WO2017204022A1 - ロータリダンパ - Google Patents

ロータリダンパ Download PDF

Info

Publication number
WO2017204022A1
WO2017204022A1 PCT/JP2017/018245 JP2017018245W WO2017204022A1 WO 2017204022 A1 WO2017204022 A1 WO 2017204022A1 JP 2017018245 W JP2017018245 W JP 2017018245W WO 2017204022 A1 WO2017204022 A1 WO 2017204022A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
cylindrical chamber
check valve
rotor
rotary damper
Prior art date
Application number
PCT/JP2017/018245
Other languages
English (en)
French (fr)
Inventor
亮平 金子
Original Assignee
オイレス工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オイレス工業株式会社 filed Critical オイレス工業株式会社
Priority to CA3022223A priority Critical patent/CA3022223A1/en
Priority to EP17802615.9A priority patent/EP3467337A4/en
Priority to CN201780029768.3A priority patent/CN109154350B/zh
Priority to US16/301,288 priority patent/US10844925B2/en
Publication of WO2017204022A1 publication Critical patent/WO2017204022A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/145Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only rotary movement of the effective parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D57/00Liquid-resistance brakes; Brakes using the internal friction of fluids or fluid-like media, e.g. powders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/20Type of damper
    • B60G2202/22Rotary Damper

