WO2017202144A1 - 一种区分室内外用户的方法、装置及存储介质 - Google Patents

一种区分室内外用户的方法、装置及存储介质 Download PDF

Info

Publication number
WO2017202144A1
WO2017202144A1 PCT/CN2017/079316 CN2017079316W WO2017202144A1 WO 2017202144 A1 WO2017202144 A1 WO 2017202144A1 CN 2017079316 W CN2017079316 W CN 2017079316W WO 2017202144 A1 WO2017202144 A1 WO 2017202144A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample data
user
outdoor
indoor
data set
Prior art date
Application number
PCT/CN2017/079316
Other languages
English (en)
French (fr)
Inventor
李益刚
李孜
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017202144A1 publication Critical patent/WO2017202144A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • H04W16/20Network planning tools for indoor coverage or short range network deployment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present invention relates to wireless communication technologies, and in particular, to a method, an apparatus, and a storage medium for distinguishing between indoor and outdoor users.
  • the user equipment measures the downlink signal sent by the base station side, and sends the downlink measurement result to the base station; and the base station side also performs the uplink signal of the UE. Measurement, power control and switching of the UE according to the uplink signal measurement result and the downlink signal measurement result.
  • MR Measurement Report
  • distinguishing between indoor and outdoor users can solve the problem of how to accurately identify the deep coverage that operators are very concerned about, and use this as a basis to formulate a precise station addition scheme. If it is indoor weak coverage, it is recommended to add a sub-station; if it is an outdoor weak coverage It is recommended to add an outdoor station.
  • the indoor cell basically covers only the indoor user, when the serving cell of the user is an indoor cell, it can be easily determined that the MR data of the user is an indoor user. But when the user's service is small When the area is an outdoor cell, the existing technology cannot determine whether the user belongs to an indoor user or an outdoor user.
  • the embodiment of the present invention is to provide a method, a device, and a storage medium for distinguishing between indoor and outdoor users.
  • the serving cell of the user is an outdoor cell, it can be determined whether the user belongs to an indoor user or an outdoor user.
  • an embodiment of the present invention provides a method for distinguishing between indoor and outdoor users, where the method includes:
  • each MR sample data in each MR sample data set is in direction
  • the resulting antenna horizontal gain is lower than a preset gain threshold
  • the sorted MR data is marked according to the number of indoor users and the number of outdoor users in each MR sample data set.
  • each MR sample data of the serving cell corresponds to one UE, and each MR sample data may include: a timestamp, a cell identifier of the serving cell, a receiving cell strength of the serving cell, and a reference signal receiving power (RSRP).
  • RSRP reference signal receiving power
  • Reference Signal Receiving Power for the characterization quantity, the reception quality of the serving cell, and the reference signal reception quality (RSRQ, Reference Signal Receiving Quality) is a characterization amount, a timing advance (TA, Timing Advanced), a direction parameter of a serving cell, and an indication of an antenna-arrival angle (AOA, Angle-of-Arrival) or an RSRP strongest neighboring cell.
  • the acquiring the corresponding MR sample data distribution relationship for each MR sample data set may include:
  • each MR sample data set For each MR sample data set, all MR sample data in the set are counted according to the received field strength, and a statistical distribution map corresponding to each MR sample data set and a corresponding statistical curve are obtained.
  • the number of indoor users and the number of outdoor users in each MR sample data set are obtained through a preset fitting algorithm and the MR sample data distribution relationship, including:
  • the indoor user statistical curve is iterated by the first parameter and the second parameter, and the outdoor user statistical curve is iterated by the first parameter and the third parameter simultaneously. After the preset round iteration, the iterative round corresponding to the smallest error is selected.
  • the number of indoor users and the number of outdoor users in the MR sample data set are obtained according to the indoor user statistical curve corresponding to the iterative round with the smallest error and the outdoor user statistical curve.
  • the first user parameter and the second parameter are used to iterate the indoor user statistical curve, and the outdoor user statistical curve is iterated by the first parameter and the third parameter, and after the preset round iteration, the selection is performed.
  • the indoor user statistical curve corresponding to the iterative round with the smallest error and the outdoor user statistical curve including:
  • the error of each RSRP interval is accumulated to obtain the total error of the current iteration number; and the indoor user statistical curve corresponding to the iteration number with the smallest total error and the outdoor user statistical curve are selected.
  • the indoor user statistical curve and the outdoor user statistical curve corresponding to the iterative round with the smallest error are obtained, and the number of indoor users and the number of outdoor users in the MR sample data set are obtained, including:
  • the temporary indoor user MR sample data Temp indoor Count (RSRP) and the temporary outdoor user MR sample data Temp outdoor Count (RSRP) corresponding to each RSRP interval are obtained according to the indoor user statistical curve corresponding to the minimum number of iterations of the total error and the outdoor user statistical curve.
  • RSRP RSRP
  • each RSRP based on the MR sample ratio of the indoor user in each RSRP interval and the MR sample ratio of the outdoor user and the sample size of each RSRP interval in the MR sample data set The number of indoor user MR sample data and the number of outdoor user MR sample data.
  • the MR data in each MR sample data set is sorted according to a preset sorting rule, including:
  • the MR data in each MR sample data set is divided according to the reception intensity RSRP interval, and is sorted according to the TA from small to large in each divided RSRP interval; and when the TA is the same, according to the reception quality RSRQ from large to small Sort.
  • the sorted MR data is marked according to the number of indoor users and the number of outdoor users in each MR sample data set, including:
  • the number of indoor user MR sample data Count intdoor (RSRP) MR data is sequentially selected as an indoor user; the reverse order is selected as an outdoor user MR sample data count outdoor (RSRP) The MR data is marked as an outdoor user.
  • an embodiment of the present invention provides a device for distinguishing between indoor and outdoor users, where the device includes: a dividing module, a first acquiring module, a second acquiring module, a sorting module, and a marking module;
  • the dividing module is configured to divide the MR sample data of the serving cell into at least one MR sample data set according to a preset direction dividing policy; wherein the serving cell is an outdoor cell; each of the MR sample data sets The antenna horizontal gain due to the direction between the MR sample data is lower than a preset gain threshold;
  • the first acquiring module is configured to acquire a corresponding MR sample data distribution relationship for each MR sample data set
  • the second obtaining module is configured to acquire the number of indoor users in each MR sample data set and the outdoor by using a preset fitting algorithm and the MR sample data distribution relationship according to the distribution property of the indoor user and the outdoor user. amount of users;
  • the sorting module is configured to sort the MR data in each MR sample data set according to a preset sorting rule
  • the marking module is configured to mark the sorted MR data according to the number of indoor users and the number of outdoor users in each MR sample data set.
  • each MR sample data of the serving cell corresponds to one UE, and each MR sample data may include: a timestamp, a cell identifier of the serving cell, a receiving cell strength of the serving cell, and a representation of the RSRP.
  • the receiving quality of the cell is characterized by the RSRQ, the TA, and the direction parameter of the serving cell, and the identity of the neighboring cell with the strongest AOA or RSRP is taken as the characterization.
  • the first acquiring module is configured to collect statistics on the number of samples of all MR sample data in the set according to the received field strength for each MR sample data set, and obtain statistics corresponding to each MR sample data set. Distribution map and corresponding statistical curve.
  • the second acquiring module is configured to acquire a first parameter corresponding to the MR sample data distribution relationship
  • the first user parameter and the second parameter are used to iterate the indoor user statistical curve, and the outdoor user statistical curve is iterated by the first parameter and the third parameter simultaneously, and after the preset round iteration, the iterative wheel with the smallest error is selected.
  • the number of indoor users and the number of outdoor users in the MR sample data set are obtained according to the indoor user statistical curve corresponding to the iterative round with the smallest error and the outdoor user statistical curve.
  • the second acquiring module is configured to:
  • the error of each RSRP interval is accumulated to obtain the total error of the current iteration number; and the indoor user statistical curve corresponding to the iteration number with the smallest total error and the outdoor user statistical curve are selected.
  • the second acquiring module is configured to:
  • the temporary indoor user MR sample data Temp indoor Count (RSRP) and the temporary outdoor user MR sample data Temp outdoor Count (RSRP) corresponding to each RSRP interval are obtained according to the indoor user statistical curve corresponding to the minimum number of iterations of the total error and the outdoor user statistical curve.
  • RSRP RSRP
  • the sorting module is configured to:
  • the MR data in each MR sample data set is divided according to the reception intensity RSRP interval, and is sorted according to the TA from small to large in each divided RSRP interval; and when the TA is the same When sorting, the receiving quality RSRQ is sorted from large to small.
  • the marking module is configured to:
  • the number of indoor user MR sample data Count intdoor (RSRP) MR data is sequentially selected as an indoor user; the reverse order is selected as an outdoor user MR sample data count outdoor (RSRP) The MR data is marked as an outdoor user.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores a computer program configured to perform the above method for distinguishing indoor and outdoor users according to an embodiment of the present invention.
  • Embodiments of the present invention provide a method, device, and storage medium for distinguishing indoor and outdoor users; curve fitting technology, which distinguishes the number of indoor and outdoor sample points in each MR sample point of each receiving field strength region, thereby When the user's serving cell is an outdoor cell, indoor and outdoor users can be distinguished from the system side of the mobile communication network.
  • FIG. 1 is a schematic diagram 1 of an application scenario according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram 2 of an application scenario according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram 3 of an application scenario according to an embodiment of the present disclosure.
  • FIG. 4 is a statistical diagram of MR data distribution according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method for distinguishing indoor and outdoor users according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of dividing a serving cell according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a statistical distribution according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of acquiring the number of indoor users and the number of outdoor users according to an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of selecting a minimum indoor user statistical curve and an outdoor user statistical curve according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of obtaining the number of indoor users in an MR sample data set according to an embodiment of the present invention Schematic diagram of the number of outdoor users;
  • FIG. 11 is a schematic diagram of an indoor user differentiation principle according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of an apparatus for distinguishing indoor and outdoor users according to an embodiment of the present invention.
  • the specific indoor user receives the received field strength from the outdoor serving cell, and the difference between the received field strength from the same outdoor serving cell received by the outdoor user that is the same or similar to the indoor user location, mainly from the indoor user Penetration loss of the building in which it is located.
  • FIG. 1 after the external field is measured, when the indoor user A and the outdoor user B are close to each other, the indoor user A is usually 10 to 20 dB lower than the receiving field strength of the outdoor user B.
  • RSRP is used as the Receive the field strength characterization, and set the penetration loss of the building to 15dB.
  • the indoor user A has a time advance of 2 and the RSRP is -100dB.
  • the outdoor user B has a TA of 2 and the RSRP is -85dB. .
  • the base station can measure and report the AOA, that is, the angle between the normal direction of the UE and the base station antenna. . Therefore, in a scenario where a smart antenna is installed, the TDD-LTE base station can use the AOA to determine whether directions between different users and the serving cell are the same or similar;
  • the MR can report the neighboring neighbors of the serving cell.
  • the frequency of the zone and the PCI, and the RSRP of the neighboring cell, and among all neighboring cells around the serving cell, the neighboring cell with the strongest RSRP can approximately identify the direction of the UE.
  • the neighboring cell with the strongest RSRP of UE1 may be NCell1.
  • the neighboring cells with the strongest RSRP of UE2, UE3, and UE4 may be NCell2, NCell3, and NCell4.
  • the serving cell may utilize the strongest neighboring cell of the RSRP to determine whether the direction between different UEs and the serving cell is close.
  • the current antennas basically have zero-filling technology, the difference in antenna vertical gain caused by the difference from the base station to the position where the antenna falls in the vertical direction, that is, the position closer to the base station, is relatively small. Therefore, it can be obtained that the receiving field strength difference of different UEs in the same or similar direction mainly comes from the path loss difference caused by the difference in distance from the base station; that is, the closer the distance to the base station, the stronger the receiving field strength of the UE is. The farther away from the base station, the weaker the receiving field strength of the UE.
  • one TA is about 78 meters. Therefore, when the indoor user A is equal to the TA of the outdoor user B, only the TA cannot be used to distinguish the indoor and outdoor users.
  • the third point derivation knowledge can be known.
  • the indoor user A tends to be closer to the serving cell than the outdoor user B. Therefore, the distance between the indoor user A and the neighboring cell of the serving cell is relatively farther than that of the outdoor user B, so the indoor user A is surrounded by the neighboring cell of the serving cell.
  • the interference is smaller than that of the outdoor user B, so that it can be known that the reference RSRQ of the indoor user A is more likely to be better than the outdoor user B.
  • an MR distribution statistical graph with RSRP as the horizontal axis and MR sample points as the vertical axis is usually generated, and the highest point of each RSRP sample point axis in the figure can be connected.
  • a MR profile is formed.
  • the quantity is also close, so the distribution curve characteristics of the indoor user and the outdoor user under the specific service cell are basically the same.
  • the distribution curve of the statistical sample points in the specific serving cell by RSRP is composed of two indoor users and outdoor users with the same curve shape characteristics.
  • the distribution curve of the MR sample points is superimposed in units of RSRP. As shown in FIG. 4, in the distribution diagram shown in FIG. 4, the solid line indicates that the indoor users and outdoor users of a specific outdoor service cell are in RSRP units.
  • the distribution curve of the MR sample points is counted; the dotted line is the distribution curve of the MR sample points by the outdoor users of the specific outdoor serving cell in units of RSRP; the dotted line is the number of MR sample points for the indoor users of the specific outdoor serving cell in units of RSRP Distribution curve.
  • the indoor user is about 10-20 dB lower than the outdoor user RSRP, so the width of the indoor and outdoor curves of the specific serving cell is 10-20 dB smaller than the width of the overall distribution curve of the specific cell;
  • the indoor curve of a specific serving cell has no sample points in the range of 10-20 dB on the higher side of the RSRP value of the overall distribution curve of the specific serving cell; similarly, the RSRP of the outdoor user curve of the specific serving cell in the overall distribution curve of the specific serving cell There is no sample point in the range of 10-20 dB on the lower side of the value; therefore, the indoor user distribution curve is aligned on the lowest side of the RSRP axis with the RSRP axis of the RSRP axis of the specific serving cell; at the same time, the outdoor user The RSRP highest side of the RSRP axis of the distribution curve is aligned with the RSRP highest side of the RSRP axis of the overall serving cell overall distribution curve.
  • the time for a particular user to move indoors is generally greater than the time for outdoor activities. Therefore, under normal circumstances, within a certain statistical period, there are more indoor users in a specific service area than outdoor users. Therefore, under normal circumstances, the indoor user distribution curve height of a specific service cell is higher than the height of the outdoor user distribution curve of a specific cell.
  • the serving cell is an outdoor cell
