的位置,举例来说,假设监测区域是一个房间,则在类型二中,可以将多个激光旋转扫描装置分别放置于房间各个角落、房间中间、或是房间内天花板上,从而实现从多个位置发射激光信号对监测区域进行激光扫描。如图3所示,为类型二的激光发射装置中的激光旋转扫描装置示意图,其中包含有一字线激光模组、镜面装置、联轴器、直流无刷马达及驱动器,每个模块的功能与类型一中的相应模块的功能相同,在此不赘述,并且,类型二中的每个激光旋转扫描装置都包含有一个同步模块,用于发射同步信号给激光接收装置,实现与激光接收装置之间的初始角度同步。所有的激光旋转扫描装置之间可以通过有线连接的方式进行通信,也可以通过无线数据传输的方式进行通信,并且,优选地,可以在监测区域中增加一个总控装置,其用途与类型一的多轴联动控制模块的用途类似,用于实现对每个激光旋转扫描装置中的直流无刷马达及驱动器的转速进行控制,以及用于实现对所有激光旋转扫描装置的激光扫描顺序进行控制。
本发明实施例中的激光接收装置放置于目标对象所在的位置,通过接收多个激光旋转扫描装置发射的激光信号,从而确定激光接收装置分别与每个激光旋转扫描装置之间的相对位置关系,进而定位出激光接收装置所在的位置,也即定位出目标对象所在的位置。
下面进行具体说明。在本发明实施例中,为方便说明,后续均以类型一的激光发射装置为例进行说明,即所有的激光旋转扫描装置是安装为一体结构的。对于类型二的激光发射装置,其原理与类型一的激光发射装置相同。 以及,为方便说明,下面对激光发射装置中的任一个激光旋转扫描装置统称为第一激光旋转扫描装置。
在进行目标对象定位之前,首先要部署好激光发射装置的位置,例如将激光发射装置放置于监测区域的一个角落,从而只要激光旋转扫描装置中的镜面装置旋转45度,即可实现对监测区域的90度激光扫描,也即实现了对监测区域的完整激光扫描。
可选地,第一激光旋转扫描装置包含一字线激光模组、直流无刷马达及驱动器、镜面装置,且所述镜面装置固定在所述直流无刷马达及驱动器;所述激光信号是由所述第一激光旋转扫描装置按如下方式发射的,包括:所述第一激光旋转扫描装置通过所述镜面装置将所述一字线激光模组发射的激光信号反射到监测区域形成激光面,并通过所述直流无刷马达及驱动器的转动带动所述镜面装置的旋转,使得激光面旋转扫描所述监测区域,所述目标对象位于所述监测区域内。
可参照图2,第一激光旋转扫描装置中的一字线激光模组发射出激光信号,打到镜面装置上,镜面装置将激光信号反射到监测区域中,形成一个激光面,并且由于镜面装置固定在所述直流无刷马达及驱动器,例如可选地,镜面装置通过一个联轴器固定在所述直流无刷马达及驱动器,由多轴联动控制模块驱动所述直流无刷马达及驱动器的转动,从而带动镜面装置的旋转,因而可实现将一字线激光模组发射的激光信号反射到监测区域,且形成一个激光面对监测区域进行扫描,只要激光接收装置位于监测区域,且位于第一激光旋转扫描装置的激光扫描范围,则激光接收装置一定可以接收到第一激光旋转扫描装置发射出的激光信号。
在部署好激光发射装置后,通过多轴联动控制模块控制多个激光旋转扫描装置分别对监测区域进行激光扫描,举例来说,假设有三台激光旋转扫描装置,分别用A、B、C表示,则可以控制按照A-B-C-A-B-C-A-B-C-……的顺序对监测区域进行周期性的激光扫描,并且同一时刻只能有一个激光旋转扫描装置对监测区域进行激光扫描。
可选地,所述激光发射装置包含三个激光旋转扫描装置,其中两个激光旋转扫描装置中的镜面装置沿水平方向旋转且与一字线激光模组位于同一水平线;另外一个激光旋转扫描装置中的镜面装置沿竖直方向进行旋转且与一字线激光模组位于同一竖直线。
以激光发射装置具有三个激光旋转扫描装置为例,则为了保证三个激光旋转扫描装置发射出的激光面可以相交于一点,因此可以使得其中两个激光旋转扫描装置中的镜面装置沿水平方向旋转且与一字线激光模组位于同一水平线,另外一个激光旋转扫描装置中的镜面装置沿竖直方向进行旋转且与一字线激光模组位于同一竖直线,其结构如图2中所示,其中两侧的激光旋转扫描装置中的镜面装置沿水平方向旋转,中间的激光旋转扫描装置中的镜面装置沿竖直方向旋转,从而三个激光旋转扫描装置发射的激光面可以相交于一点。
当然,上述方式只是给出的一种优选方式,实际应用中,只要所有的激光旋转扫描装置的扫描方向不是完全一样就可以(比如各种倾斜的部署方式等),之所以有这种部署上的要求,是为了保证各个激光旋转扫描装置发射的激光面可以相交于一点。
可选地,所述沿水平方向进行旋转发射激光信号的两个激光旋转扫描装置之间的距离大于或等于0.05m。
在上述步骤101中,激光接收装置放置在监测区域中,当激光接收装置接收到第一激光旋转扫描装置发射的同步信号时,记录下第一时间,其中,所述第一激光旋转扫描装置为激光发射装置的N个激光旋转扫描装置中的任一个,所述激光发射装置的N个激光旋转扫描装置发射的激光面可相交于一点且所述N个激光旋转扫描装置按顺序启动,N大于等于3。
其中,可选地,所述同步信号是由所述第一激光旋转扫描装置按如下方式发射的:所述第一激光旋转扫描装置通过所述第一激光旋转扫描装置中的角度传感器检测到所述直流无刷马达及驱动器旋转到需要启动扫描的初始角度时,通过同步模块发射所述同步信号到所述监测区域。可选地,所述角度 传感器为光电编码器、霍尔传感器或光电开关。
即,当第一激光旋转扫描装置检测到直流无刷马达及驱动器旋转位于初始角度位置(初始角度位置可以由认为预先设定)时,可通知同步模块发送一个同步信号到监测区域,可选地,所述同步信号为射频信号、闪烁光信号或有线信号,从而使得接收装置在接收到所述同步信号后,记录下第一时间,所述第一时间表明第一激光旋转扫描装置当前处于初始角度位置。