Definitions

  • the present invention relates to a rotary damper, and more particularly to a rotary damper capable of adjusting a braking torque characteristic.
  • Patent Document 1 discloses a rotary damper that has a simple structure and can be manufactured at low cost.
  • the rotary damper described in Patent Document 1 is a cylinder that is attached to an end surface on the opening side of a case, a case having a cylindrical chamber, a rotor that is rotatably accommodated in the cylindrical chamber, a viscous fluid filled in the cylindrical chamber, and the case. And a lid for containing the rotor together with the viscous fluid.
  • the rotor has a cylindrical rotor main body and a vane formed so as to protrude radially outward from the outer peripheral surface of the rotor main body so as to form a slight gap with the inner peripheral surface of the cylindrical chamber.
  • the vane is formed with a flow path connecting from one side surface (referred to as the first side surface) perpendicular to the rotation direction of the rotor to the other side surface (referred to as the second side surface).
  • a sealing material that closes a slight gap with the inner peripheral surface of the cylindrical chamber is attached to the tip surface of the vane (the surface facing the inner peripheral surface of the cylindrical chamber).
  • This sealing material has an elastic check valve that opens and closes a flow path formed in the vane.
  • a partition portion protruding radially inward is formed on the inner peripheral surface of the cylindrical chamber so as to form a slight gap with the outer peripheral surface of the rotor body.
  • the rotary damper disclosed in Patent Document 1 is configured such that when a force that rotates the vane in the direction from the first side surface to the second side surface (forward rotation direction) is applied to the rotor, the viscosity in the cylindrical chamber is increased.
  • the check valve is pressed against the second side surface of the vane by the fluid, and the flow path is blocked by the check valve.
  • the movement of the viscous fluid is caused by the clearance between the partition portion of the cylindrical chamber and the outer peripheral surface of the rotor body, and the clearance between the closing side end surface (bottom surface) of the case and the lower surface of the vane (surface facing the closing side end surface of the case).
  • the pressure on the viscous fluid on the second side surface of the vane is increased and a strong braking torque is generated.
  • a force is applied to the rotor in the direction from the second side surface of the vane toward the first side surface (reverse direction)
  • the viscous fluid on the first side surface side of the vane flows into the flow path and check. Push up the valve to open the flow path. Therefore, since the viscous fluid moves also in the flow path formed in the vane, the pressure on the viscous fluid on the first side surface side of the vane does not increase, and thus a weak braking torque is generated.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a rotary damper capable of adjusting a braking torque characteristic.
  • the present invention forms a flow path that connects between regions in a cylindrical chamber partitioned by the partition portion or vane in the partition portion or vane.
  • a check valve that moves in the flow path and closes the flow path when rotational force in the forward rotation direction is applied to the rotor, and opens the flow path when rotational force in the reverse direction is applied to the rotor;
  • a reaction force applying means for generating a reaction force against the check valve when it moves to a predetermined position in the direction of closing the flow path.
  • the present invention is a rotary damper that generates a braking torque for an applied rotational force by limiting the movement of a viscous fluid, A cylindrical chamber filled with the viscous fluid, and a case having a convex partition portion formed radially inward from the inner peripheral surface of the cylindrical chamber along the center line of the cylindrical chamber; A rotor main body housed in the cylindrical chamber so as to rotate relative to the cylindrical chamber and having an outer peripheral surface close to a tip end surface of the partition portion; and an outer periphery of the rotor main body along a center line of the cylindrical chamber A rotor having a vane formed radially outward from a surface and having a tip surface close to the inner peripheral surface of the cylindrical chamber; A lid attached to the opening of the cylindrical chamber and containing the rotor together with the viscous fluid in the cylindrical chamber; A flow path that is provided in the partition or the vane and connects the regions in the cylindrical chamber partitioned by the partition or the vane; Provided to be movable in
  • the reaction force applying means applies a reaction force to the check valve, so that the check valve is further closed from there.
  • the reaction force is applied to the check valve by the reaction force applying means against the rotational force applied in the forward direction applied to the rotor, and the braking torque is gradually increased.
  • a braking torque characteristic such that a strong braking torque is generated by closing the flow path with the check valve can be realized, and the braking torque characteristic can be adjusted by adjusting the reaction force of the reaction force applying means.
  • FIG. 1A and 1B are an external view and a partial cross-sectional view showing a schematic configuration of a rotary damper 1 according to an embodiment of the present invention.
  • FIG. 2 is a component development view of the rotary damper 1 according to the embodiment of the present invention.
  • 3A is a front view of the case 2
  • FIG. 3B is a cross-sectional view taken along the line AA of the case 2 shown in FIG. 3A
  • FIG. 3D is a cross-sectional view taken along the line BB of the case 2 shown in FIG. 3A
  • FIG. 3E is an enlarged view of a portion C of the case 2 shown in FIG. 3A.
  • FIG. 3A is a front view of the case 2
  • FIG. 3B is a cross-sectional view taken along the line AA of the case 2 shown in FIG. 3A
  • FIG. 3D is a cross-sectional view taken along the line BB of the case 2 shown in FIG. 3A
  • FIG. 3E is an enlarged
  • FIGS. 8A to 8C are diagrams for explaining the operation of the check valve 3.
  • FIG. 1A and FIG. 1B are an external view and a partial cross-sectional view showing a schematic configuration of a rotary damper 1 according to the present embodiment, and FIG. 2 shows the rotary damper 1 according to the present embodiment.
  • FIG. 1A and FIG. 1B are an external view and a partial cross-sectional view showing a schematic configuration of a rotary damper 1 according to the present embodiment, and FIG. 2 shows the rotary damper 1 according to the present embodiment.
  • FIG. 1A and FIG. 1B are an external view and a partial cross-sectional view showing a schematic configuration of a rotary damper 1 according to the present embodiment
  • FIG. 2 shows the rotary damper 1 according to the present embodiment.
  • a rotary damper 1 includes a case 2, a pair of check valves 3, a rotor 4 accommodated in the case 2 so as to be rotatable relative to the case 2, A viscous fluid 6 such as oil or silicone filled in the case 2 and a lid 5 for containing the rotor 4 together with the viscous fluid 6 in the case 2 are provided.
  • FIG. 3A is a front view of the case 2
  • FIG. 3B is a cross-sectional view taken along the line AA of the case 2 shown in FIG. 3A
  • FIG. 3D is a cross-sectional view taken along the line BB of the case 2 shown in FIG. 3A