  • the number of indoor and outdoor sample points in the MR sample points of each receiving field strength zone is distinguished, so that indoor and outdoor users can be distinguished from the system side of the mobile communication network.
  • the method may be applied to a system side of a mobile communication network, and the method may include:
  • S501 The MR sample data of the serving cell is divided into at least one MR sample data set according to a preset direction division policy.
  • the serving cell is an outdoor cell; the antenna horizontal gain due to the direction between each MR sample data in each MR sample data set is lower than a preset gain threshold; understandably, the gain threshold is used to characterize each MR The difference in antenna level gain due to the direction can be ignored between the MR sample data in the sample data set.
  • S502 Acquire a corresponding MR sample data distribution relationship for each MR sample data set.
  • S503 According to the distribution property of the indoor user and the outdoor user, obtain the number of indoor users and the number of outdoor users in each MR sample data set by using a preset fitting algorithm and the MR sample data distribution relationship.
  • S504 Sort the MR data in each MR sample data set according to a preset sorting rule.
  • S505 Mark the sorted MR data according to the number of indoor users and the number of outdoor users in each MR sample data set.
  • each MR sample data set are known by the distributed nature of the indoor user and the outdoor user; then each MR sample data is obtained. After the MR data in the set is sorted, each MR sample data is marked according to the number of indoor users and the number of outdoor users in the set, thereby realizing distinction between indoor users and outdoor users in the serving cell.
  • each MR sample data of the serving cell may correspond to one UE, and each MR sample data may include: a timestamp, a cell identifier of the serving cell, and a receiving cell strength of the serving cell, and the RSRP is Characterization quantity, reception quality of serving cell, based on RSRQ
  • the directional parameter of the levy, TA, and serving cell is characterized by the identity of the neighbor cell with the strongest AOA or RSRP.
  • the direction parameter of the AOA is taken as an example.
  • the MR sample data of the serving cell is divided into at least one MR sample data set according to a preset direction division policy, and the M-degree of the AOA can be adopted.
  • the range is a unit, and the MR sample data of the serving cell is divided into a plurality of directional MR sample data sets.
  • M can take 30 degrees.
  • the serving cell is divided into four MR data sets in units of 30 degrees.
  • step S502 for each MR sample data set, obtaining a corresponding MR sample data distribution relationship includes:
  • each MR sample data set For each MR sample data set, all MR sample data in the set are counted according to the received field strength, and a statistical distribution map corresponding to each MR sample data set and a corresponding statistical curve are obtained.
  • the statistical distribution map and the statistical curve are specific representations of the distribution relationship of the MR sample data, as shown in Fig. 7.
  • the statistical distribution map is a histogram, and the statistical curve is shown by the solid line in FIG.
  • the number of indoor users in each MR sample data set is obtained through a preset fitting algorithm and MR sample data distribution relationship.
  • the number of outdoor users can include:
  • the ratio of the number of MR sample points of each receiving field strength interval to MaxCount is MaxCountRate.
  • RSRP is used as the characterization of the received field strength.
  • the relationship matrix between RSRP and Count and MaxCountRate is as shown in Table 1.
  • the Count value corresponding to the non-integer RSRP is obtained according to Equation 2.
  • S5032 Acquire an MR sample data set of an indoor user in the MR sample data set according to a distribution property of the indoor user, and acquire a second parameter of the MR sample data set of the indoor user.
  • the first threshold interval N1 min and N1 max may also satisfy N1 min ⁇ RSRPNUM-RSRPNUM indoor ⁇ N1 max ; the second threshold interval may also be set.
  • N2 min and N2 max and such that N2 min ⁇ MaxCount indoor Rate ⁇ N2 max;
  • each RSRP indoor interval corresponding to the statistical curve f′ (RSRP) of the indoor user can be calculated.
  • the position RSRP' of the relative value of the RSRP interval of the statistical curve of the MR sample data set; in an embodiment, RSRP' can be obtained by Equation 3:
  • RSRP' MINRSRP+(RSRP indoor -MinRSRP indoor )/RSRPNUM indoor ⁇ RSRPNUM(3)
  • int(RSRP') According to the value of int(RSRP'), look up the corresponding int(RSRP') and int(RSRP')+1 of Count and MaxCountRate in Table 1, and substitute the relevant parameters into Equation 2 to get the f'(RSRP) function.
  • the RSRPindoor interval of the statistical curve corresponding to the indoor user described is the Count value of the corresponding RSRP interval in the statistical curve of the MR sample data set described by the f(RSRP) function, that is, Count (RSRP).
  • S5033 Obtain an MR sample data set of an outdoor user in the MR sample data set according to a distribution property of the outdoor user, and obtain a third parameter of the MR sample data set of the outdoor user;
  • the third threshold interval N3 min and N3 max may also satisfy N3 min ⁇ RSRPNUM-RSRPNUM outdoor ⁇ N3 max ; the fourth threshold interval may also be set.
  • the value can be modified according to the actual situation; and the value of the fourth threshold interval can be seen that the ratio of the height of the indoor user statistical curve to the height of the statistical curve of the MR sample data set is greater than the statistical curve of the outdoor user.
  • the ratio of the height to the height of the statistical curve of the MR sample data set namely: MaxCount indoor Rate>MaxCount outdoor Rate.
  • each RSRP outdoor section of the statistical curve of the outdoor user described by the f" (RSRP) function corresponds to the position RSRP" of the relative value of the RSRP section of the statistical curve of the MR sample data set is obtained by Equation 5:
  • RSRP' MINRSRP+(RSRP outdoor -MinRSRP outdoor )/RSRPNUM outdoor ⁇ RSRPNUM(5)
  • int(RSRP) According to the value of int(RSRP"), look up the corresponding int(RSRP") and int(RSRP")+1 Count and MaxCountRate in Table 1, and substitute the relevant parameters into Equation 2 to get the f"(RSRP) function.
  • the RSRP outdoor interval of the statistical curve corresponding to the outdoor user described is the Count value of the corresponding RSRP interval in the statistical curve of the MR sample data set described by the f(RSRP) function, that is, Count (RSRP).
  • step S5034 referring to FIG. 9, S50341 to S50346 may be included:
  • S50341 Acquire an RSRPNUM indoor and a maximum receiving field strength MaxRSRP indoor of the indoor user statistical curve corresponding to the current first iteration round x according to the first threshold interval;
  • Equation 7 RSRPNUM indoor :
  • RSRPNUM indoor RSRPNUM-N1 min -int[(x-1) ⁇ (N1 max -N1 min )/(X-1)](7)
  • the highest receiving field strength MaxRSRP indoor of the indoor user statistical curve corresponding to the current first iteration round x may be obtained according to Equation 8:
  • MaxRSRP indoor MinRSRP+RSRPNUM indoor -1(8).
  • S50342 Acquire, according to the third threshold interval, the number of received field strength intervals of the outdoor user statistical curve corresponding to the current first iteration round x, RSRPNUM outdoor and minimum receiving field strength MinRSRP indoor ;
  • RSRPNUM outdoor RSRPNUM-N3 min -int[(x-1) ⁇ (N3 max -N3 min )/(X-1)](9)
  • MinRSRP outdoor MaxRSRP+RSRPNUM outdoor -1(10).
  • S50343 Acquire, according to the second threshold interval, a ratio of the height of the indoor user curve corresponding to the current second iteration number y to the height of the statistical curve of the MR sample data set, MaxCount indoor Rate.
  • MaxCount indoor Rate N2 min +(y-1) ⁇ (N2 max -N2 min )/(Y-1)(11);
  • S50344 acquiring statistical curve height of the second segment iterations current y height of the curve corresponding to the MR user outside sample data set according to a fourth threshold ratio MaxCount outdoor Rate.
  • Equation 12 the ratio of the height of the outdoor user curve corresponding to the current second iteration number y to the height of the statistical curve of the MR sample data set MaxCount outdoor Rate can be obtained by Equation 12:
  • MaxCount outdoor Rate N4 min +(y-1) ⁇ (N4 max ⁇ N4 min )/(Y-1)(12).
  • S50345 Obtain the sum of the MR sample data of the indoor user in each RSRP interval of the current iteration number and the MR sample data quantity of the outdoor user, and subtract the number of MR samples corresponding to the RSRP interval in the statistical curve of the MR sample data set. Obtain the error for each RSRP interval.
  • S50346 Accumulate the error of each RSRP interval to obtain the total error of the current iteration number; and select the indoor user statistical curve corresponding to the number of iterations with the smallest total error and the outdoor user statistical curve.
  • S5035 Obtain the number of indoor users and the number of outdoor users in the MR sample data set according to the indoor user statistical curve corresponding to the iterative round with the smallest error and the outdoor user statistical curve.
  • step S5035 Can include:
  • S50351 Obtain the temporary indoor user MR sample data amount Temp indoor Count (RSRP) and the temporary outdoor user MR sample data amount Temp outdoor corresponding to each RSRP interval according to the indoor user statistical curve corresponding to the minimum number of iterations of the total error and the outdoor user statistical curve. Count (RSRP).
  • S50352 Obtain a MR sample ratio of each indoor user of the RSRP interval, Rate indoor (RSRP), and an outdoor user according to the Temp indoor Count (RSRP) and the temporary outdoor user MR sample data Temp outdoor Count (RSRP).
  • the MR sample ratio is Rate outdoor (RSRP).
  • the ratio of the MR samples of the indoor users in each RSRP interval may be:
  • the outdoor user's MR sample ratio can be
  • S50353 Obtain the number of indoor user MR sample data and the outdoor user MR sample in each RSRP interval according to the MR sample ratio of the indoor user in each RSRP interval and the MR sample ratio of the outdoor user and the sample number of each RSRP interval in the MR sample data set. The amount of data.
  • the sample number Count (RSRP) of each RSRP interval in the MR sample data set is multiplied by the MR sample ratio of the indoor user of each RSRP interval.
  • Rate indoor (RSRP) to obtain the MR sample of the indoor user of each RSRP interval.
  • the number of MR samples of the user is Count outdoor (RSRP);
  • the actual implementation process may further be: multiplying the sample number Count (RSRP) of each RSRP interval in the MR sample data set by the MR sample ratio of the outdoor user per RSRP interval Rate outdoor (RSRP) to obtain each RSRP.
  • Count outdoor (RSRP) Obtain the number of MR samples of indoor users in each RSRP interval Count indoor (RSRP);
  • step S504 can include:
  • the MR data in each MR sample data set is divided according to the reception intensity RSRP interval, and is sorted according to the TA from small to large in each divided RSRP interval; and when the TA is the same, according to the reception quality RSRQ from large to small Sort.
  • each of the chambers with a quantity obtaining section RSRP user data of the sample MR Count indoor (RSRP) and the number of users outside sample data MR Count outdoor (RSRP), step S505 may include:
  • the number of indoor sample MR sample data Count indoor (RSRP) MR data is sequentially selected as an indoor user; and the outdoor user MR sample data amount Count outdoor (RSRP) is selected in reverse order.
  • the MR data is marked as an outdoor user.
  • the receiving field strength is the same, and the direction of the serving cell is the same or similar, the closer the distance is to the serving cell, The more the users tend to be indoor users; and the same, the same, or the same, or the same, the same or the same as the direction of the serving cell, the better the reception quality tends to the principle of the indoor user, understandably,
  • the embodiment provides a method for distinguishing between indoor and outdoor users, and the number of indoor and outdoor sample points in the MR sample points of each receiving field strength region is distinguished by a curve fitting technique, thereby being able to obtain a system from a mobile communication network.
  • the side distinguishes between indoor and outdoor users.
  • the apparatus 120 may include: a partitioning module 1201, a first obtaining module 1202, and a first a second obtaining module 1203, a sorting module 1204, and a marking module 1205; wherein
  • the dividing module 1201 is configured to divide the MR sample data of the serving cell into at least one MR sample data set according to a preset direction dividing policy; wherein the serving cell is an outdoor cell; each of the MR sample data sets The antenna horizontal gain due to the direction between the MR sample data is lower than the preset gain threshold;
  • the first obtaining module 1202 is configured to acquire a corresponding MR sample data distribution relationship for each MR sample data set
  • the second obtaining module 1203 is configured to obtain the number of indoor users in each MR sample data set by using a preset fitting algorithm and the MR sample data distribution relationship according to the distribution property of the indoor user and the outdoor user. Number of outdoor users;
  • the sorting module 1204 is configured to sort the MR data in each MR sample data set according to a preset sorting rule
  • the marking module 1205 is configured to mark the sorted MR data according to the number of indoor users and the number of outdoor users in each MR sample data set.
  • each MR sample data of the serving cell corresponds to one UE, and each MR sample data may include: a timestamp, a cell identifier of the serving cell, a receiving cell strength of the serving cell, and a representation of the RSRP.
  • Cell reception quality, with RSRQ as the characterization, TA The direction parameter of the serving cell is characterized by the identity of the neighboring cell with the strongest AOA or RSRP.
  • the first obtaining module 1202 is configured to collect, for each MR sample data set, all the MR sample data in the set according to the received field strength, and obtain the sample quantity corresponding to each MR sample data set.
  • Statistical distribution map and corresponding statistical curves are configured to collect, for each MR sample data set, all the MR sample data in the set according to the received field strength, and obtain the sample quantity corresponding to each MR sample data set.
  • the second obtaining module 1203 is configured to acquire a first parameter corresponding to the MR sample data distribution relationship
  • the first user parameter and the second parameter are used to iterate the indoor user statistical curve, and the outdoor user statistical curve is iterated by the first parameter and the third parameter simultaneously, and after the preset round iteration, the iterative wheel with the smallest error is selected.
  • the number of indoor users and the number of outdoor users in the MR sample data set are obtained according to the indoor user statistical curve corresponding to the iterative round with the smallest error and the outdoor user statistical curve.
  • the second obtaining module 1203 is configured to:
  • the error of each RSRP interval is accumulated to obtain the total error of the current iteration number; and the indoor user statistical curve corresponding to the iteration number with the smallest total error and the outdoor user statistical curve are selected.
  • the second obtaining module 1203 is configured to:
  • the temporary indoor user MR sample data Temp indoor Count (RSRP) and the temporary outdoor user MR sample data Temp outdoor Count (RSRP) corresponding to each RSRP interval are obtained according to the indoor user statistical curve corresponding to the minimum number of iterations of the total error and the outdoor user statistical curve.
  • RSRP RSRP
  • the sorting module 1204 is configured to:
  • the MR data in each MR sample data set is divided according to the reception intensity RSRP interval, and is sorted according to the TA from small to large in each divided RSRP interval; and when the TA is the same, according to the reception quality RSRQ from large to small Sort.
  • the marking module 1205 is configured to:
  • the number of indoor user MR sample data Count intdoor (RSRP) MR data is sequentially selected as an indoor user; the reverse order is selected as an outdoor user MR sample data count outdoor (RSRP) The MR data is marked as an outdoor user.
  • Each module proposed in the embodiment of the present invention may be implemented by a processor, and may also be implemented by a specific logic circuit.
  • the processor may be a central processing unit (CPU), a microprocessor. (Microprocessor Uint, MPU) or Field Programmable Gate Array (FPGA).
  • the above method for distinguishing indoor and outdoor users is implemented in the form of a software function module, and is sold or used as an independent product, it may also be stored in a computer readable storage medium.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • program codes such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores a computer program for performing the above method for distinguishing indoor and outdoor users according to an embodiment of the present invention.
  • the embodiment of the present invention divides the MR sample data of the serving cell into at least one MR sample data set according to a preset direction division policy; wherein the serving cell is an outdoor cell; each MR sample data in each MR sample data set The antenna horizontal gain due to the direction is lower than the preset gain threshold; for each MR sample data set, the corresponding MR sample data distribution relationship is acquired; according to the distribution nature of the indoor user and the outdoor user, the preset Fitting an algorithm to the MR sample data distribution relationship, and acquiring each of the MR sample data sets The number of indoor users and the number of outdoor users; sorting the MR data in each MR sample data set according to a preset sorting rule; and sorting the MR data according to the number of indoor users and outdoor users in each MR sample data set The quantity is marked. In this way, indoor and outdoor users can be distinguished from the system side of the mobile communication network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种区分室内外用户的方法、装置及存储介质;该方法可以包括:将服务小区的MR样本数据按照预设的方向划分策略划分为至少一个MR样本数据集合;针对所述每个MR样本数据集合,获取对应的MR样本数据分布关系;按照室内用户与室外用户的分布性质,通过预设的拟合算法与所述MR样本数据分布关系,获取所述每个MR样本数据集合中室内用户数量与室外用户数量;将所述每个MR样本数据集合中的MR数据按照预设的排序规则进行排序;对排序后的MR数据按照所述每个MR样本数据集合中室内用户数量与室外用户数量进行标记。

