WO2017203830A1 - 末端変性共役ジエン系重合体、ゴム組成物、ゴム製品及び末端変性共役ジエン系重合体の製造方法 - Google Patents

末端変性共役ジエン系重合体、ゴム組成物、ゴム製品及び末端変性共役ジエン系重合体の製造方法 Download PDF

Info

Publication number
WO2017203830A1
WO2017203830A1 PCT/JP2017/013101 JP2017013101W WO2017203830A1 WO 2017203830 A1 WO2017203830 A1 WO 2017203830A1 JP 2017013101 W JP2017013101 W JP 2017013101W WO 2017203830 A1 WO2017203830 A1 WO 2017203830A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
conjugated diene
terminal
diene polymer
modified conjugated
Prior art date
Application number
PCT/JP2017/013101
Other languages
English (en)
French (fr)
Inventor
悠介 山縣
会田 昭二郎
重永 高野
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to CN201780031513.0A priority Critical patent/CN109153737A/zh
Priority to EP17802431.1A priority patent/EP3466985A4/en
Priority to US16/301,818 priority patent/US20190161571A1/en
Priority to JP2018519116A priority patent/JPWO2017203830A1/ja
Publication of WO2017203830A1 publication Critical patent/WO2017203830A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/08Isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/52Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from boron, aluminium, gallium, indium, thallium or rare earths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/54Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with other compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/54Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with other compounds thereof
    • C08F4/545Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with other compounds thereof rare earths being present, e.g. triethylaluminium + neodymium octanoate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/606Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by groups C08F4/60
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/619Component covered by group C08F4/60 containing a transition metal-carbon bond
    • C08F4/6192Component covered by group C08F4/60 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/03Narrow molecular weight distribution, i.e. Mw/Mn < 3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/40Chemical modification of a polymer taking place solely at one end or both ends of the polymer backbone, i.e. not in the side or lateral chains