可选地,所述激光接收装置记录接收到第一激光旋转扫描装置发射的同步信号的第一时间,包括:所述激光接收装置通过所述激光接收装置中的至少一个激光敏感元件接收所述同步信号,并在接收到所述同步信号后,通知所述激光接收装置中的计时单元记录所述第一时间。
即第一激光旋转扫描装置中包含至少一个激光敏感元件,用于接收所述同步信号,以及包含一个计时单元,用于记录所述第一时间。
在现有技术中,由于激光发射装置中一般只包含有一个或两个激光旋转扫描装置,因此为了能够对激光接收装置的位置进行精确定位,在激光接收装置中一般包含有多个激光敏感元件,具体地,一般需要十个以上的激光敏感元件才可以配合激光发射装置中的旋转扫描装置确定出激光接收装置的具***置;而在本发明实施例中,激光接收装置中的激光敏感元件最少只需要一个即可,当然也可以是多个,如果是多个的话,只需要其中一个可以正常工作即可。实际应用中,激光敏感元件可以是光敏二极管、光敏三极管等。因此,在本发明实施例中,通过对激光接收装置中激光敏感元件数量的减少,大大降低了激光接收装置的结构复杂性,同时保证了激光接收装置定位的精确性。
上述步骤102中,激光接收装置在接收到第一激光旋转扫描装置发射的激光信号时,记录下第二时间,所述第二时间用于表明激光接收装置接收到第一激光旋转扫描装置发射的激光信号的时间。
可选地,所述激光接收装置记录接收到所述第一激光旋转扫描装置发射的激光信号的第二时间,包括:所述激光接收装置通过所述至少一个激光敏 感元件接收所述激光信号,并在接收到所述激光信号后,通知所述计时单元记录所述第二时间。
上述步骤103中,所述激光接收装置根据所述第一时间和所述第二时间,确定接收时长,所述接收时长用于表示自接收到所述同步信号至接收到激光信号之间的时间间隔。
上述步骤104中,所述激光接收装置根据所述接收时长,确定所述第一激光旋转扫描装置的旋转角度。
可选地,所述激光接收装置根据所述接收时长,确定所述第一激光旋转扫描装置的旋转角度,包括:所述激光接收装置将所述接收时长,作为所述第一激光旋转扫描装置的旋转时长;所述激光接收装置根据所述第一激光旋转扫描装置的旋转时长及所述第一激光旋转扫描装置的转速,确定所述第一激光旋转扫描装置的旋转角度。
举例来说,假设直流无刷马达及驱动器的转速为3000转/分钟,即为20毫秒/转,因此转45度的时间为20毫秒/8=2.5毫秒。假设当前接收装置中的计时单元的统计的接收时长为1.25毫秒,则表明直流无刷马达及驱动器选择了22.5度,因而可以确定激光接收装置处于第一激光旋转扫描装置的45度方向角位置。
上述步骤105中,所述激光接收装置根据所述N个激光旋转扫描装置的旋转角度,确定所述激光接收装置的位置,并将所述激光接收装置的位置作为目标对象的位置,所述激光接收装置位于所述目标对象所在的位置。
可选地,所述激光接收装置根据所述N个激光旋转扫描装置的旋转角度,确定所述激光接收装置的位置,包括:所述激光接收装置从所述N个激光旋转扫描装置中选择三个激光旋转扫描装置,所述三个激光旋转扫描装置发射的激光面可相交于一点;所述激光接收装置根据所述三个激光旋转扫描装置的旋转角度及所述三个激光旋转扫描装置所在的位置,通过三角定位法确定所述激光接收装置的位置。
举例来说,参照图4,为三角定位法示意图,其中图4例子中包含有三个 激光旋转扫描装置且位于同一水平线上,其中,激光旋转扫描装置A和激光旋转扫描装置C发射的激光信号沿水平方向对监测区域进行扫描,激光旋转扫描装置B发射的激光信号沿竖直方向对监测区域进行扫描,激光旋转扫描装置A、激光旋转扫描装置B、激光旋转扫描装置C在坐标系中的位置分别为(a,0,0),(0,0,0),(c,0,0),并且X轴负方向为激光旋转扫描装置A和激光旋转扫描装置C发射出的激光信号的初始角度位置,Y轴负方向为激光旋转扫描装置B发射出的激光信号的初始角度位置,激光接收装置确定得到的激光旋转扫描装置A的旋转角度为α,激光旋转扫描装置B的旋转角度为β,激光旋转扫描装置C的旋转角度为γ,假设激光接收装置所在的位置为D(x,y,z),则可以通过下列公式计算得到D的坐标:
Figure PCTCN2017077343-appb-000001
通过上述方程,由于α,β,γ,a,b都是已知量,因此可以求解得到激光接收装置所在的位置为D(x,y,z),并且由于激光接收装置位于目标对象所在的位置,因此得到了激光接收装置所在的位置,即可得知目标对象所在的位置。
本发明实施例提供的方法,激光接收装置记录接收到第一激光旋转扫描装置发射的同步信号的第一时间,记录接收到所述第一激光旋转扫描装置发射的激光信号的第二时间,根据所述第一时间和所述第二时间确定接收时长,根据所述接收时长,确定所述第一激光旋转扫描装置的旋转角度,以及根据N个激光旋转扫描装置的旋转角度,确定激光接收装置的位置,并将激光接收装置的位置作为目标对象的位置,所述激光接收装置位于所述目标对象所在的位置,其中,第一激光旋转扫描装置为激光发射装置的N个激光旋转扫描装置中的任一个,所述激光发射装置的N个激光旋转扫描装置发射的激光面可相交于一点且所述N个激光旋转扫描装置按顺序启动,N大于等于3。该 方法的激光发射装置中只需要三个或三个以上的激光旋转扫描装置,就可以通过接收激光发射装置发射的同步信号及激光信号实现对激光接收装置的定位,从而实现对目标对象的定位,该方法对光、机、电要求不高,并且激光接收装置中的激光敏感元件的数量只需要至少一个就可以,因而装置结构比较简单。