Description

一种区分室内外用户的方法、装置及存储介质
相关申请的交叉引用
本申请基于申请号为201610356137.X、申请日为2016年05月25日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及无线通信技术,尤其涉及一种区分室内外用户的方法、装置及存储介质。
背景技术
在当前无线网络规划和网络优化领域中,用户设备(UE,User Equipment)会对基站侧发送的下行信号进行测量,并且将下行测量结果发送给基站;而基站侧也会对UE的上行信号进行测量,根据上行信号测量结果和下行信号测量结果对UE进行功率控制和切换。
随着移动通信技术的快速发展,对于区分室内外用户的需求越来越迫切,即通过在基站侧收集到测量报告(MR,Measurement Report),利用室内外用户的区分技术,可以区分出哪些MR属于室内用户,哪些MR属于室外用户;而且区分出网络中存在的弱覆盖、信号质量差、高干扰区域是属于室内还是室外,便于网络规划优化人员制定更为精准的网络优化或基站添加方案。例如,区分室内外用户可以解决运营商非常关注的如何准确识别深度覆盖的问题,并以此为依据制定精准加站方案,如果是室内弱覆盖,则建议加室分站;如果是室外弱覆盖,则建议加室外站。
由于室内小区基本只覆盖室内用户,故当用户的服务小区为室内小区时,则可较容易判断出该用户的MR数据为室内用户。但当用户的服务小 区为室外小区时,则现有的技术无法判断出该用户是属于室内用户还是室外用户。
发明内容
有鉴于此,本发明实施例期望提供一种区分室内外用户的方法、装置及存储介质;当用户的服务小区为室外小区时,能够判断出该用户是属于室内用户还是室外用户。
本发明实施例的技术方案是这样实现的:
第一方面,本发明实施例提供了一种区分室内外用户的方法,所述方法包括:
将服务小区的MR样本数据按照预设的方向划分策略划分为至少一个MR样本数据集合;其中,所述服务小区为室外小区;每个MR样本数据集合中的每个MR样本数据之间由于方向引起的天线水平增益低于预设的增益阈值;
针对所述每个MR样本数据集合,获取对应的MR样本数据分布关系;
按照室内用户与室外用户的分布性质,通过预设的拟合算法与所述MR样本数据分布关系,获取所述每个MR样本数据集合中室内用户数量与室外用户数量;
将所述每个MR样本数据集合中的MR数据按照预设的排序规则进行排序;
对排序后的MR数据按照所述每个MR样本数据集合中室内用户数量与室外用户数量进行标记。
在上述方案中,所述服务小区的每条MR样本数据均对应一个UE,每条MR样本数据可以包括:时间戳、服务小区的小区标识、服务小区接收场强,以参考信号接收功率(RSRP,Reference Signal Receiving Power)为表征量、服务小区接收质量,以参考信号接收质量(RSRQ,Reference Signal  Receiving Quality)为表征量、时间提前量(TA,Timing Advanced)、服务小区的方向参数,以天线到达角(AOA,Angle-of-Arrival)或RSRP最强的邻小区的标识为表征量。
在上述方案中,所述针对每个MR样本数据集合,获取对应的MR样本数据分布关系,可以包括:
针对每个MR样本数据集合,将集合中的所有MR样本数据按照接收场强进行样本数量的统计,获取每个MR样本数据集合对应的统计分布图及对应的统计曲线。
在上述方案中,所述按照室内用户与室外用户的分布性质,通过预设的拟合算法与MR样本数据分布关系,获取每个MR样本数据集合中室内用户数量与室外用户数量,包括:
获取MR样本数据分布关系对应的第一参数;
按照室内用户的分布性质,获取MR样本数据集合中室内用户的MR样本数据集合,并获取室内用户的MR样本数据集合的第二参数;
按照室外用户的分布性质,获取MR样本数据集合中室外用户的MR样本数据集合,并获取室外用户的MR样本数据集合的第三参数;
通过第一参数与第二参数对室内用户统计曲线进行迭代,并同时通过第一参数与第三参数对室外用户统计曲线进行迭代,通过预设轮次迭代后,选取误差最小的迭代轮次对应的室内用户统计曲线和室外用户统计曲线;
根据误差最小的迭代轮次对应的室内用户统计曲线和室外用户统计曲线获取MR样本数据集合中室内用户数量与室外用户数量。
在上述方案中,所述通过第一参数与第二参数对室内用户统计曲线进行迭代,并同时通过第一参数与第三参数对室外用户统计曲线进行迭代,通过预设轮次迭代后,选取误差最小的迭代轮次对应的室内用户统计曲线和室外用户统计曲线,包括:
根据第一门限区间获取当前第一迭代轮次x对应的室内用户统计曲线的接收场强区间个数RSRPNUMindoor以及最高接收场强MaxRSRPindoor
根据第三门限区间获取当前第一迭代轮次x对应的室外用户统计曲线的接收场强区间个数RSRPNUMoutdoor以及最小接收场强MinRSRPindoor
根据第二门限区间获取当前第二迭代次数y对应的室内用户曲线高度与MR样本数据集合的统计曲线高度的比例MaxCountindoorRate;
根据第四门限区间获取当前第二迭代次数y对应的室外用户曲线高度与MR样本数据集合的统计曲线高度的比例MaxCountoutdoorRate;
获取当前迭代次数每个RSRP区间的室内用户的MR样本数据数量以及室外用户的MR样本数据数量之和,再与MR样本数据集合的统计曲线中对应的RSRP区间的MR样本数量相减,获得每个RSRP区间的误差;
将每个RSRP区间的误差进行累加,得到当前迭代次数的总误差;并选取总误差最小的迭代次数对应的室内用户统计曲线和室外用户统计曲线。
在上述方案中,所述根据误差最小的迭代轮次对应的室内用户统计曲线和室外用户统计曲线获取MR样本数据集合中室内用户数量与室外用户数量,包括:
根据总误差最小的迭代次数对应的室内用户统计曲线和室外用户统计曲线获得每个RSRP区间对应的临时室内用户MR样本数据数量TempindoorCount(RSRP)和临时室外用户MR样本数据数量TempoutdoorCount(RSRP);
根据临时室内用户MR样本数据数量TempindoorCount(RSRP)和临时室外用户MR样本数据数量TempoutdoorCount(RSRP)获取每个RSRP区间室内用户的MR样本比例Rateindoor(RSRP)和室外用户的MR样本比例Rateoutdoor(RSRP);
根据每个RSRP区间室内用户的MR样本比例和室外用户的MR样本比例以及MR样本数据集合中每个RSRP区间的样本数量获取每个RSRP 区间的室内用户MR样本数据数量和室外用户MR样本数据数量。
在上述方案中,所述将所述每个MR样本数据集合中的MR数据按照预设的排序规则进行排序,包括:
将每个MR样本数据集合中的MR数据按照接收强度RSRP区间划分,并在每个划分的RSRP区间中,按照TA从小到大进行排序;并当TA相同时,按照接收质量RSRQ从大到小进行排序。
在上述方案中,所述对排序后的MR数据按照所述每个MR样本数据集合中室内用户数量与室外用户数量进行标记,包括:
在每个划分的RSRP区间对应的排序后的MR数据中,顺序选取室内用户MR样本数据数量Countintdoor(RSRP)个MR数据标记为室内用户;逆序选取室外用户MR样本数据数量Countoutdoor(RSRP)个MR数据标记为室外用户。
第二方面,本发明实施例提供了一种区分室内外用户的装置,所述装置包括:划分模块、第一获取模块、第二获取模块、排序模块和标记模块;其中,
所述划分模块,配置为将服务小区的MR样本数据按照预设的方向划分策略划分为至少一个MR样本数据集合;其中,所述服务小区为室外小区;每个MR样本数据集合中的每个MR样本数据之间由于方向引起的天线水平增益低于预设的增益阈值;
所述第一获取模块,配置为针对所述每个MR样本数据集合,获取对应的MR样本数据分布关系;
所述第二获取模块,配置为按照室内用户与室外用户的分布性质,通过预设的拟合算法与所述MR样本数据分布关系,获取所述每个MR样本数据集合中室内用户数量与室外用户数量;
所述排序模块,配置为将所述每个MR样本数据集合中的MR数据按照预设的排序规则进行排序;
所述标记模块,配置为对排序后的MR数据按照所述每个MR样本数据集合中室内用户数量与室外用户数量进行标记。
在上述方案中,所述服务小区的每条MR样本数据均对应一个UE,每条MR样本数据可以包括:时间戳、服务小区的小区标识、服务小区接收场强,以RSRP为表征量、服务小区接收质量,以RSRQ为表征量、TA、服务小区的方向参数,以AOA或RSRP最强的邻小区的标识为表征量。
在上述方案中,所述第一获取模块,配置为针对每个MR样本数据集合,将集合中的所有MR样本数据按照接收场强进行样本数量的统计,获取每个MR样本数据集合对应的统计分布图及对应的统计曲线。
在上述方案中,所述第二获取模块,配置为获取MR样本数据分布关系对应的第一参数;
以及,按照室内用户的分布性质,获取MR样本数据集合中室内用户的MR样本数据集合,并获取室内用户的MR样本数据集合的第二参数;
以及,按照室外用户的分布性质,获取MR样本数据集合中室外用户的MR样本数据集合,并获取室外用户的MR样本数据集合的第三参数;
以及,通过第一参数与第二参数对室内用户统计曲线进行迭代,并同时通过第一参数与第三参数对室外用户统计曲线进行迭代,通过预设轮次迭代后,选取误差最小的迭代轮次对应的室内用户统计曲线和室外用户统计曲线;
以及,根据误差最小的迭代轮次对应的室内用户统计曲线和室外用户统计曲线获取MR样本数据集合中室内用户数量与室外用户数量。
在上述方案中,所述第二获取模块,配置为:
根据第一门限区间获取当前第一迭代轮次x对应的室内用户统计曲线的接收场强区间个数RSRPNUMindoor以及最高接收场强MaxRSRPindoor
以及,根据第三门限区间获取当前第一迭代轮次x对应的室外用户统 计曲线的接收场强区间个数RSRPNUMoutdoor以及最小接收场强MinRSRPindoor
以及,根据第二门限区间获取当前第二迭代次数y对应的室内用户曲线高度与MR样本数据集合的统计曲线高度的比例MaxCountindoorRate;
以及,根据第四门限区间获取当前第二迭代次数y对应的室外用户曲线高度与MR样本数据集合的统计曲线高度的比例MaxCountoutdoorRate;
以及,获取当前迭代次数每个RSRP区间的室内用户的MR样本数据数量以及室外用户的MR样本数据数量之和,再与MR样本数据集合的统计曲线中对应的RSRP区间的MR样本数量相减,获得每个RSRP区间的误差;
以及,将每个RSRP区间的误差进行累加,得到当前迭代次数的总误差;并选取总误差最小的迭代次数对应的室内用户统计曲线和室外用户统计曲线。
在上述方案中,所述第二获取模块,配置为:
根据总误差最小的迭代次数对应的室内用户统计曲线和室外用户统计曲线获得每个RSRP区间对应的临时室内用户MR样本数据数量TempindoorCount(RSRP)和临时室外用户MR样本数据数量TempoutdoorCount(RSRP);
以及,根据临时室内用户MR样本数据数量TempindoorCount(RSRP)和临时室外用户MR样本数据数量TempoutdoorCount(RSRP)获取每个RSRP区间室内用户的MR样本比例Rateindoor(RSRP)和室外用户的MR样本比例Rateoutdoor(RSRP);
以及,根据每个RSRP区间室内用户的MR样本比例和室外用户的MR样本比例以及MR样本数据集合中每个RSRP区间的样本数量获取每个RSRP区间的室内用户MR样本数据数量和室外用户MR样本数据数量。
在上述方案中,所述排序模块,配置为:
将每个MR样本数据集合中的MR数据按照接收强度RSRP区间划分,并在每个划分的RSRP区间中,按照TA从小到大进行排序;并当TA相同 时,按照接收质量RSRQ从大到小进行排序。
在上述方案中,所述标记模块,配置为:
在每个划分的RSRP区间对应的排序后的MR数据中,顺序选取室内用户MR样本数据数量Countintdoor(RSRP)个MR数据标记为室内用户;逆序选取室外用户MR样本数据数量Countoutdoor(RSRP)个MR数据标记为室外用户。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质存储有计算机程序,该计算机程序配置为执行本发明实施例的上述区分室内外用户的方法。