Definitions

  • the present invention relates to a terminal-modified conjugated diene polymer, a rubber composition, a rubber product, and a method for producing a terminal-modified conjugated diene polymer.
  • natural rubber is known to have a cis-1,4 bond content of 99.7% in its microstructure, and it is considered that this high stereoregularity enhances stretched crystallinity. . Due to this elongation crystallinity, a rubber composition using natural rubber can realize high durability when used in a tire. It is also known that polybutadiene can improve tire durability by stereoregularly controlling the microstructure.
  • Patent Document 1 discloses that a terminal-modified butadiene polymer having a high cis-1,4 bond amount can be synthesized by using a catalyst system in which a conjugated diene monomer is added to a neodymium compound.
  • Patent Document 2 discloses a polymer having an active organometallic moiety obtained by polymerizing a conjugated diene compound in an organic solvent using a catalyst containing a lanthanum series rare earth element-containing compound with a specific modifier.
  • a technique for producing a modified conjugated diene-based polymer having a modification rate equal to or higher than a specific value and having a high cis-1,4 bond amount in the conjugated diene moiety by modification is disclosed.
  • Patent Document 1 and Patent Document 2 can achieve a high cis-1,4 bond amount, a conjugated diene polymer having a low molecular weight distribution has been desired from the viewpoint of improving fuel economy. Furthermore, even when the conjugated diene polymer is modified, it has been desired to develop a modified conjugated diene polymer having a high cis-1,4 bond amount and a low molecular weight distribution.
  • an object of the present invention is to provide a terminal-modified conjugated diene heavy polymer having a high cis-1,4 bond content and a low molecular weight distribution and excellent durability (abrasion resistance, fracture resistance, crack growth resistance, etc.). Another object is to provide a rubber composition and a rubber product excellent in durability by providing a coalescence and a production method thereof, and further using the terminal-modified conjugated diene polymer.
  • the present invention has been made based on such findings, and the gist thereof is as follows.
  • the terminal-modified conjugated diene polymer of the present invention is characterized in that the molecular weight distribution measured by gel permeation chromatography (GPC) is less than 2, and the cis-1,4 bond content is 95% or more.
  • GPC gel permeation chromatography
  • the modification rate is preferably 70% or more. This is because the effect of terminal modification can be obtained more efficiently.
  • the molecular weight distribution is preferably 1.7 or less. This is because further improvement in fuel economy can be expected.
  • the conjugated diene polymer constituting the terminal modified conjugated diene polymer is polybutadiene or polyisoprene. This is because a high cis-1,4 bond amount and a low molecular weight distribution of the terminal-modified conjugated diene polymer can be realized more reliably.
  • the terminal-modified conjugated diene polymer of the present invention is obtained by polymerizing a conjugated diene compound using a polymerization catalyst composition and modifying the terminal of the polymer obtained by the polymerization.
  • the rubber composition of the present invention includes the terminal-modified conjugated diene polymer of the present invention. With the above configuration, excellent durability can be realized.
  • the rubber product of the present invention is characterized by using the rubber composition of the present invention. With the above configuration, excellent durability can be realized.
  • a terminal-modified conjugated diene polymer having a high cis-1,4 bond amount and a low molecular weight distribution and excellent durability (abrasion resistance, fracture resistance, crack growth resistance, etc.) and A manufacturing method thereof can be provided.
  • a rubber composition and a rubber product excellent in durability can be provided by using the terminal-modified conjugated diene polymer. is there.
  • the terminal-modified conjugated diene polymer of the present invention is a polymer obtained by polymerizing a conjugated diene compound (for example, 1,3-butadiene, isoprene, etc.) as a monomer or a polymer in which the terminal of the copolymer is modified.
  • a conjugated diene compound for example, 1,3-butadiene, isoprene, etc.
  • the molecular weight distribution measured by gel permeation chromatography (GPC) is less than 2, and the cis-1,4 bond content is 95% or more.
  • the amount of cis-1,4 bonds in the terminal-modified conjugated diene polymer of the present invention needs to be 95% or more from the viewpoint of realizing high durability, and should be 98% or more. Preferably, it is 98.5% or more.
  • the cis-1,4 bond content is 95% or more, the orientation of the polymer chain is good, the elongation crystallinity is sufficiently generated, and the elongation crystallinity necessary for realizing excellent durability is obtained. It can be secured.
  • the molecular weight distribution of the terminal-modified conjugated diene polymer of the present invention as measured by gel permeation chromatography (GPC) must be less than 2 from the viewpoint of improving fuel efficiency, and should be 1.7 or less. Preferably, it is 1.65 or less.
  • the molecular weight distribution is represented by Mw (weight average molecular weight) / Mn (number average molecular weight).
  • the GPC measurement conditions are not particularly limited as long as the molecular weight distribution can be accurately grasped.
  • the amount of 1,2-vinyl bonds in the terminal-modified conjugated diene polymer is preferably 2% or less, and more preferably 1% or less. This is because when the 1,2-vinyl bond amount is 2% or less, the stretched crystallinity is not easily inhibited.
  • the weight average molecular weight (Mw) of the terminal-modified conjugated diene polymer is preferably 300,000 or more, more preferably 400,000 or more, from the viewpoint of realizing higher durability.
  • the conjugated diene polymer constituting the terminal-modified conjugated diene polymer of the present invention is polybutadiene or polyisoprene from the viewpoint that the above-mentioned cis-1,4 bond amount and molecular weight distribution can be reliably obtained. Is preferred.
  • the modifying group of the terminal-modified conjugated diene polymer of the present invention is not particularly limited as long as the molecular weight distribution and the cis-1,4 bond amount described above can be satisfied. It can select suitably according to the use of a polymer.
  • the modification rate of the terminal-modified conjugated diene polymer is preferably 70% or more. This is because the effects (for example, low loss, wear resistance, braking performance, dispersibility of the filler, etc.) due to the modifying group can be obtained more efficiently. From the viewpoint of improving fuel efficiency, the modification rate is more preferably 70 to 90%. In addition, about the kind of concrete modified group, it can grasp
  • the method for producing the terminal-modified conjugated diene polymer of the present invention is not particularly limited as long as the above-described terminal-modified conjugated diene polymer can be obtained.
  • at least a conjugated diene compound is polymerized using a polymerization catalyst composition, and a polymerization process obtained by the polymerization is performed. It is preferable to include a terminal modification step in which the terminal of the coalescence is modified using a modifying agent.
  • the polymerization step is a step of polymerizing a conjugated diene compound using a polymerization catalyst composition.
  • a polymerization catalyst composition a rare earth element compound, a substituted or unsubstituted cyclopentadiene, a substituted or unsubstituted indene, and a point from which the terminal-modified conjugated diene polymer of the present invention can be obtained more reliably.
  • component a rare earth element compound
  • component a coordination compound having a cyclopentadiene skeleton selected from substituted or unsubstituted cyclopentadiene, substituted or unsubstituted indene, and substituted or unsubstituted fluorene
  • component ionic compound (B-1) and aluminoxane (B-2) comprising non-coordinating anion and cation, It is preferable to contain.
  • the polymerization catalyst composition is (C) Component: The following general formula (X): YR 31 a R 32 b R 33 c (X) (In the formula, Y is a metal selected from Group 1, Group 2, Group 12 and Group 13 of the periodic table, and R 31 and R 32 are hydrocarbon groups having 1 to 10 carbon atoms or hydrogen. R 33 is an hydrocarbon group having 1 to 10 carbon atoms, provided that R 31 , R 32 and R 33 may be the same or different from each other, and Y is from Group 1 of the Periodic Table When it is a selected metal, a is 1 and b and c are 0.
  • the polymerization catalyst composition contains the ionic compound (B-1) or a halogen compound (B-3) described later as the component (B), the polymerization catalyst composition preferably contains the component (C). .
  • the component (A) of the polymerization catalyst composition is a rare earth element compound.
  • the rare earth element compound includes a compound containing a rare earth element and preferably a nitrogen atom, and a reaction product of the compound and a Lewis base. .
  • the rare earth element compound is preferably a rare earth element compound represented by the following general formula (a-1).
  • M- (AQ 1 ) (AQ 2 ) (AQ 3 ) (a-1) (Wherein M is a scandium, yttrium or lanthanoid element; AQ 1 , AQ 2 and AQ 3 are functional groups which may be the same or different, and A is nitrogen, oxygen or sulfur. Yes, but with at least one MA bond)
  • gadolinium is particularly preferable from the viewpoint of enhancing the catalytic activity and reaction controllability.
  • examples of the functional group represented by AQ 1 , AQ 2 and AQ 3 include an amide group.
  • the amide group include aliphatic amide groups such as dimethylamide group, diethylamide group and diisopropylamide group; phenylamide group, 2,6-di-tert-butylphenylamide group, 2,6-diisopropylphenylamide group, 2,6-dineobenchylphenylamide group, 2-tert-butyl-6-isopropylphenylamide group, 2-tert-butyl-6-neoventylphenylamide group, 2-isopropyl-6-neobutenylphenyl Amide groups, arylamide groups such as 2,4,6-tert-butylphenylamide groups; bistrialkylsilylamide groups such as bistrimethylsilylamide groups, and in particular, from the viewpoint
  • the rare earth element compound represented by the general formula (a-1) (that is, M- (OQ 1 ) (OQ 2 ) (OQ 3 )) is not particularly limited.
  • R may be the same or different and is an alkyl group having 1 to 10 carbon atoms.
  • the compound (I) or compound (II) mentioned above can be used conveniently.
  • the rare earth element compound represented by the general formula (a-1) (that is, M- (SQ 1 ) (SQ 2 ) (SQ 3 )) is not particularly limited.
  • R may be the same or different and is an alkyl group having 1 to 10 carbon atoms.
  • the compound (III) or compound (IV) mentioned above can be used conveniently.
  • the component (B) used in the polymerization catalyst composition in the production method is a compound containing an ionic compound (B-1) and an aluminoxane (B-2). Further, as the component (B), a halogen compound (B-3) may be contained. In addition, the total content of the component (B) in the polymerization catalyst composition is preferably 0.1 to 50 times mol of the component (A).
  • the ionic compound represented by (B-1) comprises a non-coordinating anion and cation, and can react with the rare earth element compound (A) to generate a cationic transition metal compound.
  • a compound etc. can be mentioned.
  • the non-coordinating anion tetravalent boron anions such as tetraphenyl borate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluoro) Phenyl) borate, tetrakis (pentafluorophenyl) borate, tetrakis (tetrafluoromethylphenyl) borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (
  • examples of the cation include a carbonium cation, an oxonium cation, an ammonium cation, a phosphonium cation, a cycloheptatrienyl cation, and a ferrocenium cation having a transition metal.
  • Specific examples of the carbonium cation include trisubstituted carbonium cations such as triphenylcarbonium cation and tri (substituted phenyl) carbonium cation, and more specifically, as tri (substituted phenyl) carbonyl cation, Examples include tri (methylphenyl) carbonium cation, tri (dimethylphenyl) carbonium cation, and the like.
  • ammonium cations include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation (eg, tri (n-butyl) ammonium cation); N, N-dimethylanilinium N, N-dialkylanilinium cations such as cations, N, N-diethylanilinium cations, N, N-2,4,6-pentamethylanilinium cations; dialkylammonium cations such as diisopropylammonium cations and dicyclohexylammonium cations Is mentioned.
  • trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation (eg, tri (n-butyl)
  • the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation.
  • the ionic compound is preferably a compound selected and combined from the above-mentioned non-coordinating anions and cations, specifically, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, triphenylcarbohydrate. Preferred is nitrotetrakis (pentafluorophenyl) borate.
  • These ionic compounds can be used alone or in combination of two or more.
  • the content of the ionic compound in the polymerization catalyst composition is preferably 0.1 to 10 times mol, more preferably about 1 time mol for the component (A).
  • the aluminoxane of (B-2) is a compound obtained by bringing an organoaluminum compound and a condensing agent into contact with each other, and has, for example, a repeating unit represented by the general formula: (—Al (R ′) O—)
  • R ′ is a hydrocarbon group having 1 to 10 carbon atoms, and some of the hydrocarbon groups may be substituted with a halogen atom and / or an alkoxy group
  • the degree of polymerization is preferably 5 or more, more preferably 10 or more.
  • R ′ examples include a methyl group, an ethyl group, a propyl group, and an isobutyl group. Among these, a methyl group is preferable.
  • organoaluminum compound used as the raw material for the aluminoxane include trialkylaluminums such as trimethylaluminum, triethylaluminum, tributylaluminum, triisobutylaluminum, and mixtures thereof, and trimethylaluminum is particularly preferable.
  • an aluminoxane using a mixture of trimethylaluminum and tributylaluminum as a raw material can be suitably used as the aluminoxane of (B-2).
  • the content of the aluminoxane (B-2) in the polymerization catalyst composition is such that the element ratio Al / M between the aluminum element Al of the aluminoxane and the rare earth element M constituting the component (A) is about 10 to 1000. It is preferable to do so.
  • the halogen compound (B-3) comprises at least one of a Lewis acid, a complex compound of a metal halide and a Lewis base, and an organic compound containing an active halogen.
  • a Lewis acid for example, the rare earth element compound as the component (A) And a transition metal compound, a halogenated transition metal compound, or a compound in which the transition metal center is deficient in charge.
  • a complex compound of a metal halide and a Lewis base can be preferably used as the halogen compound (B-3) rather than a Lewis acid.
  • the total content of the halogen compound (B-3) in the polymerization catalyst composition is preferably 1 to 5 times the mol of the component (A).
  • boron-containing halogen compounds such as B (C 6 F 5 ) 3 and aluminum-containing halogen compounds such as Al (C 6 F 5 ) 3 can be used, as well as the third, fourth, A halogen compound containing an element belonging to Group 5, 6 or 8 can also be used, and preferably an aluminum halide or an organometallic halide is used.
  • halogen element chlorine or bromine is preferable.
  • the Lewis acid examples include methyl aluminum dibromide, methyl aluminum dichloride, ethyl aluminum dibromide, ethyl aluminum dichloride, butyl aluminum dibromide, butyl aluminum dichloride, dimethyl aluminum bromide, dimethyl aluminum chloride, diethyl aluminum bromide, diethyl Aluminum chloride, dibutylaluminum bromide, dibutylaluminum chloride, methylaluminum sesquibromide, methylaluminum sesquichloride, ethylaluminum sesquibromide, ethylaluminum sesquichloride, dibutyltin dichloride, aluminum tribromide, antimony trichloride, antimony pentachloride, phosphorus trichloride, Pentachloride Phosphorus, tin tetrachloride, titanium tetrachloride, tungsten hexachloride, etc., among which diethylalumin
  • a compound containing two or more halogen atoms in one compound is more reactive than a compound having only one halogen atom, and the amount used can be reduced. Since it becomes possible, it can be used more suitably.
  • ethylaluminum dichloride can be used more suitably than ethylaluminum chloride.
  • Examples of the metal halide constituting the complex compound of the metal halide and Lewis base include beryllium chloride, beryllium bromide, beryllium iodide, magnesium chloride, magnesium bromide, magnesium iodide, calcium chloride, calcium bromide, iodine.
  • a phosphorus compound, a carbonyl compound, a nitrogen compound, an ether compound, an alcohol or the like is preferable.
  • tri-2-ethylhexyl phosphate, tricresyl phosphate, acetylacetone, 2-ethylhexanoic acid, versatic acid, 2 -Ethylhexyl alcohol, 1-decanol, lauryl alcohol are preferred.
  • organic compound containing active halogen examples include benzyl chloride.
  • the component (C) preferably used in the polymerization catalyst composition has the following general formula (X): YR 31 a R 32 b R 33 c (X) (In the formula, Y is a metal selected from Group 1, Group 2, Group 12 and Group 13 of the periodic table, and R 31 and R 32 are hydrocarbon groups having 1 to 10 carbon atoms or hydrogen. R 33 is an hydrocarbon group having 1 to 10 carbon atoms, provided that R 31 , R 32 and R 33 may be the same or different from each other, and Y is from Group 1 of the Periodic Table When it is a selected metal, a is 1 and b and c are 0.
  • organoaluminum compound of the general formula (Xa) examples include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, and tripentylaluminum.
  • Trihexylaluminum tricyclohexylaluminum, trioctylaluminum
  • ethyl aluminum dihydride, n-propyl aluminum Um dihydride include isobutyl aluminum dihydride and the like, among these, triethylaluminum, triisobutylaluminum, hydrogenated diethylaluminum, hydrogenated diisobutylaluminum are preferred.
  • the organoaluminum compound as the component (C) described above can be used alone or in combination of two or more.
  • the content of the organoaluminum compound in the polymerization catalyst composition is preferably 1 to 50 times mol, more preferably about 10 times mol for the component (A).
  • the component (D) contained in the polymerization catalyst composition is a coordination compound having a cyclopentadiene skeleton selected from substituted or unsubstituted cyclopentadiene, substituted or unsubstituted indene, and substituted or unsubstituted fluorene.
  • a coordination compound having a cyclopentadiene skeleton selected from substituted or unsubstituted cyclopentadiene, substituted or unsubstituted indene, and substituted or unsubstituted fluorene.
  • the coordination compound having a cyclopentadiene skeleton is not particularly limited as long as it has a cyclopentadiene skeleton selected from substituted or unsubstituted cyclopentadiene, substituted or unsubstituted indene, and substituted or unsubstituted fluorene.
  • it is preferably a compound having an indenyl group from the viewpoint that higher catalytic activity can be obtained. This is because the activity can be enhanced without using toluene, which has a large environmental load, as a solvent for polymerization.
  • examples of the coordination compound having an indenyl group include indene, 1-methylindene, 1-ethylindene, 1-benzylindene, 2-phenylindene, 2-methylindene, 2-ethylindene, 2-benzylindene. , 3-methylindene, 3-ethylindene, 3-benzylindene and the like.
  • the polymerization catalyst composition is produced, for example, by dissolving the components (A) to (D) in a solvent.
  • the addition order of each component is not specifically limited. From the viewpoint of improving the polymerization activity and shortening the polymerization initiation induction period, it is preferable that these components are mixed in advance, reacted and aged.
  • the aging temperature is about 0 to 100 ° C., preferably 20 to 80 ° C. When the temperature is less than 0 ° C., the aging is not sufficiently performed, and when the temperature exceeds 100 ° C., the catalytic activity may be reduced or the molecular weight distribution may be broadened.
  • the aging time is not particularly limited, and can be ripened by contacting in the line before adding to the polymerization reaction tank. Usually, 0.5 minutes or more is sufficient, and stable for several days.
  • the polymerization method is not particularly limited, but it is preferable to sequentially add the reactants to the reaction system (performed in one pot) from the viewpoint that a desired conjugated diene polymer can be obtained without performing complicated steps.
  • arbitrary methods such as a solution polymerization method, a suspension polymerization method, a liquid phase block polymerization method, an emulsion polymerization method, a gas phase polymerization method, a solid phase polymerization method, can be used.
  • the solvent used may be inert in the polymerization reaction, and examples thereof include normal hexane, toluene, cyclohexane, and a mixture thereof. Particularly, environmental load, cost, etc. From this point of view, cyclohexane, normal hexane, or a mixture thereof can be preferably used.
  • polymerization using polymerization terminators such as methanol, ethanol, and isopropanol.
  • the polymerization reaction of the conjugated diene compound is preferably performed in an atmosphere of an inert gas, preferably nitrogen gas or argon gas.
  • the polymerization temperature of the polymerization reaction is not particularly limited, but is preferably in the range of ⁇ 100 ° C. to 300 ° C., for example, and can be about room temperature. When the polymerization temperature is raised, the cis-1,4 selectivity of the polymerization reaction may be lowered.
  • the pressure for the polymerization reaction is preferably in the range of 0.1 to 10.0 MPa in order to sufficiently incorporate the conjugated diene compound into the polymerization reaction system.
  • the reaction time of the above polymerization reaction is not particularly limited and is preferably in the range of, for example, 1 second to 10 days, but can be appropriately selected depending on conditions such as the type of catalyst and polymerization temperature.
  • the terminal modification step is a step of modifying the terminal of the conjugated diene polymer obtained by the polymerization step using a modifier. This terminal modification step is preferably performed in the same reaction system as the polymerization step (performed in one pot).
  • the modifier used in the terminal modification step has a functional group capable of performing a substitution reaction or an addition reaction with the active organometallic moiety on the polymer having the active organometallic moiety. Moreover, a functional group is imparted to the polymer by reacting a compound not containing active protons that deactivates the active organometallic site, or the molecular weight is increased by coupling.
  • Typical modifiers include azacyclopropane group, ketone group, carboxyl group, thiocarboxyl group, carbonate, carboxylic acid anhydride, carboxylic acid metal salt, acid halide, urea group, thiourea group, amide group, thioamide Group, isocyanate group, thioisocyanate group, halogenated isocyano group, epoxy group, thioepoxy group, imine group, and MZ bond (where M is Sn, Si, Ge or P, and Z is a halogen atom) It preferably contains at least one kind of functional group selected from the group having a) and does not contain active protons and onium salts that deactivate the active organometallic moiety.
  • the modifying agent is preferably at least one selected from the following compounds (a) to (j).
  • the compound (a) is a compound represented by the following general formula (V).
  • X 1 to X 5 are a hydrogen atom or a halogen atom, or a carbonyl group, thiocarbonyl group, isocyanate group, thioisocyanate group, epoxy group, thioepoxy group, halogenated silyl group, hydrocarbyloxysilyl group, and sulfonyloxy. It represents a monovalent functional group containing at least one selected from the group and not containing active protons and onium salts.