下面对本发明实施例提供的一种采用激光扫描的目标定位方法做详细描述,如图5所示,包括:
步骤501、激光接收装置通过所述激光接收装置中的至少一个激光敏感元件接收第一激光旋转扫描装置发射的同步信号,并在接收到所述同步信号后,通知所述激光接收装置中的计时单元记录所述第一时间,所述第一激光旋转扫描装置为激光发射装置的N个激光旋转扫描装置中的任一个,所述激光发射装置的N个激光旋转扫描装置发射的激光面可相交于一点且所述N个激光旋转扫描装置按顺序启动,N大于等于3;
步骤502、所述激光接收装置通过所述至少一个激光敏感元件接收所述第一激光旋转扫描装置发射的激光信号,并在接收到所述激光信号后,通知所述计时单元记录所述第二时间;
步骤503、所述激光接收装置根据所述第一时间和所述第二时间,确定接收时长,所述接收时长用于表示自接收到所述同步信号至接收到激光信号之间的时间间隔;
步骤504、所述激光接收装置将所述接收时长,作为所述第一激光旋转扫描装置的旋转时长;
步骤505、所述激光接收装置根据所述第一激光旋转扫描装置的旋转时长及所述第一激光旋转扫描装置的转速,确定所述第一激光旋转扫描装置的旋转角度;
步骤506、所述激光接收装置从所述N个激光旋转扫描装置中选择三个激光旋转扫描装置,所述三个激光旋转扫描装置发射的激光面可相交于一点;
步骤507、所述激光接收装置根据所述三个激光旋转扫描装置的旋转角度及所述三个激光旋转扫描装置所在的位置,通过三角定位法确定所述激光接收装置的位置。
本发明实施例提供的方法,激光接收装置记录接收到第一激光旋转扫描装置发射的同步信号的第一时间,记录接收到所述第一激光旋转扫描装置发射的激光信号的第二时间,根据所述第一时间和所述第二时间确定接收时长,根据所述接收时长,确定所述第一激光旋转扫描装置的旋转角度,以及根据N个激光旋转扫描装置的旋转角度,确定激光接收装置的位置,并将激光接收装置的位置作为目标对象的位置,所述激光接收装置位于所述目标对象所在的位置,其中,第一激光旋转扫描装置为激光发射装置的N个激光旋转扫描装置中的任一个,所述激光发射装置的N个激光旋转扫描装置发射的激光面可相交于一点且所述N个激光旋转扫描装置按顺序启动,N大于等于3。该方法的激光发射装置中只需要三个或三个以上的激光旋转扫描装置,就可以通过接收激光发射装置发射的同步信号及激光信号实现对激光接收装置的定位,从而实现对目标对象的定位,该方法对光、机、电要求不高,并且激光接收装置中的激光敏感元件的数量只需要至少一个就可以,因而装置结构比较简单。
基于相同的技术构思,本发明实施例还提供一种激光接收装置,如图6所示,包括:
计时单元601,用于记录接收到第一激光旋转扫描装置发射的同步信号的第一时间,所述第一激光旋转扫描装置为激光发射装置的N个激光旋转扫描装置中的任一个,所述激光发射装置的N个激光旋转扫描装置发射的激光面可相交于一点且所述N个激光旋转扫描装置按顺序启动,N大于等于3;记录接收到所述第一激光旋转扫描装置发射的激光信号的第二时间;以及根据所述第一时间和所述第二时间,确定接收时长,所述接收时长用于表示自接收到所述同步信号至接收到激光信号之间的时间间隔;
定位单元602,用于根据所述接收时长,确定所述第一激光旋转扫描装置的旋转角度;根据所述N个激光旋转扫描装置的旋转角度,确定所述激光接收装置的位置,并将所述激光接收装置的位置作为目标对象的位置,所述激光接收装置位于所述目标对象所在的位置。
可选地,所述激光接收装置还包括至少一个激光敏感元件603,用于:在接收到所述同步信号后,通知所述计时单元记录所述第一时间;以及在接收到所述激光信号后,通知所述计时单元记录所述第二时间;
所述计时单元601,具体用于:在接收到所述至少一个激光敏感元件的通知后记录所述第一时间;以及在接收到所述至少一个激光敏感元件的通知后记录所述第二时间。
可选地,所述定位单元602,具体用于:
将所述接收时长,作为所述第一激光旋转扫描装置的旋转时长;
根据所述第一激光旋转扫描装置的旋转时长及所述第一激光旋转扫描装置的转速,确定所述第一激光旋转扫描装置的旋转角度。
可选地,所述定位单元602,还用于:
从所述N个激光旋转扫描装置中选择三个激光旋转扫描装置,所述三个激光旋转扫描装置发射的激光面可相交于一点;
根据所述三个激光旋转扫描装置的旋转角度及所述三个激光旋转扫描装置所在的位置,通过三角定位法确定所述激光接收装置的位置。
可选地,所述第一激光旋转扫描装置包含一字线激光模组、直流无刷马达及驱动器、镜面装置,且所述镜面装置固定在所述直流无刷马达及驱动器;
所述一字线激光模组用于发射激光信号到所述镜面装置;
所述镜面装置,用于将所述一字线激光模组发射的激光信号反射到监测区域形成激光面;
所述直流无刷马达及驱动器,用于通过所述直流无刷马达及驱动器的转动带动所述镜面装置的旋转,使得所述激光面旋转扫描所述监测区域,所述目标对象位于所述监测区域内。
可选地,所述第一激光旋转扫描装置还包括角度传感器,用于在检测到所述直流无刷马达及驱动器旋转到需要启动扫描的初始角度时,通知同步模块发射所述同步信号到所述监测区域。
可选地,所述激光发射装置包含三个激光旋转扫描装置,其中两个激光旋转扫描装置中的镜面装置沿水平方向旋转且与一字线激光模组位于同一水平线;另外一个激光旋转扫描装置中的镜面装置沿竖直方向进行旋转且与一字线激光模组位于同一竖直线。