本发明实施例提供了通过一种区分室内外用户的方法、装置及存储介质;曲线拟合技术,区分出每个接收场强区的MR样本点中室内和室外样本点的个数,从而当用户的服务小区为室外小区时,能够从移动通信网络的***侧区分出室内外用户。
附图说明
图1为本发明实施例提供的应用场景示意图一;
图2为本发明实施例提供的应用场景示意图二;
图3为本发明实施例提供的应用场景示意图三;
图4为本发明实施例提供的MR数据分布统计图;
图5为本发明实施例提供的区分室内外用户的方法流程示意图;
图6为本发明实施例提供的服务小区划分示意图;
图7为本发明实施例提供的统计分布示意图;
图8为本发明实施例提供的获取室内用户数量与室外用户数量的流程示意图;
图9为本发明实施例提供的选取误差最小室内用户统计曲线和室外用户统计曲线的流程示意图;
图10为本发明实施例提供的获取MR样本数据集合中室内用户数量与 室外用户数量的流程示意图;
图11为本发明实施例提供的室内用户区分原理示意图;
图12为本发明实施例提供的区分室内外用户的装置结构示意图。
具体实施方式
在下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
发明人在研究过程中发现:
1、特定的室内用户接收到来自室外服务小区的接收场强,和与室内用户位置相同或相近的室外用户接收到来自相同室外服务小区的接收场强之间的差异,主要来自于该室内用户所处建筑物的穿透损耗。如图1所示,经过外场的实测,在室内用户A与室外用户B位置接近的情况下,室内用户A比室外用户B的接收场强通常低10到20dB,在图1中,以RSRP作为接收场强的表征量,并以建筑物的穿透损耗设定为15dB进行示例,室内用户A的时间提前量为2,RSRP为-100dB;室外用户B的TA也为2,RSRP为-85dB。
2、在服务小区覆盖范围内,当室内用户A和室外用户B在以服务小区为圆心的相同或相近的方向上,则天线水平方向增益的差异与距离差异引起的路损差异的影响相对而言较小。
对于时分双工长期演进(TDD-LTE,Time Division Duplexing Long Term Evolution)制式来说,基站如果安装有智能天线,那么基站可以测量并上报AOA,即UE与基站天线法线方向之间的夹角。因此,TDD-LTE基站在安装有智能天线的场景下,可以利用AOA来确定不同的用户与服务小区之间的方向是否相同或相近;
对于TDD-LTE和频分双工长期演进(FDD-LTE,Frequency Division Duplexing Long Term Evolution)制式下的MR可以上报服务小区周边邻小 区的频点和PCI,以及邻小区的RSRP,而服务小区周边所有邻小区中,RSRP最强的邻小区可以近似地标识UE的方向。
如图2所示,UE1的RSRP最强的邻小区可能为NCell1,同理,UE2、UE3、UE4的RSRP最强的邻小区可能为NCell2、NCell3、NCell4。服务小区可以利用RSRP最强的邻小区来确定不同的UE与服务小区之间的方向是否接近。
由于现在的天线基本都具备零点填充技术,在从基站处至天线在垂直方向落地点的范围内,即靠近基站较近的位置的差异引起的天线垂直增益差异相对较小。故可得到:以服务小区为圆心,相同或相近方向的不同UE的接收场强差异主要来自于与基站的距离差异引起的路损差异;即距离基站越近,则UE接收场强越强,距离基站越远,则UE的接收场强越弱。
3、通过上述两点已知技术,可以推导得到,当室内用户A和室外用户B的服务小区相同,接收场强相同,且室内用户A和室外用户B的位置在以服务小区为圆心的相同或相近的方向上,则室内用户A比室外用户B更趋向于距离服务小区更近的位置,室外用户B更趋向于距离服务小区更远的位置。如图3所示。
4、由于LTE***中,一个TA约为78米,因此,当室内用户A与室外用户B的TA相等时,仅使用TA无法进行室内外用户的区分在上述第三点推导知识中可以得知,室内用户A比室外用户B更趋向于距离服务小区更近的位置,因此,室内用户A与服务小区的周边邻小区距离比室外用户B相对更远,所以室内用户A受到服务小区周边邻小区的干扰比室外用户B小,从而可以得知:室内用户A的信号的参考RSRQ有更大的可能性比室外用户B好。通过实测数据可以证明:在相同RSRP条件下,绝大多数室外样本点比室内样本点的RSRQ值更小。
5、通常情况下,每栋建筑物周边都有室外道路,因此,每个建筑物的 室内用户都可以找到与之位置相近的室外用户,位置差异最大不超过建筑物的宽度的1/2。所以当数据采集的时间足够长时,可以近似认为每个室内用户都可以有一个室外用户与其位置接近。在一般情况下,室内外用户的密集呈度呈正比,即建筑物内用户越密集,则周边道路上的用户也越密集,所以当某个特定服务小区覆盖范围下用户数足够多,采集数据的时间足够长的情况下,可以近似认为该服务小区覆盖范围下,室内用户和室外用户的地理分布情况基本接近。
6、在无线网络规划及网络优化领域,通常会生成以RSRP为横轴,MR样本点数为纵轴的MR分布统计图,将图中每个RSRP样本点轴的最高点进行连线处理后可形成一条MR分布曲线。曲线的RSRP轴维度,我们将其称为曲线宽度,曲线的MR样本点数轴维度,我们将其称为曲线高度。由上述第5点知识可以得到,由于在某个特定服务小区下,室内用户和室外用户的地理分布情况基本接近,当特定服务小区下所有用户的业务特征相近时,每个用户产生的MR样本数量也接近,故室内用户和室外用户在特定服务小区下的分布曲线特征基本相同,特定服务小区以RSRP为单位统计样本点数的分布曲线是由两条曲线形状特征基本相同的室内用户和室外用户以RSRP为单位统计MR样本点数的分布曲线叠加而成,如图4所示,在图4所示的分布图中,实线表示某一特定室外服务小区的室内用户和室外用户以RSRP为单位统计MR样本点数的分布曲线;虚线为该特定室外服务小区的室外用户以RSRP为单位统计MR样本点数的分布曲线;点虚线为为该特定室外服务小区的室内用户以RSRP为单位统计MR样本点数的分布曲线。
7、对于图4所示的MR分布统计图,基于前述的现有知识以及推导知识,可以得出:
由第一点知识可以得知:在服务小区相同,位置相同或相近的情况下, 室内用户比室外用户RSRP低10~20dB左右,故特定服务小区的室内和室外曲线的宽度都比特定小区的总体分布曲线的宽度小10~20dB;
由于某个RSRP区间内要么全部是室内用户样本点,要么全部是室外用户样本点,要么是室内和室外用户样本点的叠加,因此,特定服务小区的室内用户和室外用户曲线的高度和宽度都应该落在特定小区总体分布曲线的高度和宽度的范围内;
由于特定服务小区的室内曲线在特定服务小区总体分布曲线的RSRP值较高一侧的10~20dB范围内没有样本点;同理,特定服务小区的室外用户曲线在特定服务小区总体分布曲线的RSRP值低一侧的10~20dB范围内没有样本点;因此,室内用户分布曲线在RSRP轴的RSRP最低侧与特定服务小区的总体分布曲线的RSRP轴的RSRP最低侧对齐;与此同时,室外用户分布曲线的RSRP轴的RSRP最高侧与特定服务小区总体分布曲线的RSRP轴的RSRP最高侧对齐。
另外,经过大量的实测统计,特定用户在室内活动的时间一般情况下大于在室外活动的时间,故在通常情况下,在某一个统计周期范围内,特定服务小区的室内用户比室外用户多,故在通常情况下,特定服务小区的室内用户分布曲线高度比特定小区室外用户分布曲线的高度要高。
基于上述预备知识,在本发明实施例中:在服务小区为室外小区的场景下,利用服务小区相同、接收场强相同、与服务小区的方向相同或相近的条件下,与服务小区距离越近则越趋向于室内用户;以及,服务小区相同、接收场强相同、与服务小区的方向相同或相近、距离相同或接近的条件下,接收质量越好越趋向于室内用户的原理,通过曲线拟合技术,区分出每个接收场强区的MR样本点中室内和室外样本点的个数,从而能够从移动通信网络的***侧区分出室内外用户。
实施例一
参见图5,其示出了本发明实施例提供的一种区分室内外用户的方法,该方法可应用于移动通信网络的***侧,该方法可以包括:
S501:将服务小区的MR样本数据按照预设的方向划分策略划分为至少一个MR样本数据集合。
其中,服务小区为室外小区;每个MR样本数据集合中的每个MR样本数据之间由于方向引起的天线水平增益低于预设的增益阈值;可以理解地,增益阈值用于表征每个MR样本数据集合中的MR样本数据之间可以忽略掉因为方向引起的天线水平增益的差异。
S502:针对每个MR样本数据集合,获取对应的MR样本数据分布关系。
S503:按照室内用户与室外用户的分布性质,通过预设的拟合算法与MR样本数据分布关系,获取每个MR样本数据集合中室内用户数量与室外用户数量。
S504:将每个MR样本数据集合中的MR数据按照预设的排序规则进行排序。
S505:对排序后的MR数据按照每个MR样本数据集合中室内用户数量与室外用户数量进行标记。
图5所示的方案,在服务小区为室外小区的情况下,通过室内用户与室外用户的分布性质获知每个MR样本数据集合中的室内用户数量和室外用户数量;随后将每个MR样本数据集合中的MR数据进行排序之后,根据该集合中室内用户数量和室外用户数量对每个MR样本数据进行标记,从而实现了对服务小区内的室内用户和室外用户进行区分。
示例性地,在本实施例中,服务小区的每条MR样本数据均可以对应一个UE,每条MR样本数据可以包括:时间戳、服务小区的小区标识、服务小区接收场强,以RSRP为表征量、服务小区接收质量,以RSRQ为表 征量、TA、服务小区的方向参数,以AOA或RSRP最强的邻小区的标识为表征量。
需要说明的是,以AOA为服务小区的方向参数为例,对于步骤S501,将服务小区的MR样本数据按照预设的方向划分策略划分为至少一个MR样本数据集合,可以通过以AOA的M度范围为单位,将服务小区的MR样本数据划分为若干个带方向性的MR样本数据集合。在本实施例中,M可以取30度。如图6所示,将服务小区划分为了4个以30度为单位的MR数据集合。
示例性地,对于步骤S502来说,针对每个MR样本数据集合,获取对应的MR样本数据分布关系,包括:
针对每个MR样本数据集合,将集合中的所有MR样本数据按照接收场强进行样本数量的统计,获取每个MR样本数据集合对应的统计分布图及对应的统计曲线。
在实际实现过程中,以某个单独的MR样本数据集合为例,根据该集合中的样本数据生成以RSRP为单位的MR样本点数的集合,并生成以RSRP为区间的MR统计分布图和以RSRP为横轴,以MR样本点数count为纵轴的统计曲线,并用函数f(RSRP)描述该统计曲线,可以记为Count=f(RSRP)。统计分布图与统计曲线则是对MR样本数据分布关系的具体的表征形式,如图7所示。统计分布图为柱状图,统计曲线如图7中的实线所示。
示例性地,参见图8,对于步骤S503来说,按照室内用户与室外用户的分布性质,通过预设的拟合算法与MR样本数据分布关系,获取每个MR样本数据集合中室内用户数量与室外用户数量,可以包括:
S5031:获取MR样本数据分布关系对应的第一参数;
在实际应用中,当MR样本数据分布关系通过图7所示的统计分布图 与统计曲线进行表征的时候,第一参数包括:统计曲线最大值MaxCount、统计曲线的最高接收场强MaxRSRP和最低接收场强MinRSRP、统计曲线的接收场强区间个数RSRPNUM=MaxRSRP-MinRSRP+1、每个接收场强区间的MR样本点数与MaxCount的比值MaxCountRate。在一实施例中,以RSRP作为接收场强的表征量,某服务小区中,RSRP与Count和MaxCountRate的关系矩阵如表1所示
表1
序号 RSRP Count MaxCountRate
0 <-121 0 0.00000000%
1 -121 1 0.01600768%
2 -120 5 0.08003842%
3 -119 57 0.91243797%
4 -118 174 2.78533696%
5 -117 406 6.49911958%
6 -116 534 8.54810309%
7 -115 160 2.56122939%
8 -114 220 3.52169041%
9 -113 333 5.33055867%
10 -112 399 6.38706579%
接上表
11 -111 654 10.46902513%
