WO2017203788A1 - Organic electroluminescent element - Google Patents

Organic electroluminescent element Download PDF

Info

Publication number
WO2017203788A1
WO2017203788A1 PCT/JP2017/008312 JP2017008312W WO2017203788A1 WO 2017203788 A1 WO2017203788 A1 WO 2017203788A1 JP 2017008312 W JP2017008312 W JP 2017008312W WO 2017203788 A1 WO2017203788 A1 WO 2017203788A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
electrode
power supply
light
emitting unit
Prior art date
Application number
PCT/JP2017/008312
Other languages
French (fr)
Japanese (ja)
Inventor
岡本 健
敦 今村
中山 知是
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2018519106A priority Critical patent/JPWO2017203788A1/en
Publication of WO2017203788A1 publication Critical patent/WO2017203788A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B44/00Circuit arrangements for operating electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to a toned organic electroluminescence element in which a plurality of light emitting units are stacked.
  • Organic electroluminescence (EL) elements are self-luminous and can be reduced in thickness, power consumption is reduced, and response speed is high.
  • the toning function capable of changing the emission color is an important function in the organic EL element.
  • an element in which a toning (dimming) unit is provided in an organic EL element has been proposed (see, for example, Patent Document 1).
  • An organic EL element having three electrodes, an intermediate electrode as a common anode, and a double-sided cathode potential that is the same has been proposed (see, for example, Patent Document 2 and Patent Document 3).
  • each light emitting unit cannot be driven at the same time. It is necessary to drive the unit. By performing such driving, it is possible to express various colors by freely combining the colors and luminances of the respective light emitting units.
  • the organic EL element having a configuration in which the plurality of electrodes and the light emitting unit described above are stacked in order to perform time-division driving, it is necessary to drive the light emitting unit for each half of one cycle in the two-unit system.
  • an instantaneous current load on the IC for controlling the organic EL element increases.
  • an increase in current supplied to the organic EL element causes a decrease in light emission uniformity (homogeneity) in the panel.
  • the present invention provides an organic electroluminescence element that has a configuration in which a plurality of electrodes and a light emitting unit are stacked and can be adjusted and adjusted by simultaneous driving of the light emitting units. .
  • the organic electroluminescence element of the present invention includes a plurality of electrodes and a plurality of light emitting units provided on a support substrate, and from the support substrate side, the nth electrode is laminated from the first electrode, At least one or more intermediate electrodes are provided between the nth electrodes, and the first to n ⁇ 1th light emitting units are provided between the electrodes (n is an integer of 3 or more).
  • the first wiring for supplying current to the first electrode and the nth electrode, the first power supply unit provided in the first wiring, and at least one of the first light emitting unit to the n-1 light emitting unit A second wiring for supplying current to the anode and the cathode of the light emitting unit and a second power supply unit provided in the second wiring are provided.
  • the luminance of the light emitting unit sandwiched between the anode and the cathode supplied with the current from the second wiring is adjusted by the amount of current applied from the second power supply unit.
  • an organic electroluminescence element capable of toning and light control by simultaneous driving of the light emitting units.
  • Embodiment of organic electroluminescence device (first embodiment) 2.
  • Embodiment of organic electroluminescence device (second embodiment) 3.
  • the organic EL element includes a plurality of electrodes and a light emitting unit provided on a support substrate.
  • the electrodes and the light emitting unit are referred to as a first electrode to an nth electrode and a first light emitting unit to an n-1th light emitting unit in order from the support substrate side.
  • the number n of stacked electrodes is an integer of 3 or more.
  • the second electrode to the (n ⁇ 1) th electrode formed between the first electrode and the nth electrode are used as intermediate electrodes.
  • the organic EL element having this configuration includes a first wiring for supplying current to the first electrode and the nth electrode, and an anode side of at least one light emitting unit from the first light emitting unit to the n ⁇ 1 light emitting unit. And a second wiring for supplying current to the cathode side.
  • the first wiring has a first power supply unit
  • the second wiring has a second power supply unit.
  • FIG. 1 the schematic block diagram (sectional drawing) of an organic EL element is shown.
  • the organic EL element 10 shown in FIG. 1 has a configuration in which a first electrode 11, a second electrode 12, and a third electrode 13 are laminated on a support substrate 50.
  • the second light emitting unit 22 corresponds to the (n-1) th light emitting unit.
  • the organic EL element 10 includes a first wiring 31 that supplies current to the first electrode 11 and the third electrode 13, and a first power supply unit 41 that is disposed on the first wiring 31. Furthermore, the second wiring 32 is provided at a position connecting the second electrode 12 and the third electrode 13 of the first wiring 31 and the first power supply unit 41. Further, the second wiring 32 has a second power supply unit 42. The intersection of the first wiring 31 and the second wiring 32 is arranged between the third electrode 13 and the first power supply unit 41 in the first wiring 31.
  • the organic EL element 10 includes the first electrode 11 and the third electrode 13 (nth electrode), and is further formed between the first electrode 11 and the third electrode 13 (nth electrode).
  • the intermediate electrode [second electrode 12 (n ⁇ 1th electrode)] is provided.
  • a first light emitting unit 21 is provided between the first electrode 11 and the intermediate electrode [second electrode 12 (n ⁇ 1 electrode)], and the intermediate electrode [second electrode 12 (n ⁇ 1 electrode)] and
  • a second light emitting unit 22 (n-1th light emitting unit) is provided between the third electrode 13 (nth electrode).
  • the organic EL element 10 includes a first wiring 31 that supplies current to the first electrode 11 and the third electrode 13 (nth electrode), and a first power supply unit 41 on the first wiring 31.
  • the anode [second light emitting unit 22 (n ⁇ 1 light emitting unit)] corresponding to at least one light emitting unit among the first light emitting unit 21 to the second light emitting unit 22 (n ⁇ 1 light emitting unit).
  • the organic EL element 10 having the above configuration controls the light emission of the first light emitting unit 21 and the second light emitting unit 22 (n-1 light emitting unit) by the amount of current supplied from the first power supply unit 41 and the second power supply unit 42. (On-off) and light emission brightness can be adjusted.
  • these driving mechanisms will be described.
  • the organic EL element 10 having the above-described configuration, when current is applied from the first power supply unit 41 to the first electrode 11 and the third electrode 13, two types of paths through which current is supplied are conceivable.
  • One is a path from the first wiring 31 to the first wiring 31 through the first electrode 11, the first light emitting unit 21, the second electrode 12, and the second wiring 32 (hereinafter referred to as a first path).
  • the other is a path from the first wiring 31 to the first wiring 31 through the first electrode 11, the first light emitting unit 21, the second electrode 12, the second light emitting unit 22, and the third electrode 13 ( Hereinafter, the second route).
  • a current also flows through the second power supply unit 42 provided in the second wiring 32.
  • the second light emitting unit 22 is not routed in the first path and the second light emitting unit 22 is routed in the second path.
  • the organic EL element 10 having the above configuration, when the driving of the first power supply unit 41 is turned on and the driving of the second power supply unit 42 is turned off, a current flows through the first path. Further, when both the first power supply unit 41 and the second power supply unit 42 are turned on, a current flows through the second path. Furthermore, in the state where the driving of the second power supply unit 42 is turned on, as the amount of current applied from the second power supply unit 42 to the second electrode 12 and the third electrode 13 increases, it is applied to the second light emitting unit 22. The amount of current increases. For this reason, the light emission luminance of the second light emitting unit 22 can be adjusted by adjusting the amount of current applied from the second power supply unit 42 to the second electrode 12 and the third electrode 13.
  • the resistance value of the power supply unit is lower than that of the light emitting unit composed of the organic material layer. For this reason, in the state where the driving of the second power supply unit 42 is turned off, the first route passing through the second wiring 32 and the second power supply unit 42 is more than the second route passing through the second light emitting unit 22. Resistance value is small. Accordingly, when the driving of the first power supply unit 41 is turned on and the driving of the second power supply unit 42 is turned off, a current flows to the first path side having a smaller resistance. That is, the second wiring 32 becomes a loop circuit of the second light emitting unit 22.
  • the organic EL element 10 in which the driving of the first power supply unit 41 is turned on and the driving of the second power supply unit 42 is turned off, only the first light emitting unit 21 on the first path emits light.
  • the amount of current supplied to the first light emitting unit 21 can be adjusted by adjusting the amount of current from the first power supply unit 41. Therefore, by adjusting the amount of current from the first power supply unit 41 with the first power supply unit 41 turned on and the second power supply unit 42 turned off, the light emission luminance of the first light emitting unit 21 is adjusted. Adjustment is possible.
  • the amount of current supplied to the second light emitting unit 22 can be adjusted by adjusting the amount of current from the second power supply unit 42 in the above state. Accordingly, the light emission luminance of the second light emitting unit 22 is adjusted by adjusting the amount of current from the second power supply unit 42 with both the first power supply unit 41 and the second power supply unit 42 turned on. It becomes possible.
  • the current amount supplied to the first light emitting unit 21 is equal to the current amount from the first power supply unit 41 even when the first power supply unit 41 and the second power supply unit 42 are both turned on. Dependent. For this reason, also in the organic EL element 10 in this state, the light emission luminance of the first light emitting unit 21 can be adjusted by adjusting the amount of current from the first power supply unit 41.
  • the amount of current from the second power source unit 42 is maintained while the amount of current from the first power source unit 41 is constant and the light emission luminance of the first light emitting unit 21 is kept constant.
  • the amount of current corresponding to the light emission luminance of the first light emitting unit 21 is set to the first power source. What is necessary is just to adjust the electric current amount from the 2nd power supply part 42 so that the electric current amount supplied from the part 41 and supplied to the 2nd light emission unit 22 may become fixed.
  • the current amount from the second power supply unit 42 is smaller than the current amount from the first power supply unit 41.
  • the resistance value of the second light emitting unit 22, and the like one or both of the first path and the second path described above are selected as the path through which the current flows.
  • the second path is selected, the first light emitting unit 21 and the second light emitting unit 22 emit light, and when only the first path is selected, only the first light emitting unit 21 emits light.
  • the second light emitting unit 22 does not emit light.
  • a light emission pattern (first path) in which only the first light emitting unit 21 emits light by switching on / off driving of the first power supply unit 41 and the second power supply unit 42 Three types of light emission patterns including a light emission pattern (third path) in which only the second light emission unit 22 emits light and a light emission pattern (second path) in which the first light emission unit 21 and the second light emission unit 22 emit light together. Can be arbitrarily selected.
  • the first light emitting unit 21 The light emission luminance of the second light emitting unit 22 can be arbitrarily adjusted.
  • FIG. 2 and FIG. 3 show an equivalent circuit of the organic EL element having the configuration shown in FIG.
  • the organic EL element 10 shown in FIG. 2 has a configuration in which the first light emitting unit 21 emits white (W) light and the second light emitting unit 22 emits blue (B) light. Further, the organic EL element 10 shown in FIG. 3 has a configuration in which the first light emitting unit 21 emits white (W) light and the second light emitting unit 22 emits yellow (Yl) light.
  • the first electrode 11 is represented by An
  • the second electrode 12 (intermediate electrode) is represented by M
  • the third electrode 13 is represented by Ca.
  • the second power supply When the current Im-ca supplied from the unit 42 is 0, only the first light emitting unit 21 emits light. That is, white light is obtained from the organic EL element 10.
  • the current I m-ca supplied from the second power supply unit 42 is equal to or greater than the current I an-ca supplied from the first power supply unit 41, both the first light emitting unit 21 and the second light emitting unit 22 are used. Emits light. That is, light in which white light and blue light are mixed is obtained from the organic EL element 10.
  • the current I m-ca is supplied from the second power supply unit 42 and the current I an-ca supplied from the first power supply unit 41 is 0, only the second light emitting unit 22 emits light. That is, blue light is obtained from the organic EL element 10.
  • the first The luminance of white light obtained from the light emitting unit 21 and the luminance of blue light obtained from the second light emitting unit 22 can be arbitrarily adjusted.
  • each light emission pattern by adjusting at least one of the current I an-ca supplied from the first power supply unit 41 and the current I m-ca supplied from the second power supply unit 42, the first The brightness of white light obtained from the light emitting unit 21 and the brightness of yellow light obtained from the second light emitting unit 22 can be arbitrarily adjusted.
  • a current is supplied to the anode [second electrode 12 (n-1 electrode)] side and the cathode [third electrode 13 (nth electrode) to first wiring 31] side of the (n-1 light emitting unit) side.
  • the second power supply unit 42 of the two wires 32 With the second power supply unit 42 of the two wires 32, a plurality of light emitting units can emit light simultaneously or independently. Furthermore, by adjusting the current amounts of the first power supply unit 41 and the second power supply unit 42, it is possible to arbitrarily adjust the light emission luminance of each of the light emitting units that emit light simultaneously or independently.
  • the light emitting units can be made to emit light simultaneously or independently by simultaneous driving of the light emitting units without performing time-division driving. For this reason, the toning and dimming of the organic EL element can be performed without increasing the amount of current by time division driving and the current load on the IC. Furthermore, since the toning and light control of the organic EL element can be performed without increasing the amount of current, it is possible to suppress a decrease in light emission uniformity (homogeneity) in the panel.
  • the luminescent color in each light emission unit is not specifically limited,
  • required of the organic EL element 10 can be combined arbitrarily.
  • the first light emitting unit 21 and the second light emitting unit 22 may be arbitrarily combined with three primary colors of blue, green and red, complementary colors such as yellow, white, etc., and the same color having different color temperatures. May be combined.
  • the second wiring is connected to the anode [first electrode] side and the cathode [second electrode (n-1 electrode)] side of the first light emitting unit, and the first light emitting unit loop is connected. It may be a circuit. Also in this case, similarly to the driving mechanism described above, the light emission luminance of the first light emitting unit and the second light emitting unit can be arbitrarily adjusted by the first power supply unit and the second power supply unit.
  • Embodiment of Organic Electroluminescence Element (Second Embodiment)>
  • second embodiment a specific embodiment of the organic electroluminescence element (organic EL element) will be described.
  • a configuration of an organic EL element when the number n of stacked electrodes is 4 will be described as an example.
  • only the parts different from the above-described first embodiment will be described, and the description of the configuration common to the first embodiment will be omitted.
  • FIG. 4 shows the configuration of the organic EL element of the second embodiment.
  • the organic EL element 20 illustrated in FIG. 4 includes a first electrode 11, a second electrode 12, a third electrode 13, and a fourth electrode 14 in order from the support substrate 50 side.
  • the first light emitting unit 21, the second light emitting unit 22, and the third light emitting unit 23 are provided between these electrodes.
  • the organic EL element 20 includes a first wiring 31 that supplies current to the first electrode 11 and the fourth electrode 14, and a first power supply unit 41 that is disposed on the first wiring 31.
  • the second wiring 32 that supplies current to the second electrode 12 and the third electrode 13 that sandwich the second light emitting unit 22 and the second power supply unit 42 on the second wiring 32 are provided.
  • the organic EL element 20 includes a first electrode 11 and a fourth electrode 14 (nth electrode), and an intermediate electrode [second electrode] formed between the first electrode 11 and the fourth electrode 14 (nth electrode). Electrode 12, third electrode 13 (n-1th electrode)].
  • the second light emitting unit 22 is sandwiched between the second electrode 12 and the third electrode 13 (n ⁇ 1th electrode), which are intermediate electrodes.
  • the organic EL element 20 includes the first electrode 11 to the fourth electrode 14 (nth electrode) and the first light emitting unit 21 to the third light emitting unit 23 (nth) provided on the support substrate 50. -1 light emitting unit). Further, as an intermediate electrode formed between the first electrode 11 and the fourth electrode 14 (nth electrode), a second electrode 12 and a third electrode 13 (n ⁇ 1 electrode) are provided. Furthermore, the organic EL element having this configuration includes a first wiring 31 that supplies current to the first electrode 11 and the fourth electrode 14 (nth electrode), and the first light emitting unit 21 to the third light emitting unit 23 (nth electrode).
  • the first wiring 31 has a first power supply unit 41
  • the second wiring 32 has a second power supply unit 42.
  • a light emitting unit [first light emitting unit 21, third light emitting] that is supplied with current from the first wiring 31 according to the amount of current applied from the first power supply unit 41 and the second power supply unit 42.
  • Unit 23 (n-1 light emitting unit)]
  • light emission control on-off of the light emitting unit [second light emitting unit 22] to which a current is supplied from the second wiring 32, and adjustment of luminance at the time of light emission. It becomes possible.
  • the driving mechanism in the organic EL element 20 having the above configuration will be described.
  • the organic EL element 20 configured as described above, when a current is applied from the first power supply unit 41 to the first electrode 11 and the fourth electrode 14, two types of current paths are conceivable.
  • One is from the first wiring 31 to the first electrode 11, the first light emitting unit 21, the second electrode 12, the second wiring 32, the second power supply unit 42, the third electrode 13, the third light emitting unit 23, and This is a path (hereinafter referred to as a first path) that returns to the first wiring 31 through the fourth electrode 14.
  • the other is that the first electrode 11, the first light emitting unit 21, the second electrode 12, the second light emitting unit 22, the third electrode 13, the third light emitting unit 23, and the fourth wire 31 are connected to the first wiring 31.
  • a current also flows through the second power supply unit 42 provided in the second wiring 32. Further, the second route does not pass through the second light emitting unit 22, and the second route passes through the second light emitting unit 22.
  • the organic EL element 10 having the above configuration, when the driving of the first power supply unit 41 is turned on and the driving of the second power supply unit 42 is turned off, a current is supplied to the first path. Further, when both the first power supply unit 41 and the second power supply unit 42 are turned on, a current is supplied to the second path. Furthermore, in the state where the driving of the second power supply unit 42 is turned on, as the amount of current applied from the second power supply unit 42 to the second electrode 12 and the third electrode 13 increases, it is applied to the second light emitting unit 22. The amount of current increases. For this reason, the light emission luminance of the second light emitting unit 22 can be adjusted by adjusting the amount of current applied from the second power supply unit 42 to the second electrode 12 and the third electrode 13.
  • the second wiring 32 and the second power supply unit 42 are in a state where the driving of the second power supply unit 42 is turned off.
  • the resistance value of the first route passing through the second light path is smaller than that of the second route passing through the second light emitting unit 22. Accordingly, when the driving of the first power supply unit 41 is turned on and the driving of the second power supply unit 42 is turned off, a current flows to the first path side having a smaller resistance. That is, the second wiring 32 becomes a loop circuit of the second light emitting unit 22.
  • the first light emitting unit 21 and the third light emitting unit 23 on the first path emit light, and the first path
  • the second light emitting unit 22 that is not included does not emit light.
  • the amount of current supplied to the first light emitting unit 21 and the third light emitting unit 23 can be adjusted by adjusting the amount of current from the first power supply unit 41. it can.
  • the second light emitting unit 22 is not caused to emit light by adjusting the amount of current from the first power supply unit 41 with the driving of the first power supply unit 41 turned on and the driving of the second power supply unit 42 turned off.
  • the light emission luminance of the first light emitting unit 21 and the third light emitting unit 23 can be adjusted.
  • the amount of current supplied to the second light emitting unit 22 can be adjusted by adjusting the amount of current from the second power source unit 42 while the second power source unit 42 is turned on. Accordingly, the light emission luminance of the second light emitting unit 22 is adjusted by adjusting the amount of current from the second power supply unit 42 with both the first power supply unit 41 and the second power supply unit 42 turned on. It becomes possible.
  • the current amount supplied to the first light emitting unit 21 is equal to the current amount from the first power supply unit 41 even when the first power supply unit 41 and the second power supply unit 42 are both turned on. Dependent. For this reason, also in the organic EL element 10 in this state, the light emission luminance of the first light emitting unit 21 can be adjusted by adjusting the amount of current from the first power supply unit 41.
  • the second wiring 32 is connected to the third electrode 13 serving as the cathode of the third light emitting unit 23, the influence on the third light emitting unit 23 side due to the variation in the amount of current supplied from the second power supply unit 42. Is small. That is, the amount of current supplied to the third light emitting unit 23 depends on the amount of current from the first power supply unit 41. For this reason, the light emission luminance of the third light emitting unit 23 can be adjusted by the amount of current from the first power supply unit 41 without depending on the adjustment of the amount of current from the second power supply unit 42.
  • the second power supply is maintained while keeping the light emission luminance of the first light-emitting unit 21 and the third light-emitting unit 23 constant while keeping the current amount from the first power supply unit 41 constant.
  • the amount of current from the unit 42 only the light emission luminance of the second light emitting unit 22 can be adjusted.
  • the first light emission unit 21 and the third light emission unit 23 A current amount corresponding to the light emission luminance is supplied from the first power supply unit 41, and the current amount from the second power supply unit 42 may be adjusted so that the current amount supplied to the second light emitting unit 22 is constant. .
  • the amount of current from the second power supply unit 42 is the first power supply unit 41 in a state where both the first power supply unit 41 and the second power supply unit 42 are turned on. If the current amount is smaller than the current amount from the first power supply unit 42, the resistance value of the second light-emitting unit 22, and the like, either the first route or the second route described above as a current flow route. Or both are selected. At this time, when the second path is selected, the second light emitting unit 22 emits light, and when only the first path is selected, the second light emitting unit 22 does not emit light.
  • the organic EL element 20 in the state where the driving of the first power supply unit 41 is turned off and the driving of the second power supply unit 42 is turned on, the amount of current from the second power supply unit 42 is adjusted to thereby generate the second light emission. Only the light emission luminance of the unit 22 can be adjusted.
  • the light emission pattern in which the first light emitting unit 21 and the third light emitting unit 23 emit light by switching the driving of the first power supply unit 41 and the second power supply unit 42 on and off.
  • First path a light emission pattern (third path) in which only the second light emitting unit 22 emits light
  • Three types of light emission patterns consisting of (second path) can be arbitrarily selected.
  • the first light emitting unit 21 by switching on and off the driving of the first power supply unit 41 and the second power supply unit 42 and adjusting the amount of current supplied from each power supply unit, the first light emitting unit 21, The light emission luminance of the second light emitting unit 22 and the third light emitting unit 23 can be arbitrarily adjusted.
  • FIG. 5 and FIG. 6 show an equivalent circuit of the organic EL element having the above-described configuration.
  • the first light emitting unit 21 emits blue (B) light
  • the second light emitting unit 22 emits red (R) light
  • the third light emitting unit 23 is green (G).
  • the structure emits light.
  • the first light emitting unit 21 emits blue (B) light
  • the second light emitting unit 22 emits yellow (Yl) light
  • the third light emitting unit 23 is blue ( B)
  • a structure that emits light. 5 and 6 the first electrode 11 is represented by An
  • the second electrode 12 (intermediate electrode) is represented by M1
  • the third electrode 13 (intermediate electrode) is represented by M2
  • the fourth electrode 14 is represented by Ca.
  • the organic EL element 20 shown in FIG. 5 when the current I an-ca supplied from the first power supply unit 41 is larger than the current I m1-m2 supplied from the second power supply unit 42, and the second power supply When the current Im1-m2 supplied from the unit 42 is 0, the first light emitting unit 21 and the third light emitting unit 23 emit light, and the second light emitting unit 22 does not emit light. That is, cyan light in which blue light and green light are mixed is obtained from the organic EL element 20.
  • the current I m1-m2 supplied from the second power supply unit 42 is equal to or greater than the current I an-ca supplied from the first power supply unit 41, the first light emitting unit 21 and the third light emitting unit 23 together The two light emitting units 22 emit light.
  • each light emission pattern by adjusting at least one of the current I an-ca supplied from the first power supply unit 41 and the current I m-ca supplied from the second power supply unit 42, the first The luminance of cyan light obtained from the light emitting unit 21 and the third light emitting unit 23, the luminance of red light obtained from the second light emitting unit 22, and the first light emitting unit 21, the second light emitting unit 22, and the third light emitting.
  • the brightness of the white light obtained from the unit 23 can be arbitrarily adjusted.
  • the organic EL element 20 shown in FIG. 6 when the current I an-ca supplied from the first power supply unit 41 is larger than the current I m1-m2 supplied from the second power supply unit 42, and the second power supply When the current Im1-m2 supplied from the unit 42 is 0, the first light emitting unit 21 and the third light emitting unit 23 emit light, and the second light emitting unit 22 does not emit light. That is, only blue light is obtained from the organic EL element 20.
  • the current I m1-m2 supplied from the second power supply unit 42 when the current I m1-m2 supplied from the second power supply unit 42 is equal to or greater than the current I an-ca supplied from the first power supply unit 41, the first light emitting unit 21 and the third light emitting unit 23 together The two light emitting units 22 emit light.
  • each light emission pattern by adjusting at least one of the current I an-ca supplied from the first power supply unit 41 and the current I m-ca supplied from the second power supply unit 42, the first The luminance of blue light obtained from the light emitting unit 21 and the third light emitting unit 23, the luminance of yellow light obtained from the second light emitting unit 22, and the first light emitting unit 21, the second light emitting unit 22, and the third light emitting.
  • the brightness of the white light obtained from the unit 23 can be arbitrarily adjusted.
  • the first power supply unit 41 of the first wiring 31 that supplies current to the first electrode 11 and the fourth electrode 14 (nth electrode), and the second light emitting unit 22 A plurality of light emitting units are simultaneously formed by the second power supply unit 42 of the second wiring 32 that supplies current to the anode [second electrode 12] side and the cathode [third electrode 13 (n-1 electrode)] side.
  • the light emitting unit can emit light alone.
  • by adjusting the current amounts of the first power supply unit 41 and the second power supply unit 42 it is possible to arbitrarily adjust the light emission luminance of each of the light emitting units that emit light simultaneously or independently.
  • the light emitting units can be made to emit light simultaneously or independently by simultaneous driving of the light emitting units without performing time-division driving. For this reason, the toning and dimming of the organic EL element can be performed without increasing the amount of current by time division driving and the current load on the IC. Furthermore, since the toning and light control of the organic EL element can be performed without increasing the amount of current, it is possible to suppress a decrease in light emission uniformity (homogeneity) in the panel.
  • FIG. 7 shows a configuration of a first modification of the organic EL element of the second embodiment.
  • the second wiring 32 is connected to the third electrode 13 and between the fourth electrode 14 of the first wiring 31 to the first power supply unit 41.
  • a second power supply unit 42 is disposed on the second wiring 32.
  • the organic EL element 20A has the same configuration as that of the above-described second embodiment except for the arrangement of the second wiring 32 and the second power supply unit 42.
  • the second power supply section of the second wiring 32 that supplies current to the anode [third electrode 13] side and the cathode [fourth electrode 14 (nth electrode) to the first wiring 31] side of the third light emitting unit 23. 42 a plurality of light emitting units can be made to emit light simultaneously or independently.
  • the light emission of the first light emitting unit 21 and the second light emitting unit 22 can be adjusted by the first power supply unit 41
  • the light emission of the third light emitting unit 23 can be adjusted by the second power supply unit 42. Therefore, by adjusting the current amounts of the first power supply unit 41 and the second power supply unit 42, it is possible to arbitrarily adjust the light emission luminance of each light emitting unit that emits light at the same time or independently.
  • the second wiring 32 is a loop circuit of the third light emitting unit 23.
  • the connection position of the second wiring 32 the position where the loop circuit for the light emitting unit is formed can be arbitrarily selected from the organic EL elements.
  • the second wiring 32 and the second power supply unit 42 between the first power supply unit 41 and the first electrode 11 of the first wiring 31 and the position where the second electrode 12 is connected, the first light emission is performed. It is also possible to form a loop circuit for the unit 21.
  • FIG. 8 shows a configuration of a second modification of the organic EL element of the second embodiment.
  • the second wiring 32 is provided at a position connecting the third electrode 13 and the portion between the fourth electrode 14 of the first wiring 31 and the first power supply unit 41. .
  • a second power supply unit 42 is disposed on the second wiring 32.
  • the third wiring 33 is provided at a position connecting the first electrode 11 between the first power supply unit 41 and the first electrode 11 and the second electrode 12.
  • a third power supply unit 43 is provided on the third wiring 33.
  • the organic EL element 20B has the same configuration as that of the first modification of the second embodiment described above, except for the arrangement of the third wiring 33 and the third power supply unit 43.
  • any two light emitting units can emit light simultaneously. Also in these light emission patterns, the luminance of each light emitting unit can be individually adjusted by adjusting the amount of current supplied from each power supply unit.
  • the three light emitting units of the three light emitting units 23 can emit light simultaneously. Also in these light emission patterns, the luminance of each light emitting unit can be individually adjusted by adjusting the amount of current supplied from each power supply unit.
  • the second wiring is a loop circuit together with the second wiring and the second power supply unit.
  • a configuration having a third wiring and a third power supply unit that is a loop circuit of a light emitting unit other than the light emitting unit is also possible.
  • the light emitting units can be made to emit light simultaneously or independently by simultaneous driving of the light emitting units without performing time-division driving. For this reason, the toning and dimming of the organic EL element can be performed without increasing the amount of current by time division driving and the current load on the IC. Furthermore, since the toning and light control of the organic EL element can be performed without increasing the amount of current, it is possible to suppress a decrease in light emission uniformity (homogeneity) in the panel.
  • the support substrate on which the electrode and the light emitting unit are formed is not particularly limited.
  • a transparent substrate is used as the support substrate.
  • an opaque substrate may be used as the support substrate.
  • the transparent substrate for example, the substrates described in paragraphs [0049] to [0052] of JP 2014-120334 A can be used.
  • the opaque substrate for example, the substrate described in paragraph [0126] of JP2013-89608A can be used.
  • Transparent transparent means that the light transmittance at a wavelength of 550 nm is 50% or more.
  • the first electrode and the nth electrode are the anode and the other is the cathode.
  • a transparent electrode is used as the first electrode
  • an electrode having a high reflectance is used as the nth electrode.
  • an electrode having a high reflectance is used for the first electrode
  • a transparent electrode is used for the nth electrode.
  • transparent electrodes are used for the first electrode and the nth electrode.
  • the first electrode and the n-th electrode for example, the configuration described in paragraphs [0127] to [0129] of JP2013-89608A and a conductive material can be applied.
  • an electrode formed between the first electrode and the nth electrode is an intermediate electrode (second electrode to n ⁇ 1th electrode).
  • the polarity of the intermediate electrode is inverted to the anode or the cathode according to the light emission pattern (FIGS. 4 and 11) of the organic EL element.
  • the intermediate electrode is configured using a conductive material having excellent light transmission properties from materials suitable for the transparent electrode described above.
  • the intermediate electrode preferably has the same sheet resistance and light transmittance as the transparent electrode.
  • the intermediate electrode for example, the configuration described in paragraphs [0060] to [0064] of JP 2014-120334 A and a conductive material can be applied.
  • the intermediate electrode preferably contains silver (Ag) or aluminum (Al) as a main component.
  • a main component is a component with the highest ratio for the whole structure.
  • the conductive material containing silver (Ag) or aluminum (Al) as a main component include silver or an alloy containing silver as a main component and an alloy containing aluminum or aluminum as a main component.
  • alloys include silver magnesium (AgMg), silver copper (AgCu), silver palladium (AgPd), silver palladium copper (AgPdCu), silver indium (AgIn), silver gold (AgAu), silver aluminum (AgAl) Silver zinc (AgZn), silver tin (AgSn), silver platinum (AgPt), silver titanium (AgTi), silver bismuth (AgBi), and the like.
  • the intermediate electrode made of a conductive material mainly composed of silver (Ag) or aluminum (Al) preferably has a thickness of 6 nm to 25 nm.
  • the thickness of the intermediate electrode By setting the thickness of the intermediate electrode to 6 nm or more, the film formability of the metal thin film is improved, and the conductivity of the intermediate electrode is improved. Further, by improving the film formability of the metal thin film, light absorption and reflection by the intermediate electrode can be kept low, and the light transmittance of the intermediate electrode is increased. Furthermore, by setting the thickness of the intermediate electrode to 25 nm or less, it is possible to suppress a decrease in the light transmittance of the intermediate electrode and to suppress the influence on the light emission efficiency of the organic EL element.
  • Each light emitting unit provided in the organic EL element has a light emitting layer that is configured by using an organic material and emits light by recombination of injected electrons and holes.
  • Each light emitting unit may be a laminate including a light emitting layer.
  • the configuration of each light emitting unit is not particularly limited, and a conventionally known configuration can be used.
  • the laminated structure of the layers constituting each light emitting unit is not particularly limited, and an arbitrary layer can be provided as necessary. Examples of the layers constituting each light emitting unit include the configurations described in paragraphs [0240] to [0262] of JP 2014-120334 A, paragraphs [0073] to [0082] of JP 2013-89608 A, and the like. Can be applied.
  • the power supply unit used for the organic EL element is not particularly limited as long as the driving (on-off) of the current supplied to each electrode can be switched, and a conventionally known configuration applicable to the organic EL element can be applied.
  • each power supply unit may have its current applied to each electrode and each light emitting unit controlled by a control unit (not shown).
  • the control unit for example, a configuration using a computer or the like is possible.
  • As a power source when one intermediate electrode is included, it is necessary to be able to apply at least 6 V or more, preferably 9 V or more (OLED component + constant current diode resistance component).
  • the organic EL element may have a gas barrier layer for suppressing intrusion of moisture, oxygen or the like that causes deterioration of the organic EL element between the first electrode and the support substrate.
  • a gas barrier layer for example, the configurations described in paragraphs [0053] to [0056] of JP 2014-120334 A can be applied.
  • the organic EL element may have a sealing material that covers each electrode and each light emitting unit on the support substrate.
  • the sealing material only needs to have a layer having a function of suppressing intrusion of moisture, oxygen, or the like that causes deterioration of the organic EL element.
  • the organic EL element may have a light extraction structure for efficiently extracting light emitted from each light emitting unit, if necessary.
  • the light extraction structure for example, the configurations described in paragraphs [0275] to [0288] of JP 2014-120334 A can be applied.
  • An organic EL element having an element area of 1 cm ⁇ 1 cm was produced by the following method.
  • the produced organic EL element has the configuration shown in FIG. 4 described above, and has a configuration in which the first light emitting unit has a blue light emission color, the second light emitting unit has a red light emission, and the third light emitting unit has a green light emission color.
  • first electrode transparent electrode
  • a glass substrate having a thickness of 0.7 mm was prepared as a transparent substrate.
  • This transparent substrate was subjected to ultrasonic cleaning with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes. And this transparent substrate was fixed to the substrate holder of a commercially available vacuum evaporation apparatus.
  • the following compound 3 and Ag (silver) were each filled with the optimal quantity to each crucible for vapor deposition in a vacuum vapor deposition apparatus.
  • an evaporation crucible made of a resistance heating material made of molybdenum or tungsten was used as each evaporation crucible.
  • the deposition crucible containing Compound 3 was energized and heated, and deposited at a deposition rate of 0.1 nm / second to form a base layer having a thickness of 15 nm. Furthermore, Ag (silver) was mask-deposited with a thickness of 15 nm to form a first electrode (transparent electrode).
  • a second light-emitting unit was formed by setting the film thickness as follows in the same procedure using the same material as the first light-emitting unit except for the light-emitting layer.
  • a third light-emitting unit was formed by setting the film thickness as follows in the same procedure using the same material as the first light-emitting unit except for the light-emitting layer.
  • the laminated body of the first electrode to the fourth electrode is covered with a glass case from the fourth electrode side, and an epoxy-based photocurable adhesive (Toho) is applied to the periphery of the glass case.
  • combination company Lux track LC0629B) was provided.
  • the glass case and the transparent substrate were brought into close contact with each other through this sealant.
  • the laminated body from the first electrode to the fourth electrode was sealed by irradiating UV light from the glass case side to cure the sealing agent.
  • the glass case is sealed with a glove box in a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas with a purity of 99.999% or more) without bringing the laminate from the first electrode to the fourth electrode into contact with the atmosphere.
  • a nitrogen atmosphere in an atmosphere of high-purity nitrogen gas with a purity of 99.999% or more
  • the terminals of the first electrode, the second electrode, the third electrode, and the fourth electrode are in a state of being pulled out from the glass case, and these electrodes are connected to the first power supply unit, the second power supply unit,
  • the power supply unit was connected to a circuit capable of driving. Thus, an organic EL element was produced.
  • the produced organic EL device was allowed to emit light under the conditions (1) and (2) below at room temperature (25 ° C.).
  • a current is applied between the first path [first electrode-fourth electrode (I an-ca )] from the first power supply unit under a condition that the current density is 5 mA / cm 2, and the second path [ Between the second electrode and the third electrode (I m1-m2 )], a current was applied from the second power supply unit under the condition that the current density was 10 mA / cm 2 . Furthermore, the front luminance and chromaticity of the light emitting region under the conditions (1) and (2) above were measured using a spectral radiance meter CS-2000 (manufactured by Konica Minolta Sensing Co., Ltd.).
  • the measured value [A1] to be measured and the measured value [A2] corresponding to the condition (2) were applied to the chromaticity diagram of the CIE color system.
  • the measured values [A1] and [A2] applied to the chromaticity diagram of the CIE color system are shown in FIG.
  • the organic EL element produced in the example is only in the first path [first electrode-fourth electrode (I an-ca )].
  • the first light emitting unit and the third light emitting unit emit light, and the second light emitting unit does not emit light, so that cyan light in which blue light and green light are mixed is obtained. It was.
  • a current is supplied to the first path [first electrode-fourth electrode (I an-ca )] and the second path [second electrode-third electrode (I m1-m2 )] so as to have the same current density.
  • the applied condition (2) all of the first light emitting unit, the second light emitting unit, and the third light emitting unit emitted light, and white light in which blue light, red light, and green light were mixed was obtained.
  • the produced organic EL device was made to emit light at room temperature (25 ° C.) under the conditions (1) and (2) as in the case of the pattern A. Furthermore, the front luminance and chromaticity of the light emitting region under the conditions (1) and (2) above were measured using a spectral radiance meter CS-2000 (manufactured by Konica Minolta Sensing Co., Ltd.). The measured value [B1] to be measured and the measured value [B2] corresponding to the condition (2) were applied to the chromaticity diagram of the CIE color system. The measured values [B1] and [B2] applied to the chromaticity diagram of the CIE color system are shown in FIG.
  • the organic EL element manufactured in the example is only the first path [first electrode-fourth electrode (I an-ca )].
  • condition (1) in which a current was applied to the first light emitting unit, the first light emitting unit and the third light emitting unit emitted light, and the second light emitting unit did not emit light, so that only blue light was obtained.
  • a current is supplied to the first path [first electrode-fourth electrode (I an-ca )] and the second path [second electrode-third electrode (I m1-m2 )] so as to have the same current density.
  • the applied condition (2) all of the first light emitting unit, the second light emitting unit and the third light emitting unit emitted light, and white light in which yellow light and blue light were mixed was obtained.
  • An organic EL element having an element area of 1 cm ⁇ 1 cm was produced by the following method.
  • the produced organic EL element has the configuration shown in FIG. 1 described above, and has a configuration in which the first light-emitting unit has a white emission color and the second light-emitting unit has a blue emission color.
  • compound 4-A as a host compound, Ir (ppy) 3 as a green phosphorescent dopant, Ir (pq) 2 as a red phosphorescent dopant, and a concentration of Ir (ppy) 3 of 17%, compound A phosphorescent light emitting layer having a thickness of 15 nm was formed by co-evaporation at a deposition rate of 0.1 nm / second so that the concentration of Ir (pq) 2 was 0.8%.
  • a third electrode (reflection electrode) is produced in the same manner as “(7) Formation of fourth electrode (reflection electrode)”. did. Then, “(8) Sealing and connection of power supply unit” is performed, and the organic EL element having the configuration shown in FIG. 1 in which the first light emitting unit has a white light emitting color and the second light emitting unit has a blue light emitting color. (Pattern C) was produced.
  • the produced organic EL device was allowed to emit light under the conditions (1) and (2) below at room temperature (25 ° C.).
  • the measured value [C1] and the measured value [C2] corresponding to the condition (2) were applied to the chromaticity diagram of the CIE color system. Measurement values [C1] and [C2] applied to the chromaticity diagram of the CIE color system are shown in FIG.
  • the organic EL element manufactured in the example is only the first path [first electrode-third electrode (I an-ca )].
  • condition (1) in which a current was applied to, only the first light emitting unit emitted light, and the second light emitting unit did not emit light, so only white light was obtained.
  • a current is applied to the first path [first electrode-third electrode (I an-ca )] and the second path [second electrode-third electrode (I m-ca )] so as to have the same current density.
  • the first light emitting unit and the second light emitting unit emitted light, and light in which white light and blue light were mixed was obtained.
  • the produced organic EL device was allowed to emit light at room temperature (25 ° C.) under the conditions (1) and (2) as in the case of the pattern C. Furthermore, the front luminance and chromaticity of the light emitting region under the conditions (1) and (2) above were measured using a spectral radiance meter CS-2000 (manufactured by Konica Minolta Sensing Co., Ltd.). The measured value [D1] to be measured and the measured value [D2] corresponding to the condition (2) were applied to the chromaticity diagram of the CIE color system. The measured values [D1] and [D2] applied to the chromaticity diagram of the CIE color system are shown in FIG.
  • the organic EL device manufactured in the example is only the first path [first electrode-third electrode (I an-ca )].
  • condition (1) in which a current was applied to, only the first light emitting unit emitted light, and the second light emitting unit did not emit light, so only white light was obtained.
  • a current is applied to the first path [first electrode-third electrode (I an-ca )] and the second path [second electrode-third electrode (I m-ca )] so as to have the same current density.
  • the first light emitting unit and the second light emitting unit emitted light, and light in which white light and yellow light were mixed was obtained.
  • a fluorescent light-emitting layer exhibiting a blue color and a phosphorescent light-emitting layer exhibiting a yellow color are laminated by using the following method, and white having a color temperature of 6500 K A light emitting layer was formed.
  • a fluorescent light-emitting layer exhibiting blue and a phosphorescent light-emitting layer exhibiting yellow are stacked and formed using the following method, and the color temperature is 2000K. A light emitting layer having a white color was formed.
  • compound 4-A as a host compound, Ir (ppy) 3 as a green phosphorescent dopant, Ir (pq) 2 as a red phosphorescent dopant, and a concentration of Ir (ppy) 3 of 17%, compound A phosphorescent light emitting layer having a thickness of 15 nm was formed by co-evaporation at a deposition rate of 0.1 nm / second so that the concentration of Ir (pq) 2 was 0.8%.
  • compound 4-A as a host compound, Ir (ppy) 3 as a green phosphorescent dopant, Ir (pq) 2 as a red phosphorescent dopant, and a concentration of Ir (ppy) 3 of 17%, compound A phosphorescent light emitting layer having a thickness of 15 nm was formed by co-evaporation at a deposition rate of 0.1 nm / second so that the concentration of Ir (pq) 2 was 0.8%.
  • the produced organic EL device was allowed to emit light at room temperature (25 ° C.) under the conditions (1) and (2) as in the case of the pattern C. Furthermore, the front luminance and chromaticity of the light emitting region under the conditions (1) and (2) above were measured using a spectral radiance meter CS-2000 (manufactured by Konica Minolta Sensing Co., Ltd.). The measured value [E1] to be measured and the measured value [E2] corresponding to the condition (2) were applied to the chromaticity diagram of the CIE color system. The measured values [E1] and [E2] applied to the chromaticity diagram of the CIE color system are shown in FIG.
  • the organic EL device manufactured in the example is only the first path [first electrode-third electrode (I an-ca )].
  • condition (1) in which a current was applied to the light source, only the first light emitting unit emitted light and the second light emitting unit did not emit light, so only white light having a color temperature of 6500 K was obtained.
  • a current is applied to the first path [first electrode-third electrode (I an-ca )] and the second path [second electrode-third electrode (I m-ca )] so as to have the same current density.
  • the first light emitting unit and the second light emitting unit emitted light, and white light having a color temperature of 6500K and white light having a color temperature of 2000K were mixed to obtain white light of about 3000K.
  • the light emitting layer of the first light emitting unit is formed by the same method as “(2.4) Formation of light emitting layer” of the second light emitting unit of pattern C, and the light emitting layer of the second light emitting unit is further formed of pattern D.
  • An organic EL element of pattern F was produced in the same manner as the organic EL element of pattern C described above, except that it was formed in the same manner as “(4.4) Formation of light emitting layer” of the second light emitting unit.
  • the produced organic EL device was allowed to emit light at room temperature (25 ° C.) under the conditions (1) and (2) as in the case of the pattern C. Furthermore, the front luminance and chromaticity of the light emitting region under the conditions (1) and (2) above were measured using a spectral radiance meter CS-2000 (manufactured by Konica Minolta Sensing Co., Ltd.). The measured value [F1] to be measured and the measured value [F2] corresponding to the condition (2) were applied to the chromaticity diagram of the CIE color system. The measured values [F1] and [F2] applied to the chromaticity diagram of the CIE color system are shown in FIG.
  • the organic EL element produced in the example is only the first path [first electrode-third electrode (I an-ca )]. Only the first light emitting unit emitted light and the second light emitting unit did not emit light under the condition (1) in which a current was applied to the light source, so that only blue light was obtained. On the other hand, a current is applied to the first path [first electrode-third electrode (I an-ca )] and the second path [second electrode-third electrode (I m-ca )] so as to have the same current density. Under the applied condition (2), the first light emitting unit and the second light emitting unit emitted light, and white light in which yellow light and blue light were mixed was obtained.
  • the organic EL element (patterns A to F) having the configuration manufactured in the example, in the configuration in which a plurality of electrodes and the light emitting unit are stacked, toning is performed without performing time-division driving. Dimming is possible. For this reason, compared with time division drive, the amount of current is small, and an organic EL element with high light emission efficiency can be realized.
  • the light modulation of an intermediate color is attained by changing the electric current amount supplied to each light emission unit also with the same light emission pattern. This can also be applied to other light emission patterns by combinations of other light emitting units.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

