WO2017204080A1 - Power transmission device and power reception device - Google Patents

Power transmission device and power reception device Download PDF

Info

Publication number
WO2017204080A1
WO2017204080A1 PCT/JP2017/018687 JP2017018687W WO2017204080A1 WO 2017204080 A1 WO2017204080 A1 WO 2017204080A1 JP 2017018687 W JP2017018687 W JP 2017018687W WO 2017204080 A1 WO2017204080 A1 WO 2017204080A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power transmission
phase
microwave
unit
Prior art date
Application number
PCT/JP2017/018687
Other languages
French (fr)
Japanese (ja)
Inventor
川前 治
市川 勝英
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Publication of WO2017204080A1 publication Critical patent/WO2017204080A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices

Definitions

  • the present invention relates to a power transmission device and a power reception device, and more particularly to a technique effective for power feeding to an electronic device by wireless.
  • the microwave energy is concentrated and charged at a position that responds to reception of a beacon signal from a beacon device by a power transmitter having one or more adaptive phase microwave array emitters.
  • the rectenna in the device describes that the microwave energy is rectified and used for main power.
  • the electronic device may be charged for a long time, or power may be insufficient to cause malfunction of the electronic device.
  • An object of the present invention is to provide a technique capable of supplying optimal power to an electronic device by improving the efficiency of power supply.
  • a typical power transmission device transmits a microwave to a power receiving device that supplies power to an electronic device.
  • This power transmission device has a plurality of power transmission units and a control unit.
  • the power transmission unit transmits microwaves to the power receiving device.
  • the control unit controls the power transmission unit.
  • the plurality of power transmission units each have an antenna and a microwave output unit.
  • the antenna receives a beacon signal having the same frequency as the microwave transmitted from the power transmission and power reception device.
  • the microwave output unit adjusts the phase of the microwave transmitted to the power receiving device based on the phase control signal, and adjusts and outputs the amplification degree of the microwave based on the amplification control signal.
  • the control unit generates a phase control signal based on the phase difference between the reference signal and the beacon signal, and generates an amplification control signal based on the amplitude difference between the reference signal and the beacon signal.
  • the microwave output unit has a signal detection unit, a phase adjustment unit, and a gain adjustment amplification unit.
  • the signal detection unit detects an amplitude difference and a phase difference between the beacon signal received by the antenna and the reference signal.
  • the phase adjustment unit adjusts the phase of the microwave transmitted to the power receiving device based on the phase control signal.
  • the gain adjustment amplification unit adjusts the amplification degree of the microwave transmitted to the power receiving device based on the amplification control signal.
  • control unit calculates the sum of the received power transmitted from the power receiving apparatus, determines whether the sum of the received power is larger than a preset expected power value, and the sum of the received power is the expected power value. If below, generate either phase control signal or amplification control signal so that the total received power is larger than the expected power value, and either microwave phase shift amount or microwave amplification degree Adjust one.
  • the present invention is a radio wave of UHF (300 MHz) band or higher, particularly a quasi-microwave (920 MHz band) to millimeter wave (30 GHz or higher).
  • the band is technically applicable.
  • the charging efficiency can be improved.
  • FIG. 3 is an explanatory diagram illustrating an example of a configuration in a wireless power feeding system according to Embodiment 1.
  • FIG. FIG. 2 is an explanatory diagram illustrating an example of a configuration of a power receiver included in the wireless power feeding system of FIG. 1.
  • 2 is a flowchart illustrating an example of initial setting when power is supplied by microwaves in the wireless power supply system of FIG. 1.
  • 4 is a flowchart showing an example of a speaker selection process of FIG. 1 executed after the initial setting of FIG. 3 is completed.
  • 3 is a flowchart illustrating an example of power adjustment processing by the wireless power feeding system of FIG. 1. It is explanatory drawing which shows an example at the time of applying the wireless electric power feeding system of FIG. 1 to an electronic device.
  • FIG. 10 is an explanatory diagram illustrating an example of a configuration in a wireless power feeding system according to a third embodiment.
  • 10 is an explanatory diagram illustrating an example of a configuration of a power receiver included in a wireless power feeding system according to a fourth embodiment.
  • FIG. 10 is an explanatory diagram illustrating an example of a configuration in a wireless power feeding system for a mobile terminal according to a fifth embodiment.
  • the constituent elements are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
  • FIG. 1 is an explanatory diagram illustrating an example of a configuration of the wireless power feeding system 10 according to the first embodiment.
  • the wireless power supply system 10 is a system that supplies electric power in a non-contact manner using radiant energy such as microwaves.
  • the wireless power feeding system 10 includes a power transmitter 20 and a power receiver 40 as shown in FIG.
  • the power transmitter 20 which is a power transmission device wirelessly transmits a microwave.
  • the power receiver 40 as a power receiving apparatus receives the microwave transmitted from the power transmitter 20 and converts it into electric power.
  • the power transmitter 20 is installed at, for example, a ceiling or a high position near the ceiling. Thereby, the probability that there is an obstacle that shields the microwave transmitted from the power transmitter 20 is reduced, and the microwave can be transmitted efficiently, that is, the power transmission efficiency can be improved.
  • each power receiver 40 is provided in an electronic device, and in FIG. 1, it is assumed that each power receiver 40 is provided in a speaker 50 described later of the acoustic system.
  • the acoustic system is a system that reproduces, for example, three or more channels such as surround sound, and includes a reproduction device (not shown) and a plurality of speakers 50.
  • the speaker 50 plays back content data output from the playback device.
  • the number of these speakers 50 a large number of speakers are used according to the number of channels.
  • Content data such as an audio signal is transmitted to each speaker 50 wirelessly such as Bluetooth (registered trademark) (not shown) from a playback device that plays back content.
  • Each of these speakers 50 is provided with an electronic circuit. The electronic circuit amplifies the content data received from the playback device, and then plays back and outputs the content data.
  • the power transmitter 20 includes a communication unit 21, a controller 22, a plurality of transceivers 23, an antenna array 24, and an oscillator 25.
  • the communication unit 21 performs bidirectional wireless communication with the power receiver 40.
  • the controller 22 serving as a control unit controls transmission of microwaves in the power transmitter 20.
  • the transceiver 23 which is a microwave output unit adjusts the amplitude and phase of the microwave based on the control of the controller 22.
  • the antenna array 24 has a plurality of antennas 26.
  • the transceiver 23 and the antenna 26 constitute a transmission unit.
  • Each antenna 23 is individually connected to each transceiver 23.
  • the oscillator 25 generates a reference signal having a preset frequency.
  • the reference signal generated by the oscillator 25 is input to each transceiver 23.
  • the transceiver 23 includes an amplitude phase comparator 27, a phase shifter 28, a variable gain amplifier 29, and a switch unit 30.
  • the amplitude / phase comparator 27, which is a signal detection unit, compares the received beacon signal with the reference signal of the oscillator 25 and outputs the comparison result to the controller 22.
  • the phase shifter 28 which is a phase adjustment unit, adjusts the amount of phase shift in the reference signal generated by the oscillator 25 based on the phase control signal output from the controller 22.
  • a variable gain amplifier 29 that is a gain adjustment amplification unit amplifies the reference signal generated by the oscillator 25 and outputs it as a microwave.
  • the variable gain amplifier 29 adjusts the gain, that is, the amplification degree, based on the amplification control signal output from the controller 22.
  • the switch unit 30 switches the connection destination of the antenna 26. Specifically, based on a switch control signal output from the controller 22, the antenna 26 is switched to be connected to either the output unit of the variable gain amplifier 29 or the input unit of the amplitude / phase comparator 27.
  • the controller 22 generates a phase control signal and an amplification control signal based on the comparison result by the amplitude phase comparator 27 described above.
  • FIG. 2 is an explanatory diagram showing an example of the configuration of the power receiver 40 included in the wireless power feeding system 10 of FIG.
  • the power receiver 40 includes a communication unit 41, a controller 42, a rectification unit 43, a power reception antenna 44, and a beacon 45.
  • the communication unit 41 performs bidirectional wireless communication with the communication unit of the power transmitter 20.
  • the content data receiver is omitted.
  • the power receiving antenna 44 receives the microwave transmitted from the power transmitter 20 of FIG.
  • the rectifier 43 rectifies the microwave received by the power receiving antenna 44 to convert it into a DC voltage, and supplies it as an operating power supply for the electronic circuit included in the speaker 50 of FIG.
  • the controller 42 controls power reception in the power receiver 40.
  • the beacon 45 serving as a beacon unit outputs a beacon signal.
  • the communication part 41 and the controller 42 become a control communication part.
  • the 2.4 GHz band and the 5.8 GHz band which are ISM (Industry Science Medical) bands, are used.
  • FIG. 3 is a flowchart illustrating an example of an initial setting at the time of power feeding by microwaves in the wireless power feeding system 10 of FIG.
  • the controller 22 of the power transmitter 20 determines whether or not an initial setting is necessary (step S101).
  • the initial setting is a process of setting the received power at the power receiver 40 to an expected value by adjusting the phase and amplification degree of the microwave transmitted from the power transmitter 20.
  • the initial setting becomes unnecessary.
  • initial setting is required. The same initial setting is performed when the installation position of the speaker 50 is changed.
  • Whether or not the initial setting is necessary is determined based on, for example, a flag stored in a memory (not shown) of the controller 22 or the like. If a flag indicating that the initial setting has been performed is stored in the memory, the controller 22 determines that the initial setting is unnecessary.
  • step S101 If the initial setting is unnecessary in the process of step S101, the initial setting process ends. On the other hand, when it is determined in step S101 that initial setting is necessary, the power transmitter 20 receives a beacon signal output from the beacon 45 of the power receiver 40 in FIG. 2 (step S102).
  • step S102 the controller 22 outputs a switch control signal to the switch unit 30 to switch the connection destination of the switch unit 30 to the input unit of the amplitude phase comparator 27.
  • a beacon signal is output from the beacon 45 included in the power receiver 40, and the antenna 26 receives the beacon signal.
  • the beacon signal received by the antenna 26 is input to the amplitude / phase comparator 27 via the switch unit 30.
  • the amplitude / phase comparator 27 detects the amplitude and phase difference of the beacon signal received by the antenna 26 using the reference signal generated by the oscillator 25 as a reference, and outputs the detection result to the controller 22 (step S102).
  • the controller 22 adjusts the phase shift amount and the amplification degree of the microwaves to be transmitted based on the detection result of the amplitude phase comparator 27 (step S103). Specifically, the controller 22 calculates the optimum power transmission amplitude and phase difference from the amplitude and phase difference of the beacon signal received by each antenna 26, and the amplification degree of the variable gain amplifier 29 and the phase shifter 28. Adjust the amount of phase shift.
  • the phase shifter 28 adjusts the amount of phase shift based on the phase control signal output from the controller 22, and the variable gain amplifier 29 is based on the amplification control signal output from the controller 22. Amplification is adjusted.
  • the gain can be adjusted for each antenna 26, so that the phase shifter 28 only adjusts the amount of phase shift.
  • the power transmission efficiency can be further improved.
  • the gain of the variable gain amplifier 29 is increased in the antenna 26 having a high beacon signal amplitude.
  • the phase difference it is conceivable that microwaves are transmitted with a phase that is complex conjugate with respect to the phase difference between the received beacon signal and the reference signal of the oscillator 25.
  • step S104 When the adjustment of the phase shift amount and the amplification degree of the microwave to be transmitted is completed, power transmission is started from the power transmitter 20, and the power received by the controller 42 is measured in the power receiver 40 (step S104).
  • the controller 42 calculates the received power from the DC voltage converted by the rectifier 43.
  • the controller 42 transmits the measured power, that is, the received power value, from the communication unit 41 to the communication unit 21 of the power transmitter 20.
  • the controller 22 determines whether or not the received power value received by the communication unit 21 is equal to or less than an expected power value that is a preset threshold value (step S105). It is assumed that the expected power value is stored in, for example, a memory (not shown) included in the controller 22.
  • step S105 If it is determined in step S105 that the received power of the power receiver 40 is less than or equal to the expected power value, the process returns to step S103, and the phase shift amount and the amplification degree of the microwaves to be transmitted again are readjusted. .
  • a change in the amount of received power at that time may be detected by increasing the gain of the variable gain amplifier 29 or changing the phase of the microwave. Or you may make it adjust an amplification degree and a phase, respectively.
  • the controller 22 When increasing the amplification degree of the variable gain amplifier 29, the controller 22 does not increase the amplification degree of all the variable gain amplifiers 29 provided in each transceiver 23, but a small number, for example, about one or two variable gain amplifiers. The degree of amplification of 29 is gradually increased.
  • the controller 22 when changing the phase of the antenna, does not change the phase shift of all the microwaves, but gradually adjusts a small number of phase shifters 28, for example, about 1 or 2. By these, highly accurate adjustment can be performed.
  • step S105 when the received power is larger than the expected power value, the initial setting is ended.
  • the total received power may exceed the allowable value of the transmission power value that can be transmitted by the power transmitter 20 in the initial setting. If the allowable value of the power transmission value is exceeded, adjustment with high accuracy may not be possible. In this case, adjustment is performed by operating the power receivers 40 one by one. As a result, it is possible to perform adjustment with high accuracy and to improve power supply efficiency.
  • the transmission efficiency is significantly low, such as when the distance between the power transmitter 20 and the power receiver 40 is long, the operation of the speaker 50 with low transmission efficiency is turned off. This can prevent malfunction of the speaker 50 caused by power shortage.
  • FIG. 4 is a flowchart showing an example of the selection process of the speaker 50 of FIG. 1 executed after the initial setting of FIG. 3 is completed.
  • the selection process of the speaker 50 is a process for solving the shortage of the received power by stopping the low priority speaker when the received power is assumed to be insufficient. Note that the process in FIG. 4 is also executed when it is determined in step S101 in FIG. 3 that the initial setting is unnecessary.
  • the controller 42 of the power receiver 40 of FIG. 2 transmits the output value or power consumption value of the speaker 50 of FIG. 1 having the power receiver 40 from the communication unit 41 to the communication unit 21 of the power transmitter 20 (step S201).
  • the power consumption value an actual power consumption value or a rated power consumption value when the speaker is used may be used.
  • the actual power consumption value of the speaker 50 is stored in a memory (not shown) of the controller 42, for example. Or you may make it store in the memory etc. which were provided in the electronic circuit which the speaker 50 has.
  • the controller 22 of the power transmitter 20 determines whether or not the total of the actual power consumption values of the respective speakers 50 received by the communication unit 21 is less than or equal to the power transmission capability of the power transmitter 20 (step S202).
  • step S203 the controller 22 turns off the low priority speaker based on the priority information (step S203), and then returns to the process of step S201. Therefore, the processing in steps S201 to S203 is executed until the total of the actual power consumption values of the speaker 50 becomes equal to or less than the power transmission capability of the power transmitter 20.
  • the priority information is information indicating a speaker to be turned off when the power transmission capacity of the power transmitter 20 is exceeded. For example, a speaker having less influence during reproduction is preferentially turned off. This priority information is also stored in the memory of the controller 22, for example.