12 -110 643 10.29294061%
13 -109 843 13.49447735%
14 -108 1115 17.84856731%
15 -107 1364 21.83448055%
16 -106 1780 28.49367696%
17 -105 2173 34.78469665%
18 -104 2487 39.81110933%
19 -103 3246 51.96094125%
20 -102 3370 53.94589403%
21 -101 3964 63.45445814%
22 -100 4766 76.29262046%
23 -99 5206 83.33600128%
24 -98 4557 72.94701457%
25 -97 4331 69.32927805%
26 -96 5247 83.99231631%
27 -95 5132 82.15143269%
28 -94 4967 79.51016488%
29 -93 5148 82.40755563%
30 -92 6247 100.00000000%
31 -91 5751 92.06018889%
32 -90 5490 87.88218345%
33 -89 4243 67.92060189%
34 -88 3418 54.71426285%
35 -87 2921 46.75844405%
36 -86 3112 49.81591164%
37 -85 3311 53.00144069%
38 -84 3515 56.26700816%
39 -83 2758 44.14919161%
40 -82 2387 38.21034096%
41 -81 1849 29.59820714%
42 -80 1751 28.02945414%
43 -79 1365 21.85048823%
44 -78 1069 17.11221386%
45 -77 741 11.86169361%
接上表
46 -76 518 8.29198015%
47 -75 608 9.73267168%
48 -74 349 5.58668161%
49 -73 277 4.43412838%
50 -72 209 3.34560589%
51 -71 169 2.70529854%
52 -70 144 2.30510645%
53 -69 83 1.32863775%
54 -68 56 0.89643029%
55 -67 31 0.49623819%
56 -66 18 0.28813831%
57 -65 11 0.17608452%
58 -64 6 0.09604610%
59 -63 6 0.09604610%
60 -62 4 0.06403073%
61 -61 2 0.03201537%
62 -60 4 0.06403073%
63 -59 28 0.44821514%
64 -58 0 0.00000000%
65 -57 0 0.00000000%
66 -56 0 0.00000000%
67 -55 6 0.09604610%
68 -54 51 0.81639187%
69 -53 14 0.22410757%
70 -52 2 0.03201537%
71 -51 1 0.01600768%
72 -50 1 0.01600768%
73 >-50 0 0.00000000%
从而可以通过式1获取整数RSRP区间的Count,即:
Figure PCTCN2017079316-appb-000001
当RSRP为非整数时,按照式2获取非整数RSRP对应的Count值。
Figure PCTCN2017079316-appb-000002
S5032:按照室内用户的分布性质,获取MR样本数据集合中室内用户的MR样本数据集合,并获取室内用户的MR样本数据集合的第二参数。
在实际应用中,室内用户的MR样本数据集合对应的统计曲线可以设定为Count′=f′(RSRP);在室内用户对应的统计曲线f′(RSRP)中,最高接收场强MaxRSRPindoor、最低接收场强MinRSRPindoor、统计曲线的接收场强区间个数RSRPNUMindoor=MaxRSRPindoor-MinRSRPindoor+1、统计曲线最大值MaxCountindoor,并且设定MinRSRPindoor=MinRSRP以及第一门限区间N1min和N1max,第一门限区间满足N1min≤MaxRSRP-MaxRSRPindoor≤N1max;在本实施例中,N1min优选为10,N1max优选为20;其中,10和20分别代表了建筑物穿透损耗的建议最大值和最小值。可以理解地,该值可以根据建筑物的穿透损耗的实际值而进行修改。
需要说明的是,根据上述的第一参数和第二参数,可以得到第一门限区间N1min和N1max同样也可以满足N1min≤RSRPNUM-RSRPNUMindoor≤N1max;还可以设定第二门限区间N2min和N2max,并且使得N2min≤MaxCountindoorRate≤N2max;其中,MaxCountindoorRate代表了室内用户曲线 高度与MR样本数据集合的统计曲线高度的比值,在实际应用中可以为MaxCountindoorRate=MaxCountindoor/MaxCount,其中N2min建议取值为0.6,N2max建议取值为0.9,代表了室内用户的统计曲线高度与MR样本数据集合的统计曲线的高度之间的比例区间的范围。可以理解地,该值可以根据实际情况而进行修改。
此外,还可以根据室内用户对应的统计曲线当前的曲线宽度和MR样本数据集合的统计曲线的曲线宽度的比值,可以计算出室内用户对应的统计曲线f′(RSRP)的每个RSRPindoor区间对应于MR样本数据集合的统计曲线的RSRP区间的相对值的位置RSRP′;在一实施例中,RSRP′可以通过式3得到:
RSRP′=MINRSRP+(RSRPindoor-MinRSRPindoor)/RSRPNUMindoor×RSRPNUM(3)
根据int(RSRP′)的值查表1中相应的int(RSRP′)和int(RSRP′)+1的Count和MaxCountRate,并将相关参数代入式2,即可得到f′(RSRP)函数所描述的室内用户对应的统计曲线的每个RSRPindoor区间在f(RSRP)函数描述的MR样本数据集合的统计曲线中对应的RSRP区间的Count值,即Count(RSRP)。由于f′(RSRP)所描述的室内用户曲线的高度比f(RSRP)所描述的MR样本数据集合的统计曲线的高度低,故f′(RSRP)函数所描述的室内用户的统计曲线的每个RSRPindoor区间的实际Count′值可以用式4所描述:
Count′(RSRPindoor)=Count(RSRP)×MaxCountindoorRate(4)。
S5033:按照室外用户的分布性质,获取MR样本数据集合中室外用户的MR样本数据集合,并获取室外用户的MR样本数据集合的第三参数;
在实际应用中,室外用户的MR样本数据集合对应的统计曲线可以设定为Count″=f″(RSRP);在室外用户对应的统计曲线f″(RSRP)中,最高接收场强MaxRSRPoutdoor、最低接收场强MinRSRPoutdoor、统计曲线的接收场强区间个数RSRPNUMoutdoor=MaxRSRPoutdoor-MinRSRPoutdoor+1、统计曲线最大值 MaxCountoutdoor,并且设定MaxRSRPoutdoor=MaxRSRP以及第三门限区间N3min和N3max,第三门限区间满足N3min≤MinRSRP-MinRSRPoutdoor≤N3max;在本实施例中,N3min优选为10,N3max优选为20;其中,10和20分别代表了建筑物穿透损耗的建议最大值和最小值。可以理解地,该值可以根据建筑物的穿透损耗的实际值而进行修改。
需要说明的是,根据上述的第一参数和第三参数,可以得到第三门限区间N3min和N3max同样也可以满足N3min≤RSRPNUM-RSRPNUMoutdoor≤N3max;还可以设定第四门限区间N4min和N4max,并且使得N4min≤MaxCountoutdoorRate≤N4max;其中,MaxCountoutdoorRate代表了室外用户统计曲线高度与MR样本数据集合的统计曲线高度的比值,在一实施例中可以为MaxCountoutdoorRate=MaxCountoutdoor/MaxCount,其中N4min建议取值为0.1,N4max建议取值为0.4,代表了室外用户统计曲线的高度与MR样本数据集合的统计曲线的高度之间的比例区间的范围。可以理解地,该值可以根据实际情况而进行修改;并且通过第四门限区间的取值可以看出,根据室内用户统计曲线的高度与MR样本数据集合的统计曲线高度的比例大于室外用户统计曲线高度与MR样本数据集合的统计曲线高度的比例,即:MaxCountindoorRate>MaxCountoutdoorRate。
此外,f″(RSRP)函数所描述的室外用户的统计曲线的每个RSRPoutdoor区间对应于MR样本数据集合的统计曲线的RSRP区间的相对值的位置RSRP″通过式5得到:
RSRP′=MINRSRP+(RSRPoutdoor-MinRSRPoutdoor)/RSRPNUMoutdoor×RSRPNUM(5)
根据int(RSRP″)的值查表1中相应的int(RSRP″)和int(RSRP″)+1的Count和MaxCountRate,并将相关参数代入式2,即可得到f″(RSRP)函数所描述的室外用户对应的统计曲线的每个RSRPoutdoor区间在f(RSRP)函数描述的MR 样本数据集合的统计曲线中对应的RSRP区间的Count值,即Count(RSRP)。由于f″(RSRP)所描述的室外用户曲线的高度比f(RSRP)所描述的MR样本数据集合的统计曲线的高度低,故f″(RSRP)函数所描述的室内用户的统计曲线的每个RSRPoutdoor区间的实际Count″值可以用式6所描述:
Count″(RSRPoutdoor)=Count(RSRP)×MaxCountoutdoorRate(6)。
S5034:通过第一参数与第二参数对室内用户统计曲线进行迭代,并同时通过第一参数与第三参数对室外用户统计曲线进行迭代,通过预设轮次迭代后,选取误差最小的迭代轮次对应的室内用户统计曲线和室外用户统计曲线;
对于步骤S5034,参见图9,可以包括S50341至S50346:
S50341:根据第一门限区间获取当前第一迭代轮次x对应的室内用户统计曲线的接收场强区间个数RSRPNUMindoor以及最高接收场强MaxRSRPindoor
在实际实现过程中,通过式7获取当前第一迭代轮次x对应的室内用户统计曲线的接收场强区间个数RSRPNUMindoor
RSRPNUMindoor=RSRPNUM-N1min-int[(x-1)×(N1max-N1min)/(X-1)](7)
其中,x表示当前第一迭代次数,X表示预设的迭代轮次;
在确定了RSRPNUMindoor之后,可以根据式8获取当前第一迭代轮次x对应的室内用户统计曲线的最高接收场强MaxRSRPindoor
MaxRSRPindoor=MinRSRP+RSRPNUMindoor-1(8)。
S50342:根据第三门限区间获取当前第一迭代轮次x对应的室外用户统计曲线的接收场强区间个数RSRPNUMoutdoor以及最小接收场强MinRSRPindoor
在实际实现过程中,相应于步骤S50341,当前第一迭代轮次x对应的室外用户统计曲线的接收场强区间个数RSRPNUMoutdoor以及最小接收场强MinRSRPindoor分别通过式9和式10得到:
RSRPNUMoutdoor=RSRPNUM-N3min-int[(x-1)×(N3max-N3min)/(X-1)](9)
MinRSRPoutdoor=MaxRSRP+RSRPNUMoutdoor-1(10)。
S50343:根据第二门限区间获取当前第二迭代次数y对应的室内用户曲线高度与MR样本数据集合的统计曲线高度的比例MaxCountindoorRate。
在实际实现过程中,通过式11获取当前第二迭代次数y对应的室内用户曲线高度与MR样本数据集合的统计曲线高度的比例MaxCountindoorRate:
