WO2017204268A1 - Production method and production device for crystalline microporous material - Google Patents

Production method and production device for crystalline microporous material Download PDF

Info

Publication number
WO2017204268A1
WO2017204268A1 PCT/JP2017/019442 JP2017019442W WO2017204268A1 WO 2017204268 A1 WO2017204268 A1 WO 2017204268A1 JP 2017019442 W JP2017019442 W JP 2017019442W WO 2017204268 A1 WO2017204268 A1 WO 2017204268A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
crystalline microporous
microporous material
raw material
reaction tube
Prior art date
Application number
PCT/JP2017/019442
Other languages
French (fr)
Japanese (ja)
Inventor
徹 脇原
達也 大久保
泰夫 米澤
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to JP2018519589A priority Critical patent/JP6990923B2/en
Publication of WO2017204268A1 publication Critical patent/WO2017204268A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a method for efficiently producing a crystalline microporous material such as zeolite with high purity and an apparatus for producing a crystalline microporous material suitably used for the implementation of this production method.
  • Crystalline microporous materials such as zeolite have characteristics such as solid acidity, ion exchange ability, catalytic ability, adsorption ability, etc., and thus have been conventionally suitably used as industrial catalysts, adsorbents, desiccants, ion exchange agents, etc. It has been.
  • “Zeolite” which is a kind of crystalline microporous material means, in a narrow sense, crystalline porous aluminosilicate.
  • zeolite-like substances having a porous structure similar to that of “zeolite” in the narrow sense, which are compounds in which metal atoms in the skeleton are substituted with other atoms have been reported (in general, “ “Zeolite” includes “zeolite-like substance.” “Zeolite” in the present invention also includes “zeolite” and “zeolite-like substance” in a narrow sense.)
  • Patent Document 1 discloses that an inorganic compound is produced by continuously synthesizing an inorganic compound by continuously introducing a raw material solution into a reaction tube and irradiating the reaction tube with microwaves. A method is described. Patent Document 1 also describes that the target inorganic compound can be synthesized in a short time by using the method.
  • this method since it is necessary to use a reaction tube made of a resin, there has been a safety problem when the production under high temperature and high pressure conditions is repeated for a long time.
  • Patent Document 2 describes a continuous synthesis method of zeolite characterized by continuously passing a slurry containing a zeolite raw material and an aqueous alkali solution through a reaction tube heated to a predetermined condition. Patent Document 2 describes that the use of this method shortens the reaction time of the zeolite synthesis reaction and increases the synthesis efficiency. However, in this method, depending on the type of zeolite, it may be difficult to produce in a short time.
  • Patent Document 3 a reaction tube having a ratio of volume to side surface area [(volume) / (side surface area)] of 0.75 cm or less is heated with a heat medium, and raw materials are continuously supplied to the reaction tube. A process for producing a zeolite is described. Patent Document 3 describes that by using this method, even zeolite that is difficult to manufacture by the method described in Patent Document 2 can be manufactured in a short time. As described above, many studies have been made to synthesize zeolite in a short time, but the time until synthesis of a zeolite in a crystallized state close to 100% from an amorphous state is as short as 10 seconds or less. No case completed in time has been reported.
  • Patent Document 4 is characterized in that a starting material in which solid fine particles such as a hydroxide sol are dispersed in water is rapidly heated and heat-treated in a reaction tube to synthesize highly crystalline oxide fine particles.
  • Patent Document 5 discloses a method for producing highly crystalline metal oxide fine particles, in which a metal oxide sol and a starting material containing a metal salt and / or metal hydroxide sol are heated and heat-treated in a reaction tube. Is described.
  • Patent Documents 4 and 5 describe a method for efficiently producing inorganic fine particles by introducing high-temperature and high-pressure water into a reaction tube and mixing it with a raw material liquid.
  • the inorganic fine particles actually obtained by these methods are extremely excellent in stability, and constitute a thermodynamically metastable phase like zeolite, and a template or solvent is put in the pores in the structure.
  • Patent Documents 4 and 5 do not describe a method for producing a crystalline microporous material obtained in a state of being contained in a high purity.
  • JP 2002-186849 A (US2001054549 A1) Japanese Patent Laid-Open No. 2002-137717 International Publication No. 2015/005407 Pamphlet (US201415039 A1) JP 2008-162864 A JP 2012-153588 A
  • the present invention has been made in view of the above-described prior art, and a method for efficiently producing a crystalline microporous material such as zeolite with high purity, and a crystalline microporous material suitably used for carrying out this production method. It aims at providing the manufacturing apparatus of a porous material.
  • the present inventors diligently studied a method for continuously producing a crystalline microporous material using a reaction tube.
  • the fluid containing the raw material compound is continuously supplied to the reaction tube, and at the same time, the fluid containing the raw material compound and the heating medium fluid are mixed in the reaction tube, and crystalline microporous under specific conditions. It has been found that a crystalline microporous material such as zeolite can be efficiently produced with high purity by performing a synthesis reaction of the material, and the present invention has been completed.
  • crystalline microporous material manufacturing method and [13] and [14] crystalline microporous material manufacturing apparatus are provided.
  • a method of continuously producing a crystalline microporous material by continuously supplying a fluid containing a raw material compound to a reaction tube, A step of continuously supplying a fluid containing a raw material compound having a temperature of less than 100 ° C. into the reaction tube to produce a mixed fluid having a predetermined temperature selected in the range of 70 to 500 ° C. (I), as well as, The resultant mixed fluid is not converted into a supercritical fluid, and a crystalline microporous material is synthesized at a temperature of 70 to 500 ° C.
  • a method for producing a crystalline microporous material comprising: [2] In step (I), in the reaction tube, a fluid containing a raw material compound having a temperature of less than 100 ° C. and a heating medium fluid having a temperature of 100 ° C. or more are mixed, whereby a temperature of 70
  • the method for producing a crystalline microporous material according to [1] which is a step of generating a fluid mixture having a predetermined temperature selected in a range of ⁇ 500 ° C.
  • the method for producing a crystalline microporous material according to [2], wherein the heating medium fluid for heating is water or an aqueous solution containing a component other than water.
  • the mixing ratio of the fluid containing the raw material compound and the heating medium fluid (volume ratio of the fluid containing the raw material compound and the heating medium fluid) is 1: 0.1 to 1:10.
  • the crystalline microporous material contained in the generated mixed fluid contains, in the pores, a template, a solvent contained in the raw material compound, or a heating medium fluid for heating, or a solvent contained in the template and the raw material compound, or heating.
  • [6] The method for producing a crystalline microporous material according to any one of [1] to [5], wherein the crystalline microporous material is a porous material having micropores having an average pore diameter of 2 nm or less. .
  • [7] The method for producing a crystalline microporous material according to any one of [1] to [6], wherein the fluid containing the raw material compound is subjected to an emulsion treatment.
  • [8] The method for producing a crystalline microporous material according to any one of [1] to [7], wherein the fluid containing the raw material compound is subjected to aging treatment.
  • the fluid containing the crystalline microporous material generated in the step (II) is cooled while being transported downstream in the reaction tube, and contains the crystalline microporous material having a temperature of less than 70 ° C.
  • the cooling method of the fluid containing the crystalline microporous material in the step (III) is to bring the cooling heat transfer fluid into contact with the fluid containing the crystalline microporous material.
  • the manufacturing method of the crystalline microporous material of description The manufacturing method of the crystalline microporous material of description.
  • the time until the cooling heat transfer fluid is brought into contact with the fluid containing the crystalline microporous material after mixing the raw material fluid and the heating heat transfer fluid in step (I) is 1 second or longer.
  • the crystalline microporous material to be produced is aluminosilicate zeolite, aluminophosphate zeolite, pure silica zeolite, silicoalumino with a silica / alumina ratio (SiO 2 / Al 2 O 3 molar ratio) of 2 to 10,000.
  • a reaction tube having at least a raw material compound-containing fluid inlet to which a fluid containing the raw material compound is supplied and a heating heat medium fluid inlet to which the heating heat medium fluid is introduced,
  • An apparatus for producing a crystalline microporous material which continuously supplies a fluid containing the reaction tube to produce the crystalline microporous material continuously,
  • a fluid containing a raw material compound having a temperature of less than 100 ° C. and a heating medium fluid for heating having a temperature of 100 ° C. or more are mixed to obtain a predetermined temperature selected in the range of 70 to 500 ° C.
  • a mixed fluid at a temperature is generated, and the resultant mixed fluid is transferred to the downstream side of the reaction tube without making it a supercritical fluid, and the synthesis reaction of the crystalline microporous material is performed at a temperature of 70 to 500 ° C.
  • An apparatus for producing a crystalline microporous material which is performed to generate a fluid containing the crystalline microporous material.
  • a reaction tube having at least a raw material compound-containing fluid inlet to which a fluid containing a raw material compound is supplied and a heating heat medium fluid inlet to which a heating heat medium fluid is introduced,
  • An apparatus for producing a crystalline microporous material which continuously supplies a fluid containing the reaction tube to produce the crystalline microporous material continuously,
  • the reaction tube continuously supplies a fluid containing a raw material compound having a temperature of less than 100 ° C. into the reaction tube to generate a mixed fluid having a predetermined temperature selected in the range of 70 to 500 ° C.
  • the resulting mixed fluid is not converted into a supercritical fluid, and the crystalline microporous material is synthesized at a temperature of 70 to 500 ° C.
  • a crystalline microporous which is a reaction tube having a dual structure, comprising a gel-dedicated inner tube for generating a fluid containing a porous material and a heating heat transfer fluid outer tube surrounding the gel-dedicated inner tube. Quality material manufacturing equipment.
  • a method and apparatus for producing a crystalline microporous material capable of efficiently producing a crystalline microporous material such as zeolite with high purity is provided.
  • FIG. 4 is an XRD data diagram of zeolite obtained at a synthesis temperature of 220 ° C. and a synthesis time of 7.5 seconds and 9.5 seconds.
  • FIG. 4 is an XRD data diagram of zeolite obtained at a synthesis temperature of 240 ° C. and a synthesis time of 7.5 seconds and 9.5 seconds.
  • FIG. 4 is an XRD data diagram of zeolite obtained at a synthesis temperature of 260 ° C.
  • FIG. 4 is an XRD data diagram of zeolite obtained at a synthesis temperature of 280 ° C. and synthesis times of 1.0, 2.5, 5.0, 7.5, and 9.5 seconds.
  • FIG. 4 is an XRD data diagram of zeolite obtained at a synthesis temperature of 300 ° C. and synthesis times of 1.0, 2.5, 5.0, 7.5, and 9.5 seconds. It is a XRD data figure of the sample manufactured with the autoclave. It is a figure which shows the result of having evaluated the crystallinity at the time of changing a synthesis temperature and synthesis time about the zeolite obtained in Example 1.
  • FIG. 4 is an XRD data diagram of zeolite obtained at a synthesis temperature of 280 ° C. and synthesis times of 1.0, 2.5, 5.0, 7.5, and 9.5 seconds.
  • FIG. 4 is an XRD data diagram of zeolite obtained at a synthesis temperature of 300 ° C. and synthesis times of 1.0, 2.5,
  • FIG. 4 is a SEM photograph of zeolite (BEA) manufactured in Example 2.
  • FIG. It is a SEM photograph figure of zeolite (BEA) manufactured with an autoclave. It is a XRD data figure of the zeolite (BEA) manufactured in Example 2, and the zeolite (BEA) manufactured by the autoclave.
  • Zeolite manufactured in Example 2 (BEA) and a pore volume measurement evaluation diagram by N 2 adsorption zeolite fabricated in an autoclave (BEA).
  • the horizontal axis represents relative pressure ( ⁇ )
  • the vertical axis represents volume (Volume / cc / g).
  • FIG. 6 is an XRD data diagram of zeolite (CHA) and raw material gel manufactured in Example 3.
  • the lower column is an XRD data diagram of the raw material gel after aging at 95 ° C. for 24 hours
  • the upper column is an XRD data diagram of zeolite (CHA) obtained by flow synthesis at 230 ° C. for 2 minutes. is there. It is a XRD data figure after 6 hours, 24 hours, 30 hours, and 48 hours synthesis
  • 4 is a SEM photograph of zeolite (CHA) produced in Example 3.
  • FIG. It is a SEM photograph figure of zeolite (CHA) manufactured with an autoclave.
  • FIG. 5 is an XRD diagram of pure silica zeolite (Silicalite-1) obtained in Example 4 and Comparative Example 4.
  • FIG. 6 is a SEM (scanning electron microscope) photograph of the pure silica zeolite (Silicalite-1) obtained in Example 4.
  • FIG. 26 (b) and (c) are partially enlarged photographs of the SEM photograph of (a).
  • 6 is a SEM (scanning electron microscope) photograph of the pure silica zeolite (Silicalite-1) obtained in Comparative Example 4.
  • FIG. 27 (b) and (c) are partially enlarged photographs of the SEM photograph of (a).
  • a fluid containing a raw material compound (hereinafter sometimes referred to as “raw material fluid”) is used.
  • the “raw compound” refers to a compound that is indispensable for the composition of the target crystalline microporous material.
  • skeleton atom-containing compound a compound having an ability to form a covalent bond or a coordination bond and containing an atom (ion) incorporated into a crystalline microporous material skeleton
  • cation supply compound a compound that does not have the ability to form a covalent bond or a coordination bond and supplies a cation incorporated into the crystalline microporous material for charge compensation
  • a compound serving as a silicon atom source hereinafter sometimes referred to as “silicon-containing compound”
  • a compound serving as an aluminum atom source hereinafter also referred to as “aluminum-containing compound”
  • phosphorus examples include compounds that serve as atomic sources (hereinafter sometimes referred to as “phosphorus-containing compounds”), transition metal compounds, and the like.
  • the silicon-containing compound is not particularly limited, and those usually used for the synthesis of crystalline microporous materials can be used.
  • Examples of the silicon-containing compound include fumed silica, silica sol, colloidal silica, water glass, ethyl silicate, and methyl silicate. These can be used alone or in combination of two or more. Among these, fumed silica is preferable in terms of high purity and high reactivity.
  • the aluminum-containing compound is not particularly limited, and those usually used for the synthesis of crystalline microporous materials can be used.
  • the aluminum-containing compound include aluminum alkoxides such as aluminum triisopropoxide and aluminum triethoxide; aluminum salts such as sodium aluminate, potassium aluminate, aluminum chloride, aluminum sulfate, aluminum acetate, and aluminum nitrate; aluminum hydroxide (gibbsite) , Including crystalline aluminum hydroxide such as Bayerlite, Nordstrandite and Doileite); aluminum oxyhydroxide (including crystalline aluminum oxyhydroxide such as boehmite and diaspore); aluminum oxide ( ⁇ -Al Crystalline oxidation of 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3, etc.
  • the phosphorus-containing compound is not particularly limited, and those usually used for the synthesis of crystalline microporous materials can be used.
  • Examples of the phosphorus-containing compound include phosphoric acid and aluminum phosphate. These can be used alone or in combination of two or more.
  • a transition metal compound is not specifically limited, What is normally used for the synthesis
  • combination of a zeolite can be used.
  • transition metals contained in the transition metal compound include iron, cobalt, nickel, manganese, magnesium, zinc, copper, palladium, iridium, platinum, silver, gold, cerium, lanthanum, praseodymium, titanium, zirconium, etc. Examples include group 12 transition metals.
  • Transition metal compounds include inorganic acid salts such as sulfates, nitrates, phosphates, chlorides and bromides of these transition metals; organic acid salts such as acetates, oxalates and citrates of these transition metals.
  • the type and amount of the skeleton atom-containing compound to be used can be appropriately determined according to the type and composition of the target crystalline microporous material.
  • a raw material containing one or more silicon-containing compounds and one or more aluminum-containing compounds as the skeleton atom-containing compound A fluid is used.
  • an aluminosilicate zeolite containing a transition metal can be produced by using a raw material fluid containing one or more transition metal compounds.
  • the content ratio of the silicon-containing compound and the aluminum-containing compound is preferably a molar ratio (SiO 2 / Al 2 O 3 ) converted to an oxide, preferably 2 to 10,000, more preferably It is 10 to 1000, more preferably 15 to 500.
  • the content ratio of the transition metal compound and the aluminum-containing compound is a molar ratio converted to an oxide (transition metal oxide / SiO 2 ), preferably 0.001 to It is 0.2, more preferably 0.005 to 0.1, still more preferably 0.01 to 0.05.
  • an aluminophosphate zeolite When producing an aluminophosphate zeolite, a raw material fluid containing one or more aluminum-containing compounds and one or more phosphorus-containing compounds as the skeleton atom-containing compound is used. Furthermore, an aluminophosphate zeolite containing a transition metal can be produced by using a raw material fluid containing one or more transition metal compounds.
  • the content ratio of the phosphorus-containing compound and the aluminum-containing compound is a molar ratio (P 2 O 5 / Al 2 O 3 ) converted to an oxide, preferably 0.6 to 1. 7, more preferably 0.7 to 1.6, still more preferably 0.8 to 1.5.
  • the content ratio of the transition metal compound and the aluminum-containing compound is a molar ratio (transition metal oxide / Al 2 O 3 ) converted to an oxide, preferably 0. 0.001 to 0.2, more preferably 0.005 to 0.1, and still more preferably 0.01 to 0.05.
  • silicoaluminophosphate zeolite As the skeleton atom-containing compound, one or more of silicon-containing compounds, one or more of aluminum-containing compounds, and one or more of phosphorus-containing compounds A raw material fluid containing is used. Furthermore, a silicoaluminophosphate zeolite containing a transition metal can be produced by using a raw material fluid containing one or more transition metal compounds.
  • the content ratio of the silicon-containing compound and the aluminum-containing compound is preferably a molar ratio (SiO 2 / Al 2 O 3 ) converted to an oxide, preferably 0.001 to 0.4. More preferably, it is 0.01 to 0.3, and still more preferably 0.05 to 0.2.
  • the content ratio of the phosphorus-containing compound and the aluminum-containing compound is preferably a molar ratio (P 2 O 5 / Al 2 O 3 ) converted to an oxide, preferably 0.6 to 1.7, and more preferably 0.8. It is 7 to 1.6, more preferably 0.8 to 1.5.
  • the content ratio of the transition metal compound and the aluminum-containing compound is preferably a molar ratio (transition metal oxide / Al 2 O 3 ) converted to an oxide, preferably It is 0.001 to 0.2, more preferably 0.005 to 0.1, and still more preferably 0.01 to 0.08.
  • Examples of the cation supply compound include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; magnesium hydroxide; alkaline earth metal hydroxides such as calcium hydroxide, strontium hydroxide, and barium hydroxide. ; These can be used alone or in combination of two or more.
  • Charge compensation is efficiently performed by using a compound for supplying a cation.
  • a compound for supplying a cation depending on the type of skeletal atom-containing compound and template used, the same effect can be obtained by the cation contained therein, so that the cation supply compound is not an essential component in the method for producing the crystalline microporous material of the present invention. Absent.
  • the content is not particularly limited.
  • the content of the cation supplying compound is usually 1: 0.5 to 1:10, preferably 1 in terms of a molar ratio to the aluminum-containing compound contained in the raw material fluid (aluminum-containing compound: cation-supplying compound). : 0.7 to 1: 3.
  • Pure silica zeolite is a zeolite whose main component consists only of silica and does not contain an aluminum component.
  • Pure silica can be obtained, for example, by subjecting a substance serving as a template (template) for forming a crystal structure, a silicon source, and other predetermined components to heat and pressure treatment in the presence of water.
  • Pure silica loses the hydrophilicity of a normal zeolite made of aluminum silicate, so that the hydrophobicity becomes strong, and as a result, it has the characteristics of excellent heat resistance and acid resistance.
  • the raw fluid contains a solvent.
  • the solvent include hydrophilic organic solvents such as alcohol, water and the like, and water is particularly preferable.
  • the water to be used may contain other components such as sodium chloride.
  • the content of the solvent is not particularly limited.
  • the content of the solvent is usually 0.01 to 10,000 parts by weight, preferably 1 to 10 parts by weight with respect to 100 parts by weight of the skeleton atom-containing compound.
  • the raw material fluid may contain components other than the raw material compound and the solvent (hereinafter sometimes referred to as “other components”).
  • other components include templates and seed crystals.
  • a template refers to an organic compound that is added to a reaction system in order to construct a predetermined pore structure. Usually, it is appropriately selected according to the kind of crystalline microporous material and the pore structure. Templates include primary amines such as isopropylamine, t-butylamine, neopentylamine, cyclopentylamine, cyclohexylamine; Secondary amines such as N-methyl-n-butylamine, N-methylcyclohexylamine, di-n-propylamine, di-n-butylamine, di-n-pentylamine, dicyclohexylamine; Triethylamine, diisopropylethylamine, tri-n-propylamine, triisopropylamine, N, N-dimethylbenzylamine, dimethylcyclohexylamine, N, N-diethylethanolamine, N, N-dimethylethanolamine, N-methyldiethanolamine,
  • Cyclic amines of Pyridines such as 2-methylpyridine, 3-methylpyridine, 4-methylpyridine; Polyamines such as choline and ethylenediamine; Quaternary ammonium salts such as tetramethylammonium salt, tetraethylammonium salt, tetra-n-propylammonium salt, tetra-n-butylammonium salt; N, N′-dimethyl-1,4-diazabicyclo- (2,2,2) octane salt; These can be used alone or in combination of two or more.
  • the content is not particularly limited.
  • the content of the template is usually a molar ratio with respect to the total amount of skeletal atoms contained in the raw material fluid (skeleton atom: template), and is usually 1: 0.001 to 1: 5, preferably 1: 0.1 to 1: 0.7. If the amount of the template is too small, a crystalline microporous material having poor stability may be formed. Moreover, when there is too much quantity of a template, there exists a possibility that a yield may fall.
  • the seed crystal is used to promote the generation (crystallization) of a crystalline microporous material.
  • the seed crystal to be used preferably has the same composition and structure as the target crystalline microporous material.
  • the seed crystal may be synthesized by the method of the present invention, or may be synthesized by a conventionally known method such as a batch method.
  • the average particle size of the seed crystal is usually 0.01 to 100 ⁇ m, preferably 0.1 to 50 ⁇ m.
  • the average particle size of the seed crystal is obtained by randomly selecting several tens of particles from a scanning micrograph, calculating the cross-sectional area of each particle with image analysis software, and calculating the particle size and arithmetic average value of each particle. be able to.
  • the content is not particularly limited.
  • the content of the seed crystal is usually 0.1 to 40 parts by weight, preferably 1 to 10 parts by weight with respect to 100 parts by weight of the skeleton atom-containing compound. If the amount of the seed crystal is too small, the crystallization promoting effect may not be obtained. Moreover, when there is too much quantity of a seed crystal, there exists a possibility that a substantial yield may fall.
  • the raw material fluid can be prepared according to a known method.
  • a raw material fluid can be prepared by mixing each skeleton atom-containing compound and other components used as necessary with a solvent.
  • a mixing method and a mixing order are not particularly limited, and a known method can be appropriately used.
  • the raw material fluid may be subjected to an emulsion treatment.
  • Emulsion processing refers to processing for converting a raw material fluid into an emulsion.
  • desired fluidity can be imparted to the raw material fluid. For example, after preparing a raw material fluid (reaction mixture) by mixing each skeleton atom-containing compound and other components used as necessary with a solvent, this is mixed with an organic solvent and an amphiphilic molecule. Thus, an emulsion can be obtained.
  • organic solvents to be used include cycloaliphatic hydrocarbon solvents such as cyclopentane, cyclohexane, cycloheptane, and cyclooctane; aliphatic hydrocarbon solvents such as pentane, hexane, heptane, and octane; aromatics such as benzene, toluene, and xylene. Group hydrocarbon solvents; and the like.
  • Amphiphilic molecules include fatty acid alkali metal salts, monoalkyl sulfates, alkyl polyoxyethylene sulfates, alkyl sulfonates, alpha olefin sulfonates, alkyl ether sulfates, alkyl benzene sulfonates, monoalkyl phosphates
  • Anionic surfactants such as salts
  • Cationic surfactants such as alkyltrialkylammonium salts and alkylbenzyldialkylammonium salts
  • Amphoteric surfactants such as alkyldimethylamine oxide and alkylcarboxybetaines
  • nonionic surfactants such as
  • the ratio of the raw material fluid and the organic solvent used is preferably a weight ratio of (raw material fluid) :( organic solvent), preferably 0.01: 1 to 1: 0.01, more preferably 0.
  • the range is from 1: 1 to 1: 0.1, more preferably from 0.5: 1 to 1: 0.5.
  • the use ratio of the organic solvent and the amphiphilic molecule is preferably a weight ratio of (organic solvent) :( amphiphilic molecule), preferably 0.01: 10 to 10: 0.01, more preferably 0. .01: 5 to 5: 0.01, and more preferably 0.05: 1 to 1: 0.05.
  • the emulsion treatment can be efficiently performed.
  • the raw material fluid may be subjected to aging treatment.
  • the aging treatment refers to placing the raw material fluid at a temperature at which a highly crystalline crystalline microporous material is not generated. In this case, the raw material fluid may be left as it is at a predetermined temperature, or stirring may be continued. In some cases, no new crystal is generated, and in other cases, a microporous material with low crystallinity is generated.
  • the aging temperature is usually 100 ° C. or lower, preferably 10 to 100 ° C., more preferably 20 to 95 ° C. If the aging temperature is too low, the effect may not be obtained. If the aging temperature is too high, the temperature is maintained and the cost is increased.
  • the aging time is not particularly limited. The aging time is usually 2 hours or longer, preferably 6 hours or longer, more preferably 12 hours or longer. There is no particular upper limit, but it is usually 120 hours or less.
  • Heating medium fluid for heating has fluidity, mixes with the raw material fluid, or heats the raw material fluid to generate a mixed fluid at a predetermined temperature, and There is no particular limitation as long as it does not adversely affect the synthesis reaction of the crystalline microporous material.
  • the heating medium fluid for heating examples include water (hot water), water vapor, and heat medium oil. Among these, water is preferable.
  • the temperature of the heating medium fluid for heating is 100 ° C. or higher, preferably 100 to 500 ° C., more preferably 110 to 370 ° C. When the temperature of the heating medium fluid for heating is 100 ° C. or higher, a mixed fluid having a temperature suitable for the synthesis reaction of the crystalline microporous material can be efficiently generated.
  • the apparatus for producing a crystalline microporous material of the present invention is either [A] or [B] below.
  • [A] a reaction tube having at least a raw material compound-containing fluid inlet to which a fluid containing a raw material compound is supplied and a heating heat medium fluid inlet to which a heating heat medium fluid is introduced;
  • An apparatus for producing a crystalline microporous material which continuously supplies a fluid containing the reaction tube to produce the crystalline microporous material continuously, In the reaction tube, a fluid containing a raw material compound having a temperature of less than 100 ° C. and a heating medium fluid for heating having a temperature of 100 ° C.
  • a mixed fluid at a temperature is generated, and the resultant mixed fluid is transferred to the downstream side of the reaction tube without making it a supercritical fluid, and the synthesis reaction of the crystalline microporous material is performed at a temperature of 70 to 500 ° C.
  • An apparatus for producing a crystalline microporous material which is performed to generate a fluid containing the crystalline microporous material.
  • a reaction tube having at least a raw material compound-containing fluid inlet to which a fluid containing a raw material compound is supplied and a heating heat medium fluid inlet to which a heating heat medium fluid is introduced,
  • An apparatus for producing a crystalline microporous material which continuously supplies a fluid containing the reaction tube to produce the crystalline microporous material continuously,
  • the reaction tube continuously supplies a fluid containing a raw material compound having a temperature of less than 100 ° C. into the reaction tube to generate a mixed fluid having a predetermined temperature selected in the range of 70 to 500 ° C.
  • the resulting mixed fluid is not converted into a supercritical fluid, and the crystalline microporous material is synthesized at a temperature of 70 to 500 ° C.
  • a crystalline microporous which is a reaction tube having a dual structure, comprising a gel-dedicated inner tube for generating a fluid containing a porous material and a heating heat transfer fluid outer tube surrounding the gel-dedicated inner tube. Quality material manufacturing equipment.
  • the reaction tube of the production apparatus of the present invention is a tubular reaction device, and a fluid introduction port for introducing a raw material fluid into the reaction tube at an upstream portion thereof (hereinafter sometimes referred to as “raw material fluid introduction port”). And a fluid inlet for introducing the heating medium fluid into the reaction tube (hereinafter also referred to as “heating medium fluid inlet”).
  • the reaction tube may have a plurality of fluid inlets in the downstream portion.
  • the fluid inlet at the downstream portion is preferably used when supplying a raw material compound necessary for synthesis or introducing a cooling heat transfer fluid into the reaction tube.
  • the reaction tube may have a cooling means in the downstream portion, and may have a heating means for keeping the reaction tube itself after mixing warm or for additional heating. A plurality of heating means may be installed.
  • the reaction tube of the production apparatus of the present invention comprises a gel-dedicated inner tube in which a raw material fluid is transferred and a zeolite production reaction is performed, and a heating heat medium outer tube through which a heating heat medium fluid flows so as to surround the periphery. It may have a double structure.
  • the reaction tube of the production apparatus of the present invention may be a tubular reaction apparatus in which the formation reaction of the crystalline microporous material is performed, and may or may have other characteristics. It does not have to be. For this reason, there are cases where the reaction tube and the upstream and downstream piping of the reaction tube cannot be clearly distinguished. In such a case, the part where the formation reaction of the crystalline microporous material occurs is called a reaction tube. To do. For example, in the case of a pipe having a cooling heat transfer fluid inlet in the downstream part, the part from the place where the raw material fluid and the heating heat transfer fluid contact to the downstream fluid inlet is called a reaction pipe, Distinguish from piping.
  • reaction tube Distinguish from the pipes before and after.
  • the reaction tube is preferably covered with a heat insulating material.
  • the inner diameter of the reaction tube (in the case of a double structure, the inner diameter of the gel-dedicated inner tube) is usually 0.01 to 50 cm, preferably 0.05 to 20 cm.
  • the outer diameter of the reaction tube (in the case of a double structure, the outer diameter of the gel-dedicated inner tube) is determined by the tube thickness that can withstand the pressure in the tube.
  • the length of the reaction tube is not particularly limited.
  • the length of the reaction tube [from the place where the mixed fluid is generated (position of the upstream fluid inlet) to the cooling means) Is generally 1 to 10,000 cm, preferably 2 to 30 cm. Further, when the mixed fluid is naturally cooled without using the cooling means, the temperature of the mixed fluid becomes less than 70 ° C. from the length of the reaction tube [the place where the mixed fluid is generated (the position of the upstream fluid inlet).
  • the length up to] is usually 5 to 30,000 cm, preferably 20 to 1,000 cm.
  • the reaction tube may be wound in a coil shape.
  • the synthesis time of the crystalline microporous material (the time during which the raw material compound is heated by the heating medium) is usually within 3600 seconds.
  • the time until the fluid containing the crystalline microporous material is taken out from the reaction tube after supplying the fluid containing the fluid can be adjusted as appropriate.
  • the synthesis time of the crystalline microporous material is not particularly limited, but is usually 1 to 3600 seconds, preferably 2 to 300 seconds.
  • the material of the reaction tube is not particularly limited as long as it can withstand the reaction conditions (reaction temperature, reaction pressure) to be used.
  • metals such as stainless steel, hastelloy, inconel, titanium, copper and aluminum; and synthetic resins such as polytetrafluoroethylene are used.
  • the reaction tube may be entirely made of metal and the inside may be coated with a synthetic resin such as polytetrafluoroethylene.
  • a vibration device (a knocker or a vibrator) that vibrates the reaction tube can be installed for the purpose of preventing the reaction tube from being blocked.
  • the system itself can be tilted or vertically arranged.
  • the reaction tube has a device (for example, a screw) that can move the inside of the reaction tube while stirring the raw material fluid inside the tube in order to prevent the raw material fluid from being heated unevenly. It may be.
  • arrows indicate the direction in which the fluid flows.
  • the reaction tube (1a) shown in FIG. 1 (A) includes fluid inlets (2a) and (2b) in the upstream portion. Either one of the fluid inlets (2a) and (2b) is a raw material fluid inlet, and the other is a heating medium fluid inlet. The raw material fluid and the heating medium fluid are respectively introduced into the reaction tube from the fluid inlet, where the two fluids are mixed. The produced mixed fluid is transferred downstream in the reaction tube.
  • the reaction tube (1b) shown in FIG. 1 (B) has fluid inlets (2c) and (2d) in the upstream portion and a fluid inlet (3a) in the downstream portion.
  • One of the fluid inlets (2c) and (2d) is a raw material fluid inlet, and the other is a heating medium fluid inlet.
  • the synthesis reaction of the crystalline microporous material proceeds in the same manner as in the reaction tube (1a). However, since the reaction tube (1b) can introduce the cooling heat transfer fluid into the reaction tube from the fluid introduction port (3a), the temperature of the mixed fluid can be rapidly lowered by this, and the crystalline microporous material The synthesis reaction can be stopped rapidly.
  • FIGS. 2A to 2C are schematic views showing an example of a connection mode between the reaction tube and the pipe in the upstream portion of the reaction tube.
  • FIGS. 2A, 2B, and 2C are enlarged views around the fluid inlet of the reaction tube shown in FIGS.
  • the reaction tube (5a) includes fluid introduction ports (2e) and (2f) in the upstream portion, and fluid transfer pipes (6a) and (6b). Are connected to the fluid inlets (2e) and (2f), respectively.
  • the fluid transfer pipe (6a) and the reaction tube (5a) are on the same straight line, and the straight line and the fluid transfer pipe (6b) are orthogonal to each other.
  • the reaction tube (5b) includes fluid inlets (2g) and (2h) in the upstream portion, and the fluid transfer pipes (6c), ( 6d) is connected to fluid inlets (2g) and (2h), respectively.
  • the fluid transfer pipe (6c) and the reaction tube (5b) are on the same straight line, and the fluid transfer pipe (6c) and the fluid transfer pipe (6d) are arranged at an acute angle.
  • the reaction tube (5c) includes fluid inlets (2i) and (2j) in the upstream portion, and the fluid transfer pipes (6e), ( 6f) is connected to fluid inlets (2i) and (2j), respectively. None of the fluid transfer pipes (6e) and (6f) is collinear with the reaction pipe (5c).
  • FIG. 4 shows an example of a reaction tube having a double structure.
  • the reaction tube shown in FIG. 4 is a heating inner heat pipe installed so as to surround the inner tube (15a) dedicated to the gel in which the raw material fluid is transferred and the zeolite formation reaction is performed, and the inner tube (15a) dedicated to the gel. It has a double structure composed of a heating medium (heating water) outer tube (15b) for flowing a fluid medium.
  • the reaction tube shown in FIG. 4 further has a plurality of heating means (first-stage electric heater 15c, second-stage electric heater 15d) for controlling the heated water to a predetermined temperature.
  • the method for producing a crystalline microporous material of the present invention is a method for continuously producing a crystalline microporous material by continuously supplying a fluid containing a raw material compound to a reaction tube, wherein the step ( I) and step (II).
  • continuous in “continuously supplying the raw material fluid to the reaction tube” and “manufacturing the crystalline microporous material continuously” means that the operation is continued for a certain period of time. Means. Therefore, the case where these operations are performed intermittently is also included.
  • step (I) a fluid containing a raw material compound having a temperature of less than 100 ° C. is continuously supplied into the reaction tube to generate a mixed fluid having a predetermined temperature selected in the range of 70 to 500 ° C. It is a step to make.
  • a fluid containing a raw material compound having a temperature of less than 100 ° C. and a heating medium fluid for heating having a temperature of 100 ° C. or more are mixed.
  • the temperature is 100 in the reaction tube.
  • step (Ib) Mixing at a predetermined temperature selected in the range of 70 to 500 ° C. by heating the fluid containing the raw material compound having a temperature of less than 0 ° C. with the heating heat medium fluid without contacting the fluid. Any of the steps of generating a fluid (hereinafter sometimes referred to as “step (Ib)”) may be used.
  • the temperature (T (I)) of the raw material fluid is less than 100 ° C., preferably 20 to 98 ° C., more preferably 70 to 95 ° C.
  • the temperature (T (IV)) of the heating medium fluid for heating is 100 ° C. or higher, preferably 100 to 500 ° C., more preferably 150 to 370 ° C.
  • the temperatures of the raw material fluid, the heating medium fluid, and the mixed fluid can be measured and controlled by providing a temperature sensor in the piping or reaction tube.
  • the mixing ratio of the raw material fluid and the heating medium fluid (volume ratio of the raw material fluid: the heating medium fluid) is usually 1: 0.1 to 1:10, preferably 1: 0. 5 to 1: 5.
  • the temperature (T (II)) of the mixed fluid produced by mixing the raw material mixture and the heat transfer fluid is 70 to 500 ° C., preferably 110 to 400 ° C., more preferably 150 to 300 ° C. Further, T (II)> T (I).
  • the synthesis reaction of the crystalline microporous material does not proceed sufficiently and the yield decreases.
  • the temperature of the mixed fluid is too high, the structure of the template may change, and the crystallization of the crystalline microporous material may not proceed, or a high-density crystalline phase that is not a crystalline microporous material may be generated. is there.
  • the raw material fluid can be rapidly heated, and a crystalline microporous material can be produced efficiently. Further, according to the method for producing a crystalline microporous material of the present invention, it is possible to reduce the size of a reaction apparatus and reduce the amount of heating medium fluid for heating, and to produce zeolite advantageously industrially. it can. Further, according to the former method, since the raw material fluid is appropriately diluted, the problem that the reaction tube is blocked by the generated crystalline microporous material is less likely to occur.
  • step (II) the mixed fluid produced in step (I) is transferred to the downstream side in the reaction tube without making it a supercritical fluid, and at a temperature (T (III)) of 70 to 500 ° C.
  • T (III) a temperature of 70 to 500 ° C.
  • step (I) When the mixed fluid generated in step (I) is made a supercritical fluid, the structure of the template is changed, and the crystallization of the crystalline microporous material does not proceed, or the high-density crystalline phase that is not a crystalline microporous material May be generated, which is not preferable.
  • the temperature (T (III)) of the fluid during the synthesis reaction of the crystalline microporous material is 70 to 500 ° C., preferably 110 to 400 ° C. Further, T (III)> T (I) and T (III) ⁇ T (II).
  • T (I) can be set to 70 to 100 ° C.
  • T (II) can be set to 90 to 400 ° C.
  • T (III) can be set to 90 to 350 ° C., and the like.
  • the raw material fluid and the heating heat medium fluid are mixed in a reaction tube, whereby the zeolite production reaction is promoted.
  • the reaction pressure during the synthesis reaction of the crystalline microporous material pressure in the reaction tube or gel-dedicated inner tube during the zeolite production reaction
  • the reaction pressure can be measured, for example, by providing pressure sensors at the inlet and outlet of the reaction tube.
  • the fluid containing the crystalline microporous material produced in the step (II) is subjected to natural cooling (air cooling) without any particular action in the reaction tube.
  • the temperature of the flowing crystalline microporous material-containing fluid may be gradually decreased, or cooled while being transferred downstream in the reaction tube to generate a crystalline microporous material-containing fluid having a temperature of less than 70 ° C.
  • Step (III) may further be included. By having step (III), a crystalline microporous material can be continuously produced more efficiently.
  • a cooling medium fluid is introduced into the reaction tube, and the cooling medium fluid is brought into contact with the fluid containing the crystalline microporous material.
  • Examples include a method of cooling the reaction tube from the outside using a medium fluid.
  • a method in which a cooling medium fluid is brought into contact with the crystalline microporous material-containing fluid is preferable because the crystalline microporous material-containing fluid can be rapidly cooled.
  • step (I) When the cooling medium fluid is brought into contact with the crystalline microporous material-containing fluid, in step (I), the raw material fluid and the heating medium fluid are mixed, or the raw material fluid is heated so that the mixed fluid at a predetermined temperature is
  • the time from the generation to contact of the generated cooling fluid with the crystalline microporous material is usually 1 second or more, preferably 1 to 3600 seconds, more preferably 2 to 300 seconds. . If this time is too short, an amorphous compound is likely to be mixed into the product, and it becomes difficult to produce the desired crystalline microporous material with high purity.
  • cooling heat medium fluid examples include water, organic solvents, heat medium oil, and the like. Among these, water is preferable. The water may contain other substances such as sodium chloride.
  • the temperature of the cooling heat transfer fluid is not particularly limited. The temperature of the cooling heat transfer fluid is usually 70 ° C. or lower, preferably 0 to 70 ° C., more preferably 10 to 50 ° C., and further preferably 15 to 40 ° C.
  • the mixing ratio of the crystalline microporous material-containing fluid and the cooling medium fluid is usually 1: 1 to 1: 100, preferably 1: 2 to 1:40.
  • the cooling medium fluid is too small, there is a possibility that the cooling process cannot be sufficiently performed.
  • the cooling medium fluid is too large, the cost for supplying the cooling medium fluid increases, and the following crystalline microporous material It may be difficult to efficiently perform the isolation process.
  • the crystalline microporous material-containing fluid is appropriately diluted, so that the problem that the reaction tube and the piping are blocked by the crystalline microporous material is less likely to occur.
  • the raw material fluid and the heating medium fluid are mixed in step (I), and then the crystalline microporous material-containing fluid is mixed.
  • the time from when the temperature is lowered to the fluid containing the crystalline microporous material having a temperature lower than 70 ° C. is usually 2 seconds or more, preferably 2 to 3600 seconds, more preferably 2 to 600 seconds. is there.
  • the crystalline microporous material-containing fluid having a temperature lower than 70 ° C. can be subjected to isolation treatment of the crystalline microporous material according to a conventional method. For example, by connecting a pipe extending from the downstream part of the reaction tube to the recovery tank, the crystalline microporous material fluid is recovered, and by performing solid-liquid separation processing on this, the target crystalline microporous material is recovered. The material can be isolated.
  • the method for producing a crystalline microporous material of the present invention can be performed using, for example, the reaction apparatus shown in FIGS.
  • a raw material fluid input pump (11), a raw material fluid flow rate adjusting valve (12), a raw material fluid temperature adjusting device (13), a temperature are provided in the middle of a pipe extending from the raw material fluid storage tank (10).
  • a sensor (14) is provided, and this pipe is connected to the upstream part of the reaction tube (15).
  • the pipe extending from the heat medium fluid storage tank (19) is divided into two hands, one of which is the heat medium fluid input pump (20), the heat medium fluid flow rate adjusting valve (21), and the heat medium fluid heating device (22).
  • the temperature sensor (23) is connected to the upstream part of the reaction tube (15).
  • the other pipe extending from the heat medium fluid storage tank (19) is connected to the downstream portion of the reaction tube (15) via the heat medium fluid input pump (24) and the heat medium fluid flow rate adjustment valve (25). ing.
  • the pipe extending from the downstream portion of the reaction tube (15) is connected to the recovery tank (18) through the pressure gauge (16) and the back pressure valve (17).
  • the raw material fluid stored in the raw material fluid storage tank (10) is supplied from the piping to the upstream portion of the reaction tube (15) by the raw material fluid input pump (11). At this time, the raw material fluid is adjusted to an appropriate temperature by the raw material fluid temperature adjusting device (13). The supply amount of the raw material fluid is adjusted by the raw material fluid flow rate adjusting valve (12). On the other hand, after the heat medium fluid stored in the heat medium fluid storage tank (19) is divided into two hands, one is supplied from the piping to the upstream portion of the reaction tube (15) by the heat medium fluid charging pump (20). Is done. At this time, the heat medium fluid is heated to a predetermined temperature by the heat medium fluid heating device (22) and becomes a heat medium fluid for heating. The supply amount of the heating medium fluid for heating is adjusted by the heating medium fluid flow rate adjusting valve (21).
  • the raw material fluid and the heating medium fluid are mixed, and a synthesis reaction of the crystalline microporous material is performed to produce a crystalline microporous material-containing fluid.
  • the produced crystalline microporous material-containing fluid is transferred toward the downstream portion in the reaction tube.
  • the remaining heat medium fluid divided into two hands is used as a heat medium fluid for cooling.
  • the cooling heat medium fluid is supplied from the piping to the downstream portion of the reaction tube (15) by the heat medium fluid charging pump (24).
  • the supply amount of the cooling heat medium fluid is adjusted by the heat medium fluid flow rate adjustment valve (25).
  • the crystalline microporous material-containing fluid comes into contact with the cooling heat transfer fluid at the downstream portion of the reaction tube, and a cooled containing fluid is generated.
  • the cooled crystalline microporous material-containing fluid is transferred through the piping and recovered in the recovery tank (18).
  • the reaction tube shown in FIG. 4 is a heating inner heat pipe installed so as to surround the inner tube (15a) dedicated to the gel in which the raw material fluid is transferred and the zeolite formation reaction is performed, and the inner tube (15a) dedicated to the gel.
  • a fluid medium In order to flow a fluid medium, it has a double structure consisting of a heating medium (heating water) outer tube (15b).
  • the gel-dedicated inner tube and the heating heat medium (heating water) outer tube are not completely separated. That is, in FIG. 4, the crystalline microporous fluid, the heating heat medium fluid, and the cooling heat medium fluid are mixed at point G. Therefore, the pressure in the gel dedicated inner tube is constant.
  • the material-containing fluid and the heating medium fluid for heating may have a structure in which the fluid is mixed at any position between point D and point F.
  • the reaction tube shown in FIG. 4 further has heating means (first-stage electric heater 15c, second-stage electric heater 15d) for controlling the heated water to a predetermined temperature.
  • heating means first-stage electric heater 15c, second-stage electric heater 15d
  • a raw material fluid (gel) having a temperature of less than 100 ° C. is supplied from point A, rapidly heated by the heating heat medium fluid supplied from the point B to the heating heat medium outer tube, and the temperature at point C.
  • the mixed fluid becomes 70 to 500 ° C., and the zeolite formation reaction proceeds while being transferred from point C to point D and point F in FIG.
  • the produced zeolite-containing fluid is cooled at the point G by the cooling water supplied from the point E, and is transferred to the product tank.
  • the crystalline microporous material obtained by the production method of the present invention is a general term for a structure having a so-called crystalline zeolite structure, and [AlO 4 ] 5- and [SiO 4 ] 4 are used as the basic structure of the crystal. -Is included. However, in the present invention, those having a crystalline zeolite structure in which [AlO 4 ] 5- unit does not exist (for example, pure silica) are also included in the crystalline microporous material.
  • crystalline means having crystallinity, that is, having a crystallinity of 60% or more.
  • the crystallinity of the crystalline microporous material obtained by the present invention is preferably 70% or more, more preferably 80% or more, and further preferably 90% or more.
  • the crystallinity of the crystalline microporous material can be measured by the method described in the examples.
  • the micropore size (average pore diameter) of the crystalline microporous material obtained by the production method of the present invention is usually 2 nm or less, preferably 0.1 to 2 nm, more preferably 0.2 to 1.8 nm. It is.
  • the mercury intrusion method is used, but the pore size and the continuity of the pores can be confirmed by direct observation with an SEM.
  • the pore size of the micropores and the pore size distribution can be determined from the spatial arrangement of atoms having a crystal structure determined by X-ray diffraction, and the volume can be determined by a nitrogen adsorption method.
  • Zeolite includes aluminosilicate zeolite, pure silica zeolite, aluminophosphate zeolite, silicoaluminophosphate zeolite, metallosilicate, titanoate having a silica / alumina ratio (SiO 2 / Al 2 O 3 molar ratio) of 2 to 10,000. Examples thereof include silicate and panadium silicate.
  • the structure of the zeolite obtained by the production method of the present invention is not particularly limited. Specific examples of these can be found at http: // izasc. biw. kuleuven. be / fmi / xsl / IZA-SC / ft. xsl.
  • Preferred examples include codes defined by International Zeolite Association (IZA), AEI, AEL, AET, AFI, AFN, AFR, AFS, AFT, AFX, Afy, AHT, ATO, ATS, BEA, CHA, DDR, DFO. , ERI, FAU, FER, GIS, LEV, LTA, MFI, MOR, MTW, MWW, RTH, RHO, VFI and the like.
  • IZA International Zeolite Association
  • AEI AEI
  • AEL AET
  • AFI AFN
  • AFR AFS
  • AFT AFX
  • Afy AHT
  • ATO ATO
  • the particle diameter of the crystalline microporous material obtained by the production method of the present invention is not particularly limited.
  • the particle size of the crystalline microporous material is usually 0.01 to 100 ⁇ m, preferably 0.03 to 20 ⁇ m, more preferably 0.05 to 5 ⁇ m.
  • the particle diameter of the crystalline microporous material means an average value of the primary particle diameter of arbitrary 10 to 30 crystalline microporous material particles when the crystalline microporous material is observed with an electron microscope. .
  • a crystalline microporous material containing a template, a solvent or a heating medium contained in the raw material compound, or a solvent or a heating medium contained in the template and the raw material compound in the pores A quality material can be obtained efficiently. Obtained by the production method of the present invention, “a crystalline microscopic material containing a template, a solvent contained in the raw material compound or a heating medium, or a solvent contained in the template and the raw material compound, or a heating medium”. By heating the “porous material” in air at 800 ° C. or lower, the plate, the solvent contained in the raw material compound, and the heating medium can be removed from the structure.
  • a crystalline microporous material having a high degree of crystallinity can be produced efficiently in a short time.
  • the crystalline microporous material obtained by the production method of the present invention is suitably used as an industrial catalyst, an adsorbent, a desiccant, an ion exchanger, and the like.
  • T (I) is a heated water temperature sensor (1)
  • T (II) is a gel temperature sensor
  • T (IV) is a heated water temperature sensor (2)
  • T5 is a zeolite slurry temperature sensor.
  • synthesis tubes five types of reaction tubes (synthesis tubes) having different lengths were used.
  • the material of the synthetic tube used is stainless steel. All the synthetic tubes have an outer diameter of 3.18 mm and an inner diameter of 2.2 mm. As will be described later, the synthesis time can be adjusted by changing the length of the synthesis tube.
  • FIG. 6 shows an XRD data diagram of the powder obtained by separating the solid content in the gel solution obtained through the aging step.
  • FIG. 6 shows that the gel solution obtained through the aging step does not contain zeolite (no zeolite is produced).
  • the obtained zeolite slurry was taken out from the right end in FIG. 5 to isolate the target zeolite.
  • the set synthesis temperature for synthesizing the zeolite was set to five conditions of 220 ° C., 240 ° C., 260 ° C., 280 ° C., and 300 ° C.
  • the fluid temperature was 70 after the raw material fluid contacted the heating medium fluid for heating.
  • the time until the temperature became lower than ° C. was 1.0 second, 2.5 seconds, 5.0 seconds, 7.5 seconds, and 9.5 seconds.
  • the synthesis time was set by changing the length of the synthesis tube.
  • FIGS. 7 to 9 SEM (scanning electron microscope) photographs of the obtained zeolite are shown in FIGS. 7 to 9, it can be seen that a crystal with clear facets is obtained under any conditions.
  • XRD data diagrams of the obtained zeolite are shown in FIGS. 10 to 14, it can be seen that crystallization takes time at synthesis temperatures of 220 ° C. and 240 ° C. On the other hand, at 300 ° C., it can be seen that the degree of crystallinity tends not to increase due to the phenomenon presumed to be accompanied by decomposition of the template or formation of high-density amorphous during synthesis. That is, it can be seen that there is an optimum temperature range for synthesizing ZSM-5 in this method.
  • the zeolite obtained in Example 1 was evaluated for crystallinity when the synthesis temperature and synthesis time were changed.
  • the evaluation results are shown in FIG. FIG. 16 shows that the crystallinity is low when the synthesis time is too short, and the crystallinity is improved when the synthesis time is long.
  • the degree of crystallinity is low, and when synthesized at 300 ° C., the degree of crystallinity is low.
  • Example 2 Synthesis of Synthetic Zeolite (BEA) (1) Reactor Zeolite (BEA) was synthesized using the reactor shown in FIG.
  • the gel inner tube (15a) has an outer diameter of 4 mm and an inner diameter of 2 mm.
  • the heated water is introduced into the heated water outer pipe (15b) from the point B in FIG. 4, and the temperature inside the gel dedicated inner pipe (15a) is heated to a predetermined temperature.
  • the heated water is transferred from the right end to the left end in FIG. 4 through the heated water outer pipe (15b).
  • the raw material fluid (gel) is continuously charged into the gel-dedicated inner pipe (15a) from the left end (point A) in the figure, and the gel-dedicated inner pipe (15a) is moved to the point C ⁇ While moving from point D to point F, the zeolite formation reaction proceeds and completes.
  • cooling water is introduced from the point E into the heated water outer pipe (15b), and the reaction product in the gel-dedicated inner pipe (15a) is cooled.
  • the cooled reaction product is sent to the reaction product tank, and the target product can be taken out by solid-liquid separation operation.
  • zeolite (BEA) slurry As the set synthesis temperature for synthesizing zeolite (BEA), in FIG. 4, A point: 90 ° C., B point: 170 ° C., C point: 150 ° C., D point: 170 ° C., E point: 30 ° C., F point: 210 ° C., G point: 100 ° C. or less.
  • the time from the contact of the raw material fluid and the heating medium fluid to the temperature of the fluid reaching 100 ° C. or less was 7.0 minutes.
  • the pressure inside the gel-dedicated inner pipe (15a) was set to 16 MPa.
  • FIG. 17 An SEM (scanning electron microscope) photograph of the zeolite (BEA) obtained in Example 2 is shown in FIG. 17 and 18, it can be seen that a crystal with clear facets is obtained in both cases.
  • FIG. 17 and 18 the SEM (scanning electron microscope) photograph figure of the zeolite (BEA) obtained by the comparative example 2 is shown in FIG. 17 and 18, it can be seen that a crystal with clear facets is obtained in both cases.
  • FIG. 17 and Comparative Example 2 the XRD data figure of the zeolite (BEA) obtained in Example 2 and Comparative Example 2 is shown in FIG. From FIG. 19, it was confirmed that the degree of crystallinity of the zeolite (BEA) obtained in Example 2 was equivalent to that obtained in Comparative Example 2 (conventional method: autoclave method).
  • the pore volume of the zeolite (BEA) obtained in Example 2 and Comparative Example 2 was measured by the N2 adsorption method. The measurement results are shown in FIG. Pore volume of the zeolite obtained in Example 2, 0.21cm 3 / g, pore volume of the zeolite obtained in Comparative Example 2 is 0.18 cm 3 / g, obtained in Example 2 Zeolite ( The pore volume of BEA) was confirmed to be equal to or greater than that obtained in Comparative Example 2 (conventional method: autoclave method).
  • the obtained gel solution was put into a sealed container, and the contents were stirred by rotating the whole container at a rotation speed of 20 rpm for 24 hours in an oven heated to 95 ° C. (aging process). Thereafter, the container was placed in water at 25 ° C., and the entire container was rapidly cooled to complete the aging.
  • the obtained zeolite (CHA) slurry was taken out from the right end in FIG. 4 to isolate the target zeolite.
  • the time from the contact of the raw material fluid and the heating medium fluid to the temperature of the fluid reaching 100 ° C. or less after the contact of the raw material fluid and the heating fluid fluid was 2.0 minutes.
  • the pressure inside the gel-dedicated inner pipe (15a) was set to 23 MPa.
  • FIG. 23 An XRD data diagram of the zeolite (CHA) obtained in Example 3 and Comparative Example 3 is shown in FIG. From FIG. 22, it was confirmed that the crystallinity of the zeolite (CHA) obtained in Example 3 was equivalent to that obtained in Comparative Example 3 (conventional method: autoclave method).
  • the synthetic zeolite (CHA) obtained in Example 3 had a smaller average particle diameter than the synthetic zeolite (CHA) obtained in Comparative Example 3. It can also be seen that in any case, a crystal with clear facets is obtained.
  • the obtained gel solution was put in a sealed container, and the whole sealed container was rotated at a rotation speed of 20 rpm in an oven heated to 90 ° C. and stirred. Thereafter, the gel was aged at 90 ° C. for 16 hours. Thereafter, the entire sealed container was rapidly cooled using water at 25 ° C. to complete the aging.
  • the set synthesis temperature for synthesizing the zeolite can be changed by the mixing ratio of the heating medium fluid (heating water) and the gel solution.
  • the set temperature was 260 ° C.
  • the time from the contact of the raw material fluid and the heating medium fluid for heating to the fluid temperature being less than 70 ° C. was 20 seconds and 120 seconds (2 minutes).
  • the synthesis time was set by changing the length of the synthesis tube.
  • FIG. 25 shows XRD diagrams of the pure silica zeolite (Silicalite-1) obtained in Example 4 and Comparative Example 4. From FIG. 25, it was confirmed that the crystallinity of the pure silica zeolite (Silicalite-1) obtained in Example 4 was equivalent to that obtained in Comparative Example 4 (conventional method: autoclave method).
  • FIG. 26 The SEM (scanning electron microscope) photograph figure of the pure silica zeolite (Silicalite) obtained in Example 4 is shown in FIG. In FIG. 26, (b) and (c) are partially enlarged photographs of the SEM photograph of (a). Moreover, the SEM (scanning electron microscope) photograph figure of the pure silica zeolite (Silicalite) obtained in the comparative example 4 is shown in FIG. In FIG. 27, (b) and (c) are partially enlarged photographs of the SEM photograph of (a).
  • a crystalline microporous material can be produced with high purity and efficiency (simple and in a short time) and industrially advantageously.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a crystalline microporous material production method and a crystalline microporous material production device. The method comprises steps of continuously supplying a fluid containing a starting material compound to a reaction tube, and continuously producing the crystalline microporous material. The present invention is characterized by comprising: a step (I) of continuously supplying the fluid containing the starting material compound at a temperature of below 100°C into the reaction tube to generate a mixed fluid at a predetermined temperature wherein the temperature is selected from a range of 70 to 500°C; and, a step (II) of carrying out, without turning the obtained mixed fluid into a supercritical fluid, a synthesis reaction of the crystalline microporous material at a temperature of 70 to 500°C while sending the reaction tube content to a downstream side, and generating a fluid containing the crystalline microporous material. The present invention provides a production method and a production device for the crystalline microporous material capable of efficiently producing the crystalline microporous material at a high purity.