  • step S203 the controller 22 determines a speaker with a low priority based on the priority information. Subsequently, the controller 22 outputs a stop request signal to the power receiver 40 provided in the low priority speaker.
  • the power receiver 40 that has received the stop request signal stops supplying power to the electronic circuit of the speaker 50.
  • a switch is provided at the output section of the rectifying section 43. This switch is controlled on / off by the controller 42.
  • the switch When the switch is turned on under the control of the controller 42, the DC voltage generated by the rectifier 43 is supplied to the electronic circuit via the switch.
  • the controller 42 turns off the switch, power supply to the electronic circuit is stopped. Even when the power supply to the electronic circuit is stopped, the controller 42, the beacon 45, the communication unit 41, and the like are supplied with the DC voltage generated by the rectifying unit 43 as the operating power.
  • a control signal for stopping the operation of the electronic circuit included in the speaker 50 may be output. In this case, power is supplied to the electronic circuit of the speaker 50, but the operation of the electronic circuit is stopped.
  • step S202 when it is determined that the total actual power consumption value of the speaker 50 does not exceed the power transmission capability of the power transmitter 20, the speaker selection process ends.
  • step S ⁇ b> 202 in the process of step S ⁇ b> 202, an example has been described in which it is determined whether or not the total of the actual power consumption values of the speakers 50 received by the communication unit 21 is equal to or less than the power transmission capability of the power transmitter 20.
  • the output value of each speaker may be used instead of the power consumption value.
  • the controller 22 adds up the output values of the speakers transmitted from the respective controllers 42, and compares the total value with a preset output threshold value. When the total value is larger than the output threshold value, it is determined that the power transmission capacity of the power transmitter 20 is exceeded.
  • the output threshold value is stored in the memory of the controller 22 or the like.
  • FIG. 5 is a flowchart illustrating an example of power adjustment processing by the wireless power supply system 10 of FIG.
  • This power adjustment process is a process for adjusting the shortage of transmitted power by adjusting the power transmitted to each speaker 50 when the transmitted power of the power transmitter 20 is insufficient.
  • the controller 42 of the power receiver 40 in FIG. 2 transmits the power consumption value of the speaker 50 to the controller 22 of the power transmitter 20 in FIG. 1 (step S301).
  • the controller 22 determines whether or not the total of the power consumption values of the received speakers 50 is less than or equal to the power transmission capacity (step S302).
  • the power adjustment process ends. If the total power consumption value of the speaker 50 is larger than the transmission capability, the transmission power is adjusted (step S303).
  • step S303 the power supplied to each speaker 50 is reduced by adjusting the amount of phase shift by the phase shifter 28 and adjusting the degree of amplification by the variable gain amplifier 29.
  • the total power consumption value of the speaker 50 is set to be equal to or less than the power transmission capacity.
  • the controller 22 reduces the power supplied to each speaker 50 by the same rate according to the power consumption.
  • each controller 42 transmits the power consumption value of the speaker 50 to the controller 22 (step S304), and executes the process of step S302. Then, when the total power consumption value of the speaker 50 is equal to or less than the power transmission capacity, the power adjustment process is ended.
  • FIG. 6 is an explanatory diagram showing an example when the wireless power feeding system 10 of FIG. 1 is applied to an electronic device.
  • the power transmitter 20 included in the wireless power feeding system 10 is installed at, for example, a ceiling or a high position near the ceiling.
  • FIG. 6 the example which provided the power transmission device 20 in the lighting fixture 60 installed in a ceiling is shown.
  • the lighting fixture 60 is, for example, a round ceiling light as shown in FIG. In this ceiling light, a circular LED (Light-Emitting-Diode) fluorescent lamp 61 is provided.
  • the LED fluorescent lamp 61 is an illumination unit. Inside the LED fluorescent lamp 61, a power transmitter 20 is provided as shown in FIG.
  • FIG. 7 is an explanatory diagram showing an example of the configuration of the LED fluorescent lamp 61 included in the lighting fixture 60 of FIG.
  • FIG. 7 shows the internal configuration of the LED fluorescent lamp 61.
  • a plate-like substrate 64 extending in the circumferential direction of the LED fluorescent lamp 61 is provided at the center of the LED fluorescent lamp 61.
  • the substrate 64 is made of, for example, PCB (Poly Chlorinated Biphenyl).
  • the LED 63 serving as an illumination unit is mounted on the main surface of the substrate 64, and the power transmitter 20 is mounted on the back surface of the substrate 64. Further, the plurality of antennas 26 of FIG. 1 included in the power transmitter 20 are arranged, for example, in an array at intervals on the back surface of the substrate 64.
  • the LED fluorescent lamp is on the floor side and the plurality of antennas 26 are on the ceiling side, but the LED fluorescent lamp may be an indirect illumination type with the ceiling side and the plurality of antennas 26 on the bottom side.
  • areas other than the LED fluorescent lamps 61 may be arranged at intervals in an array by the plurality of antennas 26 of the power transmitter 20.
  • the installation position of the above power transmitter 20 is not limited to these, and may be provided in the lighting fixture 60.
  • the power receiver 40 is formed in a sheet shape, and a power receiving antenna 44 is provided on the upper surface of the sheet power receiver 40.
  • the sheet power receiver 40 is mounted on the upper surface of the speaker 50, for example. Placed. Alternatively, it may be provided inside the speaker 50. In that case, the power feeding efficiency can be further improved by providing the power receiving antenna 44 on the upper portion of the speaker 50 so as to approach the power transmitter 20.
  • the power transmitter 20 can be installed on the ceiling, a decrease in power transmission efficiency due to an obstacle or the like can be reduced. Moreover, since the power transmitter 20 is installed only by attaching the lighting fixture 60, the installation work of the power transmitter 20 etc. can be made unnecessary. Thereby, the power transmission cost 20 can be easily attached while reducing the attachment cost.
  • FIG. 8A is an explanatory diagram showing a specific example in the lighting fixture 70 according to the second embodiment.
  • FIG. 8A shows a cross section of the luminaire 70.
  • the 8A includes, for example, two straight tube LED fluorescent lamps 71 and a plurality of microwave reflectors 31. Inside the LED fluorescent lamp 71, the power transmitter 20 is provided.
  • the microwave reflecting plate 31 is made of, for example, a plate-like metal, and is attached to the ceiling surface in an array shape.
  • microwave reflectors 31 reflect the illumination light of the LED fluorescent lamp 71 together with the reflector for illumination 38 and reflect the microwave transmitted from the power transmitter 20. Further, a phase adjusting unit 32 that adjusts the phase of the microwave is connected to the microwave reflecting plate 31.
  • a plate-like substrate 72 extending in the longitudinal direction of the LED fluorescent lamp 71 is provided at the center of the LED fluorescent lamp 71.
  • the substrate 72 is made of, for example, PCB, and a plurality of LEDs 73 serving as an illumination unit are mounted on the main surface thereof, and the power transmitter 20 is mounted on the back surface of the substrate 72. Further, the plurality of antennas 26 in FIG. 1 included in the power transmitter 20 are arranged at intervals on the back surface of the substrate 72.
  • the phase adjustment unit 32 adjusts the phase of the microwave transmitted from the power transmitter 20 by changing the capacitance value of each microwave reflection plate 31, for example. Control of this adjustment is performed by the controller 22 of the power transmitter 20, for example.
  • the phase shifter 28 is unnecessary in the power transmitter 20 of FIG. 1 may be an amplifier whose gain cannot be adjusted without using the variable gain amplifier 29. In that case, the microwave is adjusted only by the phase.
  • the power transmitter 20 and the plurality of antennas 26 are not necessarily arranged on the back surface of the substrate 72, and the position is not limited as long as the microwave can be sent to the microwave reflection plate.
  • the phase adjustment unit 32 includes a plurality of switches 33 and a plurality of capacitive elements 34.
  • the switch 33 and the capacitive element 34 are respectively connected in series between the microwave reflection plate 31 and the reference potential VSS.
  • the reference potential VSS is connected to the grounded reflector for illumination 38, the capacitance value between the microwave reflector 31 and the reflector for illumination 38 having the ground potential changes.
  • the controller 22 performs on / off control of the switch 33 by outputting an adjustment signal to a control terminal (not shown) of the switch 33. Thereby, the capacitance value of each microwave reflecting plate 31 changes, and the microwave phase shift amount can be adjusted by the microwave reflecting plate 31.
  • FIG. 8B is a diagram showing an example of the overall arrangement when the lighting fixture 70 is viewed from the floor direction to the ceiling direction.
  • square microwave reflectors 31 each having a size of about 2 cm to 5 cm are arranged at regular intervals at a distance of several millimeters below the illumination reflector 38, and further below that
  • the LED fluorescent lamp 71 is arranged at a distance of several mm.
  • the LED fluorescent lamp 71 is supplied with AC 100V power through a socket 81.
  • a conventional fluorescent lamp socket can be used as it is.
  • the microwave can be reflected using the microwave reflector 31 having a large area, the power density during power transmission can be lowered, and a person approaches the ceiling side where the power density is relatively high. There is nothing. As a result, the influence on the human body can be reduced.
  • the power transmitter 20 can be installed on the ceiling simply by attaching the lighting fixture 70, it is possible to reduce a decrease in power transmission efficiency due to an obstacle or the like. Further, the installation work of the power transmitter 20 and the power supply work can be made unnecessary.
  • FIG. 9 is an explanatory diagram showing an example of the configuration of the wireless power feeding system 10 according to the third embodiment.
  • phase adjustment unit 35 is provided instead of the phase shifter 28.
  • the phase adjustment unit 35 is configured such that a phase shift circuit 65 is inserted between each transceiver 23 and the antenna 26.
  • the phase shift circuit 65 includes two 0 ° phase shift microstrip lines 66 and 45 ° phase shift. It comprises a microstrip line 67, a 90 ° phase-shifting microstrip line 68, and four switches 69.
  • This phase shift circuit 65 utilizes the fact that a phase difference is generated due to the transmission line length of each strip line being different.
  • a 0 ° phase shift microstrip line 66 and a 45 ° phase shift microstrip line 67 are provided.
  • the switch 69 can be selected, and similarly, the 0 ° phase-shifting microstrip line 66 and the 90 ° phase-shifting microstrip line 68 can also be selected.
  • the phase difference can be switched in four ways of 0 °, 45 °, 90 °, and 135 ° in the circuit shown in the figure.
  • the switch 69 performs transmission line switching control based on the adjustment signal output from the controller 22. As described above, it is possible to change the phase of the antenna by changing the line length in addition to the technique for changing the capacitance value added to the antenna 26. Although the above-described technique makes the circuit complicated, it is possible to reduce the loss due to the impedance matching shift at the time of phase shift compared to the case where the capacitance value of the antenna is changed.
  • the phase shift amount is adjusted by adding a phase shift circuit 65 between the antenna 26 and the transceiver 23.
  • the phase shift amount may be adjusted by changing the length of the antenna 26, for example. Good.
  • the phase adjustment unit 35 is provided with an antenna and a switch (not shown) instead of the phase shift circuit 65.
  • One end of the switch is connected to each antenna 26.
  • the other end of the switch is connected to an antenna included in the phase adjustment unit 35.
  • the antenna 26 is connected to the antenna included in the phase adjustment unit 35. This changes the equivalent antenna length, and as a result, the amount of microwave phase shift is adjusted.
  • the power transmission efficiency in the wireless power feeding system 10 can be improved.
  • FIG. 10 is an explanatory diagram illustrating an example of a configuration of the power receiver 40 included in the wireless power feeding system according to the fourth embodiment.
  • the rechargeable battery 46 as a charging unit is formed of a secondary battery such as a lithium ion battery.
  • Other configurations are the same as those in FIG.
  • the rectifier 43 is connected to the rechargeable battery 46, and the DC voltage generated by the rectifier 43 is charged.
  • the rechargeable battery 46 may be charged, for example, when a speaker is not used, or extra power may be charged to the rechargeable battery 46 while using the speaker.
  • the rechargeable battery 46 supplies the electric power stored in the rechargeable battery 46 to the electronic circuit when the transmitted power from the power transmitter 20 is insufficient. Alternatively, even when power is not supplied from the power transmitter 20 of FIG. 1, the power of the rechargeable battery 46 can be supplied to the electronic circuit to operate the speaker 50 of FIG.
  • the electronic circuit can be operated stably.
  • the wireless power supply system in the first to third embodiments supplies power to an electronic circuit provided in a speaker, but the power supply is not limited to this.
  • a smartphone or a PDA Personal Digital Assistant
  • the present invention can be applied to various devices such as portable devices such as televisions, electronic devices such as televisions and personal computers, and home appliances such as refrigerators.
  • FIG. 11 is an explanatory diagram illustrating an example of a configuration of the power receiver 40 included in the wireless power feeding system according to the fifth embodiment.
  • the power receiver 40 includes a notebook-type mobile terminal case 91, a power receiving antenna element 92, a communication unit 93, a beacon 94, a magnetic field coupling power receiving coil 95, and a mobile terminal 96 such as a smartphone. .
  • the mobile terminal 96 is charged by the wireless charging by the charging stand 97.
  • the portable terminal is equipped with a notebook-type portable terminal case 91 that can cover the screen with a cover.
  • the power receiving antenna elements 92 are regularly arranged on the upper surface of the notebook-type portable terminal case 91, and the microwave transmission power from the luminaire 60 is efficiently obtained by forming a planar array antenna in the microwave band. It is configured to receive power well.
  • a beacon signal is transmitted by the beacon 94 mounted on the notebook type portable terminal case 91.
  • the control during charging is configured to use the communication unit 93. Since these are also mounted on the mobile terminal 96, beacon signals may be transmitted and communicated from the mobile terminal 96.
  • the power received by the notebook type portable terminal case 91 is supplied by connecting to the portable terminal 96 with a connector (not shown).
  • a magnetically coupled power receiving coil 95 using the kHz band or MHz is mounted on the lower surface of the notebook type portable terminal case 91, in other words, on the back side of the portable terminal 96, and the charging stand 97 for charging the portable terminal 96 is provided.
  • Non-contact charging is also possible by magnetically coupling with the magnetic field coupling power transmission coil 98.
  • the communication unit 99 of the charging stand 97 and the communication unit 93 of the notebook type portable terminal case 91 communicate to perform charging control.
  • the portable terminal 96 since the portable terminal 96 is placed with the screen facing upward, it is difficult to mount the power receiving antenna on the portable terminal by microwave power feeding from the ceiling. For this reason, by mounting the power receiving antenna element 92 for receiving microwaves on the top cover of the notebook type portable terminal case 91, it becomes possible to efficiently charge the portable terminal wirelessly.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each of the above-described configurations may be configured so that a part or all of them are configured by hardware or realized by executing a program by a processor.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Transmitters (AREA)

Abstract

By improving the efficiency of the supply of power, optimal power is supplied to an electronic device. A power transmitter 20 supplies microwaves to a power receiver 40 that converts the received microwaves into a DC voltage and supplies power to the electronic device. The power transmitter 20 has a plurality of power transmission units for transmitting the microwaves to the power receiver 40, and a controller 22 for controlling the power transmission units. The power transmission units each have: an antenna 26 for receiving the transmission of power and a beacon signal transmitted from the power receiver 40; and a transceiver 23 for adjusting, on the basis of a phase control signal, the phase of the microwaves to be transmitted to the power receiver 40, and adjusting and outputting, on the basis of an amplification control signal, the degree of amplification of the microwaves. A control unit generates an amplification control signal and a phase control signal based on the phase difference and amplitude difference between a reference signal and the beacon signal.