  • FIG. 3E is an enlarged view of a portion C of the case 2 shown in FIG. 3A.
  • a cylindrical chamber (cylindrical space with a bottom) 200 having one end opened is formed in the case 2, and an opening 202 for the rotor 4 is formed at the bottom 201 of the cylindrical chamber 200. Is formed.
  • the rotor 4 has a lower end 403 (see FIG. 5) of the rotor body 400 described later inserted into the opening 202 so that the rotation shaft 420 of the rotor 4 coincides with the center line 220 of the cylindrical chamber 200. It is accommodated in the cylindrical chamber 200 (see FIGS. 1 and 2).
  • a female screw portion 207 that is screwed with a female screw portion 502 (see FIG. 6) described later of the lid 5 is formed.
  • cylindrical chamber 200 protrudes radially inward from the inner peripheral surface 203 of the cylindrical chamber 200, and the tip end surface 205 is close to an outer peripheral surface 404 (see FIG. 5) of a rotor body 400 described later of the rotor 4.
  • a pair of partition portions 204 for partitioning are formed along the center line 220 of the cylindrical chamber 200 so as to be axisymmetric with respect to the center line 220.
  • the partition 204 is formed with a flow path 208 that connects the regions 216 a and 216 b in the cylindrical chamber 200 partitioned by the partition 204.
  • the check valve 3 is movably disposed in the flow path 208.
  • the flow path 208 is linearly formed from the end surface 209 on the rear side in the normal rotation direction (R1 direction in FIG. 7) toward the end surface 210 on the front side in the normal rotation direction.
  • the flow path 208 has a constant width W1 in the flow path section 211 on the rear side in the forward rotation direction (end surface 209), but in the flow path section 212 on the front side in the forward rotation direction (end face 210), the front direction is the forward direction.
  • the width W2 gradually decreases from the constant width W1.
  • the channel 208 has a two-stage structure in which the depth D2 of the channel portion 212 on the front side in the forward rotation direction is shallower than the depth D1 of the channel portion 212 on the rear side in the forward direction.
  • a stopper 213 is provided for preventing the fluid from dropping out of the channel 208.
  • a groove 215 is formed along the center line 220 of the cylindrical chamber 200 on the step surface 214 between the flow path portion 211 on the rear side in the forward rotation direction and the flow path portion 212 on the front side in the forward rotation direction.
  • FIGS. 4A to 4E are a front view, a side view, a rear view, a top view, and a bottom view of the check valve 3.
  • the check valve 3 includes a valve main body 300, a valve portion 301, and a reaction force applying portion 302.
  • the valve body 300 has a height D3 that is substantially the same as the depth D1 of the flow path portion 211 on the rear side in the forward rotation direction of the flow path 208 and a width W1 of the flow path section 211 on the rear side in the forward rotation direction of the flow path 208.
  • a quadrangular columnar member having a width W3.
  • the valve portion 301 is formed at the upper portion of the side surface 303 on the front side of the valve body 300 in the closing direction (M1 direction in FIG. 8), and is substantially the same as the depth D2 of the flow channel portion 212 on the front side in the forward rotation direction of the flow channel 208. It is a trapezoidal member having a height D4 and having a width W4 gradually narrowing toward the front in the closing direction. However, the width W4 on the upper surface (end surface on the front side in the closing direction) 304 of the valve unit 301 is wider than the width W2 on the end surface 210 side opening of the flow channel unit 212 on the front side in the forward rotation direction of the flow channel 208.
  • the reaction force imparting portion 302 includes a mounting column 305 formed toward the front in the closing direction, a rubber ring attached to the mounting column 305, a coil spring, etc.
  • the check valve 3 moves in the closing direction, the annular elastic body 306 is disposed in the flow path 28 before the valve section 301 closes the flow path section 212 on the front side in the forward rotation direction of the flow path 208. It contacts the step surface 214.
  • the check valve 3 further moves in the closing direction, and the valve portion 301 closes the channel portion 212 on the front side in the forward direction of the channel 208.
  • the length L1 of the mounting column 305 is shorter than the depth D5 of the groove 215 formed in the stepped surface 214 in the channel 208 so that the mounting column 305 does not hinder the closing of the channel 208.
  • FIG. 5 (A) and 5 (B) are a front view and a side view of the rotor 4, and FIG. 5 (C) is a DD cross-sectional view of the rotor 4 shown in FIG. 5 (A).
  • the rotor 4 includes a cylindrical rotor body 400 and a pair of vanes (rotary blades) 401 formed symmetrically with respect to the rotation shaft 420 of the rotor 400.
  • the vane 401 is formed along the rotation axis 420 of the rotor 4, protrudes radially outward from the outer peripheral surface 404 of the rotor body 400, and the tip end surface 405 is close to the inner peripheral surface 203 of the cylindrical chamber 200 of the case 2.
  • the cylindrical chamber 200 is partitioned.
  • the vane 401 includes a front end surface 405 of the vane 401 and the inner peripheral surface 203 of the cylindrical chamber 200, a lower surface 406 of the vane 401 and the bottom 201 of the cylindrical chamber 200, and an upper surface 407 of the vane 401 and the lid 5.
  • a sliding member 408 that functions as a sealant that closes the space between the lower surface 504 (see FIG. 6) is mounted as necessary (see FIGS. 1 and 2).
  • a through hole 409 for inserting a hexagonal shaft (not shown) for transmitting a rotational force from the outside to the rotor 4 is formed around the rotation shaft 420.
  • the upper end 402 of the rotor body 400 is rotatably inserted into the opening 500 (see FIG. 6) of the lid 5, and the lower end 403 of the rotor body 400 is formed at the bottom 201 of the cylindrical chamber 200 of the case 2. Is inserted into the opening 202 so as to be rotatable (see FIG. 2).
  • a sealing material such as an O-ring is applied between the lower end 403 of the rotor body 400 and the opening 202 of the cylindrical chamber 200. It may be interposed between them.
  • FIG. 6 (A) to 6 (C) are a front view, a side view, and a rear view of the lid 5, and FIG. 6 (D) is a cross-sectional view taken along line EE of the lid 5 shown in FIG. 6 (A). It is.
  • the lid 5 is formed with an opening 500 that penetrates the upper surface 503 and the lower surface 504 of the lid 5 at a position facing the opening 202 formed in the bottom 201 of the cylindrical chamber 200 of the case 2. .
  • the upper end 402 of the rotor body 400 of the rotor 4 is inserted into the opening 500.
  • a male screw portion 502 is formed which is screwed with a female screw portion 207 formed on the opening side 206 of the inner peripheral surface 203 of the cylindrical chamber 200.
  • a sealing material such as an O-ring is attached to the upper end 402 of the rotor body 400 of the rotor 4 and the opening 500 of the lid 5. You may interpose between.
  • a sealing material such as an O-ring is used to prevent the viscous fluid 6 from leaking from the threaded portion between the male threaded portion 502 of the lid 5 and the female threaded portion 207 of the cylindrical chamber 200 of the case 2.
  • the outer peripheral surface 501 of the lid 5 and the inner peripheral surface 203 of the cylindrical chamber 200 may be interposed.