可选地,所述沿水平方向进行旋转发射激光信号的两个激光旋转扫描装置之间的距离大于或等于0.05m。
可选地,所述同步信号为射频信号、闪烁光信号或有线信号。
可选地,所述角度传感器为光电编码器、霍尔传感器或光电开关。
本发明实施例,激光接收装置记录接收到第一激光旋转扫描装置发射的同步信号的第一时间,记录接收到所述第一激光旋转扫描装置发射的激光信号的第二时间,根据所述第一时间和所述第二时间确定接收时长,根据所述接收时长,确定所述第一激光旋转扫描装置的旋转角度,以及根据N个激光旋转扫描装置的旋转角度,确定激光接收装置的位置,并将激光接收装置的位置作为目标对象的位置,所述激光接收装置位于所述目标对象所在的位置,其中,第一激光旋转扫描装置为激光发射装置的N个激光旋转扫描装置中的任一个,所述激光发射装置的N个激光旋转扫描装置发射的激光面可相交于一点且所述N个激光旋转扫描装置按顺序启动,N大于等于3。本发明实施例,激光发射装置中只需要三个或三个以上的激光旋转扫描装置,就可以通过接收激光发射装置发射的同步信号及激光信号实现对激光接收装置的定位,从而实现对目标对象的定位,该方法对光、机、电要求不高,并且激光接收装置中的激光敏感元件的数量只需要至少一个就可以,因而装置结构比较简单。
基于相同构思,参见图7,为本发明实施例提供的一种激光接收装置700 的硬件结构示意图,包括:
一个或多个处理器710以及存储器720,图7中以一个处理器710为例。
执行目标定位方法的激光接收装置还可以包括:输入装置730和输出装置740。
处理器710、存储器720、输入装置730和输出装置740可以通过总线或者其他方式连接,图7中以通过总线连接为例。
存储器720作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本发明实施例中的目标定位方法对应的程序指令/模块(例如,附图6所示的计时单元601、定位单元602)。处理器710通过运行存储在存储器720中的非易失性软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例中的目标定位方法。
存储器720可以包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需要的应用程序;存储数据区可存储根据列表项操作的处理装置的使用所创建的数据等。此外,存储器720可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器720可选包括相对于处理器710远程设置的存储器,这些远程存储器可以通过网络连接至列表项操作的处理装置。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置730可接收输入的数字或字符信息,以及产生与激光接收装置的用户设置以及功能控制有关的键信号输入。输出装置740可包括显示屏等显示设备。
所述一个或者多个模块存储在所述存储器720中,当被所述一个或者多个处理器710执行时,执行上述任意方法实施例中的目标定位方法。
上述产品可执行本发明实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明实施 例所提供的方法。
所述至少一个处理器710用于:记录接收到第一激光旋转扫描装置发射的同步信号的第一时间,所述第一激光旋转扫描装置为激光发射装置的N个激光旋转扫描装置中的任一个,所述激光发射装置的N个激光旋转扫描装置发射的激光面可相交于一点且所述N个激光旋转扫描装置按顺序启动,N大于等于3;记录接收到所述第一激光旋转扫描装置发射的激光信号的第二时间;以及根据所述第一时间和所述第二时间,确定接收时长,所述接收时长用于表示自接收到所述同步信号至接收到激光信号之间的时间间隔;根据所述接收时长,确定所述第一激光旋转扫描装置的旋转角度;根据所述N个激光旋转扫描装置的旋转角度,确定所述激光接收装置的位置,并将所述激光接收装置的位置作为目标对象的位置,所述激光接收装置位于所述目标对象所在的位置。
可选地,所述激光接收装置还包括至少一个激光敏感元件,用于:在接收到所述同步信号后,通知所述计时单元记录所述第一时间;以及在接收到所述激光信号后,通知所述计时单元记录所述第二时间;
所述处理器710具体用于:在接收到所述至少一个激光敏感元件的通知后记录所述第一时间;以及在接收到所述至少一个激光敏感元件的通知后记录所述第二时间。
可选地,所述处理器710,具体用于:将所述接收时长,作为所述第一激光旋转扫描装置的旋转时长;根据所述第一激光旋转扫描装置的旋转时长及所述第一激光旋转扫描装置的转速,确定所述第一激光旋转扫描装置的旋转角度。
可选地,所述处理器710,还用于:从所述N个激光旋转扫描装置中选择三个激光旋转扫描装置,所述三个激光旋转扫描装置发射的激光面可相交于一点;根据所述三个激光旋转扫描装置的旋转角度及所述三个激光旋转扫描装置所在的位置,通过三角定位法确定所述激光接收装置的位置。
可选地,所述第一激光旋转扫描装置包含一字线激光模组、直流无刷马 达及驱动器、镜面装置,且所述镜面装置固定在所述直流无刷马达及驱动器;
所述一字线激光模组用于发射激光信号到所述镜面装置;
所述镜面装置,用于将所述一字线激光模组发射的激光信号反射到监测区域形成激光面;
所述直流无刷马达及驱动器,用于通过所述直流无刷马达及驱动器的转动带动所述镜面装置的旋转,使得所述激光面旋转扫描所述监测区域,所述目标对象位于所述监测区域内。