MaxCountindoorRate=N2min+(y-1)×(N2max-N2min)/(Y-1)(11);
其中,y表示当前第二迭代次数,Y表示预设的迭代轮次。
S50344:根据第四门限区间获取当前第二迭代次数y对应的室外用户曲线高度与MR样本数据集合的统计曲线高度的比例MaxCountoutdoorRate。
在实际实现过程中,相应于步骤S50343,当前第二迭代次数y对应的室外用户曲线高度与MR样本数据集合的统计曲线高度的比例MaxCountoutdoorRate可以通过式12得到:
MaxCountoutdoorRate=N4min+(y-1)×(N4max-N4min)/(Y-1)(12)。
S50345:获取当前迭代次数每个RSRP区间的室内用户的MR样本数据数量以及室外用户的MR样本数据数量之和,再与MR样本数据集合的统计曲线中对应的RSRP区间的MR样本数量相减,获得每个RSRP区间的误差。
S50346:将每个RSRP区间的误差进行累加,得到当前迭代次数的总误差;并选取总误差最小的迭代次数对应的室内用户统计曲线和室外用户统计曲线。
S5035:根据误差最小的迭代轮次对应的室内用户统计曲线和室外用户统计曲线获取MR样本数据集合中室内用户数量与室外用户数量。
需要说明的是,通过图9所示的方案,在得到总误差最小的迭代次数对应的室内用户统计曲线和室外用户统计曲线之后,参见图10,步骤S5035 可以包括:
S50351:根据总误差最小的迭代次数对应的室内用户统计曲线和室外用户统计曲线获得每个RSRP区间对应的临时室内用户MR样本数据数量TempindoorCount(RSRP)和临时室外用户MR样本数据数量TempoutdoorCount(RSRP)。
S50352:根据临时室内用户MR样本数据数量TempindoorCount(RSRP)和临时室外用户MR样本数据数量TempoutdoorCount(RSRP)获取每个RSRP区间室内用户的MR样本比例Rateindoor(RSRP)和室外用户的MR样本比例Rateoutdoor(RSRP)。
在实际实现过程中,每个RSRP区间室内用户的MR样本比例可以为:
Figure PCTCN2017079316-appb-000003
室外用户的MR样本比例可以为
Figure PCTCN2017079316-appb-000004
S50353:根据每个RSRP区间室内用户的MR样本比例和室外用户的MR样本比例以及MR样本数据集合中每个RSRP区间的样本数量获取每个RSRP区间的室内用户MR样本数据数量和室外用户MR样本数据数量。
在实际实现过程中,将MR样本数据集合中每个RSRP区间的样本数量Count(RSRP)乘以每个RSRP区间室内用户的MR样本比例Rateindoor(RSRP)获取每个RSRP区间室内用户的MR样本数据数量Countindoor(RSRP);随后通过MR样本数据集合中每个RSRP区间的样本数量Count(RSRP)减去每个RSRP区间室内用户的MR样本数据数量Countindoor(RSRP)获得每个RSRP区间室外用户的MR样本数量Countoutdoor(RSRP);
可以理解地,上述实际实现过程还可以为:将MR样本数据集合中每个RSRP区间的样本数量Count(RSRP)乘以每个RSRP区间室外用户的MR样本比例Rateoutdoor(RSRP)获取每个RSRP区间室外用户的MR样本数据数量 Countoutdoor(RSRP);随后通过MR样本数据集合中每个RSRP区间的样本数量Count(RSRP)减去每个RSRP区间室外用户的MR样本数据数量Countoutdoor(RSRP)获得每个RSRP区间室内用户的MR样本数量Countindoor(RSRP);
需要说明的是,上述两种可选的实现过程中,当出现非整数时,可以进行四舍五入取整。
示例性地,步骤S504可以包括:
将每个MR样本数据集合中的MR数据按照接收强度RSRP区间划分,并在每个划分的RSRP区间中,按照TA从小到大进行排序;并当TA相同时,按照接收质量RSRQ从大到小进行排序。
示例性地,结合上述获取每个RSRP区间的室内用户MR样本数据数量Countindoor(RSRP)和室外用户MR样本数据数量Countoutdoor(RSRP),步骤S505可以包括:
在每个划分的RSRP区间对应的排序后的MR数据中,顺序选取室内用户MR样本数据数量Countindoor(RSRP)个MR数据标记为室内用户;逆序选取室外用户MR样本数据数量Countoutdoor(RSRP)个MR数据标记为室外用户。
在实际实现过程中,参见图11,基于在服务小区为室外小区的场景下,利用服务小区相同、接收场强相同、与服务小区的方向相同或相近的条件下,与服务小区距离越近则越趋向于室内用户;以及,服务小区相同、接收场强相同、与服务小区的方向相同或相近、距离相同或接近的条件下,接收质量越好越趋向于室内用户的原理,可以理解地,在图11中,在相同的RSRP=-90dBM的条件下,TA较小的均为室内用户;TA较大的均为室外用户;而TA相同的情况下,例如TA=4,接收质量较好的为室内用户,如RSRQ=-2、-3;接收质量较差的为室外用户,如RSRQ=-5。
可以理解地,将所有MR样本数据集合按照上述方案进行标记完成后, 也就完成了针对服务小区的所有MR样本数据进行室内外用户的区分过程。
本实施例提供了一种区分室内外用户的方法,通过曲线拟合技术,区分出每个接收场强区的MR样本点中室内和室外样本点的个数,从而能够从移动通信网络的***侧区分出室内外用户。
实施例二
基于前述实施例相同的技术构思,参见图12,其示出了本发明实施例提供的一种区分室内外用户的装置120,该装置120可以包括:划分模块1201、第一获取模块1202、第二获取模块1203、排序模块1204和标记模块1205;其中,
所述划分模块1201,配置为将服务小区的MR样本数据按照预设的方向划分策略划分为至少一个MR样本数据集合;其中,所述服务小区为室外小区;每个MR样本数据集合中的每个MR样本数据之间由于方向引起的天线水平增益低于预设的增益阈值;
所述第一获取模块1202,配置为针对所述每个MR样本数据集合,获取对应的MR样本数据分布关系;
所述第二获取模块1203,配置为按照室内用户与室外用户的分布性质,通过预设的拟合算法与所述MR样本数据分布关系,获取所述每个MR样本数据集合中室内用户数量与室外用户数量;
所述排序模块1204,配置为将所述每个MR样本数据集合中的MR数据按照预设的排序规则进行排序;
所述标记模块1205,配置为对排序后的MR数据按照所述每个MR样本数据集合中室内用户数量与室外用户数量进行标记。
在上述方案中,所述服务小区的每条MR样本数据均对应一个UE,每条MR样本数据可以包括:时间戳、服务小区的小区标识、服务小区接收场强,以RSRP为表征量、服务小区接收质量,以RSRQ为表征量、TA、 服务小区的方向参数,以AOA或RSRP最强的邻小区的标识为表征量。
在上述方案中,所述第一获取模块1202,配置为针对每个MR样本数据集合,将集合中的所有MR样本数据按照接收场强进行样本数量的统计,获取每个MR样本数据集合对应的统计分布图及对应的统计曲线。
在上述方案中,所述第二获取模块1203,配置为获取MR样本数据分布关系对应的第一参数;
以及,按照室内用户的分布性质,获取MR样本数据集合中室内用户的MR样本数据集合,并获取室内用户的MR样本数据集合的第二参数;
以及,按照室外用户的分布性质,获取MR样本数据集合中室外用户的MR样本数据集合,并获取室外用户的MR样本数据集合的第三参数;
以及,通过第一参数与第二参数对室内用户统计曲线进行迭代,并同时通过第一参数与第三参数对室外用户统计曲线进行迭代,通过预设轮次迭代后,选取误差最小的迭代轮次对应的室内用户统计曲线和室外用户统计曲线;
以及,根据误差最小的迭代轮次对应的室内用户统计曲线和室外用户统计曲线获取MR样本数据集合中室内用户数量与室外用户数量。
在上述方案中,所述第二获取模块1203,配置为:
根据第一门限区间获取当前第一迭代轮次x对应的室内用户统计曲线的接收场强区间个数RSRPNUMindoor以及最高接收场强MaxRSRPindoor
以及,根据第三门限区间获取当前第一迭代轮次x对应的室外用户统计曲线的接收场强区间个数RSRPNUMoutdoor以及最小接收场强MinRSRPindoor
以及,根据第二门限区间获取当前第二迭代次数y对应的室内用户曲线高度与MR样本数据集合的统计曲线高度的比例MaxCountindoorRate;
以及,根据第四门限区间获取当前第二迭代次数y对应的室外用户曲线高度与MR样本数据集合的统计曲线高度的比例MaxCountoutdoorRate;
以及,获取当前迭代次数每个RSRP区间的室内用户的MR样本数据数量以及室外用户的MR样本数据数量之和,再与MR样本数据集合的统计曲线中对应的RSRP区间的MR样本数量相减,获得每个RSRP区间的误差;
以及,将每个RSRP区间的误差进行累加,得到当前迭代次数的总误差;并选取总误差最小的迭代次数对应的室内用户统计曲线和室外用户统计曲线。
在上述方案中,所述第二获取模块1203,配置为:
根据总误差最小的迭代次数对应的室内用户统计曲线和室外用户统计曲线获得每个RSRP区间对应的临时室内用户MR样本数据数量TempindoorCount(RSRP)和临时室外用户MR样本数据数量TempoutdoorCount(RSRP);
以及,根据临时室内用户MR样本数据数量TempindoorCount(RSRP)和临时室外用户MR样本数据数量TempoutdoorCount(RSRP)获取每个RSRP区间室内用户的MR样本比例Rateindoor(RSRP)和室外用户的MR样本比例Rateoutdoor(RSRP);
以及,根据每个RSRP区间室内用户的MR样本比例和室外用户的MR样本比例以及MR样本数据集合中每个RSRP区间的样本数量获取每个RSRP区间的室内用户MR样本数据数量和室外用户MR样本数据数量。
在上述方案中,所述排序模块1204,配置为:
将每个MR样本数据集合中的MR数据按照接收强度RSRP区间划分,并在每个划分的RSRP区间中,按照TA从小到大进行排序;并当TA相同时,按照接收质量RSRQ从大到小进行排序。
在上述方案中,所述标记模块1205,配置为:
在每个划分的RSRP区间对应的排序后的MR数据中,顺序选取室内用户MR样本数据数量Countintdoor(RSRP)个MR数据标记为室内用户;逆序选取室外用户MR样本数据数量Countoutdoor(RSRP)个MR数据标记为室外用户。
本发明实施例中提出的各个模块均可以通过处理器来实现,当然也可通过具体的逻辑电路实现;在实际应用中,处理器可以为中央处理器(Central Processing Unit,CPU)、微处理器(Microprocessor Uint,MPU)或现场可编程门阵列(Field Programmable Gate Array,FPGA)等。
本发明实施例中,如果以软件功能模块的形式实现上述区分室内外用户的方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本发明实施例不限制于任何特定的硬件和软件结合。
相应地,本发明实施例还提供一种计算机存储介质,该计算机存储介质中存储有计算机程序,该计算机程序用于执行本发明实施例的上述区分室内外用户的方法。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
本发明实施例将服务小区的MR样本数据按照预设的方向划分策略划分为至少一个MR样本数据集合;其中,所述服务小区为室外小区;每个MR样本数据集合中的每个MR样本数据之间由于方向引起的天线水平增益低于预设的增益阈值;针对所述每个MR样本数据集合,获取对应的MR样本数据分布关系;按照室内用户与室外用户的分布性质,通过预设的拟合算法与所述MR样本数据分布关系,获取所述每个MR样本数据集合中 室内用户数量与室外用户数量;将所述每个MR样本数据集合中的MR数据按照预设的排序规则进行排序;对排序后的MR数据按照每个MR样本数据集合中室内用户数量与室外用户数量进行标记。如此,能够从移动通信网络的***侧区分出室内外用户。