  • FIGS. 7A and 7B are diagrams for explaining the operation principle of the rotary damper 1.
  • FIGS. 8A to 8C illustrate the operation of the check valve 3.
  • FIG. FIG. 8A illustrates the operation of the check valve 3.
  • the annular elastic body 306 of the applying portion 302 abuts on the stepped surface 214, and a reaction force that pushes the check valve 3 back in the direction opposite to the closing direction M1 acts.
  • the pressure of the viscous fluid 6 in the region 217 gradually increases due to the rotation of the rotor 4 in the forward rotation direction R1, and the braking torque for the rotational force applied to the rotor 4 in the forward rotation direction R1 gradually increases.
  • the annular elastic body 306 is pressed and elastically deformed, whereby the check valve 3 further moves in the gate closing direction M1, and the flow in the forward direction of the flow path 208 in the forward rotation direction.
  • the road 212 is closed.
  • the valve main body 300 of the check valve 3 comes into contact with a stopper 213 provided in the flow path portion 211 on the rear side in the forward rotation direction of the flow path 208.
  • the width W3 of the valve body 300 of the check valve 3 is narrower than the width W1 of the flow path portion 211 on the rear side in the forward rotation direction of the flow path 208.
  • the viscous fluid 6 that has flowed into the flow path 208 from the region 218 is not hindered by the check valve 3, so that the vane 401 of the rotor 4 and the partition portion 204 of the case 2 are located on the rear side in the forward rotation direction. It is discharged to a region 217 between the end surface 209. Accordingly, the pressure of the viscous fluid 6 in the region 218 is not increased, and a weak braking torque is generated with respect to the rotational force applied to the rotor 4 in the reverse direction R2.
  • the check valve 3 moves in the closing direction M1 through the flow path 208 until the annular elastic body 306 of the reaction force applying portion 302 of the check valve 3 contacts the stepped surface 214 of the flow path 208.
  • the annular elastic body 306 of the reaction force applying unit 302 applies a reaction force to the check valve 3. Therefore, in order to further move the check valve 3 in the closing direction N1 from there, it is necessary to apply a larger rotational force in the forward rotation direction R1 to the rotor 4, and in the forward rotation direction R1 applied to the rotor 4 The braking torque with respect to the rotational force gradually increases.
  • a braking torque characteristic that gradually increases the braking torque and finally generates a strong braking torque with respect to the rotational force applied to the rotor 4 in the forward rotation direction R1. realizable. Further, the braking torque characteristic can be adjusted by adjusting the reaction force of the check valve 3.
  • the check valve 3 including the reaction force applying unit 302 is disposed in the flow path 208. For this reason, it is not necessary to prepare a special space for the reaction force applying unit 302 in the cylindrical chamber 200 of the case 2. Therefore, the rotary damper 1 can be reduced in size.
  • the reaction force imparting portion 302 is attached to the lower portion of the side surface 303 on the front side in the gate closing direction of the valve body 300 and the mounting column 305 formed toward the front in the gate closing direction. And an annular elastic body 306.
  • the timing and magnitude of the reaction force can be changed by changing the thickness and material of the annular elastic body 306 attached to the mounting column 305. Therefore, the reaction force of the check valve 3 can be easily adjusted, and as a result, the braking torque characteristic can be easily adjusted.
  • the vane 401 of the rotor 4 is provided between the tip surface 405 of the vane 401 and the inner peripheral surface 203 of the cylindrical chamber 200, and between the lower surface 406 of the vane 401 and the bottom 201 of the cylindrical chamber 200,
  • the sliding member 408 functioning as a sealant that closes the space between the upper surface 407 of the vane 401 and the lower surface 504 of the lid 5
  • the slidability can be improved while closing these gaps.
  • the hexagonal shaft that transmits the rotational force from the outside to the rotor 4 can be smoothly rotated while realizing a higher braking torque with respect to the rotational force in the forward rotation direction R1 applied to the rotor 4. .
  • the flow path 208 is formed in the partition part 204 in the cylindrical chamber 200 of the case 2, but the present invention is not limited to this. You may form the flow path which connects the area
  • reaction force provision part 302 is provided in check valve 3, this invention is not limited to this, Reaction force provision part 302 is provided separately from check valve 3. Also good.
  • the reaction force applying unit 302 only needs to be able to apply a reaction force to the check valve 3 when the check valve 3 moves to a predetermined position in the gate closing direction M1.
  • an elastic body such as rubber or a spring is attached to the step surface 214 in the flow path 208, and the valve portion 301 of the check valve 3 is closed before the flow path portion 212 on the front side in the forward rotation direction of the flow path 208 is blocked.
  • the elastic body may be brought into contact with the lower portion of the side surface 303 on the front side in the closing direction of the valve body 300 to apply a reaction force to the check valve 3.
  • the case where the pair of partition portions 204 are provided in the cylindrical chamber 200 of the case 2 and the pair of vanes 401 is provided in the rotor 4 has been described as an example.
  • the present invention is not limited to this.
  • the partition part 204 and the vane 401 are the same number, 1 or 3 or more may be formed.
  • a strong braking torque is generated when the rotor 4 rotates in the normal rotation direction R1 relative to the cylindrical chamber 200 of the case 2, and the rotor 4 is generated in the cylindrical chamber 200 of the case 2.
  • a so-called unidirectional rotary damper that generates a weak braking torque when rotating in the reverse direction R2 has been described as an example.
  • the present invention is not limited to this.
  • the present invention is also applicable to a so-called bidirectional rotary damper that generates a strong braking torque in both the forward rotation direction R1 and the reverse rotation direction R2.
  • the flow path portion on the rear side in the reverse direction has a constant width, but the flow path portion on the front side in the reverse direction in the forward direction in the reverse direction gradually increases from this constant width.
  • a channel having the same structure as the channel 208 having a narrowing width is provided in the partition portion 204 of the case 2 or the vane 401 of the rotor 4.
  • the check valve which has the structure similar to the check valve 3 which makes a reverse direction a gate closing direction is arrange
  • the rotary damper 1 according to the above-described embodiment can be widely applied to seat seats with a reclining function used in, for example, automobiles, railway vehicles, airplanes, ships, and the like.
  • the present invention can be widely applied to devices other than a seat seat with a reclining function as long as it is a device that needs to brake a rotating body that rotates in both directions, for example, in one direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