An organic electroluminescent element is configured in which first to nth electrodes are stacked from a support substrate side, at least one intermediate electrode is provided between the first to nth electrodes, and first to n-1th light emission units (n being an integer equal to or greater than 3) are provided between the electrodes. The organic electroluminescent element is provided with: first wiring and a first power supply unit which supply current to the first electrode and the nth electrode; and second wiring and a second power supply unit which supply current to a positive electrode and a negative electrode of at least one light emission unit among the first to n-1th light emission units.

Description

有機エレクトロルミネッセンス素子Organic electroluminescence device
 本発明は、複数の発光ユニットが積層された、調色可能な有機エレクトロルミネッセンス素子に係わる。 The present invention relates to a toned organic electroluminescence element in which a plurality of light emitting units are stacked.
 有機エレクトロルミネッセンス(electroluminescence:EL)素子は、自発光性であることから、薄型化が可能であり、消費電力が抑えられ、且つ応答速度が速いといった特徴を有している。 Organic electroluminescence (EL) elements are self-luminous and can be reduced in thickness, power consumption is reduced, and response speed is high.
 照明用途において、有機EL素子の発光色を変化させることができれば、色による演出を効果的に得ることができる。このため、発光色を変化させることが可能な調色機能は、有機EL素子において重要な機能である。このような調色機能の一形態として、有機EL素子に調色(調光)ユニットを設けた素子が提案されている(例えば、特許文献1参照)。また、3つの電極を有し、中間電極をコモンアノードとし、且つ、両面カソード電位を同一とした構成の有機EL素子が提案されている(例えば、特許文献2、特許文献3参照)。 In lighting applications, if the light emission color of the organic EL element can be changed, a color effect can be obtained effectively. For this reason, the toning function capable of changing the emission color is an important function in the organic EL element. As one form of such a toning function, an element in which a toning (dimming) unit is provided in an organic EL element has been proposed (see, for example, Patent Document 1). An organic EL element having three electrodes, an intermediate electrode as a common anode, and a double-sided cathode potential that is the same has been proposed (see, for example, Patent Document 2 and Patent Document 3).
 このような複数の電極と発光ユニットとが積層された構成の有機EL素子において、調色を行なう場合には、各発光ユニットを同時に駆動することができないため、時分割してパルス駆動で各発光ユニットを駆動する必要がある。このような駆動を行なうことにより、各発光ユニットの色、輝度を自在に組み合わせ、様々な色を表現することができる。 In the organic EL element having such a structure in which a plurality of electrodes and a light emitting unit are laminated, when toning, each light emitting unit cannot be driven at the same time. It is necessary to drive the unit. By performing such driving, it is possible to express various colors by freely combining the colors and luminances of the respective light emitting units.
特開2009-99400号公報JP 2009-99400 A 国際公開第2014/196677号International Publication No. 2014/196777 特開平9-199276号公報JP-A-9-199276
 しかしながら、上述の複数の電極と発光ユニットとが積層された構成の有機EL素子では、時分割した駆動を行なうために、2ユニット系では1周期の各々半分ずつ発光ユニットを駆動させる必要がある。また、3ユニットの系では、1周期の各々1/3ずつ駆動させる必要がある。すなわち、各発光ユニットの発光時間が1/2や1/3となるため、得たい輝度の約2倍、又は、約3倍の輝度で各発光ユニットを発光させる必要がある。従って、必要な輝度を得るために、発光ユニットに供給する電流量が大きくなる。この場合、有機EL素子を制御するための瞬間的なICへの電流負荷が増大してしまう。また、有機EL素子に供給される電流の増加は、パネル内の発光均一性(均斉度)の低下の要因となる。 However, in the organic EL element having a configuration in which the plurality of electrodes and the light emitting unit described above are stacked, in order to perform time-division driving, it is necessary to drive the light emitting unit for each half of one cycle in the two-unit system. In a 3-unit system, it is necessary to drive 1/3 of each cycle. That is, since the light emission time of each light emitting unit is 1/2 or 1/3, it is necessary to cause each light emitting unit to emit light with a brightness about twice or about three times the desired brightness. Therefore, the amount of current supplied to the light emitting unit is increased in order to obtain the required luminance. In this case, an instantaneous current load on the IC for controlling the organic EL element increases. In addition, an increase in current supplied to the organic EL element causes a decrease in light emission uniformity (homogeneity) in the panel.
 上述した問題の解決のため、本発明においては、複数の電極と発光ユニットとが積層された構成であって、発光ユニットの同時駆動により調色、調光が可能な有機エレクトロルミネッセンス素子を提供する。 In order to solve the above-described problems, the present invention provides an organic electroluminescence element that has a configuration in which a plurality of electrodes and a light emitting unit are stacked and can be adjusted and adjusted by simultaneous driving of the light emitting units. .
 本発明の有機エレクトロルミネッセンス素子は、支持基板上に設けられた、複数の電極と、複数の発光ユニットとを備え、支持基板側から、第1電極から第n電極が積層され、第1電極から第n電極の間に少なくとも1つ以上の中間電極を有し、電極間に第1発光ユニットから第n-1発光ユニットを有する(nは3以上の整数)。さらに、第1電極と第n電極とに電流を供給する第1配線と、第1配線に設けられた第1電源部と、第1発光ユニットから第n-1発光ユニットのうちの少なくとも1つの発光ユニットの陽極と陰極とに電流を供給する第2配線と、第2配線に設けられた第2電源部とを備える。そして、第2電源部から印加される電流量により、第2配線から電流が供給される陽極と陰極とに挟持された発光ユニットの輝度が調整される。 The organic electroluminescence element of the present invention includes a plurality of electrodes and a plurality of light emitting units provided on a support substrate, and from the support substrate side, the nth electrode is laminated from the first electrode, At least one or more intermediate electrodes are provided between the nth electrodes, and the first to n−1th light emitting units are provided between the electrodes (n is an integer of 3 or more). Furthermore, the first wiring for supplying current to the first electrode and the nth electrode, the first power supply unit provided in the first wiring, and at least one of the first light emitting unit to the n-1 light emitting unit A second wiring for supplying current to the anode and the cathode of the light emitting unit and a second power supply unit provided in the second wiring are provided. The luminance of the light emitting unit sandwiched between the anode and the cathode supplied with the current from the second wiring is adjusted by the amount of current applied from the second power supply unit.
 本発明によれば、発光ユニットの同時駆動により調色、調光が可能な有機エレクトロルミネッセンス素子を提供することができる。 According to the present invention, it is possible to provide an organic electroluminescence element capable of toning and light control by simultaneous driving of the light emitting units.
第1実施形態の有機EL素子の構成を示す図である。It is a figure which shows the structure of the organic EL element of 1st Embodiment. 第1実施形態の有機EL素子の等価回路を示す図である。It is a figure which shows the equivalent circuit of the organic EL element of 1st Embodiment. 第1実施形態の有機EL素子の等価回路を示す図である。It is a figure which shows the equivalent circuit of the organic EL element of 1st Embodiment. 第2実施形態の有機EL素子の構成を示す図である。It is a figure which shows the structure of the organic EL element of 2nd Embodiment. 第2実施形態の有機EL素子の等価回路を示す図である。It is a figure which shows the equivalent circuit of the organic EL element of 2nd Embodiment. 第2実施形態の有機EL素子の等価回路を示す図である。It is a figure which shows the equivalent circuit of the organic EL element of 2nd Embodiment. 第2実施形態の有機EL素子の変形例の構成を示す図である。It is a figure which shows the structure of the modification of the organic EL element of 2nd Embodiment. 第2実施形態の有機EL素子の変形例の構成を示す図である。It is a figure which shows the structure of the modification of the organic EL element of 2nd Embodiment. 実施例で作製した有機EL素子の等価回路と色度図を示す図である。It is a figure which shows the equivalent circuit and chromaticity diagram of the organic electroluminescent element produced in the Example. 実施例で作製した有機EL素子の等価回路と色度図を示す図である。It is a figure which shows the equivalent circuit and chromaticity diagram of the organic electroluminescent element produced in the Example. 実施例で作製した有機EL素子の等価回路と色度図を示す図である。It is a figure which shows the equivalent circuit and chromaticity diagram of the organic electroluminescent element produced in the Example. 実施例で作製した有機EL素子の等価回路と色度図を示す図である。It is a figure which shows the equivalent circuit and chromaticity diagram of the organic electroluminescent element produced in the Example. 実施例で作製した有機EL素子の等価回路と色度図を示す図である。It is a figure which shows the equivalent circuit and chromaticity diagram of the organic electroluminescent element produced in the Example. 実施例で作製した有機EL素子の等価回路と色度図を示す図である。It is a figure which shows the equivalent circuit and chromaticity diagram of the organic electroluminescent element produced in the Example.
 以下、本発明を実施するための形態の例を説明するが、本発明は以下の例に限定されるものではない。
 なお、説明は以下の順序で行う。
1.有機エレクトロルミネッセンス素子の実施の形態(第1実施形態)
2.有機エレクトロルミネッセンス素子の実施の形態(第2実施形態)
3.有機エレクトロルミネッセンス素子の構成要素
Hereinafter, although the example of the form for implementing this invention is demonstrated, this invention is not limited to the following examples.
The description will be given in the following order.
1. Embodiment of organic electroluminescence device (first embodiment)
2. Embodiment of organic electroluminescence device (second embodiment)
3. Components of organic electroluminescence elements
〈1.有機エレクトロルミネッセンス素子の実施の形態(第1実施形態)〉
 以下、有機エレクトロルミネッセンス素子(有機EL素子)の具体的な実施の形態(第1実施形態)について説明する。有機EL素子は、支持基板上に設けられた複数の電極と発光ユニットとを備える。これらの電極及び発光ユニットを、支持基板側から順に、第1電極から第n電極、第1発光ユニットから第n-1発光ユニットとする。但し、積層される電極数nは3以上の整数である。また、第1電極から第n電極までの間に形成される、第2電極から第n-1電極を中間電極とする。
 さらに、この構成の有機EL素子は、第1電極と第n電極とに電流を供給する第1配線と、第1発光ユニットから第n-1発光ユニットのうちの少なくとも1つの発光ユニットの陽極側と陰極側とに電流を供給する第2配線とを有する。そして、この第1配線に第1電源部を有し、第2配線に第2電源部を有する。この構成の有機EL素子では、第2電源部から印加される電流量により、第2配線から電流が供給される発光ユニットの発光制御(on-off)と、発光時の輝度の調整が可能となる。
 以下の第1実施形態では、積層される電極数nが3の場合の有機EL素子の構成を例として説明する。
<1. Embodiment of Organic Electroluminescence Element (First Embodiment)>
Hereinafter, a specific embodiment (first embodiment) of an organic electroluminescence element (organic EL element) will be described. The organic EL element includes a plurality of electrodes and a light emitting unit provided on a support substrate. The electrodes and the light emitting unit are referred to as a first electrode to an nth electrode and a first light emitting unit to an n-1th light emitting unit in order from the support substrate side. However, the number n of stacked electrodes is an integer of 3 or more. Further, the second electrode to the (n−1) th electrode formed between the first electrode and the nth electrode are used as intermediate electrodes.
Furthermore, the organic EL element having this configuration includes a first wiring for supplying current to the first electrode and the nth electrode, and an anode side of at least one light emitting unit from the first light emitting unit to the n−1 light emitting unit. And a second wiring for supplying current to the cathode side. The first wiring has a first power supply unit, and the second wiring has a second power supply unit. In the organic EL element having this configuration, it is possible to perform light emission control (on-off) of the light emitting unit to which current is supplied from the second wiring, and adjustment of luminance at the time of light emission, according to the amount of current applied from the second power supply unit. Become.
In the following first embodiment, a configuration of an organic EL element when the number n of stacked electrodes is 3 will be described as an example.
[有機EL素子の構成]
 図1に、有機EL素子の概略構成図(断面図)を示す。図1に示す有機EL素子10は支持基板50上に第1電極11、第2電極12、及び、第3電極13が積層された構成である。また、第1電極11と第2電極12との間に第1発光ユニット21が配置され、第2電極12と第3電極13との間に第2発光ユニット22が配置されている。即ち、有機EL素子10は、支持基板50上に、3つの電極(n=3)と、2つの発光ユニットとが積層された構成であり、第3電極13が第n電極に該当し、第2発光ユニット22が第n-1発光ユニットに該当する。
[Configuration of organic EL element]
In FIG. 1, the schematic block diagram (sectional drawing) of an organic EL element is shown. The organic EL element 10 shown in FIG. 1 has a configuration in which a first electrode 11, a second electrode 12, and a third electrode 13 are laminated on a support substrate 50. A first light emitting unit 21 is disposed between the first electrode 11 and the second electrode 12, and a second light emitting unit 22 is disposed between the second electrode 12 and the third electrode 13. That is, the organic EL element 10 has a configuration in which three electrodes (n = 3) and two light emitting units are stacked on the support substrate 50, the third electrode 13 corresponds to the nth electrode, The second light emitting unit 22 corresponds to the (n-1) th light emitting unit.
 また、有機EL素子10の各電極には、電流を供給するための配線及び電源部が接続されている。有機EL素子10は、第1電極11と第3電極13とに電流を供給する第1配線31と、この第1配線31に配置される第1電源部41を有する。さらに、第2電極12と、第1配線31の第3電極13と第1電源部41の間とを接続する位置に、第2配線32が設けられている。さらに、この第2配線32に第2電源部42を有する。第1配線31と第2配線32と交点は、第1配線31における第3電極13から第1電源部41までの間とに配置されている。 Further, a wiring for supplying current and a power supply unit are connected to each electrode of the organic EL element 10. The organic EL element 10 includes a first wiring 31 that supplies current to the first electrode 11 and the third electrode 13, and a first power supply unit 41 that is disposed on the first wiring 31. Furthermore, the second wiring 32 is provided at a position connecting the second electrode 12 and the third electrode 13 of the first wiring 31 and the first power supply unit 41. Further, the second wiring 32 has a second power supply unit 42. The intersection of the first wiring 31 and the second wiring 32 is arranged between the third electrode 13 and the first power supply unit 41 in the first wiring 31.
 上述のように、有機EL素子10は、第1電極11と第3電極13(第n電極)とを有し、さらに、第1電極11と第3電極13(第n電極)の間に形成された中間電極[第2電極12(第n-1電極)]を備える。そして、第1電極11と中間電極[第2電極12(第n-1電極)]との間に第1発光ユニット21を備え、中間電極[第2電極12(第n-1電極)]と第3電極13(第n電極)との間に、第2発光ユニット22(第n-1発光ユニット)を備える。 As described above, the organic EL element 10 includes the first electrode 11 and the third electrode 13 (nth electrode), and is further formed between the first electrode 11 and the third electrode 13 (nth electrode). The intermediate electrode [second electrode 12 (n−1th electrode)] is provided. A first light emitting unit 21 is provided between the first electrode 11 and the intermediate electrode [second electrode 12 (n−1 electrode)], and the intermediate electrode [second electrode 12 (n−1 electrode)] and A second light emitting unit 22 (n-1th light emitting unit) is provided between the third electrode 13 (nth electrode).
 さらに、有機EL素子10は、第1電極11と第3電極13(第n電極)に電流を供給する第1配線31と、第1配線31上の第1電源部41とを備える。また、第1発光ユニット21から第2発光ユニット22(第n-1発光ユニット)のうちの少なくとも1つの発光ユニットに該当する第2発光ユニット22(第n-1発光ユニット)の、陽極[第2電極12(第n-1電極)]側と陰極[第3電極13(第n電極)]側とに電流を供給する第2配線32と、第2配線32上の第2電源部42とを備える。 Furthermore, the organic EL element 10 includes a first wiring 31 that supplies current to the first electrode 11 and the third electrode 13 (nth electrode), and a first power supply unit 41 on the first wiring 31. Also, the anode [second light emitting unit 22 (n−1 light emitting unit)] corresponding to at least one light emitting unit among the first light emitting unit 21 to the second light emitting unit 22 (n−1 light emitting unit). A second wiring 32 for supplying current to the two electrodes 12 (n-1 electrode)] side and the cathode [third electrode 13 (nth electrode)] side; a second power supply unit 42 on the second wiring 32; Is provided.
 上記構成の有機EL素子10は、第1電源部41及び第2電源部42から供給される電流量により、第1発光ユニット21と第2発光ユニット22(第n-1発光ユニット)の発光制御(on-off)と、発光輝度の調整が可能となる。以下、上記構成の有機EL素子10において、これらの駆動メカニズムについて説明する。 The organic EL element 10 having the above configuration controls the light emission of the first light emitting unit 21 and the second light emitting unit 22 (n-1 light emitting unit) by the amount of current supplied from the first power supply unit 41 and the second power supply unit 42. (On-off) and light emission brightness can be adjusted. Hereinafter, in the organic EL element 10 having the above configuration, these driving mechanisms will be described.
 上記構成の有機EL素子10では、第1電源部41から第1電極11と第3電極13に電流を印加した際に、電流が供給される経路は2種類考えられる。一つは、第1配線31から、第1電極11、第1発光ユニット21、第2電極12、及び、第2配線32を通じて第1配線31に戻る経路(以下、第1経路)である。また、もう一つは、第1配線31から、第1電極11、第1発光ユニット21、第2電極12、第2発光ユニット22、及び、第3電極13を通じて第1配線31に戻る経路(以下、第2経路)である。上述の第1経路においては、第2配線32に設けられた第2電源部42にも電流が流れる。また、上述の第1経路では第2発光ユニット22を経由せず、第2経路では第2発光ユニット22を経由する。 In the organic EL element 10 having the above-described configuration, when current is applied from the first power supply unit 41 to the first electrode 11 and the third electrode 13, two types of paths through which current is supplied are conceivable. One is a path from the first wiring 31 to the first wiring 31 through the first electrode 11, the first light emitting unit 21, the second electrode 12, and the second wiring 32 (hereinafter referred to as a first path). The other is a path from the first wiring 31 to the first wiring 31 through the first electrode 11, the first light emitting unit 21, the second electrode 12, the second light emitting unit 22, and the third electrode 13 ( Hereinafter, the second route). In the first path described above, a current also flows through the second power supply unit 42 provided in the second wiring 32. In addition, the second light emitting unit 22 is not routed in the first path and the second light emitting unit 22 is routed in the second path.
 上記構成の有機EL素子10においては、第1電源部41の駆動をon、第2電源部42の駆動をoffにすると、上記第1経路を電流が流れる。また、第1電源部41と第2電源部42とを共に駆動をonにすると、上記第2経路を電流が流れる。さらに、第2電源部42の駆動をonにした状態で、第2電源部42から第2電極12と第3電極13とに印加される電流量が増える程、第2発光ユニット22に印加される電流量が増加する。このため、第2電源部42から第2電極12と第3電極13とに印加される電流量を調整することにより、第2発光ユニット22の発光輝度を調整することができる。 In the organic EL element 10 having the above configuration, when the driving of the first power supply unit 41 is turned on and the driving of the second power supply unit 42 is turned off, a current flows through the first path. Further, when both the first power supply unit 41 and the second power supply unit 42 are turned on, a current flows through the second path. Furthermore, in the state where the driving of the second power supply unit 42 is turned on, as the amount of current applied from the second power supply unit 42 to the second electrode 12 and the third electrode 13 increases, it is applied to the second light emitting unit 22. The amount of current increases. For this reason, the light emission luminance of the second light emitting unit 22 can be adjusted by adjusting the amount of current applied from the second power supply unit 42 to the second electrode 12 and the third electrode 13.
 一般的に、電源部の方が有機材料層から構成される発光ユニットよりも抵抗値が低い。このため、第2電源部42の駆動をoffにした状態では、第2配線32と第2電源部42を経由する第1経路の方が、第2発光ユニット22を経由する第2経路よりも抵抗値が小さい。従って、第1電源部41の駆動をon、第2電源部42の駆動をoffにすると、より抵抗の小さい上記第1経路側に電流が流れる。即ち、第2配線32が、第2発光ユニット22のループ回路となる。 Generally, the resistance value of the power supply unit is lower than that of the light emitting unit composed of the organic material layer. For this reason, in the state where the driving of the second power supply unit 42 is turned off, the first route passing through the second wiring 32 and the second power supply unit 42 is more than the second route passing through the second light emitting unit 22. Resistance value is small. Accordingly, when the driving of the first power supply unit 41 is turned on and the driving of the second power supply unit 42 is turned off, a current flows to the first path side having a smaller resistance. That is, the second wiring 32 becomes a loop circuit of the second light emitting unit 22.
 上述の第1電源部41の駆動をon、第2電源部42の駆動をoffにした状態の有機EL素子10では、第1経路上の第1発光ユニット21のみが発光する。そして、第1電源部41からの電流量を調整することにより、第1発光ユニット21に供給される電流量を調整することができる。従って、第1電源部41の駆動をon、第2電源部42の駆動をoffにした状態で、第1電源部41からの電流量を調整することにより、第1発光ユニット21の発光輝度の調整が可能となる。 In the organic EL element 10 in which the driving of the first power supply unit 41 is turned on and the driving of the second power supply unit 42 is turned off, only the first light emitting unit 21 on the first path emits light. The amount of current supplied to the first light emitting unit 21 can be adjusted by adjusting the amount of current from the first power supply unit 41. Therefore, by adjusting the amount of current from the first power supply unit 41 with the first power supply unit 41 turned on and the second power supply unit 42 turned off, the light emission luminance of the first light emitting unit 21 is adjusted. Adjustment is possible.
 一方、第1電源部41と第2電源部42との駆動を共にonにした状態では、第2配線32と第1配線31とに同じ向きの電流が生じる。このとき、第2電源部42からの電流量が、第1電源部41からの電流量以上であると、第2配線32から第2電極12に供給される電流と、第1配線31から第1電極11及び第1発光ユニット21を通じて第2電極12に供給される電流とが、共に第2発光ユニット22側に印加される。従って、第2発光ユニット22に電流が供給され、第2発光ユニット22からの発光が得られる。 On the other hand, when the driving of the first power supply unit 41 and the second power supply unit 42 are both turned on, currents in the same direction are generated in the second wiring 32 and the first wiring 31. At this time, if the amount of current from the second power supply unit 42 is equal to or greater than the amount of current from the first power supply unit 41, the current supplied from the second wiring 32 to the second electrode 12 and the first wiring 31 to the first Both the current supplied to the second electrode 12 through the first electrode 11 and the first light emitting unit 21 are applied to the second light emitting unit 22 side. Accordingly, a current is supplied to the second light emitting unit 22 and light emission from the second light emitting unit 22 is obtained.
 さらに、上記の状態で第2電源部42からの電流量を調整することにより、第2発光ユニット22に供給される電流量を調整することができる。従って、第1電源部41と第2電源部42との駆動を共にonにした状態で、第2電源部42からの電流量を調整することにより、第2発光ユニット22の発光輝度を調整することが可能となる。 Furthermore, the amount of current supplied to the second light emitting unit 22 can be adjusted by adjusting the amount of current from the second power supply unit 42 in the above state. Accordingly, the light emission luminance of the second light emitting unit 22 is adjusted by adjusting the amount of current from the second power supply unit 42 with both the first power supply unit 41 and the second power supply unit 42 turned on. It becomes possible.
 但し、第1電源部41と第2電源部42との駆動を共にonにした状態であっても、第1発光ユニット21に供給される電流量は、第1電源部41からの電流量に依存する。このため、この状態の有機EL素子10においても、第1電源部41からの電流量を調整することにより、第1発光ユニット21の発光輝度の調整が可能となる。 However, the current amount supplied to the first light emitting unit 21 is equal to the current amount from the first power supply unit 41 even when the first power supply unit 41 and the second power supply unit 42 are both turned on. Dependent. For this reason, also in the organic EL element 10 in this state, the light emission luminance of the first light emitting unit 21 can be adjusted by adjusting the amount of current from the first power supply unit 41.
 従って、上述の状態の有機EL素子10においては、第1電源部41からの電流量を一定として、第1発光ユニット21の発光輝度を一定に保ったまま、第2電源部42からの電流量を調整することにより、第2発光ユニット22の発光輝度のみを調整することができる。また、第2発光ユニット22の発光輝度を一定に保ったまま、第1発光ユニット21の発光輝度のみを調整する場合には、第1発光ユニット21の発光輝度に応じた電流量を第1電源部41から供給し、さらに、第2発光ユニット22に供給される電流量が一定となるように第2電源部42からの電流量を調整すればよい。 Therefore, in the organic EL element 10 in the above-described state, the amount of current from the second power source unit 42 is maintained while the amount of current from the first power source unit 41 is constant and the light emission luminance of the first light emitting unit 21 is kept constant. By adjusting, only the light emission luminance of the second light emitting unit 22 can be adjusted. When adjusting only the light emission luminance of the first light emitting unit 21 while keeping the light emission luminance of the second light emitting unit 22 constant, the amount of current corresponding to the light emission luminance of the first light emitting unit 21 is set to the first power source. What is necessary is just to adjust the electric current amount from the 2nd power supply part 42 so that the electric current amount supplied from the part 41 and supplied to the 2nd light emission unit 22 may become fixed.
 なお、第1電源部41と第2電源部42との駆動を共にonにした状態において、第2電源部42からの電流量が、第1電源部41からの電流量よりも小さい場合には、第2電源部42からの電流量や第2発光ユニット22の抵抗値等から、電流の流れる経路として上述の第1経路と第2経路のいずれか一方、又は、両方が選択される。このとき、第2経路が選択される状態では、第1発光ユニット21と第2発光ユニット22とが発光し、第1経路のみが選択される場合には、第1発光ユニット21のみが発光し、第2発光ユニット22は発光しない。 When the first power supply unit 41 and the second power supply unit 42 are both turned on, the current amount from the second power supply unit 42 is smaller than the current amount from the first power supply unit 41. Based on the amount of current from the second power supply unit 42, the resistance value of the second light emitting unit 22, and the like, one or both of the first path and the second path described above are selected as the path through which the current flows. At this time, when the second path is selected, the first light emitting unit 21 and the second light emitting unit 22 emit light, and when only the first path is selected, only the first light emitting unit 21 emits light. The second light emitting unit 22 does not emit light.