Description

送電装置および受電装置Power transmission device and power reception device
 本発明は、送電装置および受電装置に関し、特に、ワイヤレスによる電子機器への給電に有効な技術に関する。 The present invention relates to a power transmission device and a power reception device, and more particularly to a technique effective for power feeding to an electronic device by wireless.
 近年、電源供給技術として、例えば電子デバイスなどに電源ケーブルなどを用いずに、非接触にて電力を供給する、いわゆるワイヤレス給電が普及しつつある。この種のワイヤレス給電技術としては、例えばマイクロエネルギによって電子デバイスに電力を供給するものが知られている(例えば特許文献1参照)。 In recent years, as a power supply technology, for example, so-called wireless power supply that supplies power in a non-contact manner without using a power cable or the like for an electronic device or the like is becoming popular. As this type of wireless power supply technology, for example, a technology for supplying electric power to an electronic device by using micro energy is known (see, for example, Patent Document 1).
 この特許文献1の技術においては、マイクロ波エネルギが1または複数の適応位相マイクロ波アレイエミッタを有する電力送信機によってビーコンデバイスからビーコン信号が受信されるのに応答する位置に集中し、充電されるデバイス内のレクテナは、マイクロ波エネルギを整流して主電力用に使用する旨が記載されている。 In the technique of Patent Document 1, the microwave energy is concentrated and charged at a position that responds to reception of a beacon signal from a beacon device by a power transmitter having one or more adaptive phase microwave array emitters. The rectenna in the device describes that the microwave energy is rectified and used for main power.
特開2014-223018号公報Japanese Patent Laid-Open No. 2014-2223018
 上記した特許文献1の技術では、壁などの反射も用いることによって、マイクロ波を送信する電力送信機の見通し伝搬経路に人間などの障害物があっても電力の伝搬を可能としている。しかしながら、壁などの反射を用いた場合には、送電信号の減衰が大きくなり、給電効率が低下してしまうという問題がある。 In the technique of Patent Document 1 described above, reflection of a wall or the like is also used, so that power can be propagated even if there is an obstacle such as a human in the line-of-sight propagation path of the power transmitter that transmits microwaves. However, when the reflection of the wall or the like is used, there is a problem that the attenuation of the power transmission signal is increased and the power supply efficiency is lowered.
 その結果、電子デバイスの充電が長時間化してしまったり、あるいは電力が不足して電子デバイスの動作不良が発生してしまう恐れがある。 As a result, the electronic device may be charged for a long time, or power may be insufficient to cause malfunction of the electronic device.
 本発明の目的は、電力供給の効率を向上させることにより、電子デバイスに最適な電力を供給することのできる技術を提供することにある。 An object of the present invention is to provide a technique capable of supplying optimal power to an electronic device by improving the efficiency of power supply.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.
 すなわち、代表的な送電装置は、電子機器に電力を供給する受電装置に対してマイクロ波を送信する。この送電装置は、複数の送電部および制御部を有する。送電部は、受電装置にマイクロ波を送信する。制御部は、送電部を制御する。 That is, a typical power transmission device transmits a microwave to a power receiving device that supplies power to an electronic device. This power transmission device has a plurality of power transmission units and a control unit. The power transmission unit transmits microwaves to the power receiving device. The control unit controls the power transmission unit.
 複数の送電部は、アンテナおよびマイクロ波出力部をそれぞれ有する。アンテナは、電力の送信および受電装置から送信されるマイクロ波と同じ周波数のビーコン信号を受信する。マイクロ波出力部は、位相制御信号に基づいて、受電装置に送信するマイクロ波の位相を調整し、増幅制御信号に基づいて、マイクロ波の増幅度を調整して出力する。 The plurality of power transmission units each have an antenna and a microwave output unit. The antenna receives a beacon signal having the same frequency as the microwave transmitted from the power transmission and power reception device. The microwave output unit adjusts the phase of the microwave transmitted to the power receiving device based on the phase control signal, and adjusts and outputs the amplification degree of the microwave based on the amplification control signal.
 制御部は、基準信号とビーコン信号との位相差に基づいて位相制御信号を生成し、基準信号とビーコン信号との振幅差に基づいて増幅制御信号を生成する。 The control unit generates a phase control signal based on the phase difference between the reference signal and the beacon signal, and generates an amplification control signal based on the amplitude difference between the reference signal and the beacon signal.
 また、マイクロ波出力部は、信号検出部、位相調整部、および利得調整増幅部を有する。信号検出部は、アンテナが受信したビーコン信号と基準信号との振幅差および位相差を検出する。位相調整部は、位相制御信号に基づいて、受電装置に送信するマイクロ波の位相を調整する。利得調整増幅部は、増幅制御信号に基づいて、受電装置に送信するマイクロ波の増幅度を調整する。 Also, the microwave output unit has a signal detection unit, a phase adjustment unit, and a gain adjustment amplification unit. The signal detection unit detects an amplitude difference and a phase difference between the beacon signal received by the antenna and the reference signal. The phase adjustment unit adjusts the phase of the microwave transmitted to the power receiving device based on the phase control signal. The gain adjustment amplification unit adjusts the amplification degree of the microwave transmitted to the power receiving device based on the amplification control signal.
 特に、制御部は、受電装置から送信された受電電力の合計を算出して受電電力の合計が予め設定される期待電力値よりも大きいか否かを判定し、受電電力の合計が期待電力値以下であれば、受電電力の合計が期待電力値よりも大きくなるように位相制御信号または増幅制御信号の少なくともいずれか一方を生成してマイクロ波の移相量またはマイクロ波の増幅度のいずれか一方を調整する。 In particular, the control unit calculates the sum of the received power transmitted from the power receiving apparatus, determines whether the sum of the received power is larger than a preset expected power value, and the sum of the received power is the expected power value. If below, generate either phase control signal or amplification control signal so that the total received power is larger than the expected power value, and either microwave phase shift amount or microwave amplification degree Adjust one.
 ここで、実施の形態中では、代表的な周波数であるマイクロ波と記載するが、本発明は、UHF(300MHz)帯以上の電波、特に準マイクロ波(920MHz帯)~ミリ波(30GHz以上)帯域までは技術的に適用可能である。 Here, in the embodiment, it is described as a microwave that is a typical frequency, but the present invention is a radio wave of UHF (300 MHz) band or higher, particularly a quasi-microwave (920 MHz band) to millimeter wave (30 GHz or higher). The band is technically applicable.
 上記一実施の形態によれば、充電効率を向上させることができる。 According to the above embodiment, the charging efficiency can be improved.
実施の形態1によるワイヤレス給電システムにおける構成の一例を示す説明図である。3 is an explanatory diagram illustrating an example of a configuration in a wireless power feeding system according to Embodiment 1. FIG. 図1のワイヤレス給電システムが有する受電器における構成の一例を示す説明図である。FIG. 2 is an explanatory diagram illustrating an example of a configuration of a power receiver included in the wireless power feeding system of FIG. 1. 図1のワイヤレス給電システムにおけるマイクロ波による給電の際における初期設定の一例を示すフローチャートである。2 is a flowchart illustrating an example of initial setting when power is supplied by microwaves in the wireless power supply system of FIG. 1. 図3の初期設定が終了した後に実行される図1のスピーカの選択処理の一例を示すフローチャートである。4 is a flowchart showing an example of a speaker selection process of FIG. 1 executed after the initial setting of FIG. 3 is completed. 図1のワイヤレス給電システムによる電力調整処理の一例を示すフローチャートである。3 is a flowchart illustrating an example of power adjustment processing by the wireless power feeding system of FIG. 1. 図1のワイヤレス給電システムを電子機器に適用した際の一例を示す説明図である。It is explanatory drawing which shows an example at the time of applying the wireless electric power feeding system of FIG. 1 to an electronic device. 図6の照明器具が有するLED蛍光灯における構成の一例を示す説明図である。It is explanatory drawing which shows an example of a structure in the LED fluorescent lamp which the lighting fixture of FIG. 6 has. 実施の形態2による照明器具における具体例を説明するための断面図である。It is sectional drawing for demonstrating the specific example in the lighting fixture by Embodiment 2. FIG. 実施の形態2による照明器具における具体例を説明するための床側から天井側をみた全体図である。It is the whole view which looked at the ceiling side from the floor side for demonstrating the specific example in the lighting fixture by Embodiment 2. FIG. 実施の形態3によるワイヤレス給電システムにおける構成の一例を示す説明図である。FIG. 10 is an explanatory diagram illustrating an example of a configuration in a wireless power feeding system according to a third embodiment. 実施の形態4によるワイヤレス給電システムが有する受電器における構成の一例を示す説明図である。10 is an explanatory diagram illustrating an example of a configuration of a power receiver included in a wireless power feeding system according to a fourth embodiment. FIG. 実施の形態5による携帯端末向けのワイヤレス給電システムにおける構成の一例を示す説明図である。FIG. 10 is an explanatory diagram illustrating an example of a configuration in a wireless power feeding system for a mobile terminal according to a fifth embodiment.
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。 In the following embodiments, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant to each other. There are some or all of the modifications, details, supplementary explanations, and the like.
 また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。 Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number.
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 Further, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
 同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは特に明示した場合および原理的に明らかにそうではないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。 Similarly, in the following embodiments, when referring to the shape, positional relationship, etc. of components, etc., the shape of the component is substantially the case unless it is clearly specified and the case where it is clearly not apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
 また、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。 In all the drawings for explaining the embodiments, the same members are, in principle, given the same reference numerals, and the repeated explanation thereof is omitted.
 (実施の形態1)
 〈ワイヤレス給電システムの構成例〉
 図1は、実施の形態1によるワイヤレス給電システム10における構成の一例を示す説明図である。
(Embodiment 1)
<Configuration example of wireless power supply system>
FIG. 1 is an explanatory diagram illustrating an example of a configuration of the wireless power feeding system 10 according to the first embodiment.
 ワイヤレス給電システム10は、例えばマイクロ波などの放射エネルギを用いて非接触によって電力を給電するシステムである。 The wireless power supply system 10 is a system that supplies electric power in a non-contact manner using radiant energy such as microwaves.
 ワイヤレス給電システム10は、図1に示すように、送電器20、および受電器40から構成されている。送電装置である送電器20は、マイクロ波を無線送信する。受電装置である受電器40は、送電器20から無線送信されたマイクロ波を受信して電力に変換する。 The wireless power feeding system 10 includes a power transmitter 20 and a power receiver 40 as shown in FIG. The power transmitter 20 which is a power transmission device wirelessly transmits a microwave. The power receiver 40 as a power receiving apparatus receives the microwave transmitted from the power transmitter 20 and converts it into electric power.
 ここで、送電器20は、例えば天井あるいは天井に近い高い位置に設置されるものとする。これによって、送電器20から送信されるマイクロ波を遮蔽する障害物などが存在する確率が低くなり、マイクロ波を効率よく送信する、すなわち送電効率を向上させることができる。 Here, it is assumed that the power transmitter 20 is installed at, for example, a ceiling or a high position near the ceiling. Thereby, the probability that there is an obstacle that shields the microwave transmitted from the power transmitter 20 is reduced, and the microwave can be transmitted efficiently, that is, the power transmission efficiency can be improved.
 また、受電器40は、電子機器に設けられるものであり、図1においては、音響システムが有する後述するスピーカ50にそれぞれ設けられているものとする。 Further, the power receiver 40 is provided in an electronic device, and in FIG. 1, it is assumed that each power receiver 40 is provided in a speaker 50 described later of the acoustic system.
 音響システムは、例えばサラウンド音声などの3チャンネル以上のマルチチャンネルを再生するシステムであり、図示しない再生装置と複数のスピーカ50から構成されている。スピーカ50は、再生装置から出力されるコンテンツデータを再生する。これらスピーカ50の数は、チャンネル数に合わせて多数個のスピーカが利用される。 The acoustic system is a system that reproduces, for example, three or more channels such as surround sound, and includes a reproduction device (not shown) and a plurality of speakers 50. The speaker 50 plays back content data output from the playback device. As for the number of these speakers 50, a large number of speakers are used according to the number of channels.
 コンテンツを再生する再生装置からは、図示しないBluetooth(登録商標)などの無線にて音声信号などのコンテンツデータが各々のスピーカ50に送信される。これらスピーカ50には、電子回路がそれぞれ設けられており、該電子回路により、再生装置から受信したコンテンツデータを増幅した後、再生出力する。 Content data such as an audio signal is transmitted to each speaker 50 wirelessly such as Bluetooth (registered trademark) (not shown) from a playback device that plays back content. Each of these speakers 50 is provided with an electronic circuit. The electronic circuit amplifies the content data received from the playback device, and then plays back and outputs the content data.
 送電器20は、通信部21、コントローラ22、複数のトランシーバ23、アンテナアレイ24、および発振器25を有する。通信部21は、受電器40と双方向の無線通信を行う。制御部となるコントローラ22は、送電器20におけるマイクロ波の送信制御を司る。 The power transmitter 20 includes a communication unit 21, a controller 22, a plurality of transceivers 23, an antenna array 24, and an oscillator 25. The communication unit 21 performs bidirectional wireless communication with the power receiver 40. The controller 22 serving as a control unit controls transmission of microwaves in the power transmitter 20.
 マイクロ波出力部であるトランシーバ23は、コントローラ22の制御に基づいて、マイクロ波の振幅および位相を調整する。アンテナアレイ24は、複数のアンテナ26を有している。トランシーバ23およびアンテナ26によって、送信部が構成される。 The transceiver 23 which is a microwave output unit adjusts the amplitude and phase of the microwave based on the control of the controller 22. The antenna array 24 has a plurality of antennas 26. The transceiver 23 and the antenna 26 constitute a transmission unit.
 各々のトランシーバ23には、アンテナ26がそれぞれ個別に接続されている。発振器25は、予め設定された周波数の基準信号を生成する。発振器25が生成する基準信号は、各々のトランシーバ23に入力される。 Each antenna 23 is individually connected to each transceiver 23. The oscillator 25 generates a reference signal having a preset frequency. The reference signal generated by the oscillator 25 is input to each transceiver 23.
 トランシーバ23は、振幅位相比較器27、移相器28、可変利得アンプ29、およびスイッチ部30をそれぞれ有する。信号検出部である振幅位相比較器27は、受信したビーコン信号と発振器25の基準信号とを比較し、その比較結果をコントローラ22に出力する。 The transceiver 23 includes an amplitude phase comparator 27, a phase shifter 28, a variable gain amplifier 29, and a switch unit 30. The amplitude / phase comparator 27, which is a signal detection unit, compares the received beacon signal with the reference signal of the oscillator 25 and outputs the comparison result to the controller 22.
 位相調整部である移相器28は、コントローラ22から出力される位相制御信号に基づいて、発振器25が生成する基準信号における移相量の調整を行う。利得調整増幅部である可変利得アンプ29は、発振器25が生成する基準信号を増幅してマイクロ波として出力する。この可変利得アンプ29は、コントローラ22から出力される増幅制御信号に基づいて、利得、すなわち増幅度が調整される。 The phase shifter 28, which is a phase adjustment unit, adjusts the amount of phase shift in the reference signal generated by the oscillator 25 based on the phase control signal output from the controller 22. A variable gain amplifier 29 that is a gain adjustment amplification unit amplifies the reference signal generated by the oscillator 25 and outputs it as a microwave. The variable gain amplifier 29 adjusts the gain, that is, the amplification degree, based on the amplification control signal output from the controller 22.
 スイッチ部30は、アンテナ26の接続先を切り替える。具体的には、コントローラ22から出力されるスイッチ制御信号に基づいて、アンテナ26を可変利得アンプ29の出力部あるいは振幅位相比較器27の入力部のいずれか一方に接続するように切り換える。コントローラ22は、上述した振幅位相比較器27による比較結果に基づいて、位相制御信号、および増幅制御信号を生成する。 The switch unit 30 switches the connection destination of the antenna 26. Specifically, based on a switch control signal output from the controller 22, the antenna 26 is switched to be connected to either the output unit of the variable gain amplifier 29 or the input unit of the amplitude / phase comparator 27. The controller 22 generates a phase control signal and an amplification control signal based on the comparison result by the amplitude phase comparator 27 described above.
 〈受電器の構成例〉
 続いて、受電器40における構成について説明する。
<Example configuration of power receiver>