制動トルク特性を調整可能なロータリダンパを提供する。ロータリダンパ(1)は、ケース(2)の円筒室(200)内に充填された粘性流体(6)の移動を制限することにより、加えられた回転力に対して制動トルクを発生させる。円筒室(200)の仕切り部(204)には流路(208)が形成されており、この流路(208)内に、逆止弁(3)が移動可能に配置されている。逆止弁(3)は、ロータ(4)が正転方向R1へ回転した場合に、流路(208)内を閉門方向M1へ移動して流路(208)を閉門し、ロータ(4)が反転方向R2へ回転した場合に、流路内(208)を開門方向M2へ移動して流路(208)を開門する。逆止弁(3)は、逆止弁(3)が閉門方向M1へ所定の位置まで移動した場合に、逆止弁(3)に対して反力を発生させる反力付与部(302)を備えている。

Description

ロータリダンパ
 本発明は、ロータリダンパに関し、特に、制動トルク特性を調整可能なロータリダンパに関する。
 正転方向の回転に対して強い制動トルクを発生させる一方、反転方向の回転に対しては弱い制動トルクを発生させるロータリダンパが知られている。例えば、特許文献1には、構造が簡単で安価に製造可能なロータリダンパが開示されている。
 特許文献1に記載のロータリダンパは、円筒室を備えたケースと、円筒室内に回転自在に収容されたロータと、円筒室内に充填された粘性流体と、ケースの開口側端面に取り付けられて円筒室内にロータを粘性流体とともに封じ込める蓋と、を備えている。
 ロータは、円筒形状のロータ本体と、円筒室の内周面と僅かな隙間を形成するように、ロータ本体の外周面から径方向外方に突出して形成されたベーンと、を有する。ベーンには、ロータの回転方向と垂直な一方の側面(第一の側面と呼ぶ)から他方の側面(第二の側面と呼ぶ)へと繋がる流路が形成されている。また、ベーンの先端面(円筒室の内周面と対向する面)には、円筒室の内周面との僅かな隙間を塞ぐシール材が取り付けられている。このシール材は、ベーンに形成された流路の開閉を行う弾性体の逆止弁を有する。また、円筒室の内周面には、ロータ本体の外周面と僅かな隙間を形成するように、径方向内方に突出した仕切り部が形成されている。
 以上のような構成において、特許文献1に記載のロータリダンパは、ベーンの第一の側面から第二の側面へ向かう方向(正転方向)に回転させる力がロータに加わると、円筒室内の粘性流体によって逆止弁がベーンの第二の側面に押し付けられて、流路が逆止弁で塞がれる。これにより、粘性流体の移動が、円筒室の仕切り部とロータ本体の外周面との隙間およびケースの閉口側端面(底面)とベーンの下面(ケースの閉口側端面と対向する面)との隙間を介してのみに制限されて、ベーンの第二の側面側の粘性流体に対する圧力が高まり、強い制動トルクが発生する。一方、ベーンの第二の側面から第一の側面へ向かう方向(反転方向)に回転させる力がロータに加わると、ベーンの第一の側面側の粘性流体が、流路に流入して逆止弁を押し上げて流路を開放する。したがって、粘性流体の移動がベーンに形成された流路においても行われるため、ベーンの第一の側面側の粘性流体に対する圧力は高くならず、このため、弱い制動トルクが発生する。
特開平7-301272号公報
 特許文献1に記載のロータリダンパは、正転方向の回転力がロータに加わると、直ちに逆止弁が流路を塞いで、強い制動トルクを発生させる。しかしながら、ロータリダンパの用途によっては、正転方向の回転力がロータに加わった場合に、制動トルクを徐々に増加させて最終的に強い制動トルクを発生させるような制動トルク特性(正転方向における初動特性)が要求される。特許文献1に記載のロータリダンパは、制動トルク特性の調整について何ら考慮されていない。
 本発明は上記事情に鑑みてなされたものであり、その目的は、制動トルク特性を調整可能なロータリダンパを提供することにある。
 上記課題を解決するために、本発明は、仕切り部あるいはベーンに、この仕切り部あるいはベーンによって仕切られる円筒室内の領域間を連結する流路を形成した。そして、この流路内を移動して、正転方向の回転力がロータに加わると流路を塞ぎ、反転方向の回転力がロータに加わると流路を開放する逆止弁と、逆止弁が流路を塞ぐ方向へ所定の位置まで移動した場合に、この逆止弁に対して反力を発生させる反力付与手段と、を設けた。
 例えば、本発明は、粘性流体の移動を制限することにより、加えられた回転力に対して制動トルクを発生させるロータリダンパであって、
 前記粘性流体が充填された円筒室、および前記円筒室の中心線に沿って当該円筒室の内周面から径方向内方に向けて形成された凸状の仕切り部を有するケースと、
 前記円筒室に対して相対的に回転するように当該円筒室に収容され、外周面が前記仕切り部の先端面と近接するロータ本体、および前記円筒室の中心線に沿って前記ロータ本体の外周面から径方向外方に向けて形成され、先端面が前記円筒室の前記内周面と近接するベーンを有するロータと、
 前記円筒室の開口部に取り付けられ、前記ロータを前記粘性流体とともに前記円筒室内に封じ込める蓋と、
 前記仕切りあるいは前記ベーンに設けられ、前記仕切りあるいは前記ベーンによって仕切られる前記円筒室内の領域間を連結する流路と、
 前記流路内を移動可能に設けられ、前記ロータが前記円筒室に対して相対的に正転方向へ回転した場合に前記流路を塞ぎ、前記ロータが前記円筒室に対して相対的に反転方向へ回転した場合に前記流路を開放する逆止弁と、
 前記逆止弁が前記流路を塞ぐ方向へ所定の位置まで移動した場合に、当該逆止弁に対して反力を発生させる反力付与手段と、を備える。
 本発明では、逆止弁が流路を塞ぐ方向へ所定の位置まで移動した場合に、反力付与手段が逆止弁に反力を付与するので、そこから逆止弁をさらに流路を塞ぐ方向へ移動させるためには、より大きな正転方向の回転力をロータに加える必要がある。したがって、本発明によれば、ロータに加えられた正転方向の回転力に対して、反力付与手段により逆止弁に反力を付与して制動トルクを徐々に増加させ、最終的には逆止弁により流路を塞いで強い制動トルクを発生させるような制動トルク特性を実現でき、また、反力付与手段の反力を調整することにより、制動トルク特性を調整することができる。
図1(A)および図1(B)は、本発明の一実施の形態に係るロータリダンパ1の概略構成を示す外観図および部分断面図である。 図2は、本発明の一実施の形態に係るロータリダンパ1の部品展開図である。 図3(A)は、ケース2の正面図であり、図3(B)は、図3(A)に示すケース2のA-A断面図であり、図3(C)は、ケース2の背面図であり、図3(D)は、図3(A)に示すケース2のB-B断面図であり、図3(E)は、図3(A)に示すケース2のC部拡大図である。 図4(A)~図4(E)は、逆止弁3の正面図、側面図、背面図、上面図、および底面図である。 図5(A)および図5(B)は、ロータ4の正面図および側面図であり、図5(C)は、図5(A)に示すロータ4のD-D断面図である。 図6(A)~図6(C)は、蓋5の正面図、側面図、および背面図であり、図6(D)は、図6(A)に示す蓋5のE-E断面図である。 図7(A)および図7(B)は、ロータリダンパ1の動作原理を説明するための図である。 図8(A)~図8(C)は、逆止弁3の動作を説明するための図である。
 以下、図面を参照して本発明の一実施の形態を説明する。
 図1(A)および図1(B)は、本実施の形態に係るロータリダンパ1の概略構成を示す外観図および部分断面図であり、図2は、本実施の形態に係るロータリダンパ1の部品展開図である。
 図示するように、本実施の形態に係るロータリダンパ1は、ケース2と、一対の逆止弁3と、ケース2に対して相対的に回転可能にケース2内に収容されたロータ4と、ケース2内に充填されたオイル、シリコン等の粘性流体6と、ロータ4を粘性流体6とともにケース2内に封じ込める蓋5と、を備えている。