可选地,所述第一激光旋转扫描装置还包括角度传感器,用于在检测到所述直流无刷马达及驱动器旋转到需要启动扫描的初始角度时,通知同步模块发射所述同步信号到所述监测区域。
可选地,所述激光发射装置包含三个激光旋转扫描装置,其中两个激光旋转扫描装置中的镜面装置沿水平方向旋转且与一字线激光模组位于同一水平线;另外一个激光旋转扫描装置中的镜面装置沿竖直方向进行旋转且与一字线激光模组位于同一竖直线。
本发明实施例还提供一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令用于使所述计算机执行上述任一项所述的目标定位方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(RandomAccessMemory,RAM)等。
本发明实施例还提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述任一项所述的 目标定位方法。
本发明是参照根据本发明实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (17)

  1. 一种采用激光扫描的目标定位方法,其特征在于,包括:
    激光接收装置记录接收到第一激光旋转扫描装置发射的同步信号的第一时间,所述第一激光旋转扫描装置为激光发射装置的N个激光旋转扫描装置中的任一个,所述激光发射装置的N个激光旋转扫描装置发射的激光面可相交于一点且所述N个激光旋转扫描装置按顺序启动,N大于等于3;
    所述激光接收装置记录接收到所述第一激光旋转扫描装置发射的激光信号的第二时间;
    所述激光接收装置根据所述第一时间和所述第二时间,确定接收时长,所述接收时长用于表示自接收到所述同步信号至接收到激光信号之间的时间间隔;
    所述激光接收装置根据所述接收时长,确定所述第一激光旋转扫描装置的旋转角度;
    所述激光接收装置根据所述N个激光旋转扫描装置的旋转角度,确定所述激光接收装置的位置,并将所述激光接收装置的位置作为目标对象的位置,所述激光接收装置位于所述目标对象所在的位置。
  2. 如权利要求1所述的方法,其特征在于,所述激光接收装置记录接收到第一激光旋转扫描装置发射的同步信号的第一时间,包括:
    所述激光接收装置通过所述激光接收装置中的至少一个激光敏感元件接收所述同步信号,并在接收到所述同步信号后,通知所述激光接收装置中的计时单元记录所述第一时间;
    所述激光接收装置记录接收到所述第一激光旋转扫描装置发射的激光信号的第二时间,包括:
    所述激光接收装置通过所述至少一个激光敏感元件接收所述激光信号,并在接收到所述激光信号后,通知所述计时单元记录所述第二时间。
  3. 如权利要求1所述的方法,其特征在于,所述激光接收装置根据所述 接收时长,确定所述第一激光旋转扫描装置的旋转角度,包括:
    所述激光接收装置将所述接收时长,作为所述第一激光旋转扫描装置的旋转时长;
    所述激光接收装置根据所述第一激光旋转扫描装置的旋转时长及所述第一激光旋转扫描装置的转速,确定所述第一激光旋转扫描装置的旋转角度。
  4. 如权利要求1所述的方法,其特征在于,所述激光接收装置根据所述N个激光旋转扫描装置的旋转角度,确定所述激光接收装置的位置,包括:
    所述激光接收装置从所述N个激光旋转扫描装置中选择三个激光旋转扫描装置,所述三个激光旋转扫描装置发射的激光面可相交于一点;
    所述激光接收装置根据所述三个激光旋转扫描装置的旋转角度及所述三个激光旋转扫描装置所在的位置,通过三角定位法确定所述激光接收装置的位置。
  5. 如权利要求1所述的方法,其特征在于,所述第一激光旋转扫描装置包含一字线激光模组、直流无刷马达及驱动器、镜面装置,且所述镜面装置固定在所述直流无刷马达及驱动器;
    所述激光信号是由所述第一激光旋转扫描装置按如下方式发射的,包括:
    所述第一激光旋转扫描装置通过所述镜面装置将所述一字线激光模组发射的激光信号反射到监测区域形成激光面,并通过所述直流无刷马达及驱动器的转动带动所述镜面装置的旋转,使得激光面旋转扫描所述监测区域,所述目标对象位于所述监测区域内。
  6. 如权利要求5所述的方法,其特征在于,所述同步信号是由所述第一激光旋转扫描装置按如下方式发射的:
    所述第一激光旋转扫描装置通过所述第一激光旋转扫描装置中的角度传感器检测到所述直流无刷马达及驱动器旋转到需要启动扫描的初始角度时,通过同步模块发射所述同步信号到所述监测区域。
  7. 如权利要求5所述的方法,其特征在于,所述激光发射装置包含三个激光旋转扫描装置,其中两个激光旋转扫描装置中的镜面装置沿水平方向旋 转且与一字线激光模组位于同一水平线;另外一个激光旋转扫描装置中的镜面装置沿竖直方向进行旋转且与一字线激光模组位于同一竖直线。
  8. 一种激光接收装置,其特征在于,包括:
    计时单元,用于记录接收到第一激光旋转扫描装置发射的同步信号的第一时间,所述第一激光旋转扫描装置为激光发射装置的N个激光旋转扫描装置中的任一个,所述激光发射装置的N个激光旋转扫描装置发射的激光面可相交于一点且所述N个激光旋转扫描装置按顺序启动,N大于等于3;记录接收到所述第一激光旋转扫描装置发射的激光信号的第二时间;以及根据所述第一时间和所述第二时间,确定接收时长,所述接收时长用于表示自接收到所述同步信号至接收到激光信号之间的时间间隔;