 また、第1電源部41の駆動をoff、第2電源部42の駆動をonにした状態では、第2発光ユニット22のみが発光する。一般的には、第2発光ユニット22の抵抗値よりも、第1発光ユニット21と第1電源部41との合計の抵抗値の方が大きくなるため、第2電源部42から供給される電流は、第2電極12から第2発光ユニット22及び第3電極13側の経路(以下、第3経路)を流れやすい。第1電源部41の駆動をoff、第2電源部42の駆動をonにした状態では、第2電源部42からの電流量を調整することにより、第2発光ユニット22の発光輝度のみを調整することができる。 In the state where the driving of the first power supply unit 41 is turned off and the driving of the second power supply unit 42 is turned on, only the second light emitting unit 22 emits light. In general, since the total resistance value of the first light emitting unit 21 and the first power supply unit 41 is larger than the resistance value of the second light emitting unit 22, the current supplied from the second power supply unit 42. Tends to flow from the second electrode 12 through a path on the second light emitting unit 22 and the third electrode 13 side (hereinafter referred to as a third path). In the state where the driving of the first power supply unit 41 is turned off and the driving of the second power supply unit 42 is turned on, only the light emission luminance of the second light emitting unit 22 is adjusted by adjusting the amount of current from the second power supply unit 42. can do.
 従って、上述の構成の有機EL素子10では、第1電源部41と第2電源部42の駆動のon-offを切り替えることにより、第1発光ユニット21のみが発光する発光パターン(第1経路)、第2発光ユニット22のみが発光する発光パターン(第3経路)、及び、第1発光ユニット21と第2発光ユニット22とが共に発光する発光パターン(第2経路)からなる3種類の発光パターンを任意に選択することができる。さらに、第1電源部41と第2電源部42の駆動のon-offの切り替えと、各電源部から供給される電流量を調整することにより、それぞれの発光パターンにおいて、第1発光ユニット21と第2発光ユニット22の発光輝度を、それぞれ任意に調整することができる。 Therefore, in the organic EL element 10 having the above-described configuration, a light emission pattern (first path) in which only the first light emitting unit 21 emits light by switching on / off driving of the first power supply unit 41 and the second power supply unit 42. Three types of light emission patterns including a light emission pattern (third path) in which only the second light emission unit 22 emits light and a light emission pattern (second path) in which the first light emission unit 21 and the second light emission unit 22 emit light together. Can be arbitrarily selected. In addition, by switching on and off the driving of the first power supply unit 41 and the second power supply unit 42 and adjusting the amount of current supplied from each power supply unit, the first light emitting unit 21 The light emission luminance of the second light emitting unit 22 can be arbitrarily adjusted.
[有機EL素子の具体例]
 次に、上述の構成の有機EL素子における調光及び調色の具体例について説明する。なお、以下の説明は上述の有機EL素子の駆動メカニズムの説明に基づいて行なうため、上述の図1に示す構成と同様の構成については詳細な説明を省略する。
[Specific examples of organic EL elements]
Next, specific examples of light adjustment and color adjustment in the organic EL element having the above-described configuration will be described. In addition, since the following description is based on the description of the driving mechanism of the organic EL element described above, detailed description of the same configuration as the configuration shown in FIG. 1 is omitted.
 上述の図1に示す構成の有機EL素子の等価回路を、図2及び図3に示す。図2に示す有機EL素子10は、第1発光ユニット21が白色(W)光を放出し、第2発光ユニット22が青色(B)光を放出する構成である。また、図3に示す有機EL素子10は、第1発光ユニット21が白色(W)光を放出し、第2発光ユニット22が黄色(Yl)光を放出する構成である。なお、図2及び図3では、第1電極11をAn、第2電極12(中間電極)をM、第3電極13をCaで表している。 FIG. 2 and FIG. 3 show an equivalent circuit of the organic EL element having the configuration shown in FIG. The organic EL element 10 shown in FIG. 2 has a configuration in which the first light emitting unit 21 emits white (W) light and the second light emitting unit 22 emits blue (B) light. Further, the organic EL element 10 shown in FIG. 3 has a configuration in which the first light emitting unit 21 emits white (W) light and the second light emitting unit 22 emits yellow (Yl) light. 2 and 3, the first electrode 11 is represented by An, the second electrode 12 (intermediate electrode) is represented by M, and the third electrode 13 is represented by Ca.
 図2に示す有機EL素子10においては、第1電源部41から供給される電流Ian-caが第2電源部42から供給される電流Im-caよりも大きい場合、及び、第2電源部42から供給される電流Im-caが0の場合には、第1発光ユニット21のみが発光する。即ち、有機EL素子10から、白色光が得られる。また、第2電源部42から供給される電流Im-caが第1電源部41から供給される電流Ian-ca以上である場合、第1発光ユニット21と第2発光ユニット22との両方が発光する。即ち、有機EL素子10から、白色光と青色光とが混合した光が得られる。第2電源部42から電流Im-caが供給され、且つ、第1電源部41から供給される電流Ian-caが0の場合には、第2発光ユニット22のみが発光する。即ち、有機EL素子10から、青色光が得られる。 In the organic EL element 10 shown in FIG. 2, when the current I an-ca supplied from the first power supply unit 41 is larger than the current I m-ca supplied from the second power supply unit 42, the second power supply When the current Im-ca supplied from the unit 42 is 0, only the first light emitting unit 21 emits light. That is, white light is obtained from the organic EL element 10. When the current I m-ca supplied from the second power supply unit 42 is equal to or greater than the current I an-ca supplied from the first power supply unit 41, both the first light emitting unit 21 and the second light emitting unit 22 are used. Emits light. That is, light in which white light and blue light are mixed is obtained from the organic EL element 10. When the current I m-ca is supplied from the second power supply unit 42 and the current I an-ca supplied from the first power supply unit 41 is 0, only the second light emitting unit 22 emits light. That is, blue light is obtained from the organic EL element 10.
 さらに、各発光パターンにおいて、第1電源部41から供給される電流Ian-ca、及び、第2電源部42から供給される電流Im-caの少なくともいずれかを調整することにより、第1発光ユニット21から得られる白色光の輝度、及び、第2発光ユニット22から得られる青色光の輝度を、それぞれ任意に調整することができる。 Further, in each light emission pattern, by adjusting at least one of the current I an-ca supplied from the first power supply unit 41 and the current I m-ca supplied from the second power supply unit 42, the first The luminance of white light obtained from the light emitting unit 21 and the luminance of blue light obtained from the second light emitting unit 22 can be arbitrarily adjusted.
 図3に示す有機EL素子10においては、第1電源部41から供給される電流Ian-caが第2電源部42から供給される電流Im-caよりも大きい場合、及び、第2電源部42から供給される電流Im-caが0の場合には、第1発光ユニット21のみが発光する。即ち、有機EL素子10から、白色光が得られる。また、第2電源部42から供給される電流Im-caが第1電源部41から供給される電流Ian-ca以上である場合、第1発光ユニット21と第2発光ユニット22との両方が発光する。即ち、有機EL素子10から、白色光と黄色光とが混合した光が得られる。さらに、第2電源部42から電流Im-caが供給され、且つ、第1電源部41から供給される電流Ian-caが0の場合には、第2発光ユニット22のみが発光する。即ち、有機EL素子10から、黄色光が得られる。 In the organic EL element 10 shown in FIG. 3, when the current I an-ca supplied from the first power supply unit 41 is larger than the current I m-ca supplied from the second power supply unit 42, and the second power supply When the current Im-ca supplied from the unit 42 is 0, only the first light emitting unit 21 emits light. That is, white light is obtained from the organic EL element 10. When the current I m-ca supplied from the second power supply unit 42 is equal to or greater than the current I an-ca supplied from the first power supply unit 41, both the first light emitting unit 21 and the second light emitting unit 22 are used. Emits light. That is, light in which white light and yellow light are mixed is obtained from the organic EL element 10. Furthermore, when the current I m-ca is supplied from the second power supply unit 42 and the current I an-ca supplied from the first power supply unit 41 is 0, only the second light emitting unit 22 emits light. That is, yellow light is obtained from the organic EL element 10.
 さらに、各発光パターンにおいて、第1電源部41から供給される電流Ian-ca、及び、第2電源部42から供給される電流Im-caの少なくともいずれかを調整することにより、第1発光ユニット21から得られる白色光の輝度、及び、第2発光ユニット22から得られる黄色光の輝度を、それぞれ任意に調整することができる。 Further, in each light emission pattern, by adjusting at least one of the current I an-ca supplied from the first power supply unit 41 and the current I m-ca supplied from the second power supply unit 42, the first The brightness of white light obtained from the light emitting unit 21 and the brightness of yellow light obtained from the second light emitting unit 22 can be arbitrarily adjusted.
 従って、上述の構成の有機EL素子10によれば、第1電極11と第3電極13(第n電極)に電流を供給する第1配線31の第1電源部41と、第2発光ユニット22(第n-1発光ユニット)の陽極[第2電極12(第n-1電極)]側と陰極[第3電極13(第n電極)から第1配線31]側とに電流を供給する第2配線32の第2電源部42とにより、複数の発光ユニットを同時に、又は、発光ユニットを単独で発光させることができる。さらに、上記第1電源部41と第2電源部42の電流量を調整することにより、複数同時に、又は、単独で発光させた各発光ユニットの発光輝度を任意に調整することができる。 Therefore, according to the organic EL element 10 having the above-described configuration, the first power supply unit 41 of the first wiring 31 that supplies current to the first electrode 11 and the third electrode 13 (nth electrode), and the second light emitting unit 22. A current is supplied to the anode [second electrode 12 (n-1 electrode)] side and the cathode [third electrode 13 (nth electrode) to first wiring 31] side of the (n-1 light emitting unit) side. With the second power supply unit 42 of the two wires 32, a plurality of light emitting units can emit light simultaneously or independently. Furthermore, by adjusting the current amounts of the first power supply unit 41 and the second power supply unit 42, it is possible to arbitrarily adjust the light emission luminance of each of the light emitting units that emit light simultaneously or independently.
 従って、複数の電極と発光ユニットとが積層された構成の有機EL素子において、時分割した駆動を行うことなく、発光ユニットの同時駆動により発光ユニットを同時に、又は、単独で発光させることができる。このため、時分割駆動による電流量やICへの電流負荷を増加させることなく、有機EL素子の調色、調光が可能となる。さらに、電流量を増加させることなく、有機EL素子の調色、調光が可能なため、パネル内の発光均一性(均斉度)の低下を抑制することができる。 Therefore, in an organic EL element having a configuration in which a plurality of electrodes and a light emitting unit are stacked, the light emitting units can be made to emit light simultaneously or independently by simultaneous driving of the light emitting units without performing time-division driving. For this reason, the toning and dimming of the organic EL element can be performed without increasing the amount of current by time division driving and the current load on the IC. Furthermore, since the toning and light control of the organic EL element can be performed without increasing the amount of current, it is possible to suppress a decrease in light emission uniformity (homogeneity) in the panel.
 なお、各発光ユニットにおける発光色は特に限定されず、有機EL素子10に要求される発光色を任意に組み合わせることができる。例えば、第1発光ユニット21、及び、第2発光ユニット22を、それぞれ青、緑、及び、赤の3原色や、黄色等の補色、白色等を任意に組み合わせてもよく、色温度の異なる同色を組み合わせてもよい。 In addition, the luminescent color in each light emission unit is not specifically limited, The luminescent color requested | required of the organic EL element 10 can be combined arbitrarily. For example, the first light emitting unit 21 and the second light emitting unit 22 may be arbitrarily combined with three primary colors of blue, green and red, complementary colors such as yellow, white, etc., and the same color having different color temperatures. May be combined.
 また、有機EL素子において、第2配線が、第1発光ユニットの陽極[第1電極]側と陰極[第2電極(第n-1電極)]側とに接続され、第1発光ユニットのループ回路となっていてもよい。この場合においても、上述の駆動メカニズムと同様に、第1電源部と第2電源部とにより、第1発光ユニットと第2発光ユニットの発光輝度を任意に調整することができる。 In the organic EL element, the second wiring is connected to the anode [first electrode] side and the cathode [second electrode (n-1 electrode)] side of the first light emitting unit, and the first light emitting unit loop is connected. It may be a circuit. Also in this case, similarly to the driving mechanism described above, the light emission luminance of the first light emitting unit and the second light emitting unit can be arbitrarily adjusted by the first power supply unit and the second power supply unit.
〈2.有機エレクトロルミネッセンス素子の実施の形態(第2実施形態)〉
 以下、有機エレクトロルミネッセンス素子(有機EL素子)の具体的な実施の形態(第2実施形態)について説明する。以下の第2実施形態では、積層される電極数nが4の場合の有機EL素子の構成を例として説明する。なお、以下の説明では、上述の第1実施形態と異なる部分のみを説明し、第1実施形態と共通する構成については説明を省略する。
<2. Embodiment of Organic Electroluminescence Element (Second Embodiment)>
Hereinafter, a specific embodiment (second embodiment) of the organic electroluminescence element (organic EL element) will be described. In the following second embodiment, a configuration of an organic EL element when the number n of stacked electrodes is 4 will be described as an example. In the following description, only the parts different from the above-described first embodiment will be described, and the description of the configuration common to the first embodiment will be omitted.
[有機EL素子の構成]
 図4に第2実施形態の有機EL素子の構成を示す。図4に示す有機EL素子20は、支持基板50側から順に、第1電極11、第2電極12、第3電極13、及び、第4電極14を有する。そして、これらの電極間に、第1発光ユニット21、第2発光ユニット22、及び、第3発光ユニット23を有する。さらに、有機EL素子20は、第1電極11と第4電極14とに電流を供給する第1配線31と、この第1配線31に配置される第1電源部41とを有する。また、第2発光ユニット22を挟持する第2電極12と第3電極13とに電流を供給する第2配線32と、第2配線32上の第2電源部42とを有する。
[Configuration of organic EL element]
FIG. 4 shows the configuration of the organic EL element of the second embodiment. The organic EL element 20 illustrated in FIG. 4 includes a first electrode 11, a second electrode 12, a third electrode 13, and a fourth electrode 14 in order from the support substrate 50 side. The first light emitting unit 21, the second light emitting unit 22, and the third light emitting unit 23 are provided between these electrodes. Further, the organic EL element 20 includes a first wiring 31 that supplies current to the first electrode 11 and the fourth electrode 14, and a first power supply unit 41 that is disposed on the first wiring 31. The second wiring 32 that supplies current to the second electrode 12 and the third electrode 13 that sandwich the second light emitting unit 22 and the second power supply unit 42 on the second wiring 32 are provided.
 即ち、有機EL素子20は、支持基板50上に、4つの電極(n=4)と、3つの発光ユニットとが積層された構成であり、第4電極14が第n電極に該当し、第3発光ユニット23が第n-1発光ユニットに該当する。そして、有機EL素子20は、第1電極11と第4電極14(第n電極)、及び、第1電極11と第4電極14(第n電極)の間に形成された中間電極[第2電極12、第3電極13(第n-1電極)]を備える。そして、中間電極である第2電極12と第3電極13(第n-1電極)とに挟持された第2発光ユニット22を備える。 That is, the organic EL element 20 has a configuration in which four electrodes (n = 4) and three light emitting units are stacked on the support substrate 50, the fourth electrode 14 corresponds to the nth electrode, The third light emitting unit 23 corresponds to the (n-1) th light emitting unit. The organic EL element 20 includes a first electrode 11 and a fourth electrode 14 (nth electrode), and an intermediate electrode [second electrode] formed between the first electrode 11 and the fourth electrode 14 (nth electrode). Electrode 12, third electrode 13 (n-1th electrode)]. The second light emitting unit 22 is sandwiched between the second electrode 12 and the third electrode 13 (n−1th electrode), which are intermediate electrodes.
 上述のように、有機EL素子20は、支持基板50に設けられた、第1電極11から第4電極14(第n電極)、及び、第1発光ユニット21から第3発光ユニット23(第n-1発光ユニット)を有する。さらに、第1電極11と第4電極14(第n電極)までの間に形成される中間電極として、第2電極12と第3電極13(第n-1電極)を有する。さらに、この構成の有機EL素子は、第1電極11と第4電極14(第n電極)とに電流を供給する第1配線31と、第1発光ユニット21から第3発光ユニット23(第n-1発光ユニット)のうちの少なくとも1つの発光ユニット[第2発光ユニット22]の陽極[第2電極12]側と陰極[第3電極13(第n-1電極)]側とに電流を供給する第2配線32とを有する。そして、この第1配線31に第1電源部41を有し、第2配線32に第2電源部42を有する。 As described above, the organic EL element 20 includes the first electrode 11 to the fourth electrode 14 (nth electrode) and the first light emitting unit 21 to the third light emitting unit 23 (nth) provided on the support substrate 50. -1 light emitting unit). Further, as an intermediate electrode formed between the first electrode 11 and the fourth electrode 14 (nth electrode), a second electrode 12 and a third electrode 13 (n−1 electrode) are provided. Furthermore, the organic EL element having this configuration includes a first wiring 31 that supplies current to the first electrode 11 and the fourth electrode 14 (nth electrode), and the first light emitting unit 21 to the third light emitting unit 23 (nth electrode). Current is supplied to the anode [second electrode 12] side and the cathode [third electrode 13 (n-1 electrode)] side of at least one light emitting unit [second light emitting unit 22]. And a second wiring 32. The first wiring 31 has a first power supply unit 41, and the second wiring 32 has a second power supply unit 42.
 上記構成の有機EL素子20では、第1電源部41及び第2電源部42から印加される電流量により、第1配線31から電流が供給される発光ユニット[第1発光ユニット21、第3発光ユニット23(第n-1発光ユニット)]と、第2配線32から電流が供給される発光ユニット[第2発光ユニット22]の発光制御(on-off)と、発光時の輝度の調整とが可能となる。以下、上記構成の有機EL素子20において、これらの駆動メカニズムについて説明する。 In the organic EL element 20 having the above configuration, a light emitting unit [first light emitting unit 21, third light emitting] that is supplied with current from the first wiring 31 according to the amount of current applied from the first power supply unit 41 and the second power supply unit 42. Unit 23 (n-1 light emitting unit)], light emission control (on-off) of the light emitting unit [second light emitting unit 22] to which a current is supplied from the second wiring 32, and adjustment of luminance at the time of light emission. It becomes possible. Hereinafter, the driving mechanism in the organic EL element 20 having the above configuration will be described.
 上記構成の有機EL素子20では、第1電源部41から第1電極11と第4電極14に電流を印加した際に、電流の経路は2種類考えられる。一つは、第1配線31から、第1電極11、第1発光ユニット21、第2電極12、第2配線32、第2電源部42、第3電極13、第3発光ユニット23、及び、第4電極14を通じて第1配線31に戻る経路(以下、第1経路)である。また、もう一つは、第1配線31から、第1電極11、第1発光ユニット21、第2電極12、第2発光ユニット22、第3電極13、第3発光ユニット23、及び、第4電極14を通じて第1配線31に戻る経路(以下、第2経路)である。上述の第1経路においては、第2配線32に設けられた第2電源部42にも電流が流れる。また、第1経路では第2発光ユニット22を経由せず、第2経路では第2発光ユニット22を経由する。 In the organic EL element 20 configured as described above, when a current is applied from the first power supply unit 41 to the first electrode 11 and the fourth electrode 14, two types of current paths are conceivable. One is from the first wiring 31 to the first electrode 11, the first light emitting unit 21, the second electrode 12, the second wiring 32, the second power supply unit 42, the third electrode 13, the third light emitting unit 23, and This is a path (hereinafter referred to as a first path) that returns to the first wiring 31 through the fourth electrode 14. The other is that the first electrode 11, the first light emitting unit 21, the second electrode 12, the second light emitting unit 22, the third electrode 13, the third light emitting unit 23, and the fourth wire 31 are connected to the first wiring 31. This is a path returning to the first wiring 31 through the electrode 14 (hereinafter referred to as a second path). In the first path described above, a current also flows through the second power supply unit 42 provided in the second wiring 32. Further, the second route does not pass through the second light emitting unit 22, and the second route passes through the second light emitting unit 22.
 上記構成の有機EL素子10においては、第1電源部41の駆動をon、第2電源部42の駆動をoffにすると、上記第1経路に電流が供給される。また、第1電源部41と第2電源部42との駆動を共にonにすると、上記第2経路に電流が供給される。さらに、第2電源部42の駆動をonにした状態で、第2電源部42から第2電極12と第3電極13とに印加される電流量が増える程、第2発光ユニット22に印加される電流量が増加する。このため、第2電源部42から第2電極12と第3電極13とに印加される電流量を調整することにより、第2発光ユニット22の発光輝度を調整することができる。 In the organic EL element 10 having the above configuration, when the driving of the first power supply unit 41 is turned on and the driving of the second power supply unit 42 is turned off, a current is supplied to the first path. Further, when both the first power supply unit 41 and the second power supply unit 42 are turned on, a current is supplied to the second path. Furthermore, in the state where the driving of the second power supply unit 42 is turned on, as the amount of current applied from the second power supply unit 42 to the second electrode 12 and the third electrode 13 increases, it is applied to the second light emitting unit 22. The amount of current increases. For this reason, the light emission luminance of the second light emitting unit 22 can be adjusted by adjusting the amount of current applied from the second power supply unit 42 to the second electrode 12 and the third electrode 13.
 一般的に、有機材料層から構成される発光ユニットよりも電源部の方の抵抗値が低いため、第2電源部42の駆動をoffにした状態では、第2配線32と第2電源部42を経由する第1経路の方が、第2発光ユニット22を経由する第2経路よりも抵抗値が小さい。従って、第1電源部41の駆動をon、第2電源部42の駆動をoffにすると、より抵抗の小さい上記第1経路側に電流が流れる。即ち、第2配線32が、第2発光ユニット22のループ回路となる。 In general, since the resistance value of the power supply unit is lower than that of the light emitting unit composed of the organic material layer, the second wiring 32 and the second power supply unit 42 are in a state where the driving of the second power supply unit 42 is turned off. The resistance value of the first route passing through the second light path is smaller than that of the second route passing through the second light emitting unit 22. Accordingly, when the driving of the first power supply unit 41 is turned on and the driving of the second power supply unit 42 is turned off, a current flows to the first path side having a smaller resistance. That is, the second wiring 32 becomes a loop circuit of the second light emitting unit 22.
 従って、第1電源部41の駆動をon、第2電源部42の駆動をoffにした状態では、第1経路上の第1発光ユニット21と第3発光ユニット23が発光し、第1経路に含まれていない第2発光ユニット22は発光しない。このため、上記状態の有機EL素子20において、第1電源部41からの電流量を調整することにより、第1発光ユニット21と第3発光ユニット23とに供給される電流量を調整することができる。従って、第1電源部41の駆動をon、第2電源部42の駆動をoffにした状態で、第1電源部41からの電流量を調整することにより、第2発光ユニット22を発光させずに、第1発光ユニット21と第3発光ユニット23の発光輝度の調整が可能となる。 Therefore, in a state where the driving of the first power supply unit 41 is on and the driving of the second power supply unit 42 is turned off, the first light emitting unit 21 and the third light emitting unit 23 on the first path emit light, and the first path The second light emitting unit 22 that is not included does not emit light. For this reason, in the organic EL element 20 in the above state, the amount of current supplied to the first light emitting unit 21 and the third light emitting unit 23 can be adjusted by adjusting the amount of current from the first power supply unit 41. it can. Accordingly, the second light emitting unit 22 is not caused to emit light by adjusting the amount of current from the first power supply unit 41 with the driving of the first power supply unit 41 turned on and the driving of the second power supply unit 42 turned off. Moreover, the light emission luminance of the first light emitting unit 21 and the third light emitting unit 23 can be adjusted.
 一方、第1電源部41と第2電源部42との駆動を共にonにした状態では、第2配線32と第1配線31とに同じ向きの電流が生じる。このとき、第2電源部42からの電流量が、第1電源部41からの電流量以上であると、第2配線32から第2電極12に供給される電流と、第1配線31から第1電極11及び第1発光ユニット21を通じて第2電極12に供給される電流とが、共に第2発光ユニット22側に印加される。従って、第2発光ユニット22に電流が供給され、第2発光ユニット22からの発光が得られる。 On the other hand, when the driving of the first power supply unit 41 and the second power supply unit 42 are both turned on, currents in the same direction are generated in the second wiring 32 and the first wiring 31. At this time, if the amount of current from the second power supply unit 42 is equal to or greater than the amount of current from the first power supply unit 41, the current supplied from the second wiring 32 to the second electrode 12 and the first wiring 31 to the first Both the current supplied to the second electrode 12 through the first electrode 11 and the first light emitting unit 21 are applied to the second light emitting unit 22 side. Accordingly, a current is supplied to the second light emitting unit 22 and light emission from the second light emitting unit 22 is obtained.
 さらに、第2電源部42の駆動をonにした状態で第2電源部42からの電流量を調整することにより、第2発光ユニット22に供給される電流量を調整することができる。従って、第1電源部41と第2電源部42との駆動を共にonにした状態で、第2電源部42からの電流量を調整することにより、第2発光ユニット22の発光輝度を調整することが可能となる。 Furthermore, the amount of current supplied to the second light emitting unit 22 can be adjusted by adjusting the amount of current from the second power source unit 42 while the second power source unit 42 is turned on. Accordingly, the light emission luminance of the second light emitting unit 22 is adjusted by adjusting the amount of current from the second power supply unit 42 with both the first power supply unit 41 and the second power supply unit 42 turned on. It becomes possible.
 但し、第1電源部41と第2電源部42との駆動を共にonにした状態であっても、第1発光ユニット21に供給される電流量は、第1電源部41からの電流量に依存する。このため、この状態の有機EL素子10においても、第1電源部41からの電流量を調整することにより、第1発光ユニット21の発光輝度の調整が可能となる。 However, the current amount supplied to the first light emitting unit 21 is equal to the current amount from the first power supply unit 41 even when the first power supply unit 41 and the second power supply unit 42 are both turned on. Dependent. For this reason, also in the organic EL element 10 in this state, the light emission luminance of the first light emitting unit 21 can be adjusted by adjusting the amount of current from the first power supply unit 41.
 また、第2配線32が第3発光ユニット23の陰極となる第3電極13に接続されているため、第2電源部42から供給される電流量の変動によって第3発光ユニット23側に与える影響は小さい。即ち、第3発光ユニット23に供給される電流量は、第1電源部41からの電流量に依存する。このため、第3発光ユニット23の発光輝度は、第2電源部42からの電流量を調整に依存せずに、第1電源部41からの電流量により調整が可能となる。 In addition, since the second wiring 32 is connected to the third electrode 13 serving as the cathode of the third light emitting unit 23, the influence on the third light emitting unit 23 side due to the variation in the amount of current supplied from the second power supply unit 42. Is small. That is, the amount of current supplied to the third light emitting unit 23 depends on the amount of current from the first power supply unit 41. For this reason, the light emission luminance of the third light emitting unit 23 can be adjusted by the amount of current from the first power supply unit 41 without depending on the adjustment of the amount of current from the second power supply unit 42.