 図3(A)は、ケース2の正面図であり、図3(B)は、図3(A)に示すケース2のA-A断面図であり、図3(C)は、ケース2の背面図であり、図3(D)は、図3(A)に示すケース2のB-B断面図であり、図3(E)は、図3(A)に示すケース2のC部拡大図である。
 図示するように、ケース2内には、一端が開口した円筒室(底付き円筒状の空間)200が形成されており、この円筒室200の底部201には、ロータ4用の開口部202が形成されている。ロータ4は、後述するロータ本体400の下端部403(図5参照)がこの開口部202に挿入されることにより、ロータ4の回転軸420が円筒室200の中心線220と一致するように、円筒室200内に収容される(図1および図2参照)。円筒室200の内周面203の開口側206には、蓋5の後述する雌ネジ部502(図6参照)と螺合する雌ネジ部207が形成されている。
 また、円筒室200の内周面203には、径方向内方に突出し、先端面205がロータ4の後述するロータ本体400の外周面404(図5参照)と近接して、円筒室200を仕切る一対の仕切り部204が、円筒室200の中心線220に沿って、この中心線220に対して軸対称に形成されている。
 仕切り部204には、この仕切り部204によって仕切られた円筒室200内の領域216a、216b間を連結する流路208が形成されている。逆止弁3は、この流路208内を移動可能に配置される。
 流路208は、正転方向(図7のR1方向)後方側の端面209から正転方向前方側の端面210に向けて直線状に形成されている。流路208は、正転方向後方(端面209)側の流路部211において一定の幅W1を有するが、正転方向前方(端面210)側の流路部212において、正転方向前方へ向けて、一定の幅W1から徐々に狭くなる幅W2を有する。また、流路208は、正転方向前方側の流路部212の深さD2が正転方向後方側の流路部212の深さD1より浅い2段構造となっている。
 正転方向後方側の流路部211には、流路208内に配置された逆止弁3が開門方向(図8のM2方向)に移動した場合に、逆止弁3が端面209側から流路208の外へ脱落するのを防止するためのストッパ213が設けられている。また、正転方向後方側の流路部211と正転方向前方側の流路部212との段差面214には、円筒室200の中心線220に沿って溝215が形成されている。
 図4(A)~図4(E)は、逆止弁3の正面図、側面図、背面図、上面図、および底面図である。
 図示するように、逆止弁3は、弁本体300と、弁部301と、反力付与部302と、を有する。弁本体300は、流路208の正転方向後方側の流路部211の深さD1と略同じ高さD3と、流路208の正転方向後方側の流路部211の幅W1より狭い幅W3と、を有する四角柱状部材である。
 弁部301は、弁本体300の閉門方向(図8のM1方向)前方側の側面303の上部に形成され、流路208の正転方向前方側の流路部212の深さD2と略同じ高さD4を有し、かつその幅W4が閉門方向前方に向けて徐々に狭くなる台柱形状部材である。ただし、弁部301の上面(閉門方向前方側の端面)304における幅W4は、流路208の正転方向前方側の流路部212の端面210側開口における幅W2より広い。
 反力付与部302は、弁本体300の閉門方向前方側の側面303の下部に、閉門方向前方に向けて形成された装着柱305と、装着柱305に装着されたゴムリング、コイルスプリング等の環状弾性体306と、を有する。環状弾性体306は、逆止弁3が閉門方向に移動した場合に、弁部301が流路208の正転方向前方側の流路部212を閉門するよりも先に、流路28内の段差面214に当接する。そして、環状弾性体306が押圧されて弾性変形することにより、逆止弁3は閉門方向へさらに移動して、弁部301が流路208の正転方向前方側の流路部212を閉門する。装着柱305が流路208の閉門を阻害することがないように、装着柱305の長さL1は、流路208内の段差面214に形成された溝215の深さD5よりも短い。
 図5(A)および図5(B)は、ロータ4の正面図および側面図であり、図5(C)は、図5(A)に示すロータ4のD-D断面図である。
 図示するように、ロータ4は、円筒状のロータ本体400と、ロータ400の回転軸420に対して軸対称に形成された一対のベーン(回転翼)401と、を備えている。
 ベーン401は、ロータ4の回転軸420に沿って形成され、ロータ本体400の外周面404から径方向外方へ突出し、先端面405がケース2の円筒室200の内周面203と近接して、円筒室200を仕切る。ベーン401には、ベーン401の先端面405と円筒室200の内周面203との間、ベーン401の下面406と円筒室200の底部201との間、およびベーン401の上面407と蓋5の下面504(図6参照)との間を塞ぐシール材として機能する摺動部材408が必要に応じて装着される(図1、図2参照)。摺動部材408の素材には、ポリアミド等の摺動性に優れた樹脂が用いられる。
 ロータ本体400には、外部からの回転力をロータ4に伝達する六角シャフト(不図示)を挿入するための貫通孔409が、回転軸420を中心にして形成されている。そして、ロータ本体400の上端部402は、蓋5の開口部500(図6参照)に回転可能に挿入され、ロータ本体400の下端部403は、ケース2の円筒室200の底部201に形成された開口部202に回転可能に挿入される(図2参照)。
 なお、円筒室200の開口部202から粘性流体6が外部に漏れないように、Oリング等のシール材(不図示)を、ロータ本体400の下端部403と円筒室200の開口部202との間に介在させてもよい。
 図6(A)~図6(C)は、蓋5の正面図、側面図、および背面図であり、図6(D)は、図6(A)に示す蓋5のE-E断面図である。
 図示するように、蓋5には、ケース2の円筒室200の底部201に形成された開口部202と対向する位置に、蓋5の上面503および下面504を貫く開口部500が形成されている。この開口部500には、ロータ4のロータ本体400の上端部402が挿入される。また、蓋5の外周面501には、円筒室200の内周面203の開口側206に形成された雌ネジ部207と螺合する雄ネジ部502が形成されている。なお、蓋5の開口部500から粘性流体6が外部に漏れないように、Oリング等のシール材(不図示)を、ロータ4のロータ本体400の上端部402と蓋5の開口部500との間に介在させてもよい。同様に、蓋5の雄ネジ部502とケース2の円筒室200の雌ネジ部207との螺合部分から粘性流体6が外部に漏れないように、Oリング等のシール材(不図示)を、蓋5の外周面501と円筒室200の内周面203との間に介在させてもよい。
 つぎに、ロータリダンパ1の動作原理を説明する。
 図7(A)および図7(B)は、ロータリダンパ1の動作原理を説明するための図であり、図8(A)~図8(C)は、逆止弁3の動作を説明するための図である。
 図7(A)に示すように、ケース2に対してロータ4が正転方向R1に相対的に回転した場合、ロータ4のベーン401とケース2の仕切り部204の正転方向後方側の端面209との間の領域217が圧縮され、この領域217内の粘性流体6が流路208に流れ込む。この流路208内に流れ込んだ粘性流体6の力により、逆止弁3が流路208内を閉門方向M1に移動する。そして、図8(A)に示すように、逆止弁3の弁部301が流路208の正転方向前方側の流路部212を閉門するよりも先に、逆止弁3の反力付与部302の環状弾性体306が段差面214に当接し、逆止弁3に、閉門方向M1の反対方向へ押し戻す反力が働く。これにより、ロータ4の正転方向R1の回転によって領域217内の粘性流体6の圧力が徐々に高まり、ロータ4に加えられた正転方向R1の回転力に対する制動トルクが徐々に増加する。その後、図8(B)に示すように、環状弾性体306が押圧されて弾性変形することにより、逆止弁3が閉門方向M1へさらに移動し、流路208の正転方向前方側の流路部212を閉門する。これにより、流路208内の粘性流体6の移動が阻害され、ロータ4の正転方向R1の回転によって領域217内の粘性流体6の圧力が急激に高まり、ロータ4に加えられた正転方向R1の回転力に対してより強い制動トルクを発生させる。