Description

結晶性ミクロ多孔質材料の製造方法及び製造装置Method and apparatus for producing crystalline microporous material
 本発明は、ゼオライト等の結晶性ミクロ多孔質材料を、高い純度で効率よく製造する方法、及びこの製造方法の実施に好適に用いられる結晶性ミクロ多孔質材料の製造装置に関する。 The present invention relates to a method for efficiently producing a crystalline microporous material such as zeolite with high purity and an apparatus for producing a crystalline microporous material suitably used for the implementation of this production method.
 ゼオライト等の結晶性ミクロ多孔質材料は、固体酸性、イオン交換能、触媒能、吸着能等の特性を有することから、従来、工業触媒、吸着剤、乾燥剤、イオン交換剤等として好適に用いられている。
 結晶性ミクロ多孔質材料の一種である「ゼオライト」は、狭義には、結晶性の多孔質アルミノケイ酸塩を意味する。また、その骨格内金属原子を他の原子に置換した化合物であって、狭義の「ゼオライト」と同様の多孔質構造を有する、いわゆる「ゼオライト類似物質」も報告されている(一般に、広義の「ゼオライト」には、「ゼオライト類似物質」も含まれる。本発明における「ゼオライト」も、狭義の「ゼオライト」と「ゼオライト類似物質」を含むものである。)。
Crystalline microporous materials such as zeolite have characteristics such as solid acidity, ion exchange ability, catalytic ability, adsorption ability, etc., and thus have been conventionally suitably used as industrial catalysts, adsorbents, desiccants, ion exchange agents, etc. It has been.
“Zeolite” which is a kind of crystalline microporous material means, in a narrow sense, crystalline porous aluminosilicate. In addition, so-called “zeolite-like substances” having a porous structure similar to that of “zeolite” in the narrow sense, which are compounds in which metal atoms in the skeleton are substituted with other atoms have been reported (in general, “ “Zeolite” includes “zeolite-like substance.” “Zeolite” in the present invention also includes “zeolite” and “zeolite-like substance” in a narrow sense.)
 従来、ゼオライト等の結晶性ミクロ多孔質材料を製造する場合、回分式反応器を用いて水熱反応を行うバッチ法が主に用いられてきた。
 しかしながら、バッチ法により大量のゼオライトを製造する場合、大掛かりな装置が必要であった。また、バッチ法は、通常、長時間の結晶化工程を要するため、生産性が低くなる傾向があった。
Conventionally, when producing a crystalline microporous material such as zeolite, a batch method in which a hydrothermal reaction is performed using a batch reactor has been mainly used.
However, when a large amount of zeolite is produced by the batch method, a large-scale apparatus is required. Moreover, since the batch method usually requires a long crystallization step, the productivity tends to be low.
 これらの問題を解決する方法として、近年、反応管を用いてゼオライト等の無機化合物を製造する方法が報告されている。
 例えば、特許文献1には、原料液を反応管に連続的に投入すると同時に、前記反応管にマイクロ波を照射することにより、無機化合物を連続的に合成することを特徴とする無機化合物の製造方法が記載されている。
 特許文献1には、その方法を用いることで、目的の無機化合物を短時間で合成し得ることも記載されている。
 しかしながら、この方法においては樹脂製の反応管を使用する必要があるため、高温、高圧条件下での製造を長時間繰り返し行う場合には、安全上の問題があった。
In recent years, as a method for solving these problems, a method for producing an inorganic compound such as zeolite using a reaction tube has been reported.
For example, Patent Document 1 discloses that an inorganic compound is produced by continuously synthesizing an inorganic compound by continuously introducing a raw material solution into a reaction tube and irradiating the reaction tube with microwaves. A method is described.
Patent Document 1 also describes that the target inorganic compound can be synthesized in a short time by using the method.
However, in this method, since it is necessary to use a reaction tube made of a resin, there has been a safety problem when the production under high temperature and high pressure conditions is repeated for a long time.
 特許文献2には、ゼオライト原料とアルカリ水溶液とを含有するスラリーを、所定の条件に加熱した反応管内を連続的に通過させることを特徴とするゼオライトの連続合成方法が記載されている。
 特許文献2には、その方法を用いることで、ゼオライトの合成反応の反応時間が短縮され、合成効率が上がることが記載されている。
 しかしながら、この方法においては、ゼオライトの種類によっては短時間で製造することが困難な場合があった。
Patent Document 2 describes a continuous synthesis method of zeolite characterized by continuously passing a slurry containing a zeolite raw material and an aqueous alkali solution through a reaction tube heated to a predetermined condition.
Patent Document 2 describes that the use of this method shortens the reaction time of the zeolite synthesis reaction and increases the synthesis efficiency.
However, in this method, depending on the type of zeolite, it may be difficult to produce in a short time.
 特許文献3には、体積と側面表面積の比〔(体積)/(側面表面積)〕が0.75cm以下の反応管を熱媒体により加熱し、その反応管に原料を連続的に供給して特定のゼオライトを製造する方法が記載されている。
 特許文献3には、その方法を用いることで、特許文献2に記載の方法では製造が困難なゼオライトであっても、短時間で製造し得ることが記載されている。
 このように、これまでにもゼオライト合成を短時間で行う研究は多くなされているが、非晶質状態から100%に近い結晶化状態のゼオライトが合成されるまでの時間が10秒以内という短時間で完了させた例は報告されていない。
In Patent Document 3, a reaction tube having a ratio of volume to side surface area [(volume) / (side surface area)] of 0.75 cm or less is heated with a heat medium, and raw materials are continuously supplied to the reaction tube. A process for producing a zeolite is described.
Patent Document 3 describes that by using this method, even zeolite that is difficult to manufacture by the method described in Patent Document 2 can be manufactured in a short time.
As described above, many studies have been made to synthesize zeolite in a short time, but the time until synthesis of a zeolite in a crystallized state close to 100% from an amorphous state is as short as 10 seconds or less. No case completed in time has been reported.
 本発明に関連して、高温、高圧の水を反応管内に導入することを特徴とする無機微粒子の製造方法が知られている。
 例えば、特許文献4には、水酸化物ゾル等の固体微粒子を水中に分散させた出発原料を、反応管中で急速昇温・熱処理し、高結晶性の酸化物微粒子を合成することを特徴とする微粒子製造方法が記載されている。
 また、特許文献5には、金属酸化物ゾル、並びに金属塩及び/又は金属水酸化物ゾルを含む出発原料を、反応管中で昇温及び熱処理する、高結晶性金属酸化物微粒子の製造方法が記載されている。
 このように、特許文献4、5には、高温、高圧の水を反応管内に導入し、原料液と混合することにより、無機微粒子を効率よく製造する方法が記載されている。しかしながら、これらの方法で実際に得られた無機微粒子は安定性に極めて優れるものであり、ゼオライトのような熱力学的に準安定相を構成し、細孔内に、テンプレート、若しくは溶媒を構造内に含有した状態で得られる結晶性ミクロ多孔質材料を高い純度で製造し得る方法については、特許文献4、5には記載されていない。
In relation to the present invention, a method for producing inorganic fine particles characterized by introducing high-temperature, high-pressure water into a reaction tube is known.
For example, Patent Document 4 is characterized in that a starting material in which solid fine particles such as a hydroxide sol are dispersed in water is rapidly heated and heat-treated in a reaction tube to synthesize highly crystalline oxide fine particles. A method for producing fine particles is described.
Patent Document 5 discloses a method for producing highly crystalline metal oxide fine particles, in which a metal oxide sol and a starting material containing a metal salt and / or metal hydroxide sol are heated and heat-treated in a reaction tube. Is described.
Thus, Patent Documents 4 and 5 describe a method for efficiently producing inorganic fine particles by introducing high-temperature and high-pressure water into a reaction tube and mixing it with a raw material liquid. However, the inorganic fine particles actually obtained by these methods are extremely excellent in stability, and constitute a thermodynamically metastable phase like zeolite, and a template or solvent is put in the pores in the structure. Patent Documents 4 and 5 do not describe a method for producing a crystalline microporous material obtained in a state of being contained in a high purity.
特開2002-186849号公報(US2001054549 A1)JP 2002-186849 A (US2001054549 A1) 特開2002-137917号公報Japanese Patent Laid-Open No. 2002-137717 国際公開第2015/005407号パンフレット(US2016115039 A1)International Publication No. 2015/005407 Pamphlet (US201415039 A1) 特開2008-162864号公報JP 2008-162864 A 特開2012-153588号公報JP 2012-153588 A
 本発明は、上記した従来技術に鑑みてなされたものであり、ゼオライト等の結晶性ミクロ多孔質材料を高い純度で効率よく製造する方法、及びこの製造方法の実施に好適に用いられる結晶性ミクロ多孔質材料の製造装置を提供することを目的とする。 The present invention has been made in view of the above-described prior art, and a method for efficiently producing a crystalline microporous material such as zeolite with high purity, and a crystalline microporous material suitably used for carrying out this production method. It aims at providing the manufacturing apparatus of a porous material.
 本発明者らは、上記課題を解決すべく、反応管を用いて、結晶性ミクロ多孔質材料を連続的に製造する方法について鋭意検討した。その結果、原料化合物を含有する流体を反応管に連続的に供給すると同時に、原料化合物を含有する流体と加熱用熱媒流体とを反応管内で混合し、特定の条件下で結晶性ミクロ多孔質材料の合成反応を行うことにより、ゼオライト等の結晶性ミクロ多孔質材料を高い純度で効率よく製造し得ることを見出し、本発明を完成するに至った。 In order to solve the above-mentioned problems, the present inventors diligently studied a method for continuously producing a crystalline microporous material using a reaction tube. As a result, the fluid containing the raw material compound is continuously supplied to the reaction tube, and at the same time, the fluid containing the raw material compound and the heating medium fluid are mixed in the reaction tube, and crystalline microporous under specific conditions. It has been found that a crystalline microporous material such as zeolite can be efficiently produced with high purity by performing a synthesis reaction of the material, and the present invention has been completed.
 かくして本発明によれば、下記〔1〕~〔12〕の結晶性ミクロ多孔質材料の製造方法、及び、〔13〕、〔14〕の結晶性ミクロ多孔質材料の製造装置が提供される。
〔1〕原料化合物を含有する流体を反応管に連続的に供給し、結晶性ミクロ多孔質材料を連続的に製造する方法であって、
 温度が100℃未満の原料化合物を含有する流体を、前記反応管内に連続的に供給し、温度が70~500℃の範囲で選択される所定の温度の混合流体を生成させるステップ(I)、及び、
 得られた混合流体を、超臨界流体にすることなく、前記反応管内を下流側に移送しながら、温度70~500℃で、結晶性ミクロ多孔質材料の合成反応を行い、結晶性ミクロ多孔質材料を含有する流体を生成させるステップ(II)
を有することを特徴とする、結晶性ミクロ多孔質材料の製造方法。
〔2〕前記ステップ(I)が、前記反応管内において、温度が100℃未満の、原料化合物を含有する流体と、温度が100℃以上の加熱用熱媒流体とを混合することにより、温度70~500℃の範囲で選択される所定の温度の混合流体を生成させるステップであることを特徴とする、〔1〕に記載の結晶性ミクロ多孔質材料の製造方法。
〔3〕前記加熱用熱媒流体が、水又は水以外の他の成分を含む水溶液である、〔2〕に記載の結晶性ミクロ多孔質材料の製造方法。
Thus, according to the present invention, the following [1] to [12] crystalline microporous material manufacturing method and [13] and [14] crystalline microporous material manufacturing apparatus are provided.
[1] A method of continuously producing a crystalline microporous material by continuously supplying a fluid containing a raw material compound to a reaction tube,
A step of continuously supplying a fluid containing a raw material compound having a temperature of less than 100 ° C. into the reaction tube to produce a mixed fluid having a predetermined temperature selected in the range of 70 to 500 ° C. (I), as well as,
The resultant mixed fluid is not converted into a supercritical fluid, and a crystalline microporous material is synthesized at a temperature of 70 to 500 ° C. while being transported downstream in the reaction tube. Generating a fluid containing the material (II)
A method for producing a crystalline microporous material, comprising:
[2] In step (I), in the reaction tube, a fluid containing a raw material compound having a temperature of less than 100 ° C. and a heating medium fluid having a temperature of 100 ° C. or more are mixed, whereby a temperature of 70 The method for producing a crystalline microporous material according to [1], which is a step of generating a fluid mixture having a predetermined temperature selected in a range of ˜500 ° C.
[3] The method for producing a crystalline microporous material according to [2], wherein the heating medium fluid for heating is water or an aqueous solution containing a component other than water.
〔4〕前記原料化合物を含有する流体と加熱用熱媒流体の混合割合(原料化合物を含有する流体と加熱用熱媒流体の体積比)が、1:0.1~1:10である、〔2〕又は〔3〕に記載の結晶性ミクロ多孔質材料の製造方法。
〔5〕生成する混合流体に含まれる結晶性ミクロ多孔質材料が、細孔内に、テンプレート、原料化合物に含まれる溶媒若しくは加熱用熱媒流体、又は、テンプレート及び原料化合物に含まれる溶媒若しくは加熱用熱媒流体を含有するものである、〔2〕~〔4〕のいずれかに記載の結晶性ミクロ多孔質材料の製造方法。
〔6〕前記結晶性ミクロ多孔質材料が、平均孔径が2nm以下のミクロ孔を有する多孔質材料である、〔1〕~〔5〕のいずれかに記載の結晶性ミクロ多孔質材料の製造方法。
〔7〕前記原料化合物を含有する流体が、エマルジョン処理が施されたものである、〔1〕~〔6〕のいずれかに記載の結晶性ミクロ多孔質材料の製造方法。
〔8〕前記原料化合物を含有する流体が、熟成処理が施されたものである、〔1〕~〔7〕のいずれかに記載の結晶性ミクロ多孔質材料の製造方法。
〔9〕前記ステップ(II)で生成した結晶性ミクロ多孔質材料を含有する流体を、反応管内を下流側に移送しながら冷却し、温度が70℃未満の、結晶性ミクロ多孔質材料を含有する流体を生成させるステップ(III)をさらに有する、〔1〕~〔8〕のいずれかに記載の結晶性ミクロ多孔質材料の製造方法。
〔10〕前記ステップ(III)における結晶性ミクロ多孔質材料を含有する流体の冷却方法が、結晶性ミクロ多孔質材を含有する流体に、冷却用熱媒流体を接触させるものである、〔9〕に記載の結晶性ミクロ多孔質材料の製造方法。
〔11〕ステップ(I)において原料流体と加熱用熱媒流体とを混合した後、結晶性ミクロ多孔質材料を含有する流体に、冷却用熱媒流体を接触させるまでの時間が1秒以上である、〔10〕に記載の結晶性ミクロ多孔質材料の製造方法。
〔12〕生成する結晶性ミクロ多孔質材料が、シリカ/アルミナ比(SiO/Alのモル比)が、2~10000のアルミノシリケートゼオライト、アルミノフォスフェートゼオライト、ピュアシリカゼオライト、シリコアルミノフォスフェートゼオライト、メタロシリケート、チタノシリケート、又はパナジウムシリケートである、〔1〕~〔11〕のいずれかに記載の結晶性ミクロ多孔質材料の製造方法。
[4] The mixing ratio of the fluid containing the raw material compound and the heating medium fluid (volume ratio of the fluid containing the raw material compound and the heating medium fluid) is 1: 0.1 to 1:10. The method for producing a crystalline microporous material according to [2] or [3].
[5] The crystalline microporous material contained in the generated mixed fluid contains, in the pores, a template, a solvent contained in the raw material compound, or a heating medium fluid for heating, or a solvent contained in the template and the raw material compound, or heating. The method for producing a crystalline microporous material according to any one of [2] to [4], which contains a heat transfer fluid.
[6] The method for producing a crystalline microporous material according to any one of [1] to [5], wherein the crystalline microporous material is a porous material having micropores having an average pore diameter of 2 nm or less. .
[7] The method for producing a crystalline microporous material according to any one of [1] to [6], wherein the fluid containing the raw material compound is subjected to an emulsion treatment.
[8] The method for producing a crystalline microporous material according to any one of [1] to [7], wherein the fluid containing the raw material compound is subjected to aging treatment.
[9] The fluid containing the crystalline microporous material generated in the step (II) is cooled while being transported downstream in the reaction tube, and contains the crystalline microporous material having a temperature of less than 70 ° C. The method for producing a crystalline microporous material according to any one of [1] to [8], further comprising a step (III) of generating a fluid to be produced.
[10] The cooling method of the fluid containing the crystalline microporous material in the step (III) is to bring the cooling heat transfer fluid into contact with the fluid containing the crystalline microporous material. [9 ] The manufacturing method of the crystalline microporous material of description.
[11] The time until the cooling heat transfer fluid is brought into contact with the fluid containing the crystalline microporous material after mixing the raw material fluid and the heating heat transfer fluid in step (I) is 1 second or longer. The method for producing a crystalline microporous material according to [10].
[12] The crystalline microporous material to be produced is aluminosilicate zeolite, aluminophosphate zeolite, pure silica zeolite, silicoalumino with a silica / alumina ratio (SiO 2 / Al 2 O 3 molar ratio) of 2 to 10,000. The method for producing a crystalline microporous material according to any one of [1] to [11], which is phosphate zeolite, metallosilicate, titanosilicate, or panadium silicate.
〔13〕少なくとも、原料化合物を含有する流体が供給される原料化合物含有流体導入口と、加熱用熱媒流体が導入される加熱用熱媒流体導入口とを有する反応管を備え、原料化合物を含有する流体を前記反応管に連続的に供給し、結晶性ミクロ多孔質材料を連続的に製造する、結晶性ミクロ多孔質材料の製造装置であって、
 前記反応管内において、温度が100℃未満の、原料化合物を含有する流体と、温度が100℃以上の加熱用熱媒流体とを混合することにより、70~500℃の範囲で選択される所定の温度の混合流体を生成させ、得られた混合流体を、超臨界流体にすることなく、前記反応管内を下流側に移送しながら、温度70~500℃で結晶性ミクロ多孔質材料の合成反応を行い、結晶性ミクロ多孔質材料を含有する流体を生成させるものである、結晶性ミクロ多孔質材料の製造装置。
〔14〕少なくとも、原料化合物を含有する流体が供給される原料化合物含有流体導入口と、加熱用熱媒流体が導入される加熱用熱媒流体導入口とを有する反応管を備え、原料化合物を含有する流体を前記反応管に連続的に供給し、結晶性ミクロ多孔質材料を連続的に製造する、結晶性ミクロ多孔質材料の製造装置であって、
 前記反応管が、温度が100℃未満の原料化合物を含有する流体を、前記反応管内に連続的に供給し、温度が70~500℃の範囲で選択される所定の温度の混合流体を生成させ、得られた混合流体を、超臨界流体にすることなく、前記反応管内を下流側に移送しながら、温度70~500℃で、結晶性ミクロ多孔質材料の合成反応を行い、結晶性ミクロ多孔質材料を含有する流体を生成させるゲル専用内管と、前記ゲル専用内管の周囲を取り囲む加熱用熱媒流体用外管とからなる、二重構造を有する反応管である、結晶性ミクロ多孔質材料の製造装置。
[13] A reaction tube having at least a raw material compound-containing fluid inlet to which a fluid containing the raw material compound is supplied and a heating heat medium fluid inlet to which the heating heat medium fluid is introduced, An apparatus for producing a crystalline microporous material, which continuously supplies a fluid containing the reaction tube to produce the crystalline microporous material continuously,
In the reaction tube, a fluid containing a raw material compound having a temperature of less than 100 ° C. and a heating medium fluid for heating having a temperature of 100 ° C. or more are mixed to obtain a predetermined temperature selected in the range of 70 to 500 ° C. A mixed fluid at a temperature is generated, and the resultant mixed fluid is transferred to the downstream side of the reaction tube without making it a supercritical fluid, and the synthesis reaction of the crystalline microporous material is performed at a temperature of 70 to 500 ° C. An apparatus for producing a crystalline microporous material, which is performed to generate a fluid containing the crystalline microporous material.
[14] A reaction tube having at least a raw material compound-containing fluid inlet to which a fluid containing a raw material compound is supplied and a heating heat medium fluid inlet to which a heating heat medium fluid is introduced, An apparatus for producing a crystalline microporous material, which continuously supplies a fluid containing the reaction tube to produce the crystalline microporous material continuously,
The reaction tube continuously supplies a fluid containing a raw material compound having a temperature of less than 100 ° C. into the reaction tube to generate a mixed fluid having a predetermined temperature selected in the range of 70 to 500 ° C. The resulting mixed fluid is not converted into a supercritical fluid, and the crystalline microporous material is synthesized at a temperature of 70 to 500 ° C. while being transferred to the downstream side in the reaction tube. A crystalline microporous, which is a reaction tube having a dual structure, comprising a gel-dedicated inner tube for generating a fluid containing a porous material and a heating heat transfer fluid outer tube surrounding the gel-dedicated inner tube. Quality material manufacturing equipment.
 本発明によれば、ゼオライト等の結晶性ミクロ多孔質材料を高い純度で効率よく製造することができる結晶性ミクロ多孔質材料の製造方法及び製造装置が提供される。 According to the present invention, a method and apparatus for producing a crystalline microporous material capable of efficiently producing a crystalline microporous material such as zeolite with high purity is provided.
本発明の製造方法に用い得る反応管の模式図である。It is a schematic diagram of the reaction tube which can be used for the manufacturing method of this invention. 反応管上流部における、反応管と配管との接続態様の一例を表す模式図である。It is a schematic diagram showing an example of the connection aspect of a reaction tube and piping in a reaction tube upstream part. ゼオライトの製造に用いる製造装置の一例を表す模式図である。It is a schematic diagram showing an example of the manufacturing apparatus used for manufacture of a zeolite. ゼオライトの製造に用いる製造装置の一例を表す模式図である。It is a schematic diagram showing an example of the manufacturing apparatus used for manufacture of a zeolite. 実施例で使用した反応装置の模式図である。It is a schematic diagram of the reaction apparatus used in the Example. 実施例の熟成工程を経て得られたゲル溶液中の固形分を分離して得られた粉末のXRDデータ図である。It is a XRD data figure of the powder obtained by isolate | separating the solid content in the gel solution obtained through the aging process of an Example. 合成温度260℃、合成時間5.0秒で得たゼオライトのSEM写真図である。It is a SEM photograph figure of the zeolite obtained with the synthesis temperature of 260 ° C and the synthesis time of 5.0 seconds. 合成温度260℃、合成時間7.5秒で得られたゼオライトのSEM写真図である。It is a SEM photograph figure of the zeolite obtained by synthesis temperature 260 ° C and synthesis time 7.5 seconds. 合成温度260℃、合成時間9.5秒で得られたゼオライトのSEM写真図である。It is a SEM photograph of the zeolite obtained at a synthesis temperature of 260 ° C. and a synthesis time of 9.5 seconds. 合成温度220℃、合成時間を7.5秒、9.5秒として得られたゼオライトのXRDデータ図である。FIG. 4 is an XRD data diagram of zeolite obtained at a synthesis temperature of 220 ° C. and a synthesis time of 7.5 seconds and 9.5 seconds. 合成温度240℃、合成時間を7.5秒、9.5秒として得られたゼオライトのXRDデータ図である。FIG. 4 is an XRD data diagram of zeolite obtained at a synthesis temperature of 240 ° C. and a synthesis time of 7.5 seconds and 9.5 seconds. 合成温度260℃、合成時間を1.0秒、2.5秒、5.0秒、7.5秒、9.5秒として得られたゼオライトのXRDデータ図である。FIG. 4 is an XRD data diagram of zeolite obtained at a synthesis temperature of 260 ° C. and synthesis times of 1.0, 2.5, 5.0, 7.5, and 9.5 seconds. 合成温度280℃、合成時間を1.0秒、2.5秒、5.0秒、7.5秒、9.5秒として得られたゼオライトのXRDデータ図である。FIG. 4 is an XRD data diagram of zeolite obtained at a synthesis temperature of 280 ° C. and synthesis times of 1.0, 2.5, 5.0, 7.5, and 9.5 seconds. 合成温度300℃、合成時間を1.0秒、2.5秒、5.0秒、7.5秒、9.5秒として得られたゼオライトのXRDデータ図である。FIG. 4 is an XRD data diagram of zeolite obtained at a synthesis temperature of 300 ° C. and synthesis times of 1.0, 2.5, 5.0, 7.5, and 9.5 seconds. オートクレーブで製造したサンプルのXRDデータ図である。It is a XRD data figure of the sample manufactured with the autoclave. 実施例1で得られたゼオライトについて、合成温度、合成時間を変化させた場合の結晶化度を評価した結果を示す図である。It is a figure which shows the result of having evaluated the crystallinity at the time of changing a synthesis temperature and synthesis time about the zeolite obtained in Example 1. FIG. 実施例2で製作したゼオライト(BEA)のSEM写真図である。4 is a SEM photograph of zeolite (BEA) manufactured in Example 2. FIG. オートクレーブで製作したゼオライト(BEA)のSEM写真図である。It is a SEM photograph figure of zeolite (BEA) manufactured with an autoclave. 実施例2で製作したゼオライト(BEA)、及び、オートクレーブで製作したゼオライト(BEA)のXRDデータ図である。It is a XRD data figure of the zeolite (BEA) manufactured in Example 2, and the zeolite (BEA) manufactured by the autoclave. 実施例2で製作したゼオライト(BEA)、及び、オートクレーブで製作したゼオライト(BEA)のN吸着による細孔容積測定評価図である。図中、横軸は相対圧力(-)、縦軸は、容積(Volume/cc/g)を表す。Zeolite manufactured in Example 2 (BEA), and a pore volume measurement evaluation diagram by N 2 adsorption zeolite fabricated in an autoclave (BEA). In the figure, the horizontal axis represents relative pressure (−), and the vertical axis represents volume (Volume / cc / g). 実施例3で製作したゼオライト(CHA)及び原料ゲルのXRDデータ図である。図中、下欄が24時間、95℃でエージング後の原料ゲルのXRDデータ図であり、上欄が、230℃、2分で流通合成して得られたゼオライト(CHA)のXRDデータ図である。FIG. 6 is an XRD data diagram of zeolite (CHA) and raw material gel manufactured in Example 3. In the figure, the lower column is an XRD data diagram of the raw material gel after aging at 95 ° C. for 24 hours, and the upper column is an XRD data diagram of zeolite (CHA) obtained by flow synthesis at 230 ° C. for 2 minutes. is there. オートクレーブで製造したゼオライト(CHA)の、6時間、24時間、30時間、48時間合成後のXRDデータ図である。It is a XRD data figure after 6 hours, 24 hours, 30 hours, and 48 hours synthesis | combination of the zeolite (CHA) manufactured by the autoclave. 実施例3で製作したゼオライト(CHA)のSEM写真図である。4 is a SEM photograph of zeolite (CHA) produced in Example 3. FIG. オートクレーブで製作したゼオライト(CHA)のSEM写真図である。It is a SEM photograph figure of zeolite (CHA) manufactured with an autoclave. 実施例4及び比較例4で得たピュアシリカゼオライト(Silicalite-1)のXRD図である。FIG. 5 is an XRD diagram of pure silica zeolite (Silicalite-1) obtained in Example 4 and Comparative Example 4. 実施例4で得たピュアシリカゼオライト(Silicalite-1)のSEM(走査型電子顕微鏡)写真図である。図26中、(b)、(c)は、(a)のSEM写真の部分拡大写真である。6 is a SEM (scanning electron microscope) photograph of the pure silica zeolite (Silicalite-1) obtained in Example 4. FIG. In FIG. 26, (b) and (c) are partially enlarged photographs of the SEM photograph of (a). 比較例4で得たピュアシリカゼオライト(Silicalite-1)のSEM(走査型電子顕微鏡)写真図である。図27中、(b)、(c)は、(a)のSEM写真の部分拡大写真である。6 is a SEM (scanning electron microscope) photograph of the pure silica zeolite (Silicalite-1) obtained in Comparative Example 4. FIG. In FIG. 27, (b) and (c) are partially enlarged photographs of the SEM photograph of (a).
(原料化合物を含有する流体)
 本発明においては、原料化合物を含有する流体(以下、「原料流体」ということがある。)を使用する。
 本発明において「原料化合物」とは、目的の結晶性ミクロ多孔質材料の組成上、必要不可欠な化合物をいう。原料化合物としては、共有結合又は配位結合を形成する能力を有し、結晶性ミクロ多孔質材料骨格に組み込まれる原子(イオン)を含有する化合物(以下、「骨格原子含有化合物」ということがある。)や、共有結合や配位結合を形成する能力がなく、電荷補償のために、結晶性ミクロ多孔質材料内に取り込まれるカチオンを供給する化合物(以下、「カチオン供給用化合物」ということがある。)が挙げられる。
(Fluid containing raw material compound)
In the present invention, a fluid containing a raw material compound (hereinafter sometimes referred to as “raw material fluid”) is used.
In the present invention, the “raw compound” refers to a compound that is indispensable for the composition of the target crystalline microporous material. As a raw material compound, a compound having an ability to form a covalent bond or a coordination bond and containing an atom (ion) incorporated into a crystalline microporous material skeleton (hereinafter, referred to as “skeleton atom-containing compound”) ) Or a compound that does not have the ability to form a covalent bond or a coordination bond and supplies a cation incorporated into the crystalline microporous material for charge compensation (hereinafter referred to as “cation supply compound”). There is).