    定位单元,用于根据所述接收时长,确定所述第一激光旋转扫描装置的旋转角度;根据所述N个激光旋转扫描装置的旋转角度,确定所述激光接收装置的位置,并将所述激光接收装置的位置作为目标对象的位置,所述激光接收装置位于所述目标对象所在的位置。
  9. 如权利要求8所述的激光接收装置,其特征在于,所述激光接收装置还包括至少一个激光敏感元件,用于:在接收到所述同步信号后,通知所述计时单元记录所述第一时间;以及在接收到所述激光信号后,通知所述计时单元记录所述第二时间;
    所述计时单元,具体用于:在接收到所述至少一个激光敏感元件的通知后记录所述第一时间;以及在接收到所述至少一个激光敏感元件的通知后记录所述第二时间。
  10. 如权利要求8所述的激光接收装置,其特征在于,所述定位单元,具体用于:
    将所述接收时长,作为所述第一激光旋转扫描装置的旋转时长;
    根据所述第一激光旋转扫描装置的旋转时长及所述第一激光旋转扫描装置的转速,确定所述第一激光旋转扫描装置的旋转角度。
  11. 如权利要求8所述的激光接收装置,其特征在于,所述定位单元, 还用于:
    从所述N个激光旋转扫描装置中选择三个激光旋转扫描装置,所述三个激光旋转扫描装置发射的激光面可相交于一点;
    根据所述三个激光旋转扫描装置的旋转角度及所述三个激光旋转扫描装置所在的位置,通过三角定位法确定所述激光接收装置的位置。
  12. 如权利要求8所述的激光接收装置,其特征在于,所述第一激光旋转扫描装置包含一字线激光模组、直流无刷马达及驱动器、镜面装置,且所述镜面装置固定在所述直流无刷马达及驱动器;
    所述一字线激光模组用于发射激光信号到所述镜面装置;
    所述镜面装置,用于将所述一字线激光模组发射的激光信号反射到监测区域形成激光面;
    所述直流无刷马达及驱动器,用于通过所述直流无刷马达及驱动器的转动带动所述镜面装置的旋转,使得所述激光面旋转扫描所述监测区域,所述目标对象位于所述监测区域内。
  13. 如权利要求12所述的激光接收装置,其特征在于,所述第一激光旋转扫描装置还包括角度传感器,用于在检测到所述直流无刷马达及驱动器旋转到需要启动扫描的初始角度时,通知同步模块发射所述同步信号到所述监测区域。
  14. 如权利要求12所述的激光接收装置,其特征在于,所述激光发射装置包含三个激光旋转扫描装置,其中两个激光旋转扫描装置中的镜面装置沿水平方向旋转且与一字线激光模组位于同一水平线;另外一个激光旋转扫描装置中的镜面装置沿竖直方向进行旋转且与一字线激光模组位于同一竖直线。
  15. 一种激光接收装置,其特征在于,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所 述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-7任一所述方法。
  16. 一种非暂态计算机可读存储介质,其特征在于,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令用于使所述计算机执行权利要求1-7任一所述方法。
  17. 一种计算机程序产品,其特征在于,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行权利要求1-7所述的方法。
PCT/CN2017/077343 2016-05-31 2017-03-20 一种采用激光扫描的目标定位方法及激光接收装置 WO2017206571A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610379036.4 2016-05-31
CN201610379036.4A CN106093863B (zh) 2016-05-31 2016-05-31 一种采用激光扫描的目标定位方法及激光接收装置

Publications (1)

Publication Number Publication Date
WO2017206571A1 true WO2017206571A1 (zh) 2017-12-07

Family

ID=57230583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077343 WO2017206571A1 (zh) 2016-05-31 2017-03-20 一种采用激光扫描的目标定位方法及激光接收装置

Country Status (2)

Country Link
CN (1) CN106093863B (zh)
WO (1) WO2017206571A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111337876A (zh) * 2020-03-04 2020-06-26 广东博智林机器人有限公司 定位装置及目标定位方法
CN111948660A (zh) * 2020-08-19 2020-11-17 四川道通达工程技术有限公司 一种基于激光扫描的目标体自动识别方法
CN112485773A (zh) * 2020-11-09 2021-03-12 中国人民解放军军事科学院国防科技创新研究院 激光雷达与倾角传感器的外参信息标定方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106093863B (zh) * 2016-05-31 2018-08-14 上海乐相科技有限公司 一种采用激光扫描的目标定位方法及激光接收装置