Claims (17)

  1. 一种区分室内外用户的方法,所述方法包括:
    将服务小区的测量报告MR样本数据按照预设的方向划分策略划分为至少一个MR样本数据集合;其中,所述服务小区为室外小区;每个MR样本数据集合中的每个MR样本数据之间由于方向引起的天线水平增益低于预设的增益阈值;
    针对所述每个MR样本数据集合,获取对应的MR样本数据分布关系;
    按照室内用户与室外用户的分布性质,通过预设的拟合算法与所述MR样本数据分布关系,获取所述每个MR样本数据集合中室内用户数量与室外用户数量;
    将所述每个MR样本数据集合中的MR数据按照预设的排序规则进行排序;
    对排序后的MR数据按照每个MR样本数据集合中室内用户数量与室外用户数量进行标记。
  2. 根据权利要求1所述的方法,其中,所述服务小区的每条MR样本数据均对应一个用户设备UE,每条MR样本数据可以包括:时间戳、服务小区的小区标识、服务小区接收场强,以参考信号接收功率RSRP为表征量、服务小区接收质量,以参考信号接收质量RSRQ为表征量、时间提前量TA、服务小区的方向参数,以天线到达角AOA或RSRP最强的邻小区的标识为表征量。
  3. 根据权利要求1所述的方法,其中,所述针对每个MR样本数据集合,获取对应的MR样本数据分布关系,包括:
    针对每个MR样本数据集合,将集合中的所有MR样本数据按照接收场强进行样本数量的统计,获取每个MR样本数据集合对应的统计分布图及对应的统计曲线。
  4. 根据权利要求1所述的方法,其中,所述按照室内用户与室外用户的分布性质,通过预设的拟合算法与MR样本数据分布关系,获取每个MR样本数据集合中室内用户数量与室外用户数量,包括:
    获取MR样本数据分布关系对应的第一参数;
    按照室内用户的分布性质,获取MR样本数据集合中室内用户的MR样本数据集合,并获取室内用户的MR样本数据集合的第二参数;
    按照室外用户的分布性质,获取MR样本数据集合中室外用户的MR样本数据集合,并获取室外用户的MR样本数据集合的第三参数;
    通过第一参数与第二参数对室内用户统计曲线进行迭代,并同时通过第一参数与第三参数对室外用户统计曲线进行迭代,通过预设轮次迭代后,选取误差最小的迭代轮次对应的室内用户统计曲线和室外用户统计曲线;
    根据误差最小的迭代轮次对应的室内用户统计曲线和室外用户统计曲线获取MR样本数据集合中室内用户数量与室外用户数量。
  5. 根据权利要求4所述的方法,其中,所述通过第一参数与第二参数对室内用户统计曲线进行迭代,并同时通过第一参数与第三参数对室外用户统计曲线进行迭代,通过预设轮次迭代后,选取误差最小的迭代轮次对应的室内用户统计曲线和室外用户统计曲线,包括:
    根据第一门限区间获取当前第一迭代轮次x对应的室内用户统计曲线的接收场强区间个数以及最高接收场强;
    根据第三门限区间获取当前第一迭代轮次x对应的室外用户统计曲线的接收场强区间个数以及最小接收场强;
    根据第二门限区间获取当前第二迭代次数y对应的室内用户曲线高度与MR样本数据集合的统计曲线高度的比例;
    根据第四门限区间获取当前第二迭代次数y对应的室外用户曲线高度与MR样本数据集合的统计曲线高度的比例;
    获取当前迭代次数每个RSRP区间的室内用户的MR样本数据数量以及室外用户的MR样本数据数量之和,再与MR样本数据集合的统计曲线中对应的RSRP区间的MR样本数量相减,获得每个RSRP区间的误差;
    将每个RSRP区间的误差进行累加,得到当前迭代次数的总误差;并选取总误差最小的迭代次数对应的室内用户统计曲线和室外用户统计曲线。
  6. 根据权利要求5所述的方法,其中,所述根据误差最小的迭代轮次对应的室内用户统计曲线和室外用户统计曲线获取MR样本数据集合中室内用户数量与室外用户数量,包括:
    根据总误差最小的迭代次数对应的室内用户统计曲线和室外用户统计曲线获得每个RSRP区间对应的临时室内用户MR样本数据数量和临时室外用户MR样本数据数量;
    根据临时室内用户MR样本数据数量和临时室外用户MR样本数据数量获取每个RSRP区间室内用户的MR样本比例和室外用户的MR样本比例;
    根据每个RSRP区间室内用户的MR样本比例和室外用户的MR样本比例以及MR样本数据集合中每个RSRP区间的样本数量获取每个RSRP区间的室内用户MR样本数据数量和室外用户MR样本数据数量。
  7. 根据权利要求1所述的方法,其中,所述将所述每个MR样本数据集合中的MR数据按照预设的排序规则进行排序,包括:
    将每个MR样本数据集合中的MR数据按照接收强度RSRP区间划分,并在每个划分的RSRP区间中,按照TA从小到大进行排序;并当TA相同时,按照接收质量RSRQ从大到小进行排序。
  8. 根据权利要求6所述的方法,其中,所述对排序后的MR数据按照所述每个MR样本数据集合中室内用户数量与室外用户数量进行标记,包 括:
    在每个划分的RSRP区间对应的排序后的MR数据中,顺序选取室内用户MR样本数据数量个MR数据标记为室内用户;逆序选取室外用户MR样本数据数量个MR数据标记为室外用户。
  9. 一种区分室内外用户的装置,所述装置包括:划分模块、第一获取模块、第二获取模块、排序模块和标记模块;其中,
    所述划分模块,配置为将服务小区的测量报告MR样本数据按照预设的方向划分策略划分为至少一个MR样本数据集合;其中,所述服务小区为室外小区;每个MR样本数据集合中的每个MR样本数据之间由于方向引起的天线水平增益低于预设的增益阈值;
    所述第一获取模块,配置为针对所述每个MR样本数据集合,获取对应的MR样本数据分布关系;
    所述第二获取模块,配置为按照室内用户与室外用户的分布性质,通过预设的拟合算法与所述MR样本数据分布关系,获取所述每个MR样本数据集合中室内用户数量与室外用户数量;
    所述排序模块,配置为将所述每个MR样本数据集合中的MR数据按照预设的排序规则进行排序;
    所述标记模块,配置为对排序后的MR数据按照每个MR样本数据集合中室内用户数量与室外用户数量进行标记。
  10. 根据权利要求9所述的装置,其中,所述服务小区的每条MR样本数据均对应一个用户设备UE,每条MR样本数据可以包括:时间戳、服务小区的小区标识、服务小区接收场强,以参考信号接收功率RSRP为表征量、服务小区接收质量,以参考信号接收质量RSRQ为表征量、时间提前量TA、服务小区的方向参数,以天线到达角AOA或RSRP最强的邻小区的标识为表征量。
  11. 根据权利要求9所述的装置,其中,所述第一获取模块,配置为针对每个MR样本数据集合,将集合中的所有MR样本数据按照接收场强进行样本数量的统计,获取每个MR样本数据集合对应的统计分布图及对应的统计曲线。
  12. 根据权利要求9所述的装置,其中,所述第二获取模块,配置为获取MR样本数据分布关系对应的第一参数;
    以及,按照室内用户的分布性质,获取MR样本数据集合中室内用户的MR样本数据集合,并获取室内用户的MR样本数据集合的第二参数;
    以及,按照室外用户的分布性质,获取MR样本数据集合中室外用户的MR样本数据集合,并获取室外用户的MR样本数据集合的第三参数;
    以及,通过第一参数与第二参数对室内用户统计曲线进行迭代,并同时通过第一参数与第三参数对室外用户统计曲线进行迭代,通过预设轮次迭代后,选取误差最小的迭代轮次对应的室内用户统计曲线和室外用户统计曲线;
    以及,根据误差最小的迭代轮次对应的室内用户统计曲线和室外用户统计曲线获取MR样本数据集合中室内用户数量与室外用户数量。
  13. 根据权利要求12所述的装置,其中,所述第二获取模块,配置为:
    根据第一门限区间获取当前第一迭代轮次x对应的室内用户统计曲线的接收场强区间个数以及最高接收场强;
    以及,根据第三门限区间获取当前第一迭代轮次x对应的室外用户统计曲线的接收场强区间个数以及最小接收场强;
    以及,根据第二门限区间获取当前第二迭代次数y对应的室内用户曲线高度与MR样本数据集合的统计曲线高度的比例;
    以及,根据第四门限区间获取当前第二迭代次数y对应的室外用户曲线高度与MR样本数据集合的统计曲线高度的比例;
    以及,获取当前迭代次数每个RSRP区间的室内用户的MR样本数据数量以及室外用户的MR样本数据数量之和,再与MR样本数据集合的统计曲线中对应的RSRP区间的MR样本数量相减,获得每个RSRP区间的误差;
    以及,将每个RSRP区间的误差进行累加,得到当前迭代次数的总误差;并选取总误差最小的迭代次数对应的室内用户统计曲线和室外用户统计曲线。
  14. 根据权利要求13所述的装置,其中,所述第二获取模块配置为:
    根据总误差最小的迭代次数对应的室内用户统计曲线和室外用户统计曲线获得每个RSRP区间对应的临时室内用户MR样本数据数量和临时室外用户MR样本数据数量;
    以及,根据临时室内用户MR样本数据数量和临时室外用户MR样本数据数量获取每个RSRP区间室内用户的MR样本比例和室外用户的MR样本比例;
    以及,根据每个RSRP区间室内用户的MR样本比例和室外用户的MR样本比例以及MR样本数据集合中每个RSRP区间的样本数量获取每个RSRP区间的室内用户MR样本数据数量和室外用户MR样本数据数量。
  15. 根据权利要求9所述的装置,其中,所述排序模块配置为:
    将每个MR样本数据集合中的MR数据按照接收强度RSRP区间划分,并在每个划分的RSRP区间中,按照TA从小到大进行排序;并当TA相同时,按照接收质量RSRQ从大到小进行排序。
  16. 根据权利要求14所述的装置,其中,所述标记模块配置为:
    在每个划分的RSRP区间对应的排序后的MR数据中,顺序选取室内用户MR样本数据数量个MR数据标记为室内用户;逆序选取室外用户MR样本数据数量个MR数据标记为室外用户。
  17. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令用于执行权利要求1至8任一项所述的区分室内外用户的方法。
PCT/CN2017/079316 2016-05-25 2017-04-01 一种区分室内外用户的方法、装置及存储介质 WO2017202144A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610356137.X 2016-05-25
CN201610356137.XA CN107438251B (zh) 2016-05-25 2016-05-25 一种用于室内外用户区分的方法和装置