 骨格原子含有化合物としては、ケイ素原子源となる化合物(以下、「含ケイ素化合物」ということがある。)、アルミニウム原子源となる化合物(以下、「含アルミニウム化合物」ということがある。)、リン原子源となる化合物(以下、「含リン化合物」ということがある。)、遷移金属化合物等が挙げられる。 As the skeleton atom-containing compound, a compound serving as a silicon atom source (hereinafter sometimes referred to as “silicon-containing compound”), a compound serving as an aluminum atom source (hereinafter also referred to as “aluminum-containing compound”), phosphorus. Examples include compounds that serve as atomic sources (hereinafter sometimes referred to as “phosphorus-containing compounds”), transition metal compounds, and the like.
 含ケイ素化合物は特に限定されず、結晶性ミクロ多孔質材料の合成に通常用いられるものを使用することができる。含ケイ素化合物としては、ヒュームドシリカ、シリカゾル、コロイダルシリカ、水ガラス、ケイ酸エチル、ケイ酸メチル等が挙げられる。
 これらは1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらのなかでも、高純度で、反応性が高い点で、ヒュームドシリカが好ましい。
The silicon-containing compound is not particularly limited, and those usually used for the synthesis of crystalline microporous materials can be used. Examples of the silicon-containing compound include fumed silica, silica sol, colloidal silica, water glass, ethyl silicate, and methyl silicate.
These can be used alone or in combination of two or more.
Among these, fumed silica is preferable in terms of high purity and high reactivity.
 含アルミニウム化合物は特に限定されず、結晶性ミクロ多孔質材料の合成に通常用いられるものを使用することができる。含アルミニウム化合物としては、アルミニウムトリイソプロポキシド、アルミニウムトリエトキシド等のアルミニウムアルコキシド;アルミン酸ナトリウム、アルミン酸カリウム、塩化アルミニウム、硫酸アルミニウム、酢酸アルミニウム、硝酸アルミニウム等のアルミニウム塩;水酸化アルミニウム(ギブサイト、バイヤーライト、ノルドストランダイト、ドイレイト等の結晶性水酸化アルミニウムを含む。);アルミニウムオキシ水酸化物(ベーマイト、ダイアスポア等の結晶性アルミニウムオキシ水酸化物を含む。);酸化アルミニウム(α-Al、χ-Al、δ-Al、γ-Al、η-Al、κ-Al、θ-Al等の結晶性酸化アルミニウム、アルミナゾル、擬ベーマイトを含む。);等が挙げられる。
 これらは1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらのなかでも、取り扱いが容易であり、かつ、反応性が高い点で、擬ベーマイトが好ましい。
The aluminum-containing compound is not particularly limited, and those usually used for the synthesis of crystalline microporous materials can be used. Examples of the aluminum-containing compound include aluminum alkoxides such as aluminum triisopropoxide and aluminum triethoxide; aluminum salts such as sodium aluminate, potassium aluminate, aluminum chloride, aluminum sulfate, aluminum acetate, and aluminum nitrate; aluminum hydroxide (gibbsite) , Including crystalline aluminum hydroxide such as Bayerlite, Nordstrandite and Doileite); aluminum oxyhydroxide (including crystalline aluminum oxyhydroxide such as boehmite and diaspore); aluminum oxide (α-Al Crystalline oxidation of 2 O 3 , χ-Al 2 O 3 , δ-Al 2 O 3 , γ-Al 2 O 3 , η-Al 2 O 3 , κ-Al 2 O 3 , θ-Al 2 O 3, etc. Aluminum, alumina sol, pseudo-boehmi Including);., And the like.
These can be used alone or in combination of two or more.
Among these, pseudoboehmite is preferable in terms of easy handling and high reactivity.
 含リン化合物は特に限定されず、結晶性ミクロ多孔質材料の合成に通常用いられるものを使用することができる。含リン化合物としては、リン酸、リン酸アルミニウム等が挙げられる。
 これらは1種を単独で、あるいは2種以上を組み合わせて用いることができる。
The phosphorus-containing compound is not particularly limited, and those usually used for the synthesis of crystalline microporous materials can be used. Examples of the phosphorus-containing compound include phosphoric acid and aluminum phosphate.
These can be used alone or in combination of two or more.
 遷移金属化合物は特に限定されず、ゼオライトの合成に通常用いられるものを使用することができる。
 遷移金属化合物に含まれる遷移金属としては、鉄、コバルト、ニッケル、マンガン、マグネシウム、亜鉛、銅、パラジウム、イリジウム、白金、銀、金、セリウム、ランタン、プラセオジウム、チタン、ジルコニウム等の周期表3-12族の遷移金属が挙げられる。
 遷移金属化合物としては、これらの遷移金属の硫酸塩、硝酸塩、リン酸塩、塩化物、臭化物等の無機酸塩;これらの遷移金属の酢酸塩、シュウ酸塩、クエン酸塩等の有機酸塩;これらの遷移金属のカルボニル化合物、シクロペンタジエニル基含有化合物等の有機金属化合物;等が挙げられる。
 これらは1種を単独で、あるいは2種以上を組み合わせて用いることができる。
A transition metal compound is not specifically limited, What is normally used for the synthesis | combination of a zeolite can be used.
Examples of transition metals contained in the transition metal compound include iron, cobalt, nickel, manganese, magnesium, zinc, copper, palladium, iridium, platinum, silver, gold, cerium, lanthanum, praseodymium, titanium, zirconium, etc. Examples include group 12 transition metals.
Transition metal compounds include inorganic acid salts such as sulfates, nitrates, phosphates, chlorides and bromides of these transition metals; organic acid salts such as acetates, oxalates and citrates of these transition metals. A carbonyl compound of these transition metals, an organometallic compound such as a cyclopentadienyl group-containing compound, and the like.
These can be used alone or in combination of two or more.
 用いる骨格原子含有化合物の種類や量は、目的の結晶性ミクロ多孔質材料の種類や組成に応じて適宜決定することができる。
 例えば、結晶性ミクロ多孔質材料としてアルミノシリケートゼオライトを製造する場合、骨格原子含有化合物として、含ケイ素化合物の1種又は2種以上、及び、含アルミニウム化合物の1種又は2種以上を含有する原料流体が用いられる。また、さらに遷移金属化合物の1種又は2種以上を含有する原料流体を用いることで、遷移金属を含有するアルミノシリケートゼオライトを製造することができる。
The type and amount of the skeleton atom-containing compound to be used can be appropriately determined according to the type and composition of the target crystalline microporous material.
For example, when producing an aluminosilicate zeolite as a crystalline microporous material, a raw material containing one or more silicon-containing compounds and one or more aluminum-containing compounds as the skeleton atom-containing compound A fluid is used. Furthermore, an aluminosilicate zeolite containing a transition metal can be produced by using a raw material fluid containing one or more transition metal compounds.
 アルミノシリケートゼオライトを製造する場合、含ケイ素化合物と含アルミニウム化合物の含有割合は、それぞれ酸化物に換算したモル比(SiO/Al)で、好ましくは2~10,000、より好ましくは10~1000、さらに好ましくは15~500である。
 遷移金属を含有するアルミノシリケートゼオライトを製造する場合、遷移金属化合物と含アルミニウム化合物の含有割合は、それぞれ酸化物に換算したモル比(遷移金属酸化物/SiO)で、好ましくは0.001~0.2、より好ましくは0.005~0.1、さらに好ましくは0.01~0.05である。
When producing an aluminosilicate zeolite, the content ratio of the silicon-containing compound and the aluminum-containing compound is preferably a molar ratio (SiO 2 / Al 2 O 3 ) converted to an oxide, preferably 2 to 10,000, more preferably It is 10 to 1000, more preferably 15 to 500.
When producing an aluminosilicate zeolite containing a transition metal, the content ratio of the transition metal compound and the aluminum-containing compound is a molar ratio converted to an oxide (transition metal oxide / SiO 2 ), preferably 0.001 to It is 0.2, more preferably 0.005 to 0.1, still more preferably 0.01 to 0.05.
 アルミノフォスフェートゼオライトを製造する場合、骨格原子含有化合物として、含アルミニウム化合物の1種又は2種以上、及び、含リン化合物の1種又は2種以上を含有する原料流体が用いられる。また、さらに遷移金属化合物の1種又は2種以上を含有する原料流体を用いることで、遷移金属を含有するアルミノフォスフェートゼオライトを製造することができる。 When producing an aluminophosphate zeolite, a raw material fluid containing one or more aluminum-containing compounds and one or more phosphorus-containing compounds as the skeleton atom-containing compound is used. Furthermore, an aluminophosphate zeolite containing a transition metal can be produced by using a raw material fluid containing one or more transition metal compounds.
 アルミノフォスフェートゼオライトを製造する場合、含リン化合物と含アルミニウム化合物の含有割合は、それぞれ酸化物に換算したモル比(P/Al)で、好ましくは0.6~1.7、より好ましくは0.7~1.6、さらに好ましくは0.8~1.5である。
 遷移金属を含有するアルミノフォスフェートゼオライトを製造する場合、遷移金属化合物と含アルミニウム化合物の含有割合は、それぞれ酸化物に換算したモル比(遷移金属酸化物/Al)で、好ましくは0.001~0.2、より好ましくは0.005~0.1、さらに好ましくは0.01~0.05である。
When producing an aluminophosphate zeolite, the content ratio of the phosphorus-containing compound and the aluminum-containing compound is a molar ratio (P 2 O 5 / Al 2 O 3 ) converted to an oxide, preferably 0.6 to 1. 7, more preferably 0.7 to 1.6, still more preferably 0.8 to 1.5.
When producing an aluminophosphate zeolite containing a transition metal, the content ratio of the transition metal compound and the aluminum-containing compound is a molar ratio (transition metal oxide / Al 2 O 3 ) converted to an oxide, preferably 0. 0.001 to 0.2, more preferably 0.005 to 0.1, and still more preferably 0.01 to 0.05.
 シリコアルミノフォスフェートゼオライトを製造する場合、骨格原子含有化合物として、含ケイ素化合物の1種又は2種以上、含アルミニウム化合物の1種又は2種以上、及び、含リン化合物の1種又は2種以上を含有する原料流体が用いられる。また、さらに遷移金属化合物の1種又は2種以上を含有する原料流体を用いることで、遷移金属を含有するシリコアルミノフォスフェートゼオライトを製造することができる。 When producing silicoaluminophosphate zeolite, as the skeleton atom-containing compound, one or more of silicon-containing compounds, one or more of aluminum-containing compounds, and one or more of phosphorus-containing compounds A raw material fluid containing is used. Furthermore, a silicoaluminophosphate zeolite containing a transition metal can be produced by using a raw material fluid containing one or more transition metal compounds.
 シリコアルミノフォスフェートゼオライトを製造する場合、含ケイ素化合物と含アルミニウム化合物の含有割合は、それぞれ酸化物に換算したモル比(SiO/Al)で、好ましくは0.001~0.4、より好ましくは0.01~0.3、さらに好ましくは0.05~0.2である。また、含リン化合物と含アルミニウム化合物の含有割合は、それぞれ酸化物に換算したモル比(P/Al)で、好ましくは0.6~1.7、より好ましくは0.7~1.6、さらに好ましくは0.8~1.5である。 When producing a silicoaluminophosphate zeolite, the content ratio of the silicon-containing compound and the aluminum-containing compound is preferably a molar ratio (SiO 2 / Al 2 O 3 ) converted to an oxide, preferably 0.001 to 0.4. More preferably, it is 0.01 to 0.3, and still more preferably 0.05 to 0.2. The content ratio of the phosphorus-containing compound and the aluminum-containing compound is preferably a molar ratio (P 2 O 5 / Al 2 O 3 ) converted to an oxide, preferably 0.6 to 1.7, and more preferably 0.8. It is 7 to 1.6, more preferably 0.8 to 1.5.
 遷移金属を含有するシリコアルミノフォスフェートゼオライトを製造する場合、遷移金属化合物と含アルミニウム化合物の含有割合は、それぞれ酸化物に換算したモル比(遷移金属酸化物/Al)で、好ましくは0.001~0.2、より好ましくは0.005~0.1、さらに好ましくは0.01~0.08である。 When producing a silicoaluminophosphate zeolite containing a transition metal, the content ratio of the transition metal compound and the aluminum-containing compound is preferably a molar ratio (transition metal oxide / Al 2 O 3 ) converted to an oxide, preferably It is 0.001 to 0.2, more preferably 0.005 to 0.1, and still more preferably 0.01 to 0.08.
 カチオン供給用化合物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物;水酸化マグネシウム;水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム等のアルカリ土類金属水酸化物;が挙げられる。
 これらは1種を単独で、あるいは2種以上を組み合わせて用いることができる。
Examples of the cation supply compound include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; magnesium hydroxide; alkaline earth metal hydroxides such as calcium hydroxide, strontium hydroxide, and barium hydroxide. ;
These can be used alone or in combination of two or more.
 カチオン供給用化合物を用いることで、電荷補償が効率よく行われる。ただし、用いる骨格原子含有化合物やテンプレートの種類によっては、これらに含まれるカチオンにより同様の効果が得られるため、本発明の結晶性ミクロ多孔質材料の製造方法においてカチオン供給用化合物は必須の成分ではない。 Charge compensation is efficiently performed by using a compound for supplying a cation. However, depending on the type of skeletal atom-containing compound and template used, the same effect can be obtained by the cation contained therein, so that the cation supply compound is not an essential component in the method for producing the crystalline microporous material of the present invention. Absent.
 原料流体がカチオン供給用化合物を含有する場合、その含有量は特に限定されない。カチオン供給用化合物の含有量は、通常、原料流体に含まれる含アルミニウム化合物とのモル比(含アルミニウム化合物:カチオン供給用化合物)で、通常、1:0.5~1:10、好ましくは1:0.7 ~1:3である。 When the raw material fluid contains a cation supplying compound, the content is not particularly limited. The content of the cation supplying compound is usually 1: 0.5 to 1:10, preferably 1 in terms of a molar ratio to the aluminum-containing compound contained in the raw material fluid (aluminum-containing compound: cation-supplying compound). : 0.7 to 1: 3.
 ピュアシリカゼオライトは、主たる成分がシリカのみからなり、アルミニウム成分を含まないゼオライトである。
 ピュアシリカは、例えば、結晶構造を形成させるための鋳型(テンプレート)となる物質と、ケイ素源と他の所定成分とを水の存在下に加熱加圧処理することにより得ることができる。ピュアシリカは、アルミのケイ酸塩からなる通常のゼオライトがもつ親水性が失われるので疎水性が強くなり、その結果、耐熱、耐酸性に優れるといった特徴を有する。
Pure silica zeolite is a zeolite whose main component consists only of silica and does not contain an aluminum component.
Pure silica can be obtained, for example, by subjecting a substance serving as a template (template) for forming a crystal structure, a silicon source, and other predetermined components to heat and pressure treatment in the presence of water. Pure silica loses the hydrophilicity of a normal zeolite made of aluminum silicate, so that the hydrophobicity becomes strong, and as a result, it has the characteristics of excellent heat resistance and acid resistance.
 原料流体は溶媒を含有する。溶媒としては、アルコール等の親水性有機溶媒、水等が挙げられ、なかでも水が好ましい。また、用いる水は、塩化ナトリウム等の他の成分を含有するものであってもよい。
 溶媒の含有量は特に限定されない。溶媒の含有量は、骨格原子含有化合物100重量部に対して、通常、0.01~10000重量部、好ましくは1~10重量部である。
The raw fluid contains a solvent. Examples of the solvent include hydrophilic organic solvents such as alcohol, water and the like, and water is particularly preferable. Moreover, the water to be used may contain other components such as sodium chloride.
The content of the solvent is not particularly limited. The content of the solvent is usually 0.01 to 10,000 parts by weight, preferably 1 to 10 parts by weight with respect to 100 parts by weight of the skeleton atom-containing compound.
 原料流体は、原料化合物や溶媒以外の成分(以下「その他の成分」ということがある。)を含有してもよい。
 その他の成分としては、テンプレート、種結晶等が挙げられる。
The raw material fluid may contain components other than the raw material compound and the solvent (hereinafter sometimes referred to as “other components”).
Examples of other components include templates and seed crystals.
 テンプレートは、所定の細孔構造を構築するために反応系内に添加される有機化合物をいう。通常、結晶性ミクロ多孔質材料の種類や細孔構造に応じて適宜選択される。
 テンプレートとしては、イソプロピルアミン、t-ブチルアミン、ネオペンチルアミン、シクロペンチルアミン、シクロヘキシルアミン等の1級アミン;
N-メチル-n-ブチルアミン、N-メチルシクロヘキシルアミン、ジ-n-プロピルアミン、ジ-n-ブチルアミン、ジ-n-ペンチルアミン、ジシクロヘキシルアミン等の2級アミン;
トリエチルアミン、ジイソプロピルエチルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、N,N-ジメチルベンジルアミン、ジメチルシクロヘキシルアミン、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、N-メチルジエタノールアミン、N-メチルエタノールアミン、トリエタノールアミン等の3級アミン;
A template refers to an organic compound that is added to a reaction system in order to construct a predetermined pore structure. Usually, it is appropriately selected according to the kind of crystalline microporous material and the pore structure.
Templates include primary amines such as isopropylamine, t-butylamine, neopentylamine, cyclopentylamine, cyclohexylamine;
Secondary amines such as N-methyl-n-butylamine, N-methylcyclohexylamine, di-n-propylamine, di-n-butylamine, di-n-pentylamine, dicyclohexylamine;
Triethylamine, diisopropylethylamine, tri-n-propylamine, triisopropylamine, N, N-dimethylbenzylamine, dimethylcyclohexylamine, N, N-diethylethanolamine, N, N-dimethylethanolamine, N-methyldiethanolamine, N -Tertiary amines such as methylethanolamine, triethanolamine;
モルホリン、ピペリジン、ピペラジン、N,N’-ジメチルピペラジン、1,4-ジアザビシクロ(2,2,2)オクタン、N-メチルピペリジン、3-メチルピペリジン、キヌクリジン、ピロリジン、2-イミダゾリドン、ヘキサメチレンイミン等の環状アミン;
2-メチルピリジン、3-メチルピリジン、4-メチルピリジン等のピリジン類;
コリン、エチレンジアミン等のポリアミン;
テトラメチルアンモニウム塩、テトラエチルアンモニウム塩、テトラ-n-プロピルアンモニウム塩、テトラ-n-ブチルアンモニウム塩等の4級アンモニウム塩;
N,N’-ジメチル-1,4-ジアザビシクロ-(2,2,2)オクタン塩;等が挙げられる。
 これらは1種を単独で、あるいは2種以上を組み合わせて用いることができる。
Morpholine, piperidine, piperazine, N, N′-dimethylpiperazine, 1,4-diazabicyclo (2,2,2) octane, N-methylpiperidine, 3-methylpiperidine, quinuclidine, pyrrolidine, 2-imidazolidone, hexamethyleneimine, etc. Cyclic amines of
Pyridines such as 2-methylpyridine, 3-methylpyridine, 4-methylpyridine;
Polyamines such as choline and ethylenediamine;
Quaternary ammonium salts such as tetramethylammonium salt, tetraethylammonium salt, tetra-n-propylammonium salt, tetra-n-butylammonium salt;
N, N′-dimethyl-1,4-diazabicyclo- (2,2,2) octane salt;
These can be used alone or in combination of two or more.
 原料流体がテンプレートを含有する場合、その含有量は特に限定されない。テンプレートの含有量は、通常、原料流体に含まれる骨格原子の合計量とのモル比(骨格原子:テンプレート)で、通常、1:0.001~1:5、好ましくは1:0.1~1:0.7である。テンプレートの量が少な過ぎると、安定性に劣る結晶性ミクロ多孔質材料が生成するおそれがある。またテンプレートの量が多過ぎると、収率が低下するおそれがある。 When the raw material fluid contains a template, the content is not particularly limited. The content of the template is usually a molar ratio with respect to the total amount of skeletal atoms contained in the raw material fluid (skeleton atom: template), and is usually 1: 0.001 to 1: 5, preferably 1: 0.1 to 1: 0.7. If the amount of the template is too small, a crystalline microporous material having poor stability may be formed. Moreover, when there is too much quantity of a template, there exists a possibility that a yield may fall.
 種結晶は、結晶性ミクロ多孔質材料の生成(結晶化)を促進するために用いられる。
 用いる種結晶は、目的の結晶性ミクロ多孔質材料と組成、構造が同じものであることが好ましい。種結晶は、本発明の方法により合成されたものであってもよいし、バッチ法等の従来公知の方法により合成されたものであってもよい。
The seed crystal is used to promote the generation (crystallization) of a crystalline microporous material.
The seed crystal to be used preferably has the same composition and structure as the target crystalline microporous material. The seed crystal may be synthesized by the method of the present invention, or may be synthesized by a conventionally known method such as a batch method.
 種結晶の平均粒子径は、通常、0.01~100μm、好ましくは0.1~50μmである。
 種結晶の平均粒子径は、走査型顕微鏡写真からランダムに数十個の粒子を選び、画像解析ソフトで各粒子の断面積を求め、各粒子の粒子径及び算術平均値を算出することにより求めることができる。
The average particle size of the seed crystal is usually 0.01 to 100 μm, preferably 0.1 to 50 μm.
The average particle size of the seed crystal is obtained by randomly selecting several tens of particles from a scanning micrograph, calculating the cross-sectional area of each particle with image analysis software, and calculating the particle size and arithmetic average value of each particle. be able to.
 原料流体が種結晶を含有する場合、その含有量は特に限定されない。種結晶の含有量は、通常、骨格原子含有化合物100重量部に対して、通常、0.1~40重量部、好ましくは1~10重量部である。種結晶の量が少な過ぎると、結晶化の促進効果が得られないおそれがある。また種結晶の量が多過ぎると、実質的な収量が低下するおそれがある。 When the raw material fluid contains seed crystals, the content is not particularly limited. The content of the seed crystal is usually 0.1 to 40 parts by weight, preferably 1 to 10 parts by weight with respect to 100 parts by weight of the skeleton atom-containing compound. If the amount of the seed crystal is too small, the crystallization promoting effect may not be obtained. Moreover, when there is too much quantity of a seed crystal, there exists a possibility that a substantial yield may fall.
 原料流体は、公知の方法に従って調製することができる。
 例えば、各骨格原子含有化合物、及び必要に応じて用いられるその他の成分を溶媒と混合することにより原料流体を調製することができる。
 混合方法、混合順序は特に限定されず、公知の方法を適宜利用することができる。
The raw material fluid can be prepared according to a known method.
For example, a raw material fluid can be prepared by mixing each skeleton atom-containing compound and other components used as necessary with a solvent.
A mixing method and a mixing order are not particularly limited, and a known method can be appropriately used.
 また、原料流体は、エマルジョン処理を行ったものであってもよい。エマルジョン処理とは、原料流体をエマルジョンにする処理をいう。エマルジョン処理を行うことにより、原料流体に所望の流動性を付与することができる。例えば、各骨格原子含有化合物、及び必要に応じて用いられるその他の成分を溶媒と混合することにより原料流体(反応混合物)を調製した後、このものと、有機溶媒及び両親媒性分子を混合することにより、エマルジョンとすることができる。 Further, the raw material fluid may be subjected to an emulsion treatment. Emulsion processing refers to processing for converting a raw material fluid into an emulsion. By performing the emulsion treatment, desired fluidity can be imparted to the raw material fluid. For example, after preparing a raw material fluid (reaction mixture) by mixing each skeleton atom-containing compound and other components used as necessary with a solvent, this is mixed with an organic solvent and an amphiphilic molecule. Thus, an emulsion can be obtained.
 用いる有機溶媒としては、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン等の脂環式炭化水素系溶媒;ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;等が挙げられる。 Examples of organic solvents to be used include cycloaliphatic hydrocarbon solvents such as cyclopentane, cyclohexane, cycloheptane, and cyclooctane; aliphatic hydrocarbon solvents such as pentane, hexane, heptane, and octane; aromatics such as benzene, toluene, and xylene. Group hydrocarbon solvents; and the like.
 両親媒性分子としては、脂肪酸アルカリ金属塩、モノアルキル硫酸塩、アルキルポリオキシエチレン硫酸塩、アルキルスルホン酸塩、アルファオレフィンスルホン酸塩、アルキルエーテル硫酸エステル塩、アルキルベンゼンスルホン酸塩、モノアルキルリン酸塩等の陰イオン界面活性剤;アルキルトリアルキルアンモニウム塩、アルキルベンジルジアルキルアンモニウム塩等の陽イオン界面活性剤;アルキルジメチルアミンオキシド 、アルキルカルボキシベタイン等の両性界面活性剤;ポリオキシエチレンアルキルエーテル、ポリプロピレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンソルビタン脂肪酸エステル、脂肪酸ソルビタンエステル、アルキルポリグルコシド、脂肪酸ジエタノールアミド、アルキルモノグリセリルエーテル等の非イオン界面活性剤;リン脂質等の生体内分子;両親媒性高分子;等が挙げられる。
 これらの中でも、より容易にエマルジョン処理を行うことができる観点から、非イオン性界面活性剤が好ましく、ポリオキシエチレンアルキルエーテルがより好ましい。
Amphiphilic molecules include fatty acid alkali metal salts, monoalkyl sulfates, alkyl polyoxyethylene sulfates, alkyl sulfonates, alpha olefin sulfonates, alkyl ether sulfates, alkyl benzene sulfonates, monoalkyl phosphates Anionic surfactants such as salts; Cationic surfactants such as alkyltrialkylammonium salts and alkylbenzyldialkylammonium salts; Amphoteric surfactants such as alkyldimethylamine oxide and alkylcarboxybetaines; Polyoxyethylene alkyl ethers and polypropylenes Alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene sorbitan fatty acid ester, fatty acid sorbitan ester, alkyl polyglucoside, fatty acid diethanolamide And nonionic surfactants such as alkyl monoglyceryl ethers; biomolecules such as phospholipids; amphiphilic polymers;
Among these, a nonionic surfactant is preferable and polyoxyethylene alkyl ether is more preferable from the viewpoint that the emulsion treatment can be performed more easily.
 エマルジョン処理を行う場合、原料流体と有機溶媒の使用割合は、 (原料流体):(有機溶媒)の重量比で、好ましくは、0.01:1~1:0.01、より好ましくは、0.1:1~1:0.1、さらに好ましくは、0.5:1~1:0.5の範囲である。また、有機溶媒と両親媒性分子の使用割合は、(有機溶媒):(両親媒性分子)の重量比で、好ましくは、0.01:10~10:0.01、より好ましくは、0.01:5~5:0.01、さらに好ましくは、0.05:1~1:0.05の範囲である。このような範囲で、原料流体、有機溶媒及び両親媒性分子を用いることで、効率よくエマルジョン処理を行うことができる。 When the emulsion treatment is performed, the ratio of the raw material fluid and the organic solvent used is preferably a weight ratio of (raw material fluid) :( organic solvent), preferably 0.01: 1 to 1: 0.01, more preferably 0. The range is from 1: 1 to 1: 0.1, more preferably from 0.5: 1 to 1: 0.5. The use ratio of the organic solvent and the amphiphilic molecule is preferably a weight ratio of (organic solvent) :( amphiphilic molecule), preferably 0.01: 10 to 10: 0.01, more preferably 0. .01: 5 to 5: 0.01, and more preferably 0.05: 1 to 1: 0.05. In such a range, by using the raw material fluid, the organic solvent, and the amphiphilic molecule, the emulsion treatment can be efficiently performed.
 また、原料流体は、熟成処理が施されたものであってもよい。熟成処理とは、原料流体を、高結晶性の結晶性ミクロ多孔質材料が生成しない温度下に置くことをいう。この場合、所定の温度で原料流体をそのまま静置してもよいし、撹拌を継続してもよい。新たに結晶が生成しない場合もあれば、結晶性の低いミクロ多孔質材料が生成する場合もある。熟成処理が施された原料流体を用いることで、目的の結晶性ミクロ多孔質材料をより効率よく製造することができる。 Further, the raw material fluid may be subjected to aging treatment. The aging treatment refers to placing the raw material fluid at a temperature at which a highly crystalline crystalline microporous material is not generated. In this case, the raw material fluid may be left as it is at a predetermined temperature, or stirring may be continued. In some cases, no new crystal is generated, and in other cases, a microporous material with low crystallinity is generated. By using the raw material fluid that has been subjected to aging treatment, the target crystalline microporous material can be produced more efficiently.
 熟成温度は、通常、100℃以下、好ましくは10~100℃、より好ましくは20~95℃である。熟成温度が低すぎると、その効果が得られないおそれがあり、熟成温度が高すぎると、温度維持のためコスト増につながる。
 熟成時間は特に限定されない。熟成時間は、通常、2時間以上、好ましくは6時間以上、より好ましくは12時間以上である。上限は特にないが、通常120時間以下である。
The aging temperature is usually 100 ° C. or lower, preferably 10 to 100 ° C., more preferably 20 to 95 ° C. If the aging temperature is too low, the effect may not be obtained. If the aging temperature is too high, the temperature is maintained and the cost is increased.
The aging time is not particularly limited. The aging time is usually 2 hours or longer, preferably 6 hours or longer, more preferably 12 hours or longer. There is no particular upper limit, but it is usually 120 hours or less.
(加熱用熱媒流体)
 本発明の製造方法に用いる加熱用熱媒流体は、流動性を有し、原料流体と混合する、又は原料流体を加熱することにより、所定の温度の混合流体を生成させるものであり、かつ、結晶性ミクロ多孔質材料の合成反応に悪影響を与えないものであれば特に限定されない。
(Heating medium fluid for heating)
The heating medium fluid for use in the production method of the present invention has fluidity, mixes with the raw material fluid, or heats the raw material fluid to generate a mixed fluid at a predetermined temperature, and There is no particular limitation as long as it does not adversely affect the synthesis reaction of the crystalline microporous material.