  • X 1 to X 5 may be the same or different from each other, but at least one of them is not a hydrogen atom.
  • R 1 to R 5 each independently represents a single bond or a divalent hydrocarbon group having 1 to 18 carbon atoms.
  • the divalent hydrocarbon group include an alkylene group having 1 to 18 carbon atoms, an alkenylene group having 2 to 18 carbon atoms, an arylene group having 6 to 18 carbon atoms, and an aralkylene group having 7 to 18 carbon atoms.
  • an alkylene group having 1 to 18 carbon atoms, particularly an alkylene group having 1 to 10 carbon atoms is preferable.
  • the alkylene group may be linear, branched or cyclic, but is particularly preferably linear.
  • linear alkylene group examples include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, an octamethylene group, and a decamethylene group.
  • a plurality of aziridine rings may be bonded via any one of X 1 to X 5 and R 1 to R 5 .
  • Examples of the compound (a) represented by the general formula (V) include 1-acetylaziridine, 1-propionylaziridine, 1-butyrylaziridine, 1-isobutyrylaziridine, 1-valerylaziridine, 1-iso Valeryl aziridine, 1-pivaloyl aziridine, 1-acetyl-2-methylaziridine, 2-methyl-1-propionylaziridine, 1-butyryl-2-methylaziridine, 2-methyl-1-isobutyrylaziridine, 2 -Methyl-1-valerylaziridine, 1-isovaleryl-2-methylaziridine, 2-methyl-1-pivaloylaziridine, ethyl 3- (1-aziridinyl) propionate, propyl 3- (1-aziridinyl) propionate, butyl 3- (1-aziridinyl) propionate, ethylene glycol Bis [3- (1-aziridinyl) propionate], trimethylo
  • examples of the compound (b) include a halogenated organometallic compound or a halogenated metal compound represented by R 6 n M′Z 4-n , M′Z 4 or M′Z 3. .
  • R 6 is the same or different and is a hydrocarbon group having 1 to 20 carbon atoms
  • M ′ is a tin atom, silicon atom, germanium atom or phosphorus atom
  • Z is a halogen atom
  • n is an integer of 0 to 3
  • examples of the compound (b) include triphenyltin chloride, tributyltin chloride, triisopropyltin chloride, trihexyltin chloride, trioctyltin chloride, diphenyltin dichloride, dibutyltin.
  • Examples include dichloride, dihexyltin dichloride, dioctyltin dichloride, phenyltin trichloride, butyltin trichloride, octyltin trichloride, tin tetrachloride and the like.
  • examples of the compound (b) include triphenylchlorosilane, trihexylchlorosilane, trioctylchlorosilane, tributylchlorosilane, trimethylchlorosilane, diphenyldichlorosilane, dihexyldichlorosilane.
  • examples of the compound (b) include triphenyl germanium chloride, dibutyl germanium dichloride, diphenyl germanium dichloride, butyl germanium trichloride, germanium tetrachloride and the like.
  • examples of the compound (b) include phosphorus trichloride.
  • an organometallic compound containing an ester group or a carbonyl group represented by the following formula in the molecule may be used as a modifier.
  • R 7 n M ′ (— R 8 —COOR 9 ) 4-n or R 7 n M ′ (— R 8 —COR 9 ) 4-n (Wherein R 7 to R 8 are the same or different and are hydrocarbon groups having 1 to 20 carbon atoms, R 9 is a hydrocarbon group having 1 to 20 carbon atoms, and includes a carbonyl group or an ester group in the side chain.
  • M ′ is a tin atom, silicon atom, germanium atom or phosphorus atom, and n is an integer of 0 to 3)
  • Compound (c) is a heterocumulene compound, which is a denaturant having a Y ⁇ C ⁇ Y ′ bond in the molecule.
  • Y is a carbon atom, oxygen atom, nitrogen atom or sulfur atom
  • Y ′ is an oxygen atom, nitrogen atom or sulfur atom.
  • Y is a carbon atom and Y ′ is an oxygen atom
  • it is a ketene compound
  • Y is a carbon atom and Y ′ is a sulfur atom
  • Y ′ is an oxygen atom, it is an isocyanate compound, when Y is a nitrogen atom, Y ′ is a sulfur atom, it is a thioisocyanate compound, and when Y and Y ′ are both nitrogen atoms, they are carbodiimide compounds.
  • Y and Y ′ are both oxygen atoms, carbon dioxide
  • Y is an oxygen atom
  • Y ′ is a sulfur atom, carbonyl sulfide
  • Y and Y ′ are both sulfur atoms, carbon disulfide. is there.
  • the compound (c) is not limited to these combinations.
  • examples of the ketene compound include ethyl ketene, butyl ketene, phenyl ketene, and toluyl ketene.
  • examples of the thioketene compound include ethylenethioketene, butylthioketene, phenylthioketene, toluylthioketene, and the like.
  • examples of the isocyanate compound include phenyl isocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane diisocyanate, polymeric type diphenylmethane diisocyanate, hexamethylene diisocyanate, and the like.
  • Examples of the thioisocyanate compound include phenylthioisocyanate, 2,4-tolylenediisocyanate, hexamethylenedithioisocyanate, and the like.
  • Examples of the carbodiimide compound include N, N′-diphenylcarbodiimide, N, N′-ethylcarbodiimide, and the like.
  • the compound (d) is a hetero three-membered ring compound having a bond represented by the following general formula (VI).
  • Y ′ is an oxygen atom or a sulfur atom
  • the compound (d) for example, when Y ′ is an oxygen atom, it is an epoxy compound, and when it is a sulfur atom, it is a thiirane compound.
  • the epoxy compound include ethylene oxide, propylene oxide, cyclohexene oxide, styrene oxide, epoxidized soybean oil, and epoxidized natural rubber.
  • the thiirane compound include thiirane, methylthiirane, and phenylthiirane.
  • Compound (e) is a halogenated isocyano compound.
  • Examples of the halogenated isocyano compound of the compound (e) include 2-amino-6-chloropyridine, 2,5-dibromopyridine, 4-chloro-2-phenylquinazoline, 2,4,5-tribromoimidazole, 3 , 6-dichloro-4-methylpyridazine, 3,4,5-trichloropyridazine, 4-amino-6-chloro-2-mercaptopyrimidine, 2-amino-4-chloro-6-methylpyrimidine, 2-amino-4 , 6-dichloropyrimidine, 6-chloro-2,4-dimethoxypyrimidine, 2-chloropyrimidine, 2,4-dichloro-6-methylpyrimidine, 4,6-dichlor
  • Compound (f) is, R 10 - (COOH) m , R 11 (COZ) m, R 12 - (COO-R 13), R 14 -OCOO-R 15, R 16 - (COOCO-R 17) m or A carboxylic acid, an acid halide, an ester compound, a carbonate compound, or an acid anhydride represented by the following general formula (VII). (Wherein R 10 to R 18 are the same or different and are hydrocarbon groups having 1 to 50 carbon atoms, Z is a halogen atom, and m is an integer of 1 to 5)
  • examples of the carboxylic acid in the compound (f) include acetic acid, stearic acid, adipic acid, maleic acid, benzoic acid, acrylic acid, methacrylic acid, phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, pyro
  • examples of the carboxylic acid in the compound (f) include acetic acid, stearic acid, adipic acid, maleic acid, benzoic acid, acrylic acid, methacrylic acid, phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, pyro
  • Examples of the acid halide in the compound (f) include acetic acid chloride, propionic acid chloride, butanoic acid chloride, isobutanoic acid chloride, octanoic acid chloride, acrylic acid chloride, benzoic acid chloride, stearic acid chloride, phthalic acid chloride, maleic acid.
  • Examples include acid chloride, oxalic acid chloride, acetyl iodide, benzoyl iodide, acetyl fluoride, and benzoyl fluoride.
  • ester compound in the compound (f) examples include ethyl acetate, ethyl stearate, diethyl adipate, diethyl maleate, methyl benzoate, ethyl acrylate, ethyl methacrylate, diethyl phthalate, dimethyl terephthalate, Examples include tributyl meritate, tetraoctyl pyromellitic acid, hexaethyl meritate, phenyl acetate, polymethyl methacrylate, polyethyl acrylate, and polyisobutyl acrylate.
  • carbonate compound examples include dimethyl carbonate, diethyl carbonate, dipropyl carbonate, and carbonate.
  • Examples include dihexyl and diphenyl carbonate.
  • acid anhydrides include intermolecular acid anhydrides such as acetic anhydride, propionic anhydride, isobutyric anhydride, isovaleric anhydride, heptanoic anhydride, benzoic anhydride, cinnamic anhydride, succinic anhydride, anhydrous
  • intramolecular acid anhydrides such as methyl succinic acid, maleic anhydride, glutaric anhydride, citraconic anhydride, phthalic anhydride, and styrene-maleic anhydride copolymers.
  • the compounds listed in the compound (f) contain an aprotic polar group such as an ether group or tertiary amino group in the coupling agent molecule as long as the object of the present invention is not impaired. It doesn't matter. Moreover, a compound (f) can be used individually by 1 type, or 2 or more types can also be mixed and used for it. Furthermore, the compound (f) may contain a compound containing a free alcohol group or phenol group as an impurity.
  • Compound (g) is a carboxylic acid represented by R 19 k M ′′ (OCOR 20 ) 4-k , R 21 k M ′′ (OCO—R 22 —COOR 23 ) 4-k , or a compound represented by the following general formula (VIII): It is a metal salt of an acid.
  • R 19 to R 25 are the same or different, a hydrocarbon group having 1 to 20 carbon atoms, M ′′ is a tin atom, a silicon atom or a germanium atom, and k is an integer of 0 to 3)
  • R 21 k M ′′ (OCO—R 22 —COOR 23 ) 4-k in the compound (g) include diphenyltin bismethylmalate, diphenyltin bis-2-ethylhexarate, diphenyltin bisoctylmalate, Diphenyltin bisbenzylmalate, di-n-butyltin bismethylmalate, di-n-butyltin bis-2-ethylhexarate, di-n-butyltin bisoctylmalate, di-n-butyltin bisbenzylmalate, di -T-butyltin bismethylmalate, di-t-butyltin bis-2-ethylhexarate, di-t-butyltin bisoctylmalate, di-t-butyltin bisbenzylmalate, diisobutyltin bismethylmalate, diisobutyl Tin bis-2-ethyl
  • examples of the compound represented by the formula (VIII) in the compound (g) include diphenyltin maleate, di-n-butyltin maleate, di-t-butyltin maleate, diisobutyltin maleate, and diisopropyltin maleate.
  • Compound (h) is an N-substituted aminoketone, N-substituted aminothioketone, N-substituted aminoaldehyde, N-substituted aminothioaldehyde, or —C— ( ⁇ M) —N ⁇ bond (M is an oxygen atom) Or a sulfur atom).
  • Examples of the compound (h) include 4-dimethylaminoacetophenone, 4-diethylaminoacetophenone, 1,3-bis (diphenylamino) -2-propanone, 1,7-bis (methylethylamino) -4-heptanone, 4- Dimethylaminobenzophenone, 4-di-t-butylaminobenzophenone, 4-diphenylaminobenzophenone, 4,4'-bis (dimethylamino) benzophenone, 4,4'-bis (diethylamino) benzophenone, 4,4'-substituted bis N-substituted aminoketones such as (diphenylamino) benzophenone and the corresponding N-aminothioketone; N-substituted aminoaldehydes such as 4-dimethylaminobenzaldehyde, 4-diphenylaminobenzaldehyde, 4-divinylaminobenzaldehyde and the
  • Compound (i) is a compound having an N ⁇ C— bond.
  • the compound having an N ⁇ C— bond is an organic cyano compound represented by the general formula R 26 —CN (where R 26 is an aliphatic hydrocarbon, aromatic hydrocarbon, or heterocyclic compound). is there.
  • 2-cyanopyridine 3-cyanopyridine, acrylonitrile, etc .
  • electrophilic compounds represented by ketones, aldehydes, epoxies, specifically, benzaldehyde, benzophenone, 4-4′-bis (diethylamino) benzophenone , 3-glycidoxypropyltrimethicysilane, allyl glycidyl ether
  • organic compounds having a vinyl group specifically, propylene, 1-butene, 1-hexene, styrene, vinyl naphthalene, vinyl phosphate, vinyl acetate ether, Examples include vinyl pivaloylate, vinyltrimethylsilane, and triethoxyvinylsilane.
  • the compound (j) is a compound having a phosphate residue represented by the following general formula (IX).
  • each of R 27 and R 28 independently represents a linear or branched alkyl group having 1 to 20 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, and A monovalent hydrocarbon group selected from monovalent aromatic hydrocarbon groups having 6 to 20 carbon atoms, or a hydrogen atom
  • a phosphate residue represented by the following general formula (IXa) can be mentioned.
  • the above compounds (a) to (j) can be used singly or in combination of two or more, and used in combination with a modifying agent other than compounds (a) to (j). You can also.
  • a solution reaction a solution containing unreacted monomers used during polymerization may be suitable.
  • a solution reaction a solution containing unreacted monomers used during polymerization may be suitable.
  • a solution reaction a solution containing unreacted monomers used during polymerization may be suitable.
  • denaturation reaction You may carry out using a batch type reactor, You may carry out by a continuous type using apparatuses, such as a multistage continuous type reactor and an in-line mixer.
  • the modification reaction is preferably carried out after completion of the polymerization reaction and before performing various operations necessary for solvent removal, water treatment, heat treatment, polymer isolation, and the like.
  • the polymerization temperature of the conjugated diene polymer can be used as it is. Specifically, a preferable range is 20 to 100 ° C. If the temperature is low, the viscosity of the polymer tends to increase, and if the temperature is high, the polymerization active terminal tends to be deactivated.
  • the amount of the modifier used relative to the component (A) of the polymerization catalyst composition varies depending on the terminal modification rate of the resulting modified polymer polymer, but is preferably 0.1 to 100, more preferably in molar ratio. Is 1.0-50.
  • the modification reaction advances more and the polymer which is excellent in the low exothermic property and abrasion resistance which does not produce
  • This denaturation reaction is usually carried out with stirring at room temperature to 100 ° C., preferably in the range of 0.5 minutes to 2 hours, more preferably 3 minutes to 1 hour.
  • a conjugated diene polymer having a high terminal modification rate (preferably 70% or more) can be obtained by polymerizing with a catalyst and polymerization conditions for obtaining a high terminal living rate and subsequently performing a terminal modification reaction.
  • the rubber composition of the present invention includes at least a rubber component, and further includes a filler, a crosslinking agent, and other components as necessary. And the rubber composition of this invention contains the terminal modified conjugated diene type polymer of this invention as said rubber component. Thereby, excellent durability (abrasion resistance, fracture resistance, crack growth resistance, etc.) can be obtained.
  • the rubber component includes isoprene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR) ethylene-propylene rubber (EPM), ethylene-propylene.
  • Other rubber components such as non-conjugated diene rubber (EPDM), polysulfide rubber, silicone rubber, fluorine rubber, urethane rubber, isoprene copolymer can be mixed. These may be used individually by 1 type and may use 2 or more types together.
  • the filler that can be contained in the rubber composition of the present invention is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include carbon black and inorganic filler, and at least one selected from carbon black and inorganic filler is preferable. Here, it is more preferable that the rubber composition contains carbon black. In addition, the said filler is mix
  • the blending amount (content) of the filler is not particularly limited and may be appropriately selected depending on the intended purpose. It is preferably 10 to 100 parts by weight, preferably 20 to 80 parts by weight with respect to 100 parts by weight of the rubber component. Part is more preferable, and 30 to 60 parts by mass is particularly preferable.
  • the blending amount of the filler is 10 parts by mass or more, an effect of adding the filler (durability, etc.) is observed, and when it is 100 parts by mass or less, the rubber component is sufficiently mixed with the filler. And the performance as a rubber composition can be improved.
  • the blending amount of the filler is within the more preferable range or the particularly preferable range, it is advantageous in terms of a balance between processability, low loss property and durability.
  • the inorganic filler is not particularly limited and may be appropriately selected depending on the intended purpose.
  • silica, aluminum hydroxide, clay, alumina, talc, mica, kaolin, glass balloon, glass beads, calcium carbonate examples thereof include magnesium carbonate, magnesium hydroxide, magnesium oxide, titanium oxide, potassium titanate, and barium sulfate. These may be used individually by 1 type and may use 2 or more types together.
  • silane coupling agent suitably.
  • the crosslinking agent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a sulfur crosslinking agent, an organic peroxide crosslinking agent, an inorganic crosslinking agent, a polyamine crosslinking agent, and a resin crosslinking agent. And sulfur compound-based crosslinking agents, oxime-nitrosamine-based crosslinking agents, and the like. Among these, sulfur-based crosslinking agents are more preferable as rubber compositions for tires.
  • the content of the crosslinking agent is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the rubber component. If the content of the cross-linking agent is less than 0.1 parts by mass, the cross-linking does not proceed sufficiently, or if it exceeds 20 parts by mass, the cross-linking tends to proceed during kneading with some cross-linking agents. Or the physical properties of the crosslinked product may be impaired.
  • the rubber composition of the present invention can be used in combination with a vulcanization accelerator as another component.
  • a vulcanization accelerator examples include guanidine, aldehyde-amine, aldehyde-ammonia, thiazole, and sulfene. Amide-type, thiourea-type, thiuram-type, dithiocarbamate-type, xanthate-type compounds and the like can be used. If necessary, softeners, vulcanization aids, colorants, flame retardants, lubricants, antioxidants, anti-aging agents, anti-scorch agents, other compounding agents, etc. may be used depending on the intended use. it can.
  • the rubber composition of the present invention may be crosslinked and used as a crosslinked rubber composition.
  • the crosslinked rubber composition is not particularly limited as long as it is obtained by crosslinking the rubber composition of the present invention, and can be appropriately selected according to the purpose.
  • the crosslinking conditions are not particularly limited and may be appropriately selected depending on the intended purpose. However, a temperature of 120 to 200 ° C. and a heating time of 1 minute to 900 minutes are preferable.
  • the rubber product of the present invention is characterized by using the rubber composition of the present invention.
  • the obtained rubber product is excellent in durability (wear resistance, fracture resistance, crack growth resistance, etc.).
  • examples of the types of rubber products include tires, anti-vibration rubbers, seismic isolation rubbers, belts (conveyor belts), rubber crawlers, and various hoses.
  • the rubber product is preferably a tire from the viewpoint that durability is very useful.
  • an application site part at the time of using the said rubber composition for a tire
  • gum such as a tread, a base tread, a sidewall, a side reinforcement, and a bead filler Member.
  • the application site is a tread.
  • a conventional method can be used. For example, normal tire manufacturing members such as a carcass layer, a belt layer, and a tread layer made of unvulcanized rubber and / or cord are sequentially laminated on a tire molding drum, and the drum is removed to obtain a green tire. . Then, a desired tire (for example, a pneumatic tire) can be manufactured by heating and vulcanizing the green tire according to a conventional method.
  • Example 1 A sufficiently dried 1000 ml pressure-resistant glass reactor was purged with nitrogen, and 300 ml of a hexane solution containing 30 g of 1,3-butadiene was added. On the other hand, in a glove box under a nitrogen atmosphere, trisbistrimethylsilylamidogadolinium (Gd [N (SiMe 3 ) 2 ] 3 ) 9.9 ⁇ mol, 1-benzylindene 19.8 ⁇ mol, TIBAL (triisobutylaluminum) was placed in a glass container. 0.82 mmol and DIBAL (diisobutylaluminum hydride) 0.33 mmol were mixed and left for 12 hours.
  • Gd [N (SiMe 3 ) 2 ] 3 trisbistrimethylsilylamidogadolinium
  • MMAO-3A manufactured by Tosoh Corp.
  • DEAC diethylaluminum chloride
  • terminal-modified polymer A After the polymerization, 1.5 times equivalent of 4,4′-diethylaminobenzophenone was added to the total amount of the alkylaluminum added and reacted for 1 hour. Thereafter, 1 ml of an isopropanol solution containing 5% by mass of 2,2′-methylene-bis (4-ethyl-6-t-butylphenol) was added to stop the reaction, and the polymer was separated with a large amount of IPA. Vacuum-dried to obtain a terminal-modified polymer (terminal-modified polymer A). In addition, the yield of the obtained terminal modified polymer A was 30 g.
  • Example 2 A terminal-modified polymer was obtained by performing a polymerization reaction, a modification reaction, and a subsequent treatment under the same conditions as in Example 1, except that 2-cyanopyridine was used instead of 4,4′-diethylaminobenzophenone of Example 1. (Terminal-modified polymer B) was obtained. The yield of the obtained polymer B was 30 g.
  • Example 3 A terminal-modified polymer (terminal-modified polymer) was prepared by performing a polymerization reaction, a modification reaction and a subsequent treatment under the same conditions as in Example 1 except that acrylonitrile was used instead of 4,4′-diethylaminobenzophenone of Example 1. Polymer C) was obtained. The yield of the obtained polymer C was 30 g.
  • Example 4 The polymerization reaction, the modification reaction and the subsequent treatment were performed under the same conditions as in Example 1 except that 3-glycidoxypropyltrimethoxysilane was used instead of 4,4′-diethylaminobenzophenone in Example 1. A terminal-modified polymer (terminal-modified polymer D) was obtained. The yield of the obtained polymer D was 30 g.
  • Example 5 Except for using acrylic glycidyl ether in place of 4,4′-diethylaminobenzophenone of Example 1, a polymerization reaction, a modification reaction and a subsequent treatment were performed under the same conditions as in Example 1 to obtain a terminal-modified polymer ( End-modified polymer E) was obtained.
  • the yield of the obtained polymer E was 30 g.
  • MMAO-3A manufactured by Tosoh
  • Me 2 NHPhB C 6 F 5 ) 4
  • diethylaluminum chloride was charged to form a catalyst solution.
  • the catalyst solution was taken out from the glove box, an amount of 9 ⁇ mol of the catalyst solution in terms of neodymium was added to the monomer solution, and polymerization was performed at 50 ° C. for 60 minutes.
  • terminal-modified polymer F After the polymerization, 1.5 times equivalent of 4,4′-diethylaminobenzophenone was added to the total amount of the alkylaluminum added and reacted for 1 hour. Thereafter, 1 ml of an isopropanol solution containing 5% by mass of 2,2′-methylene-bis (4-ethyl-6-t-butylphenol) was added to stop the reaction, and the polymer was separated with a large amount of IPA. Vacuum-dried to obtain a terminal-modified polymer (terminal-modified polymer F). In addition, the yield of the obtained terminal modified polymer F was 25 g.
  • Comparative Example 2 A terminal-modified polymer was obtained by performing a polymerization reaction, a modification reaction and a subsequent treatment under the same conditions as in Comparative Example 1 except that 2-cyanopyridine was used instead of 4,4′-diethylaminobenzophenone in Comparative Example 1. (Terminal-modified polymer G) was obtained. The yield of the obtained polymer G was 25 g.
  • Comparative Example 4 The polymerization reaction, the modification reaction, and the subsequent treatment were performed under the same conditions as in Comparative Example 1 except that 3-glycidoxypropyltrimethoxysilane was used instead of 4,4′-diethylaminobenzophenone in Comparative Example 1. A terminal-modified polymer (terminal-modified polymer I) was obtained. The yield of the obtained polymer I was 25 g.
  • the molecular weight distribution (Mw / Mn) was determined by gel permeation chromatography [GPC: HLC-8220GPC manufactured by Tosoh, column: GMHXL-2 manufactured by Tosoh, detector: differential refractometer (RI)].
  • GPC gel permeation chromatography
  • column GMHXL-2 manufactured by Tosoh
  • detector differential refractometer
  • RI differential refractometer
  • a terminal-modified conjugated diene polymer having a high cis-1,4 bond amount and a low molecular weight distribution and excellent durability (abrasion resistance, fracture resistance, crack growth resistance, etc.) and A manufacturing method thereof can be provided. Furthermore, according to this invention, the rubber composition and rubber product excellent in durability can be provided by using the said terminal modified conjugated diene type polymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