 一方、図7(B)に示すように、ケース2に対してロータ4が正転方向R1の逆回転方向である反転方向R2に相対的に回転した場合、ロータ4のベーン401とケース2の仕切り部204の正転方向前方側の端面210との間の領域218が圧縮され、この領域218内の粘性流体6が流路208に流れ込む。この流路208内に流れ込んだ粘性流体6の力により、逆止弁3が流路208を開門して、流路208内を開門方向M2に移動する。そして、図8(C)に示すように、逆止弁3の弁本体300が流路208の正転方向後方側の流路部211に設けられたストッパ213と当接する。上述したように、逆止弁3の弁本体300の幅W3は、流路208の正転方向後方側の流路部211の幅W1より狭い。このため、領域218から流路208内に流れ込んだ粘性流体6は、逆止弁3により移動を阻害されることなく、ロータ4のベーン401とケース2の仕切り部204の正転方向後方側の端面209との間の領域217へ排出される。したがって、領域218内の粘性流体6の圧力は高くならず、ロータ4に加えられた反転方向R2の回転力に対して弱い制動トルクを発生させる。
 以上、本発明の一実施の形態について説明した。
 本実施の形態では、逆止弁3の反力付与部302の環状弾性体306が流路208の段差面214に当接する位置まで、逆止弁3が流路208を閉門方向M1へ移動した場合に、反力付与部302の環状弾性体306が逆止弁3に反力を付与する。このため、そこから逆止弁3をさらに閉門方向N1へ移動させるためには、より大きな正転方向R1の回転力をロータ4に加える必要があり、ロータ4に加えられた正転方向R1の回転力に対する制動トルクが徐々に増加する。そして、ロータ4に加えられた正転方向R1の回転力により環状弾性体306が弾性変形し、逆止弁3が閉門方向M1へさらに移動すると、逆止弁3により流路208が閉門して粘性流体6の移動が阻害され、ロータ4に加えられた正転方向R1の回転力に対して強い制動トルクが発生する。
 したがって、本実施の形態によれば、ロータ4に加えられた正転方向R1の回転力に対して、制動トルクを徐々に増加させて最終的に強い制動トルクを発生させるような制動トルク特性を実現できる。また、逆止弁3の反力を調整することにより、制動トルク特性を調整することができる。
 また、本実施の形態では、反力付与部302を備えた逆止弁3を流路208内に配置している。このため、ケース2の円筒室200内に、反力付与部302のための特別なスペースを用意する必要がない。したがって、ロータリダンパ1の小型化が可能となる。
 また、本実施の形態では、反力付与部302を、弁本体300の閉門方向前方側の側面303の下部に、閉門方向前方に向けて形成された装着柱305と、装着柱305に装着された環状弾性体306と、で構成している。このため、装着柱305に装着する環状弾性体306の厚さ、素材を変更することにより、反力の付与タイミング、大きさを変更することができる。したがって、逆止弁3の反力を容易に調整することができ、ひいては制動トルク特性を容易に調整することができる。
 また、本実施の形態において、ロータ4のベーン401に、ベーン401の先端面405と円筒室200の内周面203との間、ベーン401の下面406と円筒室200の底部201との間、およびベーン401の上面407と蓋5の下面504との間を塞ぐシール材として機能する摺動部材408を装着することにより、これらの隙間を塞ぎつつ摺動性を向上させることができる。このため、ロータ4に加えられた正転方向R1の回転力に対して、より高い制動トルクを実現しつつ、外部からの回転力をロータ4に伝達する六角シャフトを滑らかに回転させることができる。
 なお、本発明は、上記の実施の形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。
 例えば、上記の実施の形態では、ケース2の円筒室200内の仕切り部204に流路208を形成したが、本発明はこれに限定されない。ロータ4のベーン401に、ベーン401によって仕切られる円筒室200内の領域を連結する流路を形成してもよい。
 また、上記の実施の形態では、反力付与部302を逆止弁3に設けているが、本発明はこれに限定されず、反力付与部302を逆止弁3とは別個に設けてもよい。反力付与部302は、逆止弁3が閉門方向M1へ所定の位置まで移動した場合に、逆止弁3に反力を付与することができるものであればよい。例えば、流路208内の段差面214にゴム、スプリング等の弾性体を取り付け、逆止弁3の弁部301が流路208の正転方向前方側の流路部212を塞ぐよりも先に、この弾性体を弁本体300の閉門方向前方側の側面303の下部に当接させて、逆止弁3に反力を付与するようにしてもよい。
 また、上記の実施の形態では、ケース2の円筒室200に一対の仕切り部204を設けるとともに、ロータ4に一対のベーン401を設けた場合を例にとり説明した。しかし、本発明はこれに限定されない。仕切り部204およびベーン401は、互いに同数であれば、1または3以上形成されていてもよい。
 また、上記の実施の形態では、ロータ4がケース2の円筒室200に対して相対的に正転方向R1に回転した場合に強い制動トルクを発生させ、ロータ4がケース2の円筒室200に対して相対的に反転方向R2に回転した場合に弱い制動トルクを発生させる、いわゆる一方向性のロータリダンパを例にとり説明した。しかし、本発明はこれに限定されない。本発明は、正転方向R1および反転方向R2の両方向において強い制動トルクを発生させる、いわゆる双方向性のロータリダンパにも適用可能である。この場合、流路208に加えて、反転方向後方側の流路部において一定の幅を有するが、反転方向前方側の流路部において、反転方向前方へ向けて、この一定の幅から徐々に狭くなる幅を有する、流路208と同様の構造を有する流路を、ケース2の仕切り部204あるいはロータ4のベーン401に設ける。そして、この流路内に、反転方向を閉門方向とする、逆止弁3と同様の構造を有する逆止弁を配置する。
 上記の実施の形態に係るロータリダンパ1は、例えば、自動車、鉄道車両、航空機、船舶等で用いられるリクライニング機能付きの座席シートに広く適用できる。また、双方向に回転する回転体の例えば一方向側への回転運動を制動することが必要とされる装置であれば、リクライニング機能付きの座席シート以外の装置にも広く適用できる。
1:ロータリダンパ、 2:ケース、 3:逆止弁、 4:ロータ、 5:蓋、 6:粘性流体、 200:円筒室、 201:円筒室200の底部、 202:円筒室200の開口部、 203:円筒室の内周面、 204:円筒室200の仕切り部、 205:仕切り部204の先端面、 206:円筒室200の開口側、 207:円筒室200の雌ネジ部、 208:流路、 209:流路208の正転方向後方側の端面、 210:流路208の正転方向前方側の端面、 211:流路208の正転方向後方側の流路部、 212:流路208の正転方向後方側の流路部、 213:ストッパ、 214:流路208の段差面、 215:段差面214の溝、 220:円筒室200の中心線、 300:弁本体、 301:弁部、 302:反力付与部、 303:弁本体300の閉門方向前方側の側面、 304:弁部301の上面、 305:反力付与部302の装着柱、 306:反力付与部302の環状弾性体、 400:ロータ本体、 401:ベーン、 402:ロータ本体400の上端部、 403:ロータ本体400の下端部、 404:ロータ本体400の外周面、 405:ベーン401の先端面、 406:ベーン401の下面、 407:ベーン401の上面、 408:シール材、 409:ロータ本体400の貫通孔、 420:ロータ4の回転軸、 500:蓋5の開口部、 501:蓋5の外周面、 502:蓋5の雌ネジ部、 503:蓋5の上面、 504:蓋5の下面