 加熱用熱媒流体としては、水(熱水)、水蒸気、熱媒体油等が挙げられる。これらの中でも水が好ましい。
 加熱用熱媒流体の温度は、100℃以上、好ましくは100~500℃、より好ましくは110~370℃である。
 加熱用熱媒流体の温度が100℃以上であることで、結晶性ミクロ多孔質材料の合成反応に適する温度の混合流体を効率よく生成させることができる。
Examples of the heating medium fluid for heating include water (hot water), water vapor, and heat medium oil. Among these, water is preferable.
The temperature of the heating medium fluid for heating is 100 ° C. or higher, preferably 100 to 500 ° C., more preferably 110 to 370 ° C.
When the temperature of the heating medium fluid for heating is 100 ° C. or higher, a mixed fluid having a temperature suitable for the synthesis reaction of the crystalline microporous material can be efficiently generated.
(製造装置)
 本発明の結晶性ミクロ多孔質材料の製造装置は、下記の〔A〕又は〔B〕のいずれかである。
〔A〕少なくとも、原料化合物を含有する流体が供給される原料化合物含有流体導入口と、加熱用熱媒流体が導入される加熱用熱媒流体導入口とを有する反応管を備え、原料化合物を含有する流体を前記反応管に連続的に供給し、結晶性ミクロ多孔質材料を連続的に製造する、結晶性ミクロ多孔質材料の製造装置であって、
 前記反応管内において、温度が100℃未満の、原料化合物を含有する流体と、温度が100℃以上の加熱用熱媒流体とを混合することにより、70~500℃の範囲で選択される所定の温度の混合流体を生成させ、得られた混合流体を、超臨界流体にすることなく、前記反応管内を下流側に移送しながら、温度70~500℃で結晶性ミクロ多孔質材料の合成反応を行い、結晶性ミクロ多孔質材料を含有する流体を生成させるものである、結晶性ミクロ多孔質材料の製造装置。
〔B〕少なくとも、原料化合物を含有する流体が供給される原料化合物含有流体導入口と、加熱用熱媒流体が導入される加熱用熱媒流体導入口とを有する反応管を備え、原料化合物を含有する流体を前記反応管に連続的に供給し、結晶性ミクロ多孔質材料を連続的に製造する、結晶性ミクロ多孔質材料の製造装置であって、
 前記反応管が、温度が100℃未満の原料化合物を含有する流体を、前記反応管内に連続的に供給し、温度が70~500℃の範囲で選択される所定の温度の混合流体を生成させ、得られた混合流体を、超臨界流体にすることなく、前記反応管内を下流側に移送しながら、温度70~500℃で、結晶性ミクロ多孔質材料の合成反応を行い、結晶性ミクロ多孔質材料を含有する流体を生成させるゲル専用内管と、前記ゲル専用内管の周囲を取り囲む加熱用熱媒流体用外管とからなる、二重構造を有する反応管である、結晶性ミクロ多孔質材料の製造装置。
(Manufacturing equipment)
The apparatus for producing a crystalline microporous material of the present invention is either [A] or [B] below.
[A] a reaction tube having at least a raw material compound-containing fluid inlet to which a fluid containing a raw material compound is supplied and a heating heat medium fluid inlet to which a heating heat medium fluid is introduced; An apparatus for producing a crystalline microporous material, which continuously supplies a fluid containing the reaction tube to produce the crystalline microporous material continuously,
In the reaction tube, a fluid containing a raw material compound having a temperature of less than 100 ° C. and a heating medium fluid for heating having a temperature of 100 ° C. or more are mixed to obtain a predetermined temperature selected in the range of 70 to 500 ° C. A mixed fluid at a temperature is generated, and the resultant mixed fluid is transferred to the downstream side of the reaction tube without making it a supercritical fluid, and the synthesis reaction of the crystalline microporous material is performed at a temperature of 70 to 500 ° C. An apparatus for producing a crystalline microporous material, which is performed to generate a fluid containing the crystalline microporous material.
[B] A reaction tube having at least a raw material compound-containing fluid inlet to which a fluid containing a raw material compound is supplied and a heating heat medium fluid inlet to which a heating heat medium fluid is introduced, An apparatus for producing a crystalline microporous material, which continuously supplies a fluid containing the reaction tube to produce the crystalline microporous material continuously,
The reaction tube continuously supplies a fluid containing a raw material compound having a temperature of less than 100 ° C. into the reaction tube to generate a mixed fluid having a predetermined temperature selected in the range of 70 to 500 ° C. The resulting mixed fluid is not converted into a supercritical fluid, and the crystalline microporous material is synthesized at a temperature of 70 to 500 ° C. while being transferred to the downstream side in the reaction tube. A crystalline microporous, which is a reaction tube having a dual structure, comprising a gel-dedicated inner tube for generating a fluid containing a porous material and a heating heat transfer fluid outer tube surrounding the gel-dedicated inner tube. Quality material manufacturing equipment.
(反応管)
 本発明の製造装置の反応管は、管状の反応装置であり、その上流部に、原料流体を反応管内に導入するための流体導入口(以下、「原料流体導入口」ということがある。)と、加熱用熱媒流体を反応管内に導入するための流体導入口(以下、「加熱用熱媒流体導入口」ということがある。)とを備えるものである。
 反応管は、下流部にも複数の流体導入口を有していてもよい。下流部の流体導入口は、合成に必要な原料化合物を供給したり、冷却用熱媒流体を反応管内に導入する際に好適に用いられる。
 また、反応管は、下流部に冷却手段を有していてもよく、混合後の反応管自体を保温、もしくは追加加熱するための加熱手段を有していてもよい。加熱手段は複数個設置されていてもよい。
(Reaction tube)
The reaction tube of the production apparatus of the present invention is a tubular reaction device, and a fluid introduction port for introducing a raw material fluid into the reaction tube at an upstream portion thereof (hereinafter sometimes referred to as “raw material fluid introduction port”). And a fluid inlet for introducing the heating medium fluid into the reaction tube (hereinafter also referred to as “heating medium fluid inlet”).
The reaction tube may have a plurality of fluid inlets in the downstream portion. The fluid inlet at the downstream portion is preferably used when supplying a raw material compound necessary for synthesis or introducing a cooling heat transfer fluid into the reaction tube.
In addition, the reaction tube may have a cooling means in the downstream portion, and may have a heating means for keeping the reaction tube itself after mixing warm or for additional heating. A plurality of heating means may be installed.
 本発明の製造装置の反応管は、原料流体が移送され、ゼオライトの生成反応が行われるゲル専用内管とその周囲を取り囲むように加熱用熱媒流体が流れる加熱用熱媒用外管からなる二重構造を有するものであってもよい。 The reaction tube of the production apparatus of the present invention comprises a gel-dedicated inner tube in which a raw material fluid is transferred and a zeolite production reaction is performed, and a heating heat medium outer tube through which a heating heat medium fluid flows so as to surround the periphery. It may have a double structure.
 このように、本発明の製造装置の反応管は、結晶性ミクロ多孔質材料の生成反応が行われる管状の反応装置であればよく、その他の特徴を有していてもよいし、有していなくてもよい。このため、反応管と、反応管の上流及び下流の配管とを明確に区別できない場合もあるが、このような場合は、結晶性ミクロ多孔質材料の生成反応が起きる部分を反応管というものとする。例えば、下流部に冷却用熱媒流体導入口を有する管の場合、原料流体と加熱用熱媒流体が接触する場所から、下流部の流体導入口までの部分を反応管といい、その前後の配管と区別する。また、下流部に冷却用熱媒流体導入口を有しない管の場合、原料流体と加熱用熱媒流体が接触する場所から、流体温度が70℃未満になるまでの部分を反応管といい、その前後の配管と区別する。 As described above, the reaction tube of the production apparatus of the present invention may be a tubular reaction apparatus in which the formation reaction of the crystalline microporous material is performed, and may or may have other characteristics. It does not have to be. For this reason, there are cases where the reaction tube and the upstream and downstream piping of the reaction tube cannot be clearly distinguished. In such a case, the part where the formation reaction of the crystalline microporous material occurs is called a reaction tube. To do. For example, in the case of a pipe having a cooling heat transfer fluid inlet in the downstream part, the part from the place where the raw material fluid and the heating heat transfer fluid contact to the downstream fluid inlet is called a reaction pipe, Distinguish from piping. In addition, in the case of a pipe that does not have a cooling heat transfer fluid inlet in the downstream portion, the part from the place where the raw material fluid and the heating heat transfer fluid come into contact until the fluid temperature becomes less than 70 ° C. is called a reaction tube, Distinguish from the pipes before and after.
 外部から加熱・保温操作を行わない場合、放熱により上流部に比べて相対的に低くなるため、下流部に移送されるにしたがって、徐々に結晶性ミクロ多孔質材料の合成反応が起きにくくなる。
 従って、反応管は、断熱材で覆われていることが好ましい。断熱材で覆われた反応管を用いることで、より安定的に、より効率よく結晶性ミクロ多孔質材料の合成反応を行うことができる。
When the heating and heat retaining operation is not performed from the outside, since it becomes relatively lower than the upstream part due to heat dissipation, the synthesis reaction of the crystalline microporous material gradually becomes difficult as it is transferred to the downstream part.
Therefore, the reaction tube is preferably covered with a heat insulating material. By using the reaction tube covered with the heat insulating material, the synthetic reaction of the crystalline microporous material can be performed more stably and more efficiently.
 反応管の内径(二重構造を有するものである場合には、ゲル専用内管の内径)は、通常、0.01~50cm、好ましくは、0.05~20cmである。反応管の外径(二重構造を有するものである場合には、ゲル専用内管の外径)は、管内圧力に耐えられる管厚により決定される。 The inner diameter of the reaction tube (in the case of a double structure, the inner diameter of the gel-dedicated inner tube) is usually 0.01 to 50 cm, preferably 0.05 to 20 cm. The outer diameter of the reaction tube (in the case of a double structure, the outer diameter of the gel-dedicated inner tube) is determined by the tube thickness that can withstand the pressure in the tube.
 反応管の長さは特に限定されない。下流部の流体導入口や、反応管の冷却装置等の冷却手段を有する場合、反応管の長さ〔混合流体が生成する場所(上流部の流体導入口の位置)から、冷却手段までの長さ〕は、通常、1~10,000cm、好ましくは、2~30cmである。また、冷却手段を用いず、混合流体を自然冷却させる場合、反応管の長さ〔混合流体が生成する場所(上流部の流体導入口の位置)から、混合流体の温度が70℃未満になるまでの長さ〕は、通常、5~30,000cm、好ましくは、20~1,000cmである。
 反応管が長い場合は、反応管はコイル状に巻回されていてもよい。
 反応管の長さを調節することにより、結晶性ミクロ多孔質材料の合成時間(原料化合物を加熱用熱媒体により加熱している時間)は、通常3600秒以内である。含有する流体を供給した後、結晶性ミクロ多孔質材料を含有する流体を該反応管から取り出すまでの時間は、適宜調節することができる。本発明において、結晶性ミクロ多孔質材料の合成時間は特に限定されないが、通常1秒から3600秒、好ましくは2秒から300秒である。
The length of the reaction tube is not particularly limited. When a cooling means such as a downstream fluid inlet or a cooling device for the reaction tube is provided, the length of the reaction tube [from the place where the mixed fluid is generated (position of the upstream fluid inlet) to the cooling means) Is generally 1 to 10,000 cm, preferably 2 to 30 cm. Further, when the mixed fluid is naturally cooled without using the cooling means, the temperature of the mixed fluid becomes less than 70 ° C. from the length of the reaction tube [the place where the mixed fluid is generated (the position of the upstream fluid inlet). The length up to] is usually 5 to 30,000 cm, preferably 20 to 1,000 cm.
When the reaction tube is long, the reaction tube may be wound in a coil shape.
By adjusting the length of the reaction tube, the synthesis time of the crystalline microporous material (the time during which the raw material compound is heated by the heating medium) is usually within 3600 seconds. The time until the fluid containing the crystalline microporous material is taken out from the reaction tube after supplying the fluid containing the fluid can be adjusted as appropriate. In the present invention, the synthesis time of the crystalline microporous material is not particularly limited, but is usually 1 to 3600 seconds, preferably 2 to 300 seconds.
 反応管の材質は、用いる反応条件(反応温度、反応圧力)において耐え得るものであれば特に限定されない。通常、ステンレス、ハステロイ、インコネル、チタン、銅、アルミニウム等の金属;ポリテトラフルオロエチレン等の合成樹脂;が用いられる。また、反応管は、全体が金属製で、内部がポリテトラフルオロエチレン等の合成樹脂でコーティングされているものであってもよい。 The material of the reaction tube is not particularly limited as long as it can withstand the reaction conditions (reaction temperature, reaction pressure) to be used. Usually, metals such as stainless steel, hastelloy, inconel, titanium, copper and aluminum; and synthetic resins such as polytetrafluoroethylene are used. The reaction tube may be entirely made of metal and the inside may be coated with a synthetic resin such as polytetrafluoroethylene.
 また、反応管の閉塞を防ぐ目的で、反応管を振動させる振動装置(ノッカー、バイブレーター)を設置することもできる。さらに、システム自体を傾斜もしくは垂直配置することも可能である。
 更に、反応管は、原料流体が不均一に加熱されるのを防止するために、管内部に、反応管内を、原料流体を撹拌しながら移送することができる装置(例えばスクリュー等)を有するものであってもよい。
In addition, a vibration device (a knocker or a vibrator) that vibrates the reaction tube can be installed for the purpose of preventing the reaction tube from being blocked. Furthermore, the system itself can be tilted or vertically arranged.
Furthermore, the reaction tube has a device (for example, a screw) that can move the inside of the reaction tube while stirring the raw material fluid inside the tube in order to prevent the raw material fluid from being heated unevenly. It may be.
 本発明の製造装置の反応管の例(模式図)を図1(A),(B)に示す。これらの模式図において、矢印は流体が流れる向きを表す。
 図1(A)に示される反応管(1a)は、上流部に流体導入口(2a)、(2b)を備える。
 流体導入口(2a)、(2b)のどちらか一方が原料流体導入口であり、他方が加熱用熱媒流体導入口である。原料流体と加熱用熱媒流体は、それぞれ流体導入口から反応管内に導入され、そこで2つの流体は混合される。生成した混合流体は、反応管内を下流側に移送される。
An example (schematic diagram) of a reaction tube of the production apparatus of the present invention is shown in FIGS. In these schematic diagrams, arrows indicate the direction in which the fluid flows.
The reaction tube (1a) shown in FIG. 1 (A) includes fluid inlets (2a) and (2b) in the upstream portion.
Either one of the fluid inlets (2a) and (2b) is a raw material fluid inlet, and the other is a heating medium fluid inlet. The raw material fluid and the heating medium fluid are respectively introduced into the reaction tube from the fluid inlet, where the two fluids are mixed. The produced mixed fluid is transferred downstream in the reaction tube.
 図1(B)に示す反応管(1b)は、上流部に流体導入口(2c)、(2d)を備え、下流部に流体導入口(3a)を備える。
 流体導入口(2c)、(2d)のどちらか一方が原料流体導入口であり、他方が加熱用熱媒流体導入口である。反応管(1b)においても、反応管(1a)と同様に、結晶性ミクロ多孔質材料の合成反応が進行する。ただし、反応管(1b)は、流体導入口(3a)から冷却用熱媒流体を反応管内に導入することができるため、これにより混合流体の温度を急速に下げ、結晶性ミクロ多孔質材料の合成反応を急速に停止させることができる。
The reaction tube (1b) shown in FIG. 1 (B) has fluid inlets (2c) and (2d) in the upstream portion and a fluid inlet (3a) in the downstream portion.
One of the fluid inlets (2c) and (2d) is a raw material fluid inlet, and the other is a heating medium fluid inlet. Also in the reaction tube (1b), the synthesis reaction of the crystalline microporous material proceeds in the same manner as in the reaction tube (1a). However, since the reaction tube (1b) can introduce the cooling heat transfer fluid into the reaction tube from the fluid introduction port (3a), the temperature of the mixed fluid can be rapidly lowered by this, and the crystalline microporous material The synthesis reaction can be stopped rapidly.
 流体導入口周辺の形状や、反応管に接続される配管の向きは特に限定されない。図2(A)~(C)は、反応管上流部における、反応管と配管との接続態様の一例を表す模式図である。 The shape around the fluid inlet and the direction of piping connected to the reaction tube are not particularly limited. FIGS. 2A to 2C are schematic views showing an example of a connection mode between the reaction tube and the pipe in the upstream portion of the reaction tube.
 図1(A)、(B)に示す反応管の流体導入口周辺拡大図を、図2(A)、(B)、(C)に示す。
 図2(A)に示す流体導入口(4a)においては、反応管(5a)は、上流部に流体導入口(2e)、(2f)を備え、流体移送用配管(6a)、(6b)はそれぞれ、流体導入口(2e)、(2f)に接続している。流体移送用配管(6a)と反応管(5a)は、同一直線上にあり、この直線と流体移送用配管(6b)は直交している。
FIGS. 2A, 2B, and 2C are enlarged views around the fluid inlet of the reaction tube shown in FIGS.
In the fluid introduction port (4a) shown in FIG. 2 (A), the reaction tube (5a) includes fluid introduction ports (2e) and (2f) in the upstream portion, and fluid transfer pipes (6a) and (6b). Are connected to the fluid inlets (2e) and (2f), respectively. The fluid transfer pipe (6a) and the reaction tube (5a) are on the same straight line, and the straight line and the fluid transfer pipe (6b) are orthogonal to each other.
 図2(B)に示す流体導入口周辺図(4b)においては、反応管(5b)は、上流部に流体導入口(2g)、(2h)を備え、流体移送用配管(6c)、(6d)はそれぞれ、流体導入口(2g)、(2h)に接続している。流体移送用配管(6c)と反応管(5b)は、同一直線上にあり、流体移送用配管(6c)と流体移送用配管(6d)は鋭角になるように配置されている。 In the peripheral view (4b) of the fluid inlet shown in FIG. 2 (B), the reaction tube (5b) includes fluid inlets (2g) and (2h) in the upstream portion, and the fluid transfer pipes (6c), ( 6d) is connected to fluid inlets (2g) and (2h), respectively. The fluid transfer pipe (6c) and the reaction tube (5b) are on the same straight line, and the fluid transfer pipe (6c) and the fluid transfer pipe (6d) are arranged at an acute angle.
 図2(C)に示す流体導入口周辺図(4c)においては、反応管(5c)は、上流部に流体導入口(2i)、(2j)を備え、流体移送用配管(6e)、(6f)はそれぞれ、流体導入口(2i)、(2j)に接続している。流体移送用配管(6e)、(6f)は、いずれも反応管(5c)とは同一直線上にはない。 In the peripheral view (4c) of the fluid inlet shown in FIG. 2 (C), the reaction tube (5c) includes fluid inlets (2i) and (2j) in the upstream portion, and the fluid transfer pipes (6e), ( 6f) is connected to fluid inlets (2i) and (2j), respectively. None of the fluid transfer pipes (6e) and (6f) is collinear with the reaction pipe (5c).
 また、二重構造を有する反応管の例を図4に示す。図4に示す反応管は、原料流体が移送され、ゼオライトの生成反応が行われるゲル専用内管(15a)と、ゲル専用内管(15a)の周囲を取り囲むように設置された、加熱用熱媒流体を流すための加熱用熱媒(加熱水)用外管(15b)とからなる二重構造を有するものである。図4に示す反応管は、更に、加熱水を所定温度に制御するための複数の加熱手段(一段目電気ヒーター15c、二段目電気ヒーター15d)を有するものである。 FIG. 4 shows an example of a reaction tube having a double structure. The reaction tube shown in FIG. 4 is a heating inner heat pipe installed so as to surround the inner tube (15a) dedicated to the gel in which the raw material fluid is transferred and the zeolite formation reaction is performed, and the inner tube (15a) dedicated to the gel. It has a double structure composed of a heating medium (heating water) outer tube (15b) for flowing a fluid medium. The reaction tube shown in FIG. 4 further has a plurality of heating means (first-stage electric heater 15c, second-stage electric heater 15d) for controlling the heated water to a predetermined temperature.
(結晶性ミクロ多孔質材料の製造方法)
 本発明の結晶性ミクロ多孔質材料の製造方法は、原料化合物を含有する流体を反応管に連続的に供給し、結晶性ミクロ多孔質材料を連続的に製造する方法であって、前記ステップ(I)及びステップ(II)を有することを特徴とする。
(Method for producing crystalline microporous material)
The method for producing a crystalline microporous material of the present invention is a method for continuously producing a crystalline microporous material by continuously supplying a fluid containing a raw material compound to a reaction tube, wherein the step ( I) and step (II).
 ここで、「原料流体を反応管に連続的に供給する」や、「結晶性ミクロ多孔質材料を連続的に製造する」の「連続的」とは、ある一定期間その操作が継続されることを意味する。したがって、これらの操作が間欠的に行われる場合も含まれる。 Here, “continuous” in “continuously supplying the raw material fluid to the reaction tube” and “manufacturing the crystalline microporous material continuously” means that the operation is continued for a certain period of time. Means. Therefore, the case where these operations are performed intermittently is also included.
 ステップ(I)は、温度が100℃未満の原料化合物を含有する流体を、前記反応管内に連続的に供給し、温度が70~500℃の範囲で選択される所定の温度の混合流体を生成させるステップである。
 本発明の製造方法においては、ステップ(I)は、前記反応管内において、温度が100℃未満の、原料化合物を含有する流体と、温度が100℃以上の加熱用熱媒流体とを混合することにより、70~500℃の範囲で選択される所定の温度の混合流体を生成させるステップ(以下、「ステップ(Ia)」ということがある。)であっても、前記反応管内において、温度が100℃未満の、原料化合物を含有する流体を、加熱用熱媒流体と接触させることなく、前記加熱用熱媒流体により加熱することにより、70~500℃の範囲で選択される所定の温度の混合流体を生成させるステップ(以下、「ステップ(Ib)」ということがある。)のいずれであってもよい。
In step (I), a fluid containing a raw material compound having a temperature of less than 100 ° C. is continuously supplied into the reaction tube to generate a mixed fluid having a predetermined temperature selected in the range of 70 to 500 ° C. It is a step to make.
In the production method of the present invention, in step (I), in the reaction tube, a fluid containing a raw material compound having a temperature of less than 100 ° C. and a heating medium fluid for heating having a temperature of 100 ° C. or more are mixed. Thus, even in the step of generating a fluid mixture having a predetermined temperature selected in the range of 70 to 500 ° C. (hereinafter sometimes referred to as “step (Ia)”), the temperature is 100 in the reaction tube. Mixing at a predetermined temperature selected in the range of 70 to 500 ° C. by heating the fluid containing the raw material compound having a temperature of less than 0 ° C. with the heating heat medium fluid without contacting the fluid. Any of the steps of generating a fluid (hereinafter sometimes referred to as “step (Ib)”) may be used.
 ステップ(Ia)、(Ib)のいずれの場合も、原料流体の温度(T(I))は、100℃未満であり、好ましくは20~98℃、より好ましくは70~95℃である。原料流体の温度(T(I))が100℃以上の場合、反応管に導入する前に結晶性ミクロ多孔質材料が生成して、配管を閉塞させたり、均一性に劣る結晶性ミクロ多孔質材料が生成したりするおそれがある。
 加熱用熱媒流体の温度(T(IV))は、100℃以上であり、好ましくは100~500℃、より好ましくは150~370℃である。加熱用熱媒流体の温度(T(IV))が100℃未満の場合、目的の温度の混合流体を生成させることが困難であり、結晶性ミクロ多孔質材料の生成が困難になったり、収率が低下する。
In both cases of steps (Ia) and (Ib), the temperature (T (I)) of the raw material fluid is less than 100 ° C., preferably 20 to 98 ° C., more preferably 70 to 95 ° C. When the temperature of the raw material fluid (T (I)) is 100 ° C. or higher, a crystalline microporous material is formed before being introduced into the reaction tube, and the piping is blocked or the crystalline microporous material is inferior in uniformity. Material may be generated.
The temperature (T (IV)) of the heating medium fluid for heating is 100 ° C. or higher, preferably 100 to 500 ° C., more preferably 150 to 370 ° C. When the temperature of the heating medium fluid (T (IV)) is less than 100 ° C., it is difficult to produce a mixed fluid of the target temperature, and it becomes difficult to produce a crystalline microporous material. The rate drops.
 上記の原料流体、加熱用熱媒流体、混合流体の温度は、配管や反応管内に温度センサーを設けることにより測定し、制御することができる。 The temperatures of the raw material fluid, the heating medium fluid, and the mixed fluid can be measured and controlled by providing a temperature sensor in the piping or reaction tube.
 ステップ(Ia)において、原料流体と加熱用熱媒流体の混合割合(原料流体:加熱用熱媒流体の体積比)は、通常、1:0.1~1:10、好ましくは1:0.5~1:5である。原料流体が多過ぎるときは加熱が不十分であることがあり、加熱用熱媒流体が多過ぎるときは、単位時間あたりの結晶性ミクロ多孔質材料の収量が低下することがある。
 原料混合物と熱媒流体の混合により生成する混合流体の温度(T(II))は、70~500℃、好ましくは、110~400℃、より好ましくは150~300℃である。また、T(II)>T(I)である。
 混合流体の温度が低過ぎるときは結晶性ミクロ多孔質材料の合成反応が十分に進行せず、収率が低下する。一方、混合流体の温度が高過ぎるときはテンプレートの構造が変化し、結晶性ミクロ多孔質材料の結晶化が進行しなくなる、または結晶性ミクロ多孔質材料ではない高密度結晶相が生成することがある。
In step (Ia), the mixing ratio of the raw material fluid and the heating medium fluid (volume ratio of the raw material fluid: the heating medium fluid) is usually 1: 0.1 to 1:10, preferably 1: 0. 5 to 1: 5. When there are too many raw material fluids, heating may be inadequate, and when there are too many heating medium fluids, the yield of the crystalline microporous material per unit time may fall.
The temperature (T (II)) of the mixed fluid produced by mixing the raw material mixture and the heat transfer fluid is 70 to 500 ° C., preferably 110 to 400 ° C., more preferably 150 to 300 ° C. Further, T (II)> T (I).
When the temperature of the mixed fluid is too low, the synthesis reaction of the crystalline microporous material does not proceed sufficiently and the yield decreases. On the other hand, when the temperature of the mixed fluid is too high, the structure of the template may change, and the crystallization of the crystalline microporous material may not proceed, or a high-density crystalline phase that is not a crystalline microporous material may be generated. is there.
 従来、反応管を用いて結晶性ミクロ多孔質材料を製造する場合、マイクロ波を照射したり、反応管の外部に、ゼオライト生成反応の反応温度とほぼ同じ温度の熱媒体流体を接触させたりすることが行われてきた。しかしながら、これらの方法では結晶性ミクロ多孔質材料を効率よく製造することが困難な場合があった。
 一方、本発明の結晶性ミクロ多孔質材料の製造方法は、温度(T(I))の原料流体と温度(T(IV))の加熱用熱媒流体とを混合するか、又は、温度(T(I))の原料流体を温度(T(IV))の加熱用熱媒体と接触させることなく、前記加熱用熱媒流体により加熱するものである。これらの方法によれば原料流体を急速に加熱することが可能であり、結晶性ミクロ多孔質材料を効率よく製造することができる。また、本発明の結晶性ミクロ多孔質材料の製造方法によれば、反応装置の小型化、加熱用熱媒体流体の使用量の削減が可能であり、ゼオライトを工業的に有利に製造することができる。
 また、前者の方法によれば、原料流体が適度に希釈されるため、生成した結晶性ミクロ多孔質材料により反応管が閉塞するという問題が起こり難くなる。
Conventionally, when producing a crystalline microporous material using a reaction tube, microwave irradiation is performed, or a heat transfer fluid having a temperature approximately equal to the reaction temperature of the zeolite formation reaction is brought into contact with the outside of the reaction tube. Things have been done. However, it has been difficult to efficiently produce a crystalline microporous material by these methods.
On the other hand, in the method for producing a crystalline microporous material of the present invention, a raw material fluid at a temperature (T (I)) and a heating medium fluid at a temperature (T (IV)) are mixed, or a temperature ( The raw fluid of T (I)) is heated by the heating medium fluid without contacting with the heating medium of temperature (T (IV)). According to these methods, the raw material fluid can be rapidly heated, and a crystalline microporous material can be produced efficiently. Further, according to the method for producing a crystalline microporous material of the present invention, it is possible to reduce the size of a reaction apparatus and reduce the amount of heating medium fluid for heating, and to produce zeolite advantageously industrially. it can.