高いシス-1,4結合量及び低い分子量分布を有し、耐久性(耐摩耗性、耐破壊特性、耐亀裂成長性等)に優れた末端変性共役ジエン系重合体を提供することを目的とする。 上記目的を達成するべく、本発明は、ゲル浸透クロマトグラフィー(GPC)測定による分子量分布が2未満であり、シス-1,4結合量が95%以上であることを特徴とする。

Description

末端変性共役ジエン系重合体、ゴム組成物、ゴム製品及び末端変性共役ジエン系重合体の製造方法
 本発明は、末端変性共役ジエン系重合体、ゴム組成物、ゴム製品及び末端変性共役ジエン系重合体の製造方法に関するものである。
 近年、省エネルギー及び省資源の社会的要請のもと、自動車の低燃費化に対する要求が強くなりつつあることから、耐摩耗性及び耐亀裂成長性等の耐久性に優れたタイヤが求められている。耐久性を向上させるための技術としては、タイヤに配合するゴム成分のミクロ構造を立体規則的に制御することが知られている。
 ここで、天然ゴムは、そのミクロ構造においてシス-1,4結合量が99.7%であることが知られており、この高い立体規則性により伸長結晶性を高めていると考えられている。この伸長結晶性により、天然ゴムを用いたゴム組成物は、タイヤに用いられた場合に高い耐久性を実現できる。また、ポリブタジエンについても、ミクロ構造を立体規則的に制御することで、タイヤの耐久性を向上できることが知られている。
 ここで、特許文献1には、ネオジム化合物に共役ジエン単量体を加えた触媒系を用いることで、シス-1,4結合量が高い末端変性ブタジエン系重合体を合成できることが開示されている。
 また、特許文献2には、ランタン系列希土類元素含有化合物を含む触媒を用い、有機溶媒中で共役ジエン系化合物を重合して得られた活性有機金属部位を有する重合体を、特定の変性剤で変性することで、変性率が特定の値以上であり、且つ共役ジエン部のシス-1,4結合量が高い変性共役ジエン系重合体を製造する技術が開示されている。
特開2000-86719号公報 国際公開第2006/112450号
 しかしながら、特許文献1及び特許文献2の技術では、高いシス-1,4結合量については実現できるものの、低燃費性向上の点から、分子量分布が低い共役ジエン系重合体が望まれていた。さらに、共役ジエン系重合体を変性させた場合であっても、高いシス-1,4結合量及び低い分子量分布を有する変性共役ジエン系重合体の開発が望まれていた。
 そこで、本発明の目的は、高いシス-1,4結合量及び低い分子量分布を有し、耐久性(耐摩耗性、耐破壊特性、耐亀裂成長性等)に優れた末端変性共役ジエン系重合体及びその製造方法を提供すること、さらに、該末端変性共役ジエン重合体を用いることで、耐久性に優れたゴム組成物及びゴム製品を提供することにある。
 本発明は、このような知見に基づきなされたもので、その要旨は以下の通りである。
 本発明の末端変性共役ジエン系重合体は、ゲル浸透クロマトグラフィー(GPC)測定による分子量分布が2未満であり、シス-1,4結合量が95%以上であることを特徴とする。
 上記構成によって、高いシス-1,4結合量及び低い分子量分布をもつ末端変性共役ジエン系重合体が得られ、得られた末端変性共役ジエン系重合体は耐久性に優れる。
 また、本発明の末端変性共役ジエン系重合体では、変性率が70%以上であることが好ましい。末端変性による効果をより効率的に得ることができるからである。
 さらに、本発明の末端変性共役ジエン系重合体では、前記分子量分布が1.7以下であることが好ましい。より低燃費性の向上が期待できるからである。
 さらにまた、本発明の末端変性共役ジエン系重合体では、前記末端変性共役ジエン系重合体を構成する共役ジエン系重合体が、ポリブタジエン又はポリイソプレンであることが好ましい。末端変性共役ジエン系重合体の、高いシス-1,4結合量及び低い分子量分布を、より確実に実現できるからである。
 また、本発明の末端変性共役ジエン系重合体は、重合触媒組成物を用いて共役ジエン系化合物を重合させ、該重合によって得られた重合体の末端を変性させてなり、前記重合触媒組成物が、希土類元素化合物と、置換又は無置換のシクロペンタジエン、置換又は無置換のインデン、及び、置換又は無置換のフルオレンから選択されるシクロペンタジエン骨格を有する配位化合物と、非配位性アニオン及びカチオンからなるイオン性化合物と、アルミノキサンとを含むことが好ましい。末端変性共役ジエン系重合体の、高いシス-1,4結合量及び低い分子量分布を、より確実に実現できるからである。
 本発明のゴム組成物は、本発明の末端変性共役ジエン系重合体を含むことを特徴とする。
 上記構成により、優れた耐久性を実現できる。
 本発明のゴム製品は、本発明のゴム組成物を用いたことを特徴とする。
 上記構成により、優れた耐久性を実現できる。
 本発明によれば、高いシス-1,4結合量及び低い分子量分布を有し、耐久性(耐摩耗性、耐破壊特性、耐亀裂成長性等)に優れた末端変性共役ジエン系重合体及びその製造方法を提供することができる。
 加えて、本発明によれば、上記末端変性共役ジエン系重合体を用いることで、耐久性に優れたゴム組成物及びゴム製品を提供することができる。
ある。
<末端変性共役ジエン系重合体>
 以下、本発明の末端変性共役ジエン系重合体について、その実施形態に基づき具体的に説明する。
 本発明の末端変性共役ジエン系重合体は、共役ジエン系化合物(例えば、1,3-ブタジエン、イソプレン等)を単量体として重合させた重合体又は共重合体の末端を変性させた重合体であり、ゲル浸透クロマトグラフィー(GPC)測定による分子量分布が2未満であり、シス-1,4結合量が95%以上であることを特徴とする。
 本発明の末端変性共役ジエン系重合体のシス-1,4結合量としては、上述したように、高い耐久性を実現する点から95%以上とする必要があり、98%以上であることが好ましく、98.5%以上であることがより好ましい。
 前記シス-1,4結合量が95%以上である場合には、ポリマー鎖の配向が良好となり、伸長結晶性の生成が十分となり、優れた耐久性を実現するために必要な伸長結晶性を確保できる。
 また、本発明の末端変性共役ジエン系重合体のゲル浸透クロマトグラフィー(GPC)測定による分子量分布については、低燃費性向上の点から2未満である必要があり、1.7以下であることが好ましく、1.65以下であることがより好ましい。
 ここで、前記分子量分布とは、Mw(重量平均分子量)/Mn(数平均分子量)で表されるものである。GPC測定の条件については、前記分子量分布を正確に把握できるものであれば特に限定はされない。
 さらに、前記末端変性共役ジエン系重合体の1,2-ビニル結合量は、2%以下であることが好ましく、1%以下であることがより好ましい。
 前記1,2-ビニル結合量を2%以下とすることで、前記伸長結晶性が阻害を受けにくくなるからである。
 なお、前記末端変性共役ジエン系重合体の重量平均分子量(Mw)は、より高い耐久性を実現する点から、30万以上であることが好ましく、さらに40万以上であることがより好ましい。
 本発明の末端変性共役ジエン系重合体を構成する共役ジエン系重合体については、上述したシス-1,4結合量及び分子量分布を確実に得ることができる点から、ポリブタジエン又はポリイソプレンであることが好ましい。
 なお、本発明の末端変性共役ジエン系重合体の変性基については、上述した分子量分布及びシス-1,4結合量を満たすことができるものであれば特に限定はされず、該末端変性共役ジエン系重合体の用途に応じて、適宜選択することができる。前記末端変性共役ジエン系重合体の変性率については、70%以上であることが好ましい。変性基による効果(例えば、低ロス性、耐摩耗性、制動性、充填材の分散性等)をより効率的にえることができるからである。また、低燃費性向上の点から、前記変性率は、70~90%であることがより好ましい。
 なお、具体的な変性基の種類については、後述する末端変性共役ジエン系重合体の製造方法の中で説明した変性剤によって把握することができる。
<末端変性共役ジエン系重合体の製造方法>
 本発明の末端変性共役ジエン系重合体を製造する方法については、上述した末端変性共役ジエン系重合体を得ることができるものであれば特に限定はされない。
 ただし、確実に本発明の末端変性共役ジエン系重合体を製造できるという点からは、少なくとも、共役ジエン系化合物について重合触媒組成物を用いて重合させる、重合工程と、該重合によって得られた重合体の末端を、変性剤を用いて変性させる、末端変性工程とを含むことが好ましい。
(重合工程)
 前記重合工程は、重合触媒組成物を用いて共役ジエン系化合物を重合する工程である。該重合触媒組成物としては、本発明の末端変性共役ジエン系重合体をより確実に得ることができる点から、希土類元素化合物と、置換又は無置換のシクロペンタジエン、置換又は無置換のインデン、及び、置換又は無置換のフルオレンから選択されるシクロペンタジエン骨格を有する配位化合物と、非配位性アニオン及びカチオンからなるイオン性化合物と、アルミノキサンとを含むことが好ましい。
―重合触媒組成物―
 前記重合触媒組成物については、
(A)成分:希土類元素化合物と、
(D)成分:置換又は無置換のシクロペンタジエン、置換又は無置換のインデン、及び、置換又は無置換のフルオレンから選択されるシクロペンタジエン骨格を有する配位化合物と、
(B)成分:非配位性アニオン及びカチオンとからなるイオン性化合物(B-1)及びアルミノキサン(B-2)と、
を含むことが好ましい。
 より好適には、前記重合触媒組成物は、
(C)成分:下記一般式(X):
     YR31 32 33  ・・・ (X)
(式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R31及びR32は炭素数1~10の炭化水素基又は水素原子で、R33は炭素数1~10の炭化水素基であり、但し、R31、R32及びR33はそれぞれ互いに同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a,b及びcは1である)で表される化合物を含む。
 なお、該重合触媒組成物が、(B)成分として上記イオン性化合物(B-1)や、後述するハロゲン化合物(B-3)を含む場合には、上記(C)成分を含むことが好ましい。
 前記重合触媒組成物の(A)成分については、希土類元素化合物であり、この希土類元素化合物については、希土類元素及び好ましくは窒素原子を含有する化合物や、当該化合物とルイス塩基との反応物を含む。
 上記希土類元素化合物としては、下記一般式(a-1)で表される希土類元素化合物であることが好ましい。
  M-(AQ)(AQ)(AQ) ・・・(a-1)
(式中、Mは、スカンジウム、イットリウム又はランタノイド元素であり;AQ、AQ及びAQは、同一であっても異なっていてもよい官能基であり、Aは、窒素、酸素又は硫黄であり、但し、少なくとも1つのM-A結合を有する)
 また、上記Mについては、特に、触媒活性及び反応制御性を高める観点から、ガドリニウムが好ましい。
 Aが窒素である場合、AQ、AQ及びAQ(即ち、NQ、NQ及びNQ)で表される官能基としては、アミド基等が挙げられる。
 アミド基としては、例えば、ジメチルアミド基、ジエチルアミド基、ジイソプロピルアミド基等の脂肪族アミド基;フェニルアミド基、2,6-ジ-tert-ブチルフェニルアミド基、2,6-ジイソプロピルフェニルアミド基、2,6-ジネオベンチルフェニルアミド基、2-tert-ブチル-6-イソプロピルフェニルアミド基、2-tert-ブチル-6-ネオベンチルフェニルアミド基、2-イソプロピル-6-ネオベンチルフェニルアミド基、2,4,6-tert-ブチルフェニルアミド基等のアリールアミド基;ビストリメチルシリルアミド基等のビストリアルキルシリルアミド基が挙げられ、特に、脂肪族炭化水素に対する溶解性の観点から、ビストリメチルシリルアミド基;等が好ましい。
 上記官能基は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 Aが酸素である場合、一般式(a-1)(即ち、M-(OQ)(OQ)(OQ))で表される希土類元素化合物としては、特に制限されないが、例えば、下記に挙げられる化合物(I)~(II):
   (RO)M             (I)
で表される希土類アルコラート、
   (R-COM          (II)
で表される希土類カルボキシレート、等が挙げられる。ここで、上記化合物(I)及び(II)の各式中、Rは、同一であっても異なっていてもよく、炭素数1~10のアルキル基である。
 なお、(A)成分としては、希土類元素と炭素との結合を有しないことが好ましいため、上述した化合物(I)又は化合物(II)を好適に使用できる。
 Aが硫黄である場合、一般式(a-1)(即ち、M-(SQ)(SQ)(SQ))で表される希土類元素化合物としては、特に制限されないが、例えば、下記に挙げられる化合物(III)及び(IV):
   (RS)M             (III)
で表される希土類アルキルチオラート、
   (R-CSM          (IV)
で表される化合物、等が挙げられる。ここで、上記化合物(III)及び(IV)の各式中、Rは、同一であっても異なっていてもよく、炭素数1~10のアルキル基である。
 なお、(A)成分としては、希土類元素と炭素との結合を有しないことが好ましいため、上述した化合物(III)又は化合物(IV)を好適に使用できる。
 前記製造方法における重合触媒組成物に用いる(B)成分は、イオン性化合物(B-1)及びアルミノキサン(B-2)を含む化合物である。また、(B)成分として、ハロゲン化合物(B-3)を含んでいてもよい。
 また、前記重合触媒組成物における(B)成分の合計の含有量は、(A)成分に対して0.1~50倍モルであることが好ましい。
 前記(B-1)で表されるイオン性化合物は、非配位性アニオン及びカチオンとからなり、前記(A)成分である希土類元素化合物と反応してカチオン性遷移金属化合物を生成できるイオン性化合物等を挙げることができる。ここで、非配位性アニオンとしては、4価のホウ素アニオン、例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド-7,8-ジカルバウンデカボレート等が挙げられる。一方、カチオンとしては、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等を挙げることができる。カルボニウムカチオンの具体例としては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、より具体的には、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオン等が挙げられる。アンモニウムカチオンの具体例としては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン(例えば、トリ(n-ブチル)アンモニウムカチオン)等のトリアルキルアンモニウムカチオン;N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N-2,4,6-ペンタメチルアニリニウムカチオン等のN,N-ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンの具体例としては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。従って、イオン性化合物としては、上述の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物が好ましく、具体的には、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。これらのイオン性化合物は、一種単独で使用することも、2種以上を混合して用いることもできる。
 なお、前記重合触媒組成物におけるイオン性化合物の含有量は、(A)成分に対して0.1~10倍モルであることが好ましく、約1倍モルであることがさらに好ましい。
 前記(B-2)のアルミノキサンは、有機アルミニウム化合物と縮合剤とを接触させることによって得られる化合物であり、例えば、一般式:(-Al(R’)O-)で示される繰り返し単位を有する鎖状アルミノキサン又は環状アルミノキサン(式中、R'は炭素数1~10の炭化水素基であり、一部の炭化水素基はハロゲン原子及び/又はアルコキシ基で置換されていてもよく、繰り返し単位の重合度は、5以上が好ましく、10以上が更に好ましい)を挙げることができる。ここで、R'として、具体的には、メチル基、エチル基、プロピル基、イソブチル基等が挙げられ、これらの中でも、メチル基が好ましい。また、アルミノキサンの原料として用いられる有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリブチルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム及びその混合物等が挙げられ、トリメチルアルミニウムが特に好ましい。
 例えば、トリメチルアルミニウムとトリブチルアルミニウムとの混合物を原料として用いたアルミノキサンを(B-2)のアルミノキサンとして好適に用いることができる。
 なお、前記重合触媒組成物におけるアルミノキサン(B-2)の含有量は、アルミノキサンのアルミニウム元素Alと、(A)成分を構成する希土類元素Mとの元素比率Al/Mが、10~1000程度となるようにすることが好ましい。
 前記(B-3)のハロゲン化合物は、ルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも一種からなり、例えば、前記(A)成分である希土類元素化合物と反応して、カチオン性遷移金属化合物やハロゲン化遷移金属化合物や遷移金属中心が電荷不足の化合物を生成することができる。特に、空気中の安定性を考慮すると、(B-3)のハロゲン化合物としては、ルイス酸よりも金属ハロゲン化物とルイス塩基との錯化合物の方が好適に使用できる。なお、前記重合触媒組成物における(B-3)のハロゲン化合物の合計の含有量は、(A)成分に対して1~5倍モルであることが好ましい。