Publications (1)

Publication Number Publication Date
WO2017202144A1 true WO2017202144A1 (zh) 2017-11-30

Family

ID=60412025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079316 WO2017202144A1 (zh) 2016-05-25 2017-04-01 一种区分室内外用户的方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN107438251B (zh)
WO (1) WO2017202144A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113194426A (zh) * 2020-01-14 2021-07-30 中移动信息技术有限公司 一种指纹库的更新方法、装置、设备及计算机存储介质
CN114025372A (zh) * 2021-11-18 2022-02-08 武汉虹信技术服务有限责任公司 基于mr数据的5g rsrp计算方法及***

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108901029B (zh) * 2018-05-08 2021-07-30 武汉虹信技术服务有限责任公司 一种基于深度学习的室内外用户区分方法
CN110580483A (zh) * 2018-05-21 2019-12-17 上海大唐移动通信设备有限公司 一种室内外用户区分方法及装置
CN112969143B (zh) * 2021-03-02 2023-02-28 北京红山信息科技研究院有限公司 一种终端室内外区分方法、***、服务器和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102769866A (zh) * 2012-06-18 2012-11-07 华为技术有限公司 一种室内外业务数据的区分方法及设备
CN103037388A (zh) * 2012-12-06 2013-04-10 上海大唐移动通信设备有限公司 一种确定用户设备分布的方法及装置
US20140155085A1 (en) * 2012-12-04 2014-06-05 At&T Mobility Ii Llc Classification Of Indoor And Outdoor Telecommunications Events Of Mobile Telecommunications Networks

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5123897B2 (ja) * 2009-06-16 2013-01-23 株式会社エヌ・ティ・ティ・ドコモ 屋内外判定装置及び屋内外判定方法
US9326104B2 (en) * 2014-05-22 2016-04-26 Qualcomm Incorporated Method and apparatus for indoor/outdoor detection using ambient signals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102769866A (zh) * 2012-06-18 2012-11-07 华为技术有限公司 一种室内外业务数据的区分方法及设备
US20140155085A1 (en) * 2012-12-04 2014-06-05 At&T Mobility Ii Llc Classification Of Indoor And Outdoor Telecommunications Events Of Mobile Telecommunications Networks
CN103037388A (zh) * 2012-12-06 2013-04-10 上海大唐移动通信设备有限公司 一种确定用户设备分布的方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHO, KYONG-TAK ET AL.: "Femtocell Power Control by Discrimination of Indoor and Outdoor Users", WIRELESS TELECOMMUNICATIONS SYMPOSIUM (WTS), 15 April 2011 (2011-04-15), pages 1 - 6, XP031903486 *
VILLEBRUN, EMMANUELLE ET AL.: "Indoor outdoor user discrimination in mobile wireless networks", VEHICULAR TECHNOLOGY CONFERENCE , 2006, VTC-2006 FALL, vol. 64, 28 September 2006 (2006-09-28), pages 1 - 5, XP031051508 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113194426A (zh) * 2020-01-14 2021-07-30 中移动信息技术有限公司 一种指纹库的更新方法、装置、设备及计算机存储介质
CN113194426B (zh) * 2020-01-14 2022-09-06 中移动信息技术有限公司 一种指纹库的更新方法、装置、设备及计算机存储介质
CN114025372A (zh) * 2021-11-18 2022-02-08 武汉虹信技术服务有限责任公司 基于mr数据的5g rsrp计算方法及***
CN114025372B (zh) * 2021-11-18 2024-04-02 武汉虹信技术服务有限责任公司 基于mr数据的5g rsrp计算方法及***

Also Published As

Publication number Publication date
CN107438251B (zh) 2021-08-24
CN107438251A (zh) 2017-12-05

Similar Documents

Publication Publication Date Title
WO2017202144A1 (zh) 一种区分室内外用户的方法、装置及存储介质
CN104853379B (zh) 一种无线网络质量评估方法及装置
CN110602741B (zh) 网络弱覆盖的识别方法、装置、设备及存储介质
EP3890361B1 (en) Cell longitude and latitude prediction method and device, server, base station, and storage medium
CN106879017B (zh) 一种lte网络覆盖质量的判定方法及装置
Ying et al. Characterizing spatial patterns of base stations in cellular networks
CN106231628A (zh) 用于地理区块数据收集和报告的方法和演进型节点b
CN105519140B (zh) 一种定位ap的方法和装置
WO2022022486A1 (zh) 用于基站节能的处理方法和处理装置
US10517007B2 (en) Received signal strength based interferer classification of cellular network cells
CN111263403A (zh) Lte网络下多频小区间负荷均衡方法和装置
CN108243447B (zh) 一种外部干扰的定位方法及装置
CN114449649B (zh) 基于mro数据的干扰源定位方法及装置
CN110557775B (zh) 弱覆盖小区的确定方法及装置
CN110798804A (zh) 一种室内定位方法和装置
CN108540299B (zh) 一种网络故障定位处理方法及装置
Wu et al. Spatial statistical modeling for heterogeneous cellular networks-an empirical study
CN107734516B (zh) 一种邻区优化方法和装置
EP3220680A2 (en) Systems and methods for cellular network anomaly detection using spatially aggregated data
WO2017211178A1 (zh) 划分超级小区的方法及装置
WO2017020273A1 (en) Method and device for positioning and method of generating a positioning database in multicarrier network
CN111263375A (zh) 一种volte上下行覆盖平衡判断方法及装置
CN111263382B (zh) 一种导致重叠覆盖的问题源小区的确定方法、装置和设备
CN114095854B (zh) 基于最小化路测mdt数据的室分网络干扰源定位方法和电子设备
CN109246727B (zh) 一种切换带的优化处理方法及基站

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17801991

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17801991

Country of ref document: EP

Kind code of ref document: A1