 従って、上述の状態の有機EL素子20においては、第1電源部41からの電流量を一定として、第1発光ユニット21及び第3発光ユニット23の発光輝度を一定に保ったまま、第2電源部42からの電流量を調整することにより、第2発光ユニット22の発光輝度のみを調整することができる。また、第2発光ユニット22の発光輝度を一定に保ったまま、第1発光ユニット21及び第3発光ユニット23の発光輝度を調整する場合には、第1発光ユニット21と第3発光ユニット23の発光輝度に応じた電流量を第1電源部41から供給し、さらに、第2発光ユニット22に供給される電流量が一定となるように第2電源部42からの電流量を調整すればよい。 Therefore, in the organic EL element 20 in the above-described state, the second power supply is maintained while keeping the light emission luminance of the first light-emitting unit 21 and the third light-emitting unit 23 constant while keeping the current amount from the first power supply unit 41 constant. By adjusting the amount of current from the unit 42, only the light emission luminance of the second light emitting unit 22 can be adjusted. Further, when adjusting the light emission luminance of the first light emission unit 21 and the third light emission unit 23 while keeping the light emission luminance of the second light emission unit 22 constant, the first light emission unit 21 and the third light emission unit 23 A current amount corresponding to the light emission luminance is supplied from the first power supply unit 41, and the current amount from the second power supply unit 42 may be adjusted so that the current amount supplied to the second light emitting unit 22 is constant. .
 なお、上述の構成の有機EL素子20では、第1電源部41と第2電源部42との駆動を共にonにした状態において、第2電源部42からの電流量が、第1電源部41からの電流量よりも小さい場合には、第2電源部42からの電流量や第2発光ユニット22の抵抗値等から、電流の流れる経路として上述の第1経路と第2経路のいずれか一方、又は、両方が選択される。このとき、第2経路が選択される状態では第2発光ユニット22が発光し、第1経路のみが選択される場合には、第2発光ユニット22は発光しない。 In the organic EL element 20 having the above-described configuration, the amount of current from the second power supply unit 42 is the first power supply unit 41 in a state where both the first power supply unit 41 and the second power supply unit 42 are turned on. If the current amount is smaller than the current amount from the first power supply unit 42, the resistance value of the second light-emitting unit 22, and the like, either the first route or the second route described above as a current flow route. Or both are selected. At this time, when the second path is selected, the second light emitting unit 22 emits light, and when only the first path is selected, the second light emitting unit 22 does not emit light.
 また、第1電源部41の駆動をoff、第2電源部42の駆動をonにした状態では、第2発光ユニット22のみが発光する。一般的には、第2発光ユニット22の抵抗値よりも、第1発光ユニット21と第3発光ユニット23と第1電源部41との合計の抵抗値の方が大きくなるため、第2電源部42から供給される電流は、第2電極12から第2発光ユニット22及び第3電極13側の経路(以下、第3経路)を流れやすい。従って、有機EL素子20では、第1電源部41の駆動をoff、第2電源部42の駆動をonにした状態では、第2電源部42からの電流量を調整することにより、第2発光ユニット22の発光輝度のみを調整することができる。 In the state where the driving of the first power supply unit 41 is turned off and the driving of the second power supply unit 42 is turned on, only the second light emitting unit 22 emits light. Generally, since the total resistance value of the first light emitting unit 21, the third light emitting unit 23, and the first power supply unit 41 is larger than the resistance value of the second light emitting unit 22, the second power supply unit The current supplied from 42 tends to flow from the second electrode 12 through a path on the second light emitting unit 22 and the third electrode 13 side (hereinafter referred to as a third path). Therefore, in the organic EL element 20, in the state where the driving of the first power supply unit 41 is turned off and the driving of the second power supply unit 42 is turned on, the amount of current from the second power supply unit 42 is adjusted to thereby generate the second light emission. Only the light emission luminance of the unit 22 can be adjusted.
 従って、上述の構成の有機EL素子20では、第1電源部41と第2電源部42の駆動のon-offを切り替えることにより、第1発光ユニット21と第3発光ユニット23が発光する発光パターン(第1経路)、第2発光ユニット22のみが発光する発光パターン(第3経路)、並びに、第1発光ユニット21、第2発光ユニット22、及び、第3発光ユニット23が共に発光する発光パターン(第2経路)からなる3種類の発光パターンを任意に選択することができる。さらに、第1電源部41と第2電源部42の駆動のon-offを切り替えと、各電源部から供給される電流量を調整することにより、それぞれの発光パターンにおいて、第1発光ユニット21、第2発光ユニット22、及び、第3発光ユニット23の発光輝度を、それぞれ任意に調整することができる。 Therefore, in the organic EL element 20 having the above-described configuration, the light emission pattern in which the first light emitting unit 21 and the third light emitting unit 23 emit light by switching the driving of the first power supply unit 41 and the second power supply unit 42 on and off. (First path), a light emission pattern (third path) in which only the second light emitting unit 22 emits light, and a light emission pattern in which the first light emitting unit 21, the second light emitting unit 22, and the third light emitting unit 23 emit light together. Three types of light emission patterns consisting of (second path) can be arbitrarily selected. Further, by switching on and off the driving of the first power supply unit 41 and the second power supply unit 42 and adjusting the amount of current supplied from each power supply unit, the first light emitting unit 21, The light emission luminance of the second light emitting unit 22 and the third light emitting unit 23 can be arbitrarily adjusted.
[有機EL素子の具体例]
 次に、上述の構成の有機EL素子における調光及び調色の具体例について説明する。なお、以下の説明は上述の有機EL素子の駆動メカニズムの説明に基づいて行なうため、上述の図4に示す構成と同様の構成については詳細な説明を省略する。
[Specific examples of organic EL elements]
Next, specific examples of light adjustment and color adjustment in the organic EL element having the above-described configuration will be described. In addition, since the following description is based on the description of the driving mechanism of the organic EL element, detailed description of the same configuration as the configuration shown in FIG. 4 is omitted.
 上述の構成の有機EL素子の等価回路を図5及び図6に示す。図5に示す有機EL素子20は、第1発光ユニット21が青色(B)光を放出し、第2発光ユニット22が赤色(R)光を放出し、第3発光ユニット23が緑色(G)光を放出する構成である。また、図6に示す有機EL素子20は、第1発光ユニット21が青色(B)光を放出し、第2発光ユニット22が黄色(Yl)光を放出し、第3発光ユニット23が青色(B)光を放出する構成である。なお、図5及び図6では、第1電極11をAn、第2電極12(中間電極)をM1、第3電極13(中間電極)をM2、第4電極14をCaで表している。 FIG. 5 and FIG. 6 show an equivalent circuit of the organic EL element having the above-described configuration. In the organic EL element 20 shown in FIG. 5, the first light emitting unit 21 emits blue (B) light, the second light emitting unit 22 emits red (R) light, and the third light emitting unit 23 is green (G). The structure emits light. Further, in the organic EL element 20 shown in FIG. 6, the first light emitting unit 21 emits blue (B) light, the second light emitting unit 22 emits yellow (Yl) light, and the third light emitting unit 23 is blue ( B) A structure that emits light. 5 and 6, the first electrode 11 is represented by An, the second electrode 12 (intermediate electrode) is represented by M1, the third electrode 13 (intermediate electrode) is represented by M2, and the fourth electrode 14 is represented by Ca.
 図5に示す有機EL素子20においては、第1電源部41から供給される電流Ian-caが第2電源部42から供給される電流Im1-m2よりも大きい場合、及び、第2電源部42から供給される電流Im1-m2が0の場合には、第1発光ユニット21と第3発光ユニット23が発光し、第2発光ユニット22は発光しない。即ち、有機EL素子20から青色光と緑色光とが混合したシアン色光が得られる。また、第2電源部42から供給される電流Im1-m2が第1電源部41から供給される電流Ian-ca以上である場合、第1発光ユニット21及び第3発光ユニット23と共に、第2発光ユニット22が発光する。即ち、有機EL素子20から、赤色光、青色光及び緑色光が混合した、白色光が得られる。第2電源部42からIm1-m2が供給され、且つ、第1電源部41から供給される電流Ian-caが0の場合には、第2発光ユニット22のみが発光する。即ち、有機EL素子10から、赤色光が得られる。 In the organic EL element 20 shown in FIG. 5, when the current I an-ca supplied from the first power supply unit 41 is larger than the current I m1-m2 supplied from the second power supply unit 42, and the second power supply When the current Im1-m2 supplied from the unit 42 is 0, the first light emitting unit 21 and the third light emitting unit 23 emit light, and the second light emitting unit 22 does not emit light. That is, cyan light in which blue light and green light are mixed is obtained from the organic EL element 20. In addition, when the current I m1-m2 supplied from the second power supply unit 42 is equal to or greater than the current I an-ca supplied from the first power supply unit 41, the first light emitting unit 21 and the third light emitting unit 23 together The two light emitting units 22 emit light. That is, white light in which red light, blue light, and green light are mixed is obtained from the organic EL element 20. When I m1-m2 is supplied from the second power supply unit 42 and the current I an-ca supplied from the first power supply unit 41 is 0, only the second light emitting unit 22 emits light. That is, red light is obtained from the organic EL element 10.
 さらに、各発光パターンにおいて、第1電源部41から供給される電流Ian-ca、及び、第2電源部42から供給される電流Im-caの少なくともいずれかを調整することにより、第1発光ユニット21と第3発光ユニット23とから得られるシアン色光の輝度、及び、第2発光ユニット22から得られる赤色光の輝度、並びに、第1発光ユニット21、第2発光ユニット22及び第3発光ユニット23から得られる白色光の輝度を、それぞれ任意に調整することができる。 Further, in each light emission pattern, by adjusting at least one of the current I an-ca supplied from the first power supply unit 41 and the current I m-ca supplied from the second power supply unit 42, the first The luminance of cyan light obtained from the light emitting unit 21 and the third light emitting unit 23, the luminance of red light obtained from the second light emitting unit 22, and the first light emitting unit 21, the second light emitting unit 22, and the third light emitting. The brightness of the white light obtained from the unit 23 can be arbitrarily adjusted.
 図6に示す有機EL素子20においては、第1電源部41から供給される電流Ian-caが第2電源部42から供給される電流Im1-m2よりも大きい場合、及び、第2電源部42から供給される電流Im1-m2が0の場合には、第1発光ユニット21と第3発光ユニット23が発光し、第2発光ユニット22は発光しない。即ち、有機EL素子20から青色光のみが得られる。また、第2電源部42から供給される電流Im1-m2が第1電源部41から供給される電流Ian-ca以上である場合、第1発光ユニット21及び第3発光ユニット23と共に、第2発光ユニット22が発光する。即ち、有機EL素子20から、青色光と黄色光とが混合した、白色光が得られる。さらに、第2電源部42から電流Im1-m2が供給され、且つ、第1電源部41から供給される電流Ian-caが0の場合には、第2発光ユニット22のみが発光する。即ち、有機EL素子10から、黄色光のみが得られる。 In the organic EL element 20 shown in FIG. 6, when the current I an-ca supplied from the first power supply unit 41 is larger than the current I m1-m2 supplied from the second power supply unit 42, and the second power supply When the current Im1-m2 supplied from the unit 42 is 0, the first light emitting unit 21 and the third light emitting unit 23 emit light, and the second light emitting unit 22 does not emit light. That is, only blue light is obtained from the organic EL element 20. In addition, when the current I m1-m2 supplied from the second power supply unit 42 is equal to or greater than the current I an-ca supplied from the first power supply unit 41, the first light emitting unit 21 and the third light emitting unit 23 together The two light emitting units 22 emit light. That is, white light in which blue light and yellow light are mixed is obtained from the organic EL element 20. Further, when the current I m1-m2 is supplied from the second power supply unit 42 and the current I an-ca supplied from the first power supply unit 41 is 0, only the second light emitting unit 22 emits light. That is, only yellow light is obtained from the organic EL element 10.
 さらに、各発光パターンにおいて、第1電源部41から供給される電流Ian-ca、及び、第2電源部42から供給される電流Im-caの少なくともいずれかを調整することにより、第1発光ユニット21と第3発光ユニット23とから得られる青色光の輝度、及び、第2発光ユニット22から得られる黄色光の輝度、並びに、第1発光ユニット21、第2発光ユニット22及び第3発光ユニット23から得られる白色光の輝度を、それぞれ任意に調整することができる。 Further, in each light emission pattern, by adjusting at least one of the current I an-ca supplied from the first power supply unit 41 and the current I m-ca supplied from the second power supply unit 42, the first The luminance of blue light obtained from the light emitting unit 21 and the third light emitting unit 23, the luminance of yellow light obtained from the second light emitting unit 22, and the first light emitting unit 21, the second light emitting unit 22, and the third light emitting. The brightness of the white light obtained from the unit 23 can be arbitrarily adjusted.
 従って、上述の構成の有機EL素子20によれば、第1電極11と第4電極14(第n電極)に電流を供給する第1配線31の第1電源部41と、第2発光ユニット22の陽極[第2電極12]側と陰極[第3電極13(第n-1電極)]側とに電流を供給する第2配線32の第2電源部42とにより、複数の発光ユニットを同時に、又は、発光ユニットを単独で発光させることができる。さらに、上記第1電源部41と第2電源部42の電流量を調整することにより、複数同時に、又は、単独で発光させた各発光ユニットの発光輝度を任意に調整することができる。 Therefore, according to the organic EL element 20 having the above-described configuration, the first power supply unit 41 of the first wiring 31 that supplies current to the first electrode 11 and the fourth electrode 14 (nth electrode), and the second light emitting unit 22. A plurality of light emitting units are simultaneously formed by the second power supply unit 42 of the second wiring 32 that supplies current to the anode [second electrode 12] side and the cathode [third electrode 13 (n-1 electrode)] side. Alternatively, the light emitting unit can emit light alone. Furthermore, by adjusting the current amounts of the first power supply unit 41 and the second power supply unit 42, it is possible to arbitrarily adjust the light emission luminance of each of the light emitting units that emit light simultaneously or independently.
 従って、複数の電極と発光ユニットとが積層された構成の有機EL素子において、時分割した駆動を行うことなく、発光ユニットの同時駆動により発光ユニットを同時に、又は、単独で発光させることができる。このため、時分割駆動による電流量やICへの電流負荷を増加させることなく、有機EL素子の調色、調光が可能となる。さらに、電流量を増加させることなく、有機EL素子の調色、調光が可能なため、パネル内の発光均一性(均斉度)の低下を抑制することができる。 Therefore, in an organic EL element having a configuration in which a plurality of electrodes and a light emitting unit are stacked, the light emitting units can be made to emit light simultaneously or independently by simultaneous driving of the light emitting units without performing time-division driving. For this reason, the toning and dimming of the organic EL element can be performed without increasing the amount of current by time division driving and the current load on the IC. Furthermore, since the toning and light control of the organic EL element can be performed without increasing the amount of current, it is possible to suppress a decrease in light emission uniformity (homogeneity) in the panel.
[第1変形例]
 次に、第2実施形態の有機EL素子の第1変形例について説明する。図7に第2実施形態の有機EL素子の第1変形例の構成を示す。図7に示す有機EL素子20Aは、第2配線32が、第3電極13と、第1配線31の第4電極14から第1電源部41までの間とに接続されている。そして、この第2配線32に第2電源部42が配置されている。有機EL素子20Aにおいて、第2配線32と第2電源部42の配置以外は、上述の第2実施形態と同様の構成である。
[First Modification]
Next, a first modification of the organic EL element of the second embodiment will be described. FIG. 7 shows a configuration of a first modification of the organic EL element of the second embodiment. In the organic EL element 20 </ b> A illustrated in FIG. 7, the second wiring 32 is connected to the third electrode 13 and between the fourth electrode 14 of the first wiring 31 to the first power supply unit 41. A second power supply unit 42 is disposed on the second wiring 32. The organic EL element 20A has the same configuration as that of the above-described second embodiment except for the arrangement of the second wiring 32 and the second power supply unit 42.
 有機EL素子20Aにおいても、上述の第2実施形態の有機EL素子と同様に、第1電極11と第4電極14(第n電極)に電流を供給する第1配線31の第1電源部41と、第3発光ユニット23の陽極[第3電極13]側と陰極[第4電極14(第n電極)から第1配線31]側とに電流を供給する第2配線32の第2電源部42とにより、複数の発光ユニットを同時に、又は、発光ユニットを単独で発光させることができる。具体的には、第1電源部41により第1発光ユニット21と第2発光ユニット22の発光を調整し、第2電源部42により第3発光ユニット23の発光を調整することができる。従って、上記第1電源部41と第2電源部42の電流量を調整することにより、複数同時に、又は、単独で発光させた各発光ユニットの発光輝度を任意に調整することができる。 Also in the organic EL element 20A, as in the organic EL element of the second embodiment described above, the first power supply section 41 of the first wiring 31 that supplies current to the first electrode 11 and the fourth electrode 14 (nth electrode). And the second power supply section of the second wiring 32 that supplies current to the anode [third electrode 13] side and the cathode [fourth electrode 14 (nth electrode) to the first wiring 31] side of the third light emitting unit 23. 42, a plurality of light emitting units can be made to emit light simultaneously or independently. Specifically, the light emission of the first light emitting unit 21 and the second light emitting unit 22 can be adjusted by the first power supply unit 41, and the light emission of the third light emitting unit 23 can be adjusted by the second power supply unit 42. Therefore, by adjusting the current amounts of the first power supply unit 41 and the second power supply unit 42, it is possible to arbitrarily adjust the light emission luminance of each light emitting unit that emits light at the same time or independently.
 上記有機EL素子20Aの構成では、第2配線32が第3発光ユニット23のループ回路となる。このように、第2配線32の接続位置を変更することによって、発光ユニットに対するループ回路を形成する位置を、有機EL素子中から任意に選択することができる。例えば、第1配線31の第1電源部41から第1電極11までの間と、第2電極12とを接続する位置に第2配線32及び第2電源部42を設けることにより、第1発光ユニット21に対するループ回路を形成することも可能である。 In the configuration of the organic EL element 20 </ b> A, the second wiring 32 is a loop circuit of the third light emitting unit 23. Thus, by changing the connection position of the second wiring 32, the position where the loop circuit for the light emitting unit is formed can be arbitrarily selected from the organic EL elements. For example, by providing the second wiring 32 and the second power supply unit 42 between the first power supply unit 41 and the first electrode 11 of the first wiring 31 and the position where the second electrode 12 is connected, the first light emission is performed. It is also possible to form a loop circuit for the unit 21.
[第2変形例]
 次に、第2実施形態の有機EL素子の第2変形例について説明する。図8に第2実施形態の有機EL素子の第2変形例の構成を示す。図8に示す有機EL素子20Bは、第2配線32が、第3電極13と、第1配線31の第4電極14から第1電源部41までの間とを接続する位置に設けられている。そして、この第2配線32に第2電源部42が配置されている。
[Second Modification]
Next, a second modification of the organic EL element of the second embodiment will be described. FIG. 8 shows a configuration of a second modification of the organic EL element of the second embodiment. In the organic EL element 20 </ b> B shown in FIG. 8, the second wiring 32 is provided at a position connecting the third electrode 13 and the portion between the fourth electrode 14 of the first wiring 31 and the first power supply unit 41. . A second power supply unit 42 is disposed on the second wiring 32.
 さらに、第3配線33が、第1配線31の第1電源部41から第1電極11までの間と、第2電極12とを接続する位置に設けられている。そして、この第3配線33に第3電源部43が設けられている。なお、有機EL素子20Bにおいて、第3配線33と第3電源部43の配置以外は、上述の第2実施形態の第1変形例と同様の構成である。 Further, the third wiring 33 is provided at a position connecting the first electrode 11 between the first power supply unit 41 and the first electrode 11 and the second electrode 12. A third power supply unit 43 is provided on the third wiring 33. The organic EL element 20B has the same configuration as that of the first modification of the second embodiment described above, except for the arrangement of the third wiring 33 and the third power supply unit 43.
 この構成では、第1電源部41の駆動をon、第2電源部42の駆動をoff、第3電源部43の駆動をoffとする場合、即ち、第1電源部41の駆動のみをonとする場合には、第2発光ユニット22のみが発光する。また、第1電源部41の駆動をoff、第2電源部42の駆動をon、第3電源部43の駆動をoffとする場合、即ち、第2電源部42の駆動のみをonとする場合には、第3発光ユニット23のみが発光する。そして、第1電源部41の駆動をoff、第2電源部42の駆動をoff、第3電源部43の駆動をonとする場合、即ち、第3電源部43の駆動のみをonとする場合には、第1発光ユニット21のみが発光する。これらの発光パターンでは、各電源部から供給される電流量を調整することにより、各発光ユニットの輝度を個別に調整することができる。 In this configuration, when the driving of the first power supply unit 41 is turned on, the driving of the second power supply unit 42 is turned off, and the driving of the third power supply unit 43 is turned off, that is, only the driving of the first power supply unit 41 is turned on. When doing so, only the second light emitting unit 22 emits light. Further, when driving the first power supply unit 41 is turned off, driving the second power supply unit 42 is turned on, and driving of the third power supply unit 43 is turned off, that is, when driving only the second power supply unit 42 is turned on. Only the third light emitting unit 23 emits light. When the first power supply unit 41 is turned off, the second power supply unit 42 is turned off, and the third power supply unit 43 is turned on, that is, only the third power supply unit 43 is turned on. Only the first light emitting unit 21 emits light. In these light emission patterns, the brightness of each light emitting unit can be individually adjusted by adjusting the amount of current supplied from each power supply unit.
 また、第1電源部41の駆動をon、第2電源部42の駆動をon、第3電源部の駆動をoffとする場合には、第2発光ユニット22と第3発光ユニット23が発光する。また、第1電源部41の駆動をon、第2電源部42の駆動をoff、第3電源部の駆動をonとする場合には、第1発光ユニット21と第2発光ユニット22が発光する。そして、第1電源部41の駆動をoff、第2電源部42の駆動をon、第3電源部の駆動をonとする場合には、第1発光ユニット21と第3発光ユニット23が発光する。このように、有機EL素子20Bの構成では、任意の2つの発光ユニットを同時に発光させることもできる。これらの発光パターンにおいても、各電源部から供給される電流量を調整することにより、各発光ユニットの輝度を個別に調整することができる。 When the driving of the first power supply unit 41 is turned on, the driving of the second power supply unit 42 is turned on, and the driving of the third power supply unit is turned off, the second light emitting unit 22 and the third light emitting unit 23 emit light. . Further, when the first power supply unit 41 is turned on, the second power supply unit 42 is turned off, and the third power supply unit is turned on, the first light emitting unit 21 and the second light emitting unit 22 emit light. . When the first power supply unit 41 is turned off, the second power supply unit 42 is turned on, and the third power supply unit is turned on, the first light emitting unit 21 and the third light emitting unit 23 emit light. . Thus, in the configuration of the organic EL element 20B, any two light emitting units can emit light simultaneously. Also in these light emission patterns, the luminance of each light emitting unit can be individually adjusted by adjusting the amount of current supplied from each power supply unit.
 さらに、第1電源部41の駆動をon、第2電源部42の駆動をon、第3電源部の駆動をonとすることにより、第1発光ユニット21、第2発光ユニット22、及び、第3発光ユニット23の3つの発光ユニットを同時に発光させることができる。これらの発光パターンにおいても、各電源部から供給される電流量を調整することにより、各発光ユニットの輝度を個別に調整することができる。 Further, by turning on the first power supply unit 41, turning on the second power supply unit 42, and turning on the third power supply unit, the first light emitting unit 21, the second light emitting unit 22, The three light emitting units of the three light emitting units 23 can emit light simultaneously. Also in these light emission patterns, the luminance of each light emitting unit can be individually adjusted by adjusting the amount of current supplied from each power supply unit.
 上述のように、複数の電極と発光ユニットとが積層された構成の有機EL素子において、電極数nが4以上の場合には、第2配線及び第2電源部とともに、第2配線がループ回路となる発光ユニット以外の他の発光ユニットのループ回路となる、第3配線及び第3電源部を有する構成も可能である。さらに、発光ユニットの数に応じて、それ以上の配線及び電源部を有することも可能である。例えば、電極数nが5の場合においても、第1電極と第5電極(第n電極)に電流を供給する第1配線及び第1電源部、第2発光ユニットに対してのループ回路となる第2配線及び第2電源部、並びに、第3発光ユニットに対してのループ回路となる第3配線及び第3電源部を設ける構成が可能である。この構成においても、各電源部から供給される電流量を調整することにより、各発光ユニットの輝度を個別に調整することができる。 As described above, in the organic EL element having a configuration in which a plurality of electrodes and a light emitting unit are stacked, when the number of electrodes n is 4 or more, the second wiring is a loop circuit together with the second wiring and the second power supply unit. A configuration having a third wiring and a third power supply unit that is a loop circuit of a light emitting unit other than the light emitting unit is also possible. Furthermore, it is possible to have more wiring and power supply units depending on the number of light emitting units. For example, even when the number of electrodes n is 5, a loop circuit is provided for the first wiring, the first power supply unit, and the second light emitting unit that supply current to the first electrode and the fifth electrode (nth electrode). A configuration in which the second wiring and the second power supply unit, and the third wiring and the third power supply unit serving as a loop circuit for the third light emitting unit are possible. Also in this configuration, the luminance of each light emitting unit can be individually adjusted by adjusting the amount of current supplied from each power supply unit.
 従って、上述の各変形例の有機EL素子においても、第1電極と第n電極に電流を供給する第1配線及び第1電源部と、いずれかの発光ユニットの陽極側と陰極側とに電流を供給する第2配線から第n-1配線及び第2電源部から第n-1電源部とを有することにより、複数の発光ユニットを同時に、又は、発光ユニットを単独で発光させることができる。さらに、上記第1電源部と第2電源部の電流量を調整することにより、複数同時に、又は、単独で発光させた各発光ユニットの発光輝度を任意に調整することができる。 Therefore, also in the organic EL element of each of the above-described modifications, current is supplied to the first wiring and the first power supply unit that supply current to the first electrode and the nth electrode, and to the anode side and the cathode side of any one of the light emitting units. By providing the second wiring to the n-1th wiring and the second power supply unit to the n-1th power supply unit, a plurality of light emitting units can emit light simultaneously or independently. Furthermore, by adjusting the current amounts of the first power supply unit and the second power supply unit, it is possible to arbitrarily adjust the light emission luminance of each light emitting unit that emits light at the same time or independently.