 上記ルイス酸としては、B(C653等のホウ素含有ハロゲン化合物、Al(C653等のアルミニウム含有ハロゲン化合物を使用できる他、周期律表中の第3、4、5、6又は8族に属する元素を含有するハロゲン化合物を用いることもでき、好ましくはアルミニウムハロゲン化物又は有機金属ハロゲン化物が挙げられる。ハロゲン元素としては、塩素又は臭素が好ましい。前記ルイス酸として、具体的には、メチルアルミニウムジブロマイド、メチルアルミニウムジクロライド、エチルアルミニウムジブロマイド、エチルアルミニウムジクロライド、ブチルアルミニウムジブロマイド、ブチルアルミニウムジクロライド、ジメチルアルミニウムブロマイド、ジメチルアルミニウムクロライド、ジエチルアルミニウムブロマイド、ジエチルアルミニウムクロライド、ジブチルアルミニウムブロマイド、ジブチルアルミニウムクロライド、メチルアルミニウムセスキブロマイド、メチルアルミニウムセスキクロライド、エチルアルミニウムセスキブロマイド、エチルアルミニウムセスキクロライド、ジブチルスズジクロライド、アルミニウムトリブロマイド、三塩化アンチモン、五塩化アンチモン、三塩化リン、五塩化リン、四塩化スズ、四塩化チタン、六塩化タングステン等が挙げられ、これらの中でも、ジエチルアルミニウムクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライド、ジエチルアルミニウムブロマイド、エチルアルミニウムセスキブロマイド、エチルアルミニウムジブロマイドが特に好ましい。このようなハロゲン化合物を使用する場合、1つの化合物中にハロゲン原子を2つ以上含む化合物の方が、ハロゲン原子1つのみを有する化合物よりも、反応性がよく、その使用量を減じることが可能となるため、より好適に使用できる。例えば、エチルアルミニムクロライドよりもエチルアルミニウムジクロライドの方がより好適に使用可能である。
 前記金属ハロゲン化物とルイス塩基との錯化合物を構成する金属ハロゲン化物としては、塩化ベリリウム、臭化ベリリウム、ヨウ化ベリリウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、塩化カドミウム、臭化カドミウム、ヨウ化カドミウム、塩化水銀、臭化水銀、ヨウ化水銀、塩化マンガン、臭化マンガン、ヨウ化マンガン、塩化レニウム、臭化レニウム、ヨウ化レニウム、塩化銅、臭化銅、ヨウ化銅、塩化銀、臭化銀、ヨウ化銀、塩化金、ヨウ化金、臭化金等が挙げられ、これらの中でも、塩化マグネシウム、塩化カルシウム、塩化バリウム、塩化マンガン、塩化亜鉛、塩化銅が好ましく、塩化マグネシウム、塩化マンガン、塩化亜鉛、塩化銅が特に好ましい。
 また、前記金属ハロゲン化物とルイス塩基との錯化合物を構成するルイス塩基としては、リン化合物、カルボニル化合物、窒素化合物、エーテル化合物、アルコール等が好ましい。具体的には、リン酸トリブチル、リン酸トリ-2-エチルヘキシル、リン酸トリフェニル、リン酸トリクレジル、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、ジエチルホスフィノエタン、ジフェニルホスフィノエタン、アセチルアセトン、ベンゾイルアセトン、プロピオニトリルアセトン、バレリルアセトン、エチルアセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸フェニル、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジフェニル、酢酸、オクタン酸、2-エチルヘキサン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸、トリエチルアミン、N,N-ジメチルアセトアミド、テトラヒドロフラン、ジフェニルエーテル、2-エチルヘキシルアルコール、オレイルアルコール、ステアリルアルコール、フェノール、ベンジルアルコール、1-デカノール、ラウリルアルコール等が挙げられ、これらの中でも、リン酸トリ-2-エチルヘキシル、リン酸トリクレジル、アセチルアセトン、2-エチルヘキサン酸、バーサチック酸、2-エチルヘキシルアルコール、1-デカノール、ラウリルアルコールが好ましい。
 前記活性ハロゲンを含む有機化合物としては、ベンジルクロライド等が挙げられる。
 前記重合触媒組成物に好適に用いられる(C)成分は、下記一般式(X):
     YR31 32 33   ・・・(X)
(式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R31及びR32は炭素数1~10の炭化水素基又は水素原子で、R33は炭素数1~10の炭化水素基であり、但し、R31、R32及びR33はそれぞれ互いに同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a,b及びcは1である)で表される有機金属化合物であり、下記一般式(Xa):
     AlR313233 ・・・ (Xa)
(式中、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R31及びR32は炭素数1~10の炭化水素基又は水素原子で、R33は炭素数1~10の炭化水素基であり、但し、R31、R32及びR33はそれぞれ互いに同一又は異なっていてもよい)で表される有機アルミニウム化合物であることが好ましい。一般式(Xa)の有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ-n-プロピルアルミニウム、トリイソプロピルアルミニウム、トリ-n-ブチルアルミニウム、トリイソブチルアルミニウム、トリ-t-ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ-n-プロピルアルミニウム、水素化ジ-n-ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n-プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。以上に述べた(C)成分としての有機アルミニウム化合物は、一種単独で使用することも、2種以上を混合して用いることもできる。
 なお、前記重合触媒組成物における有機アルミニウム化合物の含有量は、(A)成分に対して1~50倍モルであることが好ましく、約10倍モルであることがさらに好ましい。
 前記重合触媒組成物に含まれる(D)成分は、置換又は無置換のシクロペンタジエン、置換又は無置換のインデン、及び、置換又は無置換のフルオレンから選択されるシクロペンタジエン骨格を有する配位化合物であり、立体障害効果によって、極めて高いシス-1,4結合量の末端変性共役ジエン系重合体をより高い収率で得ることができる。
 また、従来の助触媒として用いられていたアニオン性配位子となり得る化合物を用いる場合には、低温条件での重合が必要であったが、前記配位化合物を用いる場合には、高い溶解性および高い立体制御性のため、高温での重合が可能となる。
 前記シクロペンタジエン骨格を有する配位化合物は、置換又は無置換のシクロペンタジエン、置換又は無置換のインデン、及び、置換又は無置換のフルオレンから選択されるシクロペンタジエン骨格を有するものであれば特に限定はされないが、より高い触媒活性を得ることができる点からは、インデニル基を有する化合物であることが好ましい。重合の際の溶媒として環境負荷の大きいトルエンを使用することなく、活性を高めることができるからである。
 ここで、前記インデニル基を有する配位化合物としては、インデン、1-メチルインデン、1-エチルインデン、1-ベンジルインデン、2-フェニルインデン、2-メチルインデン、2-エチルインデン、2-ベンジルインデン、3-メチルインデン、3-エチルインデン、3-ベンジルインデン等が挙げられる。
 なお、前記重合触媒組成物の製造は、例えば、溶媒に(A)成分~(D)成分を溶解させることで製造される。
 その際、各成分の添加順序は、特に限定されない。重合活性の向上、重合開始誘導期間の短縮の観点からは、これら各成分を、予め混合して、反応させ、熟成させることが好ましい。ここで、熟成温度は、0~100℃程度であり、20~80℃が好ましい。0℃未満では、充分に熟成が行われにくく、100℃を超えると、触媒活性の低下や、分子量分布の広がりが起こる場合がある。また、熟成時間は、特に制限なく、重合反応槽に添加する前にライン中で接触させることでも熟成でき、通常は、0.5分以上あれば充分であり、数日間は安定である。
―重合方法―
 重合方法としては、特に限定はされないが、煩雑な工程を行うことなく所望の共役ジエン系重合体が得られる点から、反応系に反応物を順次投入する(ワンポットで行われる)ことが好ましい。重合方法の種類については、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の方法を用いることができる。また、重合反応に溶媒を用いる場合、用いられる溶媒は重合反応において不活性であればよく、例えば、ノルマルヘキサン、トルエン、シクロヘキサンまたそれらの混合物等が挙げられるが、特に環境への負荷、コスト等の観点から、シクロヘキサン、ノルマルヘキサン、又はこれらの混合物を好適に使用できる。
 また、前記重合工程においては、メタノール、エタノール、イソプロパノール等の重合停止剤を用いて、重合を停止させてもよい。
 前記重合工程において、共役ジエン系化合物の重合反応は、不活性ガス、好ましくは窒素ガスやアルゴンガスの雰囲気下において行われることが好ましい。上記重合反応の重合温度は、特に制限されないが、例えば、-100℃~300℃の範囲が好ましく、室温程度とすることもできる。なお、重合温度を上げると、重合反応のシス-1,4選択性が低下することがある。また、上記重合反応の圧力は、共役ジエン系化合物を十分に重合反応系中に取り込むため、0.1~10.0MPaの範囲が好ましい。また、上記重合反応の反応時間も特に制限がなく、例えば、1秒~10日の範囲が好ましいが、触媒の種類、重合温度等の条件によって適宜選択することができる。
(末端変性工程)
 前記末端変性工程は、前記重合工程によって得られた共役ジエン系重合体の末端を、変性剤を用いて変性させる工程である。この末端変性工程は、前記重合工程と同じ反応系で行われる(ワンポットで行われる)ことが好ましい。
 前記末端変性工程に用いられる変性剤は、活性有機金属部位を有している重合体に対して、該活性有機金属部位と置換反応又は付加反応を行いうる官能基を有する。また、活性有機金属部位を失活させるような活性プロトンを含まない化合物を反応させることによって重合体に官能基が付与され、又はカップリングによる分子量上昇が施される。
 代表的な変性剤としては、アザシクロプロパン基、ケトン基,カルボキシル基、チオカルボキシル基、炭酸塩、カルボン酸無水物、カルボン酸金属塩、酸ハロゲン化物、ウレア基、チオウレア基、アミド基、チオアミド基、イソシアネート基、チオイソシアネート基、ハロゲン化イソシアノ基、エポキシ基、チオエポキシ基、イミン基、及びM-Z結合(ただし、Mは、Sn、Si、Ge又はPであり、Zは、ハロゲン原子である)を有する基の中から選ばれる少なくとも一種の官能基を含み、且つ前記活性有機金属部位を失活させるような活性プロトン及びオニウム塩を含まないものが好ましい。
 さらに、具体的には、前記変性剤は、下記(a)~(j)の化合物の中から選択される少なくとも一種であることが好ましい。
 化合物(a)は、下記一般式(V)で表される化合物である。
Figure JPOXMLDOC01-appb-I000001
 上記式中、X~Xは水素原子若しくはハロゲン原子、又は、カルボニル基、チオカルボニル基、イソシアネート基、チオイソシアネート基、エポキシ基、チオエポキシ基、ハロゲン化シリル基、ヒドロカルビルオキシシリル基及びスルホニルオキシ基の中から選ばれる少なくとも一種を含み、活性プロトン及びオニウム塩を含まない一価の官能基を示す。X~Xは互いに同一でも異なっていてもよいが、それらの中の少なくとも1つは水素原子ではない。
 R~Rは、それぞれ独立に単結合又は炭素数1~18の二価の炭化水素基を示す。この二価の炭化水素基としては、例えば炭素数1~18のアルキレン基、炭素数2~18のアルケニレン基、炭素数6~18のアリーレン基、炭素数7~18のアラルキレン基などが挙げられるが、これらの中で、炭素数1~18のアルキレン基、特に炭素数1~10のアルキレン基が好ましい。このアルキレン基は直鎖状、枝分かれ状、環状のいずれであってもよいが、特に直鎖状のものが好適である。この直鎖状のアルキレン基の例としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基、デカメチレン基などが挙げられる。
 また、X~X及びR~Rのいずれかを介して複数のアジリジン環が結合していてもよい。
 また、化合物(a)は、前記一般式(V)において、X=水素原子及びR=単結合を同時に満たさないものであることが好ましい。
 前記一般式(V)で表される化合物(a)としては、例えば1-アセチルアジリジン、1-プロピオニルアジリジン、1-ブチリルアジリジン、1-イソブチリルアジリジン、1-バレリルアジリジン、1-イソバレリルアジリジン、1-ピバロイルアジリジン、1-アセチル-2-メチルアジリジン、2-メチル-1-プロピオニルアジリジン、1-ブチリル-2-メチルアジリジン、2-メチル-1-イソブチリルアジリジン、2-メチル-1-バレリルアジリジン、1-イソバレリル-2-メチルアジリジン、2-メチル-1-ピバロイルアジリジン、エチル 3-(1-アジリジニル)プロピオネート、プロピル 3-(1-アジリジニル)プロピオネート、ブチル 3-(1-アジリジニル)プロピオネート、エチレングリコール ビス[3-(1-アジリジニル)プロピオネート]、トリメチロールプロパン トリス[3-(1-アジリジニル)プロピオネート]、エチル 3-(2-メチル-1-アジリジニル)プロピオネート、プロピル 3-(2-メチル-1-アジリジニル)プロピオネート、ブチル 3-(2-メチル-1-アジリジニル)プロピオネート、エチレングリコール ビス[3-(2-メチル-1-アジリジニル)プロピオネート]、トリメチロールプロパン トリス[3-(2-メチル-1-アジリジニル)プロピオネート]、ネオペンチルグリコール ビス[3-(1-アジリジニル)プロピオネート]、ネオペンチルグリコールビス[3-(2-メチル-1-アジリジニル)プロピオネート]、ジ(1-アジリジニルカルボニル)メタン、1,2-ジ(1-アジリジニルカルボニル)エタン、1,3-ジ(1-アジリジニルカルボニル)プロパン、1,4-ジ(1-アジリジニルカルボニル)ブタン、1,5-ジ(1-アジリジニルカルボニル)ペンタン、ジ(2-メチル-1-アジリジニルカルボニル)メタン、1,2-ジ(2-メチル-1-アジリジニルカルボニル)エタン、1,3-ジ(2-メチル-1-アジリジニルカルボニル)プロパン、1,4-ジ(2-メチル-1-アジリジニルカルボニル)ブタンなどが挙げられるが、これらに限定されるものではない。
 また、化合物(b)としては、R M’Z4-n、又は、M’Z若しくはM’Zで表される、ハロゲン化有機金属化合物、又は、ハロゲン化金属化合物が挙げられる。
(式中、Rは同一又は異なり、炭素数1~20の炭化水素基、M’はスズ原子、ケイ素原子、ゲルマニウム原子又はリン原子、Zはハロゲン原子、nは0~3の整数である)
 上記式中、M’がスズ原子の場合には、化合物(b)としては、例えば、トリフェニルスズクロリド、トリブチルスズクロリド、トリイソプロピルスズクロリド、トリヘキシルスズクロリド、トリオクチルスズクロリド、ジフェニルスズジクロリド、ジブチルスズジクロリド、ジヘキシルスズジクロリド、ジオクチルスズジクロリド、フェニルスズトリクロリド、ブチルスズトリクロリド、オクチルスズトリクロリド、四塩化スズなどが挙げられる。
 また、上記式中、M’がケイ素原子の場合には、化合物(b)としては、例えば、トリフェニルクロロシラン、トリヘキシルクロロシラン、トリオクチルクロロシラン、トリブチルクロロシラン、トリメチルクロロシラン、ジフェニルジクロロシラン、ジヘキシルジクロロシラン、ジオクチルジクロロシラン、ジブチルジクロロシラン、ジメチルジクロロシラン、メチルジクロロシラン、フェニルクロロシラン、ヘキシルトリジクロロシラン、オクチルトリクロロシラン、ブチルトリクロロシラン、メチルトリクロロシラン、四塩化ケイ素などが挙げられる。
 さらに、上記式中、M’がゲルマニウム原子の場合には、化合物(b)としては、例えば、トリフェニルゲルマニウムクロリド、ジブチルゲルマニウムジクロリド、ジフェニルゲルマニウムジクロリド、ブチルゲルマニウムトリクロリド、四塩化ゲルマニウムなどが挙げられる。さらに、上記式中、M′がリン原子の場合には、化合物(b)としては、例えば三塩化リンなどが挙げられる。
 また、前記化合物(b)として、下記式で表されるエステル基、又はカルボニル基を分子中に含んだ、有機金属化合物を変性剤として使用することもできる。
  R M’(-R-COOR4-n、又は
  R M’(-R-COR4-n 
(式中、R~Rは同一又は異なり、炭素数1~20の炭化水素基、Rは炭素数1~20の炭化水素基であり、側鎖にカルボニル基又はエステル基を含んでいてもよく、M’はスズ原子、ケイ素原子、ゲルマニウム原子又はリン原子、nは0~3の整数である)
 なお、これらの化合物(b)は、任意の割合で併用してもよい。
 化合物(c)は、ヘテロクムレン化合物であり、分子中に、Y=C=Y’結合を有する変性剤である。
 上記式中、Yは炭素原子、酸素原子、窒素原子又は硫黄原子、Y’は酸素原子、窒素原子又は硫黄原子である。ここで、化合物(c)のうち、Yが炭素原子、Y’が酸素原子の場合、ケテン化合物であり、Yが炭素原子、Y’が硫黄原子の場合、チオケテン化合物であり、Yが窒素原子、Y’が酸素原子の場合、イソシアナート化合物であり、Yが窒素原子、Y’が硫黄原子の場合、チオイソシアナート化合物であり、Y及びY’がともに窒素原子の場合、カルボジイミド化合物であり、Y及びY’がともに酸素原子の場合、二酸化炭素であり、Yが酸素原子、Y’が硫黄原子の場合、硫化カルボニルであり、Y及びY’がともに硫黄原子の場合、二硫化炭素である。しかしながら、化合物(c)は、これらの組み合わせに限定されるものではない。