Further, according to the former method, since the raw material fluid is appropriately diluted, the problem that the reaction tube is blocked by the generated crystalline microporous material is less likely to occur.
 ステップ(II)は、ステップ(I)で生成した混合流体を、超臨界流体にすることなく、反応管内を下流側に移送しながら、温度(T(III))70~500℃で、結晶性ミクロ多孔質材料の合成反応を行い、結晶性ミクロ多孔質材料を含有する流体を生成させるステップである。 In step (II), the mixed fluid produced in step (I) is transferred to the downstream side in the reaction tube without making it a supercritical fluid, and at a temperature (T (III)) of 70 to 500 ° C. This is a step of performing a synthesis reaction of the microporous material to generate a fluid containing the crystalline microporous material.
 ステップ(I)で生成した混合流体を超臨界流体にすると、テンプレートの構造が変化し、結晶性ミクロ多孔質材料の結晶化が進行しなくなる、または結晶性ミクロ多孔質材料ではない高密度結晶相が生成することがあり、好ましくない。 When the mixed fluid generated in step (I) is made a supercritical fluid, the structure of the template is changed, and the crystallization of the crystalline microporous material does not proceed, or the high-density crystalline phase that is not a crystalline microporous material May be generated, which is not preferable.
 結晶性ミクロ多孔質材料の合成反応時の流体の温度(T(III))は、70~500℃、好ましくは110~400℃である。また、T(III)>T(I)、T(III)≧T(II)である。
 例えば、T(I)が70~100℃、T(II)が90~400℃、T(III)が90~350℃等に設定することができる。
The temperature (T (III)) of the fluid during the synthesis reaction of the crystalline microporous material is 70 to 500 ° C., preferably 110 to 400 ° C. Further, T (III)> T (I) and T (III) ≧ T (II).
For example, T (I) can be set to 70 to 100 ° C., T (II) can be set to 90 to 400 ° C., T (III) can be set to 90 to 350 ° C., and the like.
 本発明の製造方法は、原料流体と加熱用熱媒体流体とは、反応管内において混合されることで、ゼオライトの生成反応が促進されるものである。従って、結晶性ミクロ多孔質材料の合成反応時の反応圧力(ゼオライト生成反応時における反応管又はゲル専用内管内の圧力)は、通常、5~50MPa、好ましくは10~30MPaである。
 反応圧力が、このような範囲にあることで、ゼオライトの生成反応を短時間で効率よく進行させることができる。
 反応圧力は、例えば、反応管の入り口と出口に圧力センサーを設けることにより、測定することができる。
In the production method of the present invention, the raw material fluid and the heating heat medium fluid are mixed in a reaction tube, whereby the zeolite production reaction is promoted. Accordingly, the reaction pressure during the synthesis reaction of the crystalline microporous material (pressure in the reaction tube or gel-dedicated inner tube during the zeolite production reaction) is usually 5 to 50 MPa, preferably 10 to 30 MPa.
When the reaction pressure is in such a range, the zeolite production reaction can be efficiently advanced in a short time.
The reaction pressure can be measured, for example, by providing pressure sensors at the inlet and outlet of the reaction tube.
 本発明の製造方法においては、前記ステップ(II)の後、前記ステップ(II)で生成した結晶性ミクロ多孔質材料を含有する流体を、特に何もせず自然冷却(空冷)により、反応管内を流れる結晶性ミクロ多孔質材料含有流体の温度を徐々に低下させてもよいし、反応管内を下流側に移送しながら冷却し、温度が70℃未満の結晶性ミクロ多孔質材料含有流体を生成させるステップ(III)をさらに有していてもよい。ステップ(III)を有することにより、より効率よく結晶性ミクロ多孔質材料を連続的に製造することができる。 In the production method of the present invention, after the step (II), the fluid containing the crystalline microporous material produced in the step (II) is subjected to natural cooling (air cooling) without any particular action in the reaction tube. The temperature of the flowing crystalline microporous material-containing fluid may be gradually decreased, or cooled while being transferred downstream in the reaction tube to generate a crystalline microporous material-containing fluid having a temperature of less than 70 ° C. Step (III) may further be included. By having step (III), a crystalline microporous material can be continuously produced more efficiently.
 結晶性ミクロ多孔質材料含有流体を冷却する方法としては、反応管内に、冷却用熱媒流体を導入し、結晶性ミクロ多孔質材料含有流体に冷却用熱媒流体を接触させる方法、冷却用熱媒流体を用いて、反応管を外部から冷却する方法等が挙げられる。
 なかでも、結晶性ミクロ多孔質材料含有流体を急速に冷却することが可能であることから、結晶性ミクロ多孔質材料含有流体に、冷却用熱媒流体を接触させる方法が好ましい。
As a method for cooling the fluid containing the crystalline microporous material, a cooling medium fluid is introduced into the reaction tube, and the cooling medium fluid is brought into contact with the fluid containing the crystalline microporous material. Examples include a method of cooling the reaction tube from the outside using a medium fluid.
Among them, a method in which a cooling medium fluid is brought into contact with the crystalline microporous material-containing fluid is preferable because the crystalline microporous material-containing fluid can be rapidly cooled.
 結晶性ミクロ多孔質材料含有流体に冷却用熱媒流体を接触させる場合、ステップ(I)において、原料流体と加熱用熱媒流体とを混合、又は原料流体が加熱されて所定温度の混合流体が生成してから、生成した結晶性ミクロ多孔質材料含有流体に冷却用熱媒流体を接触させるまでの時間は、通常1秒以上、好ましくは1~3600秒、より好ましくは2~300秒である。この時間が短すぎると、生成物には非晶質の化合物が混入し易くなり、目的の結晶性ミクロ多孔質材料を高い純度で製造することが困難になる。 When the cooling medium fluid is brought into contact with the crystalline microporous material-containing fluid, in step (I), the raw material fluid and the heating medium fluid are mixed, or the raw material fluid is heated so that the mixed fluid at a predetermined temperature is The time from the generation to contact of the generated cooling fluid with the crystalline microporous material is usually 1 second or more, preferably 1 to 3600 seconds, more preferably 2 to 300 seconds. . If this time is too short, an amorphous compound is likely to be mixed into the product, and it becomes difficult to produce the desired crystalline microporous material with high purity.
 冷却用熱媒流体としては、水、有機溶媒、熱媒体油等が挙げられる。これらの中でも水が好ましい。また、水は、塩化ナトリウム等の他の物質を含有するものであってもよい。
 冷却用熱媒流体の温度は、特に限定されない。冷却用熱媒流体の温度は、通常70℃以下、好ましくは0~70℃、より好ましくは10~50℃、さらに好ましくは15~40℃である。
Examples of the cooling heat medium fluid include water, organic solvents, heat medium oil, and the like. Among these, water is preferable. The water may contain other substances such as sodium chloride.
The temperature of the cooling heat transfer fluid is not particularly limited. The temperature of the cooling heat transfer fluid is usually 70 ° C. or lower, preferably 0 to 70 ° C., more preferably 10 to 50 ° C., and further preferably 15 to 40 ° C.
 結晶性ミクロ多孔質材料含有流体と冷却用熱媒流体の混合割合(結晶性ミクロ多孔質材料含有流体と冷却用熱媒流体の体積比)は、通常、1:1~1:100、好ましくは1:2~1:40である。冷却用熱媒流体が少な過ぎるときは、十分に冷却処理することができないおそれがあり、多過ぎるときは、冷却用熱媒流体を供給するコストが増大し、また次の結晶性ミクロ多孔質材料の単離処理を効率よく行うことが困難になるおそれがある。
 また、冷却用熱媒流体を用いる場合、結晶性ミクロ多孔質材料含有流体が適度に希釈されるため、結晶性ミクロ多孔質材料により反応管や配管が閉塞するという問題が起こり難くなる。
The mixing ratio of the crystalline microporous material-containing fluid and the cooling medium fluid (volume ratio of the crystalline microporous material-containing fluid and the cooling medium fluid) is usually 1: 1 to 1: 100, preferably 1: 2 to 1:40. When the cooling medium fluid is too small, there is a possibility that the cooling process cannot be sufficiently performed. When the cooling medium fluid is too large, the cost for supplying the cooling medium fluid increases, and the following crystalline microporous material It may be difficult to efficiently perform the isolation process.
Further, when the cooling medium fluid is used, the crystalline microporous material-containing fluid is appropriately diluted, so that the problem that the reaction tube and the piping are blocked by the crystalline microporous material is less likely to occur.
 また、結晶性ミクロ多孔質材料含有流体に冷却用熱媒流体を接触させない場合、ステップ(I)において原料流体と加熱用熱媒流体とを混合してから、結晶性ミクロ多孔質材料含有流体の温度が低下して温度が70℃未満の、結晶性ミクロ多孔質材料を含有する流体になるまでの時間は、通常、2秒以上、好ましくは2~3600秒、より好ましくは2~600秒である。 Further, when the cooling medium fluid is not brought into contact with the crystalline microporous material-containing fluid, the raw material fluid and the heating medium fluid are mixed in step (I), and then the crystalline microporous material-containing fluid is mixed. The time from when the temperature is lowered to the fluid containing the crystalline microporous material having a temperature lower than 70 ° C. is usually 2 seconds or more, preferably 2 to 3600 seconds, more preferably 2 to 600 seconds. is there.
 温度が70℃未満の、結晶性ミクロ多孔質材料含有流体に対し、常法にしたがって結晶性ミクロ多孔質材料の単離処理を施すことができる。
 例えば、反応管の下流部から伸びる配管を回収タンクにつなげることで、結晶性ミクロ多孔質材料流体を回収し、これに対して、固液分離処理を行うことで、目的の結晶性ミクロ多孔質材料を単離することができる。
The crystalline microporous material-containing fluid having a temperature lower than 70 ° C. can be subjected to isolation treatment of the crystalline microporous material according to a conventional method.
For example, by connecting a pipe extending from the downstream part of the reaction tube to the recovery tank, the crystalline microporous material fluid is recovered, and by performing solid-liquid separation processing on this, the target crystalline microporous material is recovered. The material can be isolated.
 本発明の結晶性ミクロ多孔質材料の製造方法は、より具体的には、例えば、図3、図4に示す反応装置を用いて行うことができる。
 図3に示す装置においては、原料流体貯蔵タンク(10)から伸びた配管の途中に、原料流体投入ポンプ(11)、原料流体流量調整バルブ(12)、原料流体温度調整装置(13)、温度センサー(14)が備えられ、この配管は反応管(15)の上流部に接続されている。
 一方、熱媒流体貯蔵タンク(19)から伸びた配管は2手に分かれ、一方は、熱媒流体投入ポンプ(20)、熱媒流体流量調整バルブ(21)、熱媒流体加熱装置(22)、温度センサー(23)を経て、反応管(15)の上流部に接続されている。また熱媒流体貯蔵タンク(19)から伸びたもう一方の配管は、熱媒流体投入ポンプ(24)、熱媒流体流量調整バルブ(25)を経て、反応管(15)の下流部に接続されている。
 また、反応管(15)の下流部から伸びた配管は、圧力計(16)、背圧弁(17)を経て、回収タンク(18)に接続されている。
More specifically, the method for producing a crystalline microporous material of the present invention can be performed using, for example, the reaction apparatus shown in FIGS.
In the apparatus shown in FIG. 3, a raw material fluid input pump (11), a raw material fluid flow rate adjusting valve (12), a raw material fluid temperature adjusting device (13), a temperature are provided in the middle of a pipe extending from the raw material fluid storage tank (10). A sensor (14) is provided, and this pipe is connected to the upstream part of the reaction tube (15).
On the other hand, the pipe extending from the heat medium fluid storage tank (19) is divided into two hands, one of which is the heat medium fluid input pump (20), the heat medium fluid flow rate adjusting valve (21), and the heat medium fluid heating device (22). The temperature sensor (23) is connected to the upstream part of the reaction tube (15). The other pipe extending from the heat medium fluid storage tank (19) is connected to the downstream portion of the reaction tube (15) via the heat medium fluid input pump (24) and the heat medium fluid flow rate adjustment valve (25). ing.
The pipe extending from the downstream portion of the reaction tube (15) is connected to the recovery tank (18) through the pressure gauge (16) and the back pressure valve (17).
 原料流体貯蔵タンク(10)に貯蔵された原料流体は、原料流体投入ポンプ(11)により配管から反応管(15)の上流部に供給される。このとき、原料流体は、原料流体温度調整装置(13)により適切な温度に調節される。原料流体の供給量は、原料流体流量調整バルブ(12)により調節される。
 一方、熱媒流体貯蔵タンク(19)に貯蔵された熱媒流体は、2手に分かれた後、一方は、熱媒流体投入ポンプ(20)により配管から反応管(15)の上流部に供給される。このとき、熱媒流体は、熱媒流体加熱装置(22)により所定の温度に加熱され、加熱用熱媒流体となる。加熱用熱媒流体の供給量は、熱媒流体流量調整バルブ(21)により調節される。
The raw material fluid stored in the raw material fluid storage tank (10) is supplied from the piping to the upstream portion of the reaction tube (15) by the raw material fluid input pump (11). At this time, the raw material fluid is adjusted to an appropriate temperature by the raw material fluid temperature adjusting device (13). The supply amount of the raw material fluid is adjusted by the raw material fluid flow rate adjusting valve (12).
On the other hand, after the heat medium fluid stored in the heat medium fluid storage tank (19) is divided into two hands, one is supplied from the piping to the upstream portion of the reaction tube (15) by the heat medium fluid charging pump (20). Is done. At this time, the heat medium fluid is heated to a predetermined temperature by the heat medium fluid heating device (22) and becomes a heat medium fluid for heating. The supply amount of the heating medium fluid for heating is adjusted by the heating medium fluid flow rate adjusting valve (21).
 反応管(15)内で、原料流体と加熱用熱媒流体が混合され、結晶性ミクロ多孔質材料の合成反応が行われ結晶性ミクロ多孔質材料含有流体が生成する。生成した結晶性ミクロ多孔質材料含有流体は、反応管内を下流部に向かって移送される。 In the reaction tube (15), the raw material fluid and the heating medium fluid are mixed, and a synthesis reaction of the crystalline microporous material is performed to produce a crystalline microporous material-containing fluid. The produced crystalline microporous material-containing fluid is transferred toward the downstream portion in the reaction tube.
 2手に分かれた残りの熱媒流体は、冷却用熱媒流体として用いられる。冷却用熱媒流体は、熱媒流体投入ポンプ(24)により配管から反応管(15)の下流部に供給される。この冷却用熱媒流体の供給量は、熱媒流体流量調整バルブ(25)により調節される。 The remaining heat medium fluid divided into two hands is used as a heat medium fluid for cooling. The cooling heat medium fluid is supplied from the piping to the downstream portion of the reaction tube (15) by the heat medium fluid charging pump (24). The supply amount of the cooling heat medium fluid is adjusted by the heat medium fluid flow rate adjustment valve (25).
 結晶性ミクロ多孔質材料含有流体は反応管下流部で冷却用熱媒流体と接触し、冷却された含有流体が生成する。冷却された結晶性ミクロ多孔質材料含有流体は、配管内を移送され、回収タンク(18)で回収される。 The crystalline microporous material-containing fluid comes into contact with the cooling heat transfer fluid at the downstream portion of the reaction tube, and a cooled containing fluid is generated. The cooled crystalline microporous material-containing fluid is transferred through the piping and recovered in the recovery tank (18).
 図4に示す反応管は、原料流体が移送され、ゼオライトの生成反応が行われるゲル専用内管(15a)と、ゲル専用内管(15a)の周囲を取り囲むように設置された、加熱用熱媒流体を流すために加熱用熱媒(加熱水)用外管(15b)とからなる二重構造を有するものである。
 また、図4に示す反応管は、ゲル専用内管と加熱用熱媒(加熱水)用外管は完全に分離されていない。すなわち、図4中、結晶性ミクロ多孔質含有流体、加熱用熱媒体流体及び冷却用熱媒流体は、G点で混合される。従って、ゲル専用内管内の圧力は一定となる。前述のように、図4に示す二重構造を有する反応管では、結晶性ミクロ多孔質含有流体、加熱用熱媒体流体及び冷却用熱媒流体はG点で混合されるが、結晶性ミクロ多孔質含有流体と加熱用熱媒体流体が、D点からF点の間のいずれかの位置で混合されるような構造を有していてもよい。
The reaction tube shown in FIG. 4 is a heating inner heat pipe installed so as to surround the inner tube (15a) dedicated to the gel in which the raw material fluid is transferred and the zeolite formation reaction is performed, and the inner tube (15a) dedicated to the gel. In order to flow a fluid medium, it has a double structure consisting of a heating medium (heating water) outer tube (15b).
In the reaction tube shown in FIG. 4, the gel-dedicated inner tube and the heating heat medium (heating water) outer tube are not completely separated. That is, in FIG. 4, the crystalline microporous fluid, the heating heat medium fluid, and the cooling heat medium fluid are mixed at point G. Therefore, the pressure in the gel dedicated inner tube is constant. As described above, in the reaction tube having the double structure shown in FIG. 4, the crystalline microporous fluid, the heating heat medium fluid, and the cooling heat medium fluid are mixed at point G. The material-containing fluid and the heating medium fluid for heating may have a structure in which the fluid is mixed at any position between point D and point F.
 図4に示す反応管は、更に、加熱水を所定温度に制御するための加熱手段(一段目電気ヒーター15c、二段目電気ヒーター15d)を有するものである。
 図4中、A点から、温度100℃未満の原料流体(ゲル)が供給され、B点から加熱用熱媒体用外管に供給される加熱用熱媒体流体により急速加熱され、C点で温度70~500℃の混合流体となり、図4中、C点からD点、F点へと移送される間にゼオライトの生成反応が進行する。次いで、生成したゼオライト含有流体は、G点において、E点から供給される冷却水により冷却され、生成物タンクへと移送される。
The reaction tube shown in FIG. 4 further has heating means (first-stage electric heater 15c, second-stage electric heater 15d) for controlling the heated water to a predetermined temperature.
In FIG. 4, a raw material fluid (gel) having a temperature of less than 100 ° C. is supplied from point A, rapidly heated by the heating heat medium fluid supplied from the point B to the heating heat medium outer tube, and the temperature at point C. The mixed fluid becomes 70 to 500 ° C., and the zeolite formation reaction proceeds while being transferred from point C to point D and point F in FIG. Next, the produced zeolite-containing fluid is cooled at the point G by the cooling water supplied from the point E, and is transferred to the product tank.
(結晶性ミクロ多孔質材料)
 本発明の製造方法により得られる結晶性ミクロ多孔質材料は、いわゆる結晶性ゼオライト構造を有する構造物の総称であり、結晶の基本構造として、〔AlO5-、及び、〔SiO4-を含むものである。但し、本発明においては、〔AlO5-単位が存在しない結晶性ゼオライト構造を有するもの(例えば、ピュアシリカ)も、結晶性ミクロ多孔質材料に含まれる。
(Crystalline microporous material)
The crystalline microporous material obtained by the production method of the present invention is a general term for a structure having a so-called crystalline zeolite structure, and [AlO 4 ] 5- and [SiO 4 ] 4 are used as the basic structure of the crystal. -Is included. However, in the present invention, those having a crystalline zeolite structure in which [AlO 4 ] 5- unit does not exist (for example, pure silica) are also included in the crystalline microporous material.
 また、「結晶性」とは、結晶性を有する、すなわち、結晶化度が60%以上であることをいう。本発明により得られる結晶性ミクロ多孔質材料の結晶化度は、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上である。結晶性ミクロ多孔質材の結晶化度は、実施例に記載の方法により測定することができる。 Further, “crystalline” means having crystallinity, that is, having a crystallinity of 60% or more. The crystallinity of the crystalline microporous material obtained by the present invention is preferably 70% or more, more preferably 80% or more, and further preferably 90% or more. The crystallinity of the crystalline microporous material can be measured by the method described in the examples.
 本発明の製造方法により得られる結晶性ミクロ多孔質材料が有するミクロ細孔の大きさ(平均孔径)は、通常2nm以下、好ましくは0.1~2nm、より好ましくは0.2~1.8nmである。
 なお、マクロ細孔の容積および孔径分布の測定法としては、水銀圧入法が用いられるが、SEMによる直接観察により細孔径と細孔の連続性が確認できる。ミクロ細孔の孔径及びその孔径分布は、X線回折より定まる結晶構造の原子の空間配列から決定でき、容積は窒素吸着法より求めることができる。
The micropore size (average pore diameter) of the crystalline microporous material obtained by the production method of the present invention is usually 2 nm or less, preferably 0.1 to 2 nm, more preferably 0.2 to 1.8 nm. It is.
As a method for measuring the macropore volume and pore size distribution, the mercury intrusion method is used, but the pore size and the continuity of the pores can be confirmed by direct observation with an SEM. The pore size of the micropores and the pore size distribution can be determined from the spatial arrangement of atoms having a crystal structure determined by X-ray diffraction, and the volume can be determined by a nitrogen adsorption method.
 本発明の製造方法により得られる結晶性ミクロ多孔質材料としては、ゼオライトが好ましい。ゼオライトとしては、シリカ/アルミナ比(SiO/Alのモル比)が、2~10000のアルミノシリケートゼオライト、ピュアシリカゼオライト、アルミノフォスフェートゼオライト、シリコアルミノフォスフェートゼオライト、メタロシリケート、チタノシリケート、及びパナジウムシリケート等が挙げられる。 As the crystalline microporous material obtained by the production method of the present invention, zeolite is preferred. Zeolite includes aluminosilicate zeolite, pure silica zeolite, aluminophosphate zeolite, silicoaluminophosphate zeolite, metallosilicate, titanoate having a silica / alumina ratio (SiO 2 / Al 2 O 3 molar ratio) of 2 to 10,000. Examples thereof include silicate and panadium silicate.
 本発明の製造方法により得られるゼオライトの構造は、特に限定されない。これらの具体例は、http://izasc.biw.kuleuven.be/fmi/xsl/IZA-SC/ft.xslに記載されている。
 好ましい具体例としては、International Zeolite Association(IZA)が定めるコードで、AEI、AEL、AET、AFI、AFN、AFR、AFS、AFT、AFX、AFY、AHT、ATO、ATS、BEA、CHA、DDR、DFO、ERI、FAU、FER、GIS、LEV、LTA、MFI、MOR、MTW、MWW、RTH、RHO、VFI等が挙げられる。
The structure of the zeolite obtained by the production method of the present invention is not particularly limited. Specific examples of these can be found at http: // izasc. biw. kuleuven. be / fmi / xsl / IZA-SC / ft. xsl.
Preferred examples include codes defined by International Zeolite Association (IZA), AEI, AEL, AET, AFI, AFN, AFR, AFS, AFT, AFX, Afy, AHT, ATO, ATS, BEA, CHA, DDR, DFO. , ERI, FAU, FER, GIS, LEV, LTA, MFI, MOR, MTW, MWW, RTH, RHO, VFI and the like.
 本発明の製造方法により得られる結晶性ミクロ多孔質材料の粒子径は特に限定されない。結晶性ミクロ多孔質材料の粒子径は、通常、0.01~100μm、好ましくは0.03~20μm、より好ましくは0.05~5μmである。
 結晶性ミクロ多孔質材料の粒子径とは、電子顕微鏡で結晶性ミクロ多孔質材料を観察した際の、任意の10~30点の結晶性ミクロ多孔質材料粒子の一次粒子径の平均値をいう。
The particle diameter of the crystalline microporous material obtained by the production method of the present invention is not particularly limited. The particle size of the crystalline microporous material is usually 0.01 to 100 μm, preferably 0.03 to 20 μm, more preferably 0.05 to 5 μm.
The particle diameter of the crystalline microporous material means an average value of the primary particle diameter of arbitrary 10 to 30 crystalline microporous material particles when the crystalline microporous material is observed with an electron microscope. .
 本発明の製造方法によれば、細孔内に、テンプレート、原料化合物に含まれる溶媒若しくは加熱用熱媒、又は、テンプレート及び原料化合物に含まれる溶媒若しくは加熱用熱媒を含有する結晶性ミクロ多孔質材料を効率よく得ることができる。
 本発明の製造方法により得られる、「細孔内に、テンプレート、原料化合物に含まれる溶媒若しくは加熱用熱媒、又は、テンプレート及び原料化合物に含まれる溶媒若しくは加熱用熱媒を含有する結晶性ミクロ多孔質材料」は、空気中800℃以下で加熱することにより、その構造から、プレート、原料化合物に含まれる溶媒及び加熱用熱媒を除去することができる。
According to the production method of the present invention, a crystalline microporous material containing a template, a solvent or a heating medium contained in the raw material compound, or a solvent or a heating medium contained in the template and the raw material compound in the pores. A quality material can be obtained efficiently.
Obtained by the production method of the present invention, “a crystalline microscopic material containing a template, a solvent contained in the raw material compound or a heating medium, or a solvent contained in the template and the raw material compound, or a heating medium”. By heating the “porous material” in air at 800 ° C. or lower, the plate, the solvent contained in the raw material compound, and the heating medium can be removed from the structure.
 本発明の製造方法によれば、結晶化度の高い結晶性ミクロ多孔質材料を短時間で効率よく製造することができる。
 本発明の製造方法により得られる結晶性ミクロ多孔質材料は、工業触媒、吸着剤、乾燥剤、イオン交換剤等として好適に用いられる。
According to the production method of the present invention, a crystalline microporous material having a high degree of crystallinity can be produced efficiently in a short time.
The crystalline microporous material obtained by the production method of the present invention is suitably used as an industrial catalyst, an adsorbent, a desiccant, an ion exchanger, and the like.
 以下、実施例を挙げて、本発明をより詳細に説明する。なお、本発明は以下の実施例に何ら限定されるものではない。なお、特に断りのない限り「部」は重量基準である。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples. Unless otherwise specified, “parts” are based on weight.
〔実施例1〕ZSM-5(MFI)の合成
(1)反応装置
 反応装置として、図5に示すものを用いてゼオライトを合成した。
 図5に示す反応装置において、T(I)は加熱水温度センサー(1)、T(II)はゲル温度センサー、T(III)合成温度センサー、T(IV)は加熱水温度センサー(2)、T5はゼオライトスラリー温度センサーである。これらの温度センサーにより、それぞれの設定温度を管理することができる。
 本実施例においては、長さの異なる5種類の反応管(合成チューブ)を用いた。用いた合成チューブの材質はステンレスである。いずれの合成チューブも外径3.18mm、内径は2.2mmである。後述するように、合成チューブの長さを変えることで、合成時間を調節することができる。
Example 1 Synthesis of ZSM-5 (MFI) (1) Reactor Zeolite was synthesized using the reactor shown in FIG.
In the reaction apparatus shown in FIG. 5, T (I) is a heated water temperature sensor (1), T (II) is a gel temperature sensor, T (III) synthesis temperature sensor, and T (IV) is a heated water temperature sensor (2). , T5 is a zeolite slurry temperature sensor. Each temperature can be managed by these temperature sensors.
In this example, five types of reaction tubes (synthesis tubes) having different lengths were used. The material of the synthetic tube used is stainless steel. All the synthetic tubes have an outer diameter of 3.18 mm and an inner diameter of 2.2 mm. As will be described later, the synthesis time can be adjusted by changing the length of the synthesis tube.
(2)原料流体の調製
 水酸化ナトリウム50部(NaOH 20重量%水溶液)、水酸化アルミニウム(Al(OH))1部、テトラn-プロピルアンモニウムヒドロキシド(TPAOH 40重量%水溶液)20部、及び水2300部を25℃で混合し、3分間攪拌した。そこへ、コロイダルシリカ(SiO)(商品名:LUDOXAS-40、デュポン社製)300部を添加し、全容を30分間攪拌して、ゲル状物質(ゲル溶液)を得た。
 得られたゲル溶液を密閉容器に入れ、90℃に加熱されたオーブン内で容器全体を20rpmの回転数で、16時間回転させることで(熟成処理)、内容物を攪拌した。
 その後、25℃の水中に容器を入れ、容器全体を急冷させて熟成完了とした。
 熟成工程を経て得られたゲル溶液中の固形分を分離して得られた粉末のXRDデータ図を図6に示す。図6より、熟成工程を経て得られたゲル溶液にはゼオライトは含まれていない(ゼオライトは生成していない)ことがわかる。
(2) Preparation of raw material fluid 50 parts of sodium hydroxide (NaOH 20% by weight aqueous solution), 1 part of aluminum hydroxide (Al (OH) 3 ), 20 parts of tetra n-propylammonium hydroxide (TPAOH 40% by weight aqueous solution), And 2300 parts of water were mixed at 25 ° C. and stirred for 3 minutes. Thereto was added 300 parts of colloidal silica (SiO 2 ) (trade name: LUDOXAS-40, manufactured by DuPont), and the whole volume was stirred for 30 minutes to obtain a gel-like substance (gel solution).
The obtained gel solution was put in a sealed container, and the contents were stirred by rotating the entire container at a rotation speed of 20 rpm for 16 hours in an oven heated to 90 ° C. (aging process).