 従って、複数の電極と発光ユニットとが積層された構成の有機EL素子において、時分割した駆動を行うことなく、発光ユニットの同時駆動により発光ユニットを同時に、又は、単独で発光させることができる。このため、時分割駆動による電流量やICへの電流負荷を増加させることなく、有機EL素子の調色、調光が可能となる。さらに、電流量を増加させることなく、有機EL素子の調色、調光が可能なため、パネル内の発光均一性(均斉度)の低下を抑制することができる。 Therefore, in an organic EL element having a configuration in which a plurality of electrodes and a light emitting unit are stacked, the light emitting units can be made to emit light simultaneously or independently by simultaneous driving of the light emitting units without performing time-division driving. For this reason, the toning and dimming of the organic EL element can be performed without increasing the amount of current by time division driving and the current load on the IC. Furthermore, since the toning and light control of the organic EL element can be performed without increasing the amount of current, it is possible to suppress a decrease in light emission uniformity (homogeneity) in the panel.
〈3.有機エレクトロルミネッセンス素子の構成要素〉
 以下、上述の各実施形態において説明した有機EL素子を構成する各構成要素の詳細について説明する。なお、以下の説明は、各実施形態の有機EL素子を構成することが可能な構成要素の一例であり、上述の有機EL素子による作用効果を得ることができれば、他の構成を適用することも可能である。
<3. Components of Organic Electroluminescence Device>
Hereinafter, the detail of each component which comprises the organic EL element demonstrated in each above-mentioned embodiment is demonstrated. In addition, the following description is an example of the component which can comprise the organic EL element of each embodiment, and if the effect by the above-mentioned organic EL element can be acquired, another structure can also be applied. Is possible.
[支持基板]
 有機EL素子において、電極及び発光ユニットが形成される支持基板は、特に限定されない。例えば、有機EL素子が、ボトムエミッション型や両面発光型の場合には、支持基板として透明基板を用いる。また、有機EL素子がトップエミッション型の場合には、支持基板として不透明基板を用いてもよい。
[Support substrate]
In the organic EL element, the support substrate on which the electrode and the light emitting unit are formed is not particularly limited. For example, when the organic EL element is a bottom emission type or a dual emission type, a transparent substrate is used as the support substrate. Further, when the organic EL element is a top emission type, an opaque substrate may be used as the support substrate.
 透明基板としては、例えば、特開2014-120334号公報の段落[0049]~[0052]に記載の基板を用いることができる。また、不透明基板としては、例えば、特開2013-89608号公報の段落[0126]に記載の基板を用いることができる。なお、透明(透光性)とは波長550nmでの光透過率が50%以上であることをいう。 As the transparent substrate, for example, the substrates described in paragraphs [0049] to [0052] of JP 2014-120334 A can be used. As the opaque substrate, for example, the substrate described in paragraph [0126] of JP2013-89608A can be used. Transparent (translucent) means that the light transmittance at a wavelength of 550 nm is 50% or more.
[電極]
(第1電極・第n電極)
 有機EL素子において第1電極及び第n電極は、方がアノードとなり、他方がカソードとなる。また、例えば、有機EL素子が、ボトムエミッション型の場合には、第1電極に透明電極を用い、第n電極に反射率の高い電極を用いる。また、有機EL素子がトップエミッション型の場合には、第1電極に反射率の高い電極を用い、第n電極に透明電極を用いる。有機EL素子が両面発光型の場合には、第1電極と第n電極とに透明電極を用いる。これらの第1電極と第n電極としては、例えば、特開2013-89608号公報の段落[0127]~[0129]に記載の構成、及び、導電材料を適用することができる。
[electrode]
(First electrode / nth electrode)
In the organic EL element, the first electrode and the nth electrode are the anode and the other is the cathode. For example, when the organic EL element is a bottom emission type, a transparent electrode is used as the first electrode, and an electrode having a high reflectance is used as the nth electrode. When the organic EL element is a top emission type, an electrode having a high reflectance is used for the first electrode, and a transparent electrode is used for the nth electrode. When the organic EL element is a dual emission type, transparent electrodes are used for the first electrode and the nth electrode. As the first electrode and the n-th electrode, for example, the configuration described in paragraphs [0127] to [0129] of JP2013-89608A and a conductive material can be applied.
(中間電極)
 有機EL素子において、上記第1電極と第n電極との間に形成される電極が中間電極(第2電極から第n-1電極)である。中間電極は、有機EL素子の発光パターン(図4及び図11)に応じて、アノード又はカソードに極性が反転する。
(Intermediate electrode)
In the organic EL element, an electrode formed between the first electrode and the nth electrode is an intermediate electrode (second electrode to n−1th electrode). The polarity of the intermediate electrode is inverted to the anode or the cathode according to the light emission pattern (FIGS. 4 and 11) of the organic EL element.
 中間電極は、上述の透明電極に適する材料の中から、光透過性に優れた導電性材料を用いて構成される。中間電極は、透明電極と同程度のシート抵抗および光透過率を備えていることが好ましい。中間電極としては、例えば、特開2014-120334号公報の段落[0060]~[0064]に記載の構成、及び、導電材料を適用することができる。 The intermediate electrode is configured using a conductive material having excellent light transmission properties from materials suitable for the transparent electrode described above. The intermediate electrode preferably has the same sheet resistance and light transmittance as the transparent electrode. As the intermediate electrode, for example, the configuration described in paragraphs [0060] to [0064] of JP 2014-120334 A and a conductive material can be applied.
 また、中間電極は、銀(Ag)又はアルミニウム(Al)を主成分として含有することが好ましい。なお、主成分とは、構成全体の中で占める割合が最も高い成分である。銀(Ag)又はアルミニウム(Al)を主成分とする導電材料としては、銀又は銀を主成分とする合金、及び、アルミニウム又はアルミニウムを主成分とする合金が挙げられる。このような合金の一例として、銀マグネシウム(AgMg)、銀銅(AgCu)、銀パラジウム(AgPd)、銀パラジウム銅(AgPdCu)、銀インジウム(AgIn)、銀金(AgAu)、銀アルミ(AgAl)、銀亜鉛(AgZn)、銀錫(AgSn)、銀白金(AgPt)、銀チタン(AgTi)及び銀ビスマス(AgBi)等が挙げられる。 The intermediate electrode preferably contains silver (Ag) or aluminum (Al) as a main component. In addition, a main component is a component with the highest ratio for the whole structure. Examples of the conductive material containing silver (Ag) or aluminum (Al) as a main component include silver or an alloy containing silver as a main component and an alloy containing aluminum or aluminum as a main component. Examples of such alloys include silver magnesium (AgMg), silver copper (AgCu), silver palladium (AgPd), silver palladium copper (AgPdCu), silver indium (AgIn), silver gold (AgAu), silver aluminum (AgAl) Silver zinc (AgZn), silver tin (AgSn), silver platinum (AgPt), silver titanium (AgTi), silver bismuth (AgBi), and the like.
 また、銀(Ag)又はアルミニウム(Al)を主成分とする導電材料からなる中間電極は、厚さ6nm以上25nm以下であることが好ましい。中間電極の厚さを6nm以上とすることにより、金属薄膜の成膜性が向上し、中間電極の導電性が良好となる。また、金属薄膜の成膜性が向上することにより、中間電極による光の吸収及び反射が低く抑えられ、中間電極の光の透過率が高まる。さらに、中間電極の厚さを25nm以下とすることにより、中間電極の光の透過率の低下を抑制し、有機EL素子の発光効率への影響を抑制することができる。 The intermediate electrode made of a conductive material mainly composed of silver (Ag) or aluminum (Al) preferably has a thickness of 6 nm to 25 nm. By setting the thickness of the intermediate electrode to 6 nm or more, the film formability of the metal thin film is improved, and the conductivity of the intermediate electrode is improved. Further, by improving the film formability of the metal thin film, light absorption and reflection by the intermediate electrode can be kept low, and the light transmittance of the intermediate electrode is increased. Furthermore, by setting the thickness of the intermediate electrode to 25 nm or less, it is possible to suppress a decrease in the light transmittance of the intermediate electrode and to suppress the influence on the light emission efficiency of the organic EL element.
[発光ユニット]
 有機EL素子に設けられる各発光ユニットは、それぞれ有機材料を用いて構成された、注入された電子と正孔との再結合等によって発光する発光層を有する。また、各発光ユニットは、発光層を含む積層体であってもよい。各発光ユニットの構成は特に限定されず、従来公知の構成を用いることができる。また、各発光ユニットを構成する層の積層構造等も特に限定されず、必要に応じて任意の層を設けることができる。各発光ユニットを構成する層としては、例えば、特開2014-120334号公報の段落[0240]~[0262]、特開2013-89608号公報の段落[0073]~[0082]等に記載の構成を適用することができる。
[Light emitting unit]
Each light emitting unit provided in the organic EL element has a light emitting layer that is configured by using an organic material and emits light by recombination of injected electrons and holes. Each light emitting unit may be a laminate including a light emitting layer. The configuration of each light emitting unit is not particularly limited, and a conventionally known configuration can be used. Moreover, the laminated structure of the layers constituting each light emitting unit is not particularly limited, and an arbitrary layer can be provided as necessary. Examples of the layers constituting each light emitting unit include the configurations described in paragraphs [0240] to [0262] of JP 2014-120334 A, paragraphs [0073] to [0082] of JP 2013-89608 A, and the like. Can be applied.
[電源部]
 有機EL素子に用いる電源部は、各電極に供給する電流の駆動(on-off)を切り替えることができれば、特に限定されず、有機EL素子に適用可能な従来公知の構成を適用することができる。また、各電源部は、図示しない制御部によって各電極及び各発光ユニットに印加する電流が制御されていてもよい。制御部としては、例えばコンピュータ等を用いた構成が可能である。電源としては、中間電極を1つ含む際には、少なくとも6V以上、望ましくは9V以上(OLED分+定電流ダイオード抵抗分)を印加できる必要がある。中間電極を2つ含む際には、少なくとも、9V以上、望ましくは12V以上(OLED分+定電流ダイオード抵抗分)印加可能な電源を用いる必要が有る。複数の発光ユニットを制御するために、定電流での駆動をさせることが望ましい。
[Power supply part]
The power supply unit used for the organic EL element is not particularly limited as long as the driving (on-off) of the current supplied to each electrode can be switched, and a conventionally known configuration applicable to the organic EL element can be applied. . In addition, each power supply unit may have its current applied to each electrode and each light emitting unit controlled by a control unit (not shown). As the control unit, for example, a configuration using a computer or the like is possible. As a power source, when one intermediate electrode is included, it is necessary to be able to apply at least 6 V or more, preferably 9 V or more (OLED component + constant current diode resistance component). When two intermediate electrodes are included, it is necessary to use a power supply capable of applying at least 9 V or more, preferably 12 V or more (OLED component + constant current diode resistance component). In order to control a plurality of light emitting units, it is desirable to drive with a constant current.
[その他の構成]
 有機EL素子は、支持基板上において第1電極との間に、有機EL素子の劣化をもたらす水分や酸素等の浸入を抑制するためのガスバリア層を有していてもよい。ガスバリア層としては、例えば、特開2014-120334号公報の段落[0053]~[0056]に記載の構成を適用することができる。
[Other configurations]
The organic EL element may have a gas barrier layer for suppressing intrusion of moisture, oxygen or the like that causes deterioration of the organic EL element between the first electrode and the support substrate. As the gas barrier layer, for example, the configurations described in paragraphs [0053] to [0056] of JP 2014-120334 A can be applied.
 有機EL素子は、支持基板上において、各電極と各発光ユニットとを覆う封止材を有していてもよい。封止材は、有機EL素子の劣化をもたらす水分や酸素等の浸入を抑制する機能を有する層を有していればよく、例えば、特開2014-120334号公報の段落[0266]~[0274]、及び、特開2013-89608号公報の段落[0130]~[0139]に記載の構成を適用することができる。 The organic EL element may have a sealing material that covers each electrode and each light emitting unit on the support substrate. The sealing material only needs to have a layer having a function of suppressing intrusion of moisture, oxygen, or the like that causes deterioration of the organic EL element. For example, paragraphs [0266] to [0274] of Japanese Patent Application Laid-Open No. 2014-120334. And configurations described in paragraphs [0130] to [0139] of JP2013-89608A can be applied.
 また、有機EL素子は、各発光ユニットから放出される光を効率よく取り出すための光取り出し構造を、必要に応じて有していてもよい。光取り出し構造としては、例えば、特開2014-120334号公報の段落[0275]~[0288]に記載の構成を適用することができる。 In addition, the organic EL element may have a light extraction structure for efficiently extracting light emitted from each light emitting unit, if necessary. As the light extraction structure, for example, the configurations described in paragraphs [0275] to [0288] of JP 2014-120334 A can be applied.
 実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。 The present invention will be specifically described by way of examples, but the present invention is not limited thereto. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "mass%" is represented.
〈有機EL素子(パターンA)の作製〉
 以下の方法により、1cm×1cmの素子面積を有する有機EL素子を作製した。なお、作製した有機EL素子は、上述の図4に示す構成を有し、第1発光ユニットが青、第2発光ユニットが赤、第3発光ユニットが緑の発光色を有する構成である。
<Preparation of organic EL element (pattern A)>
An organic EL element having an element area of 1 cm × 1 cm was produced by the following method. The produced organic EL element has the configuration shown in FIG. 4 described above, and has a configuration in which the first light emitting unit has a blue light emission color, the second light emitting unit has a red light emission, and the third light emitting unit has a green light emission color.
[有機EL素子の作製]
(1)第1電極(透明電極)の形成
 まず、透明基板として、厚さ0.7mmのガラス基板を準備した。この透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。そして、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。そして、下記化合物3とAg(銀)とをそれぞれ真空蒸着装置内の各蒸着用るつぼに最適な量を充填した。各蒸着用るつぼとして、モリブデン製又はタングステン製の抵抗加熱用材料で作製された蒸着用るつぼを用いた。真空度1×10-4Paまで減圧した後、化合物3入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で蒸着し、厚さ15nmの下地層を形成した。さらに、Ag(銀)を15nmの厚さでマスク蒸着して、第1電極(透明電極)を形成した。
[Production of organic EL element]
(1) Formation of first electrode (transparent electrode) First, a glass substrate having a thickness of 0.7 mm was prepared as a transparent substrate. This transparent substrate was subjected to ultrasonic cleaning with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes. And this transparent substrate was fixed to the substrate holder of a commercially available vacuum evaporation apparatus. And the following compound 3 and Ag (silver) were each filled with the optimal quantity to each crucible for vapor deposition in a vacuum vapor deposition apparatus. As each evaporation crucible, an evaporation crucible made of a resistance heating material made of molybdenum or tungsten was used. After depressurizing to a vacuum of 1 × 10 −4 Pa, the deposition crucible containing Compound 3 was energized and heated, and deposited at a deposition rate of 0.1 nm / second to form a base layer having a thickness of 15 nm. Furthermore, Ag (silver) was mask-deposited with a thickness of 15 nm to form a first electrode (transparent electrode).
(2)第1発光ユニットの形成
 次に、第1電極を形成した透明基板を市販の真空蒸着装置の基板ホルダーに固定した。そして、第1発光ユニットを構成する各層の材料を、真空蒸着装置内の各蒸着用るつぼに素子作製に最適な量を充填した。各蒸着用るつぼとして、モリブデン製又はタングステン製の抵抗加熱用材料で作製された蒸着用るつぼを用いた。
(2) Formation of 1st light emission unit Next, the transparent substrate in which the 1st electrode was formed was fixed to the substrate holder of a commercial vacuum evaporation system. Then, the materials for the respective layers constituting the first light emitting unit were filled in the respective crucibles for vapor deposition in the vacuum vapor deposition apparatus with the optimum amounts for device fabrication. As each evaporation crucible, an evaporation crucible made of a resistance heating material made of molybdenum or tungsten was used.
(2.1)正孔注入層の形成
 真空度1×10-4Paまで減圧した後、HAT-CN(ヘキサアザトリフェニレンヘキサカルボニトリル)の入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で第1電極上に蒸着し、厚さ5nmの正孔注入層を形成した。
(2.1) Formation of hole injection layer After reducing the vacuum to 1 × 10 −4 Pa, the deposition crucible containing HAT-CN (hexaazatriphenylenehexacarbonitrile) is energized and heated, the deposition rate Vapor deposition was performed on the first electrode at 0.1 nm / second to form a hole injection layer having a thickness of 5 nm.
(2.2)正孔輸送層の形成
 次に、下記化合物1-A(ガラス転移点(Tg)=140℃)を厚さ27nmになるように蒸着し、正孔輸送層を形成した。
(2.2) Formation of Hole Transport Layer Next, the following compound 1-A (glass transition point (Tg) = 140 ° C.) was deposited to a thickness of 27 nm to form a hole transport layer.
(2.3)電子阻止層の形成
 次に、下記化合物1-Bを、厚さ10nmになるように蒸着し、電子阻止層を形成した。
(2.3) Formation of Electron Blocking Layer Next, the following compound 1-B was deposited to a thickness of 10 nm to form an electron blocking layer.
(2.4)発光層の形成
 次に、ホスト化合物として下記化合物2-A(Tg=189℃)が98vol%、青色蛍光発光ドーパントとして下記化合物2-Bが2vol%となるように蒸着し、青色(B)を呈する厚さ20nmの蛍光発光層を形成した。
(2.4) Formation of Light-Emitting Layer Next, the following compound 2-A (Tg = 189 ° C.) as a host compound was deposited to 98 vol%, and the following compound 2-B as a blue fluorescent light-emitting dopant was deposited to 2 vol%. A fluorescent light emitting layer having a thickness of 20 nm and exhibiting blue (B) was formed.
(2.5)電子輸送層の形成
 次に、下記化合物3が86vol%、LiFが14vol%となるように発光層上に蒸着し、厚さ20nmの層を形成した。さらに、化合物3が98vol%、Liが2vol%となるように蒸着し、厚さ10nmの層を形成した。これにより、化合物3及びLiFと、化合物3及びLiとの2層からなる電子注入層を兼ねた電子輸送層を形成し、正孔注入層~電子輸送層までの積層構造の第1発光ユニットを形成した。
(2.5) Formation of electron transport layer Next, the following compound 3 was vapor-deposited on the light emitting layer so that 86 vol% and LiF might be 14 vol%, and the 20-nm-thick layer was formed. Furthermore, it vapor-deposited so that the compound 3 might be 98 vol% and Li might be 2 vol%, and the layer of thickness 10nm was formed. As a result, an electron transport layer that also serves as an electron injection layer composed of two layers of compound 3 and LiF and compound 3 and Li is formed, and the first light emitting unit having a stacked structure from the hole injection layer to the electron transport layer is formed. Formed.
(3)第2電極の形成
 次に、第1発光ユニット上に、Agを厚さ10nmで成膜し、第2電極を形成した。
(3) Formation of 2nd electrode Next, Ag was formed into a film with a thickness of 10 nm on the 1st light emission unit, and the 2nd electrode was formed.
(4)第2発光ユニットの形成
 発光層以外は、第1発光ユニットと同様の材料を用いた同様の手順で、膜厚をそれぞれ下記のように設定して第2発光ユニットを形成した。
(4) Formation of second light-emitting unit A second light-emitting unit was formed by setting the film thickness as follows in the same procedure using the same material as the first light-emitting unit except for the light-emitting layer.
(4.1)正孔注入層の形成
 HAT-CNを厚さ5nmになるように蒸着し、正孔注入層を形成した。
(4.1) Formation of hole injection layer HAT-CN was deposited to a thickness of 5 nm to form a hole injection layer.
(4.2)正孔輸送層の形成
 次に、化合物1-Aを厚さ28nmになるように蒸着し、正孔輸送層を形成した。
(4.2) Formation of Hole Transport Layer Next, Compound 1-A was deposited to a thickness of 28 nm to form a hole transport layer.
(4.3)電子阻止層の形成
 次に、化合物1-Bを厚さ10nmになるように蒸着し、電子阻止層を形成した。
(4.3) Formation of Electron Blocking Layer Next, Compound 1-B was deposited to a thickness of 10 nm to form an electron blocking layer.
(4.4)発光層の形成
 次に、ホスト化合物として化合物2-A(Tg=143℃)が77vol%、アシストドーパントとして化合物2-Bが15vol%、赤色リン光発光ドーパントとしてIr(pq)2が8vol%となるように蒸着し、赤色(R)を呈する厚さ20nmのリン光発光層を形成した。
(4.4) Formation of Light-Emitting Layer Next, Compound 2-A (Tg = 143 ° C.) is 77 vol% as a host compound, Compound 2-B is 15 vol% as an assist dopant, and Ir (pq) as a red phosphorescent dopant. 2 was 8 vol%, and a phosphorescent light emitting layer having a thickness of 20 nm and showing red (R) was formed.
(4.5)電子輸送性層の形成
 次に、下記化合物3が86vol%、LiFが14vol%となるように発光層上に蒸着し、厚さ20nmの層を形成した。さらに、化合物3が98vol%、Liが2vol%となるように蒸着し、厚さ20nmの層を形成した。これにより、化合物3及びLiFと、化合物3及びLiとの2層からなる電子注入層を兼ねた電子輸送層を形成し、正孔注入層~電子輸送層までの積層構造の第2発光ユニットを形成した。
(4.5) Formation of Electron Transporting Layer Next, the following compound 3 was deposited on the light emitting layer so that 86 vol% and LiF were 14 vol%, thereby forming a 20 nm thick layer. Furthermore, it vapor-deposited so that the compound 3 might be 98 vol% and Li might be 2 vol%, and the 20-nm-thick layer was formed. As a result, an electron transport layer that also serves as an electron injection layer composed of two layers of compound 3 and LiF and compound 3 and Li is formed, and the second light emitting unit having a stacked structure from the hole injection layer to the electron transport layer is formed. Formed.
(5)第3電極の形成
 次に、第2発光ユニット上に、Agを厚さ8nmで成膜し、第3電極を形成した。
(5) Formation of 3rd electrode Next, Ag was formed into a film with thickness 8nm on the 2nd light emission unit, and the 3rd electrode was formed.
(6)第3発光ユニットの形成
 発光層以外は、第1発光ユニットと同様の材料を用いた同様の手順で、膜厚をそれぞれ下記のように設定して第3発光ユニットを形成した。
(6) Formation of third light-emitting unit A third light-emitting unit was formed by setting the film thickness as follows in the same procedure using the same material as the first light-emitting unit except for the light-emitting layer.
(6.1)正孔注入層の形成
 HAT-CNを厚さ5nmになるように蒸着し、正孔注入層を形成した。
(6.1) Formation of hole injection layer HAT-CN was deposited to a thickness of 5 nm to form a hole injection layer.
(6.2)正孔輸送層の形成
 次に、化合物1-Aを厚さ57nmになるように蒸着し、正孔輸送層を形成した。
(6.2) Formation of Hole Transport Layer Next, Compound 1-A was deposited to a thickness of 57 nm to form a hole transport layer.
(6.3)電子阻止層の形成
 次に、化合物1-Bを厚さ10nmになるように蒸着し、電子阻止層を形成した。
(6.3) Formation of Electron Blocking Layer Next, Compound 1-B was deposited to a thickness of 10 nm to form an electron blocking layer.
(6.4)発光層の形成
 次に、ホスト化合物として下記化合物4-A(Tg=143℃)が85vol%、緑色リン光発光ドーパントとして化合物(Ir(ppy)3)が15vol%となるように蒸着し、緑色発光(G)を呈する厚さ20nmのリン光発光層を形成した。
(6.4) Formation of Light-Emitting Layer Next, the following compound 4-A (Tg = 143 ° C.) is 85 vol% as a host compound, and compound (Ir (ppy) 3) is 15 vol% as a green phosphorescent dopant. A phosphorescent light emitting layer having a thickness of 20 nm and exhibiting green light emission (G) was formed.
(6.5)電子輸送性層の形成
 次に、下記化合物3が86vol%、LiFが14vol%となるように発光層上に蒸着し、厚さ30nmの層を形成した。さらに、化合物3が98vol%、Liが2vol%となるように蒸着し、厚さ24nmの層を形成した。これにより、化合物3及びLiFと、化合物3及びLiとの2層からなる電子注入層を兼ねた電子輸送層を形成し、正孔注入層~電子輸送層までの積層構造の第3発光ユニットを形成した。
(6.5) Formation of Electron Transporting Layer Next, the following compound 3 was deposited on the light emitting layer so that 86 vol% and LiF were 14 vol%, thereby forming a layer having a thickness of 30 nm. Furthermore, it vapor-deposited so that the compound 3 might be 98 vol% and Li might be 2 vol%, and the 24-nm-thick layer was formed. As a result, an electron transport layer that also serves as an electron injection layer composed of two layers of the compound 3 and LiF and the compound 3 and Li is formed, and the third light emitting unit having a stacked structure from the hole injection layer to the electron transport layer is formed. Formed.
(7)第4電極(反射電極)の形成
 次に、アルミニウム150nmを蒸着して、第4電極(反射電極)を形成した。
(7) Formation of 4th electrode (reflection electrode) Next, 150 nm of aluminum was vapor-deposited and the 4th electrode (reflection electrode) was formed.
(8)封止及び電源部の接続
 次に、第1電極~第4電極での積層体を第4電極側からガラスケースで覆い、ガラスケースの周辺部にエポキシ系光硬化型接着剤(東亞合成社製ラクストラックLC0629B)によるシール剤を設けた。このシール剤を介してガラスケースと透明基板とを密着させた。その後、ガラスケース側からUV光を照射してシール剤を硬化させることで、第1電極~第4電極までの積層体を封止した。ガラスケースでの封止作業は、第1電極~第4電極までの積層体を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。なお、第1電極、第2電極、第3電極、及び、第4電極の端子は、ガラスケースから外側に引き出された状態とし、これらの電極を、第1電源部及び第2電源部、各電源部を駆動できる回路に接続させた。
 以上により、有機EL素子を作製した。
(8) Sealing and connection of power supply unit Next, the laminated body of the first electrode to the fourth electrode is covered with a glass case from the fourth electrode side, and an epoxy-based photocurable adhesive (Toho) is applied to the periphery of the glass case. The sealing agent by the synthetic | combination company Lux track LC0629B) was provided. The glass case and the transparent substrate were brought into close contact with each other through this sealant. Then, the laminated body from the first electrode to the fourth electrode was sealed by irradiating UV light from the glass case side to cure the sealing agent. The glass case is sealed with a glove box in a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas with a purity of 99.999% or more) without bringing the laminate from the first electrode to the fourth electrode into contact with the atmosphere. went. The terminals of the first electrode, the second electrode, the third electrode, and the fourth electrode are in a state of being pulled out from the glass case, and these electrodes are connected to the first power supply unit, the second power supply unit, The power supply unit was connected to a circuit capable of driving.
Thus, an organic EL element was produced.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
[評価]
 作製した有機EL素子を、室温(25℃)において下記(1)及び(2)となる条件下で発光させた。
 (1):第1経路[第1電極-第4電極(Ian-ca)]間に、第1電源部から電流密度が5mA/cmとなる条件で電流を印加し、第2経路[第2電極-第3電極(Im1-m2)]間には第2電源部からの電流を印加しなかった。
 (2):第1経路[第1電極-第4電極(Ian-ca)]間に、第1電源部から電流密度が5mA/cmとなる条件で電流を印加し、第2経路[第2電極-第3電極(Im1-m2)]間に、第2電源部から電流密度が10mA/cmとなる条件で電流を印加した。
 さらに、上記(1)及び(2)の条件おける、発光領域の正面輝度、色度を分光放射輝度計CS-2000(コニカミノルタセンシング社製)を用いて測定し、(1)の条件に対応する測定値[A1]、及び、(2)の条件に対応する測定値[A2]を、CIE表色系の色度図に当てはめた。CIE表色系の色度図に当てはめた測定値[A1]及び[A2]を図9に示す。
[Evaluation]
The produced organic EL device was allowed to emit light under the conditions (1) and (2) below at room temperature (25 ° C.).
(1): A current is applied between the first path [first electrode-fourth electrode (I an-ca )] under the condition that the current density is 5 mA / cm 2 from the first power supply unit, and the second path [ No current from the second power supply unit was applied between the second electrode and the third electrode (I m1-m2 )].
(2): A current is applied between the first path [first electrode-fourth electrode (I an-ca )] from the first power supply unit under a condition that the current density is 5 mA / cm 2, and the second path [ Between the second electrode and the third electrode (I m1-m2 )], a current was applied from the second power supply unit under the condition that the current density was 10 mA / cm 2 .
Furthermore, the front luminance and chromaticity of the light emitting region under the conditions (1) and (2) above were measured using a spectral radiance meter CS-2000 (manufactured by Konica Minolta Sensing Co., Ltd.). The measured value [A1] to be measured and the measured value [A2] corresponding to the condition (2) were applied to the chromaticity diagram of the CIE color system. The measured values [A1] and [A2] applied to the chromaticity diagram of the CIE color system are shown in FIG.