 このうち、ケテン化合物としては、例えば、エチルケテン、ブチルケテン、フェニルケテン、トルイルケテンなどが挙げられる。チオケテン化合物としては、例えばエチレンチオケテン、ブチルチオケテン、フェニルチオケテン、トルイルチオケテンなどが挙げられる。イソシアナート化合物としては、例えばフェニルイソシアナート、2,4-トリレンジイソシアナート、2,6-トリレンジイソシアナート、ジフェニルメタンジイソシアナート、ポリメリックタイプのジフェニルメタンジイソシアナート、ヘキサメチレンジイソシアナートなどが挙げられる。チオイソシアナート化合物としては、例えばフェニルチオイソシアナート、2,4-トリレンジチオイソシアナート、ヘキサメチレンジチオイソシアナートなどが挙げられる。カルボジイミド化合物としては、例えばN,N′-ジフェニルカルボジイミド、N,N′-エチルカルボジイミドなどが挙げられる。
 化合物(d)は、下記一般式(VI)で表される結合を有するヘテロ3員環化合物である。
Figure JPOXMLDOC01-appb-I000002
(式中、Y′は、酸素原子又は硫黄原子である)
 ここで、化合物(d)のうち、例えば、Y′が、酸素原子の場合、エポキシ化合物であり、硫黄原子の場合、チイラン化合物である。ここで、エポキシ化合物としては、例えばエチレンオキシド、プロピレンオキシド、シクロヘキセンオキシド、スチレンオキシド、エポキシ化大豆油、エポキシ化天然ゴムなどが挙げられる。また、チイラン化合物としては、例えばチイラン、メチルチイラン、フェニルチイランなどが挙げられる。
 化合物(e)は、ハロゲン化イソシアノ化合物である。
 該ハロゲン化イソシアノ化合物は、下記一般式で表される結合を有する。
   >N=C-X
(式中、Xはハロゲン原子である)
 化合物(e)のハロゲン化イソシアノ化合物としては、例えば、2-アミノ-6-クロロピリジン、2,5-ジブロモピリジン、4-クロロ-2-フェニルキナゾリン、2,4,5-トリブロモイミダゾール、3,6-ジクロロ-4-メチルピリダジン、3,4,5-トリクロロピリダジン、4-アミノ-6-クロロ-2-メルカプトピリミジン、2-アミノ-4-クロロ-6-メチルピリミジン、2-アミノ-4,6-ジクロロピリミジン、6-クロロ-2,4-ジメトキシピリミジン、2-クロロピリミジン、2,4-ジクロロ-6-メチルピリミジン、4,6-ジクロロ-2-(メチルチオ)ピリミジン、2,4,5,6-テトラクロロピリミジン、2,4,6-トリクロロピリミジン、2-アミノ-6-クロロピラジン、2,6-ジクロロピラジン、2,4-ビス(メチルチオ)-6-クロロ-1,3,5-トリアジン、2,4,6-トリクロロ-1,3,5-トリアジン、2-ブロモ-5-ニトロチアゾール、2-クロロベンゾチアゾール、2-クロロベンゾオキサゾールなどが挙げられる。
 化合物(f)は、R10-(COOH) 、R11(COZ) 、R12-(COO-R13)、R14-OCOO-R15、R16-(COOCO-R17)m 又は下記一般式(VII)で表される、カルボン酸、酸ハロゲン化物、エステル化合物、炭酸エステル化合物又は酸無水物である。
Figure JPOXMLDOC01-appb-I000003
(式中、R10~R18は同一又は異なり、炭素数1~50の炭化水素基、Zはハロゲン原子、mは1~5の整数である)
 ここで、化合物(f)におけるカルボン酸としては、例えば、酢酸、ステアリン酸、アジピン酸、マレイン酸、安息香酸、アクリル酸、メタアクリル酸、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸、メリット酸、ポリメタアクリル酸エステル化合物又はポリアクリル酸化合物の全あるいは部分加水分解物などが挙げられる。
 前記化合物(f)における酸ハロゲン化物としては、例えば、酢酸クロリド、プロピオン酸クロリド、ブタン酸クロリド、イソブタン酸クロリド、オクタン酸クロリド、アクリル酸クロリド、安息香酸クロリド、ステアリン酸クロリド、フタル酸クロリド、マレイン酸クロリド、オキサリン酸クロリド、ヨウ化アセチル、ヨウ化ベンゾイル、フッ化アセチル、フッ化ベンゾイルなどが挙げられる。
 前記化合物(f)におけるエステル化合物としては、例えば、酢酸エチル、ステアリン酸エチル、アジピン酸ジエチル、マレイン酸ジエチル、安息香酸メチル、アクリル酸エチル、メタアクリル酸エチル、フタル酸ジエチル、テレフタル酸ジメチル、トリメリット酸トリブチル、ピロメリット酸テトラオクチル、メリット酸ヘキサエチル、酢酸フェニル、ポリメチルメタクリレート、ポリエチルアクリレート、ポリイソブチルアクリレートなどが、また、炭酸エステル化合物としては、例えば炭酸ジメチル、炭酸ジエチル、炭酸ジプロピル、炭酸ジヘキシル、炭酸ジフェニルなどが挙げられる。酸無水物としては、例えば無水酢酸、無水プロピオン酸、無水イソ酪酸、無水イソ吉草酸、無水ヘプタン酸、無水安息香酸、無水ケイ皮酸などの分子間の酸無水物や、無水コハク酸、無水メチルコハク酸、無水マレイン酸、無水グルタル酸、無水シトラコン酸、無水フタル酸、スチレン-無水マレイン酸共重合体などの分子内の酸無水物が挙げられる。
 なお、化合物(f)に挙げた化合物は、本発明の目的を損なわない範囲で、カップリング剤分子中に、例えばエーテル基、3級アミノ基などの非プロトン性の極性基を含むものであっても構わない。また、化合物(f)は、1種単独で使用することも、あるいは2種以上を混合して用いることもできる。さらに、化合物(f)は、フリーのアルコール基、フェノール基を含む化合物を不純物として含むものであってもよい。
 化合物(g)は、R19 M”(OCOR204-k、R21 M”(OCO-R22-COOR234-k、又は下記一般式(VIII)で表される、カルボン酸の金属塩である。
Figure JPOXMLDOC01-appb-I000004
(式中、R19~R25は同一又は異なり、炭素数1~20の炭化水素基、M”はスズ原子、ケイ素原子又はゲルマニウム原子、kは0~3の整数である)
 ここで、化合物(g)におけるR19 M”(OCOR204-kとしては、例えば、トリフェニルスズラウレート、トリフェニルスズ-2-エチルヘキサテート、トリフェニルスズナフテート、トリフェニルスズアセテート、トリフェニルスズアクリレート、トリ-n-ブチルスズラウレート、トリ-n-ブチルスズ-2-エチルヘキサテート、トリ-n-ブチルスズナフテート、トリ-n-ブチルスズアセテート、トリ-n-ブチルスズアクリレート、トリ-t-ブチルスズラウレート、トリ-t-ブチルスズ-2-エチルヘキサテート、トリ-t-ブチルスズナフテート、トリ-t-ブチルスズアセテート、トリ-t-ブチルスズアクリレート、トリイソブチルスズラウレート、トリイソブチルスズ-2-エチルヘキサテート、トリイソブチルスズナフテート、トリイソブチルスズアセテート、トリイソブチルスズアクリレート、トリイソプロピルスズラウレート、トリイソプロピルスズ-2-エチルヘキサテート、トリイソプロピルスズナフテート、トリイソプロピルスズアセテート、トリイソプロピルスズアクリレート、トリヘキシルスズラウレート、トリヘキシルスズ-2-エチルヘキサテート、トリヘキシルスズアセテート、トリヘキシルスズアクリレート、トリオクチルスズラウレート、トリオクチルスズ-2-エチルヘキサテート、トリオクチルスズナフテート、トリオクチルスズアセテート、トリオクチルスズアクリレート、トリ-2-エチルヘキシルスズラウレート、トリ-2-エチルヘキシルスズ-2-エチルヘキサテート、トリ-2-エチルヘキシルスズナフテート、トリ-2-エチルヘキシルスズアセテート、トリ-2-エチルヘキシルスズアクリレート、トリステアリルスズラウレート、トリステアリルスズ-2-エチルヘキサテート、トリステアリルスズナフテート、トリステアリルスズアセテート、トリステアリルスズアクリレート、トリベンジルスズラウレート、トリベンジルスズ-2-エチルヘキサテート、トリベンジルスズナフテート、トリベンジルスズアセテート、トリベンジルスズアクリレート、ジフェニルスズジラウレート、ジフェニルスズ-2-エチルヘキサテート、ジフェニルスズジステアレート、ジフェニルスズジナフテート、ジフェニルスズジアセテート、ジフェニルスズジアクリレート、ジ-n-ブチルスズジラウレート、ジ-n-ブチルスズジ-2-エチルヘキサテート、ジ-n-ブチルスズジステアレート、ジ-n-ブチルスズジナフテート、ジ-n-ブチルスズジアセテート、ジ-n-ブチルスズジアクリレート、ジ-t-ブチルスズジラウレート、ジ-t-ブチルスズジ-2-エチルヘキサテート、ジ-t-ブチルスズジステアレート、ジ-t-ブチルスズジナフテート、ジ-t-ブチルスズジアセテート、ジ-t-ブチルスズジアクリレート、ジイソブチルスズジラウレート、ジイソブチルスズジ-2-エチルヘキサテート、ジイソブチルスズジステアレート、ジイソブチルスズジナフテート、ジイソブチルスズジアセテート、ジイソブチルスズジアクリレート、ジイソプロピルスズジラウレート、ジイソプロピルスズ-2-エチルヘキサテート、ジイソプロピルスズジステアレート、ジイソプロピルスズジナフテート、ジイソプロピルスズジアセテート、ジイソプロピルスズジアクリレート、ジヘキシルスズジラウレート、ジヘキシルスズジ-2-エチルヘキサテート、ジヘキシルスズジステアレート、ジヘキシルスズジナフテート、ジヘキシルスズジアセテート、ジヘキシルスズジアクリレート、ジ-2-エチルヘキシルスズジラウレート、ジ-2-エチルヘキシルスズ-2-エチルヘキサテート、ジ-2-エチルヘキシルスズジステアレート、ジ-2-エチルヘキシルスズジナフテート、ジ-2-エチルヘキシルスズジアセテート、ジ-2-エチルヘキシルスズジアクリレート、ジオクチルスズジラウレート、ジオクチルスズジ-2-エチルヘキサテート、ジオクチルスズジステアレート、ジオクチルスズジナフテート、ジオクチルスズジアセテート、ジオクチルスズジアクリレート、ジステアリルスズジラウレート、ジステアリルスズジ-2-エチルヘキサテート、ジステアリルスズジステアレート、ジステアリルスズジナフテート、ジステアリルスズジアセテート、ジステアリルスズジアクリレート、ジベンジルスズジラウレート、ジベンジルスズジ-2-エチルヘキサテート、ジベンジルスズジステアレート、ジベンジルスズジナフテート、ジベンジルスズジアセテート、ジベンジルスズジアクリレート、フェニルスズトリラウレート、フェニルスズトリ-2-エチルヘキサテート、フェニルスズトリナフテート、フェニルスズトリアセテート、フェニルスズトリアクリレート、n-ブチルスズトリラウレート、n-ブチルスズトリ-2-エチルヘキサテート、n-ブチルスズトリナフテート、n-ブチルスズトリアセテート、n-ブチルスズトリアクリレート、t-ブチルスズトリラウレート、t-ブチルスズトリ-2-エチルヘキサテート、t-ブチルスズトリナフテート、t-ブチルスズトリアセテート、t-ブチルスズトリアクリレート、イソブチルスズトリラウレート、イソブチルスズトリ-2-エチルヘキサテート、イソブチルスズトリナフテート、イソブチルスズトリアセテート、イソブチルスズトリアクリレート、イソプロピルスズトリラウレート、イソプロピルスズトリ-2-エチルヘキサテート、イソプロピルスズトリナフテート、イソプロピルスズトリアセテート、イソプロピルスズトリアクリレート、ヘキシルスズトリラウレート、ヘキシルスズトリ-2-エチルヘキサテート、ヘキシルスズトリナフテート、ヘキシルスズトリアセテート、ヘキシルスズトリアクリレート、オクチルスズトリラウレート、オクチルスズトリ-2-エチルヘキサテート、オクチルスズトリナフテート、オクチルスズトリアセテート、オクチルスズトリアクリレート、2-エチルヘキシルスズトリラウレート、2-エチルヘキシルスズトリ-2-エチルヘキサテート、2-エチルヘキシルスズトリナフテート、2-エチルヘキシルスズトリアセテート、2-エチルヘキシルスズトリアクリレート、ステアリルスズトリラウレート、ステアリルスズトリ-2-エチルヘキサテート、ステアリルスズトリナフテート、ステアリルスズトリアセテート、ステアリルスズトリアクリレート、ベンジルスズトリラウレート、ベンジルスズトリ-2-エチルヘキサテート、ベンジルスズトリナフテート、ベンジルスズトリアセテート、ベンジルスズトリアクリレートなどが挙げられる。
 また、化合物(g)におけるR21 M”(OCO-R22-COOR234-kとしては、例えば、ジフェニルスズビスメチルマレート、ジフェニルスズビス-2-エチルヘキサテート、ジフェニルスズビスオクチルマレート、ジフェニルスズビスベンジルマレート、ジ-n-ブチルスズビスメチルマレート、ジ-n-ブチルスズビス-2-エチルヘキサテート、ジ-n-ブチルスズビスオクチルマレート、ジ-n-ブチルスズビスベンジルマレート、ジ-t-ブチルスズビスメチルマレート、ジ-t-ブチルスズビス-2-エチルヘキサテート、ジ-t-ブチルスズビスオクチルマレート、ジ-t-ブチルスズビスベンジルマレート、ジイソブチルスズビスメチルマレート、ジイソブチルスズビス-2-エチルヘキサテート、ジイソブチルスズビスオクチルマレート、ジイソブチルスズビスベンジルマレート、ジイソプロピルスズビスメチルマレート、ジイソプロピルスズビス-2-エチルヘキサテート、ジイソプロピルスズビスオクチルマレート、ジイソプロピルスズビスベンジルマレート、ジヘキシルスズビスメチルマレート、ジヘキシルスズビス-2-エチルヘキサテート、ジヘキシルスズビスオクチルマレート、ジヘキシルスズビスベンジルマレート、ジ-2-エチルヘキシルスズビスメチルマレート、ジ-2-エチルヘキシルスズビス-2-エチルヘキサテート、ジ-2-エチルヘキシルスズビスオクチルマレート、ジ-2-エチルヘキシルスズビスベンジルマレート、ジオクチルスズビスメチルマレート、ジオクチルスズビス-2-エチルヘキサテート、ジオクチルスズビスオクチルマレート、ジオクチルスズビスベンジルマレート、ジステアリルスズビスメチルマレート、ジステアリルスズビス-2-エチルヘキサテート、ジステアリルスズビスオクチルマレート、ジステアリルスズビスベンジルマレート、ジベンジルスズビスメチルマレート、ジベンジルスズビス-2-エチルヘキサテート、ジベンジルスズビスオクチルマレート、ジベンジルスズビスベンジルマレート、ジフェニルスズビスメチルアジテート、ジフェニルスズビスオクチルアジテート、ジフェニルスズビスベンジルアジテート、ジ-n-ブチルスズビスメチルアジテート、ジ-n-ブチルスズビスオクチルアジテート、ジ-n-ブチルスズビスベンジルアジテート、ジ-t-ブチルスズビスメチルアジテート、ジ-t-ブチルスズビスオクチルアジテート、ジ-t-ブチルスズビスベンジルアジテート、ジイソブチルスズビスメチルアジテート、ジイソブチルスズビスオクチルアジテート、ジイソブチルスズビスベンジルアジテート、ジイソプロピルスズビスメチルアジテート、ジイソプロピルスズビスオクチルアジテート、ジイソプロピルスズビスベンジルアジテート、ジヘキシルスズビスメチルアジテート、ジヘキシルスズビスメチルアジテート、ジヘキシルスズビスベンジルアジテート、ジ-2-エチルヘキシルスズビスオクチルアジテート、ジ-2-エチルヘキシルスズビスオクチルアジテート、ジ-2-エチルヘキシルスズビススベンジルアジテート、ジオクチルスズビスメチルアジテート、ジオクチルスズビスオクチルアジテート、ジオクチルスズビスベンジルアジテート、ジステアリルスズビスメチルアジテート、ジステアリルスズビスオクチルアジテート、ジステアリルスズビスベンジルアジテート、ジベンジルスズビスメチルアジテート、ジベンジルスズビスオクチルアジテート、ジベンジルスズビスベンジルアジテートなどが挙げられる。
 さらに、化合物(g)における式(VIII)で表される化合物としては、例えば、ジフェニルスズマレート、ジ-n-ブチルスズマレート、ジ-t-ブチルスズマレート、ジイソブチルスズマレート、ジイソプロピルスズマレート、ジヘキシルスズマレート、ジ-2-エチルヘキシルスズマレート、ジオクチルスズマレート、ジステアリルスズマレート、ジベンジルスズマレート、ジフェニルスズアジテート、ジ-n-ブチルスズアジテート、ジ-t-ブチルスズアジテート、ジイソブチルスズアジテート、ジイソプロピルスズアジテート、ジヘキシルスズジアセテート、ジ-2-エチルヘキシルスズアジテート、ジオクチルスズアジテート、ジステアリルスズアジテート、ジベンジルスズアジテートなどが挙げられる。
 化合物(h)は、N-置換アミノケトン、N-置換アミノチオケトン、N-置換アミノアルデヒド、N-置換アミノチオアルデヒド又は分子中に-C-(=M)-N<結合(Mは酸素原子又は硫黄原子を表す)を有する化合物である。
 前記化合物(h)としては、4-ジメチルアミノアセトフェノン、4-ジエチルアミノアセトフェノン、1,3-ビス(ジフェニルアミノ)-2-プロパノン、1,7-ビス(メチルエチルアミノ)-4-ヘプタノン、4-ジメチルアミノベンゾフェノン、4-ジ-t-ブチルアミノベンゾフェノン、4-ジフェニルアミノベンゾフェノン、4,4'-ビス(ジメチルアミノ)ベンゾフェノン、4,4'-ビス(ジエチルアミノ)ベンゾフェノン、4,4'-置換ビス(ジフェニルアミノ)ベンゾフェノン、等のN-置換アミノケトン及び対応するN-アミノチオケトン;4-ジメチルアミノベンズアルデヒド、4-ジフェニルアミノベンズアルデヒド、4-ジビニルアミノベンズアルデヒド等のN-置換アミノアルデヒド類及び対応するN-置換アミノチオアルデヒド類;分子中に-C-(=M)-N<結合(Mは酸素原子又は硫黄原子を表す)を有する化合物、例えば、N-メチル-β-プロピオラクタム、N-フェニル-β-プロピオラクタム、N-メチル-2-ピロリドン、N-フェニル-2-ピロリドン、N-t-ブチル-2-ピロリドン、N-フェニル-5-メチル-2-ピロリドン、N-メチル-2-ピペリドン、N-フェニル-2-ピペリドン、N-メチル-ε-カプロラクタム、N-フェニル-ε-カプロラクタム、N-メチル-ω-カプロラクタム、N-フェニル-ω-カプロラクタム、N-メチル-ω-ラウリロラクタム、N-ビニル-ω-ラウリロラクタム、等のN-置換ラクタム類及び対応するN―置換チオラクタム類;1,3-ジメチルエチレン尿素、1,3-ジビニルエチレン尿素、1,3-ジエチルー2-イミダゾリジノン、1-メチル-3-エチル-2-イミダゾリジノン、1,3-ジメチル-2-イミダゾリジノン等のN-置換環状尿素類及び対応するN-置換環状チオ尿素類等が挙げられる。
 化合物(i)は、N≡C-結合を有する化合物である。ここで、N≡C-結合を有する化合物とは、一般式R26-CN(R26は、脂肪族炭化水素、芳香族炭化水素、複素環式化合物である)で表される有機シアノ化合物である。