Thereafter, the container was placed in water at 25 ° C., and the entire container was rapidly cooled to complete the aging.
FIG. 6 shows an XRD data diagram of the powder obtained by separating the solid content in the gel solution obtained through the aging step. FIG. 6 shows that the gel solution obtained through the aging step does not contain zeolite (no zeolite is produced).
(3)ゼオライトの合成
 次いで、上記で得たゲル溶液を90℃に加熱して、このものを、図5に示す合成チューブの左側から該合成チューブ内に連続的に一定速度で供給すると同時に、図5中、下側から、温度370℃に加熱された加熱水を供給して、混合流体を生成させた。
 生成した混合流体を所定の温度(設定合成温度)、所定圧力(23MPa)に保持しながら、図5中、左側から右側へ搬送しながら、ゼオライトの合成反応を進行させ、ゼオライト含有流体(ゼオライトスラリー)を生成させた。
 次いで、温度20℃の冷却水を、図5中、下側から合成チューブ内に供給し、ゼオライトスラリーと混合することで、温度70℃程度のゼオライトスラリーとした。
 さらに、得られたゼオライトスラリーを、図5中、右端部から取り出し、目的とするゼオライトを単離した。
 ゼオライトを合成する設定合成温度としては、220℃、240℃、260℃、280℃、300℃の5条件とした、また、原料流体と加熱用熱媒流体が接触してから、流体温度が70℃未満になるまでの時間は、1.0秒、2.5秒、5.0秒、7.5秒、9.5秒とした。なお、合成時間は、合成チューブの長さを変化させることにより設定した。
(3) Synthesis of zeolite Next, the gel solution obtained above was heated to 90 ° C., and this was continuously fed into the synthesis tube from the left side of the synthesis tube shown in FIG. In FIG. 5, heated water heated to a temperature of 370 ° C. was supplied from the lower side to generate a mixed fluid.
While maintaining the generated mixed fluid at a predetermined temperature (set synthesis temperature) and a predetermined pressure (23 MPa), while carrying the zeolite from the left side to the right side in FIG. ) Was generated.
Next, cooling water having a temperature of 20 ° C. was supplied into the synthesis tube from the lower side in FIG. 5 and mixed with the zeolite slurry to obtain a zeolite slurry having a temperature of about 70 ° C.
Further, the obtained zeolite slurry was taken out from the right end in FIG. 5 to isolate the target zeolite.
The set synthesis temperature for synthesizing the zeolite was set to five conditions of 220 ° C., 240 ° C., 260 ° C., 280 ° C., and 300 ° C. The fluid temperature was 70 after the raw material fluid contacted the heating medium fluid for heating. The time until the temperature became lower than ° C. was 1.0 second, 2.5 seconds, 5.0 seconds, 7.5 seconds, and 9.5 seconds. The synthesis time was set by changing the length of the synthesis tube.
 得られたゼオライトのSEM(走査型電子顕微鏡)写真図を、図7~9に示す。
 図7~9から、いずれの条件においてもファセットの明瞭な結晶が得られていることが分かる。 
SEM (scanning electron microscope) photographs of the obtained zeolite are shown in FIGS.
7 to 9, it can be seen that a crystal with clear facets is obtained under any conditions.
 また、得られたゼオライトのXRDデータ図を図10~14に示す。
 図10~14から、合成温度220℃、240℃では結晶化により時間がかかることが分かる。一方、300℃では合成中にテンプレートの分解や高密度非晶質が生成することに伴うと推測される現象により、結晶化度が上がりきらない傾向がわかる。すなわち、本手法においてZSM-5を合成する上で、最適な温度領域が存在することがわかる。 
In addition, XRD data diagrams of the obtained zeolite are shown in FIGS.
10 to 14, it can be seen that crystallization takes time at synthesis temperatures of 220 ° C. and 240 ° C. On the other hand, at 300 ° C., it can be seen that the degree of crystallinity tends not to increase due to the phenomenon presumed to be accompanied by decomposition of the template or formation of high-density amorphous during synthesis. That is, it can be seen that there is an optimum temperature range for synthesizing ZSM-5 in this method.
〔比較例1〕従来の方法によるZSM-5(MFI)の合成
 上記で得たゲル溶液14gを、容量23mLのオートクレーブ(Parr社製)に封入し、170℃48時間、20rpmの回転条件下で加熱することにより、ZSM-5(MFI)を得た。
 比較例で得たゼオライトのXRDデータ図を図15に示す。
[Comparative Example 1] Synthesis of ZSM-5 (MFI) by conventional method 14 g of the gel solution obtained above was sealed in an autoclave (manufactured by Parr) having a capacity of 23 mL, and was rotated at 170 ° C for 48 hours at 20 rpm. By heating, ZSM-5 (MFI) was obtained.
An XRD data diagram of the zeolite obtained in the comparative example is shown in FIG.
(結晶化度の評価)
 実施例で得たゼオライトのX線回折ピーク面積と、比較例で得たゼオライト(比較サンプル)のX線回折ピーク面積を比較することにより、相対的な結晶化度を測定した。なお、X線回折ピーク面積は2θ=20-30°のすべての回折ピーク面積の和を算出し、比較サンプルを100%とすることにより各試料の結晶化度を算出した。
(Evaluation of crystallinity)
The relative crystallinity was measured by comparing the X-ray diffraction peak area of the zeolite obtained in the example and the X-ray diffraction peak area of the zeolite (comparative sample) obtained in the comparative example. As the X-ray diffraction peak area, the sum of all diffraction peak areas of 2θ = 20-30 ° was calculated, and the crystallinity of each sample was calculated by setting the comparative sample as 100%.
 実施例1で得られたゼオライトについて、合成温度、合成時間を変化させた場合の結晶化度を評価した。評価結果を図16に示す。
 図16から、合成時間が短すぎると結晶性は低く、合成時間が長くなると結晶化度が向上することがわかる。
 また、合成温度が低い場合は結晶化度が低く、また300℃で合成すると結晶化度が低いことから、短時間で結晶性を向上させるためには最適な温度領域が存在することがわかる。
The zeolite obtained in Example 1 was evaluated for crystallinity when the synthesis temperature and synthesis time were changed. The evaluation results are shown in FIG.
FIG. 16 shows that the crystallinity is low when the synthesis time is too short, and the crystallinity is improved when the synthesis time is long.
In addition, when the synthesis temperature is low, the degree of crystallinity is low, and when synthesized at 300 ° C., the degree of crystallinity is low. Thus, it can be seen that there is an optimum temperature range for improving the crystallinity in a short time.
〔実施例2〕合成ゼオライト(BEA)の合成
(1)反応装置
 反応装置として、図4に示すものを用いてゼオライト(BEA)を合成した。本実施例で用いた反応装置は、ゲル専用内管(15a)の外径は4mm、内径は2mmのものである。加熱水は、図4中、B点から加熱水用外管(15b)内に導入され、ゲル専用内管(15a)内部の温度を所定温度に加熱する。加熱水は、加熱水用外管(15b)内を、図4中、右端から左端方向に移送される。
 図4において、原料流体(ゲル)は、図中、左端(A点)から、ゲル専用内管(15a)内に連続的に投入され、該ゲル専用内管(15a)内を、C点→D点→F点へと移動する間にゼオライトの生成反応が進行、完了する。次いで、E点から冷却水が加熱水用外管(15b)内に投入され、ゲル専用内管(15a)内の反応生成物が冷却される。冷却された反応生成物は、反応生成物タンクへ送られ、固液分離操作により、目的物を取り出すことができる。
Example 2 Synthesis of Synthetic Zeolite (BEA) (1) Reactor Zeolite (BEA) was synthesized using the reactor shown in FIG. In the reactor used in this example, the gel inner tube (15a) has an outer diameter of 4 mm and an inner diameter of 2 mm. The heated water is introduced into the heated water outer pipe (15b) from the point B in FIG. 4, and the temperature inside the gel dedicated inner pipe (15a) is heated to a predetermined temperature. The heated water is transferred from the right end to the left end in FIG. 4 through the heated water outer pipe (15b).
In FIG. 4, the raw material fluid (gel) is continuously charged into the gel-dedicated inner pipe (15a) from the left end (point A) in the figure, and the gel-dedicated inner pipe (15a) is moved to the point C → While moving from point D to point F, the zeolite formation reaction proceeds and completes. Next, cooling water is introduced from the point E into the heated water outer pipe (15b), and the reaction product in the gel-dedicated inner pipe (15a) is cooled. The cooled reaction product is sent to the reaction product tank, and the target product can be taken out by solid-liquid separation operation.
(2)原料流体(ゲル)の調製
 水酸化ナトリウム0.6部、酸化アルミニウム(Al)0.022部、テトラエチルアンモニウムヒドロキシド(TEAOH)0.15部、及び水18部を25℃で混合し、30分間攪拌した。そこへ、コロイダルシリカ(SiO)(商品名:LUDOX LS-30、シグマ-アルドリッチ社製)1部を添加し、全容を30分間攪拌した後、Beta seed(SiOの10重量%)を添加し、さらに10分間撹拌して、反応混合物を得た。
(2) Preparation of raw material fluid (gel) Sodium hydroxide 0.6 parts, aluminum oxide (Al 2 O 3 ) 0.022 parts, tetraethylammonium hydroxide (TEAOH) 0.15 parts, and water 18 parts at 25 ° C. And stirred for 30 minutes. Thereto, 1 part of colloidal silica (SiO 2 ) (trade name: LUDOX LS-30, manufactured by Sigma-Aldrich) was added, and the whole volume was stirred for 30 minutes, and then Beta seed (10% by weight of SiO 2 ) was added. The mixture was further stirred for 10 minutes to obtain a reaction mixture.
(エマルジョン処理)
 上記で得た反応混合物、シクロヘキサン、及び、ポリオキシエチレン(20)オレイルエーテルを、(反応混合物):(シクロヘキサン):(ポリオキシエチレン(20)オレイルエーテル)の重量比で、1:1:0.1の割合で混合、攪拌して、ゲル状物質(ゲル溶液)を得た。
(Emulsion treatment)
The reaction mixture obtained above, cyclohexane and polyoxyethylene (20) oleyl ether were mixed at a 1: 1: 0 ratio by weight of (reaction mixture) :( cyclohexane) :( polyoxyethylene (20) oleyl ether). The mixture was mixed and stirred at a ratio of 0.1 to obtain a gel-like substance (gel solution).
(3)ゼオライト(BEA)の合成
 次いで、上記で得たゲル溶液を90℃に加熱して、このものを、図4に示すゲル専用内管(15a)の左側から、該ゲル専用内管(15a)内に、連続的に一定速度で供給すると同時に、図4中、下側から、温度170℃に加熱された加熱水を供給して、混合流体を生成させた。
 生成した混合流体を所定の温度(設定合成温度)に保持しながら、図4中、左側から右側へ搬送しながら、ゼオライト(BEA)の合成反応を進行させ、ゼオライト(BEA)含有流体(ゼオライト(BEA)スラリー)を生成させた。
 次いで、温度30℃の冷却水を、図4中、下側から合成チューブ内に供給し、ゼオライト(BEA)スラリーと混合することで、温度100℃以下のゼオライト(BEA)スラリーとした。
 さらに、得られたゼオライト(BEA)スラリーを、図4中、右端部から取り出し、目的とするゼオライトを単離した。
 ゼオライト(BEA)を合成する設定合成温度としては、図4中、A点:90℃、B点:170℃、C点:150℃、D点:170℃、E点:30℃、F点:210℃、G点:100℃以下とした、また、原料流体と加熱用熱媒流体が接触してから、流体温度が100℃以下になるまでの時間は、7.0分とした。なお、ゲル専用内管(15a)内部の圧力は、16MPaに設定した。
(3) Synthesis of zeolite (BEA) Next, the gel solution obtained above was heated to 90 ° C., and this was separated from the left side of the gel-dedicated inner tube (15a) shown in FIG. In 15a), at the same time as supplying continuously at a constant speed, heated water heated to 170 ° C. was supplied from the lower side in FIG. 4 to generate a mixed fluid.
While maintaining the generated mixed fluid at a predetermined temperature (set synthesis temperature), the zeolite (BEA) synthesis reaction proceeds while conveying the zeolite (BEA) from the left side to the right side in FIG. BEA) slurry) was produced.
Next, cooling water having a temperature of 30 ° C. was supplied into the synthesis tube from the lower side in FIG. 4 and mixed with the zeolite (BEA) slurry to obtain a zeolite (BEA) slurry having a temperature of 100 ° C. or less.
Further, the obtained zeolite (BEA) slurry was taken out from the right end in FIG. 4 to isolate the target zeolite.
As the set synthesis temperature for synthesizing zeolite (BEA), in FIG. 4, A point: 90 ° C., B point: 170 ° C., C point: 150 ° C., D point: 170 ° C., E point: 30 ° C., F point: 210 ° C., G point: 100 ° C. or less. The time from the contact of the raw material fluid and the heating medium fluid to the temperature of the fluid reaching 100 ° C. or less was 7.0 minutes. The pressure inside the gel-dedicated inner pipe (15a) was set to 16 MPa.
〔比較例2〕従来の方法による合成ゼオライト(BEA)の合成
 上記で得たゲル溶液14gを、容量23mLのオートクレーブ(Parr社製)に封入し、160℃48時間、20rpmの回転条件下で加熱することにより、合成ゼオライト(BEA)を得た。
Comparative Example 2 Synthesis of Synthetic Zeolite (BEA) by Conventional Method 14 g of the gel solution obtained above was sealed in a 23 mL capacity autoclave (manufactured by Parr) and heated at 160 ° C. for 48 hours at 20 rpm. As a result, synthetic zeolite (BEA) was obtained.
 実施例2で得たゼオライト(BEA)のSEM(走査型電子顕微鏡)写真図を図17に示す。また、比較例2で得たゼオライト(BEA)のSEM(走査型電子顕微鏡)写真図を図18に示す。
 図17、18から、いずれの場合もファセットの明瞭な結晶が得られていることが分かる。 
 また、実施例2及び比較例2で得たゼオライト(BEA)のXRDデータ図を図19に示す。
 図19から、実施例2で得られたゼオライト(BEA)の結晶化度は、比較例2(従来方式:オートクレーブ方式)で得たものと同等であることが確認された。
An SEM (scanning electron microscope) photograph of the zeolite (BEA) obtained in Example 2 is shown in FIG. Moreover, the SEM (scanning electron microscope) photograph figure of the zeolite (BEA) obtained by the comparative example 2 is shown in FIG.
17 and 18, it can be seen that a crystal with clear facets is obtained in both cases.
Moreover, the XRD data figure of the zeolite (BEA) obtained in Example 2 and Comparative Example 2 is shown in FIG.
From FIG. 19, it was confirmed that the degree of crystallinity of the zeolite (BEA) obtained in Example 2 was equivalent to that obtained in Comparative Example 2 (conventional method: autoclave method).
 また、実施例2及び比較例2で得たゼオライト(BEA)の細孔容積をN2吸着法のより測定した。測定結果を図20に示す。
 実施例2で得たゼオライトの細孔容積は、0.21cm/g、比較例2で得たゼオライトの細孔容積は0.18cm/gであり、実施例2で得られたゼオライト(BEA)の細孔容積は、比較例2(従来方式:オートクレーブ方式)で得られたものと同等以上であることが確認された。
Moreover, the pore volume of the zeolite (BEA) obtained in Example 2 and Comparative Example 2 was measured by the N2 adsorption method. The measurement results are shown in FIG.
Pore volume of the zeolite obtained in Example 2, 0.21cm 3 / g, pore volume of the zeolite obtained in Comparative Example 2 is 0.18 cm 3 / g, obtained in Example 2 Zeolite ( The pore volume of BEA) was confirmed to be equal to or greater than that obtained in Comparative Example 2 (conventional method: autoclave method).
〔実施例3〕合成ゼオライト(CHA)の合成
(1)反応装置
 反応装置として、図4に示すものを用いてゼオライト(CHA)を合成した。
Example 3 Synthesis of Synthetic Zeolite (CHA) (1) Reactor Zeolite (CHA) was synthesized using the reactor shown in FIG.
(2)原料流体(ゲル)の調製
 酸化アルミニウム(Al)0.025部、N,N,N-トリメチル-1-アダマンチルアンモニウムヒドロキシド(TMAdaOH25重量%水溶液)0.40部を恒温槽(80℃)中で混合し、一夜静置して完全に均一な溶液とした。そこへ、ヒュームドシリカ(SiO)(Cab-O-Sil(登録商標)M-5:Cabot社製)1部、及び水16部を添加し、粉砕種結晶を加えたシリカの10重量%を添加し、10分間撹拌して、反応混合物を得た。
(2) Preparation of raw material fluid (gel) 0.025 part of aluminum oxide (Al 2 O 3 ), 0.40 part of N, N, N-trimethyl-1-adamantyl ammonium hydroxide (TMAdaOH 25 wt% aqueous solution) Mix in (80 ° C.) and let stand overnight to make a completely homogeneous solution. Thereto was added 1 part of fumed silica (SiO 2 ) (Cab-O-Sil (registered trademark) M-5: manufactured by Cabot) and 16 parts of water, and 10% by weight of silica to which ground seed crystals were added. And stirred for 10 minutes to give a reaction mixture.
(エマルジョン処理)
 上記で得た反応混合物、シクロヘキサン、及び、ポリオキシエチレン(20)オレイルエーテルを、(反応混合物):(シクロヘキサン):(ポリオキシエチレン(20)オレイルエーテル)の重量比で、1:1:0.1の割合で混合、攪拌して、ゲル状物質(ゲル溶液)を得た。
(Emulsion treatment)
The reaction mixture obtained above, cyclohexane and polyoxyethylene (20) oleyl ether were mixed at a 1: 1: 0 ratio by weight of (reaction mixture) :( cyclohexane) :( polyoxyethylene (20) oleyl ether). The mixture was mixed and stirred at a ratio of 0.1 to obtain a gel-like substance (gel solution).
(熟成処理)
 得られたゲル溶液を密閉容器に入れ、95℃に加熱されたオーブン内で容器全体を20rpmの回転数で、24時間回転させることで(熟成処理)、内容物を攪拌した。
 その後、25℃の水中に容器を入れ、容器全体を急冷させて熟成完了とした。
(Aging process)
The obtained gel solution was put into a sealed container, and the contents were stirred by rotating the whole container at a rotation speed of 20 rpm for 24 hours in an oven heated to 95 ° C. (aging process).
Thereafter, the container was placed in water at 25 ° C., and the entire container was rapidly cooled to complete the aging.
(3)ゼオライト(CHA)の合成
 次いで、上記で得たゲル溶液を90℃に加熱して、このものを、図4に示すゲル専用内管(15a)の左側から該ゲル専用内管(15a)内に連続的に一定速度で供給すると同時に、図4中、下側から、温度320℃に加熱された加熱水を供給して、混合流体を生成させた。
 生成した混合流体を所定の温度(設定合成温度)に保持しながら、図4中、左側から右側へ搬送しながら、ゼオライト(CHA)の合成反応を進行させ、ゼオライト(CHA)含有流体(ゼオライト(CHA)スラリー)を生成させた。
 次いで、温度30℃の冷却水を、図4中、下側からゲル専用内管(15a)内に供給し、ゼオライト(CHA)スラリーと混合することで、温度100℃以下のゼオライト(BEA)スラリーとした。
 さらに、得られたゼオライト(CHA)スラリーを、図4中、右端部から取り出し、目的とするゼオライトを単離した。
 ゼオライト(CHA)を合成する設定合成温度としては、図4中、A点:90℃、B点:320℃、C点:230℃、D点:230℃、E点:30℃、F点:230℃、G点:100℃以下とした、また、原料流体と加熱用熱媒流体が接触してから、流体温度が100℃以下になるまでの時間は、2.0分とした。なお、ゲル専用内管(15a)内部の圧力は、23MPaに設定した。
(3) Synthesis of zeolite (CHA) Next, the gel solution obtained above was heated to 90 ° C., and this was separated from the left side of the gel-dedicated inner tube (15a) shown in FIG. In FIG. 4, heated water heated to a temperature of 320 ° C. was supplied from the lower side to generate a mixed fluid.
While maintaining the generated mixed fluid at a predetermined temperature (set synthesis temperature), while carrying the zeolite (CHA) synthesis reaction while conveying from the left side to the right side in FIG. 4, the zeolite (CHA) -containing fluid (zeolite ( CHA) slurry) was produced.
Next, cooling water with a temperature of 30 ° C. is supplied into the inner tube (15a) dedicated to the gel from the lower side in FIG. It was.
Further, the obtained zeolite (CHA) slurry was taken out from the right end in FIG. 4 to isolate the target zeolite.
As the set synthesis temperature for synthesizing zeolite (CHA), in FIG. 4, A point: 90 ° C., B point: 320 ° C., C point: 230 ° C., D point: 230 ° C., E point: 30 ° C., F point: 230 ° C., G point: 100 ° C. or less. The time from the contact of the raw material fluid and the heating medium fluid to the temperature of the fluid reaching 100 ° C. or less after the contact of the raw material fluid and the heating fluid fluid was 2.0 minutes. The pressure inside the gel-dedicated inner pipe (15a) was set to 23 MPa.
〔比較例3〕従来の方法によるゼオライト(CHA)の合成
 上記で得たゲル溶液を、容量23mLのオートクレーブ(Parr社製)に封入し、150℃48時間、静置加熱することにより、合成ゼオライト(CHA)を得た。
[Comparative Example 3] Synthesis of zeolite (CHA) by conventional method The gel solution obtained above was sealed in a 23 mL autoclave (manufactured by Parr) and heated at 150 ° C for 48 hours to obtain a synthetic zeolite. (CHA) was obtained.
 実施例3、比較例3で得たゼオライト(CHA)のXRDデータ図を図22に示す。
 図22から、実施例3で得られたゼオライト(CHA)の結晶化度は、比較例3(従来方式:オートクレーブ方式)で得られたものと同等であることが確認された。
 実施例3及び比較例3で得たゼオライト(CHA)のSEM(走査型電子顕微鏡)写真図を図23、図24にそれぞれ示す。
 図23、24から、実施例3で得た合成ゼオライト(CHA)は、比較例3で得た合成ゼオライト(CHA)よりも、平均粒子径が小さいものが得られた。また、いずれの場合もファセットの明瞭な結晶が得られていることが分かる。 
An XRD data diagram of the zeolite (CHA) obtained in Example 3 and Comparative Example 3 is shown in FIG.
From FIG. 22, it was confirmed that the crystallinity of the zeolite (CHA) obtained in Example 3 was equivalent to that obtained in Comparative Example 3 (conventional method: autoclave method).
The SEM (scanning electron microscope) photograph figure of the zeolite (CHA) obtained in Example 3 and Comparative Example 3 is shown in FIGS. 23 and 24, respectively.
23 and 24, the synthetic zeolite (CHA) obtained in Example 3 had a smaller average particle diameter than the synthetic zeolite (CHA) obtained in Comparative Example 3. It can also be seen that in any case, a crystal with clear facets is obtained.
〔実施例4〕ピュアシリカゼオライト(Silicalite-1)の合成
(1)反応装置
 反応装置として、図5に示すものを用いてピュアシリカゼオライト(Silicalite-1)を合成した。
Example 4 Synthesis of Pure Silica Zeolite (Silicalite-1) (1) Reactor Pure silica zeolite (Silicalite-1) was synthesized using the reactor shown in FIG.
(2)原料流体(ゲル)の調製
 テトラプロピルアンモニウムヒドロキシド(TPAOH40重量%水溶液)20部、水酸化ナトリウム20重量%水溶液50部を混合し、3分間均一になるまで撹拌した。次いで、この溶液に、コロイダルシリカ40重量%水懸濁液(商品名:LUDOX AS-40、シグマ-アルドリッチ社製)300部添加して、全体を30分間均一になるまで撹拌して、ゲル溶液を得た。
(2) Preparation of Raw Material Fluid (Gel) 20 parts of tetrapropylammonium hydroxide (TPAOH 40 wt% aqueous solution) and 50 parts of sodium hydroxide 20 wt% aqueous solution were mixed and stirred for 3 minutes until uniform. Next, 300 parts of a colloidal silica 40% by weight aqueous suspension (trade name: LUDOX AS-40, manufactured by Sigma-Aldrich) was added to this solution, and the whole was stirred until it became uniform for 30 minutes to obtain a gel solution. Got.
(熟成処理)
 得られたゲル溶液を密閉容器に入れて、90℃に加熱されたオーブン内で前記密閉容器全体を20rpmの回転数で回転させて撹拌した。その後、16時間、90℃で、ゲルを熟成させた。その後、25℃の水を用いて、密閉容器全体を急冷させて、熟成完了とした。
(Aging process)
The obtained gel solution was put in a sealed container, and the whole sealed container was rotated at a rotation speed of 20 rpm in an oven heated to 90 ° C. and stirred. Thereafter, the gel was aged at 90 ° C. for 16 hours. Thereafter, the entire sealed container was rapidly cooled using water at 25 ° C. to complete the aging.
(3)ピュアシリカゼオライト(Silicalite-1)の合成
 次いで、上記で得たゲル溶液を90℃に加熱して、このものを、図5に示す合成チューブの左側から該合成チューブ内に連続的に一定速度で供給すると同時に、図5中、下側から、温度370℃に加熱された加熱水を供給して、混合流体を生成させた。
 生成した混合流体を所定の温度(設定合成温度:260℃)、内部圧力(23MPa)に保持しながら、図5中、左側から右側へ搬送しながら、ゼオライトの合成反応を進行させ、ゼオライト含有流体(ゼオライトスラリー)を生成させた。
 次いで、温度20℃の冷却水を、図5中、下側から合成チューブ内に供給し、ゼオライトスラリーと混合することで、温度70℃程度のゼオライトスラリーとした。
 さらに、得られたゼオライトスラリーを、図5中、右端部から取り出し、目的とするゼオライトを単離した。
 ゼオライトを合成する設定合成温度は、加熱用熱媒体流体(加熱水)とゲル溶液の混合比により変化させることができる。本実施例では、設定温度を260℃とした。また、原料流体と加熱用熱媒流体が接触してから、流体温度が70℃未満になるまでの時間は、20秒、120秒(2分)とした。なお、合成時間は、合成チューブの長さを変化させることにより設定した。
(3) Synthesis of Pure Silica Zeolite (Silicalite-1) Next, the gel solution obtained above was heated to 90 ° C., and this was continuously put into the synthesis tube from the left side of the synthesis tube shown in FIG. At the same time as supplying at a constant speed, heated water heated to a temperature of 370 ° C. was supplied from the lower side in FIG. 5 to generate a mixed fluid.
While maintaining the generated mixed fluid at a predetermined temperature (set synthesis temperature: 260 ° C.) and internal pressure (23 MPa), while carrying the zeolite from the left side to the right side in FIG. (Zeolite slurry) was produced.
Next, cooling water having a temperature of 20 ° C. was supplied into the synthesis tube from the lower side in FIG. 5 and mixed with the zeolite slurry to obtain a zeolite slurry having a temperature of about 70 ° C.
Further, the obtained zeolite slurry was taken out from the right end in FIG. 5 to isolate the target zeolite.
The set synthesis temperature for synthesizing the zeolite can be changed by the mixing ratio of the heating medium fluid (heating water) and the gel solution. In this example, the set temperature was 260 ° C. Further, the time from the contact of the raw material fluid and the heating medium fluid for heating to the fluid temperature being less than 70 ° C. was 20 seconds and 120 seconds (2 minutes). The synthesis time was set by changing the length of the synthesis tube.
〔比較例4〕従来の方法によるピュアシリカゼオライト(Silicalite-1)の合成
 上記で得たゲル溶液を、容量23mLのオートクレーブ(Parr社製)に封入し、180℃12時間、静置加熱することにより、ピュアシリカゼオライト(Silicalite-1)を得た。
[Comparative Example 4] Synthesis of pure silica zeolite (Silicalite-1) by a conventional method The gel solution obtained above is sealed in an autoclave (manufactured by Parr) having a capacity of 23 mL and heated at 180 ° C for 12 hours. As a result, pure silica zeolite (Silicalite-1) was obtained.
 実施例4及び比較例4で得たピュアシリカゼオライト(Silicalite-1)のXRD図を図25に示す。
 図25から、実施例4で得られたピュアシリカゼオライト(Silicalite-1)の結晶化度は、比較例4(従来方式:オートクレーブ方式)で得られたものと同等であることが確認された。
FIG. 25 shows XRD diagrams of the pure silica zeolite (Silicalite-1) obtained in Example 4 and Comparative Example 4.
From FIG. 25, it was confirmed that the crystallinity of the pure silica zeolite (Silicalite-1) obtained in Example 4 was equivalent to that obtained in Comparative Example 4 (conventional method: autoclave method).
 実施例4で得たピュアシリカゼオライト(Silicalite)のSEM(走査型電子顕微鏡)写真図を図26に示す。図26中、(b)、(c)は、(a)のSEM写真の部分拡大写真である。
 また、比較例4で得たピュアシリカゼオライト(Silicalite)のSEM(走査型電子顕微鏡)写真図を図27に示す。図27中、(b)、(c)は、(a)のSEM写真の部分拡大写真である。
The SEM (scanning electron microscope) photograph figure of the pure silica zeolite (Silicalite) obtained in Example 4 is shown in FIG. In FIG. 26, (b) and (c) are partially enlarged photographs of the SEM photograph of (a).
Moreover, the SEM (scanning electron microscope) photograph figure of the pure silica zeolite (Silicalite) obtained in the comparative example 4 is shown in FIG. In FIG. 27, (b) and (c) are partially enlarged photographs of the SEM photograph of (a).
 従来、ゼオライト合成を短時間で行う研究は多くなされているが、非晶質状態から100%に近い状態まで結晶化を10秒以内で完了させた例はない。 
 本発明の製造方法によれば、結晶性ミクロ多孔質材料を高い純度で効率よく(簡便かつ短時間で)、工業的に有利に製造することができる。
Conventionally, many studies have been made to synthesize zeolite in a short time, but there is no example in which crystallization is completed within 10 seconds from an amorphous state to a state close to 100%.
According to the production method of the present invention, a crystalline microporous material can be produced with high purity and efficiency (simple and in a short time) and industrially advantageously.
1a,1b:反応管
2a,2b,2c,2d,2e,2f,2g,2h,2i,2j:上流部の流体導入口
3a,3b:下流部の流体導入口
4a,4b,4c:流体導入口周辺図
5a,5b,5c:反応管
6a,6b,6c,6d,6e,6f:流体移送用配管
10:原料流体貯蔵タンク
11:原料流体投入ポンプ
12:原料流体流量調整バルブ
13:原料流体温度調整装置
14:温度センサー
15:反応管
15a:ゲル専用内管
15b:加熱用熱媒流体(加熱水)用外管
15c、15d:電気ヒーター
16:圧力計
17:背圧弁
18:回収タンク
19:熱媒流体貯蔵タンク
20:熱媒流体投入ポンプ
21:熱媒流体流量調整バルブ
22:熱媒流体加熱装置
23:温度センサー
24:熱媒流体投入ポンプ
25:熱媒流体流量調整バルブ
1a, 1b: reaction tubes 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i, 2j: upstream fluid inlets 3a, 3b: downstream fluid inlets 4a, 4b, 4c: fluid inlet 5a, 5b, 5c: Reaction pipes 6a, 6b, 6c, 6d, 6e, 6f: Pipe for fluid transfer 10: Raw material fluid storage tank 11: Raw material fluid input pump 12: Raw material fluid flow rate adjusting valve 13: Raw material fluid Temperature adjusting device 14: Temperature sensor 15: Reaction tube 15a: Gel dedicated inner tube 15b: Heating fluid medium (heating water) outer tube 15c, 15d: Electric heater 16: Pressure gauge 17: Back pressure valve 18: Recovery tank 19 : Heat medium fluid storage tank 20: Heat medium fluid input pump 21: Heat medium fluid flow rate adjustment valve 22: Heat medium fluid heating device 23: Temperature sensor 24: Heat medium fluid input pump 25: Heat medium fluid flow rate adjustment valve