 図9に示す色度図の測定値[A1]及び[A2]のように、実施例で作製した有機EL素子は、第1経路[第1電極-第4電極(Ian-ca)]のみに電流を印加した(1)の条件では、第1発光ユニットと第3発光ユニットが発光し、第2発光ユニットは発光していないため、青色光と緑色光とが混合したシアン色光が得られた。一方、第1経路[第1電極-第4電極(Ian-ca)]と第2経路[第2電極-第3電極(Im1-m2)]とに同じ電流密度となるように電流を印加した(2)の条件では、第1発光ユニット、第2発光ユニット及び第3発光ユニットの全てが発光し、青色光、赤色光及び緑色光が混合した、白色光が得られた。 As in the measured values [A1] and [A2] in the chromaticity diagram shown in FIG. 9, the organic EL element produced in the example is only in the first path [first electrode-fourth electrode (I an-ca )]. Under the condition (1) in which a current is applied to the light source, the first light emitting unit and the third light emitting unit emit light, and the second light emitting unit does not emit light, so that cyan light in which blue light and green light are mixed is obtained. It was. On the other hand, a current is supplied to the first path [first electrode-fourth electrode (I an-ca )] and the second path [second electrode-third electrode (I m1-m2 )] so as to have the same current density. Under the applied condition (2), all of the first light emitting unit, the second light emitting unit, and the third light emitting unit emitted light, and white light in which blue light, red light, and green light were mixed was obtained.
〈有機EL素子(パターンB)の作製〉
 上述のパターンAの有機EL素子の作製において、第1発光ユニットの「(2.4)発光層の形成」及び第3発光ユニットの「(6.4)発光層の形成」、並びに、第2発光ユニットの「(4.4)発光層の形成」を下記のように変更し、パターンBの有機EL素子を作製した。
<Preparation of organic EL element (pattern B)>
In the production of the organic EL element having the pattern A described above, “(2.4) Formation of light emitting layer” of the first light emitting unit, “(6.4) Formation of light emitting layer” of the third light emitting unit, and second “(4.4) Formation of light emitting layer” of the light emitting unit was changed as follows, and an organic EL device having pattern B was produced.
(2.4)発光層の形成、及び、(6.4)発光層の形成
 第1発光ユニット及び第3発光ユニットの発光層の形成において、パターンAの第1発光ユニットの発光層と同様の方法を用いて、青色を呈する発光層を作製した。
(2.4) Formation of the light emitting layer and (6.4) Formation of the light emitting layer In the formation of the light emitting layers of the first light emitting unit and the third light emitting unit, the same as the light emitting layer of the first light emitting unit of the pattern A Using the method, a light emitting layer exhibiting a blue color was produced.
(4.4)発光層の形成
 第2発光ユニットの発光層の形成において、ホスト化合物として化合物4-A、緑色リン光発光ドーパントとしてIr(ppy)3、及び、赤色リン光発光ドーパントとしてIr(pq)2を、Ir(ppy)3の濃度が17%、化合物Ir(pq)2の濃度が0.8%になるように、0.1nm/秒の蒸着速度で共蒸着させ、厚さ20nmの黄色を呈するリン光発光層を作製した。
(4.4) Formation of Light-Emitting Layer In the formation of the light-emitting layer of the second light-emitting unit, compound 4-A as the host compound, Ir (ppy) 3 as the green phosphorescent dopant, and Ir (ppy) as the red phosphorescent dopant pq) 2 was co-deposited at a deposition rate of 0.1 nm / second so that the concentration of Ir (ppy) 3 was 17% and the concentration of compound Ir (pq) 2 was 0.8%, and the thickness was 20 nm. A phosphorescent light emitting layer having a yellow color was prepared.
[評価]
 作製した有機EL素子を、室温(25℃)において上記パターンAと同様に(1)及び(2)となる条件下で発光させた。さらに、上記(1)及び(2)の条件おける、発光領域の正面輝度、色度を分光放射輝度計CS-2000(コニカミノルタセンシング社製)を用いて測定し、(1)の条件に対応する測定値[B1]、及び、(2)の条件に対応する測定値[B2]を、CIE表色系の色度図に当てはめた。CIE表色系の色度図に当てはめた測定値[B1]及び[B2]を図10に示す。
[Evaluation]
The produced organic EL device was made to emit light at room temperature (25 ° C.) under the conditions (1) and (2) as in the case of the pattern A. Furthermore, the front luminance and chromaticity of the light emitting region under the conditions (1) and (2) above were measured using a spectral radiance meter CS-2000 (manufactured by Konica Minolta Sensing Co., Ltd.). The measured value [B1] to be measured and the measured value [B2] corresponding to the condition (2) were applied to the chromaticity diagram of the CIE color system. The measured values [B1] and [B2] applied to the chromaticity diagram of the CIE color system are shown in FIG.
 図10に示す色度図の測定値[B1]及び[B2]のように、実施例で作製した有機EL素子は、第1経路[第1電極-第4電極(Ian-ca)]のみに電流を印加した(1)の条件では、第1発光ユニットと第3発光ユニットが発光し、第2発光ユニットは発光していないため、青色光のみが得られた。一方、第1経路[第1電極-第4電極(Ian-ca)]と第2経路[第2電極-第3電極(Im1-m2)]とに同じ電流密度となるように電流を印加した(2)の条件では、第1発光ユニット、第2発光ユニット及び第3発光ユニットの全てが発光し、黄色光と青色光とが混合した、白色光が得られた。 As shown in the measured values [B1] and [B2] in the chromaticity diagram shown in FIG. 10, the organic EL element manufactured in the example is only the first path [first electrode-fourth electrode (I an-ca )]. Under the condition (1) in which a current was applied to the first light emitting unit, the first light emitting unit and the third light emitting unit emitted light, and the second light emitting unit did not emit light, so that only blue light was obtained. On the other hand, a current is supplied to the first path [first electrode-fourth electrode (I an-ca )] and the second path [second electrode-third electrode (I m1-m2 )] so as to have the same current density. Under the applied condition (2), all of the first light emitting unit, the second light emitting unit and the third light emitting unit emitted light, and white light in which yellow light and blue light were mixed was obtained.
〈有機EL素子(パターンC)の作製〉
 以下の方法により、1cm×1cmの素子面積を有する有機EL素子を作製した。なお、作製した有機EL素子は、上述の図1に示す構成を有し、第1発光ユニットが白、第2発光ユニットが青の発光色を有する構成である。
<Preparation of organic EL element (pattern C)>
An organic EL element having an element area of 1 cm × 1 cm was produced by the following method. The produced organic EL element has the configuration shown in FIG. 1 described above, and has a configuration in which the first light-emitting unit has a white emission color and the second light-emitting unit has a blue emission color.
[有機EL素子の作製]
 上述のパターンAの有機EL素子と同様に、「(1)第1電極(透明電極)の形成」から、「(2.3)電子阻止層の形成」までを行なった。そして、第1発光ユニットの「(2.4)発光層の形成」において、下記の方法を用いて青色を呈する蛍光発光層と黄色を呈するリン光発光層とを積層形成し、白色を呈する発光層を形成した。
[Production of organic EL element]
In the same manner as the organic EL element having the pattern A described above, “(1) formation of the first electrode (transparent electrode)” to “(2.3) formation of the electron blocking layer” were performed. Then, in “(2.4) Formation of light emitting layer” of the first light emitting unit, a fluorescent light emitting layer exhibiting a blue color and a phosphorescent light emitting layer exhibiting a yellow color are laminated by using the following method, and light emission exhibiting a white color is generated. A layer was formed.
(2.4)発光層の形成
 ホスト化合物として下記化合物2-A(Tg=189℃)が95vol%、青色蛍光発光ドーパントとして下記化合物2-Bが5vol%となるように蒸着し、青色(B)を呈する厚さ15nmの蛍光発光層を形成した。さらに、ホスト化合物として下記化合物4-A、緑色リン光発光ドーパントとしてIr(ppy)3、及び、赤色リン光発光ドーパントとしてIr(pq)2を、Ir(ppy)3の濃度が17%、化合物Ir(pq)2の濃度が0.8%になるように、0.1nm/秒の蒸着速度で共蒸着させ、厚さ15nmの黄色を呈するリン光発光層を作製した。
(2.4) Formation of Light-Emitting Layer The following compound 2-A (Tg = 189 ° C.) as a host compound was vapor-deposited so that 95 vol% and the following compound 2-B as a blue fluorescent light-emitting dopant would be 5 vol%. ) To form a 15 nm thick fluorescent light emitting layer. Further, the following compound 4-A as a host compound, Ir (ppy) 3 as a green phosphorescent dopant, Ir (pq) 2 as a red phosphorescent dopant, and a concentration of Ir (ppy) 3 of 17%, compound A phosphorescent light emitting layer having a thickness of 15 nm was formed by co-evaporation at a deposition rate of 0.1 nm / second so that the concentration of Ir (pq) 2 was 0.8%.
 次に、パターンAの有機EL素子と同様に、「(2.5)電子輸送層の形成」から「(4.3)電子阻止層の形成」までを行なった。そして、第2発光ユニットの「(4.4)発光層の形成」において、下記の方法で、青色を呈する蛍光発光層を形成した。 Next, similarly to the organic EL element of pattern A, “(2.5) Formation of electron transport layer” to “(4.3) Formation of electron blocking layer” were performed. Then, in “(4.4) Formation of light emitting layer” of the second light emitting unit, a blue fluorescent light emitting layer was formed by the following method.
(4.4)発光層の形成
 ホスト化合物として下記化合物2-A(Tg=189℃)が98vol%、青色蛍光発光ドーパントとして下記化合物2-Bが2vol%となるように蒸着し、青色(B)を呈する厚さ20nmの蛍光発光層を形成した。
(4.4) Formation of Light-Emitting Layer The following compound 2-A (Tg = 189 ° C.) is deposited as a host compound so that 98 vol% and the following compound 2-B as a blue fluorescent light-emitting dopant is 2 vol%. ) To form a fluorescent light emitting layer having a thickness of 20 nm.
 次に、「(4.5)電子輸送性層の形成」を行なった後、「(7)第4電極(反射電極)の形成」と同様の方法で、第3電極(反射電極)を作製した。そして、「(8)封止および電源部の接続」を行い、第1発光ユニットが白の発光色を有し、第2発光ユニットが青の発光色を有する図1に示す構成の有機EL素子(パターンC)を作製した。 Next, after “(4.5) Formation of electron transporting layer” is performed, a third electrode (reflection electrode) is produced in the same manner as “(7) Formation of fourth electrode (reflection electrode)”. did. Then, “(8) Sealing and connection of power supply unit” is performed, and the organic EL element having the configuration shown in FIG. 1 in which the first light emitting unit has a white light emitting color and the second light emitting unit has a blue light emitting color. (Pattern C) was produced.
[評価]
 作製した有機EL素子を、室温(25℃)において下記(1)及び(2)となる条件下で発光させた。
 (1):第1経路[第1電極-第3電極(Ian-ca)]間に、第1電源部から電流密度が5mA/cmとなる条件で電流を印加し、第2経路[第2電極-第3電極(Im-ca)]間には第2電源部からの電流を印加しなかった。
 (2):第1経路[第1電極-第3電極(Ian-ca)]間に、第1電源部から電流密度が5mA/cmとなる条件で電流を印加し、第2経路[第2電極-第3電極(Im-ca)]間に、第2電源部から電流密度が10mA/cmとなる条件で電流を印加した。
 さらに、上記(1)及び(2)の条件おける、発光領域の正面輝度、色度を分光放射輝度計CS-2000(コニカミノルタセンシング社製)を用いて測定し、(1)の条件に対応する測定値[C1]、及び、(2)の条件に対応する測定値[C2]を、CIE表色系の色度図に当てはめた。CIE表色系の色度図に当てはめた測定値[C1]及び[C2]を図11に示す。
[Evaluation]
The produced organic EL device was allowed to emit light under the conditions (1) and (2) below at room temperature (25 ° C.).
(1): A current is applied between the first path [first electrode and third electrode (I an-ca )] from the first power supply unit under the condition that the current density is 5 mA / cm 2, and the second path [ No current from the second power source was applied between the second electrode and the third electrode (I m-ca )].
(2): A current is applied between the first path [first electrode-third electrode (I an-ca )] from the first power supply unit under the condition that the current density is 5 mA / cm 2, and the second path [ Between the second electrode and the third electrode (I m-ca )], a current was applied from the second power supply unit under the condition that the current density was 10 mA / cm 2 .
Furthermore, the front luminance and chromaticity of the light emitting region under the conditions (1) and (2) above were measured using a spectral radiance meter CS-2000 (manufactured by Konica Minolta Sensing Co., Ltd.). The measured value [C1] and the measured value [C2] corresponding to the condition (2) were applied to the chromaticity diagram of the CIE color system. Measurement values [C1] and [C2] applied to the chromaticity diagram of the CIE color system are shown in FIG.
 図11に示す色度図の測定値[C1]及び[C2]のように、実施例で作製した有機EL素子は、第1経路[第1電極-第3電極(Ian-ca)]のみに電流を印加した(1)の条件では、第1発光ユニットのみが発光し、第2発光ユニットは発光していないため、白色光のみが得られた。一方、第1経路[第1電極-第3電極(Ian-ca)]と第2経路[第2電極-第3電極(Im-ca)]とに同じ電流密度となるように電流を印加した(2)の条件では、第1発光ユニット及び第2発光ユニットが発光し、白色光と青色光とが混合した光が得られた。 As shown in the measured values [C1] and [C2] in the chromaticity diagram shown in FIG. 11, the organic EL element manufactured in the example is only the first path [first electrode-third electrode (I an-ca )]. Under the condition (1) in which a current was applied to, only the first light emitting unit emitted light, and the second light emitting unit did not emit light, so only white light was obtained. On the other hand, a current is applied to the first path [first electrode-third electrode (I an-ca )] and the second path [second electrode-third electrode (I m-ca )] so as to have the same current density. Under the applied condition (2), the first light emitting unit and the second light emitting unit emitted light, and light in which white light and blue light were mixed was obtained.
〈有機EL素子(パターンD)の作製〉
 第2発光ユニットの発光層を、上述のパターンBの第2発光ユニットの「(4.4)発光層の形成」と同様の方法で形成した以外は、上述のパターンCと同様の方法で、第1発光ユニットが白の発光色を有し、第2発光ユニットが黄色の発光色を有する図1に示す構成のパターンDの有機EL素子を作製した。
<Preparation of organic EL element (pattern D)>
Except for forming the light emitting layer of the second light emitting unit by the same method as “(4.4) Formation of light emitting layer” of the second light emitting unit of the pattern B described above, the method is the same as the pattern C described above, The organic EL element of the pattern D of the structure shown in FIG. 1 in which the first light emitting unit has a white light emitting color and the second light emitting unit has a yellow light emitting color was produced.
[評価]
 作製した有機EL素子を、室温(25℃)において上記パターンCと同様に(1)及び(2)となる条件下で発光させた。さらに、上記(1)及び(2)の条件おける、発光領域の正面輝度、色度を分光放射輝度計CS-2000(コニカミノルタセンシング社製)を用いて測定し、(1)の条件に対応する測定値[D1]、及び、(2)の条件に対応する測定値[D2]を、CIE表色系の色度図に当てはめた。CIE表色系の色度図に当てはめた測定値[D1]及び[D2]を図12に示す。
[Evaluation]
The produced organic EL device was allowed to emit light at room temperature (25 ° C.) under the conditions (1) and (2) as in the case of the pattern C. Furthermore, the front luminance and chromaticity of the light emitting region under the conditions (1) and (2) above were measured using a spectral radiance meter CS-2000 (manufactured by Konica Minolta Sensing Co., Ltd.). The measured value [D1] to be measured and the measured value [D2] corresponding to the condition (2) were applied to the chromaticity diagram of the CIE color system. The measured values [D1] and [D2] applied to the chromaticity diagram of the CIE color system are shown in FIG.
 図12に示す色度図の測定値[D1]及び[D2]のように、実施例で作製した有機EL素子は、第1経路[第1電極-第3電極(Ian-ca)]のみに電流を印加した(1)の条件では、第1発光ユニットのみが発光し、第2発光ユニットは発光していないため、白色光のみが得られた。一方、第1経路[第1電極-第3電極(Ian-ca)]と第2経路[第2電極-第3電極(Im-ca)]とに同じ電流密度となるように電流を印加した(2)の条件では、第1発光ユニット及び第2発光ユニットが発光し、白色光と黄色光とが混合した光が得られた。 As shown in the measured values [D1] and [D2] in the chromaticity diagram shown in FIG. 12, the organic EL device manufactured in the example is only the first path [first electrode-third electrode (I an-ca )]. Under the condition (1) in which a current was applied to, only the first light emitting unit emitted light, and the second light emitting unit did not emit light, so only white light was obtained. On the other hand, a current is applied to the first path [first electrode-third electrode (I an-ca )] and the second path [second electrode-third electrode (I m-ca )] so as to have the same current density. Under the applied condition (2), the first light emitting unit and the second light emitting unit emitted light, and light in which white light and yellow light were mixed was obtained.
〈有機EL素子(パターンE)の作製〉
 上述のパターンCの有機EL素子の作製において、第1発光ユニットの「(2.4)発光層の形成」、及び、第2発光ユニットの「(4.4)発光層の形成」を下記のように変更し、パターンEの有機EL素子を作製した。
<Preparation of organic EL element (pattern E)>
In the production of the organic EL element having the pattern C described above, “(2.4) Formation of light emitting layer” of the first light emitting unit and “(4.4) Formation of light emitting layer” of the second light emitting unit are described below. Thus, an organic EL element having a pattern E was produced.
 第1発光ユニットの「(2.4)発光層の形成」において、下記の方法を用いて青色を呈する蛍光発光層と黄色を呈するリン光発光層とを積層形成し、色温度6500Kの白色を呈する発光層を形成した。さらに、第2発光ユニットの「(4.4)発光層の形成」において、下記の方法を用いて青色を呈する蛍光発光層と黄色を呈するリン光発光層とを積層形成し、色温度2000Kの白色を呈する発光層を形成した。 In “(2.4) Formation of light-emitting layer” of the first light-emitting unit, a fluorescent light-emitting layer exhibiting a blue color and a phosphorescent light-emitting layer exhibiting a yellow color are laminated by using the following method, and white having a color temperature of 6500 K A light emitting layer was formed. Furthermore, in “(4.4) Formation of light-emitting layer” of the second light-emitting unit, a fluorescent light-emitting layer exhibiting blue and a phosphorescent light-emitting layer exhibiting yellow are stacked and formed using the following method, and the color temperature is 2000K. A light emitting layer having a white color was formed.
(2.4)発光層の形成
 ホスト化合物として下記化合物2-A(Tg=189℃)が95vol%、青色蛍光発光ドーパントとして下記化合物2-Bが5vol%となるように蒸着し、青色(B)を呈する厚さ30nmの蛍光発光層を形成した。さらに、ホスト化合物として下記化合物4-A、緑色リン光発光ドーパントとしてIr(ppy)3、及び、赤色リン光発光ドーパントとしてIr(pq)2を、Ir(ppy)3の濃度が17%、化合物Ir(pq)2の濃度が0.8%になるように、0.1nm/秒の蒸着速度で共蒸着させ、厚さ15nmの黄色を呈するリン光発光層を作製した。
(2.4) Formation of Light-Emitting Layer The following compound 2-A (Tg = 189 ° C.) as a host compound was vapor-deposited so that 95 vol% and the following compound 2-B as a blue fluorescent light-emitting dopant would be 5 vol%. ) To form a fluorescent light emitting layer having a thickness of 30 nm. Further, the following compound 4-A as a host compound, Ir (ppy) 3 as a green phosphorescent dopant, Ir (pq) 2 as a red phosphorescent dopant, and a concentration of Ir (ppy) 3 of 17%, compound A phosphorescent light emitting layer having a thickness of 15 nm was formed by co-evaporation at a deposition rate of 0.1 nm / second so that the concentration of Ir (pq) 2 was 0.8%.
(4.4)発光層の形成
 ホスト化合物として下記化合物2-A(Tg=189℃)が95vol%、青色蛍光発光ドーパントとして下記化合物2-Bが5vol%となるように蒸着し、青色(B)を呈する厚さ15nmの蛍光発光層を形成した。さらに、ホスト化合物として下記化合物4-A、緑色リン光発光ドーパントとしてIr(ppy)3、及び、赤色リン光発光ドーパントとしてIr(pq)2を、Ir(ppy)3の濃度が17%、化合物Ir(pq)2の濃度が0.8%になるように、0.1nm/秒の蒸着速度で共蒸着させ、厚さ15nmの黄色を呈するリン光発光層を作製した。
(4.4) Formation of Light-Emitting Layer The following compound 2-A (Tg = 189 ° C.) as a host compound was vapor-deposited so that 95 vol% and the following compound 2-B as a blue fluorescent light-emitting dopant would be 5 vol%. ) To form a 15 nm thick fluorescent light emitting layer. Further, the following compound 4-A as a host compound, Ir (ppy) 3 as a green phosphorescent dopant, Ir (pq) 2 as a red phosphorescent dopant, and a concentration of Ir (ppy) 3 of 17%, compound A phosphorescent light emitting layer having a thickness of 15 nm was formed by co-evaporation at a deposition rate of 0.1 nm / second so that the concentration of Ir (pq) 2 was 0.8%.
[評価]
 作製した有機EL素子を、室温(25℃)において上記パターンCと同様に(1)及び(2)となる条件下で発光させた。さらに、上記(1)及び(2)の条件おける、発光領域の正面輝度、色度を分光放射輝度計CS-2000(コニカミノルタセンシング社製)を用いて測定し、(1)の条件に対応する測定値[E1]、及び、(2)の条件に対応する測定値[E2]を、CIE表色系の色度図に当てはめた。CIE表色系の色度図に当てはめた測定値[E1]及び[E2]を図13に示す。
[Evaluation]
The produced organic EL device was allowed to emit light at room temperature (25 ° C.) under the conditions (1) and (2) as in the case of the pattern C. Furthermore, the front luminance and chromaticity of the light emitting region under the conditions (1) and (2) above were measured using a spectral radiance meter CS-2000 (manufactured by Konica Minolta Sensing Co., Ltd.). The measured value [E1] to be measured and the measured value [E2] corresponding to the condition (2) were applied to the chromaticity diagram of the CIE color system. The measured values [E1] and [E2] applied to the chromaticity diagram of the CIE color system are shown in FIG.
 図13に示す色度図の測定値[E1]及び[E2]のように、実施例で作製した有機EL素子は、第1経路[第1電極-第3電極(Ian-ca)]のみに電流を印加した(1)の条件では、第1発光ユニットのみが発光し、第2発光ユニットは発光していないため、色温度6500Kの白色光のみが得られた。一方、第1経路[第1電極-第3電極(Ian-ca)]と第2経路[第2電極-第3電極(Im-ca)]とに同じ電流密度となるように電流を印加した(2)の条件では、第1発光ユニット及び第2発光ユニットが発光し、色温度6500Kの白色光と色温度2000Kの白色光とが混合した、約3000Kの白色光が得られた。 As shown in the measured values [E1] and [E2] of the chromaticity diagram shown in FIG. 13, the organic EL device manufactured in the example is only the first path [first electrode-third electrode (I an-ca )]. Under the condition (1) in which a current was applied to the light source, only the first light emitting unit emitted light and the second light emitting unit did not emit light, so only white light having a color temperature of 6500 K was obtained. On the other hand, a current is applied to the first path [first electrode-third electrode (I an-ca )] and the second path [second electrode-third electrode (I m-ca )] so as to have the same current density. Under the applied condition (2), the first light emitting unit and the second light emitting unit emitted light, and white light having a color temperature of 6500K and white light having a color temperature of 2000K were mixed to obtain white light of about 3000K.
〈有機EL素子(パターンF)の作製〉
 第1発光ユニットの発光層を、パターンCの第2発光ユニットの「(2.4)発光層の形成」と同様の方法で形成し、さらに、第2発光ユニットの発光層を、パターンDの第2発光ユニットの「(4.4)発光層の形成」と同様で形成した以外は、上述のパターンCの有機EL素子と同様の方法で、パターンFの有機EL素子を作製した。
<Preparation of organic EL element (pattern F)>
The light emitting layer of the first light emitting unit is formed by the same method as “(2.4) Formation of light emitting layer” of the second light emitting unit of pattern C, and the light emitting layer of the second light emitting unit is further formed of pattern D. An organic EL element of pattern F was produced in the same manner as the organic EL element of pattern C described above, except that it was formed in the same manner as “(4.4) Formation of light emitting layer” of the second light emitting unit.
[評価]
 作製した有機EL素子を、室温(25℃)において上記パターンCと同様に(1)及び(2)となる条件下で発光させた。さらに、上記(1)及び(2)の条件おける、発光領域の正面輝度、色度を分光放射輝度計CS-2000(コニカミノルタセンシング社製)を用いて測定し、(1)の条件に対応する測定値[F1]、及び、(2)の条件に対応する測定値[F2]を、CIE表色系の色度図に当てはめた。CIE表色系の色度図に当てはめた測定値[F1]及び[F2]を図14に示す。
[Evaluation]
The produced organic EL device was allowed to emit light at room temperature (25 ° C.) under the conditions (1) and (2) as in the case of the pattern C. Furthermore, the front luminance and chromaticity of the light emitting region under the conditions (1) and (2) above were measured using a spectral radiance meter CS-2000 (manufactured by Konica Minolta Sensing Co., Ltd.). The measured value [F1] to be measured and the measured value [F2] corresponding to the condition (2) were applied to the chromaticity diagram of the CIE color system. The measured values [F1] and [F2] applied to the chromaticity diagram of the CIE color system are shown in FIG.
 図14に示す色度図の測定値[F1]及び[F2]のように、実施例で作製した有機EL素子は、第1経路[第1電極-第3電極(Ian-ca)]のみに電流を印加した(1)の条件では、第1発光ユニットのみが発光し、第2発光ユニットは発光していないため、青色光のみが得られた。一方、第1経路[第1電極-第3電極(Ian-ca)]と第2経路[第2電極-第3電極(Im-ca)]とに同じ電流密度となるように電流を印加した(2)の条件では、第1発光ユニット及び第2発光ユニットが発光し、黄色光と青色光とが混合した白色光が得られた。 As shown in the measured values [F1] and [F2] in the chromaticity diagram shown in FIG. 14, the organic EL element produced in the example is only the first path [first electrode-third electrode (I an-ca )]. Only the first light emitting unit emitted light and the second light emitting unit did not emit light under the condition (1) in which a current was applied to the light source, so that only blue light was obtained. On the other hand, a current is applied to the first path [first electrode-third electrode (I an-ca )] and the second path [second electrode-third electrode (I m-ca )] so as to have the same current density. Under the applied condition (2), the first light emitting unit and the second light emitting unit emitted light, and white light in which yellow light and blue light were mixed was obtained.
 上述のように、実施例で作製した構成の有機EL素子(パターンA~F)によれば、複数の電極と発光ユニットとが積層された構成において、時分割した駆動を行うことなく、調色、調光が可能である。このため、時分割駆動に比べて、電流量が小さく、発光効率の高い有機EL素子を実現することができる。なお、実施例で作製した構成の有機EL素子では、同じ発光パターンでも各発光ユニットに供給する電流量を変えることにより、中間色の調光が可能となる。これは、他の発光ユニット同士の組み合わせによる他の発光パターンにも適用できる。 As described above, according to the organic EL element (patterns A to F) having the configuration manufactured in the example, in the configuration in which a plurality of electrodes and the light emitting unit are stacked, toning is performed without performing time-division driving. Dimming is possible. For this reason, compared with time division drive, the amount of current is small, and an organic EL element with high light emission efficiency can be realized. In addition, in the organic EL element of the structure produced in the Example, the light modulation of an intermediate color is attained by changing the electric current amount supplied to each light emission unit also with the same light emission pattern. This can also be applied to other light emission patterns by combinations of other light emitting units.
 なお、本発明は上述の実施形態例において説明した構成に限定されるものではなく、その他本発明構成を逸脱しない範囲において種々の変形、変更が可能である。 The present invention is not limited to the configuration described in the above embodiment, and various modifications and changes can be made without departing from the configuration of the present invention.
 10,20,20A,20B・・・有機EL素子、11・・・第1電極、12・・・第2電極、13・・・第3電極、14・・・第4電極、21・・・第1発光ユニット、22・・・第2発光ユニット、23・・・第3発光ユニット、31・・・第1配線、32・・・第2配線、33・・・第3配線、41・・・第1電源部、42・・・第2電源部、43・・・第3電源部、50・・・支持基板 10, 20, 20A, 20B ... Organic EL element, 11 ... 1st electrode, 12 ... 2nd electrode, 13 ... 3rd electrode, 14 ... 4th electrode, 21 ... 1st light emission unit, 22 ... 2nd light emission unit, 23 ... 3rd light emission unit, 31 ... 1st wiring, 32 ... 2nd wiring, 33 ... 3rd wiring, 41 ... First power supply unit, 42 ... second power supply unit, 43 ... third power supply unit, 50 ... support substrate