 具体的には、2-シアノピリジン、3-シアノピリジン、アクリロニトリル等;ケトン、アルデヒド、エポキシに代表される求電子化合物、具体的には、ベンズアルデヒド、ベンゾフェノン、4-4’-ビス(ジエチルアミノ)ペンゾフェノン、3-グリシドシプロピルトリメトチシシラン、アリルグリシジルエーテル;ビニル基を有する有機化合物、具体的には、プロピレン、1-ブテン、1-ヘキセン、スチレン、ビニルナフタレン、リン酸ビニル、ビニル酢酸エーテル、ピバロイル酸ビニル、ビニルトリメチルシラン、トリエトキシビニルシラン等が挙げられる。
 前記化合物(j)は、下記一般式(IX)で表される、リン酸残基を有する化合物である。
Figure JPOXMLDOC01-appb-I000005
(一般式(IX)中、R27及びR28は、それぞれ独立して、炭素数1~20の直鎖若しくは分岐のアルキル基、炭素数3~20の一価の脂環式炭化水素基及び一価の炭素数6~20の芳香族炭化水素基から選ばれる一価の炭化水素基、又は、水素原子である)
 より具体的には、例えば下記一般式(IXa)で表されるリン酸残基が挙げられる。
Figure JPOXMLDOC01-appb-I000006
 以上の化合物(a)~(j)は、1種単独で使用することも、あるいは2種以上を混合して用いることもでき、化合物(a)~(j)以外の変性剤と組み合わせて用いることもできる。
 前記末端変性工程おける変性反応は、溶液反応及び固相反応のいずれも用いることができるが、溶液反応(重合時に使用した未反応モノマーを含んだ溶液でもよい)が好適である。また、この変性反応の形式については特に制限はなく、バッチ式反応器を用いて行ってもよく、多段連続式反応器やインラインミキサなどの装置を用いて連続式で行ってもよい。また、該変性反応は、重合反応終了後、脱溶媒処理、水処理、熱処理、重合体単離に必要な諸操作などを行う前に実施することが好ましい。
 前記変性反応の温度は、共役ジエン系重合体の重合温度をそのまま用いることができる。具体的には20~100℃が好ましい範囲として挙げられる。温度が低くなると重合体の粘度が上昇する傾向があり、温度が高くなると重合活性末端が失活し易くなるので好ましくない。
 ここで、前記重合触媒組成物の(A)成分に対する変性剤の使用量は、得られる変性重合体重合体の末端変性率によって相違するが、モル比で、好ましくは0.1~100、より好ましくは1.0~50である。変性剤の使用量を上記範囲内にすることによって、変性反応がより進行し、トルエン不溶分(ゲル)が生成しない低発熱性、耐摩耗性に優れる重合体を得ることができる。
 この変性反応は、通常室温~100℃の攪拌下、好ましくは0.5分~2時間、より好ましくは3分~1時間の範囲で行うことが好ましい。高い末端リビング率を得るための触媒及び重合条件で重合し、引き続き末端変性反応をおこなうことによって、末端変性率の高い(好ましくは70%以上の)共役ジエン系重合体が得られる。
<ゴム組成物>
 本発明のゴム組成物は、少なくとも、ゴム成分を含み、さらに必要に応じて、充填剤、架橋剤、その他の成分を含む。
 そして、本発明のゴム組成物は、前記ゴム成分として、本発明の末端変性共役ジエン系重合体を含むことを特徴とする。これによって、優れた耐久性(耐摩耗性、耐破壊特性、耐亀裂成長性等)を得ることができる。
 前記ゴム成分中における前記末端変性共役ジエン系重合体の配合量(含有量)としては、特に制限はなく、目的に応じて適宜選択することができるが、15質量%以上とすることが好ましい。
 前記ゴム成分中における前記末端変性共役ジエン重合体の配合量が、15質量%以上であると、前記末端変性共役ジエン系重合体の特性を十分に発揮することができる。
 また、前記ゴム成分は、前記末端変性共役ジエン系重合体に加えて、イソプレンゴム(BR)、スチレンブタジエンゴム(SBR)、アクリロニトリル-ブタジエンゴム(NBR)エチレン-プロピレンゴム(EPM)、エチレン-プロピレン-非共役ジエンゴム(EPDM)、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム、イソプレン共重合体などの、他のゴム成分を混合することもできる。これらは、一種単独で使用してもよいし、2種以上を併用してもよい。
 また、本発明のゴム組成物に含まれ得る充填剤としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、カーボンブラック、無機充填剤、などを挙げることができ、カーボンブラック及び無機充填剤から選択される少なくとも一種が好ましい。ここで、前記ゴム組成物には、カーボンブラックが含まれることがより好ましい。なお、前記充填剤は、補強性などを向上させるためにゴム組成物に配合するものである。
 前記充填剤の配合量(含有量)としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分100質量部に対し、10~100質量部が好ましく、20~80質量部がより好ましく、30~60質量部が特に好ましい。
 前記充填剤の配合量が、10質量部以上であると、充填剤を入れる効果(耐久性等)がみられ、100質量部以下であると、前記ゴム成分に充填剤を十分に混ぜ込むことができ、ゴム組成物としての性能を向上させることができる。
 一方、前記充填剤の配合量が、前記より好ましい範囲、又は、前記特に好ましい範囲内であると、加工性と低ロス性及び耐久性のバランスの点で有利である。
 前記無機充填剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シリカ、水酸化アルミニウム、クレー、アルミナ、タルク、マイカ、カオリン、ガラスバルーン、ガラスビーズ、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、酸化マグネシウム、酸化チタン、チタン酸カリウム、硫酸バリウム、などが挙げられる。これらは、一種単独で使用してもよいし、2種以上を併用してもよい。
 なお、無機充填剤を用いる時は適宜シランカップリング剤を使用してもよい。
 また、前記架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硫黄系架橋剤、有機過酸化物系架橋剤、無機架橋剤、ポリアミン架橋剤、樹脂架橋剤、硫黄化合物系架橋剤、オキシム-ニトロソアミン系架橋剤、などが挙げられるが、これらの中でもタイヤ用ゴム組成物としては硫黄系架橋剤がより好ましい。
 前記架橋剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分100質量部に対し、0.1~20質量部が好ましい。
 前記架橋剤の含有量が0.1質量部未満であると、架橋が十分に進行しなかったり、20質量部を超えると、一部の架橋剤により混練り中に架橋が進んでしまう傾向があったり、架橋物の物性が損なわれたりすることがある。
 本発明のゴム組成物は、その他の成分として加硫促進剤を併用することも可能であり、加硫促進剤としては、グアジニン系、アルデヒド-アミン系、アルデヒド-アンモニア系、チアゾール系、スルフェンアミド系、チオ尿素系、チウラム系、ジチオカルバメート系、ザンテート系等の化合物が使用できる。
 また必要に応じて、軟化剤、加硫助剤、着色剤、難燃剤、滑剤、酸化防止剤、老化防止剤、スコーチ防止剤、その他の配合剤等をその使用目的に応じて使用することができる。
 また、本発明のゴム組成物は、架橋され、架橋ゴム組成物として用いてもよい。前記架橋ゴム組成物は、本発明のゴム組成物を架橋して得られたものである限り、特に制限はなく、目的に応じて適宜選択することができる。
 前記架橋の条件としては、特に制限はなく、目的に応じて適宜選択することができるが、温度120~200℃、加温時間1分間~900分間が好ましい。
<ゴム製品>
 本発明のゴム製品は、本発明のゴム組成物を用いたことを特徴とする。
 得られたゴム製品は、耐久性(耐摩耗性、耐破壊特性、耐亀裂成長性等)に優れる。
 ここで、ゴム製品の種類については、例えば、タイヤ、防振ゴム、免震ゴム、ベルト(コンベアベルト)、ゴムクローラ、各種ホース等が挙げられる。その中でも、耐久性が非常に有用となる点から、前記ゴム製品はタイヤであることが好ましい。
 前記ゴム組成物をタイヤに用いた場合の適用部位としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トレッド、ベーストレッド、サイドウォール、サイド補強及びビードフィラーなどのゴム部材が挙げられる。
 これらの中でも、前記適用部位をトレッドとすることが、耐久性の点で有利である。
 前記タイヤを製造する方法としては、慣用の方法を用いることができる。例えば、タイヤ成形用ドラム上に、未加硫ゴム及び/又はコードからなるカーカス層、ベルト層、トレッド層等の通常タイヤ製造に用いられる部材を順次貼り重ね、ドラムを抜き去ってグリーンタイヤとする。次いで、このグリーンタイヤを常法に従って加熱加硫することにより、所望のタイヤ(例えば、空気入りタイヤ)を製造することができる。
 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
(実施例1)
 十分に乾燥した1000ml耐圧ガラス反応器を窒素置換し、1,3-ブタジエン30gを含むヘキサン溶液300mlを添加した。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にトリスビストリメチルシリルアミドガドリニウム(Gd[N(SiMe) 9.9μmol、1-ベンジルインデン19.8μmol、TIBAL(トリイソブチルアルミニウム) 0.82mmol、 DIBAL(ジイソブチルアルミニウムハイドライド) 0.33mmolを混合し、12時間放置した。その後、MMAO-3A(東ソー製)0.06mlとジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート(MeNHPhB(C) 4.95mmolを混合し、6時間放置した。その後DEAC(ジエチルアルミニウムクロライド)20μLを仕込み触媒溶液とした。その後、グローブボックスから触媒溶液を取り出し、ガドリニウム換算で9μmolとなる量の触媒溶液をモノマー溶液へ添加し、50℃で60分間重合を行った。重合後、添加した前記アルキルアルミニウムの総量に対して1.5倍等量の4,4’-ジエチルアミノベンゾフェノンを加え、1時間反応させた。その後、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)5質量%のイソプロパノール溶液1mlを加えて反応を停止させ、さらに大量のIPAで重合体を分離し、60℃で真空乾燥し、末端変性重合体(末端変性重合体A)を得た。
 なお、得られた末端変性重合体Aの収量は、30gであった。
(実施例2)
 実施例1の4,4’-ジエチルアミノベンゾフェノンに代えて、2-シアノピリジンを用いたこと以外は、実施例1と同様の条件で重合反応、変性反応及びその後の処理を行い、末端変性重合体(末端変性重合体B)を得た。得られた重合体Bの収量は30gであった。
(実施例3)
 実施例1の4,4’-ジエチルアミノベンゾフェノンに代えて、アクリロニトリルを用いたこと以外は、実施例1と同様の条件で重合反応、変性反応及びその後の処理を行い、末端変性重合体(末端変性重合体C)を得た。得られた重合体Cの収量は30gであった。
(実施例4)
 実施例1の4,4’-ジエチルアミノベンゾフェノンに代えて、3-グリシドキシプロピルトリメトキシシランを用いたこと以外は、実施例1と同様の条件で重合反応、変性反応及びその後の処理を行い、末端変性重合体(末端変性重合体D)を得た。得られた重合体Dの収量は30gであった。
(実施例5)
 実施例1の4,4’-ジエチルアミノベンゾフェノンに代えて、アクリルグリシジルエーテルを用いたこと以外は、実施例1と同様の条件で重合反応、変性反応及びその後の処理を行い、末端変性重合体(末端変性重合体E)を得た。得られた重合体Eの収量は30gであった。
(比較例1)
 十分に乾燥した1000ml耐圧ガラス反応器を窒素置換し、1,3-ブタジエン30gを含むヘキサン溶液300mlを添加した。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にトリスビストリメチルシリルアミドネオジム(Nd[N(SiMe323) 9.9μmol、1-ベンジルインデン19.8μmol、トリイソブチルアルミニウム 0.82mmol、ジイソブチルアルミニウムハイドライド0.33mmolを混合し、12時間放置した。その後、MMAO-3A(東ソー製)0.06mlとジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート(Me2NHPhB(C654) 4.95mmolを混合し、6時間放置した。その後、ジエチルアルミニウムクロライド20μLを仕込み触媒溶液とした。その後、グローブボックスから触媒溶液を取り出し、ネオジム換算で9μmolとなる量の触媒溶液をモノマー溶液へ添加し、50℃で60分間重合を行った。重合後、添加した前記アルキルアルミニウムの総量に対して1.5倍等量の4,4’-ジエチルアミノベンゾフェノンを加え、1時間反応させた。その後、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)5質量%のイソプロパノール溶液1mlを加えて反応を停止させ、さらに大量のIPAで重合体を分離し、60℃で真空乾燥し、末端変性重合体(末端変性重合体F)を得た。
 なお、得られた末端変性重合体Fの収量は、25gであった。
(比較例2)
 比較例1の4,4’-ジエチルアミノベンゾフェノンに代えて、2-シアノピリジンを用いたこと以外は、比較例1と同様の条件で重合反応、変性反応及びその後の処理を行い、末端変性重合体(末端変性重合体G)を得た。得られた重合体Gの収量は25gであった。
(比較例3)
 比較例1の4,4’-ジエチルアミノベンゾフェノンに代えて、アクリロニトリルを用いたこと以外は、比較例1と同様の条件で重合反応、変性反応及びその後の処理を行い、末端変性重合体(末端変性重合体H)を得た。得られた重合体Hの収量は25gであった。
(比較例4)
 比較例1の4,4’-ジエチルアミノベンゾフェノンに代えて、3-グリシドキシプロピルトリメトキシシランを用いたこと以外は、比較例1と同様の条件で重合反応、変性反応及びその後の処理を行い、末端変性重合体(末端変性重合体I)を得た。得られた重合体Iの収量は25gであった。
(比較例5)
 比較例1の4,4’-ジエチルアミノベンゾフェノンに代えて、3-グリシドキシプロピルトリメトキシシランを用いたこと以外は、比較例1と同様の条件で重合反応、変性反応及びその後の処理を行い、末端変性重合体(末端変性重合体J)を得た。得られた重合体Jの収量は25gであった。
(比較例6)
 共役ジエン系重合体のサンプル(重合体K)として、ポリブタジエンゴムであるJSR製の「BR01」を用意した。
<評価>
(1)重合体の評価
 実施例及び比較例で得られた重合体の各サンプルについて、変性率、シス-1,4結合量、重量平均分子量(Mw)及び分子量分布(MWD)を測定した。測定結果を表1に示す。
 なお、シス-1,4結合量については、H-NMR及び13C-NMRにより得られたピーク[H-NMR:δ4.6-4.8(3,4-ビニルユニットの=CH)、5.0-5.2(1,4-ユニットの-CH=)、13C-NMR:δ23.4(1,4-シスユニット)、15.9(1,4-トランスユニット)、18.6(3,4-ユニット)]の積分比からそれぞれ算出した。
 また、分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー[GPC:東ソー製HLC-8220GPC、カラム:東ソー製GMHXL-2本、検出器:示差屈折率計(RI)]で単分散ポリスチレンを基準として、重合体サンプルのポリスチレン換算の重量平均分子量(Mw)及び分子量分布(MWD:Mw/Mn)を求めた。
Figure JPOXMLDOC01-appb-T000007
(2)ゴム組成物の評価
 各実施例及び比較例にて得られた末端変性重合体を用い、ゴム組成物のサンプルを作製した。そして、得られたゴム組成物のサンプルについて、以下の評価を行った。
(a)低ロス性評価
 得られたゴム組成物のサンプルについて、160℃で20分間の条件で加硫処理を施した。その後、東洋精機社製スペクトロメータを用い、初期荷重:100g、歪み:2%、測定周波数:50Hz、測定温度:25℃及び60℃、の条件で、損失正接(tanδ)を測定した。
 測定値の評価については、比較例6のゴムの損失正接(tanδ)を100としたときの指数値として表示し、数値が小さいほど良好な結果であることを示す。評価結果を表2に示す。
(b)耐破壊特性
 得られたゴム組成物のサンプルを、トレッド用ゴムとして用いて、供試タイヤを作製した。ゴムのリング形状引張強度を測定し、比較例6の引張強度を100とした場合の指数で表示した。指数値が大きい程、耐破壊特性に優れることを示す。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000008
*1:三菱化学(株)製、商品名「DIABLACK N234」
*2:N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン、大内新興化学工業(株)製、商品名「ノクラック6c」
*3:マイクロクリスタリンワックス、精工化学(株)製、商品名「サンタイトS」
*4:ジフェニルグアニジン、大内新興化学工業(株)製、商標「ノクセラーD」
*5:ジ-2-ベンゾチアゾリルジスルフィド、大内新興化学工業(株)製、商品名「ノクセラーDM-P」
*6:N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド(加硫促進剤)、大内新興化学工業(株)製、商品名「ノクセラーNS-P」
 本発明によれば、高いシス-1,4結合量及び低い分子量分布を有し、耐久性(耐摩耗性、耐破壊特性、耐亀裂成長性等)に優れた末端変性共役ジエン系重合体及びその製造方法を提供することができる。さらに、本発明によれば、上記末端変性共役ジエン系重合体を用いることで、耐久性に優れたゴム組成物及びゴム製品を提供することができる。
 