CN107024677B (zh) * 2016-11-15 2021-07-27 上海乐相科技有限公司 一种虚拟现实定位***
CN106526539B (zh) * 2016-11-25 2023-12-08 北京凌宇智控科技有限公司 一种定位基站、定位***及定位方法
CN106526538B (zh) * 2016-11-25 2024-02-20 北京凌宇智控科技有限公司 一种定位基站、定位***及定位方法
CN108226865A (zh) * 2016-12-22 2018-06-29 上海乐相科技有限公司 一种采用激光扫描的目标定位方法及装置
CN106802412B (zh) * 2017-01-23 2020-08-04 南京大学 一种基于激光及无线技术的近距离移动定位***及其方法
CN107271960A (zh) * 2017-05-26 2017-10-20 中国科学院半导体研究所 飞行器定位***及其定位方法
CN108426562A (zh) * 2018-05-14 2018-08-21 北京雷图科技有限公司 一种激光隧道断面检测仪
CN108828520A (zh) * 2018-06-15 2018-11-16 深圳草莓创新技术有限公司 无人机的室内飞行方法及相关产品
CN111913150B (zh) * 2020-08-19 2023-12-01 成都清正公路工程试验检测有限公司 一种基于激光扫描的测站定位方法
CN112747751A (zh) * 2021-01-05 2021-05-04 北京中科深智科技有限公司 一种室内定位方法和定位***
CN113758480B (zh) * 2021-08-26 2022-07-26 南京英尼格玛工业自动化技术有限公司 一种面型激光定位***、agv定位校准***、以及agv定位方法
CN114353662B (zh) * 2021-12-31 2023-09-01 天津大学 一种无源多目标收发一体扫描基站

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100229A (en) * 1990-08-17 1992-03-31 Spatial Positioning Systems, Inc. Spatial positioning system
US5128794A (en) * 1990-12-31 1992-07-07 Honeywell Inc. Scanning laser helmet mounted sight
CN101672913A (zh) * 2009-10-27 2010-03-17 湖南农业大学 激光三点动态定位方法及***
EP2395150A2 (de) * 2010-06-11 2011-12-14 Wacker Neuson SE Vorrichtung und Verfahren zum Bestimmen der Position eines Arbeitsgeräts
CN105607034A (zh) * 2015-12-23 2016-05-25 北京凌宇智控科技有限公司 一种三维空间检测***、定位方法及***
CN106093863A (zh) * 2016-05-31 2016-11-09 上海乐相科技有限公司 一种采用激光扫描的目标定位方法及激光接收装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1632785A1 (de) * 2004-08-25 2006-03-08 Prüftechnik Dieter Busch Ag Positionsmessgerät auf Laserbasis
CN100451672C (zh) * 2005-01-19 2009-01-14 北京创先泰克科技有限公司 自动测定两个物体间相对方向的***和实施方法
CN2773714Y (zh) * 2005-02-21 2006-04-19 王治平 激光扫描探测器
CN101320094B (zh) * 2008-05-21 2011-05-04 旭丽电子(广州)有限公司 一种光源扫描定位***及其定位方法
CN104991244A (zh) * 2015-06-19 2015-10-21 上海卓易科技股份有限公司 一种测量目标物距离的方法、装置及移动终端
CN105068082A (zh) * 2015-08-19 2015-11-18 胡小波 一种激光雷达扫描探测方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100229A (en) * 1990-08-17 1992-03-31 Spatial Positioning Systems, Inc. Spatial positioning system
US5128794A (en) * 1990-12-31 1992-07-07 Honeywell Inc. Scanning laser helmet mounted sight
CN101672913A (zh) * 2009-10-27 2010-03-17 湖南农业大学 激光三点动态定位方法及***