Claims (14)

  1.  原料化合物を含有する流体を反応管に連続的に供給し、結晶性ミクロ多孔質材料を連続的に製造する方法であって、
     温度が100℃未満の原料化合物を含有する流体を、前記反応管内に連続的に供給し、温度が70~500℃の範囲で選択される所定の温度の混合流体を生成させるステップ(I)、及び、
     得られた混合流体を、超臨界流体にすることなく、前記反応管内を下流側に移送しながら、温度70~500℃で、結晶性ミクロ多孔質材料の合成反応を行い、結晶性ミクロ多孔質材料を含有する流体を生成させるステップ(II)
    を有することを特徴とする、結晶性ミクロ多孔質材料の製造方法。
    A method of continuously producing a crystalline microporous material by continuously supplying a fluid containing a raw material compound to a reaction tube,
    A step of continuously supplying a fluid containing a raw material compound having a temperature of less than 100 ° C. into the reaction tube to produce a mixed fluid having a predetermined temperature selected in the range of 70 to 500 ° C. (I), as well as,
    The resultant mixed fluid is not converted into a supercritical fluid, and a crystalline microporous material is synthesized at a temperature of 70 to 500 ° C. while being transported downstream in the reaction tube. Generating a fluid containing the material (II)
    A method for producing a crystalline microporous material, comprising:
  2.  前記ステップ(I)が、前記反応管内において、温度が100℃未満の、原料化合物を含有する流体と、温度が100℃以上の加熱用熱媒流体とを混合することにより、温度70~500℃の範囲で選択される所定の温度の混合流体を生成させるステップであることを特徴とする、請求項1に記載の結晶性ミクロ多孔質材料の製造方法。 In the step (I), in the reaction tube, a fluid containing a raw material compound having a temperature of less than 100 ° C. and a heating medium fluid having a temperature of 100 ° C. or higher are mixed, whereby a temperature of 70 to 500 ° C. 2. The method for producing a crystalline microporous material according to claim 1, wherein the fluid mixture is a step of generating a fluid mixture having a predetermined temperature selected in the range described above.
  3.  前記加熱用熱媒流体が、水又は水以外の他の成分を含む水溶液である、請求項2に記載の結晶性ミクロ多孔質材料の製造方法。 The method for producing a crystalline microporous material according to claim 2, wherein the heating medium fluid for heating is an aqueous solution containing water or other components other than water.
  4.  前記原料化合物を含有する流体と加熱用熱媒流体の混合割合(原料化合物を含有する流体と加熱用熱媒流体の体積比)が、1:0.1~1:10である、請求項2又は3に記載の結晶性ミクロ多孔質材料の製造方法。 The mixing ratio of the fluid containing the raw material compound and the heating medium fluid (volume ratio of the fluid containing the raw material compound and the heating medium fluid) is 1: 0.1 to 1:10. Or the manufacturing method of the crystalline microporous material of 3.
  5.  生成する混合流体に含まれる結晶性ミクロ多孔質材料が、細孔内に、テンプレート、原料化合物に含まれる溶媒若しくは加熱用熱媒流体、又は、テンプレート及び原料化合物に含まれる溶媒若しくは加熱用熱媒流体を含有するものである、請求項2~4のいずれかに記載の結晶性ミクロ多孔質材料の製造方法。 The crystalline microporous material contained in the mixed fluid to be produced has a template, a solvent contained in the raw material compound, or a heating medium for heating, or a solvent contained in the template and the raw material compound, or a heating medium for heating. The method for producing a crystalline microporous material according to any one of claims 2 to 4, comprising a fluid.
  6.  前記結晶性ミクロ多孔質材料が、平均孔径が2nm以下のミクロ孔を有する多孔質材料である、請求項1~5のいずれかに記載の結晶性ミクロ多孔質材料の製造方法。 The method for producing a crystalline microporous material according to any one of claims 1 to 5, wherein the crystalline microporous material is a porous material having micropores having an average pore diameter of 2 nm or less.
  7.  前記原料化合物を含有する流体が、エマルジョン処理が施されたものである、請求項1~6のいずれかに記載の結晶性ミクロ多孔質材料の製造方法。 The method for producing a crystalline microporous material according to any one of claims 1 to 6, wherein the fluid containing the raw material compound is subjected to an emulsion treatment.
  8.  前記原料化合物を含有する流体が、熟成処理が施されたものである、請求項1~7のいずれかに記載の結晶性ミクロ多孔質材料の製造方法。 The method for producing a crystalline microporous material according to any one of claims 1 to 7, wherein the fluid containing the raw material compound has been subjected to aging treatment.
  9.  前記ステップ(II)で生成した結晶性ミクロ多孔質材料を含有する流体を、反応管内を下流側に移送しながら冷却し、温度が70℃未満の、結晶性ミクロ多孔質材料を含有する流体を生成させるステップ(III)をさらに有する、請求項1~8のいずれかに記載の結晶性ミクロ多孔質材料の製造方法。 The fluid containing the crystalline microporous material produced in the step (II) is cooled while being transported downstream in the reaction tube, and the fluid containing the crystalline microporous material having a temperature of less than 70 ° C. The method for producing a crystalline microporous material according to any one of claims 1 to 8, further comprising a step (III) of forming.
  10.  前記ステップ(III)における結晶性ミクロ多孔質材料を含有する流体の冷却方法が、結晶性ミクロ多孔質材を含有する流体に、冷却用熱媒流体を接触させるものである、請求項9に記載の結晶性ミクロ多孔質材料の製造方法。 The cooling method of the fluid containing the crystalline microporous material in the step (III) is such that the cooling medium fluid is brought into contact with the fluid containing the crystalline microporous material. A method for producing a crystalline microporous material.
  11.  ステップ(I)において原料流体と加熱用熱媒流体とを混合した後、結晶性ミクロ多孔質材料を含有する流体に、冷却用熱媒流体を接触させるまでの時間が1秒以上である、請求項10に記載の結晶性ミクロ多孔質材料の製造方法。 After mixing the raw material fluid and the heating medium fluid in step (I), the time until the cooling medium fluid is brought into contact with the fluid containing the crystalline microporous material is 1 second or longer. Item 11. A method for producing a crystalline microporous material according to Item 10.
  12.  生成する結晶性ミクロ多孔質材料が、シリカ/アルミナ比(SiO/Alのモル比)が、2~10000のアルミノシリケートゼオライト、アルミノフォスフェートゼオライト、ピュアシリカゼオライト、シリコアルミノフォスフェートゼオライト、メタロシリケート、チタノシリケート、又はパナジウムシリケートである、請求項1~11のいずれかに記載の結晶性ミクロ多孔質材料の製造方法。 The resulting crystalline microporous material is an aluminosilicate zeolite, aluminophosphate zeolite, pure silica zeolite, silicoaluminophosphate zeolite having a silica / alumina ratio (SiO 2 / Al 2 O 3 molar ratio) of 2 to 10,000. The method for producing a crystalline microporous material according to any one of claims 1 to 11, which is metallosilicate, titanosilicate, or panadium silicate.
  13.  少なくとも、原料化合物を含有する流体が供給される原料化合物含有流体導入口と、加熱用熱媒流体が導入される加熱用熱媒流体導入口とを有する反応管を備え、原料化合物を含有する流体を前記反応管に連続的に供給し、結晶性ミクロ多孔質材料を連続的に製造する、結晶性ミクロ多孔質材料の製造装置であって、
     前記反応管内において、温度が100℃未満の、原料化合物を含有する流体と、温度が100℃以上の加熱用熱媒流体とを混合することにより、70~500℃の範囲で選択される所定の温度の混合流体を生成させ、得られた混合流体を、超臨界流体にすることなく、前記反応管内を下流側に移送しながら、温度70~500℃で結晶性ミクロ多孔質材料の合成反応を行い、結晶性ミクロ多孔質材料を含有する流体を生成させるものである、結晶性ミクロ多孔質材料の製造装置。
    A fluid comprising a raw material compound including a reaction tube having at least a raw material compound-containing fluid inlet to which a fluid containing the raw material compound is supplied and a heating heat medium fluid inlet to which a heating heat medium fluid is introduced Is continuously supplied to the reaction tube to continuously produce the crystalline microporous material,
    In the reaction tube, a fluid containing a raw material compound having a temperature of less than 100 ° C. and a heating medium fluid for heating having a temperature of 100 ° C. or more are mixed to obtain a predetermined temperature selected in the range of 70 to 500 ° C. A mixed fluid at a temperature is generated, and the resultant mixed fluid is transferred to the downstream side of the reaction tube without making it a supercritical fluid, and the synthesis reaction of the crystalline microporous material is performed at a temperature of 70 to 500 ° C. An apparatus for producing a crystalline microporous material, which is performed to generate a fluid containing the crystalline microporous material.
  14.  少なくとも、原料化合物を含有する流体が供給される原料化合物含有流体導入口と、加熱用熱媒流体が導入される加熱用熱媒流体導入口とを有する反応管を備え、原料化合物を含有する流体を前記反応管に連続的に供給し、結晶性ミクロ多孔質材料を連続的に製造する、結晶性ミクロ多孔質材料の製造装置であって、
     前記反応管が、温度が100℃未満の原料化合物を含有する流体を、前記反応管内に連続的に供給し、温度が70~500℃の範囲で選択される所定の温度の混合流体を生成させ、得られた混合流体を、超臨界流体にすることなく、前記反応管内を下流側に移送しながら、温度70~500℃で、結晶性ミクロ多孔質材料の合成反応を行い、結晶性ミクロ多孔質材料を含有する流体を生成させるゲル専用内管と、前記ゲル専用内管の周囲を取り囲む加熱用熱媒流体用外管とからなる、二重構造を有する反応管である、結晶性ミクロ多孔質材料の製造装置。
    A fluid comprising a raw material compound including a reaction tube having at least a raw material compound-containing fluid inlet to which a fluid containing the raw material compound is supplied and a heating heat medium fluid inlet to which a heating heat medium fluid is introduced Is continuously supplied to the reaction tube to continuously produce the crystalline microporous material,
    The reaction tube continuously supplies a fluid containing a raw material compound having a temperature of less than 100 ° C. into the reaction tube to generate a mixed fluid having a predetermined temperature selected in the range of 70 to 500 ° C. The resulting mixed fluid is not converted into a supercritical fluid, and the crystalline microporous material is synthesized at a temperature of 70 to 500 ° C. while being transferred to the downstream side in the reaction tube. A crystalline microporous, which is a reaction tube having a dual structure, comprising a gel-dedicated inner tube for generating a fluid containing a porous material and a heating heat transfer fluid outer tube surrounding the gel-dedicated inner tube. Quality material manufacturing equipment.
PCT/JP2017/019442 2016-05-24 2017-05-24 Production method and production device for crystalline microporous material WO2017204268A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018519589A JP6990923B2 (en) 2016-05-24 2017-05-24 Manufacturing method and manufacturing equipment for crystalline microporous material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-103030 2016-05-24
JP2016103030 2016-05-24