Next, the configuration of the power receiver 40 will be described.
 図2は、図1のワイヤレス給電システム10が有する受電器40における構成の一例を示す説明図である。 FIG. 2 is an explanatory diagram showing an example of the configuration of the power receiver 40 included in the wireless power feeding system 10 of FIG.
 受電器40は、通信部41、コントローラ42、整流部43、受電アンテナ44、およびビーコン45を有する。通信部41は、送電器20の通信部と双方向の無線通信を行う。ここで、コンテンツデータの受信部は省略している。 The power receiver 40 includes a communication unit 41, a controller 42, a rectification unit 43, a power reception antenna 44, and a beacon 45. The communication unit 41 performs bidirectional wireless communication with the communication unit of the power transmitter 20. Here, the content data receiver is omitted.
 受電アンテナ44は、図1の送電器20から送信されたマイクロ波を受電する。整流部43は、受電アンテナ44が受電したマイクロ波を整流して直流電圧に変換し、図1のスピーカ50が有する電子回路の動作電源として供給する。コントローラ42は、受電器40における受電制御を司る。ビーコン部であるビーコン45は、ビーコン信号を出力する。また、通信部41およびコントローラ42は、制御通信部となる。 The power receiving antenna 44 receives the microwave transmitted from the power transmitter 20 of FIG. The rectifier 43 rectifies the microwave received by the power receiving antenna 44 to convert it into a DC voltage, and supplies it as an operating power supply for the electronic circuit included in the speaker 50 of FIG. The controller 42 controls power reception in the power receiver 40. The beacon 45 serving as a beacon unit outputs a beacon signal. Moreover, the communication part 41 and the controller 42 become a control communication part.
 なお、ビーコンの周波数および送電の周波数としては、ISM(Industry Science Medical)帯である2.4GHz帯や5.8GHz帯などが用いられる。 As the beacon frequency and the power transmission frequency, the 2.4 GHz band and the 5.8 GHz band, which are ISM (Industry Science Medical) bands, are used.
 続いて、ワイヤレス給電システム10における給電動作について説明する。 Subsequently, the power feeding operation in the wireless power feeding system 10 will be described.
  〈初期設定例〉
 図3は、図1のワイヤレス給電システム10におけるマイクロ波による給電の際における初期設定の一例を示すフローチャートである。
<Initial setting example>
FIG. 3 is a flowchart illustrating an example of an initial setting at the time of power feeding by microwaves in the wireless power feeding system 10 of FIG.
 まず、送電器20のコントローラ22は、初期設定が不要であるか否かを判定する(ステップS101)。初期設定は、送電器20から送信されるマイクロ波の位相および増幅度を調整することにより、受電器40における受電力が期待値となるように設定する処理である。 First, the controller 22 of the power transmitter 20 determines whether or not an initial setting is necessary (step S101). The initial setting is a process of setting the received power at the power receiver 40 to an expected value by adjusting the phase and amplification degree of the microwave transmitted from the power transmitter 20.
 例えば一旦ワイヤレス給電がストップした後に給電を再開する場合は、初期設定が不要となる。一方、初めて送電器20によってマイクロ波の送電が行われる場合には、初期設定が必要となる。また、スピーカ50の設置位置が変わった場合にも、同様の初期設定を行う。 For example, when the power supply is resumed after the wireless power supply is stopped once, the initial setting becomes unnecessary. On the other hand, when microwave transmission is performed by the power transmitter 20 for the first time, initial setting is required. The same initial setting is performed when the installation position of the speaker 50 is changed.
 初期設定が必要であるか否かは、例えばコントローラ22が有する図示しないメモリなどに格納されたフラグなどに基づいて判定する。このメモリに初期設定が行われたことを示すフラグが格納されていれば、コントローラ22は、初期設定が不要であると判定する。 Whether or not the initial setting is necessary is determined based on, for example, a flag stored in a memory (not shown) of the controller 22 or the like. If a flag indicating that the initial setting has been performed is stored in the memory, the controller 22 determines that the initial setting is unnecessary.
 ステップS101の処理にて、初期設定が不要であれば、初期設定の処理は終了となる。一方、ステップS101の処理にて、初期設定が必要であると判定した場合、送電器20は、図2の受電器40のビーコン45から出力されるビーコン信号を受信する(ステップS102)。 If the initial setting is unnecessary in the process of step S101, the initial setting process ends. On the other hand, when it is determined in step S101 that initial setting is necessary, the power transmitter 20 receives a beacon signal output from the beacon 45 of the power receiver 40 in FIG. 2 (step S102).
 このステップS102の処理では、コントローラ22がスイッチ部30にスイッチ制御信号を出力することによって、スイッチ部30の接続先を振幅位相比較器27の入力部に切り替える。 In the processing of step S102, the controller 22 outputs a switch control signal to the switch unit 30 to switch the connection destination of the switch unit 30 to the input unit of the amplitude phase comparator 27.
 このとき、受電器40が有するビーコン45からは、ビーコン信号が出力されており、アンテナ26は、該ビーコン信号を受信する。アンテナ26が受信したビーコン信号は、スイッチ部30を経由して振幅位相比較器27に入力される。 At this time, a beacon signal is output from the beacon 45 included in the power receiver 40, and the antenna 26 receives the beacon signal. The beacon signal received by the antenna 26 is input to the amplitude / phase comparator 27 via the switch unit 30.
 振幅位相比較器27は、発振器25が生成する基準信号を基準として、アンテナ26が受信したビーコン信号の振幅および位相差を検出して、その検出結果をコントローラ22に出力する(ステップS102)。 The amplitude / phase comparator 27 detects the amplitude and phase difference of the beacon signal received by the antenna 26 using the reference signal generated by the oscillator 25 as a reference, and outputs the detection result to the controller 22 (step S102).
 コントローラ22は、振幅位相比較器27の検出結果に基づいて、送電するマイクロ波の移相量および増幅度を調整する(ステップS103)。具体的には、コントローラ22は、各々のアンテナ26が受信するビーコン信号の振幅および位相差より、最適となる送電振幅および位相差を計算して、可変利得アンプ29の増幅度および移相器28の移相量をそれぞれ調整する。 The controller 22 adjusts the phase shift amount and the amplification degree of the microwaves to be transmitted based on the detection result of the amplitude phase comparator 27 (step S103). Specifically, the controller 22 calculates the optimum power transmission amplitude and phase difference from the amplitude and phase difference of the beacon signal received by each antenna 26, and the amplification degree of the variable gain amplifier 29 and the phase shifter 28. Adjust the amount of phase shift.
 前述したように、移相器28は、コントローラ22から出力される位相制御信号に基づいて、移相量が調整され、可変利得アンプ29は、コントローラ22から出力される増幅制御信号に基づいて、増幅度が調整される。 As described above, the phase shifter 28 adjusts the amount of phase shift based on the phase control signal output from the controller 22, and the variable gain amplifier 29 is based on the amplification control signal output from the controller 22. Amplification is adjusted.
 このように、移相器28だけでなく、可変利得アンプ29を設けることにより、アンテナ26毎に利得を調整することができるので、移相器28による移相量の調整のみの時と比べて送電効率をより向上させることができる。 Thus, by providing not only the phase shifter 28 but also the variable gain amplifier 29, the gain can be adjusted for each antenna 26, so that the phase shifter 28 only adjusts the amount of phase shift. The power transmission efficiency can be further improved.
 なお、最適となる振幅と位相差の例としては、ビーコン信号の振幅が高いアンテナ26においては、可変利得アンプ29の利得を高くする。また、位相差については、受信したビーコン信号と発振器25の基準信号との位相差に対して、複素共役となる位相でマイクロ波を送電することが考えられる。 As an example of the optimum amplitude and phase difference, the gain of the variable gain amplifier 29 is increased in the antenna 26 having a high beacon signal amplitude. As for the phase difference, it is conceivable that microwaves are transmitted with a phase that is complex conjugate with respect to the phase difference between the received beacon signal and the reference signal of the oscillator 25.
 また、利得振幅については、制御を行わなくとも給電は可能ではあるが、上述したように振幅制御を行うことによって、より給電効率を高くすることができる。 Further, although it is possible to supply power without controlling the gain amplitude, it is possible to further increase the power supply efficiency by performing the amplitude control as described above.
 送電するマイクロ波の移相量および増幅度の調整が終了すると、送電器20から送電が開始されるとともに、受電器40においては、コントローラ42によって受電した電力の計測が行われる(ステップS104)。 When the adjustment of the phase shift amount and the amplification degree of the microwave to be transmitted is completed, power transmission is started from the power transmitter 20, and the power received by the controller 42 is measured in the power receiver 40 (step S104).
 受電電力の計測は、例えばコントローラ42が整流部43が変換した直流電圧から受電電力を算出する。コントローラ42は、計測した電力、すなわち受電電力値を通信部41から送電器20の通信部21に送信する。 For example, the controller 42 calculates the received power from the DC voltage converted by the rectifier 43. The controller 42 transmits the measured power, that is, the received power value, from the communication unit 41 to the communication unit 21 of the power transmitter 20.
 コントローラ22は、通信部21が受信した受電電力値が予め設定されたしきい値である期待電力値以下であるか否かを判定する(ステップS105)。期待電力値は、例えばコントローラ22が有する図示しないメモリなどに格納されているものとする。 The controller 22 determines whether or not the received power value received by the communication unit 21 is equal to or less than an expected power value that is a preset threshold value (step S105). It is assumed that the expected power value is stored in, for example, a memory (not shown) included in the controller 22.
 ステップS105の処理にて、受電器40の受電電力が期待電力値以下であると判定した場合は、ステップS103の処理に戻り、再び送電するマイクロ波の移相量および増幅度が再調整される。 If it is determined in step S105 that the received power of the power receiver 40 is less than or equal to the expected power value, the process returns to step S103, and the phase shift amount and the amplification degree of the microwaves to be transmitted again are readjusted. .
 なお、再調整の技術としては、可変利得アンプ29の増幅度を上げるまたはマイクロ波の位相を変化させることによって、その時の受電電力量の変化を検出するようにしてもよい。あるいは増幅度および位相をそれぞれ調整するようにしてもよい。 As a readjustment technique, a change in the amount of received power at that time may be detected by increasing the gain of the variable gain amplifier 29 or changing the phase of the microwave. Or you may make it adjust an amplification degree and a phase, respectively.
 可変利得アンプ29の増幅度を上げる場合、コントローラ22は、各トランシーバ23に設けられているすべての可変利得アンプ29の増幅度を上げるのではなく、少数、例えば1あるいは2つ程度の可変利得アンプ29の増幅度が徐々に上がるようにする。 When increasing the amplification degree of the variable gain amplifier 29, the controller 22 does not increase the amplification degree of all the variable gain amplifiers 29 provided in each transceiver 23, but a small number, for example, about one or two variable gain amplifiers. The degree of amplification of 29 is gradually increased.
 アンテナの位相を変化させる場合も同様に、コントローラ22は、すべてのマイクロ波の移相を変化させるのではなく、少数、例えば1あるいは2程度の移相器28を徐々に調整する。これらによって、精度の高い調整を行うことができる。 Similarly, when changing the phase of the antenna, the controller 22 does not change the phase shift of all the microwaves, but gradually adjusts a small number of phase shifters 28, for example, about 1 or 2. By these, highly accurate adjustment can be performed.
 また、ステップS105の処理において、受電電力が期待電力値よりも大きい場合には、初期設定が終了となる。 Further, in the process of step S105, when the received power is larger than the expected power value, the initial setting is ended.
 受電器40の数が多い場合などには、初期設定において、受電電力の合計が送電器20が送電することのできる送電電力値の許容値を超えてしまう可能性がある。送電力値の許容値を超えてしまうと、精度の高い調整ができない恐れがあるので、その際には、受電器40を1台毎に動作させて調整する。これにより、精度の高い調整を行うことが可能となり、給電効率を向上させることができる。 When the number of power receivers 40 is large, the total received power may exceed the allowable value of the transmission power value that can be transmitted by the power transmitter 20 in the initial setting. If the allowable value of the power transmission value is exceeded, adjustment with high accuracy may not be possible. In this case, adjustment is performed by operating the power receivers 40 one by one. As a result, it is possible to perform adjustment with high accuracy and to improve power supply efficiency.
 また、送電器20と受電器40との距離が遠い場合など伝送効率が大幅に低いときは、伝送効率が低いスピーカ50の動作をオフとする。これによって、電力不足によって生じるスピーカ50の動作不具合などを防止することができる。 Also, when the transmission efficiency is significantly low, such as when the distance between the power transmitter 20 and the power receiver 40 is long, the operation of the speaker 50 with low transmission efficiency is turned off. This can prevent malfunction of the speaker 50 caused by power shortage.
 あるいはアラームなどによって伝送効率が不十分であることを通知するようにしてもよい。これによって、スピーカ50への電力供給不足などをユーザに事前に知らせることができる。 Alternatively, it may be notified that the transmission efficiency is insufficient by an alarm or the like. Thus, it is possible to notify the user in advance of insufficient power supply to the speaker 50 or the like.
 以上によって、各々のスピーカ50に最適な電力が供給されるように調整を行うことができる。これにより、スピーカ50の電力供給不足を解消することができる。 As described above, adjustment can be performed so that optimum power is supplied to each speaker 50. Thereby, the power supply shortage of the speaker 50 can be solved.
 〈スピーカの選択処理例〉
 図4は、図3の初期設定が終了した後に実行される図1のスピーカ50の選択処理の一例を示すフローチャートである。
<Speaker selection processing example>
FIG. 4 is a flowchart showing an example of the selection process of the speaker 50 of FIG. 1 executed after the initial setting of FIG. 3 is completed.
 このスピーカ50の選択処理は、受電電力が不足すると想定される際に、優先度の低いスピーカを停止させることによって、該受電電力の不足を解消する処理である。なお、図4の処理は、図3のステップS101の処理にて初期設定が不要であると判定された際にも実行される。 The selection process of the speaker 50 is a process for solving the shortage of the received power by stopping the low priority speaker when the received power is assumed to be insufficient. Note that the process in FIG. 4 is also executed when it is determined in step S101 in FIG. 3 that the initial setting is unnecessary.
 まず、図2の受電器40のコントローラ42は、該受電器40を有する図1のスピーカ50の出力値あるいは消費電力値を通信部41から送電器20の通信部21に送信する(ステップS201)。ここで、消費電力値は、スピーカを使用したときの実際の消費電力値もしくは定格の消費電力値などを用いて構わない。 First, the controller 42 of the power receiver 40 of FIG. 2 transmits the output value or power consumption value of the speaker 50 of FIG. 1 having the power receiver 40 from the communication unit 41 to the communication unit 21 of the power transmitter 20 (step S201). . Here, as the power consumption value, an actual power consumption value or a rated power consumption value when the speaker is used may be used.
 スピーカ50の実際の消費電力値は、例えばコントローラ42の図示しないメモリなどに格納されている。あるいはスピーカ50が有する電子回路に設けられたメモリなどに格納するようにしてもよい。 The actual power consumption value of the speaker 50 is stored in a memory (not shown) of the controller 42, for example. Or you may make it store in the memory etc. which were provided in the electronic circuit which the speaker 50 has.
 送電器20のコントローラ22は、通信部21が受け取った各々のスピーカ50の実際の消費電力値の合計が送電器20の送電能力以下であるか否かを判定する(ステップS202)。 The controller 22 of the power transmitter 20 determines whether or not the total of the actual power consumption values of the respective speakers 50 received by the communication unit 21 is less than or equal to the power transmission capability of the power transmitter 20 (step S202).
 送電器20の送電能力を超えていると判定した場合、コントローラ22は、優先度情報に基づいて、優先度の低いスピーカをオフとした後(ステップS203)、ステップS201の処理に戻る。よって、ステップS201~S203の処理は、スピーカ50の実際の消費電力値の合計が送電器20の送電能力以下となるまで実行される。 When it is determined that the power transmission capacity of the power transmitter 20 has been exceeded, the controller 22 turns off the low priority speaker based on the priority information (step S203), and then returns to the process of step S201. Therefore, the processing in steps S201 to S203 is executed until the total of the actual power consumption values of the speaker 50 becomes equal to or less than the power transmission capability of the power transmitter 20.
 ここで、優先度情報は、送電器20の送電能力を超えている際にオフとするスピーカを示す情報であり、例えば再生時に影響の少ないスピーカが優先的にオフされるようになっている。この優先度情報についても、例えばコントローラ22のメモリなどに格納されている。 Here, the priority information is information indicating a speaker to be turned off when the power transmission capacity of the power transmitter 20 is exceeded. For example, a speaker having less influence during reproduction is preferentially turned off. This priority information is also stored in the memory of the controller 22, for example.
 このステップS203の処理では、コントローラ22は、優先度情報に基づいて、優先度の低いスピーカを判定する。続いて、コントローラ22は、優先度の低いスピーカに設けられている受電器40に対して停止要求信号を出力する。 In the process of step S203, the controller 22 determines a speaker with a low priority based on the priority information. Subsequently, the controller 22 outputs a stop request signal to the power receiver 40 provided in the low priority speaker.