Claims (7)

  1.  ゲル浸透クロマトグラフィー(GPC)測定による分子量分布が2未満であり、シス-1,4結合量が95%以上であることを特徴とする、末端変性共役ジエン系重合体。
  2.  前記分子量分布が1.7以下であることを特徴とする、請求項1に記載の末端変性共役ジエン系重合体。
  3.  前記末端変性共役ジエン系重合体を構成する共役ジエン系重合体が、ポリブタジエン又はポリイソプレンであることを特徴とする、請求項1又は2に記載の末端変性共役ジエン系重合体。
  4.  前記末端変性共役ジエン系重合体は、重合触媒組成物を用いて共役ジエン系化合物を重合させ、該重合によって得られた重合体の末端を変性させてなり、
     前記重合触媒組成物が、希土類元素化合物と、置換又は無置換のシクロペンタジエン、置換又は無置換のインデン、及び、置換又は無置換のフルオレンから選択されるシクロペンタジエン骨格を有する配位化合物と、非配位性アニオン及びカチオンからなるイオン性化合物と、アルミノキサンとを含むことを特徴とする、請求項1に記載の末端変性共役ジエン系重合体。
  5.  請求項1~4のいずれか1項に記載の末端変性共役ジエン系重合体を含むことを特徴とする、ゴム組成物。
  6.  請求項5に記載のゴム組成物を用いたことを特徴とする、ゴム製品。
  7.  (A)成分:希土類元素化合物と、
     (D)成分:置換又は無置換のシクロペンタジエン、置換又は無置換のインデン、及び、置換又は無置換のフルオレンから選択されるシクロペンタジエン骨格を有する配位化合物と、
     (B)成分:非配位性アニオン及びカチオンとからなるイオン性化合物(B-1)及びアルミノキサン(B-2)と
    を含む重合触媒組成物を用いることを特徴とする、請求項1に記載の末端変性共役ジエン系重合体の製造方法。
     
PCT/JP2017/013101 2016-05-24 2017-03-29 末端変性共役ジエン系重合体、ゴム組成物、ゴム製品及び末端変性共役ジエン系重合体の製造方法 WO2017203830A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780031513.0A CN109153737A (zh) 2016-05-24 2017-03-29 末端改性的共轭二烯聚合物、橡胶组合物、橡胶产品和末端改性的共轭二烯聚合物的制造方法
EP17802431.1A EP3466985A4 (en) 2016-05-24 2017-03-29 CONJUGATED DIENE POLYMER WITH MODIFIED TERMINAL PART AND METHOD OF MANUFACTURING THE SAME, RUBBER COMPOSITION, AND RUBBER ARTICLE
US16/301,818 US20190161571A1 (en) 2016-05-24 2017-03-29 Terminal-modified conjugated diene polymer, rubber composition, rubber product and method for manufacturing terminal-modified conjugated diene polymer
JP2018519116A JPWO2017203830A1 (ja) 2016-05-24 2017-03-29 末端変性共役ジエン系重合体、ゴム組成物、ゴム製品及び末端変性共役ジエン系重合体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016103207 2016-05-24
JP2016-103207 2016-05-24

Publications (1)

Publication Number Publication Date
WO2017203830A1 true WO2017203830A1 (ja) 2017-11-30

Family

ID=60411668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013101 WO2017203830A1 (ja) 2016-05-24 2017-03-29 末端変性共役ジエン系重合体、ゴム組成物、ゴム製品及び末端変性共役ジエン系重合体の製造方法

Country Status (5)

Country Link
US (1) US20190161571A1 (ja)
EP (1) EP3466985A4 (ja)
JP (1) JPWO2017203830A1 (ja)
CN (1) CN109153737A (ja)
WO (1) WO2017203830A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044827A1 (ja) * 2017-09-04 2019-03-07 株式会社ブリヂストン 共重合体の製造方法、共重合体、ゴム組成物及びタイヤ
EP3456746A4 (en) * 2016-05-09 2019-05-01 Bridgestone Corporation CONJUGATED DIENE POLYMER MODIFIED BY TERMINATION ELEMENT, RUBBER COMPOSITION, AND RUBBER ARTICLE
EP3732210A4 (en) * 2017-12-30 2021-08-11 Bridgestone Corporation COMPOSITION INCLUDING MULTIPLE POLYMERS WITH TERMINAL FUNCTIONALIZATION

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313710A (ja) * 1999-03-04 2000-11-14 Inst Of Physical & Chemical Res 触媒組成物
JP2003292513A (ja) * 2002-03-29 2003-10-15 Inst Of Physical & Chemical Res 触媒組成物
JP2004027103A (ja) * 2002-06-27 2004-01-29 Inst Of Physical & Chemical Res 触媒組成物
WO2006112450A1 (ja) * 2005-04-15 2006-10-26 Bridgestone Corporation 変性共役ジエン系共重合体、ゴム組成物及びタイヤ
JP2007063240A (ja) * 2005-09-02 2007-03-15 Institute Of Physical & Chemical Research メタロセン錯体、およびそれを含む重合触媒組成物
WO2007129670A1 (ja) * 2006-05-09 2007-11-15 Riken メタロセン錯体、およびそれを含む重合触媒組成物
WO2008078814A1 (ja) * 2006-12-27 2008-07-03 Jsr Corporation 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及びゴム組成物
JP2008291096A (ja) * 2007-05-23 2008-12-04 Bridgestone Corp ポリブタジエン、並びにそれを用いたゴム組成物及びタイヤ
WO2011016210A1 (ja) * 2009-08-07 2011-02-10 株式会社ブリヂストン 共重合体の製造方法
JP2013118995A (ja) * 2011-12-08 2013-06-17 Bridgestone Sports Co Ltd ゴルフボール用組成物及びゴルフボール
JP2013118989A (ja) * 2011-12-08 2013-06-17 Bridgestone Sports Co Ltd ゴルフボール用組成物及びゴルフボール
WO2013115242A1 (ja) * 2012-01-31 2013-08-08 旭化成ケミカルズ株式会社 共役ジエン系モノマーの重合触媒組成物
JP2015206049A (ja) * 2009-09-30 2015-11-19 株式会社ブリヂストン 官能化ポリマー及びその製造方法
WO2016027401A1 (ja) * 2014-08-20 2016-02-25 株式会社ブリヂストン 末端変性共役ジエン重合体の製造方法、末端変性共役ジエン重合体、ゴム組成物及びタイヤ
WO2016027402A1 (ja) * 2014-08-20 2016-02-25 株式会社ブリヂストン 共役ジエン重合体の製造方法、共役ジエン重合体、ゴム組成物、タイヤ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19746266A1 (de) * 1997-10-20 1999-04-22 Bayer Ag Katalysator auf Basis von Verbindungen der seltenen Erdmetalle für die Polymerisation von ungesättigten organischen Verbindungen
EP2258730B1 (en) * 1999-03-04 2018-10-31 Riken Catalyst composition
RU2455314C2 (ru) * 2006-12-27 2012-07-10 ДжейЭсЭр КОРПОРЕЙШН Способ получения модифицированного сопряженного диенового полимера, модифицированный сопряженный диеновый полимер и резиновая композиция
ZA200904420B (en) * 2006-12-27 2010-08-25 Jsr Corp Method for producing modified conjugated diene polymer, modified conjugated diene polymer, and rubber composition
ZA200711158B (en) * 2006-12-28 2009-03-25 Bridgestone Corp A method for producing functionalized cis-1,4-polydienes having high cis-1,4-linkage content and high functionality
JP5435921B2 (ja) * 2008-10-07 2014-03-05 株式会社ブリヂストン ゴム組成物
CN103154044B (zh) * 2010-09-23 2016-02-17 株式会社普利司通 用于生产聚二烯的方法
JP5941302B2 (ja) * 2012-03-07 2016-06-29 株式会社ブリヂストン ゴム組成物、及び、前記ゴム組成物を有するタイヤ
WO2013179651A1 (ja) * 2012-05-30 2013-12-05 株式会社ブリヂストン 重合触媒組成物、合成ポリイソプレンの製造方法、及び合成ポリイソプレン
JP6031374B2 (ja) * 2013-02-14 2016-11-24 株式会社ブリヂストン イソプレン重合触媒組成物、合成ポリイソプレンの製造方法及び合成ポリイソプレン
JP6616719B2 (ja) * 2016-03-24 2019-12-04 株式会社ブリヂストン ゴム組成物、架橋ゴム組成物及びゴム製品

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313710A (ja) * 1999-03-04 2000-11-14 Inst Of Physical & Chemical Res 触媒組成物
JP2003292513A (ja) * 2002-03-29 2003-10-15 Inst Of Physical & Chemical Res 触媒組成物
JP2004027103A (ja) * 2002-06-27 2004-01-29 Inst Of Physical & Chemical Res 触媒組成物
WO2006112450A1 (ja) * 2005-04-15 2006-10-26 Bridgestone Corporation 変性共役ジエン系共重合体、ゴム組成物及びタイヤ
JP2007063240A (ja) * 2005-09-02 2007-03-15 Institute Of Physical & Chemical Research メタロセン錯体、およびそれを含む重合触媒組成物
WO2007129670A1 (ja) * 2006-05-09 2007-11-15 Riken メタロセン錯体、およびそれを含む重合触媒組成物
WO2008078814A1 (ja) * 2006-12-27 2008-07-03 Jsr Corporation 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及びゴム組成物
JP2008291096A (ja) * 2007-05-23 2008-12-04 Bridgestone Corp ポリブタジエン、並びにそれを用いたゴム組成物及びタイヤ
WO2011016210A1 (ja) * 2009-08-07 2011-02-10 株式会社ブリヂストン 共重合体の製造方法
JP2015206049A (ja) * 2009-09-30 2015-11-19 株式会社ブリヂストン 官能化ポリマー及びその製造方法
JP2013118995A (ja) * 2011-12-08 2013-06-17 Bridgestone Sports Co Ltd ゴルフボール用組成物及びゴルフボール
JP2013118989A (ja) * 2011-12-08 2013-06-17 Bridgestone Sports Co Ltd ゴルフボール用組成物及びゴルフボール
WO2013115242A1 (ja) * 2012-01-31 2013-08-08 旭化成ケミカルズ株式会社 共役ジエン系モノマーの重合触媒組成物
WO2016027401A1 (ja) * 2014-08-20 2016-02-25 株式会社ブリヂストン 末端変性共役ジエン重合体の製造方法、末端変性共役ジエン重合体、ゴム組成物及びタイヤ
WO2016027402A1 (ja) * 2014-08-20 2016-02-25 株式会社ブリヂストン 共役ジエン重合体の製造方法、共役ジエン重合体、ゴム組成物、タイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3466985A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3456746A4 (en) * 2016-05-09 2019-05-01 Bridgestone Corporation CONJUGATED DIENE POLYMER MODIFIED BY TERMINATION ELEMENT, RUBBER COMPOSITION, AND RUBBER ARTICLE
US10875937B2 (en) 2016-05-09 2020-12-29 Bridgestone Corporation Terminal-modified conjugated diene polymer, rubber composition and rubber article
WO2019044827A1 (ja) * 2017-09-04 2019-03-07 株式会社ブリヂストン 共重合体の製造方法、共重合体、ゴム組成物及びタイヤ
US11279785B2 (en) 2017-09-04 2022-03-22 Bridgestone Corporation Production method for copolymer, copolymer, rubber composition, and tire
EP3732210A4 (en) * 2017-12-30 2021-08-11 Bridgestone Corporation COMPOSITION INCLUDING MULTIPLE POLYMERS WITH TERMINAL FUNCTIONALIZATION

Also Published As

Publication number Publication date
JPWO2017203830A1 (ja) 2019-03-22
US20190161571A1 (en) 2019-05-30
EP3466985A4 (en) 2019-06-19
CN109153737A (zh) 2019-01-04
EP3466985A1 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
JP6645969B2 (ja) 末端変性共役ジエン重合体の製造方法、末端変性共役ジエン重合体、ゴム組成物及びタイヤ
JP3724125B2 (ja) 共役ジエン系重合体の製造方法
US11214639B2 (en) Copolymer, rubber composition, resin composition, tire and resin product
JP5899011B2 (ja) 重合体、前記重合体を含むゴム組成物、及び、前記ゴム組成物を有するタイヤ
JP5941302B2 (ja) ゴム組成物、及び、前記ゴム組成物を有するタイヤ
WO2017203830A1 (ja) 末端変性共役ジエン系重合体、ゴム組成物、ゴム製品及び末端変性共役ジエン系重合体の製造方法
WO2013132848A1 (ja) 重合体及びその製造方法、前記重合体を含むゴム組成物、並びに、前記ゴム組成物を有するタイヤ
US20190375923A1 (en) Method of producing modified conjugated diene-based polymer, modified conjugated diene-based polymer, rubber composition and tire
US10875937B2 (en) Terminal-modified conjugated diene polymer, rubber composition and rubber article
EP3722337A1 (en) Copolymer, rubber composition, resin composition, tire and resin product
JP2017203060A (ja) ゴム組成物およびゴム物品
JP5917813B2 (ja) ゴム組成物、タイヤトレッド用ゴム組成物、架橋ゴム組成物、及びタイヤ
JP2016113496A (ja) ゴム組成物、及び該ゴム組成物を用いたタイヤ
JP2017082137A (ja) 変性共役ジエン重合体の製造方法、変性共役ジエン重合体、ゴム組成物、及びタイヤ
JP6598637B2 (ja) 重合触媒組成物の製造方法、共役ジエン重合体の製造方法、及び変性共役ジエン重合体の製造方法
JP7191017B2 (ja) 触媒組成物、変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、ゴム組成物及びタイヤ
JP6325362B2 (ja) ゴム成分、ゴム成分が配合されたゴム組成物、及び該ゴム組成物を用いたタイヤ
JP2016003271A (ja) 分岐イソプレン重合体の製造方法
JP2019099720A (ja) 共重合体、ゴム組成物、樹脂組成物、タイヤ及び樹脂製品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018519116

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017802431

Country of ref document: EP

Effective date: 20190102