Publications (1)

Publication Number Publication Date
WO2017204268A1 true WO2017204268A1 (en) 2017-11-30

Family

ID=60411419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019442 WO2017204268A1 (en) 2016-05-24 2017-05-24 Production method and production device for crystalline microporous material

Country Status (2)

Country Link
JP (1) JP6990923B2 (en)
WO (1) WO2017204268A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112551539A (en) * 2019-09-26 2021-03-26 中国石油大学(北京) Single-layer MWW molecular sieve and preparation method and application thereof
US11345605B2 (en) 2019-11-14 2022-05-31 Saudi Arabian Oil Company Systems and methods for preparing nano-sized crystals of BEA zeolite

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256720A (en) * 1986-04-30 1987-11-09 Lion Corp Continuous production of crystalline alumino silicate-containing slurry
JP2002137917A (en) * 2000-08-23 2002-05-14 Toshio Shimoda Continuous synthesis method for zeolite by contacting heated tube reactor and its continuous synthesis plant
JP2005225682A (en) * 2004-02-10 2005-08-25 Tosoh Corp Nanocrystal zeolite particle and production method thereof
WO2015005407A1 (en) * 2013-07-09 2015-01-15 三菱化学株式会社 Zeolite production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256720A (en) * 1986-04-30 1987-11-09 Lion Corp Continuous production of crystalline alumino silicate-containing slurry
JP2002137917A (en) * 2000-08-23 2002-05-14 Toshio Shimoda Continuous synthesis method for zeolite by contacting heated tube reactor and its continuous synthesis plant
JP2005225682A (en) * 2004-02-10 2005-08-25 Tosoh Corp Nanocrystal zeolite particle and production method thereof
WO2015005407A1 (en) * 2013-07-09 2015-01-15 三菱化学株式会社 Zeolite production method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112551539A (en) * 2019-09-26 2021-03-26 中国石油大学(北京) Single-layer MWW molecular sieve and preparation method and application thereof
CN112551539B (en) * 2019-09-26 2023-01-31 中国石油大学(北京) Single-layer MWW molecular sieve and preparation method and application thereof
US11345605B2 (en) 2019-11-14 2022-05-31 Saudi Arabian Oil Company Systems and methods for preparing nano-sized crystals of BEA zeolite

Also Published As

Publication number Publication date
JP6990923B2 (en) 2022-02-03
JPWO2017204268A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
JP6399557B2 (en) Method for producing zeolite
Liu et al. Ultrafast synthesis of zeolites: breakthrough, progress and perspective
US9938157B2 (en) Interzeolite transformation and metal encapsulation in the absence of an SDA
JP3526837B2 (en) Method and apparatus for producing inorganic material
JP4497924B2 (en) Crystalline aluminosilicate zeolite composition-UZM-9
US20190168197A1 (en) Synthetic Zeolite Comprising A Catalytic Metal
JPH0768045B2 (en) Zeolite having MFI structure mainly composed of silica and titanium oxide and method for synthesizing the same
JP7005399B2 (en) Method for synthesizing IZM-2 zeolite in the presence of template 1,6-bis (methylpiperidinium) hexanedibromid
US7935330B2 (en) Method of making porous crystalline materials
JP2007022911A (en) Continuously manufacturing method of porous substance and mixed metal oxide by using continuous stirred reactor, and continuously manufacturing apparatus
KR20180128415A (en) Method of flash firing of zeolite material
JP2004043296A (en) Crystalline silicoaluminophosphate salt molecular sieve having eight oxygen ring pore, and method of producing the same and method of producing methylamine with the same sa catalyst
JP6990923B2 (en) Manufacturing method and manufacturing equipment for crystalline microporous material
JP5119663B2 (en) AFI type iron aluminophosphate and method for producing the same
CN111655370A (en) Process for making hollow ZSM-5 and TS-1 zeolites
CN107074571A (en) Use the method for the molecular sieve of monoisopropanolamine synthesized silicon-aluminum phosphate 34
WO2020250985A1 (en) Sheet-like particles of zeolite and method for producing same
JP2002068733A (en) Method for manufacturing crystalline microporous material and device therefor
Strohmaier Synthesis of Zeolites
US11618013B2 (en) Systems and methods for the synthesizing ZSM-22 zeolites
JP2019085294A (en) Gme-type zeolite containing phosphorus and manufacturing method thereof
WO2023168174A1 (en) Emm-73 molecular sieve compositions, syntheses, and uses
WO2023044211A2 (en) Zeolite syntheses utilizing bis-pyridinium structure directing agents
CN117957195A (en) Zeolite synthesis using bipyridinium structure directing agents
US20130005564A1 (en) Synthesis of crystalline long-ranged ordered materials from preformed amorphous solids

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018519589

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802854

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802854

Country of ref document: EP

Kind code of ref document: A1