 停止要求信号を受信した受電器40は、スピーカ50が有する電子回路に対して電力の供給を停止する。この場合、例えば整流部43の出力部にスイッチを設ける。このスイッチは、コントローラ42により、オン/オフが制御される。 The power receiver 40 that has received the stop request signal stops supplying power to the electronic circuit of the speaker 50. In this case, for example, a switch is provided at the output section of the rectifying section 43. This switch is controlled on / off by the controller 42.
 コントローラ42の制御によってスイッチがオンすると、整流部43が生成する直流電圧が該スイッチを経由して電子回路に供給される。 When the switch is turned on under the control of the controller 42, the DC voltage generated by the rectifier 43 is supplied to the electronic circuit via the switch.
 そして、コントローラ42がスイッチをオフすることによって、電子回路への電源供給が停止される。電子回路への電源供給が停止された場合であっても、コントローラ42、ビーコン45、および通信部41などには、整流部43が生成する直流電圧が動作電源として供給される。 Then, when the controller 42 turns off the switch, power supply to the electronic circuit is stopped. Even when the power supply to the electronic circuit is stopped, the controller 42, the beacon 45, the communication unit 41, and the like are supplied with the DC voltage generated by the rectifying unit 43 as the operating power.
 あるいは、電子回路への電源供給を停止するのではなく、スピーカ50が有する電子回路に対して動作を停止させる制御信号を出力するようにしてもよい。この場合、スピーカ50の電子回路には電源が供給されるが、該電子回路の動作は停止状態となる。 Alternatively, instead of stopping the power supply to the electronic circuit, a control signal for stopping the operation of the electronic circuit included in the speaker 50 may be output. In this case, power is supplied to the electronic circuit of the speaker 50, but the operation of the electronic circuit is stopped.
 また、ステップS202の処理において、スピーカ50の実際の消費電力値の合計が送電器20の送電能力を超えていないと判定した場合には、スピーカの選択処理が終了となる。 Also, in the process of step S202, when it is determined that the total actual power consumption value of the speaker 50 does not exceed the power transmission capability of the power transmitter 20, the speaker selection process ends.
 以上によって、スピーカ50の数が多く、送電器20の送電能力が不足する事態となっても、スピーカ数の減少による再生の影響を低減しながら、送電器20の送電能力の不足を解消することができる。 As described above, even if the number of speakers 50 is large and the power transmission capability of the power transmitter 20 is insufficient, the shortage of the power transmission capability of the power transmitter 20 is solved while reducing the effect of regeneration due to the decrease in the number of speakers. Can do.
 なお、図4において、ステップS202の処理では、通信部21が受け取った各々のスピーカ50の実際の消費電力値の合計が送電器20の送電能力以下であるか否かを判定する例について説明したが、例えば消費電力値の代わりに各々のスピーカの出力値を用いるようにしてもよい。 In FIG. 4, in the process of step S <b> 202, an example has been described in which it is determined whether or not the total of the actual power consumption values of the speakers 50 received by the communication unit 21 is equal to or less than the power transmission capability of the power transmitter 20. However, for example, the output value of each speaker may be used instead of the power consumption value.
 この場合、コントローラ22は、各々のコントローラ42から送信されるスピーカの出力値を合計し、該合計値と予め設定されている出力しきい値とを比較する。そして、合計値が出力しきい値よりも大きい場合には、送電器20の送電能力を超えていると判定する。ここでも、出力しきい値は、コントローラ22のメモリなどに格納されるものとする。 In this case, the controller 22 adds up the output values of the speakers transmitted from the respective controllers 42, and compares the total value with a preset output threshold value. When the total value is larger than the output threshold value, it is determined that the power transmission capacity of the power transmitter 20 is exceeded. Here again, the output threshold value is stored in the memory of the controller 22 or the like.
 続いて、各スピーカ50の消費電力に応じて送電電力を調整する技術について説明する。 Subsequently, a technique for adjusting the transmission power according to the power consumption of each speaker 50 will be described.
 〈電力調整処理例〉
 図5は、図1のワイヤレス給電システム10による電力調整処理の一例を示すフローチャートである。この電力調整処理は、送電器20の送電電力が不足する際に、各々のスピーカ50に送電する電力をそれぞれ調整することによって、該送電電力の不足を調整する処理である。
<Example of power adjustment processing>
FIG. 5 is a flowchart illustrating an example of power adjustment processing by the wireless power supply system 10 of FIG. This power adjustment process is a process for adjusting the shortage of transmitted power by adjusting the power transmitted to each speaker 50 when the transmitted power of the power transmitter 20 is insufficient.
 まず、図2の受電器40のコントローラ42は、スピーカ50の消費電力値をそれぞれ図1の送電器20のコントローラ22に送信する(ステップS301)。コントローラ22は、受信した各スピーカ50の消費電力値の合計が送電能力以下であるか否かを判定する(ステップS302)。 First, the controller 42 of the power receiver 40 in FIG. 2 transmits the power consumption value of the speaker 50 to the controller 22 of the power transmitter 20 in FIG. 1 (step S301). The controller 22 determines whether or not the total of the power consumption values of the received speakers 50 is less than or equal to the power transmission capacity (step S302).
 スピーカ50の消費電力値の合計が送電能力以下の場合には、電力調整処理は終了となる。また、スピーカ50の消費電力値の合計が送電能力よりも大きい場合、送電電力の調整を行う(ステップS303)。 When the total power consumption value of the speaker 50 is less than or equal to the power transmission capacity, the power adjustment process ends. If the total power consumption value of the speaker 50 is larger than the transmission capability, the transmission power is adjusted (step S303).
 このステップS303の処理は、移相器28による移相量の調整および可変利得アンプ29による増幅度の調整などによって各々のスピーカ50に供給する電力を下げる。これによって、スピーカ50の消費電力値の合計が送電能力以下となるようにする。また、送電電力を調整する際には、コントローラ22が各々のスピーカ50に供給する電力を消費電力に応じて同じ割合で下げるなどによって行われる。 In the process of step S303, the power supplied to each speaker 50 is reduced by adjusting the amount of phase shift by the phase shifter 28 and adjusting the degree of amplification by the variable gain amplifier 29. Thus, the total power consumption value of the speaker 50 is set to be equal to or less than the power transmission capacity. Further, when adjusting the transmission power, the controller 22 reduces the power supplied to each speaker 50 by the same rate according to the power consumption.
 調整が終了すると、各々のコントローラ42は、スピーカ50の消費電力値をコントローラ22に送信し(ステップS304)、ステップS302の処理を実行する。そして、スピーカ50の消費電力値の合計が送電能力以下となると、電力調整処理が終了となる。 When the adjustment is completed, each controller 42 transmits the power consumption value of the speaker 50 to the controller 22 (step S304), and executes the process of step S302. Then, when the total power consumption value of the speaker 50 is equal to or less than the power transmission capacity, the power adjustment process is ended.
 以上により、送電能力が不足した状態における給電を避けることが可能となる。それにより、スピーカ50の動作を安定化することができる。 As described above, it is possible to avoid power supply in a state where the power transmission capacity is insufficient. Thereby, the operation of the speaker 50 can be stabilized.
 〈ワイヤレス給電システムの具体例〉
 続いて、ワイヤレス給電システム10の具体的な適用例について説明する。
<Specific examples of wireless power supply systems>
Next, a specific application example of the wireless power feeding system 10 will be described.
 図6は、図1のワイヤレス給電システム10を電子機器に適用した際の一例を示す説明図である。 FIG. 6 is an explanatory diagram showing an example when the wireless power feeding system 10 of FIG. 1 is applied to an electronic device.
 前述したように、ワイヤレス給電システム10が有する送電器20は、例えば天井あるいは天井に近い高い位置に設置されることを前提としている。図6では、天井に設置される照明器具60に送電器20を設けた例を示している。 As described above, it is assumed that the power transmitter 20 included in the wireless power feeding system 10 is installed at, for example, a ceiling or a high position near the ceiling. In FIG. 6, the example which provided the power transmission device 20 in the lighting fixture 60 installed in a ceiling is shown.
 照明器具60は、図6に示すように、例えば丸形のシーリングライトである。このシーリングライト内には、円形のLED(Light Emitting Diode)蛍光灯61が設けられている。LED蛍光灯61は、照明部である。このLED蛍光灯61の内部には、図7に示すように送電器20が設けられている。 The lighting fixture 60 is, for example, a round ceiling light as shown in FIG. In this ceiling light, a circular LED (Light-Emitting-Diode) fluorescent lamp 61 is provided. The LED fluorescent lamp 61 is an illumination unit. Inside the LED fluorescent lamp 61, a power transmitter 20 is provided as shown in FIG.
 図7は、図6の照明器具60が有するLED蛍光灯61における構成の一例を示す説明図である。この図7は、LED蛍光灯61の内部構成を示している。 FIG. 7 is an explanatory diagram showing an example of the configuration of the LED fluorescent lamp 61 included in the lighting fixture 60 of FIG. FIG. 7 shows the internal configuration of the LED fluorescent lamp 61.
 図7において、LED蛍光灯61の中心部には、該LED蛍光灯61の円周方向に延びる板状の基板64が設けられている。この基板64は、例えばPCB(Poly Chlorinated Biphenyl:ポリ塩化ビフェニル)などからなる。 7, a plate-like substrate 64 extending in the circumferential direction of the LED fluorescent lamp 61 is provided at the center of the LED fluorescent lamp 61. The substrate 64 is made of, for example, PCB (Poly Chlorinated Biphenyl).
 基板64の主面には、照明部となるLED63が載置されており、該基板64の裏面には、送電器20が搭載されている。また、送電器20が有する図1の複数のアンテナ26は、基板64の裏面にある間隔をおいて例えばアレイ状に配列されている。 The LED 63 serving as an illumination unit is mounted on the main surface of the substrate 64, and the power transmitter 20 is mounted on the back surface of the substrate 64. Further, the plurality of antennas 26 of FIG. 1 included in the power transmitter 20 are arranged, for example, in an array at intervals on the back surface of the substrate 64.
 上記の構成では、LED蛍光灯が床側、複数のアンテナ26が天井側となっているが、LED蛍光灯が天井側、複数のアンテナ26が下側になる間接照明型となってもよい。あるいは、図6にて示した照明器具60内において、LED蛍光灯61以外のエリアを送電器20の複数のアンテナ26によりアレイ状にある間隔をおいて配列してもよい。以上の送電器20の設置位置は、これらに限定されるものではなく、照明器具60内に設けられていればよい。 In the above configuration, the LED fluorescent lamp is on the floor side and the plurality of antennas 26 are on the ceiling side, but the LED fluorescent lamp may be an indirect illumination type with the ceiling side and the plurality of antennas 26 on the bottom side. Alternatively, in the lighting fixture 60 shown in FIG. 6, areas other than the LED fluorescent lamps 61 may be arranged at intervals in an array by the plurality of antennas 26 of the power transmitter 20. The installation position of the above power transmitter 20 is not limited to these, and may be provided in the lighting fixture 60.
 受電器40は、シート状に形成されており、シート状の受電器40の上面には、受電アンテナ44が設けられている、このシート状の受電器40は、例えばスピーカ50の上面などに載置される。あるいは、スピーカ50内部に設けるようにしてもよい。その際には、受電アンテナ44が送電器20に近づくようにスピーカ50の上部に設けることにより、給電効率をより向上させることができる。 The power receiver 40 is formed in a sheet shape, and a power receiving antenna 44 is provided on the upper surface of the sheet power receiver 40. The sheet power receiver 40 is mounted on the upper surface of the speaker 50, for example. Placed. Alternatively, it may be provided inside the speaker 50. In that case, the power feeding efficiency can be further improved by providing the power receiving antenna 44 on the upper portion of the speaker 50 so as to approach the power transmitter 20.
 以上により、送電器20を天井に設置することができるので、障害物などによる送電効率の低下を低減することができる。また、照明器具60を取り付けるだけで、送電器20が設置されることになるので、送電器20の取り付け工事などを不要にすることができる。それによって、取り付けコストを小さくするとともに簡単に送電器20を取り付けることができる。 As described above, since the power transmitter 20 can be installed on the ceiling, a decrease in power transmission efficiency due to an obstacle or the like can be reduced. Moreover, since the power transmitter 20 is installed only by attaching the lighting fixture 60, the installation work of the power transmitter 20 etc. can be made unnecessary. Thereby, the power transmission cost 20 can be easily attached while reducing the attachment cost.
 (実施の形態2)
 〈照明器具の構成例〉
 前記実施の形態1の図7では、LED蛍光灯61の内部に送電器20を設けた構成について説明したが、本実施の形態2においては、照明器具の他の構成例について説明する。
(Embodiment 2)
<Example configuration of lighting equipment>
In FIG. 7 of the first embodiment, the configuration in which the power transmitter 20 is provided inside the LED fluorescent lamp 61 has been described. In the second embodiment, another configuration example of the lighting fixture will be described.
 図8Aは、本実施の形態2による照明器具70における具体例を示す説明図である。この図8Aは、照明器具70の断面を示したものである。 FIG. 8A is an explanatory diagram showing a specific example in the lighting fixture 70 according to the second embodiment. FIG. 8A shows a cross section of the luminaire 70.
 図8Aの照明器具70は、例えば2本の直管のLED蛍光灯71および複数のマイクロ波反射板31から構成されている。LED蛍光灯71の内部には、送電器20がそれぞれ設けられている。マイクロ波反射板31は、例えば板状の金属から構成されており、アレイ状に天井面に取り付けられている。 8A includes, for example, two straight tube LED fluorescent lamps 71 and a plurality of microwave reflectors 31. Inside the LED fluorescent lamp 71, the power transmitter 20 is provided. The microwave reflecting plate 31 is made of, for example, a plate-like metal, and is attached to the ceiling surface in an array shape.
 これらマイクロ波反射板31は、照明用反射板38とともにLED蛍光灯71の照明光を反射させるとともに送電器20から送信されるマイクロ波を反射させる。また、マイクロ波反射板31には、マイクロ波の位相を調整する位相調整部32が接続されている。 These microwave reflectors 31 reflect the illumination light of the LED fluorescent lamp 71 together with the reflector for illumination 38 and reflect the microwave transmitted from the power transmitter 20. Further, a phase adjusting unit 32 that adjusts the phase of the microwave is connected to the microwave reflecting plate 31.
 LED蛍光灯71の中心部には、該LED蛍光灯71の長手方向に延びる板状の基板72が設けられている。基板72は、例えばPCBなどからなり、その主面には、照明部となる複数のLED73が載置されており、該基板72の裏面には、送電器20が搭載されている。また、送電器20が有する図1の複数のアンテナ26は、基板72の裏面にある間隔をおいて配列されている。 A plate-like substrate 72 extending in the longitudinal direction of the LED fluorescent lamp 71 is provided at the center of the LED fluorescent lamp 71. The substrate 72 is made of, for example, PCB, and a plurality of LEDs 73 serving as an illumination unit are mounted on the main surface thereof, and the power transmitter 20 is mounted on the back surface of the substrate 72. Further, the plurality of antennas 26 in FIG. 1 included in the power transmitter 20 are arranged at intervals on the back surface of the substrate 72.
 位相調整部32は、例えば個々のマイクロ波反射板31の容量値を変化させることによって送電器20から送信されるマイクロ波の位相を調整する。この調整の制御は、例えば送電器20のコントローラ22によって行われる。 The phase adjustment unit 32 adjusts the phase of the microwave transmitted from the power transmitter 20 by changing the capacitance value of each microwave reflection plate 31, for example. Control of this adjustment is performed by the controller 22 of the power transmitter 20, for example.
 この場合、図1の送電器20において、移相器28は不要となる。また、図1の送電器20においては、可変利得アンプ29を用いずに利得が調整できないアンプとしてもよい。その場合、マイクロ波は、位相のみによって調整される。ここで、送電器20および複数のアンテナ26は、必ずしも基板72の裏面に配置する必要はなく、マイクロ波反射板にマイクロ波を送れる場所であれば、位置は限定しない。 In this case, the phase shifter 28 is unnecessary in the power transmitter 20 of FIG. 1 may be an amplifier whose gain cannot be adjusted without using the variable gain amplifier 29. In that case, the microwave is adjusted only by the phase. Here, the power transmitter 20 and the plurality of antennas 26 are not necessarily arranged on the back surface of the substrate 72, and the position is not limited as long as the microwave can be sent to the microwave reflection plate.
 位相調整部32は、複数のスイッチ33および複数の容量素子34を有する。スイッチ33および容量素子34は、マイクロ波反射板31と基準電位VSSとの間にそれぞれ直列接続されている。図では、基準電位VSSは接地された照明用反射板38と接続することで、マイクロ波反射板31と接地電位の照明用反射板38間の容量値が変化する。 The phase adjustment unit 32 includes a plurality of switches 33 and a plurality of capacitive elements 34. The switch 33 and the capacitive element 34 are respectively connected in series between the microwave reflection plate 31 and the reference potential VSS. In the figure, when the reference potential VSS is connected to the grounded reflector for illumination 38, the capacitance value between the microwave reflector 31 and the reflector for illumination 38 having the ground potential changes.
 コントローラ22は、調整信号をスイッチ33が有する図示しない制御端子に出力することによって、該スイッチ33のオン/オフ制御を行う。これにより、各々のマイクロ波反射板31の容量値が変化し、マイクロ波反射板31によってマイクロ波の移相量を調整することができる。 The controller 22 performs on / off control of the switch 33 by outputting an adjustment signal to a control terminal (not shown) of the switch 33. Thereby, the capacitance value of each microwave reflecting plate 31 changes, and the microwave phase shift amount can be adjusted by the microwave reflecting plate 31.