Claims (6)

  1.  支持基板上に設けられた、複数の電極と、複数の発光ユニットとを備え、前記支持基板側から、第1電極から第n電極が積層され、前記第1電極から前記第n電極の間に少なくとも1つ以上の中間電極を有し、前記電極間に第1発光ユニットから第n-1発光ユニットを有する有機エレクトロルミネッセンス素子(nは3以上の整数)であって、
     前記第1電極と前記第n電極とに電流を供給する第1配線と、
     前記第1配線に設けられた第1電源部と、
     前記第1発光ユニットから前記第n-1発光ユニットのうちの少なくとも1つの発光ユニットの陽極と陰極とに電流を供給する第2配線と、
     前記第2配線に設けられた第2電源部と、を備え、
     前記第2電源部から印加される電流量により、前記第2配線から電流が供給される前記陽極と前記陰極とに挟持された前記発光ユニットの輝度が調整される
     有機エレクトロルミネッセンス素子。 
    A plurality of electrodes provided on a support substrate and a plurality of light emitting units are provided. From the support substrate side, a first electrode to an nth electrode are stacked, and between the first electrode and the nth electrode. An organic electroluminescence element (n is an integer of 3 or more) having at least one or more intermediate electrodes and having a first light emitting unit to an (n-1) th light emitting unit between the electrodes,
    A first wiring for supplying a current to the first electrode and the nth electrode;
    A first power supply provided in the first wiring;
    A second wiring for supplying current from the first light emitting unit to the anode and the cathode of at least one of the n-1th light emitting units;
    A second power source provided in the second wiring,
    An organic electroluminescence element in which brightness of the light emitting unit sandwiched between the anode and the cathode supplied with current from the second wiring is adjusted by an amount of current applied from the second power supply unit.
  2.  n=3であり、前記第2配線が、第2電極と、前記第1配線における第3電極から前記第1電源部までの間とに接続される請求項1に記載の有機エレクトロルミネッセンス素子。  2. The organic electroluminescence element according to claim 1, wherein n = 3, and the second wiring is connected between the second electrode and a third electrode in the first wiring to the first power supply unit.
  3.  n=4であり、前記第2配線が、第2電極と、第3電極との間に接続される請求項1に記載の有機エレクトロルミネッセンス素子。 2. The organic electroluminescence element according to claim 1, wherein n = 4 and the second wiring is connected between the second electrode and the third electrode.
  4.  n=4であり、前記第2配線が、第3電極と、前記第1配線における第4電極から前記第1電源部までの間とに接続される請求項1に記載の有機エレクトロルミネッセンス素子。  2. The organic electroluminescence element according to claim 1, wherein n = 4, and the second wiring is connected between the third electrode and the fourth electrode in the first wiring to the first power supply unit.
  5.  第2電極と、前記第1配線における前記第1電極から前記第1電源部までの間とに接続される第3配線を有し、前記第3配線に第3電源部を有する請求項4に記載の有機エレクトロルミネッセンス素子。  5. The device according to claim 4, further comprising a third wire connected between the second electrode and the first electrode in the first wire to the first power supply unit, and the third wire having a third power supply unit. The organic electroluminescent element of description.
  6.  前記中間電極の少なくとも一つは、Ag又はAlを主成分として含有し、厚さ6nm以上25nm以下である請求項1に記載の有機エレクトロルミネッセンス素子。 2. The organic electroluminescence device according to claim 1, wherein at least one of the intermediate electrodes contains Ag or Al as a main component and has a thickness of 6 nm or more and 25 nm or less.
PCT/JP2017/008312 2016-05-26 2017-03-02 Organic electroluminescent element WO2017203788A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018519106A JPWO2017203788A1 (en) 2016-05-26 2017-03-02 Organic electroluminescent device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016105148 2016-05-26
JP2016-105148 2016-05-26