Claims (5)

  1.  粘性流体の移動を制限することにより、加えられた回転力に対して制動トルクを発生させるロータリダンパであって、
     前記粘性流体が充填された円筒室、および前記円筒室の中心線に沿って当該円筒室の内周面から径方向内方に向けて形成された凸状の仕切り部を有するケースと、
     前記円筒室に対して相対的に回転するように当該円筒室に収容され、外周面が前記仕切り部の先端面と近接するロータ本体、および前記円筒室の中心線に沿って前記ロータ本体の外周面から径方向外方に向けて形成され、先端面が前記円筒室の前記内周面と近接するベーンを有するロータと、
     前記円筒室の開口部に取り付けられ、前記ロータを前記粘性流体とともに前記円筒室内に封じ込める蓋と、
     前記仕切りあるいは前記ベーンに設けられ、前記仕切りあるいは前記ベーンによって仕切られる前記円筒室内の領域間を連結する流路と、
     前記流路内を移動可能に設けられ、前記ロータが前記円筒室に対して相対的に正転方向へ回転した場合に前記流路を塞ぎ、前記ロータが前記円筒室に対して相対的に反転方向へ回転した場合に前記流路を開放する逆止弁と、
     前記逆止弁が前記流路を塞ぐ方向へ所定の位置まで移動した場合に、当該逆止弁に対して反力を発生させる反力付与手段と、を備える
     ことを特徴とするロータリダンパ。
  2.  請求項1に記載のロータリダンパであって、
     前記流路は、
     前記流路を塞ぐ方向において、前方側の流路部の深さが後方側の流路部の深さよりも浅い段差構造を有し、
     前記反力付与手段は、
     前記逆止弁に取り付けられ、当該逆止弁が前記流路を塞ぐ方向へ移動した場合に、当該逆止弁が前記流路を塞ぐよりも先に前記流路の前記段差構造による段差面と当接する弾性体を有する
     ことを特徴とするロータリダンパ。
  3.  請求項1に記載のロータリダンパであって、
     前記流路は、
     前記流路を塞ぐ方向において、前方側の流路部の深さが後方側の流路部の深さよりも浅い段差構造を有し、
     前記反力付与手段は、
     前記流路の前記段差構造による段差面に取り付けられ、前記逆止弁が前記流路を塞ぐ方向へ移動した場合に、当該逆止弁が前記流路を塞ぐよりも先に当該逆止弁と当接する弾性体を有する
     ことを特徴とするロータリダンパ。
  4.  請求項2または3に記載のロータリダンパであって、
     前記反力付与手段は、
     前記弾性体を装着する装着手段をさらに有し、
     前記弾性体は、
     前記装着手段から取り外し可能である
     ことを特徴とするロータリダンパ。
  5.  請求項1ないし4のいずれか一項に記載のロータリダンパであって、
     前記ベーンに装着され、前記ベーンの先端面と前記円筒室の内周面との間、前記ベーンの下面と前記円筒室の底部との間、および前記ベーンの上面と前記蓋の下面との間の隙間を塞ぐシール材として機能する摺動部材をさらに有する
     ことを特徴とするロータリダンパ。
PCT/JP2017/018245 2016-05-25 2017-05-15 ロータリダンパ WO2017204022A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3022223A CA3022223A1 (en) 2016-05-25 2017-05-15 Rotary damper
EP17802615.9A EP3467337A4 (en) 2016-05-25 2017-05-15 ROTARY SHOCK ABSORBER
CN201780029768.3A CN109154350B (zh) 2016-05-25 2017-05-15 旋转阻尼器
US16/301,288 US10844925B2 (en) 2016-05-25 2017-05-15 Rotary damper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016104540A JP6774786B2 (ja) 2016-05-25 2016-05-25 ロータリダンパ
JP2016-104540 2016-05-25

Publications (1)

Publication Number Publication Date
WO2017204022A1 true WO2017204022A1 (ja) 2017-11-30

Family

ID=60412528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018245 WO2017204022A1 (ja) 2016-05-25 2017-05-15 ロータリダンパ

Country Status (6)

Country Link
US (1) US10844925B2 (ja)
EP (1) EP3467337A4 (ja)
JP (1) JP6774786B2 (ja)
CN (1) CN109154350B (ja)
CA (1) CA3022223A1 (ja)
WO (1) WO2017204022A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6764690B2 (ja) * 2016-05-23 2020-10-07 オイレス工業株式会社 ロータリダンパ
JP6817118B2 (ja) * 2017-03-15 2021-01-20 オイレス工業株式会社 ロータリダンパ
CN111350786A (zh) * 2020-04-13 2020-06-30 今创集团股份有限公司 一种单向可调大扭矩旋转变阻尼器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012215209A (ja) * 2011-03-31 2012-11-08 Oiles Corp ロータリダンパ
JP2014070640A (ja) * 2012-09-27 2014-04-21 Kayaba Ind Co Ltd ロータリダンパ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1628811A (en) * 1926-05-19 1927-05-17 Houde Eng Corp Shock absorber
JP3053156B2 (ja) 1994-04-28 2000-06-19 日立粉末冶金株式会社 流体圧ダンパ
JP3981172B2 (ja) 1996-12-05 2007-09-26 不二ラテックス株式会社 回転ダンパ
US6318522B1 (en) * 1999-06-04 2001-11-20 Delphi Technologies, Inc. Rotary damper with magnetic seals
DE60227991D1 (de) * 2001-11-27 2008-09-11 Ishikawa Tekko Kk Gteil sowie hilfsmechanismus für den drehvorgang
JP4462887B2 (ja) 2003-10-06 2010-05-12 トックベアリング株式会社 回転ダンパ
JP5228604B2 (ja) 2008-04-28 2013-07-03 オイレス工業株式会社 ダンパ及びこのダンパを具備した車両用シート
CN101828889A (zh) 2010-03-04 2010-09-15 中山市美图实业有限公司 一种可调旋转缓冲器
CN201624592U (zh) 2010-03-04 2010-11-10 中山市美图实业有限公司 旋转缓冲器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012215209A (ja) * 2011-03-31 2012-11-08 Oiles Corp ロータリダンパ
JP2014070640A (ja) * 2012-09-27 2014-04-21 Kayaba Ind Co Ltd ロータリダンパ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3467337A4 *

Also Published As

Publication number Publication date
JP6774786B2 (ja) 2020-10-28
EP3467337A1 (en) 2019-04-10
CN109154350B (zh) 2021-01-29
US20190353219A1 (en) 2019-11-21
JP2017211019A (ja) 2017-11-30
CN109154350A (zh) 2019-01-04
CA3022223A1 (en) 2017-11-30
US10844925B2 (en) 2020-11-24
EP3467337A4 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
TWI673444B (zh) 旋轉阻尼器
US9121468B2 (en) Rotary damper
CN109154349B (zh) 旋转式阻尼器
EP1710464A1 (en) Motion control device and automobile door
WO2018168788A1 (ja) ロータリダンパ
WO2017204022A1 (ja) ロータリダンパ
KR20090041348A (ko) 댐퍼
JP7076025B2 (ja) ダンパ
JP2016211737A (ja) 回転式流体調整装置
WO2022107423A1 (ja) ロータリダンパ
JP6577862B2 (ja) ロータリダンパ
KR20020085267A (ko) 회전식 오일 댐퍼
JP2016125514A (ja) ロータリダンパ装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3022223

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802615

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017802615

Country of ref document: EP

Effective date: 20190102