 また、図8Bは、照明器具70を床方向から天井方向を見た場合の全体の配置の一例を示した図である。 FIG. 8B is a diagram showing an example of the overall arrangement when the lighting fixture 70 is viewed from the floor direction to the ceiling direction.
 この図8Bにおいて、照明用反射板38の下側の数mmの距離に一辺が2cm~5cm程度の大きさの正方形のマイクロ波反射板31が一定間隔で配置されており、さらにその下方には、数mmの距離にLED蛍光灯71が配置される。LED蛍光灯71の電源は、ソケット81によりAC100V電源が供給される。ソケット81は、従来の蛍光灯のソケットをそのまま用いることが可能である。 In FIG. 8B, square microwave reflectors 31 each having a size of about 2 cm to 5 cm are arranged at regular intervals at a distance of several millimeters below the illumination reflector 38, and further below that The LED fluorescent lamp 71 is arranged at a distance of several mm. The LED fluorescent lamp 71 is supplied with AC 100V power through a socket 81. As the socket 81, a conventional fluorescent lamp socket can be used as it is.
 以上により、広い面積のマイクロ波反射板31を用いてマイクロ波を反射させることができるので、送電時の電力密度を下げることができるとともに、比較的電力密度が高くなる天井側には人が近づくことはない。その結果、人体への影響を軽減することができる。 As described above, since the microwave can be reflected using the microwave reflector 31 having a large area, the power density during power transmission can be lowered, and a person approaches the ceiling side where the power density is relatively high. There is nothing. As a result, the influence on the human body can be reduced.
 また、照明器具70を取り付けるだけで送電器20を天井に設置することができるので、障害物などによる送電効率の低下を低減することができる。また、送電器20の取り付け工事や電源工事などを不要とすることができる。 Moreover, since the power transmitter 20 can be installed on the ceiling simply by attaching the lighting fixture 70, it is possible to reduce a decrease in power transmission efficiency due to an obstacle or the like. Further, the installation work of the power transmitter 20 and the power supply work can be made unnecessary.
 (実施の形態3)
 〈概要〉
 前記実施の形態1では、図1の移相器28により、マイクロ波の位相を調整する例について説明したが、本実施の形態3においては、アンテナ26によって位相を調整する技術について説明する。
(Embodiment 3)
<Overview>
In the first embodiment, the example in which the phase of the microwave is adjusted by the phase shifter 28 in FIG. 1 has been described. In the third embodiment, a technique for adjusting the phase by the antenna 26 will be described.
 〈ワイヤレス給電システムの構成例および動作〉
 図9は、本実施の形態3によるワイヤレス給電システム10における構成の一例を示す説明図である。
<Configuration example and operation of wireless power supply system>
FIG. 9 is an explanatory diagram showing an example of the configuration of the wireless power feeding system 10 according to the third embodiment.
 図9のワイヤレス給電システム10が前記実施の形態1の図1のワイヤレス給電システム10と異なる点は、移相器28の代わりに位相調整部35が設けられたところである。 9 differs from the wireless power supply system 10 of FIG. 1 of the first embodiment in that a phase adjustment unit 35 is provided instead of the phase shifter 28.
 この位相調整部35は、移相回路65が各トランシーバ23とアンテナ26間に挿入される構成であり、移相回路65は、2つの0°移相用マイクロストリップライン66、45°移相用マイクロストリップライン67、90°移相用マイクロストリップライン68、および4つのスイッチ69より構成される。 The phase adjustment unit 35 is configured such that a phase shift circuit 65 is inserted between each transceiver 23 and the antenna 26. The phase shift circuit 65 includes two 0 ° phase shift microstrip lines 66 and 45 ° phase shift. It comprises a microstrip line 67, a 90 ° phase-shifting microstrip line 68, and four switches 69.
 この移相回路65は、各ストリップラインの伝送線路長が異なることで位相差が発生することを利用するもので、0°移相用マイクロストリップライン66と45°移相用マイクロストリップライン67をスイッチ部69で選択可能であり、同様に0°移相用マイクロストリップライン66と90°移相用マイクロストリップライン68も選択可能となっている。 This phase shift circuit 65 utilizes the fact that a phase difference is generated due to the transmission line length of each strip line being different. A 0 ° phase shift microstrip line 66 and a 45 ° phase shift microstrip line 67 are provided. The switch 69 can be selected, and similarly, the 0 ° phase-shifting microstrip line 66 and the 90 ° phase-shifting microstrip line 68 can also be selected.
 このため、スイッチ69で送受信信号が通過する経路を選択することにより、図の回路では、位相が0°、45°、90°、135°の4通りに位相差が切り換え可能である。なお、スイッチ69は、コントローラ22から出力される調整信号に基づいて伝送線路の切り替え制御が行われる。以上のように、アンテナ26に付加される容量値を可変する技術の他にも線路長を変えることによってもアンテナの位相を変えることが可能である。上記の技術は、回路が複雑となるがアンテナの容量値を変える場合よりも移相時のインピーダンス整合ずれによる損失を小さくすることが可能となる。 For this reason, by selecting a path through which the transmission / reception signal passes by the switch 69, the phase difference can be switched in four ways of 0 °, 45 °, 90 °, and 135 ° in the circuit shown in the figure. The switch 69 performs transmission line switching control based on the adjustment signal output from the controller 22. As described above, it is possible to change the phase of the antenna by changing the line length in addition to the technique for changing the capacitance value added to the antenna 26. Although the above-described technique makes the circuit complicated, it is possible to reduce the loss due to the impedance matching shift at the time of phase shift compared to the case where the capacitance value of the antenna is changed.
 ここでは、アンテナ26とトランシーバ23間に移相回路65を付加することにより移相量を調整したが、該移相量の調整は、例えばアンテナ26の長さを変えることによって行うようにしてもよい。この場合、位相調整部35は、移相回路65の代わりに図示しないアンテナとスイッチが設けられる。 Here, the phase shift amount is adjusted by adding a phase shift circuit 65 between the antenna 26 and the transceiver 23. However, the phase shift amount may be adjusted by changing the length of the antenna 26, for example. Good. In this case, the phase adjustment unit 35 is provided with an antenna and a switch (not shown) instead of the phase shift circuit 65.
 上記スイッチの一端は、各々のアンテナ26にそれぞれ接続される。スイッチの他端は、位相調整部35が有するアンテナに接続される。コントローラ22の調整信号によってスイッチがオンすると、アンテナ26は、位相調整部35が有するアンテナに接続される。これによって等価的なアンテナ長が変化し、その結果、マイクロ波の移相量が調整されることになる。 One end of the switch is connected to each antenna 26. The other end of the switch is connected to an antenna included in the phase adjustment unit 35. When the switch is turned on by the adjustment signal from the controller 22, the antenna 26 is connected to the antenna included in the phase adjustment unit 35. This changes the equivalent antenna length, and as a result, the amount of microwave phase shift is adjusted.
 以上によっても、ワイヤレス給電システム10における送電効率を向上させることができる。 As described above, the power transmission efficiency in the wireless power feeding system 10 can be improved.
 (実施の形態4)
 〈概要〉
 本実施の形態4においては、受電器40において、受電電力が不足する際に不足分の電力を補ってスピーカの電子回路に供給する技術について説明する。
(Embodiment 4)
<Overview>
In the fourth embodiment, a technique will be described in which the power receiver 40 supplements the insufficient power when the received power is insufficient and supplies it to the electronic circuit of the speaker.
 〈受電器の構成例および動作〉
 図10は、本実施の形態4によるワイヤレス給電システムが有する受電器40における構成の一例を示す説明図である。
<Example configuration and operation of power receiver>
FIG. 10 is an explanatory diagram illustrating an example of a configuration of the power receiver 40 included in the wireless power feeding system according to the fourth embodiment.
 図10の受電器40が、前記実施の形態1の図2の受電器と異なる点は、充電池46が新たに設けられたところである。充電部である充電池46は、例えばリチウムイオンバッテリなどの二次電池からなる。その他の構成については、図2と同様であるので、説明は省略する。 10 is different from the power receiver of FIG. 2 of the first embodiment in that a rechargeable battery 46 is newly provided. The rechargeable battery 46 as a charging unit is formed of a secondary battery such as a lithium ion battery. Other configurations are the same as those in FIG.
 充電池46には、整流部43が接続されており、該整流部43が生成した直流電圧を充電する。この充電池46には、例えばスピーカが使用されていない場合などに充電を行うようにしてもよいし、あるいはスピーカを使用しながら、余分な電力を充電池46に充電するようにしてもよい。 The rectifier 43 is connected to the rechargeable battery 46, and the DC voltage generated by the rectifier 43 is charged. The rechargeable battery 46 may be charged, for example, when a speaker is not used, or extra power may be charged to the rechargeable battery 46 while using the speaker.
 そして、充電池46は、送電器20からの送電電力が不足している際に、充電池46が蓄電した電力を電子回路に供給する。あるいは、図1の送電器20から電力が供給されていない場合においても、充電池46の電力を電子回路に供給して、図1のスピーカ50を動作させることができる。 The rechargeable battery 46 supplies the electric power stored in the rechargeable battery 46 to the electronic circuit when the transmitted power from the power transmitter 20 is insufficient. Alternatively, even when power is not supplied from the power transmitter 20 of FIG. 1, the power of the rechargeable battery 46 can be supplied to the electronic circuit to operate the speaker 50 of FIG.
 これにより、送電器20からの送電電力が不足している際においても、安定して電子回路を動作させることができる。 Thereby, even when the transmission power from the power transmitter 20 is insufficient, the electronic circuit can be operated stably.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
 例えば前記実施の形態1~3におけるワイヤレス給電システムは、スピーカに設けられた電子回路に給電するものであったが、給電はこれに限定されるものではなく、例えばスマートフォンやPDA(Personal Digital Assistant)などの携帯機器、テレビ、パーソナルコンピュータなどの電子機器、あるいは冷蔵庫などの家電製品などの様々な機器に適用可能である。 For example, the wireless power supply system in the first to third embodiments supplies power to an electronic circuit provided in a speaker, but the power supply is not limited to this. For example, a smartphone or a PDA (Personal Digital Assistant) The present invention can be applied to various devices such as portable devices such as televisions, electronic devices such as televisions and personal computers, and home appliances such as refrigerators.
 (実施の形態5)
 〈概要〉
 本実施の形態5において、充電器40をスマートフォンなどの携帯端末に適用した場合のワイヤレス給電システムについて説明する。
(Embodiment 5)
<Overview>
In the fifth embodiment, a wireless power feeding system when the charger 40 is applied to a mobile terminal such as a smartphone will be described.
 〈受電器の構成例および動作〉
 図11は、本実施の形態5によるワイヤレス給電システムが有する受電器40における構成の一例を示す説明図である。
<Example configuration and operation of power receiver>
FIG. 11 is an explanatory diagram illustrating an example of a configuration of the power receiver 40 included in the wireless power feeding system according to the fifth embodiment.
 受電器40は、図11に示すように、手帳型の携帯端末ケース91、受電アンテナ素子92、通信部93、ビーコン94、磁界結合受電コイル95、およびスマートフォンなどの携帯端末96から構成されている。 As shown in FIG. 11, the power receiver 40 includes a notebook-type mobile terminal case 91, a power receiving antenna element 92, a communication unit 93, a beacon 94, a magnetic field coupling power receiving coil 95, and a mobile terminal 96 such as a smartphone. .
 携帯端末96は、充電台97によってワイヤレス給電によって充電される。また、この携帯端末は、画面をカバーにて覆うことが可能な手帳型の携帯端末ケース91が装着されている。送電器20の通信範囲内に新たに受電器40が入ってきて、データ通信により、受電器40への給電が必要となったときには、受電器40からのビーコン発信により、初期設定を行い、受電器40に対する送電が可能となる。 The mobile terminal 96 is charged by the wireless charging by the charging stand 97. The portable terminal is equipped with a notebook-type portable terminal case 91 that can cover the screen with a cover. When a new power receiver 40 enters the communication range of the power transmitter 20 and power supply to the power receiver 40 is required by data communication, initial setting is performed by transmitting a beacon from the power receiver 40, and receiving is performed. Power transmission to the electric device 40 is possible.
 手帳型の携帯端末ケース91の上面には、受電用のアンテナ素子92が規則的に配置されており、マイクロ波帯の平面アレイアンテナを形成することによって照明器具60からのマイクロ波送電電力を効率よく受電する構成となっている。 The power receiving antenna elements 92 are regularly arranged on the upper surface of the notebook-type portable terminal case 91, and the microwave transmission power from the luminaire 60 is efficiently obtained by forming a planar array antenna in the microwave band. It is configured to receive power well.
 また、照明器具60との初期設定には、手帳型の携帯端末ケース91に搭載されたビーコン94によりビーコン信号を送信する。また、充電中の制御は、通信部93を用いる構成である。なお、これらは、携帯端末96にも搭載されているため携帯端末96からビーコン信号の送信や通信を行ってもよい。 Also, for the initial setting with the lighting apparatus 60, a beacon signal is transmitted by the beacon 94 mounted on the notebook type portable terminal case 91. The control during charging is configured to use the communication unit 93. Since these are also mounted on the mobile terminal 96, beacon signals may be transmitted and communicated from the mobile terminal 96.
 手帳型の携帯端末ケース91にて受電した電力は、携帯端末96と図示しないコネクタにより接続することで給電を行う。 The power received by the notebook type portable terminal case 91 is supplied by connecting to the portable terminal 96 with a connector (not shown).
 さらに、手帳型の携帯端末ケース91の下面、言い換えれば携帯端末96の裏側には、kHz帯あるいはMHzを用いた磁界結合受電コイル95を搭載しており、携帯端末96を充電する充電台97の磁界結合送電コイル98と磁気的に結合することによっても非接触充電が可能となる。なお、充電台97の通信部99と手帳型の携帯端末ケース91の通信部93とが通信を行うことにより充電制御を行う。 Further, a magnetically coupled power receiving coil 95 using the kHz band or MHz is mounted on the lower surface of the notebook type portable terminal case 91, in other words, on the back side of the portable terminal 96, and the charging stand 97 for charging the portable terminal 96 is provided. Non-contact charging is also possible by magnetically coupling with the magnetic field coupling power transmission coil 98. The communication unit 99 of the charging stand 97 and the communication unit 93 of the notebook type portable terminal case 91 communicate to perform charging control.
 以上の構成では、携帯端末96が画面を上向きにして置かれるため、天井からのマイクロ波給電では受電側のアンテナを携帯端末に実装することは難しい。このため、手帳型の携帯端末ケース91の上面カバーにマイクロ波受電用の受電アンテナ素子92を実装することにより効率よく携帯端末にワイヤレス充電を行うことが可能となる。 With the above configuration, since the portable terminal 96 is placed with the screen facing upward, it is difficult to mount the power receiving antenna on the portable terminal by microwave power feeding from the ceiling. For this reason, by mounting the power receiving antenna element 92 for receiving microwaves on the top cover of the notebook type portable terminal case 91, it becomes possible to efficiently charge the portable terminal wirelessly.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 また、上記の各構成は、それらの一部または全部が、ハードウェアで構成されても、プロセッサでプログラムが実行されることにより実現されるように構成されてもよい。また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 In addition, each of the above-described configurations may be configured so that a part or all of them are configured by hardware or realized by executing a program by a processor. Further, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
10 ワイヤレス給電システム
20 送電器
21 通信部
22 コントローラ
23 トランシーバ
24 アンテナアレイ
25 発振器
26 アンテナ
27 振幅位相比較器
28 移相器
29 可変利得アンプ
30 スイッチ部
31 マイクロ波反射板
32 位相調整部
33 スイッチ
34 容量素子
35 位相調整部
36 スイッチ
37 容量素子
38 照明用反射板
40 受電器
41 通信部
42 コントローラ
43 整流部
44 受電アンテナ
45 ビーコン
46 充電池
50 スピーカ
60 照明器具
61 LED蛍光灯
63 LED
64 基板
65 移相回路
66 0°移相用マイクロストリップライン
67 45°移相用マイクロストリップライン
68 90°移相用マイクロストリップライン
69 スイッチ
70 照明器具
71 LED蛍光灯
72 基板
73 LED
81 ソケット
91 手帳型の携帯端末ケース
92 受電アンテナ素子
93 通信部
94 ビーコン
95 磁界結合受電コイル
96 携帯端末
97 充電台
98 磁界結合送電コイル
99 通信部
DESCRIPTION OF SYMBOLS 10 Wireless power supply system 20 Power transmitter 21 Communication part 22 Controller 23 Transceiver 24 Antenna array 25 Oscillator 26 Antenna 27 Amplitude phase comparator 28 Phase shifter 29 Variable gain amplifier 30 Switch part 31 Microwave reflector 32 Phase adjustment part 33 Switch 34 Capacity Element 35 Phase adjustment unit 36 Switch 37 Capacitor 38 Lighting reflector 40 Power receiver 41 Communication unit 42 Controller 43 Rectifier 44 Power receiving antenna 45 Beacon 46 Rechargeable battery 50 Speaker 60 Lighting fixture 61 LED fluorescent lamp 63 LED
64 Substrate 65 Phase shift circuit 66 0 ° phase shift microstrip line 67 45 ° phase shift microstrip line 68 90 ° phase shift microstrip line 69 Switch 70 Lighting fixture 71 LED fluorescent lamp 72 Substrate 73 LED
81 Socket 91 Notebook-type mobile terminal case 92 Power receiving antenna element 93 Communication unit 94 Beacon 95 Magnetically coupled receiving coil 96 Portable terminal 97 Charging stand 98 Magnetically coupled power transmitting coil 99 Communication unit