EP2395150A2 (de) * 2010-06-11 2011-12-14 Wacker Neuson SE Vorrichtung und Verfahren zum Bestimmen der Position eines Arbeitsgeräts
CN105607034A (zh) * 2015-12-23 2016-05-25 北京凌宇智控科技有限公司 一种三维空间检测***、定位方法及***
CN106093863A (zh) * 2016-05-31 2016-11-09 上海乐相科技有限公司 一种采用激光扫描的目标定位方法及激光接收装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111337876A (zh) * 2020-03-04 2020-06-26 广东博智林机器人有限公司 定位装置及目标定位方法
CN111337876B (zh) * 2020-03-04 2022-09-27 广东博智林机器人有限公司 定位装置及目标定位方法
CN111948660A (zh) * 2020-08-19 2020-11-17 四川道通达工程技术有限公司 一种基于激光扫描的目标体自动识别方法
CN111948660B (zh) * 2020-08-19 2023-12-01 成都清正公路工程试验检测有限公司 一种基于激光扫描的目标体自动识别方法
CN112485773A (zh) * 2020-11-09 2021-03-12 中国人民解放军军事科学院国防科技创新研究院 激光雷达与倾角传感器的外参信息标定方法
CN112485773B (zh) * 2020-11-09 2023-06-06 中国人民解放军军事科学院国防科技创新研究院 激光雷达与倾角传感器的外参信息标定方法

Also Published As

Publication number Publication date
CN106093863B (zh) 2018-08-14
CN106093863A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2017206571A1 (zh) 一种采用激光扫描的目标定位方法及激光接收装置
US10088295B2 (en) Interactive spatial orientation method and system
CN106646355B (zh) 一种信号发送装置以及三维空间定位***
CN105974359B (zh) 一种定位设备、定位基站、空间定位***及方法
US10725147B2 (en) Positioning light beam emission system, method and indoor positioning system
JP2011517768A (ja) データセンタのラック内に設置されたコンピューティング機器への位置情報の提供
CN106526538A (zh) 一种定位基站、定位***及定位方法
CN107024677B (zh) 一种虚拟现实定位***
CN108226865A (zh) 一种采用激光扫描的目标定位方法及装置
TW201607306A (zh) 控制游標的方法、遙控器以及智慧電視
CN106878944B (zh) 一种校准定位基站坐标系的方法和定位校准装置
CN108781266A (zh) 信息处理装置、信息处理方法以及程序
WO2018095072A1 (zh) 定位基站、定位***及定位方法
CN106526539B (zh) 一种定位基站、定位***及定位方法
US20230236318A1 (en) PERFORMANCE OF A TIME OF FLIGHT (ToF) LASER RANGE FINDING SYSTEM USING ACOUSTIC-BASED DIRECTION OF ARRIVAL (DoA)
CN206248821U (zh) 一种定位基站及定位***
CN206209094U (zh) 一种定位基站及定位***
CN106383336B (zh) 一种定位基站和空间定位***
CN106526540B (zh) 一种定位基站、定位***及定位方法
WO2022228461A1 (zh) 一种基于激光雷达的三维超声成像方法和***
US10495735B2 (en) Using micro mirrors to improve the field of view of a 3D depth map
CN109828255B (zh) 一种扫描激光雷达装置和进行检测和角度同步的检测方法
CN107015215B (zh) 一种基于fpga的高重复频率三维扫描激光雷达扫描角测量电路
CN114697894A (zh) 一种室内定位方法、终端以及***
CN206348453U (zh) 一种定位基站和空间定位***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17805516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.04.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17805516

Country of ref document: EP

Kind code of ref document: A1