Publications (1)

Publication Number Publication Date
WO2017203788A1 true WO2017203788A1 (en) 2017-11-30

Family

ID=60411216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008312 WO2017203788A1 (en) 2016-05-26 2017-03-02 Organic electroluminescent element

Country Status (2)

Country Link
JP (1) JPWO2017203788A1 (en)
WO (1) WO2017203788A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837391A (en) * 1996-01-17 1998-11-17 Nec Corporation Organic electroluminescent element having electrode between two fluorescent media for injecting carrier thereinto
JP2001511296A (en) * 1997-02-03 2001-08-07 ザ トラスティーズ オブ プリンストン ユニバーシテイ Stack type organic light emitting device
JP2005150083A (en) * 2003-10-24 2005-06-09 Pentax Corp White organic electroluminescent element
JP2011028878A (en) * 2009-07-22 2011-02-10 Canon Inc Organic light-emitting device
WO2014200034A1 (en) * 2013-06-13 2014-12-18 コニカミノルタ株式会社 Method for driving organic electroluminescent element
DE102013107225A1 (en) * 2013-07-09 2015-01-15 Osram Oled Gmbh Optoelectronic component arrangement, method for producing an optoelectronic component arrangement, method for operating an optoelectronic component arrangement
JP2015528179A (en) * 2012-06-19 2015-09-24 コーニンクレッカ フィリップス エヌ ヴェ Organic electroluminescence device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837391A (en) * 1996-01-17 1998-11-17 Nec Corporation Organic electroluminescent element having electrode between two fluorescent media for injecting carrier thereinto
JP2001511296A (en) * 1997-02-03 2001-08-07 ザ トラスティーズ オブ プリンストン ユニバーシテイ Stack type organic light emitting device
JP2005150083A (en) * 2003-10-24 2005-06-09 Pentax Corp White organic electroluminescent element
JP2011028878A (en) * 2009-07-22 2011-02-10 Canon Inc Organic light-emitting device
JP2015528179A (en) * 2012-06-19 2015-09-24 コーニンクレッカ フィリップス エヌ ヴェ Organic electroluminescence device
WO2014200034A1 (en) * 2013-06-13 2014-12-18 コニカミノルタ株式会社 Method for driving organic electroluminescent element
DE102013107225A1 (en) * 2013-07-09 2015-01-15 Osram Oled Gmbh Optoelectronic component arrangement, method for producing an optoelectronic component arrangement, method for operating an optoelectronic component arrangement

Also Published As

Publication number Publication date
JPWO2017203788A1 (en) 2019-03-22

Similar Documents

Publication Publication Date Title
JP4408382B2 (en) Organic light emitting display
JP4966176B2 (en) Organic electroluminescence device
JP2002260859A (en) Illumination device
CN109565916A (en) The manufacturing method and display device of display device
JPH11297477A (en) Organic el color display
KR101815247B1 (en) Electroluminescent device
KR101877195B1 (en) Method for driving organic electroluminescent element
EP1538668B1 (en) Organic electroluminescence device
JP2006269100A (en) Display device
KR20160061363A (en) Optoelectronic component device and method for operating an optoelectronic component
JPH08315986A (en) Organic electroluminescent element
JP2002260858A (en) Light-emitting element and its manufacturing method
JP2003123971A (en) Organic electroluminescent element and its producing method
JP2004152699A (en) Light emitting device and lighting device
JP2006202685A (en) Self-light-emitting display device
JPH11312584A (en) Organic el element
WO2017203788A1 (en) Organic electroluminescent element
JP2014225556A (en) Organic electroluminescent element, organic electroluminescent unit, organic electroluminescent device, and display method
JP2016006744A (en) Luminaire
WO2017203787A1 (en) Organic electroluminescent element
KR20120035027A (en) Organic light emitting device and illuminator using the same
CN111081892A (en) Color-adjustable OLED light-emitting module
JP2015076602A (en) Top emission blue light emitting oled and method for manufacturing the same
JP2012028108A (en) Organic el panel
WO2013168228A1 (en) Organic electroluminescence device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018519106

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802390

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802390

Country of ref document: EP

Kind code of ref document: A1