Claims (17)

  1.  電子機器に電力を供給する受電装置に対してマイクロ波を送信する送電装置であって、
     前記受電装置に前記マイクロ波を送信する複数の送電部と、
     前記送電部を制御する制御部と、
     を有し、
     複数の前記送電部は、
     前記マイクロ波の送信および前記受電装置から送信されるビーコン信号を受信するアンテナと、
     位相制御信号に基づいて、前記受電装置に送信する前記マイクロ波の位相を調整し、増幅制御信号に基づいて、前記マイクロ波の増幅度を調整して出力するマイクロ波出力部と、
     をそれぞれ有し、
     前記制御部は、基準信号と前記ビーコン信号との位相差に基づいて前記位相制御信号を生成し、前記基準信号と前記ビーコン信号との振幅差に基づいて前記増幅制御信号を生成する、送電装置。
    A power transmission device that transmits microwaves to a power receiving device that supplies power to an electronic device,
    A plurality of power transmission units that transmit the microwaves to the power receiving device;
    A control unit for controlling the power transmission unit;
    Have
    The plurality of power transmission units are
    An antenna for receiving the beacon signal transmitted from the microwave transmission and the power receiving device;
    A microwave output unit that adjusts the phase of the microwave to be transmitted to the power receiving device based on a phase control signal and adjusts and outputs the amplification degree of the microwave based on an amplification control signal;
    Each with
    The control unit generates the phase control signal based on a phase difference between a reference signal and the beacon signal, and generates the amplification control signal based on an amplitude difference between the reference signal and the beacon signal. .
  2.  請求項1記載の送電装置において、
     前記マイクロ波出力部は、
     前記アンテナが受信した前記ビーコン信号と前記基準信号との振幅差および位相差を検出する信号検出部と、
     前記位相制御信号に基づいて、前記受電装置に送信する前記マイクロ波の位相を調整する位相調整部と、
     前記増幅制御信号に基づいて、前記受電装置に送信する前記マイクロ波の増幅度を調整する利得調整増幅部と、
     を有する、送電装置。
    The power transmission device according to claim 1,
    The microwave output unit is
    A signal detector for detecting an amplitude difference and a phase difference between the beacon signal received by the antenna and the reference signal;
    A phase adjustment unit that adjusts a phase of the microwave to be transmitted to the power receiving device based on the phase control signal;
    Based on the amplification control signal, a gain adjustment amplification unit that adjusts the degree of amplification of the microwave transmitted to the power receiving device;
    A power transmission device.
  3.  請求項1記載の送電装置において、
     前記制御部は、前記受電装置から送信された受電電力の合計を算出して前記受電電力の合計が予め設定される期待電力値よりも大きいか否かを判定し、前記受電電力の合計が前記期待電力値以下であれば、前記受電電力の合計が前記期待電力値よりも大きくなるように前記位相制御信号または前記増幅制御信号の少なくともいずれか一方を生成して前記マイクロ波の移相量または前記マイクロ波の増幅度を調整する、送電装置。
    The power transmission device according to claim 1,
    The control unit calculates the sum of the received power transmitted from the power receiving apparatus and determines whether the sum of the received power is greater than a preset expected power value, and the sum of the received power is the If it is less than or equal to the expected power value, the phase shift amount of the microwave or the phase control signal or the amplification control signal is generated so that the total received power is greater than the expected power value or A power transmission device that adjusts an amplification degree of the microwave.
  4.  請求項1記載の送電装置において、
     前記制御部は、前記受電装置から送信される前記電子機器の消費電力の合計値を算出して前記消費電力の合計値が前記送電装置の送電能力以下であるか否かを判定し、前記消費電力の合計値が前記送電能力を超えていると判定した際に優先度の低い電子機器の動作を停止させる動作停止要求信号を送信する、送電装置。
    The power transmission device according to claim 1,
    The control unit calculates a total value of power consumption of the electronic device transmitted from the power receiving device, determines whether the total value of power consumption is less than or equal to a power transmission capability of the power transmission device, and the consumption A power transmission device that transmits an operation stop request signal for stopping the operation of an electronic device having a low priority when it is determined that a total value of power exceeds the power transmission capability.
  5.  請求項1記載の送電装置において、
     前記制御部は、前記受電装置から送信される前記電子機器の消費電力の合計値が前記送電装置の送電能力以下であるか否かを判定し、前記消費電力の合計値が前記送電能力を超えていると判定した際に前記消費電力の合計値が前記送電能力以下となるように、前記位相制御信号または前記増幅制御信号の少なくともいずれか一方を生成して前記マイクロ波の移相量または前記マイクロ波の増幅度を調整する、送電装置。
    The power transmission device according to claim 1,
    The control unit determines whether or not a total value of power consumption of the electronic device transmitted from the power receiving device is less than or equal to a power transmission capability of the power transmission device, and the total value of power consumption exceeds the power transmission capability. So that the total value of the power consumption is less than or equal to the power transmission capacity when it is determined that the phase control signal or the amplification control signal is generated and the phase shift amount of the microwave or the A power transmission device that adjusts the amplification level of microwaves.
  6.  請求項1記載の送電装置において、
     前記送電装置は、照明器具が有する照明部に設けられる、送電装置。
    The power transmission device according to claim 1,
    The power transmission device is a power transmission device provided in an illumination unit included in a lighting fixture.
  7.  請求項6記載の送電装置において、
     前記照明部から照射される光を反射する反射板と、
     前記反射板によって前記マイクロ波の位相を調整する位相調整部と、
     を有し、
     前記反射板は、前記送電部から送信される前記マイクロ波を反射して前記受電装置に送信し、
     前記位相調整部は、前記制御部から出力される前記位相制御信号に基づいて、前記反射板に反射する前記マイクロ波の位相を調整する、送電装置。
    The power transmission device according to claim 6, wherein
    A reflector that reflects light emitted from the illumination unit;
    A phase adjuster for adjusting the phase of the microwave by the reflector;
    Have
    The reflector reflects the microwave transmitted from the power transmission unit and transmits it to the power receiving device,
    The phase adjustment unit is a power transmission device that adjusts a phase of the microwave reflected on the reflection plate based on the phase control signal output from the control unit.
  8.  請求項7記載の送電装置において、
     前記位相調整部は、前記反射板の容量値または長さを変化させることによって前記マイクロ波の位相を調整する、送電装置。
    The power transmission device according to claim 7, wherein
    The phase adjustment unit adjusts the phase of the microwave by changing a capacitance value or a length of the reflector.
  9.  電子機器に電力を供給する受電装置に対してマイクロ波を送信する送電装置であって、
     前記受電装置に前記マイクロ波を送信する複数の送電部と、
     前記送電部を制御する制御部と、
     前記送電部から送信される前記マイクロ波を反射させて前記受電装置に送電する複数の反射板と、
     を有し、
     複数の前記送電部は、
     前記マイクロ波の送信および前記受電装置から送信されるビーコン信号を受信するアンテナと、
     前記マイクロ波を増幅して出力するマイクロ波出力部と、
     前記制御部から出力される位相制御信号に基づいて、前記反射板が反射する前記マイクロ波の位相を調整する位相調整部と、
     をそれぞれ有し、
     前記制御部は、基準信号と前記ビーコン信号との位相差に基づいて前記位相制御信号を生成する、送電装置。
    A power transmission device that transmits microwaves to a power receiving device that supplies power to an electronic device,
    A plurality of power transmission units that transmit the microwaves to the power receiving device;
    A control unit for controlling the power transmission unit;
    A plurality of reflecting plates that reflect the microwaves transmitted from the power transmission unit and transmit power to the power receiving device;
    Have
    The plurality of power transmission units are
    An antenna for receiving the beacon signal transmitted from the microwave transmission and the power receiving device;
    A microwave output unit for amplifying and outputting the microwave;
    Based on a phase control signal output from the control unit, a phase adjustment unit that adjusts the phase of the microwave reflected by the reflector, and
    Each with
    The control unit is a power transmission device that generates the phase control signal based on a phase difference between a reference signal and the beacon signal.
  10.  請求項9記載の送電装置において、
     前記マイクロ波出力部は、
     前記アンテナが受信した前記ビーコン信号と基準信号との位相差を検出する信号検出部と、
     前記位相制御信号に基づいて、前記反射板に反射する前記マイクロ波の位相を調整する位相調整部と、
     を有する、送電装置。
    The power transmission device according to claim 9, wherein
    The microwave output unit is
    A signal detector for detecting a phase difference between the beacon signal received by the antenna and a reference signal;
    Based on the phase control signal, a phase adjustment unit that adjusts the phase of the microwave reflected on the reflector;
    A power transmission device.
  11.  請求項10記載の送電装置において、
     前記マイクロ波出力部は、増幅制御信号に基づいて、前記受電装置に送信する前記マイクロ波の増幅度を調整する利得調整増幅部を有し、
     前記信号検出部は、前記アンテナが受信した前記ビーコン信号と前記基準信号との振幅差を検出し、
     前記制御部は、前記信号検出部が検出した前記振幅差に基づいて、前記増幅制御信号を生成する、送電装置。
    The power transmission device according to claim 10, wherein
    The microwave output unit includes a gain adjustment amplification unit that adjusts an amplification degree of the microwave transmitted to the power receiving device based on an amplification control signal;
    The signal detection unit detects an amplitude difference between the beacon signal received by the antenna and the reference signal,
    The control unit is a power transmission device that generates the amplification control signal based on the amplitude difference detected by the signal detection unit.
  12.  請求項9記載の送電装置において、
     前記位相調整部は、前記反射板の容量値または長さを変化させることによって前記反射板が反射する前記マイクロ波の位相を調整する、送電装置。
    The power transmission device according to claim 9, wherein
    The power transmission device, wherein the phase adjustment unit adjusts a phase of the microwave reflected by the reflection plate by changing a capacitance value or a length of the reflection plate.
  13.  請求項9記載の送電装置において、
     前記送電装置は、照明器具に設けられ、
     前記反射板は、前記照明器具が有する照明部からの光を反射させる、送電装置。
    The power transmission device according to claim 9, wherein
    The power transmission device is provided in a lighting fixture,
    The reflection plate is a power transmission device that reflects light from an illumination unit included in the lighting fixture.
  14.  送電装置から送電されたマイクロ波を受信して直流電圧に変換し、電子機器に電力を供給する受電装置であって、
     前記送電装置にビーコン信号を送信するビーコン部と、
     受信したマイクロ波を整流して直流電圧に変換する整流部と、
     受電情報を生成して前記送電装置に送信する制御通信部と、
     を有し、
     前記制御通信部は、前記整流部が変換した直流電圧に基づいて受電電力を算出して、算出した前記受電電力を前記受電情報として前記送電装置に送信する、受電装置。
    A power receiving device that receives a microwave transmitted from a power transmission device, converts the microwave into a DC voltage, and supplies power to an electronic device,
    A beacon unit that transmits a beacon signal to the power transmission device;
    A rectifier that rectifies the received microwave and converts it to a DC voltage;
    A control communication unit that generates power reception information and transmits the power reception information to the power transmission device;
    Have
    The control communication unit calculates received power based on the DC voltage converted by the rectifying unit, and transmits the calculated received power to the power transmission device as the power reception information.
  15.  請求項14記載の受電装置において、
     前記制御通信部は、前記受電装置が電力を供給する電子機器の消費電力を前記受電情報として前記送電装置に送信する、受電装置。
    The power receiving device according to claim 14,
    The control communication unit is a power reception device that transmits power consumption of an electronic device to which the power reception device supplies power as the power reception information to the power transmission device.
  16.  請求項14記載の受電装置において、
     前記制御通信部は、前記送電装置から優先度の低い電子機器の動作を停止させる動作停止要求信号を受信した際に前記電子機器への電源供給を停止する、受電装置。
    The power receiving device according to claim 14,
    The power receiving device, wherein the control communication unit stops power supply to the electronic device when receiving an operation stop request signal for stopping the operation of the low priority electronic device from the power transmitting device.
  17.  請求項14記載の受電装置において、
     前記整流部が生成する直流電圧を充電する充電部を有する、受電装置。
    The power receiving device according to claim 14,
    A power receiving device including a charging unit that charges a DC voltage generated by the rectifying unit.
PCT/JP2017/018687 2016-05-27 2017-05-18 Power transmission device and power reception device WO2017204080A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-106379 2016-05-27
JP2016106379A JP2017212849A (en) 2016-05-27 2016-05-27 Power transmitter and power receiver

Publications (1)

Publication Number Publication Date
WO2017204080A1 true WO2017204080A1 (en) 2017-11-30

Family

ID=60411295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018687 WO2017204080A1 (en) 2016-05-27 2017-05-18 Power transmission device and power reception device

Country Status (2)

Country Link
JP (1) JP2017212849A (en)
WO (1) WO2017204080A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112292799A (en) * 2018-07-06 2021-01-29 欧姆龙株式会社 Wireless power supply device and wireless power supply system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7321849B2 (en) * 2019-09-06 2023-08-07 株式会社東芝 Electronic device and method
CN114402504A (en) * 2019-09-26 2022-04-26 麦克赛尔株式会社 Wireless power receiving device, wireless power transmitting device, wireless headset, LED device, and wireless power transmitting and receiving system
JP2022178135A (en) * 2021-05-19 2022-12-02 ミネベアミツミ株式会社 Power feeder, and power feeding method
JP2022180314A (en) * 2021-05-24 2022-12-06 ダイキン工業株式会社 Air conditioning unit and air conditioning system
JP2023076909A (en) * 2021-11-24 2023-06-05 株式会社Lixil Wireless power transmission device and wireless power transmission system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013538548A (en) * 2010-08-23 2013-10-10 オムニレクトリック インコーポレイテッド Wireless power transmission system
JP2014193086A (en) * 2013-03-28 2014-10-06 Panasonic Corp Wireless grid and wireless sensor network system using the same
JP2016512677A (en) * 2013-02-04 2016-04-28 オシア,インク. System and method for optimal delivery of pulsed radio power

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013538548A (en) * 2010-08-23 2013-10-10 オムニレクトリック インコーポレイテッド Wireless power transmission system
JP2016512677A (en) * 2013-02-04 2016-04-28 オシア,インク. System and method for optimal delivery of pulsed radio power
JP2014193086A (en) * 2013-03-28 2014-10-06 Panasonic Corp Wireless grid and wireless sensor network system using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112292799A (en) * 2018-07-06 2021-01-29 欧姆龙株式会社 Wireless power supply device and wireless power supply system
CN112292799B (en) * 2018-07-06 2023-09-08 欧姆龙株式会社 Wireless power supply device and wireless power supply system

Also Published As

Publication number Publication date
JP2017212849A (en) 2017-11-30

Similar Documents

Publication Publication Date Title
WO2017204080A1 (en) Power transmission device and power reception device
US9859758B1 (en) Transducer sound arrangement for pocket-forming
EP3087650B1 (en) Laptop computer as a transmitter for wireless charging
US10128695B2 (en) Hybrid Wi-Fi and power router transmitter
JP6219285B2 (en) Wireless power transmission system and power transmission method using electric field
US10230266B1 (en) Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof
US9893768B2 (en) Methodology for multiple pocket-forming
JP3201863U (en) Thin film coil assembly, flexible wireless charging device and wireless charging system
US9450449B1 (en) Antenna arrangement for pocket-forming
US9859756B2 (en) Transmittersand methods for adjusting wireless power transmission based on information from receivers
JP5921625B2 (en) Adaptive power control for wireless charging
JP3203153U (en) Wireless charging device
CN102598465B (en) variable wireless power transmission
US9997959B2 (en) Wireless power transmission system and method for increasing coupling efficiency by adjusting resonant frequency
US8378524B2 (en) Non-contact power transmission device
US9413429B2 (en) Wireless power transmission system based on cell division
KR102125722B1 (en) Coil structure for inductive and resonant wireless charging transmitter and integral control method for the same
US20150028694A1 (en) Power couplings in transmitters for wireless power transmission
WO2012001959A1 (en) Contactless power transmission device
TW201010236A (en) Reverse link signaling via receive antenna impedance modulation
KR20130115394A (en) Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
US20130113298A1 (en) Wireless power transmission system and method based on impedance matching condition
US20170187250A1 (en) Electromagnetic wave radiation-based wireless power transmitter and wireless power transfer system using high gain antenna and beam forming and steering technology
KR102211836B1 (en) Wireless power transmitter and method for controlling thereof
KR101983138B1 (en) Apparatus and method wireless power transmission, and wireless power transmission system using the same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802672

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802672

Country of ref document: EP

Kind code of ref document: A1